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Abstract

Attempts to categorise music by extracting audio fea-
tures from a sample have had mixed results. Some
categories such as classical are easy to identily but
attempts to distinguish between various types of pop-
ular music yvield poor results. Part of the difficulty is
that humans also disagree with each other when clas-
silying music. We report on experiments that com-
pare human classification of music samples to that
based on audio feature extraction and machine learn-
ing techniques. We extracted a set of audio features
and applied a range of machine learning techniques to
a set of 128 pieces of music. Our work demonstrates
that a single feature and a simple machine learning
approach achieve results that are almost as consistent
as humans for the same task. Further experiments
revealed an even greater inconsistency amongst hu-
mans in selecting categories for music. Using a sell-
organising map on the same set of pieces and fea-
tures produced some meaningful song clusters, that
is, pieces by the same artist or composer, or of the
same genre, were grouped together. It also showed
some of the same cross-genre relationships shown by
the human-based classifications.

1 INTRODUCTION

The ability to identify or extract meaningful informa-
tion from musical audio data is of great benefit for a
range of applications, including music retrieval and
recommender systems. The last four years has seen
an increase in interest in the field of music information
retrieval on audio data. The state of the art consists
of matching on features to classify audio into a small
number of groups (for example Welsh et al. (Welsh,
Borisov, Hill, von Behren & Woo 1999)), identify-
ing a specific recording via digital signature match-
ing (Haitsma & Kalker 2002), or identifying a work
based on its entire structure (Foote 1999, Foote 2000).
To match on melody against a large collection how-
ever, is still beyond the capabilities of practical sys-
tems.

Typical features extracted for audio matching are
sumunaries of frequencies found in the audio sample,
mean frequency values such as the centroid and ap-
proximations of rhythm. Matching music on these
types of features provides us with the opportunity
of locating works in a similar style or mood to those
that a user likes (Uitdenbogerd & van Schyndel 2002).
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Thus the technigue can be used to enhance music rec-
ommender systems.

Our goal in this research was to find out more
about music classification by genre. Can it be suc-
cessfully automated? What extracted audio features
help when classifying pieces of music? How does an
automated music classifier compare to human clas-
sification? Qur yardstick for success is human clas-
sification of musie, as there is no clear undisputed
definition of genre for each piece of music, only hu-
man judgements. Our experiments reveal that hu-
mans disagreed with each other about 48% of the
time for the data set and set of categories used in
our research. Further, a single feature based on the
amplitude of frequencies in a particular range was an
excellent predictor of category. Using a self-organised
map revealed some meaningful clusters, in particular,
classical piano works were clustered together, as were
ballads by the Beatles. Other works had less obvious
groupings.

In this paper, we review related work, discuss the
machine learning and feature extraction techniques
used in our experiments, then report on the experi-
ments themselves. This is followed by discussion of
the implications of the experimental results.

2 RELATED WORK

On a computer, music information can be represented
in one of two ways - by symbolic representation of
notes, or by sampling and encoding an analogue sig-
nal that captures a recorded music performance, used
in file formats such as the pule-coded modulation
(PCM) format found in .wav files. The MP3 file for-
mat also uses this representation of music information
to encode its files, but using psychoacoustic analysis,
can reduce the space required to store the informa-
tion.

Early work on extracting information from musical
audio data concentrated on transcription. As this is
a task that is quite difficult to achieve, the majority
of research in this field worked on simple examples
of data such as a single instrument, or working with
a combination of audio and MIDI data to produce
a MIDI transcription of a specific performance of a
known work (Scheirer 2000). Other approaches have
led to partial transcription, such as isolating the bass
line (Hainsworth & Macleod 2001). Another related
application is instrument detection, which currently
concentrates on detecting instruments playing a single
note in isolation (Fujinaga & MacMillan 2000).

A typical approach to extracting features from au-
dio is to take Fourier Transforms from segments of an
audio file, and then extract audio characteristics such
as differences in pitch and average intensities of cer-
tain frequency bands. Further processing of this in-
formation can yield indexed measurements indicating
characteristics such as the volume of an audio sample,



and how much noise compared to pure tone a sample
has. Features can also be extracted out of the raw
audio files without further processing, one example
being the calculation of zero-crossings, another be-
ing the extraction of volume for a particular segment.
TFeatures can also be calculated from wavelet or other
transforms in a similar fashion.

Welsh et al. applied feature extraction to a k-
nearest neighbour algorithm with some success on
a small collection (Welsh et al. 1999). Features in-
dicative of the tonality of the song, the average vol-
ume level and the amount of noise present in the
audio signal were used to index 7,000 MP3 songs.
Then a search engine client, allowed queries based on
song samples. To test song classification according to
genre, they manually divided 100 albums into seven
categories: rock, pop, folk, electronic, indie, classi-
cal, and soul. All songs of each album were placed in
the category associated with the album, giving 1225
songs in all. Tonal features were taken over the entire
song length, whereas rhythm features were based on
analysis of three samples of ten seconds each. Each
song was represented by 1248 features. Matching had
a 30-62% success rate depending on the category and
features used.

In the work carried out by Tzanetakis et al.(2001)
, features that were indicative of rhythm and mu-
sic texture were extracted from 1,000 songs. Each of
these feature sets was tagged with a genre descriptor.
A Gaussian classifier was then used to partition the
feature sets into categories. In their experiment on
classification, the six categories selected were classi-
cal, country, disco, hip-hop, jazz and rock. Thirty-
second samples were used from each song for feature
extraction, 50 songs for training for each classifier.
The resulting genre classifier had an accuracy of ap-
proximately 56%. In later work they applied pitch
histograms to the task of classification, using 150 sec-
onds of each of 100 pieces, and classifying into the
five categories, electronica, classical, jazz, Irish folk,
and rock. They achieved up to 70% accuracy for the
set task, however, the music appears to have heen se-
lected to allow greater discrimination than achieved
in their earlier experiments, so that it isn’t certain
whether the techniques or the data-set is responsible
for the improvement.

The Self-Organizing Map (SOM) (Hollimin 1996,
Kohonen, Hynninen, Kangas & Laaksonen 1996) is
a neural network architecture loosely based on some
aspects of biological brain function. The SOM has
a very useful application in unsupervised clustering.
Clustering is the term used to describe the segmenta-
tion of data when nothing is known about the ‘class’
of the data. In this example, there will not be tagged
information defining a song as being a song in the
‘rock’ or ‘pop’ classification. Instead, the SOM will
cluster similar sounding songs based on feature vec-
tors extracted from MP3 audio files.

Work with clustering similar songs has been car-
ried out by Pampalk et al . Their approach to feature
extraction differed from (Welsh et al. 1999) in that
they applied Fourier Transforms to the dataset and
then applied critical band analysis to transform the
Fourier Transform into a set of features that is more
representative of human hearing, and then used Prin-
cipal Component Analysis to reduce the dimension-
ality of the feature sets. Using a set of 3940 samples
from 359 songs revealed clustering of samples from
the same song.

In this section we discussed the systems used by
different researchers and their experiments. In the
next section we discuss the audio features that we
used for our experiments.
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3 AUDIO FEATURE EXTRACTION FOR
MUSIC CATEGORISATION

To successfully categorise music using automatic
means requires the extraction of salient features from
the audio data. When humans categorise music
they somehow use high-order information such as the
tempo or speed, instrumentation, type of beat, tonal-
ity and vocal style as indicators. Determining these
automatically from raw audio data is rather diffi-
cult. Currently, simpler features that approximate
this high-order information are used. We divide these
into two categories of features, rhythm and spectral.
In this section we discuss the features of these two
categories that we used in our experiments, including
several novel features, one of which was shown to be
useful for classification.

3.1 Rhythm-Based Features

Rhythm and tempo, are characteristics of music that
are difficult to extract reliably. They have also
been shown to be a one of the most important fea-
tures in terms of humans identifying similar songs by
style (Uitdenbogerd & van Schyndel 2002).

One approach to rhythm extraction was proposed
by Jonathan Foote (Foote 1997). He segmented an
audio sample into frames and parameterised the data
using Fourier transforms, then used a cosine similarity
measure to determine the similarity between two of
these parameterised frames. He then constructed a
two-dimensional similarity visualisation using these
values and used an auto-correlation function along
the diagonal of this visualisation to come up with a
tempo estimate.

For this project, a simpler approach was taken
to rhythm extraction. It was clear from looking at
Fourier transtorms of the samples that in pieces where
there existed a clear, salient beat, there was a peri-
odicity about the intensities of the audio signals in
the low frequency range (0-100Hz) and in the high
frequency range (12000-14000Hz).

Figure 1: Fourier Transform of Chemical Brothers
Song - Music: Response. The vertical axis represents
frequency, the horizontal axis represents time slices
and the brightness shows the intensity of the compo-
nent frequencies within each time slice.

Figure 1, shows a spectrum analysis of a Chemical
Brothers song, Music: Response. When looking at at
the low frequency range of this song, a periodicity in
the power is visible. This regularity in loudness can
also be seen in the upper bands of the spectrum anal-
ysis. We hypothesized that it would be possible to get
indexed measurements of how fast or slow the song is
by looking at characteristics of these two bands.

In Figure 2, a similar spectrum analysis is carried
out on a J.S. Bach piece. We can see that the peaks



Figure 2: Fourier Transform of a Bach piece

in the upper and lower bands are nowhere near as
tightly regulated as in Figure 1.

One of the first features extracted from this was a
measure of the maximum and minimum intensities of
average power of these two bands. Following on from
that, there were measurements taken of how many
times the average power of a band was within a 10%
threshold of the maximum power of that band and a
measure of how many peaks and troughs there were
in those two bands and how widely they were spaced
apart. A listing of all the rhythm features we ex-
tracted can be found in Table 6, along with descrip-
tions of what each of these features represented.

3.2 Spectral Features

After rhythm features were extracted from the audio,
the next step was to look at a set of features that
were representative of the “feel” of the audio sample.
Spectral features were considered (Tzanetakis, Essl
& Cook 2001) as a way of parameterizing audio ac-
cording to its recorded characteristics. These features
indicate the colour and texture of tone of the song,
particularly in regard to instrumentation.

Below is a list of the features we implemented that
were based on the work presented in Tzanetakis et
al. (Tzanetakis et al. 2001).

Note that M|[f] is the magnitude of the frequency
f at bin Min the Fourier Transform of the data.

The Centroid is calculated as:

_ X fMI]
Sl Mlf]

The centroid is a measure of spectral brightness.
That is, it is a measure of where most of the volume of
the sample lies, in terms of frequency, on the Fourier
transform.

Rolloff is the value R such that:

R

> M[f]=0385 Z JM[f]

i=1 i=1
The rolloff is a good measure of spectral shape.
That is, it is a measure of how the frequencies dis-
tribute themselves along the Fourier transform.
The Flux is calculated to be:

F = ||M[f] — Mp[f]I
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Flux is a measure of how much the Fourier spec-
trum changes.

We also implemented features that used zero-
crossings. Zero-crossings are calculated by count-
ing the number of times the untransformed waveform
crosses from a positive to a negative value. Zero-
crossings are useful for detecting the noise in a signal.

The spectral features we implemented are listed in
Table 9.

4 EXPERIMENTS

We wished to determine which features are most effec-
tive for classifying music into several categories, and
which machine learning techniques were most effec-
tive for this purpose.

4.1 The Collection

The 128 songs chosen for the collection were garnered
from a wide variety of audio compact discs. The col-
lection consists of songs of 32 different artists. A 10
second sample starting from exactly one minute into
each song was extracted digitally from CD and com-
pressed in the MP3 format. This sample length was
chosen as appropriate given the resources available
and yet still much longer than that required by hu-
nmans for identification of style. The samples were
kept at the volume level of the original CD recording.

4.2 Human Classification of Music

To see how consistent humans were at classifying a
10 second sample of a song, a small survey was con-
ceived and distributed to four subjects. The survey
was distributed with a CD of 64 of the 10-second sam-
ples, randomly drawn from the collection of 128 songs.
Each participant was asked to classify each of the
10 second samples on one CD into one of seven gen-
res: Rock, Pop, Classical, Hiphop, Electronic, Folk,
and Dance. These categories were chosen by the re-
searchers as representative of the collection and the
same number of categories as that used for other work
in the field (Welsh et al. 1999). Each CD was organ-
ised so that a set of 32 of the 64 samples was common
to two discs. That is, the collection was divided into
4 sets of 32 samples, with each participant receiving
two such sets, and sharing a set of 32 in common with
two other participants.

The survey asked the subjects to specify their fa-
miliarity with music — that is, how much music tu-
ition they have received — which artists or composers
they were most familiar with, and a short paragraph
about their motivation behind their classifications.

The human classifications were assessed for consis-
tency in order to provide a rough confidence rating for
computer based classification. Consistency of classi-
fication was measured using a disagreement calcula-
tion: a simple summing up of all the instances where
two subjects disagreed on classification, divided by
the total number of songs.

4.2.1 Results/Discussion

Table 1 shows the percentage of disagreement
amongst participants for each set of 32 samples. The
results for this were surprising. Overall, there was
48% disagreement between two subjects in relation
to classification similarity.

From the survey comments, subjects found it very
difficult to classify some of the samples. Two of the re-
spondents replied that it was very difficult to classify
songs by the “Magnetic IMields”. This was borne out
in the results - 5 of the 8 Magnetic Fields songs were



Table 1: Genre disagreement between participants

Set 1 Set2 Set3 Setd Overall
41% 38% 59% 53% 48%

Table 2: ZeroR Classifications and Classification Ac-
curacy

Classification
1 2 3
Accuracy: 23.43% 31.25% 32.81%
Classification: | Pop Rock Rock

classified inconsistently, with respondents not know-
ing whether to classify the pieces as “pop” or “rock”.

In a further analysis of the genre disagreement we
found that dance and electronic were frequently inter-
changed, and folk was very inconsistently classified.
In Table 5 we show a confusion matrix of the two
human-assigned genre labels for each song. Table 3
shows the percentage of agreement for each category
as a proportion of the total number of songs that were
placed in the category by at least one human classi-
fier.

In one of several follow-up experiments, we asked
two semi-professional musicians to assign music cate-
gories to the same pieces (half each), with no restric-
tion on the nature of the categories. Both participants
used many categories (28 and 11 respectively), with
only 4 categories being identical: pop, rock, funk and
classical.

In a second experiment on choosing categories for
music without referring to specific pieces, there was
no clear agreement amongst 37 participants, even
when only two categories were requested. The task
was perceived as quite difficult, with difficulty gen-
erally increasing with the number of categories re-
quested (in the range 2-10). We intend to explore
the issues related human classification of music fur-
ther.

4.3 Automatic Classification with Training

In content-based audio categorisation, the goal is to
extract features that emphasize the most important
aspects of the audio sample and that are meaning-
ful enough to allow classification and clustering algo-
rithms to organise a music collection into pertinent
genres and not be too expensive to compute. The fol-
lowing sections describe the feature extraction process
employed here, which transforms 10 seconds worth of
audio sample per song into 58 features which rep-
resent rhythmic and spectral characteristics of each
sample.

Using seven samples of various styles for ex-
ploratory and development work, feature extraction
algorithms were implemented, tested, and refined.
TFeatures were extracted using the Snack toolkit,
which is a set of libraries that “plug-in” to the Tecl
Scripting Language. and allows for easy audio manip-
ulation in a wide variety of audio formats, including
MP3.

The Weka Data Mining toolkit (Witten & Frank
2000) was used for classification on the collection of
128 songs, and as a tool to gain insight into the data.
The ZeroR. OneR, and J48 Classification algorithms
were used, as well as a greedy feature selection al-
gorithm. These algorithms implement classifiers of
increasing complexity. ZeroR simply classifies an un-
known case according to the majority class of the
training data. For example, if pop is the most com-
mon category, all items are classified as pop. OneR
finds a rule based on the single attribute that most
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Table 3: Percentage of human classifications that
were consistent for each music category. Also shown
is the total number of pieces that were given that
category by at least one person.

Category  Percentage Total
Classical 75 12
Dance 45 22
Electronic 15 26
Folk 14 T
Hip-hop 80 10
Pop 29 49
Rock 48 54

Table 4: OneR Classification Accuracy and Key At-
tribute Selected

Classification  Attribute Accuracy
1 maxamplow 45.31%
2 maxamplow 53.13%
3 maxamplow 40.63%

accurately classifies the training data. J48 is an im-
plementation of the C4.5 decision tree classifier, one of
the most robust and widely used classification meth-
ods. Greedy feature selection is a method of finding
the best subset of features for classification. All of the
classifiers were trained and tested using 10-fold cross
validation. In addition, a number of feature selection
methods were used, with the aim of removing any ir-
relevant or redundant features from the original 58.
New J48 decision trees were then obtained from the
reduced feature sets. All the classifiers were trained
and tested using 10-fold cross-validation of the data.

The classifications garnered from the survey re-
sponses were compiled into two complete sets of clas-
sifications, with which the feature sets were then
tagged. We also devised an initial set of classifications
relating artist to genrve. This set is labelled Classifi-
cation 1, and the remaining two classifications were
garnered from the human survey (Classification 2 and
Classification 3).

ZeroR was run as an initial classification algorithm
to gain a baseline accuracy measurement for the three
classifications, and to look at how skewed the classi-
fication was. Table 2 shows the classification selected
by ZeroR, and the accuracy in the classification cho-
Sen.

Table 4 shows the accuracy in the classification
when using the OneR classifier and which feature was
chosen.

The J48 decision tree classifier was used with all
settings kept at defaults. except that we tested the
classifier both with and without error-reduction prun-
ing of the decision tree. Table 7 shows the accuracy
of classification that the J48 algorithm obtained.

For the feature selection we used greedy hill-
climbing to select possible feature subsets and
Correlation-Based Feature Selection (Hall 1999) to
evaluate the subsets. Table 10 shows the results of
this feature subset selection.

Using the recommendations for each of the three
classifications (presented in Table 10), we limited the
J48 Decision Tree algorithm to the selected feature
subsets. Unpruned classification accuracy improved,
but was still less than that achieved with the maxam-
plow feature in isolation.



Table 5: Confusion Matrix for Human Classifications 2 and 3

Category  Classical Dance Elec. TFolk Hip-hop TPop Rock
Classical 9 0 1 1 0 1 0
Dance 10 10 0 0 1 1
Electronic + 0 1 7 3
Folk 1 0 3 2
Hip-hop 3 1 1
Pop 14 22
Rock 26

Table 6: Rhythm Based Features Used

Feature Name

Description

maxamplow max power of lower band frequencies

minamplow min power of lower band frequencies

peaklow number of times power of lower band is within 20% of max power
peakabslow number of times power of lower band is within 10 levels of max power
maxamphi max power of higher band frequencies

minamphi min power of higher band frequencies

peakhi number of times power of higher band is within 20% of max power
peakabshi number of times power of higher band frequency is within 10 levels of max power
cons_peaklow number of times power of lower band passes 15% of max power
meanlowdist mean distance of peaks in lower band

stdlowdist standard deviation distance of peaks in lower band

maxlowdist maximum distance between peaks in lower band

minlowdist minimum distance between peaks in lower band

meanlowdist_b
stdlowdist b
maxlowdist_b
minlowdist_b

mean distance between peaks in lower band
std dev of distance of peaks in lower band
max distance between peaks in lower band
min distance between peaks in lower band

cons_peakhi number of times power of higher bands passes 15% of max power
meanhidist mean distance of peaks in higher band

stdhidist std deviation of distance of peaks in higher band

maxhidist maximum distance of peaks in higher band

minhidist minimum distance of peaks in lower band

meanhidist_b mean distance between peaks in higher band

stdhidist_b standard deviation of distance between peaks in higher band
maxhidist_b maximum dist between peaks in higher band

minhidist_b

minimum dist between peaks in higher band

Table 7: J48 Classification Accuracy

Classification J48 (Pruned) J48 (Unpruned)
42.18% 39.84%
37.5% 43.75%
35.94% 35.94%

Table 8: Results for J48 Classification with Selected
Features

Classification J48 (Pruned) J48 (Unpruned)
1 40.63% 42.96%
2 41.41% 45.31%
3 35.93% 36.71%

4.4 Discussion

The best accuracy achieved was 53%. This is consid-
erably better than guessing which would only achieve
an accuracy of (128 x 100/7) ~ 18%. Given the sub-
stantial disagreement between human classifications,
this result is about as good as could be expected and is
arguably consistent with the 56% obtained by Tzane-
takis et al.

One interesting finding to come out of the clas-
sification experiments was that the accuracy of the
OneR classifier, which chose one feature maxam-
plow, surpassed the J48 classifier either with that
classifier working with all features, or a selected sub-
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Figure 3: SOM 9x7 Dimension Hexagonal Topology
Bubble Neighbourhood

set of all the features.

4.5 Self-Organising Maps

Clustering was done with the SOMPAK Self-
Organising Map package. The training of the SOM
was done on 11x11 and 9x7 grids, and neighbourhood
functions were alternated between Gaussian and bub-



Table 9: Spectral Features Used

Feature Name | Description

centlm mean centroid for 5000-10000 samples into file
centlstd stddev centroid for 5000-10000 samples into file
rolllm mean rolloff for 5000-10000 samples into file

rolllstd stddev rolloff for 5000-10000 samples into file

fluxlm mean flux for 5000-10000 samples into file

fHux1std stddev flux for 5000-10000 samples into file

cent2m mean centroid for 25000-30000 samples into file
cent2std stddev centroid for 25000-30000 samples into file
roll2m mean rolloff for 25000-30000 samples into file

roll2std stddev rolloff for 25000-30000 samples into file

fux2m mean flux for 25000-30000 samples into file

fHux2std stddev flux for 25000-30000 samples into file

cent3m mean centroid for 50000-50000 samples into file
cent3std stddev centroid for 50000-50000 samples into file
roll3m mean rolloff for 50000-50000 samples into file

roll3std stddev rolloff for 50000-50000 samples into file

fux3m mean flux for 50000-50000 samples into file

fHux3std stddev flux for 50000-50000 samples into file

centdm mean centroid for 75000-80000 samples into file
centdstd stddev centroid for 75000-80000 samples into file
roll4m mean rolloff for 75000-80000 samples into file

rolldstd stddev rolloff for 75000-80000 samples into file

flux4m mean flux for 75000-80000 samples into file

fuxdstd stddev flux for 75000-80000 samples into file
zerocrosslm mean zerocrossings for 5000-10000 samples in
zerocrosslstd stddev zerocrossings for 5000-10000 samples into the file
Zerocross2m mean zero crossings for 25000-30000 samples into file
zerocross2std stddev zero crossings for 25000-30000 samples into file
ZEerocross3m niean zero crossings for 50000-50000 samples into file
zerocross3std stddev zero crossings for 50000-50000 samples into file
zerocrossdm mean zero crossings for 75000-80000 samples into file
zerocrossdstd stddev zero crossings for 75000-80000 samples into file

Table 10: Attributes Automatically Selected by CFS

Features Selected
Classification 1 Classification 2 Classification 3
maxamplow maxamplow maxamplow
minamplow maxamphi minamplow
centlm minamphi maxamphi
centdstd peakhi minamphi
zerocrossdstd centlstd centlm
centdstd cent2m
ZETOCTOss4m centdstd
zerocrosslstd
zerocross2std

ble. In the experiments, training was completed in
two phases. In the first phase, the learning rate, a(0),
was set to 0.5, and the initial kernel size, o(0), was
set to 10. For the second pass, the learning rate was
set to 0.2, and the kernel size was set to 3. Both a
rectangular and a hexagonal topology was used. Due
to space restrictions we only report on the hexagonal
topology results here, but the clustering was similar
for both.

TFigures 4 and 3 show two-dimensional visualisa-
tions including song numbers. The visualisation con-
tains two types of hexagons. The first type contain
numbers or dots and have an associated code hook
vector produced by the SOM algorithm. The num-
bers in the hexagons represent songs whose feature
vector is very close to the code book vector. These
songs are thus considered to be very close to each
other. For the hexagons that contain a dot there is
no song associated with the codebook vector. The
second type of hexagons contain no numbers or dots
and their grey levels represent the size of the differ-
ence between code book vectors. Black indicates a
large difference and increasingly lighter shades of grey
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indicate increasingly smaller differences. A very sig-
nificant property of the SOM is that code book vec-
tors which are physically close to each in the 2D map
are also close to each other in the 58D feature space.
Thus in analysing Figure 4 we can conclude that songs
45,88.89 are very similar to each other and very dif-
ferent to songs 113,57,102,100 and 28 and 66,60 which
are a long way away on the map. Also, songs 45,88,89
are much more different to songs 67.86 than songs
103,26 are to 66,60. The characteristics of figure 3
that suggest further analysis are (1) songs that have
been allocated to the same hexagon and (2) songs that
have been allocated to the top left and bottom right
corners as the map shows that they are significantly
different to their neighbours.

In Figure 4, we see several clusters. Two of the
Rachmaninov études (song numbers 88 and 89) are
closely clustered in the top left cell, with the other
two (86 and 87) in nearby cells. The Rachmaninov
piano concertos (90 and 91) are near each other but
not in the same cells. In the same zone as the études
are the outliers “Is You Or Is You Ain’t My Baby”
(43), which combines a sample of an early recording



Figure 4: SOM 11x11 Dimension Hexagonal Topology Bubble Neighbourhood

with modern beats, “When my boy walks down the
street” (67), in which the noise of the instruments
and voice is louder than the percussion beats, and a
Primal Scream track in which the beats are similarly
muted compared to the other instruments (74). Also
appearing is the Beatles” “Eleanor Rigby”, which was
labelled as “pop-classical” in a separate human clas-
sification study.

Seventy percent of the pieces that were labelled as
dance by one person and electronic by another (num-
bers 0, 3, 13, 28, 30, 32, and 39) have been placed in
the bottom right hand corner of the map. The only
outlier in the area is a hip hop song (number 23).
Slightly further out from this zone, but separated by
a distinct boundary are picces that were labelled as
dance by at least one person (numbers 1, 14, 68).

Some of the pieces labelled rock are clustered to
the right of the classical pieces at the top of the
map. In this area are three pieces by the same artist
(SOAD, songs 83-85). The Bach pieces are placed
in the centre left region, and curiously, the one piece
that was mislabelled classical by one human classifier
was placed in close proximity to the Bach. Other close
artist clusters that occur are Magnetic Fields at the
top right (60 and 66), and the Pixies in the bottom
middle (72 and 73).

In the bottom left hand corner, there are three
Beatles songs stylistically similar to each other (the
acoustic songs “Blackbird” (number 100) and “Dear
Prudence” (number 102), and the gentle “Something”
(number 113), grouped with the outlier Hip Hop piece
“Quality Control” grouped with them (number 57).

In Figure 3 similar groupings occur, however in ad-
dition the smaller grid size has forced the creation of
larger clusters. A rock cluster occurs in the centre left
region, consisting of songs 84, 92. 99 and 124. All but
the last of these was classed as rock by both judges.
The fourth was classed as folk by one judge and rock
by the other. Several of the pieces surrounding this
cluster are also rock songs (numbers 4, 5, 15, 61, 70.
85, 83, 122). Another nearby cluster contains three
songs, two of which were classed as rock by both as-
sessors, and one that was classed as pop by one and
rock by the other assessor. Once again the dance-
electronic pieces are largely clustered in the bottom
right corner and hip-hop is widely dispersed. Other
clusters of note are songs 22 and 75, which both re-
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ceived a pop and an electronic human classification,
songs 16 and 19 which were classed as folk by one as-
sessor, and are quite close to song 48 which was also
classed as folk by a single assessor. The Beatles songs
“For No One” (105) and “Girl” (106), both rated as
pop by both assessors, have been forced into the same
cell in this smaller grid.

In other experiments not shown here we used the
smaller feature sets identified in Table 10. These re-
sulted in some similar clusterings to those produced
by the full feature set, but no clearly defined zones
were visible on the map.

4.6 Discussion

From the analysis above, it is clear that there is a
lot more work to do in finding feature sets that are
perceptually similar. In all of the SOM visualisations
seen, there are visible clusters of songs that sound
similar, such as the cluster of Rachmaninov piano con-
certos that is clustered around the top left hand cor-
ner in all of the SOM visualisations. However, for hip
hop pieces, such as those performed by Jurassic 5 and
Blackalicious, there was scattering across the SOM,
and into locations on the map typically occupied by
softer songs.

One thing we have not tried is clustering songs
based on a subset of the features extracted that can
be determined by feature selection algorithms, such
as those in Table 10. This might vield better results
from the SOM clustering.

Unlike many automatic classification tasks, the
classification of music is not precise. People disagree
as to what category a piece of music belongs to, and
even which categories should be used for the purpose.
Despite this, the SOM showed some clear groupings
on genre for some genres.

5 CONCLUSIONS

Unlike most other work on automatic classification
of musical audio, we restricted ourselves to a single
10-second compressed sample, and simple features.
Despite this, we achieved a 53% accuracy on a set of
128 such samples with a single feature, which was not



too different to the level of agreement between two
sets of human judgements (52%) on the same task.

We found that applying machine learning to a
single attribute (maxamplow) gave higher agreement
with human classification than did a more complex
set. of features. From the experimental results, it was
observed that some of the rhythm-based features that
we extracted, in particular that of maxamplow, dis-
criminated between genre categories more accurately
than all or a selected subset of the features used. Fea-
tures such as minamphi. maxamphi, and minam-
plow, which were relatively simple to compute were
also good at discriminating between genre categories.

In an experiment with self-organising maps and
the same sets of features, it was found that clear clus-
ters were formed for dance-electronic music and musie
with muted or non-existent percussion. Several other
artist and composer clusters, and general regions of
music of a similar style were formed, however, hip-hop
music was widely dispersed through the map.

From our experiments we conclude that it is in-
deed possible to classify audio using a short sample
of 10 seconds. The features used here were fairly sim-
ple and still obtained results that are on a par with
humans at the same task. However, some genres were
more difficult to separate and may require more so-
phisticated techniques. Further, as genres are not so
clearly defined by humans, more work is required in
order to better model the way music is manually la-
belled and to determine how automatic classification
systems should be evaluated.
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