1,312 research outputs found

    Nonlinear Analysis and Dynamic Structure in the Energy Market

    Get PDF
    This research assesses the dynamic structure of the energy sector of the aggregate economy in the context of nonlinear mechanisms. Earlier studies have focused mainly on the price of the energy products when detecting nonlinearities in time series data of the energy market, and there is little mention of the production side of the market. Moreover, there is a lack of exploration about the implication of high dimensionality and time aggregation when analyzing the market's fundamentals. This research will address these gaps by including the quantity side of the market in addition to the price and by systematically incorporating various frequencies for sample sizes in three essays. The goal of this research is to provide an inclusive and exhaustive examination of the dynamics in the energy markets. The first essay begins with the application of statistical techniques, and it incorporates the most well-known univariate tests for nonlinearity with distinct power functions over alternatives and tests different null hypotheses. It utilizes the daily spot price observations on five major products in the energy market. The results suggest that the time series daily spot prices of the energy products are highly nonlinear in their nature. They demonstrate apparent evidence of general nonlinear serial dependence in each individual series, as well as nonlinearity in the first, second, and third moments of the series. The second essay examines the underlying mechanism of crude oil production and identifies the nonlinear structure of the production market by utilizing various monthly time series observations of crude oil production: the U.S. field, Organization of the Petroleum Exporting Countries (OPEC), non-OPEC, and the world production of crude oil. The finding implies that the time series data of the U.S. field, OPEC, and the world production of crude oil exhibit deep nonlinearity in their structure and are generated by nonlinear mechanisms. However, the dynamics of the non-OPEC production time series data does not reveal signs of nonlinearity. The third essay explores nonlinear structure in the case of high dimensionality of the observations, different frequencies of sample sizes, and division of the samples into sub-samples. It systematically examines the robustness of the inference methods at various levels of time aggregation by employing daily spot prices on crude oil for 26 years as well as monthly spot price index on crude oil for 41 years. The daily and monthly samples are divided into sub-samples as well. All the tests detect strong evidence of nonlinear structure in the daily spot price of crude oil; whereas in monthly observations the evidence of nonlinear dependence is less dramatic, indicating that the nonlinear serial dependence will not be as intense when the time aggregation increase in time series observations

    Cauchy's infinitesimals, his sum theorem, and foundational paradigms

    Full text link
    Cauchy's sum theorem is a prototype of what is today a basic result on the convergence of a series of functions in undergraduate analysis. We seek to interpret Cauchy's proof, and discuss the related epistemological questions involved in comparing distinct interpretive paradigms. Cauchy's proof is often interpreted in the modern framework of a Weierstrassian paradigm. We analyze Cauchy's proof closely and show that it finds closer proxies in a different modern framework. Keywords: Cauchy's infinitesimal; sum theorem; quantifier alternation; uniform convergence; foundational paradigms.Comment: 42 pages; to appear in Foundations of Scienc

    Proof and Problem Solving at University Level

    Get PDF
    This paper will be concerned with undergraduate and graduate students’ problem solving as they encounter it in attempting to prove theorems, mainly to satisfy their professors in their courses, but also as they conduct original research for theses and dissertations. We take Schoenfeld’s (1985) view of problem, namely, a mathematical task is a problem for an individual if that person does not already know a method of solution for that task. Thus, a given task may be a problem for one individual, who does not already know a solution method for that task, or it may be an exercise for an individual who already knows a procedure or an algorithm for solving that task

    Teaching Calculus with Infinitesimals: New Perspectives

    Get PDF
    The present research corroborates K. Sullivan\u27s initial results as stated in her epoch making study about the effectiveness of teaching elementary calculus using Robinson\u27s non standard approach. Our research added to her results related to the teaching of the elementary integral, with similar positive results. In this essay we propose a definition of the notion of cognitive advantage mentioned by Sullivan in expressing the dramatic differences in understanding of students of non standard calculus as opposed to those of its standard counterpart. Our proposal is based on ideas of Kitcher and Kuhn and allows us to better understand the didactics of Calculus. Formally K. Sullivan\u27s claim of an observed advantage when referring to the improved understanding of non standard calculus students (as opposed to the standard approach of Weierstrass) is a consequence to the accepted fact that mathematical truths remain the same when changes of paradigms ensue, a situation markedly different from that science. While mathematical truths remain, mathematical justifications (proofs) change dramatically and increase in complexity

    Experimental Approaches to Theoretical Thinking: Artefacts and Proofs

    Get PDF
    This chapter discusses some strands of experimental mathematics from both an epistemological and a didactical point of view. We introduce some ancient and recent historical examples in Western and Eastern cultures in order to illustrate how the use of mathematical tools has driven the genesis of many abstract mathematical concepts. We show how the interaction between concrete tools and abstract ideas introduces an "experimental" dimension in mathematics and a dynamic tension between the empirical nature of the activities with the tools and the deductive nature of the discipline. We then discuss how the heavy use of the new technology in mathematics teaching gives new dynamism to this dialectic, specifically through students' proving activities in digital electronic environments. Finally, we introduce some theoretical frameworks to examine and interpret students' thoughts and actions whilst the students work in such environments to explore problematic situations, formulate conjectures and logically prove them. The chapter is followed by a response by Jonathan Borwein and Judy-anne Osborn

    Investigation, Development, and Evaluation of Performance Proving for Fault-tolerant Computers

    Get PDF
    A number of methodologies for verifying systems and computer based tools that assist users in verifying their systems were developed. These tools were applied to verify in part the SIFT ultrareliable aircraft computer. Topics covered included: STP theorem prover; design verification of SIFT; high level language code verification; assembly language level verification; numerical algorithm verification; verification of flight control programs; and verification of hardware logic

    Mathematicians\u27 Evolving Personal Arguments: Ideas That Move Proof Constructions Forward

    Get PDF

    Model Transformation Languages with Modular Information Hiding

    Get PDF
    Model transformations, together with models, form the principal artifacts in model-driven software development. Industrial practitioners report that transformations on larger models quickly get sufficiently large and complex themselves. To alleviate entailed maintenance efforts, this thesis presents a modularity concept with explicit interfaces, complemented by software visualization and clustering techniques. All three approaches are tailored to the specific needs of the transformation domain
    • …
    corecore