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Abstract 

Applications of Machine Learning (ML) algorithms in Structural Health Monitoring (SHM) 

have recently become of great interest owing to their superior ability to detect damage in 

engineering structures. ML algorithms used in this domain are classified into two major 

subfields: vibration-based and image-based SHM. Traditional condition survey techniques 

based on visual inspection have been the most widely used for monitoring concrete structures 

in service. Inspectors visually evaluate defects based on experience and engineering judgment. 

However, this process is subjective, time-consuming, and hampered by difficult access to 

numerous parts of complex structures. Accordingly, the present study proposes a nearly 

automated inspection model based on image processing, signal processing, and deep learning 

for detecting defects and identifying damage locations in typically inaccessible areas of 

concrete structures. The work conducted in this thesis achieved excellent damage localization 

and classification performance and could offer a nearly automated inspection platform for the 

colossal backlog of ageing civil engineering structures. 

Keywords 

Machine Learning; Deep Learning; Convolutional Neural Network; Damage Detection; 

Damage Localization; Structural Health Monitoring; Image Processing; Signal Processing; 

Vibration; Concrete structures. 

 

 

 

 

 

 

 

 



 

iii 

 

Summary for Lay Audience 

Diagnosing damage is civil engineering structures and infrastructures has been getting 

increasing attention due to the very large portfolio of ageing civil assets and concerns related 

to its serviceability and safety. Until now, visual inspection has been the most used method to 

assess structural damage. However, in many cases, it is difficult and unsafe to access parts of 

such infrastructure (e.g., massive offshore bridge, large dam, tall building, etc.). At the same 

time, assessing damage can vary from one operator to the other depending on expertise and 

personal judgement. In this research, this subjectivity is mitigated using advanced statistical 

and probabilistic approaches such as artificial intelligence combined with image processing 

techniques to localize structural damage, quantify it, and even predict its type and degree of 

severity. This is done by implementing algorithms based on datasets of images for both 

damaged and intact structures. Then, depending on whether the structure is cracked or not, a 

quantification algorithm is developed to measure the width, length, and angle of orientation of 

cracks. 

Nevertheless, in many cases, bridges, buildings and other structures have collapsed without 

presenting any warning signs, for instance via loss of the stiffness of key structural elements 

due to inner degradation that cannot be detected by visual inspection at the surface of the 

structure. For this reason, a global technique based on signal processing is needed. When a 

random excitation is applied to a building, and its acceleration signals are measured, then 

damage features from the signal can be automatically extracted. Accordingly, the position of 

damage can be determined. The contribution of this thesis in this area is part of larger effort to 

minimize and substitute to the subjective human operator in inspection and rehabilitation 

protocols. This study could, with further developmental work, optimize the service lifecycle, 

minimize maintenance costs, and mitigate failure risks for the lifetime of a civil infrastructure 

asset. Eventually, this research aims at making vital structures highly durable and long-lasting 

in Canada and worldwide. It might be very costly to erect new buildings and bridges, but we 

could give more life to the old ones at lower cost. 
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Chapter 1  

1 Introduction 

1.1 Background 

Civil structures and facilities are vulnerable to failure due to structural defects caused by 

material degradation, earthquakes, wind loadings, ambient vibration, or excessive loading. 

As reported in (ASCE, 2017), the average rating for USA’s roads was a poor D+ on a grade 

scale of A (excellent condition) to F (unacceptable condition), and C+ for bridges with an 

approximate $123 billion needed for retrofitting, as illustrated in (FHWA, 2019).  

This latter study reports that 7.5% of bridges were rated structurally defective, with several 

components near the end of their operational life. Due to their deteriorating conditions, 

more than 30% of the 617,000 highway bridges in the U.S.A. require urgent consideration. 

Ensuring safety and reducing inspection costs have emerged as top priorities for 

engineering practitioners and researchers in recent decades. This has highlighted the 

importance of cost-effective structural health monitoring (SHM) to warrant long-term 

structural integrity and safety levels on several platforms (Mashayekhi and Bell, 2019; An 

et al., 2019).  In addition to traditional inspection and non-destructive evaluation 

approaches (e.g., use of impact echo, ultrasonic surface waves, ground-penetrating radar, 

electrical resistivity, infrared thermography, etc.), different forms of new SHM 

technologies can streamline regular inspections and reduce the direct and indirect costs 

associated with undesired failure of aging infrastructure assets.  

Sensors and sensor data (observable response) lie at the heart of any SHM system and 

implementation. Recent advances in sensor and communication technologies (contact and 

contactless, wired, and wireless, etc.) have created opportunities for a tremendous rate and 

number of observables to be acquired. Furthermore, advancements in other enabling 

hardware and software were used in diverse ways. Owing to the power and data 

connectivity specifications, the constraints on sensor measuring technologies and 

difficulties in implementing sensor networks have traditionally impeded the installation of 

large sensor arrays on civil infrastructure.  
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Conventional SHM systems based on proven multi-physics models, however, might not 

necessarily be appropriate for efficient health monitoring utilizing broad sensor data sets. 

Fortunately, advancement in data-driven approaches has revolutionized data collection and 

analysis. Unlike traditional SHM models based on physics, data-driven models offer 

bottom-up solutions that include diagnosis and prognosis, including damage detection and 

estimation of the remaining life, respectively (Zhao et al., 2019). Data-driven models have, 

therefore, proven versatility and become the most attractive strategies in SHM. 

Deep Learning (DL) is considered as a sub-branch of machine learning (ML), and its 

implementations have been adequately demonstrated on several platforms when working 

with vast volumes of data. DL models can capture and learn information concealed in the 

data to predict different patterns through stacked-layer blocks that form the DL skeleton 

(Schmidhuber, 2015). Fortunately, recent developments in parallel computation, coupled 

with the advancements of DL (Lecun et al., 2015), DL-based models were widely used in 

many applications in a wide variety of research fields, including computer vision, time 

series, speech and audio recognition, and SHM. DL-based SHM trained models are better 

suited to large-scale structures and are more efficient for SHM based on vision and 

vibration while dealing with compressed or big data. 

Different alternate DL models have recently been introduced, such as 

Deep Convolutional Neural Networks (CNNs) (Rafiei et al., 2017), Deep Boltzmann 

Machines (Zhang et al., 2017), Deep Belief Network (Zhao et al., 2019), Recurrent Neural 

Networks (Pathirage et al., 2019), Auto-encoders (Goodfellow et al., 2014), and 

Generative Adversarial Networks (Bao et al., 2019). In this thesis, the main focus is related 

to the application of CNNs in SHM, owing to its great success proven in the literature.  

1.2 Research Gaps 

1. Most modern infrastructure inspection strategies are focused on visual assessment 

(i.e., presence, location, and width of deterioration and damage) that depend on the skill, 

experience and knowledge of experts, which may not always be reliable. Furthermore, 

these strategies are costly, time-consuming, and hindered by requiring access to several 

sections of complex structures (Kim et al., 2019). A more contemporary image processing 



3 

 

method in the field of image pattern detection called Convolutional Neural Networks 

(CNN) has gained increasing attention to improve the level of compliance on concrete 

facilities inspection. 

Recent research on applying DL to concrete structures in vision based SHM has focused 

on using CNNs to classify the different types of structural damage. Nonetheless, few 

studies have focused their scope on determining the causes of structural harm and the 

degree of seriousness via strategies centered on DL images. For reference, (Gao and 

Mosalam, 2018) provided Structural ImageNet with four baseline recognition tasks: 

identification of the component type, spalling condition check, assessment of damage level, 

and determination of the amount of damage. They identified damage and estimated its 

degree based on cracks in photos at the structural stage. Another study suggested a fully 

convolutional neural network (FCN), called Ci-Net, for detection of structural crack (Ye et 

al., 2019). To confirm its structural crack-recognition capability, crack images from an 

indoor concrete beam study were adopted. On the other hand, a more recent study has 

suggested an updated, more rapid region-based convolutional neural network (Faster R‐

CNN) for the detection and localization of damaged reinforced concrete columns from 

images (i.e., concrete cracking, concrete spalling, rebar exposure, and rebar buckling) (Xu 

et al., 2019). 

The various studies listed above-defined structural damage in reinforced concrete members 

based on traditional usage of DL-based models, which consists of classifying the damage 

based on a dataset of images of the specified damage class. However, as stated in each 

analysis, in classifying the type of structural damage occurring on the concrete surface and 

estimating its extent, there has often been a margin of error and lack of precision. Also, it 

is a laborious and time-consuming process to label a dataset of images according to their 

damage shape or pattern to determine the type of harm and its degree. This method depends 

strongly on engineering judgment and is thus associated with high degrees of subjectivity. 

2. Another knowledge gap in the current literature is the dearth of research that 

addressed the quantification of rational cracks. For example, an automatic volumetric 

damage quantification (F-RCNN) was suggested; it is centered on DL utilizing a depth 

camera (3D scanner) only to measure the volume of spalling (Beckman et al., 2019). 
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3. On the other hand, structural engineers reported building collapses in certain 

situations without any warning (e.g., no noticeable cracking, no spalling, no scaling, no 

efflorescence, etc.). This can occur due to loss of the rigidity of a beam, column, or other 

structural elements due to internal degradation, which di not appear on the surface. 

4. The existent vibration-based approaches are focused on the assumption that damage 

(physical adjustments) induces subsequent changes in vibration dynamics (especially 

modal forms, frequencies, and damping) (Xu et al., 2018), and can be used to determine 

the position of damage from measured data. Numerous DL algorithms, such as Long Short-

Term Memory (LSTM), Recurrent Neural Networks (RNN), and 1D CNN, have been 

applied to this nonparametric time series problem. These techniques proved efficient in the 

case of a network of sensors. For instance, a 1D CNN to track damage in a grandstand 

simulator was presented, having 30 accelerometers installed on 30 joints (Abdeljaber et al., 

2017). In another study, several impact-hammer experiments on a steel frame with six 

mounted accelerometers in a separate position were performed (Zhang et al., 2019). Such 

simulations were usually applicable to horizontal systems (e.g., 1.65 m high stand 

simulator and 1.5 m high steel frame) typically consisting of continuous signal acquisition 

by a network of accelerometers (multiple channel measurement).  

1.3 Research Need and Objectives 

According to each of the proposed research gaps cited in Section 1.2, a corresponding 

research need is suggested and critically discussed in this thesis. Thus, the research 

objectives of this thesis are to: 

1. Develop a novel strategy for determining the type of crack, depending on its 

orientation to assess the cause and severity of the damage.  

 

2. Carry out accurate quantification of crack characteristics in terms of width, length, 

and angle of orientation via mathematical and geometric operations to classify structural 

and durability-related damage of structural members and to determine their extent in short 

computational time. 
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3. Propose a more global technique for detecting vibration-based damage for 

recognizing global structural damage and determining the occurrence, severity, and 

position of damaged areas by transmitting assessed signals through a network of sensors. 

DL has developed new horizons for broad-scale structures in vibration-based, data-driven 

SHM and enabled the collection and processing of large data sets from various sensor types 

and will be explored for this purpose.  

4. Explore utilizing a specific sensor configuration involving single and multiple 

channel measurements under different damage assessment approaches to track damage to 

vertical structures (e.g., multi-story buildings) under different damage assessment 

approaches. 

1.4 Original Contributions 

This research aims to transform the structural damage prognosis and diagnosis disciplines 

in concrete structures through the applicability of DL CNNs. Accordingly, two main 

implementations of CNN were developed. The first is mainly related to the application of 

2D CNN for vision based SHM. The second is interested in vibration and signal based 

SHM using a 1D CNN. Specific original contributions include: 

1. Developing a 2D CNN image-based technique with high accuracy and less 

computing time for automatically classifying crack types in concrete structures 

based on their orientation since previous studies used manual labeling techniques 

to identify the type of damage, which is subjective, time-consuming, and laborious. 

This model quantifies concrete cracks in terms of length, width, and angle of 

orientation using a combination of DL and improved Otsu image processing 

technique (IPTs) and identifies the severity of structural damage based on the 

allowed range of concrete crack widths for different structures, including buildings 

and bridges, as per guidance from international standards and design codes.  

2. Developing a real-time 1D CNN vibration-based technique for assessing damage 

in mid-rise buildings with high accuracy and short computational time by 

automating the damage sensitive features extraction pre- and post-processing. The 

model proposes a single-channel measurement (only one sensor) vibration-based 
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damage detection platform that can detect and assess the health of a structure, which 

is more economical and practical. Finally, the performance and robustness of the 

proposed model was demonstrated by adding up to 20% random Gaussian noise.  

1.5 Thesis Structure 

This thesis has been structured according to the integrated-article format following the 

guidelines and regulations of the School of Graduate and Postdoctoral Studies (SGPS) at 

Western University. The thesis consists of five chapters covering the scope and objectives 

of the study; to classify, localize, and quantify structural damage in concrete structures 

using DL CNNs techniques. 

Chapter 1 is an overview that captures the context of the study and includes an 

introduction to the study objectives, research goals, and the original research contributions. 

Chapter 2 provides a systematic review of the state-of-the-art with a detailed analysis and 

discussion of the application of machine and deep learning algorithms in civil SHM. The 

various ML algorithms used in this domain have been classified into two major subfields: 

vibration-based SHM and image-based SHM. The efficacy of deploying ML algorithms in 

SHM has been discussed, and a detailed critical analysis of ML applications in SHM has 

been provided. Accordingly, practical recommendations have been made, and current 

knowledge gaps and future research needs have been outlined. 

Chapter 3 proposes a nearly automated inspection model based on image processing and 

DL for detecting defects in concrete structures. The defects are computed in terms of visible 

cracks on the surface of structural elements. Precise quantification of the crack length, 

width, and angle of orientation are provided. Furthermore, the type of structural damage 

and its severity are identified based on the allowed range of concrete crack width for 

different structures, including buildings and bridges, based on different international 

standards and codes.  

Chapter 4 presents a novel DL-based damage detection approach to automatically extract 

features from raw acceleration sensor data. A new One-Dimensional Convolutional Neural 

Network (1D CNN) named BuildingNet was designed to learn features and identify damage 
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locations in real-time under different damage assessment scenarios. Parametric studies 

were conducted on different layer numbers, numbers of training datasets, and noise levels.  

An ensemble of systematic studies on the optimization of network architecture and 

preparation of the training data was performed. Numerical investigations on a midrise 

building were conducted to demonstrate the accuracy and efficiency of the proposed model 

framework compared with traditional ML methods. Time-domain monitoring data, both 

from multiple and single-channel measurements, were used for training and testing three 

different architectures for BuildingNet. 

Finally, Chapter 5 outlines the findings and recommendations of the study and presents 

suggestions for potential studies. 

1.6 References 

Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., & Inman, D. J. (2017). Real-time 

vibration-based structural damage detection using one-dimensional convolutional 

neural networks. Journal of Sound and Vibration, 388, 154-170. 

 

An, Y., Chatzi, E., Sim, S. H., Laflamme, S., Blachowski, B., & Ou, J. (2019). Recent 

progress and future trends on damage identification methods for bridge 

structures. Structural Control and Health Monitoring, 26(10), e2416. 

 

ASCE. ASCE’s 2017 Infrastructure Report Card. Retrieved from 

https://www.infrastructurereportcard.org/ 

 

Bao, Y., Tang, Z., Li, H., & Zhang, Y. (2019). Computer vision and deep learning-based 

data anomaly detection method for structural health monitoring. Structural Health 

Monitoring, 18(2), 401-421. 

 

FHWA. Bridge Condition by Highway System. (2019). Retrieved from 

https://www.fhwa.dot.gov/bridge/nbi/no10/condition19.cfm 

 

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & 

Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information 

processing systems (pp. 2672-2680). 

 

Kaveh, A., & Dadras, A. (2018). Structural damage identification using an enhanced 

thermal exchange optimization algorithm. Engineering Optimization, 50(3), 430-

451. 

 



8 

 

Kim, H., Ahn, E., Shin, M., & Sim, S. H. (2019). Crack and non-crack classification from 

concrete surface images using machine learning. Structural Health 

Monitoring, 18(3), 725-738. 

 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. 

 

Mashayekhi, M., & Santini‐Bell, E. (2019). Three‐dimensional multiscale finite element 

models for in‐service performance assessment of bridges. Computer‐Aided Civil and 

Infrastructure Engineering, 34(5), 385-401. 

 

Pathirage, C. S. N., Li, J., Li, L., Hao, H., Liu, W., & Wang, R. (2019). Development and 

application of a deep learning-based sparse autoencoder framework for structural 

damage identification. Structural Health Monitoring, 18(1), 103-122. 

 

Rafiei, M. H., Khushefati, W. H., Demirboga, R., & Adeli, H. (2017). Supervised Deep 

Restricted Boltzmann Machine for Estimation of Concrete. ACI Materials 

Journal, 114(2). 

 

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural 

networks, 61, 85-117. 

 

Xu, J., Fu, Z., Han, Q., Lacidogna, G., & Carpinteri, A. (2018). Micro-cracking monitoring 

and fracture evaluation for crumb rubber concrete based on acoustic emission 

techniques. Structural Health Monitoring, 17(4), 946-958. 

 

Zhang, A., Wang, K. C., Li, B., Yang, E., Dai, X., Peng, Y., ... & Chen, C. (2017). 

Automated pixel‐level pavement crack detection on 3D asphalt surfaces using a 

deep‐learning network. Computer‐Aided Civil and Infrastructure 

Engineering, 32(10), 805-819. 

 

Zhang, T., Biswal, S., & Wang, Y. (2019). SHMnet: condition assessment of bolted 

connection with beyond human-level performance. Structural Health Monitoring, 

1475921719881237. 

 

Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and 

its applications to machine health monitoring. Mechanical Systems and Signal 

Processing, 115, 213-237. 



9 

 

Chapter 2  

2 Machine Learning Algorithms in Civil Structural Health 
Monitoring: A Systematic Review 

Applications of ML algorithms in SHM have become of great interest in recent years owing 

to their superior ability to detect damage and deficiencies in civil engineering structures. 

With the advent of the Internet of Things, big data, and the enormous and complex backlog 

of aging civil infrastructure assets, such applications will increase very rapidly. ML can 

efficiently perform several analyses of clustering, regression, and classification of damage 

in diverse structures, including bridges, buildings, dams, tunnels, wind turbines, etc. In this 

Chapter, different ML algorithms used in this domain have been classified into two major 

subfields: vibration-based SHM and image-based SHM. The efficacy of deploying ML 

algorithms in SHM has been discussed, and detailed, and critical analysis of ML 

applications in SHM has been provided. Accordingly, practical recommendations have 

been made, and current knowledge gaps and future research needs have been outlined. 

2.1 Introduction 

Civil structures and infrastructures occupy a significant position in the economy and play 

a vital role in facilitating daily life for the world population. These assets have been 

incurring premature damage and approaching the end of their service lives (Balageas et al., 

2010). Replacing such structures would be costly, labor-intensive, and will exceed 

available financial and human resources. Hence, engineers have developed various 

techniques to enhance the safety and structural integrity of those constructions 

(Karballaeezadeh et al., 2019) and to mitigate possible financial and life losses associated 

with their failure. Figure 2.1 illustrates the different damage detection disciplines in SHM. 

This chapter focuses on SHM as a damage detection process. SHM consists of 

implementing a scheme of monitoring the structure, for instance, using periodically spaced 

dynamic response measurements, and extracting sensitive features related to damage 

through these measures and their statistical analyses to assess the actual health of the 

system (Brownjohn, 2006). Long-term SHM is the result of periodically updated 

information concerning the ability of the structure to continue serving in the presence of 
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other influencing factors, such as degradation and aging. Consider, for example, a sudden 

blast loading (Xu et al., 2018) or a severe seismic event (Limongelli, 2019). SHM could 

be proposed to provide information on the performance of the structural system during the 

load event and to assess its structural integrity after that (also termed Rapid Condition 

Screening) (Agency, 2017). Indeed, SHM can appraise the current state and behavior of a 

structure via automatically analyzing data acquired by tailored devices and sensors 

installed in engineered locations across the structure. Hence, anomalies can be duly 

detected, allowing to instantly assess the reliability of the structure after the catastrophic 

event, and identifying corrective measures before the damage escalates to more costly or 

riskier levels.  

 

Figure 2.1: Damage Detection Disciplines. 

Considering such advantages of SHM, related research has been rapidly escalating and 

gaining the growing attention of diverse stakeholders. Accordingly, several SHM systems 

have emerged and been implemented in bridges (Agdas et al., 2015), high-rise buildings 

(Rafiei and Adeli, 2017), towers (Ochieng et al., 2018), dams (Oliveira and Alegre, 2019), 

tunnels (Manuello et al., 2019) and so forth. This has led to acquiring big data, which 

requires powerful, intelligent, and sophisticated computational techniques and has opened 

the door to deploying Artificial Intelligence (AI) in SHM problems.  

Artificial Intelligence emerged between the 1950s and 1970s in the field of computer 

science and achieved substantial success in various subfields such as robotics (Brooks, 

1991), data mining (Wu, 2004), pattern recognition (Pao, 1989), knowledge representation 
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(Brooks, 1991) and agent systems (Weiss, 1999). Conversely, AI has attracted the attention 

of civil engineering experts only recently. For instance, it has been used to perform several 

tasks in SHM applications dealing with knowledge-based systems (Farrar and Worden, 

2012), fuzzy logic algorithms (Omar and Nehdi, 2016), and artificial neural networks 

(Amezquita-Sanchez and Adeli, 2016). The increasing number of AI applications has led 

scientists and engineers to train more complex models and create more robust AI tools. ML 

has more recently emerged as a strong contender to deal with this need. It is defined as a 

subset of AI that uses statistical models to improve the accuracy of machines by 

understanding the structure of data and then fitting it into models (Farrar and Worden, 

2012). A machine could learn via supervised, unsupervised, or reinforcement learning 

(Figure 2.2).  

 

Figure 2.2: ML Taxonomy. 

Supervised learning (SL) uses labels or captions so the machine can know the features of 

the objects added to the labels that are combined with those features. SL provides a learning 

scheme with labeled data to deal with regression and classification problems. In the SHM 

domain, SL can be used, for instance, to detect the type and severity of damage (Smarsly 
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et al., 2016). Conversely, unsupervised learning is the process of learning with unlabeled 

data, i.e., via datasets with unspecified outputs that fit a general rule and can be grouped 

following a specific trend. This can be used, for example, to detect the existence of damage 

through clustering structural response data. As shown in Figure 2.3, ML is a 

straightforward process, starting from the input (Database), passing through the selected 

algorithm, getting the output, then deciding to either stop or restart the process by providing 

some feedback. The end of the process is marked by getting an accurate and well-predicted 

result.  

 

Figure 2.3: ML Life Cycle. 

2.2 Hierarchy of ML algorithms 

For the sake of clarity, a brief guideline on how to manipulate each of the ML steps of the 

general process is provided below. 

2.2.1 Input Configuration 

Starting at the input stage, a better understanding of the data can help in selecting the 

appropriate algorithm to use. Some algorithms can perform well with smaller sample sets, 

while others require large samples. Also, some work better with a specific type of data than 

others. As illustrated in Figure 2.4, data need to be well understood and manipulated using 

mathematical tools such as data statistics and data visualization, before using any ML 

algorithm. In data statistics, percentiles are used to identify the range, average, and median 
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of data to describe the central tendency and correlations, besides acquiring knowledge of 

how the data is linked together (Jordan and Mitchell, 2015). However, in data visualization, 

density plots and histograms are used to show the distribution of data, along with box plots 

to identify problems like outliers (Salloum et al., 2019). Then, data need to be ‘cleaned’ 

which involves dealing with missing values and outliers that can be a concern for some 

algorithms, decreasing output predictive accuracy. Finally, the data can be augmented or 

enriched to make the models easier to interpret, reduce data redundancy and 

dimensionality, capture complex relationships, and rescale some variables.  

 

Figure 2.4: Input Configuration. 

After manipulating the data, the problem needs to be categorized following an input-output 

process. For the input process, if the data is labeled, it will consist of a supervised learning 

problem. However, if it is unlabeled, the learning problem is considered unsupervised. On 

the other hand, the output process is categorized by the task. If the output is a set of input 

groups, the problem shall be recognized as a clustering problem. Understanding the 

constraints of the problem is also a primary task in selecting an appropriate algorithm.  
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Several kinds of constraints could be presented in an ML algorithm, starting from the 

awareness of the data storage capacity. Furthermore, the time of prediction can play a 

significant role in the selection process. For instance, some SHM problems need to be 

performed promptly. For example, real-time object detection problems need to be super-

fast to avoid wasting information during the process of object recognition (de Almeida 

Cardoso et al., 2019). Besides, the model training process should learn rapidly in cases 

where it is rapidly exposed to new data and must instantly process it. To select the 

appropriate algorithm, other factors such as the accuracy and scale of the model, model 

pre-processing, and complexity in terms of features included to learn and predict more 

complex polynomial terms, interactions, and more computational overhead, need to be 

considered. The commonly used ML algorithms in SHM applications are summarized in 

Figure 2.5. 

 

Figure 2.5: List of ML Algorithms Applied to SHM. 

2.2.2 Algorithm Manipulation 

The most used ML algorithms for SHM purposes are outlined below. Support Vector 

Machine (SVM) is a supervised learning algorithm used for classification and regression 
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problems, also called Support Vector Networks (SVN). An SVM algorithm sorts data into 

one of two categories, then outputs a map of the sorted data, maximizing the margins 

between the two. It performs both linear and non-linear classifications, thanks to the use of 

kernel functions (Burges, 1998). Its architecture is detailed in Figure 2.6.  

 

Figure 2.6: SVM Classifier Architecture. 

Back Propagation Neural Networks (BPNNs) are supervised learning algorithms for 

training multi-layer perceptrons. Its primary use consists of finding the minimal value of 

the error function in the weight space using a gradient descent technique. The weight that 

minimizes the loss function is the solution for the learning problem (Hecht-Nielsen, 1992). 

K-Nearest Neighbors (K-NNs) are a set of classifiers used for pattern classification and 

ML (Dudani, 1976). For a set of inputs x of n points and a distance function, KNNs search 

for the closest points in x to a query point or set of points y to be found. Principal 

Component Analysis (PCA) is a method within the data analysis family that consists of 

transforming correlated variables to uncorrelated ones, called principal variables. This 

technique helps the user reducing the size of variables and making the information less 

redundant (Jolliffe, 2011). CNN is an architecture used in DL, which is a subset of ML, to 

perform both descriptive and generative tasks dedicated mainly to image processing tasks 
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using machine vision libraries that contain image and video recognition scripts. The main 

difference between the ML and DL processes is the hidden layer located between the input 

and output for DL algorithms, as illustrated in Figure 2.7. This layer can contain multiple 

convolutional or deconvolutional layers, pooling, activation, fully connected, and 

normalization layers, depending on the use. 

 

Figure 2.7: Commonly used Configuration for CNN. 

2.2.3 Output Manipulation 

The output of the SHM can vary from one problem to another, such as settlement, damage 

detection, damage classification, object detection, temperature prediction, and health 

index. An accurate and precise output should mark the end of the process as otherwise, 

feedback is provided to the machine, so it can learn from the experience and attempt to 

provide better results. 

2.3 SHM Subfields 

2.3.1 Bridge Health Monitoring (BHM) 

BHM is the application of SHM and inspection techniques to bridge structures. Causes of 

degradation of bridge structures include materials aging (Hasni et al., 2017), corrosion of 

metals (Zajec et al., 2018) and structural supports (Zhao et al., 2014), mechanical 

overloading and other damage mechanisms (Chen and Ni, 2018). Bridge Health 

Monitoring (BHM) consists of collecting quantitative data from various sensors located 

within or on the surface of the structure (Hao et al., 2018). This Real-Time feedback 
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creates a dataset monitoring system used to assess the condition of the bridge. Processing 

real-time complex big data has been a challenge in BHM. According to (Peng et al., 2017), 

BHM can be separated into three key aspects. First, the construction control (CC) stage, 

where engineers are responsible for monitoring construction progress. Second, the routine 

monitoring (RM) stage directly after constructing the bridge. In this period, a large amount 

of data acquired from the installed sensors is produced and stored. To process this data, 

ML algorithms are being developed to provide real-time feedback for understanding the 

health condition of the bridge. Finally, the damage detection (DD) stage where engineers 

should assess the safety of the structure and detect any damage that develops. 

2.3.2 Building Health Monitoring (BUHM) 

Buildings are often exposed to damage from earthquakes, wind, overloading, vibration, 

impact, landslides, floods, aging and environmental action, and other damage mechanisms. 

Without adequate monitoring, maintenance, and repair, this can lead to inadequate service 

and possible economic and life loss. Thus, understanding how buildings perform in real 

conditions can help engineers designing and building more resilient, safer, reliable, and 

more durable structures. There has been recently rapid growth in the construction of high-

rise buildings that require smarter and more robust monitoring (Ali and Al-Kodmany, 

2012). Monitoring the deformation of such buildings has long been a concern. More 

recently, experts have introduced ML algorithms to monitor the condition of high-rise 

buildings considering their proven effectiveness in other fields. 

2.3.3 Dam Health Monitoring (DHM) 

Dams play a crucial role in providing drinking and irrigation water, flood defense, power 

generation, water storage, and so forth. Their deterioration can lead to massive financial 

losses and possibly a disastrous number of casualties (Brown and Graham, 1988). Thus, 

the safe operation of dams is needed, and any anomalous behavior should be detected in 

its early stages to avoid any failure or mis-operation. Dam Health Monitoring (DHM) is a 

discipline that is often based on a traditional visual inspection and other monitoring of the 

dam and foundation (Dams, 2012). This requires a robust analysis of dam monitoring data 

obtained from the installed sensors in the short- and long-term. For short term monitoring, 
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the engineer is responsible for comparing the measured data with reference values that 

correspond to the response of the dam to loads in a healthy or safe condition. The detection 

of anomalies is marked by the localization of predicted intervals located either above or 

below the reference values. However, for long-term monitoring, analysis of the behavior 

models and the observed data is needed to assess the performance of the dam in terms of 

loads and observed output (Kang et al., 2019). DHM can also consist of static and dynamic 

monitoring aspects. Statically, many features could be monitored, including reservoir 

storage levels, cracks, displacements, strains, and stresses. Dynamically, other parameters 

could be identified, like the stiffness, damping ratio, and mode shapes caused by wind, 

water waves, and ground motions (Fisher et al., 2017). The structural behavior of dams has 

complicated relationships with environmental factors, hydraulics (e.g., water level) and 

geo-mechanisms (e.g., pore pressure, rock deformability) (Gunn, 2015). To illustrate the 

behavior of the concrete dams based on real-time monitoring, several mathematical models 

have been proposed, including statistic, deterministic and hybrid models. Such models 

serve to assess the behavior of dams by analyzing real-time data, considering hydrostatic 

pressure, environmental temperature, and time effects to be the main variables (Su et al., 

2015). Due to uncertainties in using this kind of approach, several AI techniques have been 

implemented, making a fusion between conventional models and heuristic algorithms, and 

leading to hybrid models. In recent years, ML has become a new accurate tool in DHM. 

2.3.4 Wind Turbine Health Monitoring (WTHM) 

To limit the need for traditional sources of energy such as fossil fuels, eco-friendly sources 

of energy that can mitigate climate change are being sought after (Hadjipaschalis et al., 

2009). Wind Turbines (WT) have gained acceptance owing to the maturity of their 

technology. More significant size WT emerged to harvest more wind energy, seeking 

efficiency and productivity. However, this reason has complicated maintenance and repair 

works for facility managers. Several attempts to monitor the structural integrity of WT 

have been reported. For instance, different problems faced by wind turbine blades (WTB) 

during their lifecycle (Ciang et al., 2008), and methods used to detect damage in WT, 

including acoustic emission event detection (Sutherland et al., 1994), thermal imaging 

(Avdelidis et al., 2006), ultrasonic methods (Sørensen et al., 2002), modal based 
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approaches (Siringoringo and Fujino, 2006), fiber optics (Takeda, 2002), laser doppler 

vibrometer (Martarelli et al., 2001), electrical resistance-based damage detection 

(Matsuzaki and Todoroki, 2006), strain memory alloy (Verijenko and Verijenko, 2005), X-

radioscopy (Sørensen et al., 2002), eddy current (Gros, 1995), and other methods have 

been reported. Accordingly, big data have been cumulated. Data science is needed for 

classification and prediction of WT damage, hence the need for ML.  

2.4 DL and ML Applications in SHM 

This section surveys different ML and DL approaches and algorithms used in SHM 

problems. Various algorithms were used in SHM applications for the last ten years, 

including Back Propagation (BP) algorithm, SVM, Neural Networks (NNs), K-Nearest 

Neighbors, CNNs. Uses of those algorithms in several applications, including SHM of 

bridges, high-rise buildings, dams, and wind turbines, are outlined below. 

2.4.1 Artificial Neural Networks (ANNs) 

2.4.1.1 Feed Forward Neural Networks (N.N.s) 

Gonzalez et al. (González and Zapico, 2008) presented a damage identification method for 

steel moment frame structures. The method uses NNs and first flexural modes (frequencies 

and mode shapes obtained by a finite element model for a five-story office building) as 

input. Their method was based on two main approaches. The first is to calibrate the healthy 

structure, while the second was intended to identify the damaged structure after a seismic 

event. They predicted the mass and stiffness of the structure to provide a damage index at 

each story and indicated a robust model prediction of damage. More recently, Chang et al. 

(Chang et al., 2018) developed this approach and applied it not only to detect damage but 

also to localize it and predict its severity for appraising the remaining performance of the 

damaged members. Two critical structures were studied: (i) a seven-story building with 

single and multiple damaged columns, and (ii) a scaled twin tower with weak braces 

installed on some floors.  

To detect damage (DD) in bridges, three different algorithms were applied.  The NN 

technique was used in the Jamboree road over-crossing, Irvine, California, to assess 
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parameters including aging, long-term structural parameters, stiffness, and mass (Soyoz 

and Feng, 2009). Many applications have used this algorithm owing to its simplicity and 

accuracy compared to traditional methods. For instance, it was used to determine radial 

dam displacements with different sets of inputs (Salazar et al., 2015; Riquelme et al., 2011; 

Kao and Loh, 2013; Demirkaya and Balcilar, 2012; Mata, 2011). Other uses were reported 

in (Simon et al., 2013; Ranković et al., 2014; Nourani and Babakhani, 2012)  to detect the 

pore pressure in dams, to predict the tangential displacement (Popovici et al., 2013) and to 

monitor the leakage flow (Santillán et al., 2014). A summary of the used algorithms is 

provided in Table 1.1. 

2.4.1.2 Back Propagation Neural Networks (BPNNs) 

BP algorithm was applied during the early stages of construction of the Yangtze River 

bridge in China to track girder elevation changes during the construction phase using input 

parameters like cable tension deflection parameters and deflection of the deck. Another 

study (Peng, Zhang, Peng and Liang, 2017) employed a BP algorithm to track variation of 

the deflection of the Hubei Danjiangkou bridge deck throughout the Construction Control 

(CC) phase, using inputs including temperature, the value of deflection of the deck after 

stretching and height of the stretched section. Other uses of the BP algorithm were in the 

Routine Monitoring (RM) stage. For instance, pile settlement was predicted as a function 

of the pile displacement sequence (Peng, Zhang, Peng, and Liang, 2017) and to track the 

normality of points according to their deflection (Yang et al., 2008). The Kentucky 

Louisville truss bridge in the USA was exposed to an extensive campaign to measure 

parameters like frequency, mode shapes and the number of degrees of freedom to serve as 

inputs for measuring the damage potential of truss joints (Mehrjoo et al., 2008; Frangopol 

and Soliman, 2016). The Yangtze River Bridge was also monitored to track girder elevation 

changes based on cable tension and deflection parameters using BPNN, as illustrated in 

(Yuansong et al., 2007).
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Table 2.1: Summary of the Different NN Applications in SHM. 

Ref. Structure Input Algorithm Output 

(González and Zapico, 2008) Five-story steel office building Frequencies and mode shapes NN 
Mass and stiffness degradation for 

damage index detection 

(Chang, Lin and Chang, 2018) 

1- Seven story building with single and 

multiple damaged column(s). 

2- Experimental model of a scaled twin-

tower building with weak braces in 

some floors 

Modal properties of the 

structure under ambient 

vibrations 

NN 

Damage patterns in terms of 

stiffness reduction after critical 

events 

(Soyoz and Feng, 2009) 
Jamboree Road over-crossing, Irvine, 

California, USA 

Modal parameters: 

Frequencies, Mode Shapes 
NN 

Aging and Long-term structural, 

parameters, 

(Salazar, Toledo, Oñate and Morán, 2015) Arch Dam, La Baells, Spain 
H_up, T_air, ∂(H_up), 

Season, Time, Precip 
NN Rad_Disp, Tan_Disp, Leakage flow 

(Riquelme, Fraile, Santillán, Morán and 

Toledo, 2011) 
Arch Dam, La Baells, Spain H_up, T_amb, OL NN Rad_Disp 

(Kao and Loh, 2013) Arch Dam, Fei-Tsui, Taiwan  H_up, T_Conc NN Rad_Disp 

(Demirkaya and Balcilar, 2012) Arch Dam, Schelegeis, Austria 
H_up, T_air, T_conc, lag 

(T_air), lag (T_conc) 
NN Rad_Disp 

(Simon, Royer, Mauris and Fabre, 2013) Arch Dam, Pareloup, France H_up, Season, T_amb, T_air NN  stiffness, mass, Rad_Disp 

(Ranković, Novaković, Grujović, Divac and 

Milivojević, 2014) 

(Earth fill + Gravity Arch) Dam, Iron 

Gate 2, Serbia/Romania 
H_dn, lag (H_dn) NN Pore pressure 

(Nourani and Babakhani, 2012) Earth fill Dam, Sahand, Iran 
H_up, H_dn, Precip, lag 

(Precip) 
NN Pore pressure 

(Popovici, Ilinca and Ayvaz, 2013) Buttress Dam, Gura Raului, Romania Time, H_up, T_air NN Rad_Disp and Tan_Disp 

(Santillán, Fraile-Ardanuy and Toledo, 2014) Arch Dam, La Baells, Spain 
H_up, T_air, ∂(H_up), 

∂(T_air) 
NN Leakage flow 

(Mata, 2011) Arch Dam, Alto-Rabagao, Portugal H_up, Season NN Rad_Disp 
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Four distinct uses of ML to detect damage and identify its degree for the main structural 

elements of a building using the BP algorithm were reported in (Fan et al., 2015). The first 

consisted of identifying the damage of a reinforced concrete frame structure using the 

changing ratio of modal strain energy, which is taken as the damage location factor. The 

second explored damage location and a degree in a simply supported beam, coupled with 

finite element simulation to calculate the first two natural frequencies of the structure using 

curvature mode of some critical points highlighted in the frame. The third application 

identified the damage degree in a scaled four-story steel frame structure where the inputs 

of the algorithm consisted of ratios of natural frequency, while the applied load was 

simulated to wind load. Finally, a damage identification method was applied to the Kewitte 

single-layer spherical reticulated shell. The above methods achieved adequate accuracy in 

detecting damage for different kinds of structures (Table 2.2). 

2.4.1.3 Convolutional Neural Networks (CNNs) 

More recently, DL (LeCun et al., 2015) has emerged as a sophisticated subset of AI. It has 

been proposed to perform more advanced tasks using innovative algorithms. Its main 

application for SHM is detecting defects such as cracks, efflorescence, steel exposure, rust 

staining, scaling, spalling of concrete structures based on surface images, fatigue in steel 

structures, bolts loosening, potholes and holes in asphalt pavement, etc. ML allows 

detecting cracks in civil engineering structures in a fast and reliable way, determining the 

type of the crack, its distribution along the section, and its width and length. Thus, 

engineers can assess the load-carrying capacity and degradation level of structures (Shan 

et al., 2016).  

This procedure has often been conducted by experts (Dhital and Lee, 2012) based on rather 

subjective opinions in assessing the health of structures (Fujita and Hamamoto, 2011) and 

predicting remaining service, which is compounded by difficulty accessing hard to reach 

areas. Thus, there is a need for automated and intelligent crack detection methods that do 

not rely on subjective operator expertise and opinion. Recently, a new technology of 

automatic crack detection using DL has emerged. 
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Table 2.2: Summary of the Different BPNN Applications in SHM. 

 

Ref. Structure Input Algorithm Output 

Peng et al., 2017 

Hubei Danjiangkou Bridge 
Temperature, Deflection after stretching, 

Height of stretched section 
BPNN Deflection variation 

Beijing-Shanghai High Valence Kunshan Iron Bridge Pile Settlement Displacement Sequence BPNN 
Prediction of pile 

settlement 

Yang et al., 2008 Masangxi Bridge Deflection of points BPNN Normality of points 

Mehrjoo et al., 2008  

Frangopol and Soliman, 2016  

Kentucky Louisville Bridge 

Natural frequency 

BPNN Damage Potentials 
Number of modes 

Number of the measured Degree of 

Freedom 

Fan et al., 2015  

Steel Frame 
Changing the ratio of modal strain 

energy MSECR 
BPNN 

Damage detection of frame 

structures 

Finite element simulation of the first mode shapes 
Vibration signals, Natural frequencies, 

Mode Shapes 
BPNN 

Damage position and 

degree for simply 

supported beam 

Four-story steel frame structure experimental 3D 

model 

Natural frequency change ratios, 

simulated Wind load 
BPNN 

Damage degree 

identification 

Spherical reticulated Shell structure 
Modal Density, Number of degrees of 

freedom 
BPNN 

Damage degree 

identification 

Yuansong et al., 2007   Yangtze River Bridge 
Cable tension deflection parameters, 

Deck deflection 
BPNN Girder elevation Changes 
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New optimization of pre-trained networks such as GoogleNet (Simonyan and Zisserman, 

2014), AlexNet (Alom et al., 2018), ResNet (Wu et al., 2019), VGG-16 (2019), YOLO 

object detection (Redmon et al., 2016) are frequently reported. However, from Input or 

dataset to output, parameters need to be carefully considered. A summary of the most recent 

applications of CNNs to detect damage in concrete and non-concrete structures is provided 

in Table 2.3 and described below. 

It is widely accepted that the more extensive and more comprehensive is the data set, the 

more successful it can be AI models using such data. Thus, some techniques such as data 

augmentation (Fawzi et al., 2016) have been proposed to solve problems of lack of data, 

and to reduce overfitting caused by limited and imbalanced training datasets. Another 

promising technique that helped increasing prediction accuracy is the dropout technique, 

which consists of randomly and temporarily ignoring in calculations some units of the 

neural network. Also, to obtain higher accuracy in image data processing, several 

parameters should be considered, such as uncontrolled image shooting distance (Snell et 

al., 2017), lighting conditions (Wang et al., 2017), shot angle, and blurriness conditions.  

Most relevant studies have focused on classifying structures as damaged or not damaged 

through the presence of cracks. One of the earliest applications of CNNs used different 

layout and architectures, varying the number of convolutional blocks, pooling layers, fully 

connected layers, adding some features to the available pre-trained networks Transfer 

Learning (TL) in order to detect cracks in concrete structures and asphalt pavements (Yang 

et al., 2018).  

Different configurations have been proposed to optimize crack detection in defective 

structures. Recently, a new robust concept based on transfer learning to early detect fatigue 

cracks in gusset plate joints of steel bridges was proposed in (Dung et al., 2019) as an 

alternative for training a neural network. They used the output features of the VGG16 

network architecture previously trained using a dataset called ImageNet, then they fine-

tuned the top layer of VGG16, which helped to achieve the best precision. 
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Table 2.3: Summary of CNNs applications for SHM. 

Ref. 
Number of 

Images 

Pretraining 

Dataset 

Image 

Preprocessing 

DL 

Algorithm 
Topology 

Parameter 

Estimation 
Location 

Wang et al., 

2017 
332 ImageNet 

Dropout 

Technique 
CNN 

4CVB + 1 

ReLu + 

1Softmax 

Existance of Cracks Complex Engineering Building 

Maeda et al., 

2018 
9053 MS-COCO 

Similar to Pascal-

VOC 

SSD Using 

Inception V2, 

and Mobile 

Net 

  
8 Damage Types 

including Cracks, 

Rutting, pothole, etc., 

Road Cracks with the cooperation 

of some municipalities 

Gao and 

Mosalam, 

2018 

10000 ImageNet 
Feature Extraction, 

Fine-tuning 

TL based on 

VGGNet 
5CVB, 1FCL 

Component Type, 

Spalling condition, 

damage level, damage 

type 

Collected from various platforms: 

NISEE, NEEShub, EERI Learning, 

Google Image, Baidu Image 

Yang et al., 

2018 
400 

Manually 

Labelled 
Fine-tuning CNN 4CVB Existence of cracks 

Asphalt pavement images collected 

during field survey of several road 

sections in Da Nang city 

Kim and 

Cho, 2018 
12379 

Manually 

Labelled, use of 

Scrape box 

[http://www.scra

pebox.com/] 

Data 

Augmentation 

CNN Based 

on AlexNet 

Same as 

AlexNet 

Existence of cracks, 

Plants, Edge detection 

Collected from the Internet 

covering five kinds (intact 

surfaces, cracks, multiple joints, 

and edges, single joint or edge) 

Dorafshan 

and Maguire, 

2018 

3420 ImageNet Noise Filtering 
CNN based 

on AlexNet 

Same as 

AlexNet 

Existence of cracks 

and their density 

Structural Health laboratory 

(SMASH Lab) at Utah State 

University 
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Table 2.3 (Continued) 

Ref. 
Number of 

Images 

Pretraining 

Dataset 

Image 

Preprocessing 
DL Algorithm Topology 

Parameter 

Estimation 
Location 

Dung et al., 

2019 
327 ImageNet Data Augmentation SCNN, BN, FT 2CVB + 1FCL 

Existance of 

Cracks 

Gusset Plate welded joints of 

steel bridges in Tokyo City 

Huthwohl et 

al., 2019 
38408 ImageNet 

Cross Learning 

Strategy - Fine-

tuning 

Inception V3   

Cracks, 

Efflorescence, 

Exposed 

Reinforcement, 

Rust Staining, 

Scaling, Spalling 

Walls, Beams, and columns of 

Concrete Bridges 

Lee et al., 

2019 
242 MS-COCO 

2D Gaussian kernel 

- Brownian motion 

process - Data 

Augmentation 

CSN (Image 

Segmentation 

Network), CNN 

Patch Based 

5CVB + 

1TCVB+ 

4DCVB 

Existence of 

Cracks 

Around the university of 

Cambridge Campus 

Liu et al., 

2019 
537 

Manually 

Labelled 
Data Augmentation 

DeepCrack: FCN + 

DSN 

5CVB + 

4DCVB 

Existance of 

Cracks 
Concrete and Asphalt Cracks 

Murao et al., 

2019 
552 

Manually 

Labelled 
Data Augmentation YOLO-v2   Existence of 

Cracks 

Crack Image of the concrete wall 

located at the campus of Kansai 

University 

Kim et al., 

2019 
487 

Manually 

Labelled 

Image Binarization 

and Noise Removal 

SURF-based 

classification and 

CNN-based 

classification 

  
Existence and 

Location of 

Cracks 

Random Images of defected 

structural elements presenting 

Cracks, Spalling, Holes. 

Li et al., 2019 2750 Dense-Net 121 
Data Augmentation, 

Dropout Technique 
FCN 

11CVB + 

6DCVB + 

1Softmax 

Cracks, 

Efflorescence, 

Spalling 
  

Zhang et al., 

2019 
300   

Format Factoring, 

unified jpg Format 

Faster RCNN, 

VGG16 

Same as 

VGG16 
Bolts Loosening 

Experiment Structure containing 

intact and loosened bolts 

Protopapada 

et al., 2019 
200 

Data 

Augmentation, 

Image resizing 

Noise Filtering CNN 3CVB + 1FCL 
Existance of 

Cracks 

Tunnels of Egnatia Motorway in 

Metsovo 
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Table 2.3 (Continued) 

Ref. 
Number of 

Images 

Pretraining 

Dataset 

Image 

Preprocessing 

DL 

Algorithm 
Topology Parameter Estimation Location 

Zhang et al., 

2019 
500 ImageNet 

Unified PASCAL 

VOC format 

RCNN Based on 

ResNet 101 

Same as 

ResNet 102 
Efflorescence and spalling 

The Palace Museum was 

the Imperial Palace of the 

Ming and Qing dynasties 

in China  

Liang, 2019 350 
Manually 

Labelled 
Data Augmentation CNN 

5CVB + 

1FCL + 

1Softmax 

System-level failure 

classification, component-

level bridge column 

detection, and local 

damage-level damage 

localization 

Related research reports on 

RC bridges and search 

engines (e.g., Google 

Image). Post-earthquake 

images of damaged RC 

bridges around the world, 

images of RC columns in 

different experimental 

studies 

Beckman et 

al., 2019 
1091 

Manually 

Labelled 

LabelImg [ 

https://github.

com/tzutalin/l

abelImg] 

Noise Filtering Faster RCNN 

5CVB + 

1FCL + 

1Softmax 

Damage Extraction, 

Volume Quantification 
Collected from Internet 

Ni et al., 

2019 
163 ImageNet 

Image Inpainting, 

Image Localization, 

Feature Extraction 

Dual-scale 

CNNs 

Same as 

GoogleNet 

and ResNet 

Crack localization, Crack 

width 
Laboratory and outdoor 

Kim et al., 

2018 
384 

Cifar-10 

dataset 
Cropping, Quantifying RCNN 

3CVB+2FCL 

+1Softmax 

Crack localization, Crack 

width 

Crack Length 

Real Bridge UAV image 

acquisition  
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This affirmed that fine-tuning a well-trained, fully connected layer with the top 

convolutional layer of the VGG16, in combination with data augmentation, is among the 

best performing combinations for detecting cracks in structures. Numerous applications 

have been proposed in the literature looking for the most robust algorithm for cracks 

detection (Wang et al., 2017; Liu et al., 2019; Lee et al., 2019; Murao et al., 2019; Kim et 

al., 2019; Li et al., 2019; Zhang et al., 2019; Protopapadakis et al., 2019; Wang et al., 2019 

and Dorafshan et al., 2018) through varying the architecture of the used CNN, changing 

the number of convolutional blocks, which varied between two (Dung, Sekiya, Hirano, 

Okatani and Miki, 2019) and eleven (Li, Zhao, and Zhou, 2019) convolutional blocks, 

introducing more pooling at the end of each convolutional block, more activation layers, 

and normalization, etc. 

Other research efforts did not limit their scope to the binary classifications of structure 

(cracked or not). More innovative and useful ideas for monitoring tasks, for instance, to 

detect efflorescence and spalling (Li, Zhao, and Zhou, 2019; Hüthwohl et al., 2019); bolts 

loosening (Zhang et al., 2019), rutting of asphalt pavements and potholes (Maeda et al., 

2018), typology of cracks, their length and width (Yang et al., 2018) have been explored. 

For instance, (Hüthwohl et al. 2019) proposed a three-staged concrete defect classifier that 

can classify unhealthy defected bridge areas and determine their specific defect type 

compared to inspection guidelines. The process consisted of finetuning three separate pre-

trained networks on a multi-source dataset for concrete walls, beams, columns, etc. 

Another successful application of CNN was discussed in (Gao and Mosalam, 2018), which 

proposed a baseline recognition task that determines the component type, check the 

spalling condition, evaluates damage in percentage (no damage, minor damage, medium 

to severe damage, collapse) and predicts the mechanical source of damage; e.g., if the crack 

is horizontal, the mechanical force that initiated it is an axial (tensile or compressive) force; 

however, if the crack is slightly vertical, a bending moment could be the leading cause; and 

finally if the crack is inclined, the shear force would be the leading cause. Accordingly, a 

dataset composed of 10000 images was collected from a platform called ImageNet and 

then labeled manually for specified recognition tasks. To avoid overfitting, TL based on 
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VGGNet was applied using two different strategies called finetuning and feature 

extraction. Two sets of experiments were done to find the relative optimal model 

parameters and hyperparameters, including learning rate, mini-batch size, number of 

epochs, initial weights, etc. Both strategies proved useful in recognition applications.  

Similarly, a study conducted by (Liang, 2019) proposed a three-level image-based 

approach for post-disaster monitoring of reinforced concrete bridges using image 

classification, object detection, and semantic segmentation, respectively to assess the 

failure of the overall system, detect the structural element (Deck, Column, Beam, Wall) 

where the damage persists and then zoom to the exact location on that element to localize 

the damage. This study achieved over 90% accuracy for the three DL models, which 

confirms the necessity of research to propose new solutions for these kinds of problems.  

DL and CNN scholars did not limit their scope in the field of image recognition and 

attempted diverse applications to detect crack damage in real-time for instance using 

unmanned aerial vehicles or drones, as illustrated in (Maeda et al., 2018; Kim et al., 2017; 

Kim et al., 2019; Chen and Jahanshahi, 2017). Collecting images and labeling them 

manually can be a repetitive and time-consuming task. For this reason, different methods 

have been used in the literature to save time and provide an alternative solution, such as 

the use of Scrapebox proposed in (Kim and Cho, 2018), which scrapes images from a 

search engine site (e.g., Google Images, Baidu Images, etc.) for a keyword (e.g., concrete 

crack), and LabelImg used as a graphical image annotation tool (in Beckman et al., 2019).  

Only a few applications of CNNs have quantified detected cracks on images by calculating 

its width and length. For instance, (R-CNN)-based transfer learning was applied to 384 

collected images (in Kim et al., 2018). Those images were cropped to regions where the 

crack had been located. To quantify cracks, the exact pixel size in the image and the focal 

distance were attributed using GPS data of the Unmanned Aerial Vehicle (UAV) system. 

The crack quantification algorithm was verified in a small-scale laboratory test that 

provided a relative error of 1∼2%. Another application (in Ni et al., 2019) proposed a DL-

enabled quantitative crack width measurement method. The study presented a novel crack 
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width estimation method based on the use of Zernike moment operator, which achieved 

high accuracy for thin cracks. 

2.4.2 Support Vector Machine (SVM) 

SVM has been widely used in BHM applications, for instance, to determine damage in the 

Hangzhou bridge using strain vibration, distortion, and cable tension (Chongchong et al., 

2011). For the Flushing 149th bridge in New-York, Impact Echo (IE) data was collected 

to classify damage of the deck using SVM (Li et al., 2017). Moreover, an attempt was 

made to use SVM for crack detection in the Sydney Harbor Bridge, Australia, using inputs 

including force, acceleration, and time histories recorded during regular bridge operation 

(Alamdari et al., 2016). The SVM algorithm was used in the RM stage, for example, in the 

Humboldt bay middle channel bridge to evaluate the correct position of the pier using some 

pier features. To predict scour depth near the bridge piers of the Taiwan High-Speed Rail 

System Bridge, features like pile length, young’s modulus of soil, and natural frequency of 

the bridge were used with an SVM algorithm (Kerh and Ting, 2005).  

To detect and localize damage, two potential applications for SVM have been reported. 

The first (Li et al., 2018) used a radial basis function for regressing and optimizing the 

input (mode curvature change). Excellent accuracy and generalization ability, along with 

noise resistance from the surrounding environment, were achieved. In the second, (Oiwa 

et al., 2017) applied SVM algorithm to vibration signals from sensors installed on a 

wooden brace inside a wooden house (Timber Health Monitoring) to track the degradation 

of wood, assess and localize damage, then compare results to that of k-Nearest Neighbors 

algorithm. SVM was found more accurate and gave more precise results than the K-NN 

algorithm for this kind of application. Two main other applications consisted of calculating 

tangential displacements of the Iron Gate two dams between Serbia and Romania using the 

downstream height, upstream height, their lags, and the lag of the output itself for next 

iterations (Ranković et al., 2014). This was intended to predict radial displacements (Rad-

Disp) and uplift pressure (Cheng and Zheng, 2013). Also, an evaluation of the correct 

position of piers installed in the Humboldt bay middle channel California bridge as 

illustrated (in Bulut et al., 2005). The various SVM applications are summarized in Table 

2.4. 
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Table 2.4: Summary of the Different SVM Applications in SHM. 

Ref. Structure Input Algorithm Output 

Chongchong et al., 

2011 
Hangzhou Bridge Strain vibration, Distortion, and Cable tension SVM + UL Bridge structural damage degree 

Li et al., 2017 
NYC, Flushing 149th 

Bridge 
Impact Echo (IE) signal collection SVM Damage classification of the deck 

Alamdari et al., 2016 Sydney Harbour Bridge Force, Acceleration, Time Histories SVM Crack detection 

Li et al., 2018 Steel crane Mode curvature change 
SVM and Radial 

Basis Function 
Damage degree identification 

Oiwa et al., 2017 Wooden House Vibration signals applied to a wooden brace 
SVM, k-NN, and 

PCA 

Degradation tracking, damage 

detection, and localization 

Rankovic et al., 2014 

Iron Gate 2 

Serbia/Romania (Earth fill 

+ Gravity Arch) Dam  

H_up, H_dn, lag (H_up), lag (H_dn), OL SVM Tan_Disp 

Cheng and Zheng, 2013 Gravity Dam H_up, T_air, T_conc, Precip SVM Rad_Disp, Uplift pressure 

Jimenez et al., 2019 

Wind Turbine 

Guided ultrasonic waves, Guided Electrical 

signal simulating the effect of power, pitch 

angle, rotational speed, and wind speed 

DT, DA, SVM, K-

NN, EC, AR, PCA/ 

NLARE, HNLPCA 

Single-frequency and multi-frequency 

modes Ice thickness detection on 

blades 

Wind Turbine 

Guided Electrical signal simulating the effect of 

power, pitch angle, rotational speed, and wind 

speed 

ESD, kNN, LSVM, 

LDA, DT, AR, 

PCA / NCA 

Dirt and mud detection on blades 

Regan et al., 2016 Wind Turbine Acoustic Based Signals SVM, LR 
Blades Damage prediction based on 

RMS, RSSQ, SD, Variance 

(Zhang, Li, and Zhou, 

2018) 

Ocean University of china 

data Processing 

Datastream coming from measured vibration 

data of the offshore turbines for data processing 

SVM, Data 

clustering, Sym8 

wavelet 

Time-domain Feature SVM Classifier 

Test, Frequency-domain Feature SVM 

Classifier Test to detect the Global 

Damage prediction (Hole WT) 
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2.4.3 Other Algorithms 

Table 2.5 lists various algorithm applications in SHM. The Principal Component Analysis 

(PCA) algorithm was used for DD purposes in BHM, for instance in Japan’s Hayakawa 

Truss Bridge (Figure 2.8), where data acquired from sensors installed on the bridge were 

deployed in the PCA algorithm combined with an Auto-Regressive (AR) model to detect 

damage (Unno et al., 2019). Another application of this algorithm was in Taiwan’s 

prestressed concrete Hanxi bridge, where data from single-channel deflection signals were 

used to detect deflection of concrete, shrinkage, and creep strains and prestress loss. 

 

Figure 2.8: 3D Model of the Hayakawa Bridge, Japan. 

One application of the Tree-structured Gaussian Process (TGP) algorithm was during the 

RM stage of BHM, where essential features related to the Tamar bridge in the UK were 

extracted, including its natural frequency, traffic loading applied to the bridge, wind 

direction and speed. Those features were introduced to the TGP algorithm to study the 

effects of wind conditions on the behavior of the main structural elements of the bridge. A 

second application was in Switzerland’s Z24 Bridge, where modal parameters, air, and soil 

temperature, and soil humidity data were used to assess several parameters such as the 

settlement of the pier, landslide prediction, concrete spalling, concrete hinge failure, anchor 

head failure and the tendons rupture (Worden and Cross, 2018). 
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Table 2.5: Other ML Algorithms. 

Ref. Structure Input Algorithm Output 

Unno et al., 2019 
Hayakawa Bridge (Hakone Tozan 

Railway), Japan 

Vibration signals from sensors installed 

into the bridges 
AR, PCA Truss structures damage detection  

Worden and Cross. 2018 

Bridge Z24, Switzerland 
Modal parameters, air temperature, soil 

temperature, humidity  
TGP 

Pier settlement, Landslide, Concrete 

Spalling, Concrete hinge failure, Anchor 

head failure, Tendons rupture 

Bridge Tamar, UK 

The natural frequency of the bridge, 

Traffic Loading, Wind direction and 

speed 

TGP 
Switching of the behavior due to 

variation of wind conditions  

Rafiei and Adeli, 2018 
A prototype of a 38-story RC 

building structure  

Ambient Vibration Response of the 

Structure collected by sensors 

Deep 

Boltzmann 

Machine 

Condition assessment, Structural Health 

Index  

Cha and Buyukozturk, 

2014 

Laboratory 3-dimensional steel 

structure 
Modal Strain Energy HMOO 

Location and extent of induced multiple 

minor damages 

Diez et al., 2016 Sydney Harbour, Australia 
Vibration Signals of passing vehicles in 

joints 

K-means 

clustering  
Damaged Joints Detection and location 

Salazar et al., 2017 Arch Dam, La Baells, Spain H_up, T_amb, OL BRT Rad_Disp 

Kang et al. 2017, and 2019 Gravity Dam, Fengman, China Ux, T_amb, ∆w ELM Rad_Disp 

Barahona et al., 2017 Wind Turbine 
SCADA Vibration signals got from 

sensors installed on the WT 
K-NN 

Damage detection through the 

classification of WT operating regimes 

Catbas and Malekzadeh, 

2016 

Sunrise Movable Bridge in Ft. 

Lauderdale Florida, USA 

Measured vibrations from Gearbox, 

rack, and pinion and Motor, Acoustic 

signals measured by microphones in the 

gearbox 

CCA, RRA 

Damage scenarios detection caused by 

leakage of enough oil in gearbox, 

 Bolt removal from rack and pinion 

Ye et al., 2018 
Prestressed Concrete Hanxi, 

Taiwan 
Single Channel Deflection Signal EEMD, PCA 

The deflection of the girder: Concrete 

Shrinkage, Creep and Prestress loss  
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A methodology to detect local and global health conditions of structural systems using 

ambient vibration response of structures collected by installed sensors was proposed 

(Rafiei and Adeli, 2018). Unsupervised deep Boltzmann machine (DBM) was combined 

with numerical methods such as wavelet and Fast Fourier transform to extract features from 

the frequency domain of the recorded signals and create a classification index for the local 

and global health of the structure using a probability density function. The algorithm was 

validated through a verification test case using actual experimental data obtained on a 1:20 

scaled residential 42-story concrete building in Hong- Kong (Figure 2.9).  

 

Figure 2.9: a) 3D model of the Hong-Kong 42 story High-rise Building. b) Scaled 

Prototype of the Substructures and Location of Sensors along with the Height of the 

Building. 

A Hybrid Multi-Objective Optimization (HMOO) algorithm was proposed to detect 

damage by solving the inverse problem of limiting the change of modified modal strain 

energy in structural elements (Cha and Buyukozturk, 2014). A scaled model of the building 

was designed and then numerically modeled by Finite Element Analysis to assess the 

performance of the algorithm. The approach was compared to other traditional methods 
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using a single-objective Genetic Algorithm (GA). HMOO achieved better performance in 

detecting multiple minor damages, which had little effect on changing the modal properties 

of the structure. Moreover, the proposed method demonstrated the ability to mitigate 

difficulties of measuring rotational components of each mode shape using incomplete 

mode shapes that incorporated only global translational components.  

The K-means clustering algorithm was also applied to detect and localize damage in joints 

of the Sydney Harbor Bridge, Australia (Diez et al., 2016). Moreover, Bayesian Networks 

(BN) were deployed to rate the condition and structural reliability of the Albert railway 

bridge in Brisbane, Australia [46]. Another approach (Salazar et al., 2017) used Boosted 

Regression Trees BRT combined with a 100-m finite element numerical model to detect 

anomalies in a dam (Rad_Disp) (Figure 2.10).  

 

Figure 2.10: a) A disposition of the Installed Sensors in a Dam. b) Flow Diagram of 

DM Data Analysis. 

This algorithm was effective compared to casual (only considering external variables, e.g., 

reservoir level) and non-casual models (including both internal and lagged variables as 

predictors). However, Kang et al., 2017 and  2019) compared four sets of algorithms, 

namely BPNNs, Multiple Linear Regression (MLR), Step Wise Multiple Regression 

(SWMR) and Extreme Learning Machine (ELM) applied on a dataset obtained on the 

Fengman Dam in China and found that ELM was the most accurate algorithm. A technique 

called Pitch and Catch was used to detect ice thickness on blades using a combination of 
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Guided Ultrasonic Waves (GUW) and supervised ML algorithm. Several case studies of 

ice on the WTB surface have been used to test and validate the approach. NCA made the 

data needed to be well processed before running the algorithm, using four feature extraction 

methods, linear (Autoregressive (AR) and PCA) and nonlinear (nonlinear-AR exogenous 

and Hierarchical non-linear PCA), the feature selection. Twenty ML classifiers were used, 

including DT, DA, SVM, K-NN, and EC. The results were reasonably accurate and were 

verified in single frequency and multi-frequency modes (Jiménez et al., 2019). A different 

study (Jiménez et al., 2019) used the same technique with similar features to catch dirt and 

mud layers on WTB. The same supervised ML (pattern recognition) algorithm was used to 

classify signals based on the fault. Another application to detect damage on WTB was 

proposed in (Regan et al., 2016) using an acoustic method based on Linear Regression 

(LR) and SVM algorithms combined with optimal feature selection to make accurate 

decisions. A laboratory-scale wind turbine was built, having an external microphone to 

monitor blade damage while being internally ensonified by wireless speakers.  

 

Figure 2.11: Sensors for WTHM. 

To detect integral health of wind turbines, (Zhang et al., 2018) implemented a method to 

extract numeral characteristics and predict the health condition from data stream acquired 

from sensors, as illustrated in Figure 2.11. The SVM algorithm classifies the health 
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condition of the WTB online in both time and frequency domains based on a stream of data 

received from sensors installed on a WT in China. The algorithm proved the ability to 

detect online vibration and predict health conditions. Another application (Barahona et al., 

2017) proposed a method to classify the operating regimes from coarse resolution to 

Supervisory Control and Data Acquisition systems (SCADA) recorded by the turbine 

supervisory controller to finally classify damage of WT using K-NN algorithm with PCA 

to treat the data. Furthermore, a mix between nonlinear curve method and other ML 

algorithms (SVM with different kernel functions and BPNNs) has been set to detect 

scouring conditions along pipelines for thermometry-based Tunnel Health Monitoring 

(THM) (Zhao et al., 2015). The SVM model with radial basis function was found to be the 

best classifier for scour monitoring, reaching 99.9% and 98.9% for accuracy for training 

and testing sets, respectively. Other references, such as (Catbas and Malekzadeh, 2016), 

measured the vibration of the gearbox, rack and pinion, and motor to detect damage in a 

movable bridge. Moreover, Ye et al. (2018) used a single-channel deflection signal for a 

prestressed concrete bridge employing PCA and Ensemble Empirical Modal 

Decomposition (EEMD) to detect the deflection of the girder, concrete shrinkage, creep, 

and prestress loss. Other ML algorithms and their corresponding uses are summarized in 

Table 2.5.  

2.5 Analysis and Discussion 

Tables 2.1-2.4 present a summary of different applications of ML and DL algorithms in 

the field of SHM. Based on the comprehensive review provided above, different 

applications, their advantages, and drawbacks, along with knowledge gaps research needs 

of the different algorithms of ML in SHM, have been identified and summarized. 

PCA was primarily used to reduce the dimensions of data, which helps to reduce 

computational cost and to obtain higher accuracy in most cases. However, the problem of 

calculation time remains a drawback. PCA was used in (Datteo et al., 2017) to model the 

vibration response of a stand in the Giuseppe-Meazza stadium, and Figure 2.12 displays 

an outline of the installed sensors. The aim was to illustrate the state of the structure in 2D 

or 3D space principal directions and to interpret how this data processing considers the 

different effects of operational and environmental conditions. The results showed good 
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agreement with actual temperature and humidity values, and so is a good simulation for the 

behavior of the structure during major events like concerts and football matches.  

 

Figure 2.12: Sensors Installed in Giuseppe Mazzei Stadium, Italy. 

NNs can work with so-called “incomplete knowledge,” where it can produce output even 

with incomplete information after successful training. NNs perform very well with 

repetitive events, so it can learn and make decisions based on similar tasks already done 

(supervised learning). Another critical point is that NNs are tolerant to a certain point if 

one or more cells of the NN is corrupted, but this will not prevent it from having an output. 

Most applications in the open literature were in the field of DHM, because of the simplicity 

and accuracy of NN compared to traditional statistical and heuristic models. Despite their 

great success in some areas of research, NNs are now outdated in SHM applications. More 

advanced ML algorithms are being implemented to achieve a balance between the 

performance of the network and its computational time. 

BPNNs can be easily distracted in the case of noisy data and can lead to erroneous results, 

including overfitting and drastic deterioration of the classification or regression task. 

However, BPNNs performed very well in bridge and building health monitoring, as 

mentioned in Section 4.1. One of the most significant advantages of BPNN is that it 

simplifies the network structure by removing the unnecessary weighted links that do not 

have a valuable effect on the trained network.  
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More recently, CNNs have proved their great success with DL tasks and especially 

computer vision-based applications. CNNs outperformed traditional neural networks on 

conventional image recognition, classification, and segmentation tasks. Another critical 

parameter of CNNs in image recognition, compared to conventional image processing 

techniques and other artificial neural networks, is that the features of the images are 

automatically extracted and do not require manual handling. Furthermore, CNNs are very 

efficient in pre-training tasks and can reduce the computational time and then save memory 

since the network does not have to be trained each time from scratch. Only the classifier 

must be trained based on the provided labels. 

CNNs were first applied in SHM problems about five years ago. The primary application 

was aimed at detecting cracks as the first indicator of structural damage in sidewalks, 

asphalt pavements, concrete, and steel structures. Several sub-models employing CNNs are 

rapidly evolving, including Inception V2 and V3, ResNet 50 and 100, and many others. 

However, these kinds of networks need powerful computational configuration features 

(GPU) and massive data for training; otherwise, the network will overfit and lead to 

erroneous results. 

SVM proved its effectiveness in binary classifications, training, building, and regression 

tasks. For instance, the SVM algorithm has one crucial feature called “L2 Regularization,”, 

which is characterized by superior generalization capability. Another characteristic of 

SVM is that it performs very well in non-linear data from different sensors installed on 

structures. The processing of data has presented an obstacle for other kinds of neural 

networks, especially when there is a specific change in the data. On the contrary, SVM 

showed excellent stability since such change does not affect the hyperplane. However, the 

use of the SVM algorithm can be challenging since the filter, or the kernel needs to be 

appropriately chosen to handle non-linear data, and this can lead to generating too many 

support vectors, which will lead to more calculation time. Moreover, the data obtained from 

sensors need first to be scaled manually, which reduces the time to obtain classification 

and regression results effectively. SVM has been attributed to almost every kind of 

structure given its high accuracy when dealing with the problem of having a clear margin 
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of separation between classes (safe structure and damaged one), but its application is still 

dependent on the computation time, which is one of the most critical factors in AI tasks.  

Other algorithms like TGP, HMOO, K-NN, K-means clustering, and ELM were proposed 

in 4.6. Those algorithms were used in several applications of SHM but did not achieve the 

popularity of NNs and SVM. For example, ELM was first proposed by in (Huang et al., 

2004, 2006, 2007, 2011) as a tool that is faster in the training phase, which may result in 

better interpolation but did not necessarily produce more precise and accurate results. For 

ML problems, more importance is assigned to the accuracy of the algorithm. Thus, ELM 

was not as credible in SHM applications.  

In the present critical review, such methods have been divided into two main categories, 

namely vibration-based and image-based algorithms. The strengths and weaknesses of 

those algorithms were investigated and critically discussed. It has been found that more 

dedicated studies need to be performed concerning the following aspects: 

Vibration-based algorithms need to concentrate more on wind-induced vibrations, 

especially for high-rise buildings, bridges, and towers. Moreover, other sophisticated 

algorithms can be applied in SHM of civil engineering structures since they have proved 

their applicability and high prediction accuracy in other fields, such as mechanical and 

aerospace engineering. These include Naïve Bayes (NB) classifier, Self-Organizing Maps 

(SOM) and k-means clustering (Nick et al., 2015). However, the main issue with the 

applicability of these algorithms is the accuracy of the selection of the structure concerning 

the number of layers and the combined algorithms with those classifiers. 

For image recognition tasks using CNNs, more research is needed to maintain a robust 

algorithm with high accuracy using small datasets and a smaller number of convolutional 

blocks that can affect the computation time and need for high computational resources. 

Furthermore, this algorithm should take care of the different distortions that can happen 

because of lighting conditions, shooting metric distance, angle of shooting, etc.  

Most algorithms that are available in the open literature are supervised learning algorithms 

that need to be labeled manually. There is a need to implement unsupervised learning for 
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monitoring tasks using clustering to broaden the scope of applications of CNNs. Of the 

existing applications, about 95% have limited detection algorithms on the shallow scale of 

the distribution of cracks dealing with crack distribution, width, length, spalling, scaling, 

and efflorescence. More advanced studies go beyond that scope to determine whether the 

reinforcement is exposed, the steel rebars are corroded, etc. However, in order to make 

algorithms more robust and, therefore, more appealing to the industry, researchers need to 

relate these concepts not only to the diagnosis level but also to the damage mechanisms 

within concrete. For instance, several chemical mechanisms can occur underneath the 

concrete surface, while the exterior surface may appear integral and free of cracks and 

damage. Accordingly, further research is needed to cover the following aspects: 

Relating crack initiation to concrete mixture design, curing conditions, mechanical and 

environmental conditions of the structure, such as the chemistry of the pore solution, 

mechanical loading, seismicity of the area, temperature, humidity, etc. Some phenomena 

that are dependent on those conditions include carbonation of the concrete cover, corrosion 

of steel reinforcement, freeze-thaw damage, sulfate attack, shrinkage strains and cracking, 

etc. While this is a significant undertaking, it could be done by combining available 

algorithms with experimental data of techniques such as infrared thermography, radar, 

impact-echo, and other ultrasonic techniques, half-cell potential and polarization scanning, 

etc. (Omar et al., 2018). Some applications have related chemical, physical, and 

mechanical testing conditions to associated damage. A proof-of-concept evaluation of 

using CNNs was performed (Sanchez and Terra, 2019). The study aimed to identify 

damage features in images of concrete samples at a microscopic scale. This was based on 

a management protocol developed by Bérubé et al. (2005). Improved guidelines have then 

been proposed (in Sanchez et al., 2016,   2017, and  2018)  to optimize testing protocols 

and models and explore numerous distress processes in concrete, such as Alkali-Aggregate 

Reaction (AAR), Delayed Ettringite Formation (DEF), and cyclic Freezing and Thawing 

(FT). The developed approach was based on three phases. The first succeeded to predict 

seven different Damage Rating Indices (DRI) features, but with an average accuracy of 

only 64%, due to the limited number of the microscopic image dataset. The second aimed 

to use the same explicit DRI formula that an expert petrographer would apply based on 

crack counts. The third was aimed to use the refined ML algorithm for assessing other 
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damage mechanisms, such as external and internal sulfate attack, FT damage, and steel 

corrosion, to generate a comprehensive protocol that could be used to assess critical aging 

infrastructure. Ongoing research is being carried out to improve the accuracy of phase 1 by 

conducting more experiments and then providing additional training data. Phase 2 was still 

being processed. Phase 3 did not start yet, till phase 2 has been successfully implemented 

for AAR cases.  

Relating the cause of cracks to structural conditions, for example by detecting mechanical 

loads causing the cracks, application of fracture mechanics with a possibility to predict the 

stress field around the crack (Bazant, 2019; Hillerborg et al., 1976) and then assessing the 

remaining stresses that the structural element could resist in the short and long-term. This 

could be broadened by empowering the algorithm to propose solutions for the diagnosed 

problems based on available resources, such as the knowledge of experts, international 

codes, etc. Another evolving research item in this field is real-time concrete crack 

detection, which needs more consideration and more considerable efforts to transfer images 

to video rendering that could efficiently detect cracks on time. 

2.6 Conclusions 

There has been a rapid increase in the volume of research on applications of ML algorithms 

in the field of SHM. Such studies explore the essential benefits of ML, enhance its 

applicability and accuracy, and strive to reduce the associated computational effort. The 

application of ML algorithms to detect, assess, and possibly repair and rehabilitate damage 

in civil engineering structures is garnering increasing attention. We stand at the brink of a 

technological revolution where artificial intelligence could dominate what we do in SHM 

and the management of aging civil infrastructure assets. In this chapter, the leading 

techniques and algorithms that have been deployed for this purpose in the open literature 

have been critically surveyed, discussed, and analyzed. Detailed tables have been made to 

summarize the state-of-art and provide the reader with convenient access to the volume of 

work that has been conducted in this domain. The advantages and limitations of these 

techniques have been identified, and best practice recommendations for their use have been 

formulated. Knowledge gaps and future research needed have been outlined. This critical 
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review should better position engineers for decision making regarding the use of ML and 

DL algorithms in the domain of SHM. 
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Chapter 3  

3 Classification and Quantification of Cracks in Concrete 
Structures using 2D CNN Image-Based Techniques 

Visual inspection has been the most widely used technique for monitoring concrete 

structures in service. Inspectors visually evaluate defects based on experience, skill, and 

engineering judgment. However, this process is subjective, laborious, time-consuming, and 

hampered by demanding access to numerous parts of complex structures. Accordingly, the 

present study proposes a nearly automated inspection model based on image processing 

and DL for detecting defects in typically inaccessible areas of concrete structures. The type 

of structural damage and its severity are identified based on the allowed range of concrete 

crack width for different structures, including buildings and bridges, based on different 

international standards and codes. The proposed method can deploy unmanned aerial 

vehicle image acquisition to offer a nearly automated inspection platform for the colossal 

backlog of aging concrete structures.  

3.1 Introduction 

A colossal backlog of aging civil infrastructure assets that need an inspection, repair, and 

rehabilitation has been generated in many countries around the world. For instance, 40% 

of the 570,000 bridges in the USA were classified as deficient, requiring rehabilitation or 

replacement according to the FWHA criteria, with an estimated cost of 50 billion dollars 

(Nowak et al., 2012). Civil structures and infrastructures such as bridges, tunnels, 

buildings, dams, and roads are prone to damage due to various mechanisms related to 

mechanical loading, chemical processes, and environmental actions (e.g., Hong et al., 

2000). Hence, numerous structural SHM techniques have been proposed for detecting, 

locating, and monitoring such damage.  

For instance, a study used embedded piezoceramic transducers for damage detection of a 

6.1 m long reinforced concrete bridge bent cap (Song et al., 2007). Their results showed 

that using piezoceramic transducers along with a damage index based on wavelet packet 

analysis was useful in identifying the occurrence and severity of cracks. In another 

approach, the dynamic properties of an elevated water reservoir were monitored via an 
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optical biaxial accelerometer attached to the structure (Antunes et al., 2012). Their results 

showed that the dynamic properties of the high-water reservoir in the longitudinal and 

transverse directions could be determined using such an accelerometer. Furthermore, 

another study proposed a system consisting of a mobile robot and a crack detection system 

for inspecting and measuring cracks in concrete structures (Yu et al., 2007). The resulting 

data was considered objective and could be used in evaluating safety. (Akbar et al., 2019) 

investigated an unmanned aerial vehicle (UAV) based autonomous SHM system. In their 

study, images of the structural site captured by the UAV were stitched together to form a 

complete view of the structure using a speeded-up robust (SURF) based feature detection 

algorithm. As defined by (Koch et al., 2015), Image stitching is a standard method to 

combine and visualize a collection of images. Another computer vision-based defect 

detection and condition assessment tool for civil infrastructure has also been proposed in 

recent years. In order to increase the level of automation on concrete infrastructure 

inspection using UAV, a more contemporary image processing tool in the field of image 

pattern recognition called CNN has received considerable attention. CNN is a powerful 

image processing tool that uses DL to deal with three main tasks: (a) object classification, 

which classifies the type of the object, (b) object detection, which determines the location 

of the object using a rectangular bounding box, and (c) image segmentation, which divides 

the image into groups of pixels according to a specific pattern (Simonyan et al., 2014; Pal 

et al., 1993; Simonyan et al., 2014). For example, (Kim et al., 2019) presented a 

methodology for identifying concrete cracks using F-CNN in a more challenging task with 

the presence of cracks and crack like noise patterns. Their binary classification of cracks 

and intact surfaces recorded an accuracy of 47%.  

However, few studies have focused their scope into identifying the structural damage 

causes and degree of severity through DL image-based techniques. For instance, (Gao and 

Mosalam, 2018) presented a simplified version of ImageNet for structural engineering, 

named Structural ImageNet, with four baseline recognition tasks: component type 

identification, spalling condition check, damage level evaluation, and damage type 

determination. They have classified damage and predicted its degree based on cracks in the 

structural-level images. They designed two experiments based on two strategies to find the 

relative optimal model parameters. Their results showed that the testing accuracy was 77% 
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and 57.7% for the damage level and damage type, respectively, for the first classifier, and 

89.7%, and 68.8% for the second one. This relatively low accuracy was attributed to 

overfitting problems. (Ye et al., 2019) proposed a fully convolutional neural network 

(FCN) named Ci-Net for structural crack identification. Crack images from an indoor 

concrete beam test were adopted for validation of its structural crack recognition capacity. 

They reached an accuracy of 93.6%. (Xu et al., 2019) proposed a modified faster region‐

based convolutional neural network (Faster R‐CNN) for multitype seismic damage 

identification and localization (i.e., concrete cracking, concrete spalling, rebar exposure, 

and rebar buckling) of damaged reinforced concrete columns from Image. Rectangular 

bounding boxes were obtained to localize multitype structural damages along with the 

corresponding category labels and classification probabilities. Their test results showed 

that their trained network could automatically identify and localize multitype seismic 

damages with an average accuracy of 80%.  

The various studies noted above-identified structural damage of reinforced concrete 

members based on the frequent use of DL based models, which consists of classifying the 

damage based on a dataset of images with the specified damage class. However, as reported 

in each study, there was always a margin of error and a lack of accuracy in classifying the 

type of structural damage acting upon the concrete surface and predicting its severity. 

Furthermore, labeling a dataset of images according to its damage form or pattern to predict 

the damage type and its level is a laborious and time-consuming task. This approach 

heavily relies on engineering judgment and is thus associated with high levels of 

subjectivity. In the current study, a novel technique to identify the kind of crack based on 

its orientation is proposed. This feature helps to determine the cause and severity of the 

damage.  

Another knowledge gap in the existing literature is that there is a dearth of studies that 

explored rational crack quantification. For instance, (Beckman et al., 2019) proposed an 

(F-RCNN) DL based automated volumetric damage quantification using a depth camera 

(3D scanner) only to quantify concrete spalling in terms of volume. Therefore, in the 

present study, precise quantification of crack features in terms of width, length, and angle 

of orientation is proposed based on mathematical and geometric operations to characterize 
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both structural and durability related damage of structural members and to assess its degree 

of severity in short computing time. Thus, the novelty of the present study consists of the 

following aspects: i) Developing a DL Image-based technique with high accuracy and less 

computing time; ii) Using the DL to propose a model to classify crack types in concrete 

based on their orientation in an automated way since previous studies used manually 

labeling techniques to identify the kind of damage, which is subjective, time-consuming, 

and laborious; iii) Quantifying concrete cracks in terms of length, width, and angle of 

orientation using a combination of DL and improved Otsu Image Processing Technique 

(IPTs); and iv) Identifying the severity of structural damage based on the allowed range of 

concrete crack widths for different structures, including buildings and bridges as per 

guidance from international standards and design codes.  

This chapter is divided into three sections. The first illustrates the data manipulation. The 

second explains the input, architecture, and output of the DL classifier. The third deals with 

image processing and segmentation techniques used for the calculation of crack features, 

including length, width, and angle of orientation. The fourth section concerns the 

presentation of the results and their validation via available experimental results and on-

site real concrete crack measurements.  

3.1.1 Research Significance 

Previous research generally reported DL classification of civil structures and 

infrastructures in qualitative terms, without calculating the important damage features of 

cracks in terms of width, length, and angle of orientation. In the present study, a modified 

Otsu image processing technique was combined with a DL classifier to localize, classify, 

and quantify cracks in cracked cement-based structural elements. Moreover, the nature of 

structural damage acting upon the structural member (flexural, shear, combined effect, 

corrosion of rebars) and its degree of severity was investigated using the allowed intervals 

of crack width limitations based on conventional worldwide building codes. The results 

should stimulate a critical look into the state-of-the-art of Image-based DL structural 

damage quantification and prediction protocols and highlight the need for a thorough 

analysis that can assist engineers in conducting rational concrete structures inspection. 
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3.2 Data Manipulation 

3.2.1 Data Preparation 

Images were retrieved from an open dataset available at (Özgenel, 2019), an annotated 

dataset available for training and testing of artificial intelligence-based crack detection and 

localization algorithms for concrete. The dataset is divided into cracked and safe images 

for image classification. It includes 20,000 cracked images and another 20,000 for safe 

concrete structures, at a resolution of 227x227 pixels with RGB channels. The dataset was 

generated from 458 high-resolution images (4032x3024 pixels) using the method proposed 

by (Zhang et al., 2016). The dataset is pixel-based, which means that the full concentration 

in this study is based on close images taken at a short distance from the object (between 25 

and 50 cm), presenting one single crack per Image. Other photos from various datasets in 

a pixel-level scale were provided from multiple datasets, such as SDNET2018 (Maguire et 

al., 2018), Structural ImageNet (Gao et al., 2018) and google and Baidu Images. 

3.2.2 Data Processing 

The first and foremost step to guarantee a robust classifier consists of data cleaning and 

visualization. Providing high-quality images with a variety of obstructions, including 

shadows, surface roughness, scaling, edges, holes, and background debris in the training 

set, is a crucial step to produce an accurate and realistic model. Low-quality images can 

dramatically affect the accuracy of the CNN classifier (Kannojia et al., 2018). To address 

this issue, manual selection excluding any distorted, blurry, or low-resolution images has 

been set. Moreover, no edge cracks' pictures were selected since the Image will get smaller 

as much as it passes through the network, which implies that cracks on edges have less 

chance during training to be recognized by a network than those with cracks in the middle 

of images. Also, it is not possible to identify whether such crack features are cracks or not, 

which can, therefore, lead to the training data setting false annotations. All images were 

resized to an input image of 227 × 227 pixel resolution. This is because when the network 

is trained on relatively small images, it can scan any desired feature larger than the designed 

size, but not vice-versa.  
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3.2.3 Data Labelling 

After being exposed to the CNN classifier, every Image loses its RGB channels and will 

be transformed to the grayscale level to reduce computational time since the color feature 

is not essential. The CNN classifier was trained using 10000 images, 5000 for cracked 

images, and 5000 for non-cracked images. A split of 60:20:20 for training, validation, and 

testing was applied. Hence, from those 10000 images, 2000 are for validation, 2000 for 

testing, and the rest is for training. Three sets of classification algorithms were applied.  

The first is a binary classifier that aims to detect whether the Image presents a safe structure 

(S) or a cracked one (C). The second is to differentiate between four classes of cracked 

concrete surfaces displaying 1200 images each: Vertical Left (VL), Vertical Right (VR), 

Horizontal Right (HR), and Horizontal Left (HL). The third classifier encompasses the 

classes together in a single classifier, presenting five classes in total: i) safe structure, ii) 

VL, iii) VR, iv) HR, and finally v) HL cracks, with 1200 images for each class. Figure 3.1 

explains how the labeling of the images was done. Every Image was composed of four 

parts. Based on the point of initiation of the crack in the picture, the four labels VR, VL, 

HL, and HR, were attributed.  

 

Figure 3.1: Method of Labelling Images According to Their Orientation. 

Considering 𝑆𝑝 as the starting point of the crack, which is the point at which the crack 

initiates, the attribution of these labels was done as follows:  
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𝐴 = 𝑥 𝑎𝑥𝑖𝑠 𝐿𝑒𝑓𝑡 𝑈𝑝𝑝𝑒𝑟 − 𝐵𝑜𝑢𝑛𝑑 =  {(𝑥, 𝑦)|0 ≤ 𝑥 ≤
𝑛𝑐

2
 & 𝑦 = 0} , 𝐼𝑓 𝑆𝑝 ∈ 𝐴, 𝑡ℎ𝑒 𝑐𝑟𝑎𝑐𝑘 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑎𝑠 𝑉𝐿. 

 𝐵 = 𝑥 𝑎𝑥𝑖𝑠 𝑅𝑖𝑔ℎ𝑡 𝑈𝑝𝑝𝑒𝑟 − 𝐵𝑜𝑢𝑛𝑑 = {(𝑥, 𝑦)|
𝑛𝑐

2
≤ 𝑥 ≤ 𝑛𝑐 & 𝑦 = 0} , 𝐼𝑓 𝑆𝑝 ∈ 𝐵, 𝑡ℎ𝑒 𝑐𝑟𝑎𝑐𝑘 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑎𝑠 𝑉𝑅. 

𝐶 = 𝑦 𝑎𝑥𝑖𝑠 𝐿𝑒𝑓𝑡 𝑈𝑝𝑝𝑒𝑟 − 𝐵𝑜𝑢𝑛𝑑 =  {(𝑥, 𝑦)|0 ≤ 𝑦 ≤
𝑛𝑐

2
 & 𝑥 = 0} , 𝐼𝑓 𝑆𝑝 ∈ 𝐶, 𝑡ℎ𝑒 𝑐𝑟𝑎𝑐𝑘 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑎𝑠 𝐻𝐿. 

𝐷 = 𝑦 𝑎𝑥𝑖𝑠 𝐿𝑒𝑓𝑡 𝐿𝑜𝑤𝑒𝑟 − 𝐵𝑜𝑢𝑛𝑑 =  {(𝑥, 𝑦)|
𝑛𝑐

2
≤ 𝑦 ≤ 𝑛𝑐 & 𝑥 = 0} , 𝐼𝑓 𝑆𝑝 ∈ 𝐷, 𝑡ℎ𝑒 𝑐𝑟𝑎𝑐𝑘 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑎𝑠 𝐻𝑅. 

Figure 3.2 shows an example of the attribution of these four labels. The third classifier 

was used for the rest of the process. After predicting the class and determining whether the 

Image presents cracks or not, a conditional block was introduced. If the picture showed a 

safe structure, the algorithm returns a message informing the user that the structure is 

secure, and there is no need for further calculation operations. However, if the Image 

presents cracks, the tested Image will be transferred to a MATLAB script to localize the 

crack in the Image using image segmentation techniques and to determine its geometrical 

properties, including its length, width, and angle of orientation.  

 

Figure 3.2: Example of Labeled Images According to the Proposed Method. 
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3.3 CNN Classification 

The Convolutional Neural Network (CNN) architecture was designed based on a group of 

layers, including an input layer, convolutional layer, pooling layer, activation layer, and 

finally, the output layers. Other auxiliary layers like the dropout and batch normalization 

(BN) were introduced. Figure 3.3 illustrates the configuration of the classifier. The first 

layer (Input layer) receives a 227 x 227 x 1 image (a grayscale square image having 227 

rows and columns). Then the input data pass through the architecture and are reduced to 

1x1x64. The vector, including the 64 elements, traverses the (ReLU) layer. In the end, the 

Softmax layer predicts the final output based on the kind of classification. The first 

classification is binary, where prediction consists of determining whether the Image 

contains cracks or not. However, the second is multi-purpose, where the classification aims 

to predict the orientation of the crack (VR, VL, HR, or HL), while the final classifier 

encompasses all these together. Table 3.1 shows the detailed dimensions of each layer and 

operation. 

 

Figure 3.3: Overall Architecture of the CNN Classifier. 

3.3.1 Convolution layer 

Figure 3.4 shows a simple convolution operation introduced by (Goodfellow et al., 2016). 

The convolutional layer carries the central portion of the network. A convolution is a linear 

operation that deals with the multiplication of a set of weights with the input. The 

multiplication is done between an array of input data and a two-dimensional array of 

weights called filter or kernel. The size of the filter is smaller than the input data; its 
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multiplication with the input data is a dot product. Dot product or scalar-multiplication is 

an element-wise multiplication between two 2D-arrays, which is then summed, resulting 

in a single value. During the forward pass, the filter moves along the width and height of 

the Image, producing the image representation of the receptive region. This two-

dimensional representation is known as an activation map that shows the response of the 

filter at each spatial position of the Image. 

Table 3.1: Dimensions of Layers and Operations. 

Layer Height Width Depth Num of Parameters 

Input 227 227 1 - 

Conv1 227 227 32 320 

ReLU 227 227 32 0 

Conv2 225 225 32 9248 

ReLU 225 225 32 0 

Pool1 112 112 32 0 

Dropout1 112 112 32 0 

Conv3 110 110 64 18496 

ReLU 110 110 64 0 

Pool2 55 55 64 0 

Dropout2 55 55 64 0 

Flatten 1 1 193600 0 

Dense1 1 1 64 12390464 

ReLU 1 1 64 0 

Dropout3 1 1 64 0 

Dense2 1 1 2 130 

Softmax 1 1 2 0 

Total Parameters 12,418,658 

Trainable Parameters 12,418,658 
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The filter slides across the input image with a step called a stride. If L is the actual 

convolution layer, 𝑓𝐿 is the size of the filter, 𝑝𝐿 it is padding, 𝑠𝐿 its stride and c𝐿 is the 

number of filters. For an image having the size of (n𝐿−1, m𝐿−1, c𝐿−1), where n is the height 

of the Image, m the width and c the number of channels, the output of the layer would be a 

two-dimensional representation of the Image having the following size (𝑛𝐿, 𝑚𝐿, 𝑐𝐿), where 

𝑛𝐿 is computed by Equation 3.1, and 𝑚𝐿 is calculated in Equation 3.2. 

n𝐿 = 
n𝐿−1 + 2 × 𝑝𝐿 − 𝑓𝐿

𝑠𝐿
+ 1 (3.1) 

m𝐿 = 
m𝐿−1 + 2 × 𝑝𝐿 − 𝑓𝐿

𝑠𝐿
+ 1 (3.2) 

 

Figure 3.4: Convolution Operation. 

3.3.2 Pooling layer 

Figure 3.5 illustrates a simplified, pooling example. The pooling layer helps to reduce the 

spatial size of the representation, which decreases the number of iterations, computation 

size, and weights. Several options for pooling could be presented, such as the average of 

the rectangular neighborhood, L2 norm of the rectangular neighborhood, and most 

commonly max pooling, which gets the max values from the subarrays of an input array. 

In a pooling operation, for an activation map having size 𝑛 × 𝑚 × 𝑐, a pooling filter of a 
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size f and stride s would lead to a reduction in the spatial size of the output layer, following 

the two-formula listed below: 

𝑛𝑜𝑢𝑡𝑝𝑢𝑡 = 
𝑛 − 𝑓

𝑠
+ 1 

(3.3) 

𝑚𝑜𝑢𝑡𝑝𝑢𝑡 = 
𝑚 − 𝑓

𝑠
+ 1 

(3.4) 

Where the output consists of a volume of size (𝑛𝑜𝑢𝑡𝑝𝑢𝑡, 𝑚𝑜𝑢𝑡𝑝𝑢𝑡, 𝑐) with 𝑛𝑜𝑢𝑡𝑝𝑢𝑡 is 

computed by Equation 3.3, and 𝑚𝑜𝑢𝑡𝑝𝑢𝑡 is calculated in Equation 3.4. 

 

Figure 3.5: Pooling Operation. 

3.3.3 Non-Linearity or Activation layers 

A non-linear ReLU function was used as an activation function, as shown in Equation 3.5 

below: 

𝑓(𝑥) = max(0, 𝑥)   (3.5) 

3.3.4 Dropout layers 

Dropout is one of the techniques used to tackle the problem of overfitting for neural 

networks and to generate much more efficient training examples by reducing the 

coadaptation between neurons. Overfitting is determined whenever the training loss is way 

smaller than the testing loss. The core idea behind dropout is to disconnect the connections 
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between neurons randomly, having a fixed dropout rate, as presented in Figure 3.6. A 

dropout coefficient of 0.5 was used in the present study. 

 

Figure 3.6: Dropout Operation. 

3.3.5 Batch Normalization  

Figure 3.7 shows an example of the application of Batch Normalization (BN) to an 

activation x over a mini batch. BN is a technique used to improve the speed and 

performance of a neural network as well as to produce more reliable models. (Ioffe et al., 

2015) proposed BN to mitigate the problem of the internal covariate shift. During training, 

as moving forward, the parameters of the preceding layers changes, the distribution of 

inputs changes accordingly in a way that the current layer needs to be always updated and 

readjusted to the actual distributions. BN normalizes the output of the previous activation 

layer performing the subtraction of the batch mean and the division by the batch standard 

deviation. Following this shift, the weights in the next layers are no longer optimal. Thus, 

BN adds two parameters to each layer so that the normalized output will be multiplied by 

a parameter for the standard deviation and adds a mean parameter.  
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Figure 3.7: Batch Normalization Transform Applied to an Activation x Over a Mini 

Batch 

Following this method, BN allows Stochastic Gradient Descent (SGD) to deformalize the 

previous layer by modifying these two weights for each activation, rather than performing 

it to the entire weights of the network, which can disturb the network and lose its stability. 

3.3.6 Softmax Layer  

The Softmax layer is used to find the most probable occurrence of a classification, where 

the probability of a class is maximum. The softmax layer is used just before the output 

layer of CNN. It outputs a probability distribution where the sum of the output values is 

equal to one. The Softmax function is given by 𝑃(𝑦(𝑖) = 𝑛|𝑥(𝑖);𝑊) and is computed by 

Equation 3.6, where I varies from 1 to m: number of training examples, j is the class out 

of n classes, W is the adopted weights, and finally 𝑊𝑛
𝑇𝑥(𝑖) serves as the layer input. The 

function returns the probability per each class of the input.  

𝑃(𝑦(𝑖) = 𝑛|𝑥(𝑖);𝑊) =

[
 
 
 
 
𝑃(𝑦(𝑖) = 1|𝑥(𝑖);𝑊)

𝑃(𝑦(𝑖) = 2|𝑥(𝑖);𝑊)
...

𝑃(𝑦(𝑖) = 𝑛|𝑥(𝑖);𝑊)]
 
 
 
 

=
1

∑ 𝑒.
𝑊𝑗

𝑇𝑥(𝑖)𝑛
𝑗=1

×

[
 
 
 
 
 𝑒.

𝑊1
𝑇𝑥(𝑖)

𝑒.
𝑊2

𝑇𝑥(𝑖)

..

.

𝑒.
𝑊𝑛

𝑇𝑥(𝑖)
]
 
 
 
 
 

 (3.6) 
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The adopted n (number of classes) in this study is equal to five (n = 5), presenting the safe, 

VR, VL, HR, and HL class. While the number of training examples is m = 1200, those 

parameters were selected using a trial and error process. The start used 5000 images for 

each of the five classes. However, it was observed that the accuracy of classification was 

still high (above 95%), even for 1200 images. Thus, to reduce the computation time, m was 

adopted to be 1200. 

3.3.7 CNN Classifier Considerations  

The same CNN architecture and hyperparameters (learning rate, batch-size, optimization 

method, loss, number of layers, size of the stride for the pooling operation, size of the filter 

for the convolution operation, etc.) for the three models were adopted. The only difference 

is in the number of data available for each class. For example, 5000 images per class were 

provided for the first classifier; however, for the second and third classifiers, data was less 

and needed more labeling effort depending on its orientation.  

To seek better performance, data shuffling was applied. Data shuffling is a procedure that 

serves to reduce the variance of a statistical distribution and prevent overfitting by 

redistributing the data across its classes or targets. The adopted learning rate is 𝑙𝑟 =

0.0001. It is defined as a hyperparameter that controls the extent of change of a specific 

model in response to the estimated error each time the weights of the model are updated. 

The modal performance is highly dependent on choosing the 𝑙𝑟. If its value is too small, a 

longer training process is estimated. Otherwise, the model may run too fast, affecting the 

CNNs performance and leading to an unstable training process. 

The selected momentum was Nesterov, and its value is equal to 𝑚 = 0.9. Nesterov 

momentum or Nesterov Accelerated Gradient (NAG) is a slight deformation of the 

standard gradient descent. It is used to determine in which direction the loss is low, which 

helps to speed up the training and significantly improves convergence. 

The loss function is defined as a function that outputs the values of one or more variables 

of the network onto a real number that indicates how well those parameters can fulfill the 

task that the CNN is intended to do. For binary classification (1st classifier), binary cross-
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entropy was used, while Categorical cross-entropy was used for the two other classifiers 

(2nd and 3rd classifiers).  

The number of filters was set to 32 for the first convolutional block having a 3x3 size, the 

stride was 1, and padding was unchanged. On the other hand, the second convolutional 

block was made of 64 filters with a 3x3 size and the same stride. In a convolution operation, 

a stride denotes the number of steps in which the filter is moved along the activation map; 

its default value is 1. Figure 3.4 presents a stride of 2 for the corresponding convolution 

operation. In other words, the padding is a technique to conserve the same dimension of 

output as input after the convolutional operation. It consists of adding zeros to the input 

matrix (activation map) in a symmetric way. 

The pooling layer had a stride equal to 2, for both first and second blocks. The batch size 

was chosen to be 32, and 100 epochs were selected. The time used to train this network 

was two to three hours for a typical CPU processor and a couple of minutes on GPU. All 

the described tasks in this study are performed on Google Colab (Carneiro et al., 2018). 

3.4 Image Segmentation 

Image segmentation is the process of dividing a digital image into multiple segments or 

pixels. Its main goal is to simplify the representation of the Image and make it easier by 

locating objects and boundaries such as lines and curves in images. The output of image 

segmentation is a group of segments that consistently cover the entire Image. Various 

algorithms have been applied for image segmentation (Yuheng et al., 2017). These include 

methods of thresholding, clustering, motion, and interactive segmentation, compression-

based methods, histogram-based methods, edge detection, dual clustering, region growing, 

partial equation-based methods, variational methods, graph partitioning methods, 

watershed transformation model-based segmentation, multi-scale segmentation, semi-

automatic segmentation, and trainable segmentation. 

After testing a new image using the third CNN classifier, one of the five categories of Safe, 

VR, VL, HR, or HL would be generated. A conditional block is then located at the end of 

the CNN classifier, telling the user that the structure is safe and does not need rehabilitation 
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for the current time. However, if one of the other classes is generated, all subsequent parts 

(Sections 3.4, 3.5 and, 3.6) will be considered. Edge detection and thresholding are the 

segmentation techniques used herein to process the tested Image.  

3.4.1 Image Improvement 

Before applying thresholding, the tested Image needs to be improved, for instance, to 

remove any background noise or illumination effects and to suppress unwanted information 

from the image data, which makes essential Image features more detectable by the 

proposed algorithm. Several factors could lead to image disturbance, including non-

uniform lighting, weather conditions, and low contrast between distress and background. 

To perform image improvement, a non-linear filter considering the mean and variance of 

local grey values was used to remove the non-uniform background intensity. Reducing the 

noise in an image can be challenging since useful details in an image could be removed. 

Thus, the choice of the filter must be precise. The non-linear filter is computed by 

Equation 3.7. 

𝑓∗ = 𝑍(𝑖, 𝑗) × [𝑓𝑜𝑟𝑔(𝑖, 𝑗) − 𝑓𝑏𝑙𝑢𝑟(𝑖, 𝑗)] + 𝑚1 (3.7) 

Where, 𝑓∗ is the frequency of the filtered Image, Z (i, j) is the local gain factor, which 

equals to 1, 𝑓𝑜𝑟𝑔(𝑖, 𝑗)  is the original frequency of the Image, 𝑓𝑏𝑙𝑢𝑟(𝑖, 𝑗)  is the frequency of 

the blurred Image, and m1 is the mean value of the original Image. The blurred Image 

presented in Equation 3.7 and computed by Equation 3.8 is obtained by convoluting a 

gaussian 9x9 low pass spatial filter with the original image, as shown below: 

𝑓𝑏𝑙𝑢𝑟(𝑖, 𝑗) = 𝑓𝑜𝑟𝑔(𝑖, 𝑗) × 𝐹−1 (𝐻(Ω𝑖, Ω𝑗)) (3.8) 

𝐻(Ω𝑖, Ω𝑗) = exp(−
𝐷2(𝛺𝑖 , 𝛺𝑗)

2 × 𝜎0
2 ) 

(3.9) 

where 𝐻(Ω𝑖, Ω𝑗) is the Gaussian Transfer Function computed in Equation 3.9 and 𝜎0 is 

the cut-off frequency. 
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3.4.2 Thresholding using Otsu’s Method  

Thresholding is a technique used for image segmentation. It consists of creating a 

histogram of the gray level values to be used for determining the peaks that exist in an 

image. Concrete cracks generally include an abrupt change in the gray level of two adjacent 

regions of variant gray levels. An adequate threshold is extracted based on the means of 

these two regions.  In this study, Otsu's method proposed by (Sun et al. 2009) and improved 

by (Hoang, 2018) was computed by Equation 3.10 to perform image segmentation. It is a 

nonparametric and unsupervised method of automatic threshold selection for picture 

segmentation. The optimal threshold was selected by the discriminant criterion, which 

helps to maximize the separability of the resultant classes in gray levels. The property of 

self-similarity is considered in this study, which can be translated by the presence of a 

single crack per Image. Otsu's concept is straight-forward. It consists of returning a single 

intensity threshold that separates pixels into two classes, foreground, and background. This 

method looks for the threshold that lowers the intra-class variance, defined as the weighted 

sum of variances for the two classes.  

𝜎𝑤
2 = 𝑤0(𝑡) × 𝜎0

2(𝑡) + 𝑤1(𝑡) × 𝜎1
2(𝑡) (3.10) 

Where 𝑤0 is computed by Equation 3.11, 𝑤1 by Equation 3.12, 𝜎0
2 and 𝜎1

2 are the 

probabilities and variances of the two classes, respectively, and t is the threshold that 

separates between the two probabilities. The class probability 𝑤0,1(t) is computed from the 

Lb bins (a histogram is made up of bins, each bin represents a specific intensity value range) 

as follows: 

𝑤0(𝑡) = ∑ 𝑝(𝑖)

𝑡−1

𝑖=0

 (11) 

𝑤1(𝑡) = ∑ 𝑝(𝑖)

𝐿−1

𝑖=𝑡

 (12) 

MATLAB offers a built-in function called "graythresh" that returns the global threshold 

from a grayscale image, which is used in this study. After enhancement, the grayscale 
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Image would be transformed into a binary one using the MATLAB built-in function 

"im2bw". 

3.4.3 Noise Removal and Image Connection 

Even after enhancement, the tested Image may still be prone to some disturbance. The 

various noise removal steps implemented in this study are outlined below. For instance, 

some gaps between cracks could persist after image enhancement. To fill such gaps, a 

technique called closing operation computed by Equation 3.13, which is a standard 

mathematical morphology operator was used, employing some morphological 

transformations such as dilation and erosion. Mathematical morphology is often used for 

processing geometrical structures based on their typology and random functions. Many 

morphological transforms are built from basic morphological operations such as dilation 

and erosion:  

𝐴. 𝐵 = (𝐴 ⊕ 𝐵) ⊖ 𝐵          (3.13) 

Where ⊕ is the dilation operator and ⊖ is erosion operator. 

After dilating the Image, some image parts would become unconnected; bwmorph a 

MATLAB command was used in this chapter to connect disconnected close parts in 

images, performing the so-called "bridge operation," which aims to connect unconnected 

pixels whose values are set to 0 and change them to 1, if they have two non-zero neighbors 

that are not connected, as in Equation 3.14. 

1 0 0
1 0 1
0 0 1

→
1 1 0
1 1 1
0 1 1

 (3.14) 

This operation was conducted until there was no change in the Image using n = inf, where 

n corresponds to the number of times the operation was applied. Despite connecting 

between the close parts in an image, some small spaces or "holes" could persist. To fill 

these holes, imfill was introduced in the binary image. After dealing with those spaces, only 

the largest object will remain, removing all small objects (isolated pixels) based on a 

specific value of pixels. After preprocessing, cracks would present some breakpoints which 
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could influence the crack localization task. The main reason for the creation of breakpoints 

is the discontinuity of the previous step caused by the changing of crack pixels into the 

background after thresholding or being removed after noise reduction. To connect between 

breakpoints, bwconcomp, a built-in MATLAB function was used. 

3.4.4 Calculating Crack Dimensions 

Before starting to calculate the dimensions of the crack (length, width, and angle of 

orientation), the tested Image is processed following the steps described in Section 3.4. 

Figure 3.8-a shows the original Image containing the crack, while Figure 3.8-b shows the 

Image converted to a binary scale passing through all steps described earlier.  

 

Figure 3.8: An Example of Image Transformation. 

3.4.4.1 Length of Crack 

To calculate the length of a crack, the first crucial step consists of determining the exact 

localization of the crack. This can be done by applying a built-in function in MATLAB 

called bwboundaries. Accordingly, the boundaries of the crack, as indicated with the 

arrows (A, B, C, and D) in Figure 3.9, would be considered so that the crack length is 

represented as the maximum distance between those boundaries. Considering 𝑑𝑖,𝑗 as the 

distance between two points i and j, 𝑑𝐴,𝐷 is the longest distance between every boundary 

point within the position of the crack. 
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Figure 3.9: Length Calculation of the Crack. 

Depending on the orientation of the crack in the Image, a comparison is made between 

each of the following distances to compute the maximum length of the crack. After 

comparing each of the following distances, 𝑑𝐴,𝐵, 𝑑𝐴,𝐶, 𝑑𝐴,𝐷, 𝑑𝐵,𝐶 and 𝑑𝐵,𝐷The length of the 

crack is supposed to be the biggest among all of those distances. All such values are 

calculated using the formula for Euclidean distance pdist2, computed in Equation 3.15, 

where the distance between two points A and B are equal to: 

𝑑𝐴,𝐵 = √(𝑥𝐵 − 𝑥𝐴)2 + (𝑦𝐵 − 𝑦𝐴)2 (3.15) 

Where 𝑥𝐴 and 𝑥𝐵 are located between 0 and the number of columns 𝑛𝑐 (width of the resized 

Image), while 𝑦𝐴 and 𝑦𝐵 are between 0 and the number of rows 𝑛𝑟 (height of the Image). 

In this study, 𝑛𝑐 = 𝑛𝑟 = 227 pixels.  

3.4.4.2 Width of Crack 

The width of a crack plays a vital role in predicting the degree of the structural damage it 

induces in a structure. The crack width is supposed to be the maximum distance between 

two points located on the crack boundaries. Figure 3.10 indicates the process of calculating 

the width of the crack. This is based on the orientation of the crack, whether vertical or 

horizontal, and the boundaries that are created in the previous step to calculate the length 

of the crack. A loop is implemented to pass through the height of the Image (if the crack is 

vertical) and its width (if the crack is horizontal). After calculating those distances, an array 
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is created to contain them. The maximum distance corresponds to the maximum width, 

which is the corresponding width of the crack. 

 

Figure 3.10: Width Calculation of the Crack. 

3.4.4.3 The angle of Crack Orientation 

The angle of orientation of the crack is defined as the angle located between the mainline 

passing through the crack that defines its length and the horizontal dashed line that starts 

from the starting point defined as 𝑆𝑝. The position of 𝑆𝑝 is determined to depend on the 

location of the crack in the Image, whether horizontal, vertical, right, or left-sided, as 

illustrated in Figure 3.11. An example calculation of the value of the crack angle is defined 

in degree and illustrated in Figure 3.12. The angle of orientation of the crack is computed 

by the formula presented in Equation 3.16. 

     𝛼 = 𝑐𝑜𝑠−1 (
𝑦𝐷 − 𝑦𝐴

𝑑𝐴,𝐷
) 

(3.16) 
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Figure 3.11: Configuration of the Angle of Orientation in the Image. 

 

Figure 3.12: Calculation of Angle of Orientation of Crack. 

3.4.5 IPTs Considerations 

The crack length (Section 3.4.4.1) and the width (Section 3.4.4.2) are expressed in pixel. 

To transform these into units of meter, the user needs to introduce the area of the selected 

surface when shooting the picture (𝐴 = 𝑎 × 𝑏 in 𝑚2). Subsequently, the algorithm makes 

the transformation respecting the Image's aspect ratio, based on Equation 3.17. 
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𝑑𝐴,𝐵 (𝑚) = 𝑑𝐴,𝐵 (𝑃𝑖𝑥𝑒𝑙𝑠) × √
𝐴

𝑛 × 𝑚
 (3.17) 

Where n is the number of columns and m is the number of rows, expressed in pixels. Figure 

3.13 explains the procedure of capturing images and defining their surface in (𝑚2). 

 

Figure 3.13: Introducing the Area of the Selected Surface. 

3.5 Mode of Failure Prediction and Damage Severity Check 

3.5.1 Prediction of Mode of Failure 

The occurrence of cracking indicates that the material has been stressed beyond its strain 

capacity. For instance, reinforced concrete is stressed through the action of external loads, 

thermal and moisture gradients, chemical reactions, and enforced deformations. The topic 

of understanding how cracking takes place, its form, the significance of its timing, and its 

triggers is complicated since such various factors may intensify or counteract their mutual 

effects. In reinforced concrete structures, cracking appears as a solitary or a pattern 

phenomenon. Each crack can be characterized by some features, including its width, 

length, direction, and size. These features help to identify the cause and severity of the 
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damage. Cracking may originate during various phases of a building's life (design, 

construction, and service phases). Even though it is not possible to conclusively attribute 

the cause of cracking based on visual observation alone, specific characteristics may be 

associated with the nature of the underlying stress.  

After predicting the orientation of a crack using the DL classifier, this information is 

processed using the Otsu IPTs to quantify the crack in terms of its length, width, and based 

on that, the angle of orientation of the crack is calculated. Table 3.2 illustrates the 

prediction of the structural type of damage based on the actual value of the angle of 

orientation. Figure 3.14 shows different types of cracks based on their orientation on a 

structural element.  

 

Figure 3.14: Causes of Crack Initiation in the Structural Elements of a Frame. 

For instance, if the distribution of cracks is parallel to the reinforcement either in a column 

or a beam, or accompanied with spalling, it is likely a durability related damage, and it is 

considered as a bond cracking or corrosion of the reinforcement. It is then noted as a crack 

of type A for columns and type B for beams. However, flexural cracks usually originate at 
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the tensile face of the member, near its mid-span, and continue into, and often beyond, the 

reinforcement.  

Table 3.2: Prediction of Mechanical Stress or Durability issues Causing Crack based 

on the Angle of Orientation. 

Structural 

element 

Crack 

Angle 

Crack 

orientation 

Proximity 

Crack creation 

causes 

Horizontal 

(Beam, Girder, 

Pier Cap) 
 

[0, 5°] 

Parallel to the 

longitudinal rebars 

Corrosion 

[30°, 50°] Near the supports (ends) Shear stress 

[50°, 75°] 

Between mid-span and  

supports 

Combined Flexural 

Shear stress 

[75°, 90°] Close to mid-span Flexural stress 

Vertical 

(Wall, Pier,  

Column) 
 

             [0, 5°] 

Parallel to the 

longitudinal rebars 

Corrosion 

   [30°, 50°] Near the supports (ends) Shear stress 

These cracks would typically be at right angles to the tensile face of the member (crack 

Type C). A salient feature of shear cracking is that cracks are invariably inclined to the 

tensile face at an angle of approximately 45° (Richardson et al., 2002). Shear cracks will 

often originate and stop within the boundary of the cracked face. A frequent location of 

shear cracking in beams is at the inner face of support, noted as crack type D. However, if 

most cracks occur in a diagonal direction for a vertical element such as a column, it is noted 

as Crack type E. But, if they form an "X" or "V" pattern, it is considered as shear-type 

damage, for instance mostly present in shear walls. In addition to the combined action of 

flexural-shear damage that may appear on the surface of a beam or any horizontal structural 
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member, between its mid-span and its supports, this type of cracking is noted as a crack of 

type F. 

3.5.2 Damage Severity Check 

Maximum values for design crack widths in prestressed and reinforced concrete members 

extracted from several design codes of practice are given in Table 3.3. Generally, 

allowable crack width varies in the interval of [0,1 mm] for the considered design codes. 

Any crack width that exceeds the specified values could compromise structural integrity. 

Although cracking in concrete structures is practically unavoidable, the limitation of its 

occurrence and extent can help to ensure structural safety and durability. Figure 3.15 

illustrates the required inputs for the algorithm, where the user is required to enter the area 

of the object being captured by the camera, the type of concrete structure (bridge, building, 

tunnel, etc.), and the structural component (column, beam,  wall, etc.). Then the algorithm 

calculates the crack features, as explained in Sections 3 and 4. Subsequently, the algorithm 

indicates the mechanical cause of the crack (e.g., shear, flexural, corrosion, or combined 

action) and its degree of damage based on Tables 3.2 and 3.3, depending on the provided 

structural element and type of concrete structure.  

For instance, if the structure is a building, and the surface of the structural element being 

processed is a beam (horizontal element), then information about the kind of structural 

damage (flexural, shear, combination, corrosion) and the degree of severity based on the 

provided building codes (Japanese Society of Civil Engineers (JSCE), American Concrete 

Institute (ACI), Canadian Standards Association (CSA), Eurocode 2, New Zealand (NZ), 

and Australian (AS) codes are delivered.  To validate the proposed algorithm and assess its 

accuracy, several images were tested. Images were taken at Western University (Structural 

Lab, Reinforced Concrete Frame, Spencer Engineering Building, etc.) under various 

lighting conditions on a pixel-level scale.  
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Table 3.3: Allowable range of concrete crack width based on current design 

codes with regards to exposure conditions and loading category for reinforced 

and prestressed concrete structures. 
 

Structural 

Type 
Region Country 

Conventional 

codes 

Allowable Crack 

Width (𝒎𝒎) 

Buildings 

North 

America 

USA ACI-224R (Table 4.1) 0.1 - 0.41 

Canada CSA A23.3 (A 8.1.4.2) No specification 

Asia 

Japan JSCE (Table 8.3.2) 0.1 – 0.4 

Australia 
AS.3600 (Table 

8.6.2.2) 
0.2 - 0.4 

New Zealand 
NZS.3101 (Table 

C2.1) 
0 - 0.5 

Europe EU nations EC2 (Table 7.1 N) 0.2 - 0.4 

Bridges 

North 

America 

USA 

AASHTO 

(A5.5, A5.6, and A5.7) 

0.22 – 0.43 

Canada 

CSA S6:19 

(Clause 8.12.3.1 

Table 8.6) 

0.15 – 0.35 

Asia 

Japan JSCE 0.1 – 0.4 

Australia 

AS.5100.5 (VicRoads 

Standard Specification 

Section 610 - 

Structural Concrete. 

Table 1) 

0.1 – 0.2 

New Zealand 
NZS.3101.1&2 (Clause 

2.4.4.2 and Table 4.1) 
0.1 – 0.35 

Europe EU nations 
EC2 (EN-1992-1-1, 

7.31 table 7.1N) 
0.2 – 0.4 
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Figure 3.15: Database Inputs Model Incorporation. 

3.6 Results and Discussion 

The DL model was trained from scratch and performed very well on a multi-classification 

task based on the orientation of the crack, exceeding 97% accuracy. The IPT using the Otsu 

method was used to process the classified images by the third DL classifier to quantify the 

cracks in terms of width, length, and angle of orientation with a quantification error of 

1.5%, 5%, and 2%, respectively. The proposed approach demonstrated its computation 

efficiency and its prompt performance promptly, unlike comparable methods reported in 

the current state-of-the-art, where damage recognition and quantification can be a time-

consuming task, where the full process of obtaining crack width measurements needed 

almost 3.5 hours, and much longer for larger structures since the number of processed 

images would increase (Kim et al., 2018). 

The method proposed in the present study quantifies cracks in just three relatively simple 

steps (instead of five in the above approach): i) image acquisition; ii) classifying cracks 

according to their orientation in a pixel-based scale, and iii) quantifying cracks based on 

IPTs. The proposed algorithm performs the tasks in a short time of less than one minute. 
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Moreover, the Keras classifier for crack identification needs to be trained only once, then 

all the weight values, model architecture, and optimizer configuration will be saved in an 

HDF5 file (Folk et al., 2011). The present study is thus expected to offer a nearly fully 

automated platform for accurate and timely monitoring of damage in reinforced concrete 

structures. It can be ready for implementation on unmanned aerial vehicles (UAV) for the 

vast engineering community.  

Table 3.4: Best model performance for CNN classifications for 100 epochs calculation. 

Index of 

the 

classifier 

Goal 

Training  

Accuracy  

(%) 

Validation  

Accuracy 

(%) 

Testing 

Accuracy  

(%) 

Training  

Loss  

Validation 

Loss 

Testing  

Loss 

1st 

Safe or Cracked 

Concrete Surface 

   99.57    98.6    98.25 0.015 0.051 0.057 

2nd 

Orientation of crack 

VL, VR, HL And HR 

   98.12   96.25 97.18 0.047 0.208 0.153 

3rd 

First and Second 

Classifier combined 

97.63 96.5 96.17 0.0602 0.221 0.14 

Figure 3.16 plots the training and validation accuracy of the three classification tasks for 

100 epochs. The first observation is that the computation converges rather rapidly for the 

early 10 to 20 epochs. The proposed model demonstrated superior performance and 

adaptability, as indicated in Table 3.4. The recorded training accuracy was 99.57%, 

98.12%, and 97.63 for training the first, second, and third classifiers, respectively. The 

testing results confirmed excellent performance. Testing accuracy of 98.25%, 97.18%, and 

96.17% was recorded for the three classifiers, respectively. Another indicator of the 

network's performance is the low values of loss. To optimize the parameter values in a 

Neural Network (NN) architecture, a loss function is used. The loss function maps a set of 

parameter values for the network onto a scalar value that indicates how well those 

parameters accomplish the task which the network is intended to do.  
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Figure 3.16: Accuracy and Loss Histories for the Three Recognition Tasks. 

The obtained low values of loss using the categorical cross-entropy method demonstrate 

that overfitting problems did not influence this classifier. For instance, the obtained values 

of loss for the third classifier were only 6.02% and 14% for training and testing tests, 

respectively. 

Moreover, the value of loss for training and testing increased whenever the classification 

task became harder. In other words, the obtained values of loss for the binary classifier and 

the second classifier, including the four classes, were lower than the loss values of the 

adopted classifier (including five classes as explained in Section 3). The loss of the first 

classifier was 1.5% for training, 5.1% for validation, and 5.7% for testing.  

(a) First Classifier (b) First Classifier 

(c) Second Classifier (d) Second Classifier Loss 

(e) Third Classifier (f) Third Classifier Loss 
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An approach called "Confusion Matrix" or Error Matrix was proposed to evaluate 

classification results since the precision of the classification for the prediction task is not 

reliable if the set of inputs contains more than two classes (Kohavi et al., 1998). The 

confusion matrix is a table layout used to visualize the performance of an algorithm. Each 

line of this table represents the instances of a predicted class, while each column represents 

the actual class. Accordingly, three non-normalized confusion matrixes for all 

classification tasks with a probability of correct or incorrect predictions and values broken 

down by class are presented in Figure 3.17.  

 

Figure 3.17: Unmanned Confusion Matrix of Test Prediction in the Three Tasks. 

The confusion matrix was applied to the testing set, including 2000 images for the first 

classifier, 960 for the second, and 1200 for the third. All the classification tasks performed 

quite well with highly accurate predictions and low misclassification errors. The results 

indicate superior generalization performance of the Keras type architecture. Figures 3.18, 

3.19, 3.20, and 3.21 illustrate field test examples conducted at Western University, Canada. 

The examples were used to validate the proposed algorithm. For instance, Figure 3.19 

shows the real dimensions of crack captured on the beam due to flexural stress. A bounding 

box was drawn on the surface of the beam to indicate the part of the image that will be shot 

and preprocessed moving forward into the algorithm.  

Table 3.5 compares the experimental and numerical values for the provided images, 

indicating nearly identical matching.  
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Figure 3.18: Calculation of Crack Features of the Damaged Beam under the effect 

of Shear Stress. 

The error in percentage was computed for each example and then averaged for all the 

presented cases. The crack quantification algorithm, which was verified via a small-scale 

field test, provided a relative error of 1.5%, 5%, and 2% for the global calculation of the 

crack length, width, and angle of orientation, respectively.  
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Figure 3.19: Calculation of Crack Features of the Damaged Beam under the Effect 

of Flexural Stress. 

It is notable that the prediction of the mechanical stress causing damage and its degree for 

the different concrete structures considered herein perfectly matched the actual results, 

which further affirms the reliability of the proposed inspection algorithm. 
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Figure 3.20: Calculation of Crack Features of Damaged Pavement under the Effect 

of uplifting of Tree Roots. 

Several studies have affirmed that CNNs are a powerful tool in classification tasks. For 

instance, (Cha et al., 2017) trained a CNN using 40K images of 256×256-pixel resolution 

in binary classification and recorded about 98% accuracy.  
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Figure 3.21: Calculation of Crack Features of a Damaged Reinforced Concrete wall. 

Comparative studies were conducted to examine the performance of their proposed model 

with traditional IPTs (Sobel and canny edge detection). The results showed that CNNs 

presented better performance than that of conventional IPTs under realistic lighting 

conditions. (Dorafshan et al., 2018) compared the performance of traditional edge detectors 

(Roberts, Prewitt, Sobel, Laplacian of Gaussian, Butterworth, and Gaussian) and AlexNet 

CNN. They found that CNN achieved the best performance of 86% compared to 53%-79% 

for other IPT edge detection techniques. Since CNNs outperformed IPTs in classification 
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tasks, CNNs were adopted in the present study, achieving classification accuracy of about 

99% for a set of 6000 images of 227×227-pixel resolution for the binary classification 

(cracked or intact). This proves that the adopted CNN architecture performed even better 

than in the other two referenced above with more than a 10% increase in the accuracy and 

in less computing time.  

 

Figure 3.22: An Overview of the Crack Quantification Process. 

However, this study is associated with some limitations. For instance, the model can, at 

this stage of development, accurately quantify one single crack pattern per Image. For a set 

of cracks (two or more patterns), the prediction results can be overestimated (more 

conservative) in terms of length, width, and angle of orientation. However, this risk is low, 

considering the small size of images. Figure 3.22 explains the crack quantification process 

adopted in this study. If a single crack is present on the Image, then the model precisely 

quantifies its length, width, and angle of orientation, as presented in Figures 3.20, 3.21, 

and 3.23a-b. However, if multiple crack patterns are present on the Image and not 

intersecting at a certain point, as shown in Figures 3.19 and 3.23c-d, then only the most 

critical one (widest) is localized, segmented, and quantified. So, when having, for example, 

three crack patterns, one 3 mm, 0.1 mm, and 1 cm wide, the model founds its calculation 

and identify the degree of severity of damage based on the 1 cm crack (the widest).  
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Figure 3.23: Performance of the Proposed Approach with a Questionable 

Explanation. 

Therefore, crack quantification, damage type prediction, and its degree of severity are 

based on the widest crack. However, if the multiple cracks are intersecting, as shown in 

Figures 3.18 and 3.23e-f, then the model quantifies these kinds of crack as a single crack 

pattern based on their combination. This can be seen from the point of view that the part 

located between the two intersecting points in the Image along the way between the two 

intersecting cracks consists of a fully damaged area, and it is not transferring the full load 

in the corresponding structural element. Moreover, this model can detect at this stage of 

development crack widths and lengths starting from 0.1mm. Any crack dimension less than 

0.1mm can not be well detected. Thus, this should be investigated in further studies. 
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3.7 Conclusions 

In this study, an automated inspection model for concrete structures using DL and IPTs to 

detect cracks is proposed. A convolutional neural network was trained independently on 

an image database consisting of 40k images with a 227x227 pixel resolution. The used 

classifier englobed five classes based on two criteria: the condition of the concrete surface 

(presence of cracks), and the orientation of cracks (HR, HL, VR, and VL). The total number 

of images used for training and testing of the classifier was 6000, with a split of 60:20:20 

(3600 Images for training and 1200 images for validation and testing). IPTs have been 

implemented to induce transformations in the pictures tested by the CNN classifier for 

localizing cracks using Otsu's method for thresholding, noise removal, image binarization, 

and image segmentation. After localizing the crack, its geometrical properties, including 

length, width, and angle of orientation, are calculated. A field test was conducted to 

Fig M O 
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Figure 3.18 

E VR 

0.0686 

27.94 

2.72 

10.16 

1.57 

38 

2.08 

A VR 28.7 10 38.79 

Figure 3.19 

  

E VL 

0.058 

26.03 

0.65 

1.1 

9.09 

9 

1.22 

A VL 26.2 1 9.11 

Figure 3.20 

E HR 

0.38 

69.85 

0.07 

2.85 

5.26 

14.53 

0.61 

A HR 69.9 3 14.44 

Figure 3.21 

E VR 

0.196 

46.9 

2.14 

2.09 

4.3 

5.96 

3.7 

A VR 45.9 2 5.74 

Relative 

Avg 

For the current set of four images presented in Figure 3.18, 3.19, 

3.20, and 3.21 

1.39  5.05  1.9 

Global Avg 
For the total number of the tested Images, 10 Images ~1.5  ~5  ~2 

Table 3.5: Comparison between experimental and numerical values for 100 

epochs calculation. 
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evaluate the performance of the trained IPT algorithm by testing images of higher pixel 

resolution. Based on the experimental findings, the following conclusions can be drawn: 

1. Convolutional Neural Networks, coupled with improved Otsu Image processing, can 

offer a powerful tool for classification, localization, segmentation, and quantification of 

damage in cracked cement-based materials and concrete structural elements. 

2. Based on the classification analysis, the recorded testing accuracy was 98.25%, 97.18%, 

and 96.17% for the first, second, and third classifiers, respectively. 

3. Based on the quantification analysis, the measurement error was 1.5%, 5%, and 2% for 

calculating the crack length, crack width, and crack angle of orientation. 

4. The type of structural damage or durability related damage (e.g., corrosion) and its 

degree of severity were determined using different international standards and codes for 

buildings and bridges. 

5. The damage detection, classification, and measurement method proposed in this study 

demonstrated superior performance and accuracy while requiring excellent 

computational and time efficiency compared to other existing methods. 
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Chapter 4  

4 Localization and Classification of Structural Damage using 
1D CNN Single-Channel Signal-Based Measurement 

Rapid and diligent identification of structural integrity risk has been a core thrust of SHM 

systems. Vibration-based SHM and damage detection have gained paramount importance over 

the last two decades. More recently, substantial research efforts have been devoted to DL 

algorithms, which yielded accuracy unmatched by existing conventional approaches. The 

present chapter proposes a novel DL-based damage detection approach to extract features from 

raw acceleration sensor data automatically. A new One-Dimensional Convolutional Neural 

Network (1D CNN) named BuildingNet was designed to learn features and identify damage 

locations in real-time under different damage assessment scenarios. Parametric studies were 

conducted on different layer numbers, size of training datasets, and noise levels.  An ensemble 

of systematic studies on the optimization of network architecture and preparation of the 

training data was performed. Numerical investigations on a mid-rise building were conducted 

to demonstrate the accuracy and efficiency of the proposed model framework compared with 

traditional ML methods. Time-domain monitoring data, both from multiple and single-channel 

measurements, were used for training and testing three different architectures for BuildingNet.  

4.1 Introduction 

Civil structures and infrastructures are often subjected to numerous external loads. Such 

loads are caused by many factors such as earthquakes, winds, changes in temperature and 

moisture gradients, chemical attack, and excitation produced by humans. During the 

service life of these structures, loads can result in structural damage or cause catastrophic 

failure, with associated economic and loss of human life. Damage is generally defined as 

a reduction in local stiffness. It can be due to cracks, spalling, and even total failure of 

structural members such as beams, columns, and member connections (Farrar et al., 2007). 

Structural damage identification has gained increasing attention of the engineering 

community to maintain the structural performance of civil assets and better manage limited 

repair and rehabilitation resources. This process is often done via techniques that can assess 

damage objectively and adequately at the earliest possible time. This should allow 
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predicting the remaining useful life of assets to mitigate failures and optimize resource 

allocation. 

Traditional damage assessment tools that depend on visual inspection have often proved 

inefficient since they involve safety risks, suffer from limited access, and tend to be 

laborious and time-consuming. They are also subjective since different inspectors could 

render diverging appraisals. To accurately assess structural damage, more reliable and 

effective non-destructive damage identification techniques are indispensable. Such 

methods can generally be categorized either as local or global (Doebling et al., 1996). Local 

techniques, including ultrasonic and X-ray methods, require prior knowledge of the vicinity 

of damage and easy access, which is not always guaranteed. Thus, vibration-based damage 

identification methods have emerged as global damage identification techniques to 

overcome these difficulties. These methods aim to assess the presence, severity, and 

location of defective areas by processing signals measured via a network of sensors.  

A broad range of vibration-based techniques, algorithms, and methods was developed to 

solve various problems encountered in-situ.  They can be classified into parametric (model-

based) and nonparametric (signal-based) techniques (Abdeljaber et al., 2017). Parametric 

methods employ identification algorithms to the measured response to determine damage 

sensitive features, including natural frequencies, modal damping, and mode shapes that 

affect the current or future performance of a structure caused by an alteration of the 

physical properties (mass, damping, and stiffness). Alterations to the parameters prevailing 

in the healthy structural state are used to identify structural damage. Conversely, 

nonparametric methods use statistical means to recognize damage directly from measured 

signals.  

Recently, increasingly research efforts have applied ML, encompassing a broad range of 

parametric and nonparametric studies. Such ML algorithms proved efficient in dealing with 

this since they can learn complex non-linear relationships between acquired signals and the 

state of the structural system (Abellan-Nebot et al., 2010). Most ML-based damage 

detection methods involve two main steps: i) feature extraction, and ii) feature 

classification. For instance, SVM was one of the first proposed ML techniques to extract 

damage features from signals. This algorithm was successful in performing small samples 
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of classification and regression (Suykens et al., 1999). Additionally, Artificial Neural 

Networks (ANN) have been extensively used to fulfill the same task since they have robust 

pattern recognition and classification capabilities owing to their self-learning function, the 

capacity of storage, and the ability of rapid search for optimal solutions (Zhang et al., 

1998).  

However, the process of damage extraction using such techniques needs advanced 

algorithms and computational resources to accurately extract the main damage features 

from the acquired signals and limit the manual process of feature extraction. Thus, research 

efforts in ML algorithms are still pursuing higher performance and efficiency. Until now, 

there is no specific answer to which feature extraction method can optimally characterize 

the acquired signal. Moreover, this process is costly and time-consuming, which has 

compromised its real-time application.  

To overcome such limitations, numerous DL algorithms have been assigned to this 

nonparametric time-series problem. One of the solutions consisted of capturing the 

representation information adaptively and fusing the feature extraction and feature 

classification in a combined optimization process. DL has reached great success in image 

recognition problems dealing with SHM of civil infrastructure. For instance, a DL method 

for image based SHM was proposed, and it surpassed traditional image processing methods 

in finding cracks under realistic conditions (Cha et al., 2017). Other studies on the 

application of DL to image SHM applications were reported in the literature (Zhang et al., 

2020) (Xu et al., 2019) (Kim et al., 2019). However, such techniques face some challenges, 

such as data preprocessing, which is essential for automatic real-time monitoring and 

alarming of SHM systems and data-based off-line long-term performance analysis of 

structures.  

Data preprocessing prepares the data and make it useful for the DL training process. This 

can be done by transforming the acceleration signals into spectrograms (2D Images) since 

DL achieved great success in dealing with images. Subsequently, based on these 

spectrograms, DL algorithms such as Two Dimensional Convolutional Neural Networks 

(2D CNNs) are applied to classify structures as damaged or not. For instance, a CNN based 

approach was used to classify and predict various types of delamination in composite 

laminates using low-output structural vibrations (Khan et al., 2019). This was done using 
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the Short-Time Fourier Transform (STFT) to get a 2D spectral frame representation from 

the transient responses. Another study had implemented a 2D CNN to assess and localize 

damage in a long-span cable-stayed bridge. The measured acceleration containing six 

patterns of data anomaly was first transformed into a grayscale image used as a training set 

for the network (Bao et al., 2019). Another implementation of 2D CNNs was reported, 

where the measured vibration response was represented as matrices and fed to the CNN as 

input images. Their proposed method's efficacy was validated using a limited number of 

vibration response data recorded during the shake‐table testing of a one‐fourth‐scale model 

of a highway bridge (Khodabandehlou et al., 2019). A further study proposed an approach 

that consisted of localizing the damage for building structures using dynamic displacement 

responses based on a 2D CNN. Based on the interrelation constructed by CNN in advance, 

damaged stories are localized by investigating the discrepancy of dynamic responses 

between healthy and damaged states (Oh et al., 2020). 

However, there are certain drawbacks and limitations in using these deep architectures (2D 

CNN). For instance, despite the relatively good performance, the studies reported that the 

training phase was computationally time-consuming. They also pose problems with high 

computational complexity, requiring specialized training hardware. Moreover, they are not 

suitable for online damage detection. Training this kind of CNNs also needs a massive 

amount of dataset to achieve good classification results, which does not apply to the case 

of signals because of their scarcity (Kiranyaz et al., 2019). Therefore, other DL techniques, 

such as Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNN), and 1D 

CNN, have been proposed to process data automatically, without the requirement for 

passing by vibration images.  

These techniques proved efficient in the case of a network of sensors. For instance, a 1D 

CNN was used to track damage in a grandstand simulator, having 30 accelerometers 

installed on 30 joints (Abdeljaber et al., 2017). Another application had conducted several 

impact-hammer tests on a steel frame for six installed accelerometers in a different position 

(Zhang et al., 2019). Generally, such applications were applied to horizontal structures 

(e.g., grandstand simulator of 1.65 m height and a steel frame of 1.5 m height) typically 
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consisting of continuous acquisition of signals by a network of accelerometers (multiple 

channel measurements).  

Therefore, concerted DL research efforts are needed to monitor damage into vertical 

structures (e.g., multi-story buildings). Hence, in the present study, a DL comparative 

analysis of signal processing techniques for vibration based civil SHM is proposed. The 

study explores the performance of DL models, including 1D CNN, Long Short-Term 

Memory networks, and Resnet18, and other conventional ML algorithms. The comparison 

is based on different damage scenarios for a Ten Degree of Freedom building system (10 

DOF) and different disposition of sensors (e.g., Multi-channel measurement: one sensor 

for each story and one single-channel measurement: one sensor for the entire building).  

The novelty of the present study consists of the following aspects: i) Developing a real-

time DL vibration-based technique for assessing damage in mid-rise buildings with high 

accuracy and short computational time by automating the damage sensitive features 

extraction pre- and post-processing; ii) Proposing a single-channel measurement (only one 

sensor) vibration-based damage detection platform that can detect and assess the health of 

a structure, which is more economical and practical; and iii) Demonstrating the 

performance and robustness of the proposed model by adding up to 20% random Gaussian 

noise.  

The chapter is organized as follows: Section two details the methodology adopted in this 

study including the DL network architectures; Section three describes the data preparation 

scheme; Section four defines the experimental study, presents the results and performance 

evaluation of the DL models, and delivers an in-depth discussion summarizing the findings 

of the approach; Finally, Section five draws the main conclusions and suggests potential 

directions of future research. 

4.1.1 Research Significance 

This work coins a novel 1D CNN called BuildingNet adopted for mid-rise buildings to 

bridge research gaps identified above. A state-of-the-art network configuration was 

proposed, and appropriate changes were made in this study to fit the scenarios proposed. 
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Different influential factors have been successfully tested, including the number of 

convolution blocks, the effect of data increase, and the robustness of the algorithm against 

20% random Gaussian noise. The proposed model was also compared to other conventional 

ML and DL models. The findings should encourage a critical look into the state-of-the-art 

of DL single-channel measurement vibration-based structural damage evaluation protocols 

and highlight the need for comprehensive studies that can assist engineers in carrying out 

a robust inspection of civil engineering structures. 

4.2 Methodology 

This section describes the architecture of the designed CNN and introduces the function 

and background of each of its layers. A typical CNN contains at least one convolutional 

layer, a max-pooling layer, a flatten layer, a connected layer, and a softmax output layer. 

The corresponding number of hidden layers can be determined according to the complexity 

of the target problem. Convolutional and flatten layers are usually followed by batch 

normalization and a dropout layer, respectively, which boosts the performance of CNN. 

4.2.1 1D CNN Network Architecture 

In this study, three different 1D CNN architectures were implemented to assess their 

performance in dealing with the problem of structural damage identification under different 

damage assessment scenarios. As illustrated in Figure 4.1, the first adopted scenario is 

"BuildingNet_1", which is expected to yield high classification accuracy, corresponding to 

the case of having one installed sensor on each floor (case study 1). This proposed model 

aims to detect not only the damage state of the building (healthy or damaged), but also 

localize the exact location of damage (in which floor). The second proposed architecture is 

"BuildingNet_2", which corresponds to the scenario of having only one accelerometer 

installed on the first floor of the building in an attempt to propose a DL model that can 

detect and localize damage separately on each story using a single-channel measurement 

(case study 2). The last architecture, "BuildingNet_3" corresponds to the case of only 

having one sensor to classify the global state (healthy or damaged), without determining 

the exact floor where damage is located (case study 3). Since the number of sensors and 

prediction categories is tailored to a given assessment scenario, the scenario dictates the 
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shape of the input and output layers. Table 4.1 presents the main layers of each of the three 

proposed architectures. 

 

Figure 4.1: BuildingNet Design Methodology. 

4.2.2 CNN Representation 

4.2.2.1 1D CNN layer 

1D CNNs are a subset of convolutional neural networks. The application of CNNs was first 

developed for image classification, having great success in dealing with problems in which 

the DL model receives 2-dimensional input representing the pixels and color channels of 

an image. This is known as feature learning and was applied similarly to one-dimensional 

sequences of data. The model excerpts feature from sequences of data and outputs the 

internal features of the sequence. 1D CNN proved their effectiveness in dealing with time-

series sensor data, signal data analysis over a fixed length period (audio recording), and 

Natural Language Processing (NLP). The main difference between 2D CNN and 1D CNN 

is the structure of the input data and how the filter moves across the data (Figure 4.2). 

Another difference is that 1D networks use larger filter sizes. In a 1D network, a kernel of 
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size f contains only f1 feature vectors, whereas, in a 2D CNN, a filter of size f2 contains 

𝑓2 × 𝑓2 feature vectors, making this selection very broad.  

Figure 4.3 illustrates two types of layers for a 1D CNN. The first is the CNN-layers, where 

the convolution and pooling operations co-occur; the second is the fully connected layers 

or the Multi-Layer Perceptron (MLP). The configuration of a 1D CNN is made of 1) 

Number of hidden CNN layers and MLP layer/neurons, 2) Filter size in each CNN layer, 

3) Subsampling factors for each CNN layer and 4) Pooling and activation functions. Figure 

4.4 presents three consecutive CNN layers of a 1D CNN. In each CNN-layer, a 1D forward 

propagation (FP) from the previous convolution layer (l-1) to the current layer's input 

neuron (l), is expressed in Equation 4.1.  

𝑥𝑘
𝑙 = 𝑏𝑘

𝑙 + ∑ 𝑐𝑜𝑛𝑣1𝐷(𝑤𝑖𝑘
𝑙−1, 𝑠𝑖

𝑙−1)

𝑁𝑙−1

𝑖=1

 (4.1) 

Where 𝑥𝑘
𝑙  is the input, 𝑏𝑘

𝑙  is the bias of the kth neuron at layer l, and 𝑠𝑖
𝑙−1 is the ith neuron's 

output at layer l-1. The filter weight from the ith neuron at layer l-1 to the 5th neuron at layer 

l is noted as 𝑤𝑖𝑘
𝑙−1. The intermediate output of the neuron, 𝑦𝑘

𝑙  is then expressed using the 

input 𝑥𝑘
𝑙 , as in Equation 4.2. 

𝑦𝑘
𝑙 = 𝑓(𝑥𝑘

𝑙 ) 𝑎𝑛𝑑 𝑠𝑘
𝑙 = 𝑦𝑘

𝑙 ⬇𝑠𝑠 (4.2) 

Where 𝑠𝑘
𝑙  is the neuron's output, and ⬇𝑠𝑠 is the down-sampling operation with the factor, 

ss. More details on the training methodology for the 1D CNN are presented in a well-

explained study (Kiranyaz et al., 2015). 

4.2.2.2 Batch Normalization (B.N.) Layer 

The training data are learned batch by batch. As a result, the batch distributions are non-

uniformly and unstably distributed and must be fitted by the network parameters in every 

training iteration, which significantly shows the convergence of the model. To tackle this 

problem, the convolutional layer is followed by an adaptive reparameterization method 

called batch normalization (Ioffe et al., 2015). 
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Figure 4.2: Difference between 1D CNN and 2D CNN. 

The batch normalization algorithm calculates the mean and variance of every training data 

batch, then shifts and scales the original data to zero-mean and unity variance. Afterward, 

the shifted data is assigned to weight and bias to increase their effect. This 

reparameterization using BN helps to alleviate the problem of coordinating updates through 

the layers in the neural network. 

4.2.2.3 Rectified Linear unit (ReLU) 

The activation function is used in a neural network to transform the summed weighted 

input from the node into its activation (Agarap et al., 2018). The rectified linear activation 

function is a linear function that outputs the input directly if it is positive. Otherwise, it 

outputs zero. It has become the standard activation function for many types of neural 

networks owing to its performance and simplicity for training purposes. A non-linear ReLU 

function was used as an activation function, as shown in Equation 4.3. 

𝑓(𝑥) = max(0, 𝑥)   (4.3) 
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Table 4.1: Adopted 1D CNN Architectures. 

Network 

Architecture 
Feature Extraction Classification 

BuildingNet_1 

Sequential ( 

(0): Conv1d (1, 8, kernel_size = (11,), stride = (1,), 

padding = (1,), dilation = (1,)) 

(1): BatchNorm1d (8) 

(2): ReLU () 

(3): Conv1d (8, 8, kernel_size = (3,), stride = (2,), 

padding = (1,), dilation = (1,)) 

(4): BatchNorm1d (8) 

(5): ReLU () 

(6): Conv1d (8, 8, kernel_size = (3,), stride = (2,), 

padding = (1,), dilation = (1,)) 

(7): BatchNorm1d (8) 

(5): ReLU () 

(8): Conv1d (8, 8, kernel_size = (3,), stride = (2,), 

padding = (1,), dilation = (1,)) 

(9): BatchNorm1d (8) 

(10): ReLU () 

(11): Conv1d (8, 8, kernel_size = (3,), stride = (2,), 

padding = (1,), dilation = (1,)) 

(12): BatchNorm1d (8) 

(13): ReLU () 

(14): Conv1d (8, 8, kernel_size = (3,), stride = (2,), 

padding = (1,), dilation = (1,)) 

(15): Flatten () 

(16): Linear (in_features = 256, out_features = 

256, bias = True) 

Sequential ( 

(0): Linear (in_features = 

256, out_features = 256, bias 

= True) 

(1): ReLU () 

(2): Dropout (0.5) 

(3): Linear (in_features = 

256, out_features = 128, bias 

= True) 

(4): ReLU () 

(5): Dropout (0.5) 

(6): Linear (in_features = 

128, out_features = 11, bias = 

True) 

 

 

BuildingNet_2 

Sequential ( 

(0): Conv1d (1, 8, kernel_size = (11,), stride = (1,), 

padding = (1,), dilation = (1,)) 

(1): BatchNorm1d (8) 

(2): ReLU () 

(3): Conv1d (8, 8, kernel_size = (3,), stride = (2,), 

padding = (1,), dilation = (1,)) 

(4): Flatten () 

(5): Linear (in_features = 4064, out_features = 

256, bias = True) 

Sequential ( 

(0): Dropout (0.5)  

(1): Linear (in_features = 

256, out_features = 128, bias 

= True) 

(2): ReLU () 

(3): Dropout (0.5) 

(4): Linear (in_features = 

128, out_features = 11, bias = 

True) 

BuildingNet_3 

Sequential ( 

(0): Conv1d (1, 8, kernel_size = (11,), stride = (1,), 

padding = (1,), dilation = (1,)) 

(1): BatchNorm1d (8) 

(2): ReLU () 

(3): Conv1d (8, 8, kernel_size = (3,), stride = (2,), 

padding = (1,), dilation = (1,)) 

(4): BatchNorm1d (8) 

(5): ReLU () 

(6): Flatten () 

(7): Linear (in_features = 4064, out_features = 

256, bias = True) 

Sequential ( 

(0): Linear (in_features = 

256, out_features = 256, bias 

= True)  

(1): ReLU () 

(2): Dropout (0.5) 

(3): Linear (in_features = 

256, out_features = 128, bias 

= True) 

(4): ReLU () 

(5): Dropout (0.5) 

(6): Linear (in_features = 

128, out_features = 2, bias = 

True) 
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4.2.2.4 Dropout Layer 

Dropout is one of the techniques used to tackle the problem of overfitting for neural 

networks and to generate much more efficient training examples by reducing the 

coadaptation between neurons. Overfitting is determined whenever the training loss is 

much smaller than the testing loss. The core idea behind dropout is to randomly disconnect 

the connections between neurons, having a fixed dropout rate. A dropout coefficient of 0.5 

was used in the present study. 

 

Figure 4.3: Example of 1D CNN Configuration with 3 CNN and 2 MLP Layers. 

(reproduced and modified from Kiranyaz et al., 2019) 

4.2.2.5 Fully Connected (F.C.) or Linear Layers 

A fully connected layer is a linear layer that applies a linear transformation to the incoming 

data. It takes the outputs of the previous layers, flattens them, and transforms them into a 

single vector that can input to the next phase, following Equation 4.4, where A is the input, 

b is the bias, and y is the output. If bias = False, then b = 0.  

𝑦 = 𝑥𝐴𝑇 + 𝑏   (4.4) 
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4.2.2.6 Structural State Identification 

1D CNN learns to identify the damage state by performing two other steps. The first step 

is to train the 1D CNN, and the second is to test it. In this study, the adopted training to 

testing ratio was 90:10. This ratio was evaluated against other rates (80:20 and 70:30). 

Nevertheless, the proposed ratio is considered the best in terms of performance metrics. In 

the training step, the 1D CNN is updated by evaluating and reducing the deviations between 

the predicted 1D CNN output and actual labeled locations of the local structural-state 

changes, on a batch-by-batch basis. Figure 4.5 presents the main architecture parameters 

corresponding to three case studies of BuildingNet.  

Table 4.2 presents the corresponding hyper-parameters for the three 1D CNN architectures 

adopted in this study. For instance, the training batch size was set to 256. The uniformity 

and deviations between the network outputs and labels are called the accuracy and loss, 

respectively. The loss of the CNN is determined by the categorical cross-entropy loss 

function, computed by Equation 4.5, where E_l is the loss, N_t is the number of training 

data, x denotes the samples, y means the labels, and a are the predictions (outputs of the 

neural network).  

𝐸_𝑙 =  −
1

𝑁_𝑡
∑[𝑦𝑙𝑛𝑎 + (1 − 𝑦)𝑙𝑛(1 − 𝑎)]

𝑥

 (4.5) 

Table 4.2: Adopted 1D CNN Hyperparameters. 

 

 BuildingNet_1 BuildingNet_2 BuildingNet_3 

Learning rate 0.0001 0.001 0.0001 

Training batch size 256 

Testing batch size 10 5 5 

Epochs 1000 

Loss function Categorical Cross-Entropy (CCE) 

Optimizer Adam 
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To reduce the loss of the proposed models, the present study uses Adam optimizer, which 

is an adaptive learning-rate optimization algorithm, to update the 1D CNN parameters. The 

proposed optimizer computes the gradients of the 1D CNN parameters and updates them 

in every iteration. The used learning rates are different for the three proposed models due 

to the complexity of data and damage assessment scenarios.  

Grid search Hyperparameters optimization was used to find the best hyperparameters 

including the number of epochs (1000), learning rate (𝑒−3𝑜𝑟 𝑒−4 ), testing batch size (10 

or 5), and the optimizer (Adam). The 1D CNN is trained by iteratively feeding the training 

data, evaluating the loss, and updating the 1D CNN parameters. The training is complete 

when the CNN outputs achieve high accuracy and f1 score with a relatively low loss.  

 

Figure 4.4: Three 1D CNN Consecutive Hidden CNN Layers. (reproduced and 

modified from Abdeljaber et al., 2017) 

4.3 Data Preparation 

4.3.1 Data Description 

4.3.1.1 Data Features 

The vibration test data in the time-domain is obtained following two procedures. The first 

consists of getting the training data from Ns accelerometers, where Ns corresponds to the 
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number of stories (10 sensors for 10 DOF). The second approach obtains the data from a 

single accelerometer installed in the first story of the building. Ideally, all possible 

combinations of structural damage scenarios need to be covered. Nevertheless, this is 

nearly impossible since their number is infinite, requiring vast computational resources. In 

this study, the classes of the training data are designed according to the damage location. 

The data used for training the DL algorithms are obtained under different damage 

assessment scenarios. The first case study, "BuildingNet_1," corresponds to ten installed 

sensors per building to detect the damage on each floor separately. The second case study, 

"BuildingNet_2," tracks the damage on each level using one single-channel measurement. 

The third case study, "BuildingNet_3," detects the damage of the building in binary 

classification to decide whether the building is healthy or damaged. To select the 

appropriate test method for this study, a random shake excitation is adopted, since it is the 

most representative for real structures under different kinds of loads (e.g., traffic, 

environmental, seismic, wind). The data corresponds to the raw acceleration signals 

without applying any filtering (Abdeljaber and Avci, 2016), unlike conventional frequency 

domain (FD) methods (Pathirage et al., 2018). Time-domain data contains all information, 

including the non-linear and transient effects, which can be missed by FD methods.  

 

Figure 4.5: BuildingNet Corresponding to the Three Adopted Case Studies. 
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4.3.2 Data Decomposition using the sliding window technique 

The sliding window is a signal decomposition technique used to reframe the time series 

data in order to apply supervised ML and DL models. Given a sequence of numbers for the 

time series dataset, the data can be restructured to several frames of time series data. This 

is done using the previous time steps as input variables and the next time steps as output 

variables. The number of previous time steps is called the window width. To reproduce 

more samples for the classification of these frames, the sliding window can overlap for a 

given time step, which is a tool that can be used for data augmentation (Kohavi and Provost, 

1998). Figure 4.6 demonstrates an example of signal decomposition into N_f frames using 

the sliding window technique. In this study, three different frame widths were tested (256, 

512, and 1024). The last one yielded the best training performance (1024 samples), mainly 

including 𝑁_𝑓 = 250 frames. N_f can be obtained by using Equation 4.6. 

𝑁_𝑓 =
1

𝐹𝑟𝑎𝑚𝑒 𝑤𝑖𝑑𝑡ℎ
× (

1

𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝
× 𝑇𝑖𝑚𝑒 𝑟𝑒𝑐𝑜𝑟𝑑)  

(4.6) 

4.3.3 Data Augmentation using SMOTE 

As can be observed in data generation, there is a concern with unbalanced data. Data 

imbalance is defined as a difference in the number of data points for each class. This 

problem is especially persistent for the first and last models. This is because the undamaged 

vectors are more dominant, while damaged vectors are significantly less. For example, 

"BuildingNet_1" was made of 11 files, the first one corresponds to the healthy configuration 

of the building (no created damage) and ten other undamaged columns corresponding to 10 

installed sensors at ten floors. Then, starting from the second file until the eleventh, there is 

only one column in each file that corresponds to the damaged pattern. For example, for the 

second file, which corresponds to the damage at the first story, its first column (for the 1st 

sensor installed at the first story) is the corresponding damaged vector. Thus, for these 11 

files, one damaged vector for each class (e.g., D1: Damage in story 1) compared to 100 

undamaged vectors for the healthy category. This results in a large order of difference, 

which is 100 times larger than the other classes. However, for "BuildingNet_3", this issue 
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is less prominent since the order of difference between the most abundant category 

(Healthy) and the other classes is ten times.  

 

Figure 4.6: Example of a Signal Decomposition into N Number of Frames. 

This difference is due to moving from ten sensors to only one for monitoring the damage 

on each floor separately. To tackle this problem, a method called Synthetic Minority 

Oversampling Technique (SMOTE) (Fernández et al., 2018) was used to increase the 

number of cases in the dataset in a balanced way and oversample the minority class. The 

model works by generating new instances from existing minority classes. The new 

examples are a generation of new samples from the feature space of each target class and 

its nearest neighbors. Thus, SMOTE was adopted in "BuildingNet_1" and "BuildingNet_3" 

to oversample the damaged classes. This technique was only applied to the training set. 

However, the testing set should always be intact and original, and the performance of the 

model is tested on unmodified original and unseen data. 

4.3.4 Data Processing 

Training the DL models requires generating a dataset that consists of several 

undamaged/damaged acceleration signals for each story. Damage is created by reducing 

the equivalent stiffness that can be obtained based on a decrease of the moment of inertia. 

However, it should be noted that only the stiffness reduction is considered, and the mass 

change is ignored since structural damage is mainly related to stiffness reduction. 
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Since two approaches are adopted in this study, as illustrated in the previous paragraph, 

two data preparation schemes are presented. The first method consists of installing as many 

sensors as the number of floors. For each structure having a total of Ns stories 

(accelerometers), a unique CNN is assigned for the entire building, contrary to the study 

cited in 3, where one single CNN for each sensor was implemented. To generate the training 

dataset needed to train each DL model, it is required to conduct n + 1 experiments. In the 

first experiment (E = 1), Ns acceleration signals are measured for the intact structure 

(Healthy state). The resulting signals are denoted as 𝑈𝐸=1,𝐽=1, 𝑈𝐸=1,𝐽=2, … , 𝑈𝐸=1,𝐽=𝑁𝑠. U 

denotes the signal measured at an undamaged story, E designates the experiment number, 

and J is the story number.  

The remaining experiments are conducted one by one in sequential order. In each test E = 

k+1, the damage is introduced at the story j = k. The damage is induced by reducing the 

stiffness of each corresponding story, e.g., if k1 = 1750 N/m (No damage), after introducing 

50% damage to the story, k1 will be equal to 875 N/m, and the n acceleration signals are 

measured under random excitation.  

The measured signals are denoted as 𝑈𝐸=𝑘+1,𝐽=1, … , 𝐷𝐸=𝑘+1,𝐽=𝑘, … , 𝑈𝐸=𝑘+1,𝐽=𝑁𝑠, where D 

indicates that this signal was measured at the damaged story k. After performing the n+1 

experiment, the signals that are measured at each story i are grouped together to create the 

damaged/undamaged vectors required to train the networks. The second method obtains 

the acceleration signals from one single channel measurement (one single sensor available 

at a time for the whole building). The second approach is created in pursuit of exploring 

damage identification using a decentralized sensing approach where one sensor is 

autonomously moved from one location to another.  

4.4 Results and Discussions 

This section describes the damage characterization performance results that are obtained 

when the proposed framework was applied to the numerical data for the three 10 DOF 

models and the different conducted experiments. As explained in Section 2, three damage 

assessment scenarios were implemented in this study. The first scenario is the least 

complicated in terms of damage monitoring. It consists of installing as many sensors as the 
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number of floors of the 10 DOF system. However, this scenario is expected to be very 

costly. It is also impractical to implement sensors on every story in mid to high rise building 

structures. Hence, the idea of performing this scenario is to explore which DL model can 

yield the best performance in a relatively uncomplicated approach. Afterwards, the best 

performing model will be used to test its performance for a more challenging scenario, 

which is to assess damage in a structural system using only one single channel measurement 

installed on its first floor. 

4.4.1 Experimental Settings 

A numerical study is proposed to test the actual method applied to the 10 DOF building 

system. The damage level is selected to be 50%, which corresponds to a loss of stiffness 

of the main structural elements (column, beam, slab) of the corresponding story where the 

damage is simulated. All the proposed case studies aim to track the damage on a global 

floor wise, without detecting the exact location of damage, whether it is in a beam, shear 

wall, slab, or column. The damage level is selected to be 50% after considering other 

damage levels of 10% and 20%. The adopted damage level yielded the best performance. 

The damage simulated in the proposed case studies is a single damaged floor at a time; 

double or triple damaged stories are out of the scope of this study. 

The building is simulated as a linear, classically damped, and discrete lumped-mass n 

degrees of freedom (DOFs) structural system, subjected to a wide-band random shake 

excitation input force, u(t). Equation 4.7 governs the structural response of the adopted 

system. 

𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑥(𝑡) = 𝑢(𝑡) (4.7) 

Where x(t) is a vector of displacement response at DOFs, M is the mass matrix, C is the 

damping matrix, and K is the stiffness matrix. The solution of Equation 4.7 for any 

dynamical system can be formulated using the state-space model, as presented in equations 

Equation 4.8, Equation 4.9, and Equation 4.10 shown below. 

�̅� = [
𝑥1

𝑥2
] (4.8) 
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�̇̅� = 𝐴�̅� + 𝐵𝑢 (4.9) 

y = �̂��̅� + 𝐷𝑢 (4.10) 

Where A represents the state matrix, B is the input matrix, �̂� is the output matrix, and D is 

the transmission matrix. For the case of a 3-DOF, M, K, and C (Rayleigh Equation) are 

expressed in Equation 4.11, Equation 4.12, and Equation 4.13, respectively. Figure 4.7 

shows a three-dimensional representation of a three DOF building.  

𝑀 = |
𝑚1 0 0
0 𝑚2 0
0 0 𝑚3

| 
(4.11) 

K =  |
𝐾1 + 𝑘2 −𝐾2 0

−𝑘2 𝐾2 + 𝐾3 −𝐾3
0 −𝐾3 𝐾3

| 
(4.12) 

C = 𝛼𝑀 + 𝛽𝐾, where 𝛼 and 𝛽 are the Rayleigh damping coefficients. 
(4.13) 

Table 4.3 summarizes the adopted parameters for the calculation of the mass and stiffness 

matrix. The acceleration signals were collected under a random shake excitation at a 

sampling frequency of 1000 Hertz. Signals were captured for 256 s, so each signal 

comprises 𝑛𝑇=256000 samples. The excitation was simulated by a vector of size (256000 

x 1) of normally distributed random numbers using the MATLAB function randn 

(256000,1). A data processing program was written in a DL platform, Pytorch 

(https://pytorch.org), to load the data from CSV files and arrange it into the appropriate 

form. Two forms of data classification were adopted; the first is a simple binary 

classification (Healthy/Damaged) without determining the exact location of damage, the 

second classifies the building as healthy or damaged and determines the precise location 

of the damage.  

4.4.2 Evaluation Metrics 

The comparison between the machine and DL models was based on various performance 

metrics, such as accuracy (Equation 4.14), precision (Equation 4.15), recall (Equation 

4.16), f1 score (Equation 4.17), Area Under the Receiver Operating Characteristic curve 
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(ROC_AUC) score, which represents the area under the roc curve (TPR = f (FPR)), 

sensitivity or True positive rate (Equation 4.18), False positive rate (Equation 4.19) and 

Matthew Correlation Coefficient (MCC) (Equation 4.20). The calculation of all these 

metrics was based on the Confusion matrix or Error Matrix to evaluate classification results 

since the precision of classification for the prediction task is not reliable if the set of inputs 

contains more than two classes (Kohavi et al., 1998). 

Table 4.3: Structural Parameters for the Three Numerical Models. 

Story Mass (Kg) Stiffness (N/m) 
Damping 

Coefficient 

1st 1 1750 

2% 

2nd 1 1575 

3rd 1 1400 

4th 1 1225 

5th 1 1050 

6th 1 875 

7th 1 700 

8th 1 525 

9th 1 350 

10th 1 175 

The confusion matrix, as illustrated in Figure 4.8, is a table layout used to visualize the 

performance of an algorithm. Each line of this table represents the instances of a predicted 

class, while each column represents the actual class. 
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Figure 4.7: Three-Dimensional Model of a Three DOF System. 

Accuracy =  
TP + TN

TP + TN + FP + FN
 (4.14) 

Precision =  
TP + TN

TP + TN + FP + FN
 (4.15) 

Recall =  
TP

TP + FN
 (4.16) 

F1 score =
2 × Precision × Recall

Precision +  Recall
 (4.17) 

Sensitivity =  True positive rate =
TP

TP + FN 
 (4.18) 

False Positive Rate =
FP

FP + TN 
 (4.19) 

MCC =  
TP × TN −  FP × FN

√(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
 (4.20) 

The reason for employing these metrics is that standard indicators such as "accuracy" and 

"precision" can be misleading when the data are imbalanced (Tharwat, 2018) since they 

use values from both columns of the confusion matrix. Thus, as data distribution changes, 

these metrics change as well, even if the classifier performance does not. Consequently, 

these two metrics are not sufficient to compare the proposed ML and DL models. It was 

reported that MCC outputs a more informative and truthful score than accuracy and f1 score 

for classification models evaluation, first by explaining their mathematical features and 
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then by employing MCC in six synthetic use cases and real genomics scenario (Chicco and 

Jurman, 2020). This coefficient considers true and false positives and negatives, and it 

returns a value between -1 and 1. A ratio of 1 represents a perfect prediction, 0 random 

predictions, and -1 a total disagreement between prediction and observation.  

 

Figure 4.8: Confusion Matrix Terminology. 

4.4.3 Case Study 1 

4.4.3.1 Definition 

To determine the best model applicable to the first damage assessment scenario, a 

comparative study between the most prominent ML and DL models for time series 

classification is proposed. The first case study is considered the least complicated in terms 

of the damage assessment procedure, which consists of installing a network of sensors on 

each floor to track the damage separately. This case study implements ten sensors on ten 

floors with eleven classes (one healthy configuration and ten damaged classes 

corresponding to the tracked damage on each floor, separately). 

4.4.3.2 Comparative Study 

To assess the complexity of the proposed scenario and its corresponding dataset, a 

comparison between ML and DL models is provided. Four conventional ML models, 

including i,) Decision Trees (DTs) which are a non-parametrical supervised method of 

learning used to regress and classify. DTs learn from data to approximate the sinus curve 

with a set of conditions. The broader the tree, the more complex the rules of decision and 
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the more fit the model (Quinlan, 1986); ii) Bootstrap aggregating (Bagging), which is an 

ML ensemble meta-algorithm designed to boost the stability and accuracy of ML 

algorithms for classification and regression tasks. It is used to reduce the variance and to 

avoid over-fitting. It is applied to the DT model (Breiman, 1996); iii) K Nearest Neighbors 

(KNN), which are a basic ML algorithm that stores all existing cases and categories of new 

cases based on a measure of similarity (distance). KNN is a nonparametric technique for 

classification and regression tasks. The greater K, the more precise is the classification, but 

the longer it takes for the task to be performed (Cunningham et al. 2020); iv) Random 

Forest (RF), which is a classification algorithm with multiple decision trees. It incorporates 

Bagging and randomness when assembling each tree to establish an uncorrelated forest of 

trees whose estimation is more reliable than any single tree (Breiman et al., 2001). 

For the ML part, three main steps are required; the first step is to preprocess the signals by 

denoising them. However, no filtering operation is necessary since the data is obtained 

from a numerical model, and it is extracted from a controlled environment. Secondly, 

manual extraction of the central damage sensitive features from the raw acceleration 

signals is proposed. These extracted damage sensitive features include the root mean square 

of the raw acceleration signals, the variance, the maximum amplitude, the skew, the 

kurtosis, the wave, the spectral kurtosis, the spectral skew, and the spectral power of the 

raw acceleration signals. 

Finally, these features are fed into the proposed ML models. On the other hand, for DL 

models, the proposed model, BuildingNet_1, is compared to two DL algorithms, which 

are: i) Long Short-Term Memory (LSTM), which are modified variants of RNNs, making 

it easier to recall memory details. They are used to solve RNN's vanishing gradient 

problems.  

LSTM proved useful in classifying, processing, and predicting time-series given time lags 

of unknown duration. They are trained using backpropagation (BP), which helps to 

optimize the outputs of the layers.  

RNN is a feedforward neural network that has internal memory. RNN is recursive as it 

executes the same operation for each data input, while the new input-output relies on the 
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previous computation. Upon processing the output, it is copied back to the recurrent 

network;  ii) Residual Networks, which extends the neural networks to profound structures 

by adding the shortcut connection in each residual block to enable the gradient flow directly 

through the bottom layers (Fawaz et al., 2019). The difference with the standard 

convolutions is that a direct shortcut is added to link the output of a residual block to its 

input. Thus, this should enable the flow of the gradient directly through these connections, 

which makes training a deep neural network much more accessible by reducing the 

vanishing gradient effect (Wang et al., 2017). This architecture is considered the most 

profound architecture with the first nine of its 11 layers being convolutional, followed by 

a global pooling layer that averages the time series across the time dimension. This model 

can be trained on a specific dataset, then transfer and fine-tune it on a target dataset without 

the need for modifying the hidden layers of the architecture.  

4.4.3.3 BuildingNet_1 Prediction Performance 

Table 4.4 presents a comparison of the testing results of the proposed ML and DL models 

for the first assessment damage scenario, which consists of installing ten sensors, of 

monitoring the damage separately on each floor. The comparison between the ML models 

based on a combination of accuracy, f1 score, and MCC proves that RF was the most 

suitable classifier for the proposed dataset among all the other ML models. However, ML 

models were still unable to learn the proposed dataset. For this reason, the DL part has been 

discussed in terms of three main models, as presented above.  

Table 4.4: Comparison between conventional ML and DL Time-Series classifiers 

using different metrics corresponding to the first damage assessment scenario. 

Metrics 
ML models DL models 

DT Bagging KNN RF ResNet LSTM 1D-CNN 

Accuracy 0.463 0.509 0.494 0.516 0.69 0.74 0.89 

F1 score 0.594 0.633 0.618 0.638 0.77 0.80 0.9 

ROC_AUC     0.905 0.95 0.96 

MCC 0.084 0.106 0.112 0.115 0.22 0.33 0.40 
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It can be observed that the 1D CNN model developed in this study as "BuildingNet_1" was 

the best for all the ML metrics. For instance, the overall accuracy of the model was about 

90%, compared to 74% and 69% for ResNet and LSTM, respectively. The same trend was 

observed for the other metrics, including the weighted average f1 score, MCC, and 

especially the ROC_AUC score, which was 96%, confirming that it is an excellent model. 

"BuildingNet_1" is an excellent fit for the first damage assessment scenario. 

Table 4.5 shows the confusion matrix of "BuildingNet_1", which presents 11 classes; the 

first class corresponds to the healthy class, while D1 till D10 are the successive damaged 

stories from the beginning to the last story. As explained in Section 3, the healthy class is 

much more significant than the other classes. For instance, the support for the actual 

healthy class is 2500 compared to almost 25 per damaged class. Thus, some 

misclassifications can be related to the healthy class, and this can be explained by the fact 

that the damaged classes (less support) were biased by the healthy class (more support). 

However, this does not affect the overall performance of the classifier, as indicated by the 

ML metrics. 
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Table 4.5: BuildingNet_1 Confusion Matrix. 

Predicted 

label 

Actual Label 

 Healthy D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

Healthy 2296 6 7 9 16 10 8 7 6 10 3 

D1 15 19 0 0 0 0 0 0 0 0 0 

D2 32 0 16 0 1 0 0 0 0 0 0 

D3 6 0 0 14 0 0 0 0 0 0 0 

D4 9 1 1 0 16 1 0 0 0 0 0 

D5 12 0 0 0 0 23 0 1 0 0 0 

D6 17 0 0 0 0 0 13 0 1 0 0 

D7 24 0 0 0 0 0 1 17 1 0 0 

D8 18 0 0 0 0 0 0 0 10 0 0 

D9 37 0 0 0 0 0 0 0 1 10 0 

D10 34 0 0 0 0 0 0 0 0 0 21 

4.4.4 Case Study 2 

4.4.4.1 Definition 

Unlike case study 1, which determines the appropriate DL model for assessing damage in 

a less complicated scenario consisting of installing a sensor on each floor, this case study 

2 aims at tracking damage in each floor of the building system using only one sensor. The 

same DL model was used to determine damage in a more complicated situation, but with 

a different configuration of the network's parameters and hyperparameters, as illustrated in 

Tables 4.1 and 4.2. Contrary to case 1, all classes were nearly equal, and no data imbalance 

was encountered in this case. Thus, accuracy and f1 score should be enough to assess the 

efficiency of the proposed model. 
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4.4.4.2 BuildingNet_2 Prediction Performance 

It can be observed from Figure 4.9 and Tables 4.6 and 4.8 that the model can yield a high 

f1 score and accuracy exceeding 91% and 98%, respectively, in assessing damage on each 

floor separately. However, starting from the seventh floor, the model's performance started 

to drop. For instance, moving from the 6th to the 7th floor, the f1 score decreased from 91% 

to 84% and finally reached 34% to assess the damage on the final story (10th floor). 

 

Figure 4.9: Evaluation of BuildingNet_2 Damage Distribution in Terms of Accuracy 

and f1 score. 

Moreover, the healthy class had some misclassifications due to the above-noted decrease 

in performance between floors 7 and 10, leading the model to misclassify the damaged 10th 

floor as a healthy one. This result is rather expected because of the long distance between 

the first floor where the sensor is installed and the tenth, ninth or eighth floors where 

damage was located. The overall performance of the proposed 1D CNN model is 

reasonable for the scenario of having only one sensor to separately assess the damage on 

each floor and precisely localize it. This can serve as a baseline model for localizing 

damage in Multi-DOF systems and can yield considerable performance in localizing 

damage on the first six floors. However, the inspector should pay extra attention to 
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detecting damage on the upper floors since results could be misleading.  A proposed work 

installed several sensors on selected floors, called measurement floors (Rafiei and Adeli, 

2017). These floors were defined as locations of stiffness or mass changes. They divided a 

scaled 38 floor reinforced concrete high-rise building into nine measurement floors in a 

way that for every five stories, they need an additional sensor to track damage. However, 

their approach consisted just of assessing the overall health state of the structure without 

determining the exact position of the floor where the damage was located.  

Table 4.6: BuildingNet_2 Confusion Matrix. 

Predicted 

label 

Actual Label 

 Healthy D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

Healthy 11 1 0 0 0 0 0 2 3 2 8 

D1 0 22 0 0 0 0 0 0 0 0 0 

D2 0 1 27 0 0 0 0 0 0 0 0 

D3 0 0 0 20 0 0 0 0 0 0 0 

D4 0 0 0 0 18 1 1 0 0 0 0 

D5 0 0 0 0 0 22 0 0 1 0 0 

D6 0 0 0 0 0 0 26 0 0 0 3 

D7 0 0 0 0 0 0 0 19 1 0 2 

D8 1 0 0 0 0 0 1 1 17 3 2 

D9 3 1 1 0 0 0 0 0 2 14 5 

D10 8 0 1 0 0 0 0 1 2 10 11 

4.4.5 Case Study 3 

4.4.5.1 Definition 

In the second case study, "BuildingNet_2" demonstrated an accuracy of 75% in assessing 

the position of damage in the ten DOF system. To illustrate the excellent performance of 
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the proposed model, a simpler damage assessment scenario that aims to classify the overall 

state of the building as damaged or not, was explored. 

4.4.5.2 BuildingNet_3 Prediction Performance 

As illustrated in Tables 4.7 and 4.8, the proposed DL model "BuildingNet_3" proved its 

effectiveness in detecting whether the structural system is damaged or not, reaching an 

accuracy of about 95%. Thus, the proposed network can be used in a preliminary analysis 

to determine the global health state of the structural system accurately and effectively. As 

a result, installing one sensor to track the overall health condition, had perfectly proved its 

high applicability when dealing with this range of building height, and it is expected to 

serve as a preliminary assessment to check whether a building is damaged or not. 

Table 4.7: BuildingNet_3 confusion matrix. 

Predicted 

Label 

Actual Label 

 Healthy Damaged 

Healthy 19 8 

Damaged 6 242 

 

Figure 4.10: Comparison of Accuracy Results with 0-20% Random Gaussian Noise 

Added to the Testing Data. 
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4.4.6 Effect of Noise 

To test the robustness of the proposed DL models, their sensitivity up to 20% noise was 

investigated. Both original and noisy data were arranged in the comparative tests. The 

definition of noise level here is the ratio of white Gaussian noise injected in all the three 

datasets corresponding to the three proposed models, in a way that the networks were 

trained and tested using noisy data. Figure 4.10 shows the accuracies of the three scenarios. 

It can be observed that "BuildingNet_1" achieved high efficiency of 94.15% in the ten 

percent noise situation.  

Furthermore, it scored superior performance even for the 20% noise case with an accuracy 

of 93.76%. It can be deduced that when white noise was injected into the data set, the 

proposed models still achieved considerable accuracy with a margin of difference, not 

exceeding 2% for all the proposed models. The results show that the damage assessment 

using BuildingNet models was reliable even when the test data were smeared up to a 20% 

noise ratio, which confirms the robustness of the proposed models. 

However, it is worth mentioning that the second case study needs more consideration in 

the future, despite its practical use consisting of installing one sensor to track the damage 

on each damaged floor separately, which serves to limit the number of sensors installed 

into a structure to assess its health condition. For instance, installing one sensor to track 

the damage separately can be applied successfully and with high performance for the first 

six floors. This can serve to limit the number of sensors to one sensor every six floors, and 

these floors are called measurement floors. Thus, it is suggested to follow this assumption 

when assessing damage using only one single channel measurement for different heights 

of the building. If the height of the building is less than six floors, using one sensor is 

expected to yield excellent performance. However, when exceeding six floors, one 

additional sensor per each additional six floors is needed to separately detect the damage 

on each floor accurately. 
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Table 4.8: Demonstration of Obtained Results for the Three Main DL Models 

Adopted in this Study. 

Metrics 
Proposed Models 

Case Study 1 Case Study 2 Case Study 3 

Overall Accuracy 0.890 0.750 0.949 

Weighted Average f1 score 0.900 0.760 0.731 

MCC 0.400 0.736 0.703 

4.5 Conclusion and Future Work 

In this study, a real-time DL vibration-based technique for assessing structural damage in 

a 10 DOF system is proposed. Three damage assessment scenarios were illustrated using 

three different 1D CNN architectures. The first damage assessment scenario tracks the 

exact location of damage using ten sensors installed on each floor, and the second is similar 

to the first except using only one sensor mounted on the first floor. The latter only evaluates 

the condition of the structural system via a binary classification, healthy or damaged, 

without determining the exact location of the damage. The time record adopted for each 

experiment was 256s, with a sampling frequency of 1000 Hz. The selected training to 

testing ratio was 90:10. The SMOTE oversampling technique was used to augment the data 

to assist the DL models in the training phase, which helped to improve the performance of 

the testing phase. Based on the experimental findings, the following conclusions can be 

drawn: 

• The proposed 1D CNN model can locate structural damage separately by installing one 

sensor on each floor, with an accuracy of about 90%. 

•  The baseline model for detecting damage on each floor using one single channel 

measurement, proposed in this study reached an accuracy of 75%.  

• The binary classification of damage proposed in this study demonstrated superior 

performance and accuracy of about 95%. 
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• The performance of the 1D CNN classifier in such a scenario was superior for the first six 

to seven stories, reaching more than 97% accuracy and 91% for the f1 score. However, 

starting from the 7th floor, the model begun to misclassify some damage patterns, reaching 

about 85% and 34% for accuracy and f1 score, respectively.  

• It is believed that installing one sensor at every six stories (substructures or measurement 

floors) could be a functional solution to mitigate the limitations of the proposed study in 

high-rise buildings, which can be more cost-effective and practical. 

• The proposed models demonstrated excellent performance when adding up to 20% 

random Gaussian noise ratio, with no more than 2% decrease in models' accuracy. 
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Chapter 5  

5 Conclusions, Recommendations, and Future Research 

5.1 Conclusions 

There has been a rapid increase in the volume of research on applications of machine 

learning algorithms in the field of structural health monitoring. The application of ML 

algorithms to detect, assess, and possibly repair and rehabilitate damage in civil 

engineering structures is garnering increasing attention.  

Chapter two presented, critically surveyed, discussed, and analyzed the main techniques 

and algorithms that have been deployed for this purpose in the open literature. Detailed 

tables have been created to summarize the state-of-art and provide the reader with 

convenient access to the volume of work that has been conducted in this domain. The 

advantages and limitations of these techniques have been identified, and best practice 

recommendations for their use have been formulated. Knowledge gaps and the needed 

future research have been outlined. 

Chapter three proposed an automated inspection model for concrete structures using DL 

and IPTs to detect cracks. A convolutional neural network was trained independently on 

an image database consisting of 40k images with a 227x227 pixel resolution. The used 

classifier englobed five classes based on two criteria: the condition of the concrete surface 

(presence of cracks), and the orientation of cracks (HR, HL, VR, and VL). The total number 

of images used for training and testing of the classifier was 6000, with a split of 60:20:20 

(3600 Images for training and 1200 images for validation and testing). IPTs have been 

implemented to induce transformations in the pictures tested by the CNN classifier for 

localizing cracks using Otsu's method for thresholding, noise removal, image binarization, 

and image segmentation. After localizing the crack, its geometrical properties, including 

length, width, and angle of orientation, are calculated. A field test was conducted to 

evaluate the performance of the trained IPT algorithm by testing images of higher pixel 

resolution. 
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In Chapter four, a real-time DL vibration-based technique for assessing structural damage 

in a 10 DOF system was proposed. Three damage assessment scenarios were illustrated 

using three different 1D CNN architectures. The first damage assessment scenario tracks 

the exact location of damage using ten sensors installed on each floor, and the second is 

similar to the first except using only one sensor mounted on the first floor. The latter only 

evaluates the condition of the structural system via a binary classification, healthy or 

damaged, without determining the exact location of the damage. The time record adopted 

for each experiment was 256s, with a sampling frequency of 1000 Hz. The selected training 

to testing ratio was 90:10. The SMOTE oversampling technique was used to augment the 

data to assist the DL models in the training phase, which helped improving the performance 

of the testing phase. The proposed 1D CNN model can locate structural damage separately 

by installing one sensor on each floor, with an accuracy of about 90%. The baseline model 

for detecting damage on each floor using one single channel measurement, proposed in this 

study, reached an accuracy of 75%. The binary classification of damage proposed in this 

study demonstrated superior performance and accuracy of about 95%. 

This study offers a nearly fully automated modern inspection platform that combines the 

most recent engineering interdisciplinary subfields, including the application of Machine 

Learning, Deep Learning, Image Processing, and Signal processing techniques. The 

obtained results prove that this study is time and cost-saving.  

5.2 Recommendations and Future Research 

While the current applications of deep learning in SHM are mainly limited to global 

damage classification tasks, there is minimal research on the quantification and exact 

localization of damage in terms of crack length, width, and degree of severity in the open 

literature. Moreover, unlike other studies, the work conducted in this thesis proposes a 

decentralized approach that aims to detect damage in building structures using a single 

based channel measurement, which is expected to limit the costs of sensors installation 

drastically. Thus, the work reported in this thesis blazes the trail for future research and 

further studies as follows: 
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1. For the vibration-based model, a field test needs to be conducted to assess the 

performance of the proposed models in real-life structures subjected to different 

kinds of loadings, which can establish the proposed approach as a reliable 

inspection platform for the vibration-based aging portfolio of building structures  

2. For the vision-based model, it is believed that with further developmental work, 

and coupling it with UAV acquired images, the developed method can offer an 

automated platform for inspection of the colossal backlog of aging concrete 

structures worldwide 

3. More concrete durability issues in terms of visual defects should be covered (e.g., 

efflorescence, spalling, scaling), and this can be done by providing more datasets 

for images with specific damage patterns. 

4. Damage quantification in terms of volume spalling should be investigated, which 

can give better insight into the hidden features of damage inside concrete structural 

elements. 

5. Visual damage quantification can be coupled with X-ray scanning, infrared 

thermography, and/or ground penetrating radar to give more information on the 

physical degradation mechanisms in concrete. 

6. More construction and building materials should be investigated in terms of visual 

damage (Steel, wood, masonry) and more civil engineering structures should take 

part in the vibration-based study by expanding the research to other facilities 

(bridges, dams, tunnels, pipelines, etc.) 

7. One promising research direction would be combining the vision-based model and 

the vibration-based model in only one process. This is expected to offer a fully 

reliable inspection platform with minimal intervention from the human inspectors. 

With further validation work on real engineering structures, this study could be 

marketed to the engineering industry to transform civil engineering inspection 

protocols. 
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