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Abstract. Recovery efforts following a disaster can be slow and painstaking work, and 

potentially put responders in harm's way. A system which helps identify defects in critical 

building elements (e.g., concrete columns) before responders must enter a structure can save 

lives. In this paper we propose a system, centered around an image based three-dimensional 

(3D) reconstruction method and a new 3D crack detection algorithm. The image-based method 

is capable of detecting and analyzing surface damages in 3D. We also demonstrate how the 

robotics can be used to gather the images from which the reconstruction is created, further 

reducing the risk to responders. In this regard, image-based 3D reconstructions represent a 

convenient method of creating 3D models because most robotic platforms can carry a 

lightweight camera payload. Additionally, the proposed 3D crack detection algorithm also 

provides the advantage of being able to operate on 3D mesh models regardless of their data 

collection source. Our experimental results show that 3D crack detection algorithm performs 

well constructions, successfully identifying cracks, reconstructing 3D profiles, and measuring 

geometrical characteristics on damaged elements and not finding any cracks on intact ones. 

1. Introduction 

Inspecting and managing transportation infrastructure, considering the heavy usage of these systems, 

pose significant challenges to engineers and owners. The National Bridge Inspection Standards 

(NBIS) mandate that road bridges carrying passenger vehicles must receive a routine inspection every 

two years (Ryan, Mann, Chill, & Ott, 2012). The specifics of the inspection requirements vary based 

on structure type, materials and location, among many parameters. In most cases, these inspections are 

primarily visual and require hands-on observations in order to check for loose and broken hardware, 

spalling, corrosion, crushing, delamination, insect damage and a multitude of other maintenance and 

safety issues (Jahanshahi, Kelly, Masri, & Sukhatme, 2009). 

 

In this topic took a case study of the Teuku Umar road - ZA Pagar Alam (Mall Boemi Kedaton) 

because on the road there are flyover buildings and on this road that serves to increase the traffic 

volume on this road. This is done to do the detection analysis again. In this study, the modeling is to 

optimize the acquisition and processing parameters to detect cracks well. By taking a photo field, you 

can find the intersection between the camera orientation lines that pass through the camera center and 

the photo field. The distance between this crossing point and the camera center is calculated as the 

distance traveled. 
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2. Technique  

2.1. Interferometric synthetic-aperture radar (InSAR)  

Interferometric synthetic aperture radar, abbreviated InSAR (or deprecated IfSAR), is a radar 

technique used in geodesy and remote sensing. This geodetic method uses two or more synthetic 

aperture radar (SAR) images to generate maps of surface deformation or digital elevation, using 

differences in the phase of the waves returning to the satellite or aircraft. The technique can potentially 

measure millimetre-scale changes in deformation over spans of days to years. It has applications for 

geophysical monitoring of natural hazards, for example earthquakes, volcanoes and landslides, and in 

structural engineering, in particular monitoring of subsidence and structural stability. 

 

 

 

 

Figure 1. SAR amplitude image of 

Kīlauea. Source: NASA/JPL-Caltech 

 Figure 2. Corresponding interferogram 

of Kīlauea, showing topographic 

fringes. Source: NASA/JPL-Caltech 

 

Data acquired on April 13, 1994 and on October 4, 1994 from the X-band Synthetic Aperture Radar 

on board the space shuttle Endeavour were used to generate interferometric fringes, which were 

overlaid on the X-SAR image of Kilauea. The volcano is centered in this image at 19.58 degrees north 

latitude and 155.55 degrees west longitude. The image covers about 9 kilometers by 13 kilometers (5.6 

miles by 8 miles). The X-band fringes correspond clearly to the expected topographic image. The 

yellow line indicates the area below which was used for the three-dimensional image using altitude 

lines. The yellow rectangular frame fences the area for the final topographic image. 

 

2.2. Phase 

SAR makes use of the amplitude and the absolute phase of the return signal data. In contrast, 

interferometry uses differential phase of the reflected radiation, either from multiple passes along the 

same trajectory and/or from multiple displaced phase centers (antennas) on a single pass. Since the 

outgoing wave is produced by the satellite, the phase is known, and can be compared to the phase of 

the return signal. The phase of the return wave depends on the distance to the ground, since the path 

length to the ground and back will consist of a number of whole wavelengths plus some fraction of a 

wavelength. In practice, the phase of the return signal is affected by several factors, which together 

can make the absolute phase return in any SAR data collection essentially arbitrary, with no 

correlation from pixel to pixel. To get any useful information from the phase, some of these effects 

must be isolated and removed. Interferometry uses two images of the same area taken from the same 

position (or, for topographic applications, slightly different positions) and finds the difference in phase 

between them, producing an image known as an interferogram.  

 

 



 

 

 

ICOSITER 2018 Proceeding 

Journal of Science and Applicative Technology 

 3 

2.3. Automated Crack Detection 

Following a disaster, the detection of structural defects in a building is critical to determining its 

integrity and usability. Crack detection is an effective means of identifying these defects, and if a 

robotic system can identify structural cracks inside a building before humans must enter, the safety of 

USAR operations is greatly enhanced (Golparvar-Fard et al. 2010). There are a variety of different 

crack detection techniques that exist for various materials. Some of the previous research benefits 

from application of a laser scanner. Despite the benefits, a laser scanner is an expensive, heavy device 

which can significantly increase the payload on a robot. In addition it requires significant power for 

operation and may require several markers for registration of the scanned point cloud. Although laser 

scanners are continuously getting smaller and their cost is dropping, but because of these limitations, 

their application at this stage may not yet be very attractive. In contrast, in the last few years several 

research groups have proposed the use of image-based approaches for condition assessment of civil 

infrastructure systems and in particular crack detection.  

 

These methods benefit from various image processing techniques such as edge and corner detection, 

point-based feature detection and extraction, and template matching techniques to conduct 

identification of the surface anomalies. Some of these techniques such as Sinha et al. (2003) are also 

accompanied with machine learning techniques such as neuro-fuzzy networks for precise classification 

purposes. An example of a template matching approach by Ehrig et al. (2011) is presented in Fig. 2. 

This involves passing a much smaller template image over the larger detection image at various angles 

and subtracting the two. If that result at a given position is a small enough value the target feature from 

the template (i.e., a crack) has been located. 

 

 
Figure 4. An example of template matching for crack detection 

 

In Fig. 4, the crack would be detected in the 8th image in the series, where the template is aligned with 

the crack. Despite their benefits, template matching and majority of the other 2D approaches discussed 

previously do not provide 3D depth information directly from the content of the images and as a result 

do not enable measurement of severity of these cracks. More comprehensive review of the 2D 

condition assessment and in particular crack detection methods can be found in “Adaptive vision-

based crack detection using 3D scene reconstruction for condition assessment of structures” 

(Jahanshahi et al. 2009; Brilakis et al. 2011; Jahanshahi and Masri 2013). 
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3. Methods 

3.1. Evaluative metrics  

The results of the inspection were evaluated in a variety of ways, both qualitative and quantitative. 

During the construction of the bridge, fabrication and construction errors initiated a series of minor 

defects in the bridge. These defects were identified early on in the process as representative of the 

kinds of details that must be tracked and assessed during the NBIS inspection process. In this work, 

they were used to provide illustrative and qualitative assessments of the capabilities of the CRP-based 

inspection approach to capture and represent structural details with sufficient accuracy for NBIS 

purposes.  

 

In order to efficiently determine the local nearest neighbours for every point in the data-set, the space 

partitioning method called k-d trees was applied to the well-known k-Nearest Neighbours (k-NN) 

algorithm to reduce the search complexity. Utilising k-NN rather than a Fixed Distance 

Neighbourhood (FDN) avoided the problem of point density variation within point clouds (Hoppe, 

DeRose, Duchamp, McDonald, & Stuetzle, 1992). For the k points that form the neighbourhood of a 

3D point pi in a point cloud, the covariance matrix, C, is defined as (Jolliffe, 2002): 

 

C3x3 =
1

𝑘
 ∑ (pi −  𝑝̄  )𝑘

𝑖=1 (pi −  𝑝̄  )𝑇;  𝑝̄ =  
1

𝑘
 ∑ 𝑝̄𝑖

𝑘
𝑖=1   (1) 

 

Where ̄p is the local data centroid (arithmetic mean) within pi’s neighbourhood (Npi). However, due to 

imperfect correspondence between point cloud 3D points, higher local laundry will consequently be 

formulated into the Final Model in a multiple-scan registration process. 

 

3.2. Crack Detection  

The analysis of cracks and other surface damages in 3D can provide an additional layer of information 

that previously was not available for condition assessment purposes. A summary of the current crack 

detection methods reviewed and the contribution of this paper is presented in Table 1. 

 

Table 1. Matrix of Current Crack Detection Methods 
Detection 

method/ 

data 

source 

Demonstrated location 

Roadway asphalt 
Bridge 

structure 

Building elements and 

various concrete surfaces/blocks 

Underground 

piping 
Tunnel 

2D image Abe et al. (1992, 1993), 

Ahmed et al. (2011), 

Taso et al. (1994), 

Kaseko et al. (1994), 

Wang et al. (1998), Kim 

and 

Haas (2002), Saar and 

Talvik (2010), Koch and 

Brilakis (2011), 

Koch et al. (2013) 

Abdel-

Qader 

et al. (2006), 

Oh et al. 

(2009) 

Chen et al. (2006), Yamaguchi and 

Hashimoto (2006, 2009), 

Kabir et al. (2009), Fujita and 

Hamamoto (2009), Zhu and 

Brilakis (2010), 

Lee et al. (2013), Brilakis et al. 

(2011), 

Zhang et al. (2011), Zhu et al. 

(2011), 

German et al. (2012), Jahanshahi 

and 

Masri (2012), Jahanshahi and 

Masri (2013), 

German et al. (2013) 

Sinha et al. 

(2003), 

Sinha and 

Fieguth 

(2006), 

Guo et al. 

(2009) 

Yu et al. 

(2007) 

2D+3D Jog et al. (2012) — — —  

3D image — — The focus of this paper —  

3D depth 
Jahanshahi et al. 

(2013a, b) 
— — — 
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3.3. Small-Scale Validation  

The first step in validating the crack detection algorithm was to create a controlled, small-scale test 

setup with a cracked object to reconstruct. Image-based 3D reconstructions had successfully been 

created from 48,640 × 480 pixel images taken at a distance of 60 cm around small objects. Therefore, 

a cinder block of 20 cm square with a three to four cm wide horizontal crack extending across one side 

was used as the target object to reconstruct with those parameters. The cinder block also has the 

advantage of being a commonly used building material, enhancing the realism of the initial test. 
 

Table 2. The Pseudo Code of the Proposed Algorithm 

Step Procedure 

1 Load all mesh face elements (3, 3D points per element) 

2 Examine a face element 

3 Compute its surface normal (from 2 vectors connecting the 3 points) 

4 Compare its normal to the ground plane/axial direction (angle β) 

5 If ǀ90-βǀ > threshold (e.g., 15°) 

6      Mark as cracked (tint red) 

7 Else 

8      Mark as uncracked (tint green) 

9 End If 

10 Move to next face element 

11 Save all tinted elements 

 

 
Figure 5. Close-up of a color-coded 3D model, showing individual mesh  

element triangles and a cracked area clearly indicated  

with reddish (darker) hues 

 

Once the images were collected they were processed using the pipeline shown in Fig. 5. Because the 

camera was shooting from near ground level, the top and bottom of the block were not visible and 

were not reconstructed. These areas were filled in during meshing because of the Poisson 

reconstruction method and were removed fromthe models during trimming. The CDA threshold used 

for all models in this section was 20°. 

 

As can be clearly seen in Fig. 5, the crack detection algorithm successfully identified the horizontal 

gash in the center of the cinder block and color-coded it with a red tint (some small indents at the top 

and bottom of the model were also found). The algorithm reported the model’s surface completeness 

to be 100%, and its cracked area to be 2.75%. This result was very encouraging and larger tests were 

pursued. 
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3.4. Focus of This Study  

Case study of the Teuku Umar road - ZA Pagar Alam (Mall Boemi Kedaton) because on the road there 

are flyover buildings and on this road that serves to increase the traffic volume on this road. In this 

study, the modeling is to optimize the acquisition and processing parameters to detect cracks well. 

 

 
Figure 6. The location of analysis on flyover with  

United States Geological Survey (USGS) maps 
 

4. Result and discussion 

We generated a pair of interferogram results from all possible pairs of PALSAR-2 images. The model 

that created by using InSAR technique, where the data we used in April 2017-May 2018. The 

interfrogram images is shown in figure 1. In the interferogram processing scenario not all produce 

good results, it can be due to unwrapping error and atmospheric effects on the image itself. 

Furthermore we continue to process time series data for Bandar Lampung region by using SigmaSAR 

program.  

 

 
Figure 7. The result of InSAR analysis at study area 

 

In the Differential InSAR method, we computed some interferograms scenario and the wrapped phase 

was corrected for spatially- uncorrelated look angle error and noise associated with the master image. 

After unwrapping stage and filtering spatially correlated noise then it can be calculated mean of 

velocity line-of-sight (LOS) and converted to height values. Results obtained based on correlation 
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between Citra Radar images, yellow indicates no change, fig. 7 is the deformation of the results 

Processing InSAR in centimeters, where (red) is an indication of subsidence and (green) is an uplift 

(unit in centimeters). 

 

 

 

 

Figure 8. From pole P1  Figure 9. 3D View along Conductors 

 

In Fig. 9 and Fig. 11, blue areas mean deformation occurred and uplifting respect to the mean 

deformation value. Taking into account that no uplifting is expected, we can consider that the light red 

areas are sinking slower than yellow which is located close to the bridge area. In other hand, we obtain 

the center of study area to be subsiding with a rate about 2.1 cm. We can also see the estimated 

deformation field which is not as smooth as expected probably due to unwrapping errors when the 

interferogram lacks of correlation.  

 

 

 

 

Figure 10. Corridor photo CORROP1  Figure 11. Profile View 

 

However, in the northern part (Sultan Agung Street) relatively small subsidence reach up to 0.7 cm 

and the southern part is lower reach up to 0.5 cm. Generally the coherence value of ALOS-2 images is 

better than ALOS but the temporal resolution is opposite for the area in Indonesia, especially in 

Sumatera Island. 

 

Crack depths varied greatly along their profiles. The real-world values represent multiple 

measurements in the interior of the crack and the largest measured depth model is also reported for 

comparison. As observed from these tables, millimeter and submillimeter accuracies can be achieved 

in controlled settings which promises the applicability of the proposed method. These measurements 
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further show the proposed method for other types of defects and potholes on concrete and asphalt 

surfaces. 

 

Table 3. Comparison of Real-World versus Model Crack Dimensions 

Parameter 

Larger 

crack 

width 

Larger 

crack 

depth 

Smaller 

crack 

width 

Smaller 

crack 

depth 

Real-world dimension, ζ1 (cm) 10 6 4 ≤ 2,5 

Model dimension, ζ2 (cm)   9,85 6,06 3,91    2,52 

Absolute error, Δ ¼ jζ2 − ζ1 j (cm)   0,15 0,06 0,09    0,02 

Relative error, δ ¼ Δ=ζ1 (%)   1,5 1,07 2,2    0,8 

 

5. Conclusion 

This work has presented an analysis of the ground subsidence phenomena in the urban area. The 

advanced differential InSAR technique is applied to this site using ALOS-2 PALSAR-2 images 

acquired from 2017 to 2018. We identified a few locations in our study area. The average subsidence 

velocity map has been retrieved by D-InSAR technique processing to create deformation map. The 

urbanization and urban growth which have resulted in more groundwater extraction and infrastructure 

are mainly responsible for the subsidence in the study area. 

 

Furthermore, this study aimed to examine the application of Close Range Photogrammetry technology 

with InSAR technology for the measurement of suspension bridge deformation. Survey of the current 

geometric data from the bridge or flyover structure is important for structural analysis and 

maintenance decision. By this study, simple measurement techniques were used on direct output point 

cloud format. The deformations were selected including the land subsidence, main bridge inclination 

and hanger inclination. We believe that the results can be used to further in order to identify possible 

causes of structural deformation and determine countermeasure to ensure structural analysis. 
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