
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº6

- 208 -

Motivic Pattern Classification of Music Audio 
Signals Combining Residual and LSTM Networks
Aitor Arronte Alvarez1,2*, Francisco Gómez1

1 Universidad Politécnica de Madrid, Madrid (Spain) 
2 University of Hawaii at Manoa, Honolulu (USA)

Received 13 August 2020 | Accepted 14 January 2021 | Published 21 January 2021 

Keywords

Motivic Patterns, 
Convolutional Neural 
Networks, Data 
Augmentation, Audio 
Signal Processing, Music 
Information Retrieval.

Abstract

Motivic pattern classification from music audio recordings is a challenging task. More so in the case of a cappella 
flamenco cantes, characterized by complex melodic variations, pitch instability, timbre changes, extreme 
vibrato oscillations, microtonal ornamentations, and noisy conditions of the recordings. Convolutional Neural 
Networks (CNN) have proven to be very effective algorithms in image classification. Recent work in large-scale 
audio classification has shown that CNN architectures, originally developed for image problems, can be applied 
successfully to audio event recognition and classification with little or no modifications to the networks. In this 
paper, CNN architectures are tested in a more nuanced problem: flamenco cantes intra-style classification using 
small motivic patterns. A new architecture is proposed that uses the advantages of residual CNN as feature 
extractors, and a bidirectional LSTM layer to exploit the sequential nature of musical audio data. We present 
a full end-to-end pipeline for audio music classification that includes a sequential pattern mining technique 
and a contour simplification method to extract relevant motifs from audio recordings. Mel-spectrograms of the 
extracted motifs are then used as the input for the different architectures tested. We investigate the usefulness of 
motivic patterns for the automatic classification of music recordings and the effect of the length of the audio and 
corpus size on the overall classification accuracy. Results show a relative accuracy improvement of up to 20.4% 
when CNN architectures are trained using acoustic representations from motivic patterns.
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I. Introduction

THE automatic extraction, discovery, and classification of motivic 
patterns from music audio recordings is a task that has gathered 

the attention of the Artificial Intelligence community in general, 
and the Music Information Retrieval (MIR) community in particular 
[1], [2], [3]. Repeated melodic patterns are important in the analysis 
and understanding of music. More recently, research has shown that 
repeated small musical patterns that are transformed up to a certain 
extent, play an important role in establishing music similarity in orally 
transmitted songs [4].

The computational study of orally transmitted vocal music 
repertoires present different types of problems associated with 
the audio signal obtained from such recordings. The high degree 
of variability in the audio signal has to do with the environmental 
conditions of the recordings, the improvisatory nature of the singing 
styles, and the rapid fluctuation of wide vibrato ranges. In flamenco 
music, these difficulties are even more acute, since intervals are 
often smaller than the half-tone. A cappella flamenco cantes exhibit 
characteristic melodic features such as conjunct degrees in the 
melodic movement, high degree of ornamentation, extreme pitch 
oscillations, microtonal variation, and constant timbre changes. These 

features make the automatic extraction of motivic patterns from audio 
recordings an especially challenging task. 

The computational study of flamenco music has concentrated on the 
melodic characterization of cantes [5], [6], melodic pattern extraction 
[2], and the modelling of melodic variation [7]. Pattern extraction 
methods in flamenco research have used humans to extract relevant 
segments and melodic motifs [2], [5]. To our knowledge, exclusively 
data-driven approaches for the automatic intra-style classification of 
music audio signals have not yet been developed in previous research.

Different approaches in the MIR research literature have considered 
the use of Convolutional Neural Networks (CNN) for music tagging, 
genre prediction, and music classification. CNN have been used for 
mood and genre prediction using mel-spectrograms as the input 
representation [8]; the classes used in this study include genres 
(classical and pop), and moods (soft, ambient) among other label 
descriptors. Image classification CNN architectures were used for 
music classification based on general music style tags [9]. Other transfer 
learning approaches on MIR tasks include multi-label classification 
and prediction [10], and general-purpose music classification [11]. In 
the audio signal processing research in general, CNN architectures 
were used on large-scale audio event classification [12], showing that 
image architectures can be reused for audio processing task with some 
adjustments in the architectures’ filter size. 

Other applications of deep neural networks to music analysis 
and its computational understanding include low-level tasks such 
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as beat tracking [13], onset detection [14], tempo estimation [15], 
and chord recognition [16]. These low-level tasks attempt to learn 
representations of acoustic phenomena directly from the audio signal. 
Higher-level tasks learn representations that can map acoustic features 
into more abstract musical concepts such as music style classification 
[17], and singer identification [18] amongst others. MIR applications 
of high-level music tasks strongly depend on pre-existing knowledge 
and domain adaptation. In the approach presented in this article, no 
hand-crafting or domain adaptation is needed, since motivic patterns 
are extracted directly from the audio signal without prior knowledge.

This paper investigates the usefulness of motivic patterns for 
the automatic classification of different styles of flamenco music by 
using different CNN architectures originally conceived for image 
classification tasks. This research also extends the computational 
study of motivic patterns in flamenco music by presenting a pipeline 
for motivic contour extraction from audio recordings based on an 
approximation scheme. Then classification task is performed from 
the patterns obtained using the log mel-spectrograms extracted 
from the recordings’ raw audio signals by using different CNN. The 
contributions of this research are the following: 1) We propose a 
motivic extraction pipeline as a preprocess step, which improves the 
classification accuracy of all the architectures tested. 2) It is shown 
that CNN architectures from very different domains can achieve 
competitive results with state-of-the-art algorithms while simplifying 
the learning process and making it computationally more efficient, 
mostly because of the pipeline introduced in this article. 3) A neural 
architecture is presented that is able to use some of the advantages 
of image classification CNN models, particularly as audio feature 
extractors, while at the same time adding recurrent layers with 
bidirectional LSTMs that are able to process musically relevant 
sequential data, adding more explanatory power to the results. 4) We 
make code and data of the experiments publicly available1.

The different sections of this article are organized as follows: Section 
II presents the corpus of flamenco recordings (COFLA) and describes 
its contents and music characteristics. Section III sets forth the motivic 
pattern extraction method and audio features used as the input of the 
different architectures. Section IV describes the CNN models used as 
baselines in this research and the hybrid recurrent model introduced 
in this article. Section V presents the experiments and data used to 
test the different CNN architectures. Section VI outlines the results of 
the experiments and discusses the main findings, improvements, and 
shortcomings. Section VII concludes by listing the main contributions 
of this research and possible future lines of work.

II. Corpus of Flamenco Recordings

Flamenco is an orally transmitted musical tradition from Andalusia, 
a region in the south of Spain. Its rich history and musical characteristics 
are derived from the region’s cultural exchanges amongst various 
populations over centuries, most notably Andalusian-Romani, Jews, 
and Arabs. Some of the key characteristics of flamenco music such 
as pitch instability, the use of intervals smaller than the half-tone, the 
amount of variation from phrase to phrase and from singer to singer, 
are derived from its improvisatory nature. Even though improvisation 
plays a very important role in the conception of flamenco music, it is a 
highly structured and elaborated musical tradition [19].

Flamenco music centers around the singing voice usually 
accompanied by guitar, hand-clapping, and other percussion 
instruments like the cajón. Melodies are characterized by a combination 
of short and long notes with syllabic ornamentations (melismas), that 
are placed in specific locations in a phrase [20]. Flamenco singers learn 

1  https://rb.gy/q3ppg0

melodies belonging to different styles and acquire singing techniques 
by oral transmission.  

The main focus in the computational study of flamenco music is 
the development of algorithms that target the analysis of the singing 
voice [19]. Flamenco music, like most orally transmitted musical 
cultures, lacks music transcriptions of the repertoire. For that reason, 
corpora of audio recordings, with their corresponding meta-data, are 
the main source of research data. In this article corpus COFLA is used 
[20]. The corpus consists of more than 1,800 music recordings taken 
from flamenco anthologies. This corpus follows the research corpora 
principles formulated by Serra [21]. The main characteristics of the 
corpus, as summarized by its authors [20], are:

• Exhaustiveness: the corpus is composed of all anthologies 
published on CD during the 20th century, and are considered 
references for music critics and musicologists.

• Representation: each anthology represents a wide variety of styles 
and their variants.

• Sound quality: the audio quality varies greatly amongst recordings, 
but all recordings comply with a minimum standard.

• Commercial availability: all recordings are available to the 
general public, which facilitates the acquisition and allows for the 
establishment of ground truth data.

In this research, the following styles and substyles are used from the 
corpus COFLA: tonás (deblas, martinetes, and saetas), and fandangos. 
Stylistically, the tonás is an important group of a capella cantes sung 
in free rhythm, where singers choose their own reference pitch and 
perform variations on a given melody. A toná normally is composed 
of four verses of eight syllables each. Tempo is not strictly kept during 
a single piece and ornamentation is heavily used by singers. In the 
tonás style, deblas are characterized by melismatic ornamentations 
with more abrupt changes than the rest of the compositions in 
the tonás style. Martinetes, also a toná variant, differ slightly in its 
melodic model from the debla and, even though it is mostly sung 
without accompaniment, it uses a hammer and anvil as percussion 
instruments. Saetas, another toná variant, have a religious content in 
its lyrics and is stylistically closer to the debla in its usage of long and 
sustained notes combined with melismatic ornamentations. The style 
of fandango is more differentiated from the variants in the tonás. A 
fandango is a musical style associated with a dance and is rhythmically 
more complex than the tonás.

We select a sample from the corpus COFLA consisting of 13 deblas, 
12 saetas, and 50 martinetes. The martinete subsample contains a wider 
variety of singing styles, and to some researchers it can be decomposed 
into 2 subtypes [22]. The current sample presents different stylistic 
challenges and difficulties for the automatic classification of motifs 
based on their substyle. First of all, 3 of the classes belong to the same 
genre (deblas, martinetes, and saetas), which means that these substyles 
share more musical traits with each other than with the fandango. 
This will add another level of complexity to the computational 
analysis, considering that previous studies have dealt only with the 
classification of different genres of music. In this paper the analysis is 
restricted to a very specific genre of music, namely flamenco, but also 
it is restricted to unaccompanied vocal music of different subgenres 
of flamenco.

III. Audio Features and Contour Extraction Method

From the sample of songs described in Section II, we extract musical 
motifs following a pipeline based on two main components: a contour 
simplification method and the BIDE pattern mining algorithm [18]. 
The purpose of this pipeline is to extract statistically and musically 
relevant motifs from flamenco audio recordings characterized by high 
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instability of pitch. The pipeline here described attempts to solve the 
problem of reducing the pitch variability in the audio signal, with an 
approximation method that uses ranges of pitch distances instead of a 
fully tempered system such as the one used in western classical music. 
The steps of this motivic pipeline, as shown in Fig. 1, are the following:

1. Extract the fundamental frequency f0 from the audio signals of the 
songs

2. Apply a melodic contour simplification function C(f0) based 
on the extracted f0 for each one of the songs, thus obtaining an 
approximation of f0 

3. Apply the BIDE algorithm on the melodic contours obtaining a 
dictionary of motifs for the entire collection

4. Generate log mel-spectrograms for each motif in the dictionary

The fundamental frequency is extracted from raw audio signals 
by using a sinusoid extraction and salience function [24]. A sampling 
rate of 44.1 KHz and a window step of 256 samples are used. Then, 
a melodic contour simplification procedure is performed to extract 
meaningful motivic representations of a cappella flamenco cantes 
from the fundamental frequency. In previous studies [6], contour 
simplification procedures have been used to obtain consistent 
representations of flamenco melodic segments by converting complex 
pitch fluctuations to equal-step segments. Since we are studying 
motivic patterns in complex flamenco vocal pieces, we are interested 
in exploring the unequal microtonal nature of this type of music. In 
order to accomplish this goal, our contour simplification process takes 
into account ranges of cent-based distances instead of set of pitches as 
presented in previous work [6].

We follow these steps to find a curve approximation to f0 given a 
step length of ε=66 cents based on previous approximation approaches 
[20]:

• Given a set of points P in f0 we say that a line segment L is bounded 
by all points in P given a maximum accepted step size of ε.

• The output of this procedure is a contour simplification function 
of f0.

Once this output is computed, a contour C is obtained based on the 
following distance specification in cents:

• If the distance d between two points <=66 then, d=1

• If the distance d between two points >66 or d <=132 then, d=2

• If the distance d between two points >132 <=198 then, d=3

• 4 otherwise 

The result is a vector of contour points represented in the time 
domain. The signs + and – are used to specify whether the direction of 

the contour ascends (+) or descends (-). Sudden jumps in frequency are 
eliminated due to external noise conditions. 

Once the approximation function is created, the BIDE algorithm 
is used to discover motifs in the contour sequences. Motifs that are 
repeated at least 3 times in a single song are kept. From the dictionary 
of motifs, log mel-spectrograms are computed from the 2D time-
frequency motivic patches, with hop and window sizes of 25 ms. The 
input size for all samples is 128x426, zero-padding smaller audio files.

IV. Baseline and Hybrid Architectures

Transfer learning approaches in deep neural networks have shown 
to be not only computationally more efficient in achieving competitive 
results, but also show how representations from one task can be 
transferred to another task. The different CNN architectures developed 
initially for image classification problems and used in this article’s 
experimental study are, DenseNet-161, and ResNet-50. A state-of-the-
art Convolutional Recurrent Neural Network (CRNN) architecture 
developed specifically for music classification is also used as a baseline 
[26]. Filter sizes and strides are kept small, 3x3 and 1x1 respectively. 
This is mostly because of the small size of the audio input.

A. ResNet-50
Deep residual networks were conceived to address the problem of 

learning degradation in deep nets. Residual networks are based on the 
idea of stacking layers and an underlying mapping that is optimized 
[27]. The model used in this study, Resnet-50, is transformed in a similar 
way as in [12] by removing the stride of 2x2 in the first convolutional 
layer, and reducing the size of the first convolutional filter from 7x7 to 
3x3. In addition to that, and in order to maintain the input tensor size 
of the mel-spectrogram and to leave the ResNet-50 architecture intact 
for baseline purposes, we add an initial convolutional layer with filters 
of size 3x3 and stride of 1.

B. DenseNet-161
CNN that have shorter connections between layers that are closer 

to the input and output of a network have shown to be more accurate. 
This paradigm is followed by the DenseNet model [28]. We make the 
same modifications to the architecture as in ResNet-50.

C. CRNN
A model for music audio tagging that has shown state-of-the-art 

results is the CRNN of Choi et al. [8]. This model utilizes the benefits 
of CNN as feature extractors and the sequential characteristics of 
Recurrent Neural Networks (RNN) to summarize time-dependent data 
as the one obtained from musical pieces. 
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Fig. 1. Motivic pipeline for the extraction of patterns from raw audio signals.
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D. Hybrid Recurrent Architecture
In this work we attempt to use and exploit the advantages of CNN 

layers as feature extractors and add recurrent components in the last 
layers to capture sequential characteristics present in music audio data.

Deep learning architectures for audio classification are normally 
divided into front-end and back-end components [30]. The front-end, 
is the part of the model that tries to learn a representation based on 
the input signal. The back-end is in charge of predicting a given output 
based on the representation obtained in the front-end. Our hybrid 
model uses shallow residual blocks present in Resnets as a front-end, 
and a recurrent neural model as a back-end. The overall goal of this 
architecture is to simplify the already high cost of deep learning 
methods, especially in the front-end, while trying to improve state-of-
the-art results by adding domain specific knowledge in the back-end. 
We try therefore to reduce the number of parameters of very deep 
networks by adding recurrent layers.

The shallow residual network proposed is composed of only 2 
residual blocks, which reduces the computational cost and overall 
training time when compared to denser Resnet models normally 
utilized in the computer vision literature. Small filters of 3x3 with a 
stride of 1 are used in all convolutional layers to capture local feature-
maps, and finer low-level spectral features. As the back-end two-
stacked Bidirectional Long Short-Term Memory (BLSTM) layers to 
capture longer, time-dependent, features [31]. Fig. 2 presents a high-
level overview of the architecture described. 

Conv1 [3x3; 2x2]
BN1
Conv2 [3x3; 1x1]
BN2
Conv3 [3x3; 1x1]
BN3
ReLU

Conv1 [3x3; 1x1]
BN1
Conv2 [3x3; 1x1]
BN2
Conv3 [3x3; 1x1]
BN3
ReLU

ResidualInput size:
128x426

BLSTM
So�m.

Residual

Fig. 2. Neural network architecture overview. Residual blocks contain 
convolutional layer dimensions (filter size, and stride), and batch size 
normalization (BN) and ReLU components.

In our back-end, the BLSTM is used to process in both directions 
(forward and backwards) the embedding obtained from the 
residual layers. The output of this layer will be a high level, vector 
representation of the time-dependent features of the motifs. The 
sequential operation done by the BLTSM can be represented as an 

input sequence  that produces an output sequence 
 where the input x is a vector of acoustic features at the 

frame level. A BLTSM is composed of a forward and backward LSTM, 
where the forward LSTM  reads the input sequence as it is ordered, 
and estimates the forward hidden states  from t = 1 to T. The 
backward LSTM  computes the sequence in reverse order obtaining 
the backward hidden states iterating back from t = T to 1:

 (1)

 (2)

 (3)

where H is the hidden layer function, W the matrix of weights, and 
b the bias vector.

The final layer of the architecture presented is a fully connected 
neural network (FCNN) layer with a softmax function to classify 
the sequences according to the style label. Fig. 3 shows a high-level 
motivic pipeline overview.

V. Experimental Methodology

We compare all models in the sub-style classification of musical 
patterns extracted from corpus COFLA, as described in Section III, and 
use 2D log mel-spectrograms as the input of the networks. The dataset 
used in this study is composed of  111,076 audio motifs extracted from 
the 4 sub-collections. We noted in the initial stages of the study that 
extremely short motifs (<0.5 seconds) do not help in the classification 
accuracy; for that reason only motifs that are >= 0.5 seconds in 
duration are kept. This resulted in a corpus of only 10,640 motifs, 
of which 1,573 were obtained from the debla sub-style, 129 from the 
fandango, 5,027 from the martinete, and 3, 915 from the saeta. We can 
see how certain sub-styles are richer in motivic patterns than others, 
and note that the fandango sub-collection in particular, is much less 
varied in longer motivic patterns (>= 0.5 seconds). This unbalanced 
dataset allows us to test data augmentation techniques in the context 
of audio musical data. 

Unlike previous approaches to music classification and tagging 
in MIR, the approach presented will only learn a small segment of 
the entire audio signal. This segmentation based on the extraction of 
relevant motivic data will greatly benefit the representation learned, 
and reduce the total training time. From an information-theoretic 
stand point, it can be argued that reducing the amount of irrelevant 
information to the task will act as an implicit optimizer for the neural 
architectures, while at the same time obtaining more explainable 
results in music terms.

Motivic Pa�ern Extraction Neural Network Architecture

BLSTM So�maxMel-spectogram

Deblas
Saetas

Fandangos
Martinetes

Audio signal

F0 extraction

C(f0)
aproximation

Pa�ern Discovery
2xResidual blocs

Fig. 3. High-level motivic pipeline overview.
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A. Data Augmentation
In this experiment a recent method for data augmentation developed 

for Automatic Speech Recognition (ASR) called SpecAugment is 
used [32]. Instead of producing deformations to the raw audio 
signal like other audio-based data augmentation techniques [33-34], 
SpecAugment operates directly on the spectrogram by warping it in 
the time direction, masking frequency channels, and masking blocks 
of utterances. The method follows a similar rationale as image data 
augmentation techniques. 

We concentrate on the two augmentation policies that seem 
to be the most effective in ASR tasks [32]: frequency masking, and 
time masking. Frequency masking works on m consecutive mel 
frequency channels [m0, m0+m], where m is chosen from a uniform 
distribution from 0 to the frequency mask parameter M. Time masking 
works in a similar way by applying the masking to t consecutive 
time steps. We compare the two data augmentation policies with 
the original unbalanced dataset, and apply the following number of 
transformations by class: 

• For fandango style a total of 8 augmentations per spectrogram 
is performed; 4 of time masking and 4 of frequency masking, 
resulting in a total subset of 1,032.

• For the rest of the styles we apply one of each augmentations in 
only 50% of their respective subsets. Resulting in 3,146 deblas, 
10,054 martinetes, and 7,830 saetas. 

The total dataset after augmentation contains 22,062 spectrograms 
of motifs. The comparative differences in motivic samples by sub-style 
are presented in Fig. 4.
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Fig. 4. Motivic patterns by sub-style.

B. Training
All the models use the Adam optimizer [35] and data augmentation 

dynamically during training. We divide the data in training, and 
validation subsets, making the 60% and 20% respectively of the entire 
dataset, leaving the remaining 20% for testing. AUC-ROC, and accuracy 
scores are used to perform searches over the parameter space. It was 
found out during training that batch sizes of 20, and a total number of 
epochs of ~40 performed best in terms of accuracy and computational 
time. We found no sign of overfitting based on those measures in the 
validation subset, even in non-augmented sets. 

Random initialization versus pretrained weights were also tested 
during training for all architectures. Results showed that pretrained 
weights not only perform better overall (>~2% accuracy) than 
random ones, but also decreased the training time (~10 epochs less to 
converge). We used pretrained weights from image classification tasks 
in our experiments.

VI. Results and Discussion

Results in Table I show how the motivic pattern dataset has overall 
better results, with an average accuracy improvement of 13.1% across 
all models, with a maximum of 14.1% for Resnet-50, which indicates 
a relative improvement of 20.4%. Precision and recall measures 
also highlight the strength of motivic patterns for all models when 
compared to non-motivic data, and achieve an 85% precision for the 
proposed architecture with motivic patterns and no augmentation. 
These results shed light in the importance of motivic patterns in 
deep learning for music classification problems. This result can have 
significant implications in deep learning for MIR tasks, since shorter, 
more targeted audio data can significantly reduce the already huge 
computational costs of deep architectures. On the other hand, for 
multimedia systems in general, and MIR systems in particular, the 
effective retrieval of relevant audio information from big data can be 
improved with traditional sequential pattern mining techniques as a 
pre-step in the computational pipeline. 

From a theoretical MIR point of view, our results highlight the 
importance of musically relevant features in deep learning systems 
as opposed to merely general audio features. In musically complex 
systems with melodic variability, microtonal ornamentations and 
contours, the extraction of relevant patterns can become a challenging 
task. The proposed contour simplification method takes into account 
small pitch fluctuations, and extracts small patterns (~0.5 seconds) 
that highlight particularities of a sub-style within flamenco music. 
These patterns may reveal vibrato styles, or ornamentation tendencies 
in singers for a particular style that may be difficult for the human 
ear to grasp.  Further study should concentrate on the exploration of 
speech features combined with purely musical ones, which may aid 
the classification and automatic identification not only of styles, but 
singers as well. 

The transferred architectures used in this study show how 
pretrained image weights can optimize the overall training procedure 
in music classification tasks and achieve competitive results with less 
training time. Since we are using mel-spectrograms of an audio signal 
as the input, the image-like 2-dimensional size of the input seems to 
be the reason why pretrained weights facilitate the accuracy results 
in less time when compared with random initialization. The hybrid 
architecture proposed outperforms the rest in terms of accuracy, 
AUC, precision, and recall. The performance values for non-motivic 
datasets with recurrent layers in the architecture indicates that these 
architectures can indirectly infer the temporal components of the data. 
Still the motivic dataset outperforms non-motivic ones for all models.

TABLE I. Model Results for the Motivic Patterns and Non-motivic 
Subsets

Model Dataset Accuracy AUC Prec. Rec. F1
Resnet-50 Motivic 0.832 0.894 0.801 0.769 0.785

Resnet-50 Non-motivic 0.691 0.792 0.631 0.617 0.624

Densenet-161 Motivic 0.817 0.881 0.735 0.731 0.733

Densenet-161 Non-motivic 0.683 0.769 0.61 0.589 0.599

CRNN Motivic 0.821 0.886 0.78 0.757 0.768

CRNN Non-motivic 0.796 0.853 0.714 0.711 0.712

ResLSTM Motivic 0.911 0.91 0.848 0.813 0.83
ResLSTM Non-motivic 0.824 0.882 0.816 0.79 0.803

The results in Table II show the data augmentation classification 
scores for the motivic pattern dataset. An accuracy improvement 
of 2.4% on the best model when using augmentation, highlights the 
importance of the data size in deep learning tasks. Since we obtain 
more than double of the original size from the motivic dataset, 
the improvements on the classification results seem to be logical. 
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SpecAugment, however, does not show an improvement as important 
as the one shown in the original study with speech data [32]. Further 
research should explore different ranges of masking parameters 
to determine the quality of the results and its appropriate use with 
musical vocal data.

TABLE II. Results for the Data Augmentation Policies Applied to the 
Motivic Pattern Dataset

Model Augment. Accuracy AUC Prec. Rec. F1
Resnet-50 Frequency 0.868 0.898 0.811 0.791 0.8
Resnet-50 Time 0.846 0.878 0.767 0.763 0.76

Densenet-161 Frequency 0.852 0.861 0.81 0.804 0.81
Densenet-161 Time 0.831 0.858 0.783 0.766 0.78

CRNN Frequency 0.87 0.887 0.83 0.796 0.813
CRNN Time 0.842 0.879 0.782 0.772 0.78

ResLSTM Frequency 0.935 0.922 0.85 0.839 0.844
ResLSTM Time 0.921 0.91 0.828 0.821 0.824

VII. Conclusion

Overall the results indicate that the effect of motivic patterns in the 
classification accuracy of state-of-the-art CNN models is greater than 
the effect of data augmentation when using SpecAugment. Motivic 
patterns seem to provide important information in the classification 
of audio samples by style. Since CNN capture local-level features of 
a given audio sample, the utilization of motivic patterns seems to 
highlight higher level melodic features. Recurrent models on the other 
hand are less sensitive to non-motivic data.  We also evaluated the 
importance of transfer learning in the context of musical audio data. 
The results of the transferred models are consistent with a recent large-
scale audio classification study [12], which also extends the findings 
to music audio data. We specifically noted the ability of the networks 
to converge up to a state-of-the-art competitive accuracy with less 
training when using pretrained weights from image classification 
tasks. The proposed neural architecture outperforms state-of-the-art 
CRNN for music classification by taking advantage of the long-term 
sequence processing that the BLSTM net does. By combining BLSTM 
with shallow residual blocks, we take advantage of the smaller number 
of parameters required, and less processing time, when compared with 
deeper resnets. 

This study presents an important case of deep learning optimization 
for audio signal processing, by extracting smaller, more targeted 
audio samples, discarding irrelevant information from the signal 
and learning more robust representations. This approach can be 
particularly interesting for low-resource MIR applications. It can also 
be easily adapted to sound event recognition and identification, and to 
speech recognition tasks that have a strong acoustic component such 
as accent, emotion, and dialect identification. 
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