2,552 research outputs found

    Image-Based Monitoring of Cracks: Effectiveness Analysis of an Open-Source Machine Learning-Assisted Procedure

    Get PDF
    The proper inspection of a cracks pattern over time is a critical diagnosis step to provide a thorough knowledge of the health state of a structure. When monitoring cracks propagating on a planar surface, adopting a single-image-based approach is a more convenient (costly and logistically) solution compared to subjective operators-based solutions. Machine learning (ML)- based monitoring solutions offer the advantage of automation in crack detection; however, complex and time-consuming training must be carried out. This study presents a simple and automated ML-based crack monitoring approach implemented in open sources software that only requires a single image for training. The effectiveness of the approach is assessed conducting work in controlled and real case study sites. For both sites, the generated outputs are significant in terms of accuracy (~1 mm), repeatability (sub-mm) and precision (sub-pixel). The presented results highlight that the successful detection of cracks is achievable with only a straightforward ML-based training procedure conducted on only a single image of the multi-temporal sequence. Furthermore, the use of an innovative camera kit allowed exploiting automated acquisition and transmission fundamental for Internet of Things (IoTs) for structural health monitoring and to reduce user-based operations and increase safety

    Applications of Computer Vision Technologies of Automated Crack Detection and Quantification for the Inspection of Civil Infrastructure Systems

    Get PDF
    Many components of existing civil infrastructure systems, such as road pavement, bridges, and buildings, are suffered from rapid aging, which require enormous nation\u27s resources from federal and state agencies to inspect and maintain them. Crack is one of important material and structural defects, which must be inspected not only for good maintenance of civil infrastructure with a high quality of safety and serviceability, but also for the opportunity to provide early warning against failure. Conventional human visual inspection is still considered as the primary inspection method. However, it is well established that human visual inspection is subjective and often inaccurate. In order to improve current manual visual inspection for crack detection and evaluation of civil infrastructure, this study explores the application of computer vision techniques as a non-destructive evaluation and testing (NDE&T) method for automated crack detection and quantification for different civil infrastructures. In this study, computer vision-based algorithms were developed and evaluated to deal with different situations of field inspection that inspectors could face with in crack detection and quantification. The depth, the distance between camera and object, is a necessary extrinsic parameter that has to be measured to quantify crack size since other parameters, such as focal length, resolution, and camera sensor size are intrinsic, which are usually known by camera manufacturers. Thus, computer vision techniques were evaluated with different crack inspection applications with constant and variable depths. For the fixed-depth applications, computer vision techniques were applied to two field studies, including 1) automated crack detection and quantification for road pavement using the Laser Road Imaging System (LRIS), and 2) automated crack detection on bridge cables surfaces, using a cable inspection robot. For the various-depth applications, two field studies were conducted, including 3) automated crack recognition and width measurement of concrete bridges\u27 cracks using a high-magnification telescopic lens, and 4) automated crack quantification and depth estimation using wearable glasses with stereovision cameras. From the realistic field applications of computer vision techniques, a novel self-adaptive image-processing algorithm was developed using a series of morphological transformations to connect fragmented crack pixels in digital images. The crack-defragmentation algorithm was evaluated with road pavement images. The results showed that the accuracy of automated crack detection, associated with artificial neural network classifier, was significantly improved by reducing both false positive and false negative. Using up to six crack features, including area, length, orientation, texture, intensity, and wheel-path location, crack detection accuracy was evaluated to find the optimal sets of crack features. Lab and field test results of different inspection applications show that proposed compute vision-based crack detection and quantification algorithms can detect and quantify cracks from different structures\u27 surface and depth. Some guidelines of applying computer vision techniques are also suggested for each crack inspection application

    Challenges of bridge maintenance inspection

    Get PDF
    Bridges are amongst the largest, most expensive and complex structures, which makes them crucial and valuable transportation asset for modern infrastructure. Bridge inspection is a crucial component of monitoring and maintaining these complex structures. It provides a safety assessment and condition documentation on a regular basis, noting maintenance actions needed to counteract defects like cracks, corrosion and spalling. This paper presents the challenges with existing bridge maintenance inspection as well as an overview on proposed methods to overcome these challenges by automating inspection using computer vision methods. As a conclusion, existing methods for automated bridge inspection are able to detect one class of damage type based on images. A multiclass approach that also considers the 3D geometry, as inspectors do, is missing

    Analysis Image-Based Automated 3D Crack Detection for Post-disaster Bridge Assessment in Flyover Mall Boemi Kedaton

    Get PDF
    Recovery efforts following a disaster can be slow and painstaking work, and potentially put responders in harm's way. A system which helps identify defects in critical building elements (e.g., concrete columns) before responders must enter a structure can save lives. In this paper we propose a system, centered around an image based three-dimensional (3D) reconstruction method and a new 3D crack detection algorithm. The image-based method is capable of detecting and analyzing surface damages in 3D. We also demonstrate how the robotics can be used to gather the images from which the reconstruction is created, further reducing the risk to responders. In this regard, image-based 3D reconstructions represent a convenient method of creating 3D models because most robotic platforms can carry a lightweight camera payload. Additionally, the proposed 3D crack detection algorithm also provides the advantage of being able to operate on 3D mesh models regardless of their data collection source. Our experimental results show that 3D crack detection algorithm performs well constructions, successfully identifying cracks, reconstructing 3D profiles, and measuring geometrical characteristics on damaged elements and not finding any cracks on intact ones

    Advanced considerations in LiDAR technology : application enhancement, inspection workflow implementation and data collection quality management

    Get PDF
    Bridge inspection is a critical topic in infrastructure management and is facing unprecedented challenges as the public is concerned more about bridge safety after a series of bridge failures. LiDAR based remote sensing is recommended as a way in supplementing the prevailing visual inspection to quantify critical bridge information. In this research, focus will be placed on the advanced considerations of LiDAR technology in bridge inspection, including the application evaluation, inspection workflow implementation, and data collection quality management. Particularly, efforts on improving the computational performance of the original damage detection algorithm have been carried out and the use of reflectivity data is introduced as a new feature to enhance the algorithm’s capability in defect recognition. The specific applications that using LiDAR technology to evaluate bridge deck joint and monitoring simulated slope erosion have been studied. This research further studied the inspection workflow implementation and the sources of errors in the LiDAR bridge inspection. Quality management has also been considered to improve the bridge inspection data quality besides the development of advanced inspection technology. In the end, comparative cost analysis is conducted to determine the savings for implementing LiDAR technology into bridge inspection workflow

    Detecting and Evaluating Cracks on Aging Concrete Members with Deep Convolutional Neural Networks

    Get PDF
    Cracks in concrete structures are evaluated through a timely and subjective manual inspection. The location of cracks is often recorded in an inspection report where some cracks are measured. Although measurements or locations may not be necessary for all cracks observed in concrete members, if quantitative data can be gathered in an autonomous way, allowing measurement data to be used in tracking changes in spatial and temporal scales, this quantitative data can provide useful information not yet captured in the manual inspection process. This thesis aims to construct an image-based crack detection and evaluation pipeline that can assist health monitoring of aging concrete structures, by providing crack locations and measured crack properties for the entire structural member. Over 16,000 images of aging concrete bridge deck were collected from cameras attached on an unmanned aerial vehicle, machine vision cameras attached on a ground vehicle, and other literature. Mask and Region based Convolutional Neural Network (Mask R-CNN) was utilized to train 256 by 256-pixel patches of collected images using three distinct training strategies to detect and segment concrete cracks on bridge decks. Resulting crack masks were translated into binary data (crack or non-crack pixels) and skeletons of the mask were created where the Euclidean distance from the center of the skeleton to the edge of the mask were measured. This allowed to calculate the relative crack width, length, and orientation of each detected crack. Relative crack properties were transformed into real-world unites using the ground sampling distance of the host image. Image patches were then compiled to construct a crack map of the entire structural member. A case study was conducted on the deck and pier of an aging concrete bridge to test the robustness of the proposed data pipeline. The study yielded that the model was able to successfully detect cracks with an average width of 0.020 inches and were able to make accurate measurements of crack widths that are larger than 0.080 inches. In order to improve the measurements for smaller crack widths, the ground sampling distance needs to be to the scale of the crack width in interest. The image-based data pipeline developed in this study demonstrates potential for the application in autonomous inspections of concrete members. In addition, the data pipeline can be used as a reference framework to provide an example on how computer-vision based data analytics can provide useful information for structural inspections of aging concrete members. Advisor: Chungwook Si

    Classification, Localization, and Quantification of Structural Damage in Concrete Structures using Convolutional Neural Networks

    Get PDF
    Applications of Machine Learning (ML) algorithms in Structural Health Monitoring (SHM) have recently become of great interest owing to their superior ability to detect damage in engineering structures. ML algorithms used in this domain are classified into two major subfields: vibration-based and image-based SHM. Traditional condition survey techniques based on visual inspection have been the most widely used for monitoring concrete structures in service. Inspectors visually evaluate defects based on experience and engineering judgment. However, this process is subjective, time-consuming, and hampered by difficult access to numerous parts of complex structures. Accordingly, the present study proposes a nearly automated inspection model based on image processing, signal processing, and deep learning for detecting defects and identifying damage locations in typically inaccessible areas of concrete structures. The work conducted in this thesis achieved excellent damage localization and classification performance and could offer a nearly automated inspection platform for the colossal backlog of ageing civil engineering structures
    • …
    corecore