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           1   Introduction 

 From straight-edge and compass to a variety of computational and drawing tools, 
throughout history instruments have been deeply intertwined with the genesis and 
development of abstract concepts and ideas in mathematics. Their use introduces an 
“experimental” dimension into mathematics, as well as a dynamic tension between 
the  empirical nature  of activities with them, which encompasses perceptual and 
operational components– and the  deductive nature  of the discipline, which entails 
rigorous and sophisticated formalisation. As Pierce writes of this peculiarity:

  (It) has long been a puzzle how it could be that, on the one hand, mathematics is purely deductive 
in its nature, and draws its conclusions apodictically, while on the other hand, it presents as rich 
and apparently unending a series of surprising discoveries as any observational science. 

  (Peirce, C.P., 3.363: quoted in Dörfl er  2005 , p. 57)   
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 The main goal of our chapter centres on the dynamic tension between the  empirical 
and the theoretical nature of mathematics. Our purpose is to underline the elements of 
historical continuity in the stream of thought today called experimental mathematics, 
and show the concrete possibilities it offers to today’s teachers for pursuing the learning 
of proof in the classroom, especially through the use of their computer tools. 

 Specifi cally, we examine how this dynamic tension regulates the actions of students 
who are asked to solve mathematical problems by fi rst making explorations with 
technological tools, then formulating suitable conjectures and fi nally proving them. 

 The latest developments in computer and video technology have provided a 
multiplicity of computational and symbolic tools that have rejuvenated mathematics 
and mathematics education. Two important examples of this revitalisation are 
 experimental mathematics  and  visual theorems :

  Experimental mathematics is the use of a computer to run computations – sometimes no 
more than trial-and-error tests – to look for patterns, to identify particular numbers and 
sequences, to gather evidence in support of specifi c mathematical assertions that may them-
selves arise by computational means, including search. Like contemporary chemists – and 
before them the alchemists of old – who mix various substances together in a crucible and heat 
them to a high temperature to see what happens, today’s experimental mathematicians put 
a hopefully potent mix of numbers, formulas, and algorithms into a computer in the hope 
that something of interest emerges. 

(   Borwein and Devlin  2009 , p. 1) 

 Briefl y, a visual theorem is the graphical or visual output from a computer program – usually 
one of a family of such outputs – which the eye organizes into a coherent, identifi able whole and 
which is able to inspire mathematical questions of a traditional nature or which contributes in 
some way to our understanding or enrichment of some mathematical or real world situation. 

(Davis  1993 , p. 333)   

 Such developments throw a fresh light on mathematical epistemology and on the 
processes of mathematical discovery; consequently, we must also rethink the nature of 
mathematical learning processes. In particular, the new epistemological and cognitive 
viewpoints have challenged and reconsidered the phenomenology of learning proof 
(cf. Balacheff  1988,   1999 ; Boero  2007 ; de Villiers  2010 ;   Chap. 3       ). These recent 
writers have scrutinised and revealed not only  deductive  but also  abductive  and 
 inductive  pro cesses crucial in all mathematical activities, emphasising the importance 
of experimental components in teaching proofs. The related didactical phenomena 
become particularly interesting when instructors plan proving activities in a technolo-
gical environment (   Arzarello and Paola  2007 ; Jones et al.  2000  ) , where they can 
carefully design their interventions. By “technological environment”, we do not 
mean just digital technologies but any environment where instruments are used to 
learn mathematics (for a non-computer technology, see Bartolini Bussi  2010  ) . 
We discuss this issue from different linked perspectives: historical, epistemological, 
didactical and pedagogical. 

 In Part 1, we consider some emblematic events from the history of Western 
mathematics where instruments have played a crucial role in generating mathemati-
cal concepts. 

 Next, Part 2 analyses some didactical episodes from classroom life, where 
the use of instruments in proving activities makes the dynamic tension palpable. 
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We carefully analyse students’ procedures whilst using tools and derive some 
 theoretical frameworks that explain how that tension can be used to design suitable 
didactical situations. Within these, students can learn practices with the tools that 
help them pass from the empirical to the theoretical side of mathematics. In particular, 
we discuss the complex interactions between inductive, abductive and deductive 
modalities in that transition. By analysing the roles for technologies within our 
framework, we show that instructors can and should make the history and cultural 
aspects of experimental mathematics visible to students. 

 Last, in Part 3 we show how a general pedagogical framework (Activity Theory) 
makes sense of the previous microanalyses within a general, unitary educational 
standpoint.  

    2   Part 1: From Straight-Edge and Compass to Dynamic 
Geometry Software 

    2.1   Classical European Geometry 

 Since antiquity, geometrical constructions have had a fundamental theoretical 
importance in the Greek and later Western traditions (Heath  1956 , p. 124); indeed, 
construction problems were central to Euclid’s work. This centrality is clearly 
illustrated by the later history of the classic ‘impossible’ problems, which so puzzled 
Euclid and other Greek geometers (Henry  1993  ) . Despite their apparent practical 
objective, geometrical constructions (like drawings produced on papyrus or 
parchment) do have a theoretical meaning. In Euclid’s masterpiece, the  Elements , 
no real, material tools are envisaged; rather their use is objectifi ed into the geo-
metrical objects defi ned by defi nitions and axioms. However, Arsac  (  1987  )  shows 
that the observational, empirical component was also present in the  Elements . 
Euclid was aware of the dialectic between the decontextualised aspects of pure 
geometry and the phenomenology of our perception of objects in space and our 
representations of them in the plane. In his  Optics  (Euclide  1996  )  masterpiece, he 
gives a rationale for this tension. Giusti writes: “the mathematical objects are not 
generated through abstraction from real objects […] but they formalize human 
operations” 1 (Giusti  1999  ) . In addition, they are shaped by the tools with which 
people perform such operations. 

 Consequently, the tools and the rules for their use have a counterpart in the axi-
oms and theorems of a theoretical system, so that we may conceive of any construc-
tion as a theoretical problem stated inside a specifi c theoretical system. The solution 
of a problem is correct; therefore, insofar as we can validate it within such a 

   1   ‘gli oggetti matematici provengono non dall’astrazione da oggetti reali […] ma formalizzano 
l’operare umano’.  
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 theoretical system, any successful construction corresponds to a specifi c theorem, 
and  validates  the specifi c relationships between the properties of the geometrical 
fi gure represented by the drawing, obtained after the construction. 

 From the perspective of classical geometry, drawing tools, despite their empirical 
manifestation, may also be conceived as theoretical tools defi ning a particular 
geometry. Hence, the tradition of calling classic Euclidean geometry “straight-edge 
and compass geometry” refers to both the origins and limitations of its objects.  

    2.2   The Modern Age in Europe 

 In the Western Euclidean tradition, interesting European developments about the 
theoretical status of drawing tools and geometric objects have accumulated since 
the seventeenth century. For example, in the ‘ Géométrie ’, Descartes clearly states 
two methods of representing curves: (a) by a continuous motion and (b) by an equa-
tion (Bos  1981  ) . Descartes invented a tool, his compass (Fig.  5.1 ), to make evident 
what he meant: moving the different t-squares YBC, DCE, EDF, … moves a point 
like H and generates a curve with the features described under (a) and (b).  

 In contrast, in the Hippias trisectrix (Fig.  5.2 ), the points of the curve APQT are 
generated through a continuous synchronous motion of the ray DP (which rotates 
uniformly around D like the hand of a clock) and of the horizontal ray MP (which 
moves uniformly downwards, so that whilst the ray rotates from DA to DC the ray 
MP moves from AB to DC). In fact, it is impossible to empirically obtain the posi-
tion of all the points of the curve APQT since one can only imagine them through 
the description of the movement, not concretely depict them as in the case of a 
fi gure drawn using straight-edge and compass.  

  Fig. 5.1    Descartes compass       
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 As Lebesgue  (  1950  )  claims, a curve traced pointwise is obtained by  approximation; 
it is only a graphic solution. However, if one designs a tracing instrument, the 
graphic solution becomes a mechanical solution. The seventeenth century mathe-
maticians found the mechanical solution acceptable because it refers to one of the 
basic intuitions about the continuum: namely, the movement of an object. Descartes 
did not confront the question of whether the two given criteria – the mechanical and 
the algebraic – are equivalent or not. This problem requires more advanced alge-
braic tools and, more important, changing the status of the new drawing instruments 
from tools for solving geometric problems to objects of a theory. 

 In the classical age and in the seventeenth century, changing the drawing tools 
would clearly have changed the set of solvable problems. So, if one accepts only the 
straight-edge and compass (i.e., only straight lines and circles), one cannot rigor-
ously solve the problems of cube duplication and angle trisection. If, on the contrary, 
other tools are admitted (e.g., the Nicomedes compass that draws a conchoid; see 
Heath  1956  ) , these problems can be solved rigorously. 

 The previous examples highlighted a crucial dialectical relationship between 
practical and theoretical problems. The core of this relationship resides in the notion 
of  construction  as related to the specifi c tools available. Therefore, the practical 
realisation of any graphical element has a counterpart in a theoretical element, in 
either an axiom that states how to use a tool or a theorem that validates the construc-
tion procedure according to the stated axioms. In these terms, we can consider a 
geometrical construction archetypal for a theoretical approach to geometry. 

 However, in spite of their long tradition, geometrical constructions have recently 
lost their centrality and almost disappeared from the Geometry curriculum, at least 
in the Western world. One can rarely fi nd any reference to ‘drawing tools’ when 
geometrical axioms are stated, and geometrical constructions no longer belong to 
the set of problems commonly proposed in the textbooks. This disappearance 
began as nineteenth century mathematicians from Pasch to Peano to Hilbert tried 
to eliminate the observational “intuitive” hidden hypotheses from Geometry. 

  Fig. 5.2    Hippias trisectrix       
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Similarly, the school of Weierstrass eliminated any reference to space or motion in 
the geometric defi nition of limits through the epsilon-delta machinery (Lakoff 
and Núñez  2000  ) : in fact, the new defi nition entails only purely logical relation-
ships (“for all epsilon, there is a delta…”) and any reference to motion and time 
(e.g. “whilst  x  approaches  x  

0
 ,  f ( x ) approaches  l ”) is eliminated. Until recently, 

observational components had apparently been completely banished from the 
geometric scene. However, philosophical criticisms by many recent scholars (for a 
survey, cf. Tymoczko  1998  )  and the development of computational techniques 
have produced a fresh approach to mathematical learning and discovery. They have 
revived epistemological stances which underlie the observational, experimental 
and empirical aspects of mathematical inquiry, including the use of geometric con-
structions (see Lovasz  2006  ) . 

 Indeed, geometric constructions are rich in meaning and perfectly suitable for 
implementation in today’s classrooms, even though the relationship between a 
geometrical construction and the theorem which validates it is very complex and 
certainly not immediate for students, as Schoenfeld  (  1985  )  discussed. As he 
explained, “many of the counterproductive behaviors we see in students are learned 
as unintended by-products of their mathematics instruction” (p. 374). Apparently, 
the very nature of the construction problem may make it diffi cult to take a theoretical 
perspective (cf. Mariotti  1996  ) . 

 Nevertheless, the analysis above allows us to state a specifi c hypothesis, namely, 
that  geometrical construction  can serve as a  key to accessing  the meaning of proof. 
Different research groups have undertaken to test or apply this hypothesis, in different 
directions with different tools and different mathematical theories.  

    2.3   Constructions with Straight-Edge and Compass 
in the Mathematics Classroom 

 A recent teaching experiment in Italy has shown the potential of straight-edge and 
compass for developing an experimental approach with theoretical aims (Bartolini 
Bussi et al.  in print  ) . The project involved a group of 80 mathematics teachers (only 
six from primary school, the others equally divided between junior secondary and 
high school; see Martignone  2010  )  and nearly 2,000 students (scattered all over a 
large region of Northern Italy). Straight-edge and compass problems were set in the 
larger context of mathematical “machines” (Bartolini Bussi  2000 , p. 343), tools that 
force a point to follow a trajectory or to be transformed according to a given law. 
A common theoretical framework (see below; also Bartolini Bussi and Mariotti 
 2008  )  structured the exploration of the tools and of the functions they served in 
the solution of geometrical problems by construction. Similar learning processes 
were implemented with the participants. First, the teachers received an in-service 
course of six meetings; then they instructed their students. A total of 79 teaching 
experiments, with detailed documentations, were collected; 25% of them concerned 
straight-edge and compass. 
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 The general structure of the approach comprised:

    A.    Exploration and analysis of the tool (shorter for teachers; longer for students, in 
order to make them aware of the relationship between the physical structure of 
the compass and Euclid’s defi nition of a circle).  

    B.    Production of very simple constructions of geometrical fi gures (e.g., “draw an 
equilateral triangle with a given side”) in open form, in order to allow a variety 
of constructions based on different known properties.  

    C.    Comparison of the different constructions in large group discussions, to show 
that the “same” drawing may be based on very different processes, each drawing 
on either implicit or explicit assumptions and on the technical features of the 
tool.  

    D.    Production of proofs of the constructions exploiting each times the underlying 
assumptions.     

 These stages were structured around three key questions concerning the compass 
as a tool:

    1.    How is it made?  
    2.    What does it do?  
    3.    Why does it do that?     

 The third question, dependent on the others, aimed at connecting the tool’s 
practical use to the theoretical content. In fact, the justifi cation of a construction 
draws on the geometrical properties of the compass, as is clearly shown in the proof 
of Proposition 1, Book 1 of Euclid’s  Elements  (Heath  1956 , p. 241), with the 
construction of an equilateral triangle.  

    2.4   Constructions in a DGS 

 The interest in constructions has been renewed in particular by the appearance of 
Dynamic Geometry Systems (DGS), where the basic role played by construction 
has been reinforced by the use of graphic tools available in a dynamic system, like 
 Cabri-géomètre ,  Sketchpad ,  Geogebra , etc. Any DGS fi gure is the result of a con-
struction process, since it is obtained after the repeated use of tools chosen from 
those available in the “tool bar”. However, what makes DGS so interesting com-
pared to the classic world of paper and pencil fi gures is not only the construction 
facility but also the direct manipulation of its fi gures, conceived in terms of the 
embedded logic system (Laborde and Straesser  1990 ; Straesser  2001  )  of Euclidean 
geometry. DGS fi gures possess an intrinsic logic, as a result of their construction, 
placing the elements of a fi gure in a hierarchy of relationships that corresponds to 
the procedure of construction according to the chosen tools and in a hierarchy of 
properties, and this hierarchy corresponds to a relationship of logical conditionality. 
This relationship is made evident in the “dragging” mode, where what cannot be 
dragged by varying the basic points (elements) of a built fi gure constitutes the results 
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of the construction. The dynamics of the DGS fi gures preserves its intrinsic logic; 
that is, the logic of its construction. The DGS fi gure is the complex of these elements, 
incorporating various relationships which can be differently referred to the defi nitions 
and theorems of geometry. 

 The presence of the dragging mode introduces in the DGS environment a specifi c 
criterion of validation for the solution of the construction problems: A solution is 
valid if and only if the fi gure on the screen is stable under the dragging test. However, 
the system of DGS fi gures embodies a system of relationships consistent with the 
broad system of geometrical theory. Thus, solving construction problems in DGS 
means not only accepting all the facilities of the software but also accepting a logic 
system within which to make sense of them. 

 The DGS’s intrinsic relation to Euclidean geometry makes it possible to interpret 
the control ‘by dragging’ as corresponding to theoretical control ‘by proof and defi -
nition’ within the system of Euclidean Geometry, or of another geometry that allows 
recourse to a larger set of tools. In other words, there is a correspondence between 
the world of DGS constructions and the theoretical world of Euclidean Geometry.  

    2.5   DGS Constructions in the Classroom 

 Mariotti  (  2000,   2001  )  carried out teaching experiments with grade 10 students 
attending fi rst year in a science-oriented school (Liceo Scientifi co). The design of 
the teaching sequence was based on the development of the fi eld of experience 
(Boero et al.  1995  )  of geometrical constructions in a DGS ( Cabri-Géomètre ). 
The educational aim was to introduce students to a theoretical perspective; its 
achievement relied on the potential correspondence between DGS constructions 
and geometric theorems. 

 The activity started by revisiting drawings and concrete artefacts which the pupils 
had already experienced: for example, the compass. The students were more or less 
familiar with the artefacts’ constraints, which determine possible actions and expected 
results; for instance, a compass’s intrinsic properties directly affect the properties of 
the graphic trace it produces. Revisitation involved transferring the drawing activity 
into the  Cabri  environment, thus moving the external context from the physical world 
of straight-edge and compass to the virtual world of DGS fi gures and commands. 

 In a DGS environment, the new ‘objects’ available are Evocative Computational 
Objects (Hoyles  1993 ; Hoyles and Noss  1996 , p. 68), characterised by their com-
putational nature and their power to evoke geometrical knowledge. For  Cabri , 
they comprise:

    1.    The  Cabri -fi gures realising geometrical fi gures;  
    2.    The  Cabri -commands (primitives and macros), realising the geometrical rela-

tionships which characterise geometrical fi gures ;   
    3.    The dragging function, which provides a perceptual control of the construction’s 

correctness, corresponding to a theoretical control consistent with geometric 
theory.     
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 The development of the fi eld of experience occurred through activities in  Cabri ’s 
world, such as construction tasks, interpretation and prediction tasks and mathematical 
discussions. However, that development also involved making straight-edge and 
compass constructions, which became both concrete referents and signs of the  Cabri  
fi gures. Relating the drawings on paper and the  Cabri  fi gures gave the students a 
unique experience with a ‘double face’, one physical and the other virtual. 

 In the DGS environment, a construction activity, such as drawing fi gures through 
the commands on the menu, is integrated with the dragging function. Thus, a con-
struction task is accomplished if the fi gure on the screen passes the dragging test. 

 In Mariotti’s  (  2000,   2001  )  research, the necessity of justifying the solution came 
from the need to validate one’s own construction, in order to explain why it worked 
and/or to foresee that it would work. Although dragging the fi gure might suffi ce to 
display the correctness of the solution, the second component of the teaching/learn-
ing activities came into play at this point. Namely, construction problems become 
part of a social interchange, where the students reported and compared their differ-
ent solutions. This represented a crucial element of the experience.  

    2.6   Experiments and Proofs with the Computer 

 Typically, current experimental mathematics involves making computations with a 
computer. Crucially, validating numerical solutions, which may have already been 
found, requires producing suitable proofs (cf. Borwein and Devlin  2009 , for exam-
ple). We illustrate with an example precisely how a so called CAS (Computer 
Algebra System: it processes not only numerical values but also algebraic expres-
sions with letters and infi nite-precision rational numbers) can be used as a tool for 
promoting the production of proofs for found numerical solutions. 

 Arzarello  (  2009  )  researched Grade 9 students, attending fi rst year in a science-
oriented higher secondary school (Liceo Scientifi co), who were studying functions 
through tables of differences. The students had already learnt that for fi rst-degree 
functions, the fi rst differences are constant. The teacher asked them to make conjec-
tures on which functions have the fi rst differences that change linearly and to arrange 
a spreadsheet as in Fig.  5.3a , where they utilise: 

    1.    Columns A, B, C, D to indicate respectively the values of the variable  x , of the 
function  f(x)  (in B 

i
  there is the value of  f (A 

i
 )) and of its related fi rst and second 

differences (namely in C 
i
  there is the value  f (A 

i+1
 ) −  f (A 

i
 ) and D 

j
  there is the value 

C 
j+1

  − C 
j
 );  

    2.    Variable numbers in cells E2, F2, …,I2 to indicate respectively: the values  x  
0
  (the 

fi rst value for the variable  x  to put in A2);  a ,  b ,  c  for the coeffi cients of the second 
degree function  ax  2  +  bx  +  c ; the step  h  of which the variable in column A is incre-
mented each time for passing to A 

i
  to A 

i+1
 .     

 By modifying the values of E2, F2, …, I2, the students could easily do their 
explorations. This practice gradually became shared in the classroom, through 
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the intervention of the teacher. In fact the class teacher stressed its value as an 
 instrumented action (Rabardel  2002  ) , to support explorations in the numerical envi-
ronment. Students realised that:

    1.    If they changed only the value of  c , column B changed, whilst columns C and D 
of the fi rst and second differences did not change; hence, they argued, the way in 
which a function increased/decreased did not depend on the coeffi cient  c ;  

    2.    If they changed the coeffi cient  b , then columns B and C changed but column D 
did not; many students conjectured that the coeffi cient  b  determines whether a 
function increases or decreases, but not its concavity;  

    3.    If they changed the coeffi cient  a , then columns B, C and D changed; hence the 
coeffi cient  a  was responsible for the concavity of the function.     

 Here, it is diffi cult to understand why such relationships hold and to produce at 
least an argument or even a proof of such conjectures. The tables of numbers do not 
suggest any justifi cation. Now, the symbolic power of the spreadsheet became use-
ful. 2  The students’ very interesting instrumented actions consisted in substituting 
letters for the numbers (Fig.  5.3b ); in most cases, the teacher had suggested this 
practice, but a couple of students used it autonomously. The resulting spreadsheet 
shows clearly that the value of the second difference is 2 ah  2 . The letters condense 
the symbolic meaning of the numerical explorations, so proofs can be produced 
(with teacher’s help) because of the spreadsheet’s symbolic support. In the subse-
quent lesson, the teacher stressed the power of the symbolic spreadsheet; a fresh 
practice had entered the classroom. 

 Finally, a typical algebraic proof, where the main steps are computations – like 
the proof produced through use of the spreadsheet – apparently differs from the 
more discursive proofs produced in elementary geometry. Such algebraic proofs 

  Fig. 5.3    ( a ) Numerical fi nite differences. ( b ) Algebraic fi nite differences       

   2   They were using the TI-Nspire software of Texas Instruments.  
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result from the “algebraisation” of geometry, which started with Descartes and 
improved further in the succeeding development of mathematics (e.g., the Erlangen 
programme by F. Klein  1872 ; see also Baez  2011  ) . Consequently, so-called syn-
thetic proofs have been surrogated by computations developed in linear algebra 
environments. Though students fi nd big obstacles in learning algebra as a meaning-
ful topic (e.g. Dorier  2000  ) , CAS environments can support students in conceiving 
and producing such computational proofs, which are typically not so easy to reach 
in paper and pencil environments.  

    2.7   Implementation in Mathematics Classrooms 

 In all the cases above (straight-edge and compass as well as DGS or CAS), the 
teacher’s role is crucial. The teacher not only selects suitable tasks to be solved 
through constructions and visual, numerical or symbolic explorations, but also 
orchestrates the complex transition from practical actions to theoretical argumenta-
tions. Students’ argumentations rest on their experimental experiences (drawing, 
dragging, computing, etc.), so the transition to a validation within a theoretical system 
requires delicate mediation by an expert (see diagram, Fig.  5.4 ).  

 The upper part of Fig.  5.4  represents the student’s space. The students are given 
a task (left upper vertex) to be solved with an artefact or set of artefacts. The pres-
ence of the artefact(s) calls into play experimental activities: for example, drawing 
with straight-edge and compass; creating DGS-fi gures with DGS-tools; or using 

  Fig. 5.4    Relationships between teachers, students, mathematics and artefacts in didactical 
activities       
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numbers and letters in the symbolic spreadsheet. An observer, the teacher for 
instance, may monitor the process: students gesticulate, point, and tell themselves 
or their fellows something about their actions; from this observable behaviour one 
may gain insight into their cognitive processes. If the task requires giving a fi nal 
report (either oral or written), traces of the experience are likely to remain in the text 
produced. Such reports may thus differ from the decontextualised texts typical of 
mathematics; nevertheless, they can evoke specifi c mathematical meanings. 

 The lower part of Fig.  5.4  represents the mathematical counterpart of the students’ 
experience. There is the activity of mathematics in general as a cultural product, and 
there is the mathematical knowledge to be taught according to curricula. The link 
between the students’ productions and the mathematics to be taught is the respon-
sibility of the teacher, who has to construct a suitable process that connects the 
students’ personal productions with the statements and proofs expected in the math-
ematics to be taught. 

 Hence, Fig.  5.4  highlights two important responsibilities for the teacher:

    1.    Choosing suitable tasks (left side);  
    2.    Monitoring and managing of the process from students’ productions to mathe-

matical statements and proofs (right side)     

 The second point constitutes the core of the semiotic mediation process, in which 
the teacher is expected to foster and guide the students’ evolution towards recognisable 
mathematics. The teacher acts both at the cognitive and the metacognitive levels, by 
fostering the evolution of meanings and guiding the pupils to awareness of their 
mathematical status (see the idea of mathematical norms, Cobb et al.  1993 ; see also 
chapter 5 in this volume). From a sociocultural perspective, one may interpret these 
actions as the process of relating students’ “personal senses” (Leont’ev  1964/1976 , 
pp. 244 ff.) to mathematical meanings, or of relating “spontaneous” to “scientifi c” 
concepts (   Vygotsky  1978 /1990, p. 286 ff.). The teacher, as an expert representative 
of mathematical culture, participates in the classroom discourse to help it proceed 
towards sense-making within mathematics. 

 Within this perspective, several investigations have focused on the teacher’s contri-
bution to the development of a mathematical discourse in the classroom, specifi cally in 
the case of classroom activities centred on using an artefact (Bartolini Bussi et al.  2005 ; 
Mariotti  2001 ; Mariotti and Bartolini Bussi  1998  ) . The researchers aimed at identifying 
specifi c “semiotic games” (Arzarello and Paola  2007 ; Mariotti and Bartolini Bussi 
 1998  )  played by the teacher, when intervening in the discourse, in order to make the 
students’ personal senses emerge from their common experience with the artefact and 
develop towards shared meanings consistent with the target mathematical meanings. 
Analysis of the data highlighted a recurrent pattern of interventions encompassing 
a sequence of different types of operations (Bartolini Bussi and Mariotti  2008 ; for 
further discussion, see Mariotti  2009 ; Mariotti and Maracci  2010  ) . 

 Thus, artefacts have historically been fruitful in generating the idea of proof and 
consequently can provide strong didactical support for teaching proofs, specifi cally, 
if the teacher acts as a semiotic mediator. In the next section, we illustrate this issue 
from the point of view of students.   
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    3   Part 2: A Student-Centred Analysis 

 Suitably designed technology can help students to face and possibly to overcome 
the obstacles between their empirical mathematical tasks and the discipline’s theo-
retical nature. When integrated in the teaching of proofs, artefacts trigger a network 
of interactive activities amongst different components categorisable at two different 
epistemological levels:

    1.    The convincing linguistic logical arguments that explain WHY according to the 
specifi c theory of reference;  

    2.    The artefact-dependent convincing arguments that explain WHY according to 
the mathematical experimentation facilitated by an artefact.     

 Approaching proof in school consists in promoting a  network of interactive 
activities  in order to connect these different components. For example, as we dis-
cuss below, abductive processes can support interactions between (1) and (2) above. 
Other interactive activities concern students’ multimodal behaviour 3  whilst interact-
ing within technological environments. Such activities feature in the transition to 
proof within experimental mathematics, a transition with novel and specifi c features 
compared to the transition to proof within more traditional approaches. Here, we 
scrutinise when and how the distance between arguments and formal proofs 
(Balacheff  1999 ; Pedemonte  2007  )  produced by students can diminish because of 
the use of technologies within a precise pedagogical design. 

 To focus the didactical and epistemological aspects of this claim, we recall four 
theoretical constructs taken from the current literature:

    1.     Almost-empiricism  and experimental mathematics;  
    2.     Abductive  vs.  deductive  activities in mathematics learning;  
    3.     Cognitive unity  between arguments and proofs;  
    4.     Negation  from a mathematical and cognitive point of view.     

 Using these theoretical constructs, we scrutinise some studies of students 
asked to explore different mathematical situations with different artefacts and 

   3   The notion of  multimodality  has evolved within the paradigm of  embodiment , which has been 
developed in recent years (Wilson  2002  ) . Embodiment is a movement in cognitive science that 
grants the body a central role in shaping the mind. It concerns different disciplines, e.g. cognitive 
science and neuroscience, interested with how the body is involved in thinking and learning. It 
emphasises sensory and motor functions, as well as their importance for successful interaction 
with the environment, particularly palpable in human-computer interactions. A major consequence 
is that the boundaries among perception, action and cognition become  porous  (Seitz  2000  ) . 
Concepts are so analysed not on the basis of ‘formal abstract models, totally unrelated to the life 
of the body, and of the brain regions governing the body’s functioning in the world’ (Gallese and 
Lakoff,  2005 , p.455), but considering the  multimodality  of our cognitive performances. We shall 
give an example of multimodal behaviours of students when discussing the multivariate language 
of students who work in DGE. For a more elaborate discussion, see Arzarello and Robutti  (  2008  ) .  
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within  different pedagogical designs. Specifi cally, we show that a suitable use of 
 technologies may improve the  almost-empirical  aspects in students’ mathematical 
activities through a specifi c production of  abductive arguments , which generate a 
 cognitive unity  in the transition from arguments to proofs. We also focus on some 
reasons why such a unity may not be achieved, particularly in the case of arguments 
and proofs by contradiction, where the  logic of negation  typically presents a major 
diffi culty for students. 

    3.1   Almost-Empiricism and Experimental Mathematics 

 The notion of  almost-empirical actions , introduced by Arzarello  (  2009  ) , describes 
some instrumented actions 4  within DGS and CAS environments. It refi nes the usual 
epistemic/pragmatic dyadic structure of the instrumental approach. We provide a 
brief emblematic example. 

 In Arzarello’s  (  2009  )  study, students of the 10th grade faced a simple problem, 
originated by the PISA test:

    The students A and B attend the same school, which is 3 Km far from A’s home and 6 Km 
far from B’s home. What are the possible distances between the two houses?     

 They produced a solution by using TI-Nspire software as illustrated in Fig.  5.5 . 
They drew two circles, whose centre is the school and which represent the 

  Fig. 5.5    ( a ) Solving a problem with data capture in TI-nspire. ( b ) Graph of the solution       

   4   The so called  instrumentation approach  has been described by Vérillon & Rabardel  (  1995  )  and 
others (Rabardel  2002 ; Rabardel and Samurçay  2001 ; Trouche  2005  ) . In our case particular ways 
of using an artefact, e.g. specifi c dragging practices in DGS or data capture in TI-Nspire, may be 
considered an  artefact  that is used to solve a particular  task  (e.g. for formulating a conjecture). 
When the user has developed particular  utilisation schemes  for the artefact, we say that it has 
become an  instrument  for the user.  
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possible positions of the two houses with respect to the school. They then created 
two points, say  a  and  b , moving on each circle, constructed the segment  ab  and 
measured it using a software command. Successively they created a sequence of 
the natural numbers in column A of the spreadsheet (Fig.  5.5a ) and through two 
animations (moving  a  and  b  respectively) they collected the corresponding lengths 
of  ab  in columns B and C. In the end, they built the “scattered plot” A vs. B and 
A vs. C (Fig.  5.5b ), and drew their conclusions about the possible distances of A’s 
and B’s houses by considering the regularities of the scatter graph and discussing 
why it is so.  

 The variable points and the ways they are manipulated in the example are typical 
of the software, which allows a collection of data similar to those accomplished in 
empirical sciences. One fi rst picks out the variables involved, then through sequence 
A one gets a device to reckon the time in the animation conventionally; namely, the 
time variable is made explicit. The instrumented actions of TI-Nspire software natu-
rally induce students to do so. The scattered plot thus combines the time variable A 
versus the length variable B or C, because the TI-Nspire software enables making 
the time variable explicit within mathematics itself. 5  

 Given a mathematical problem like that above, one can “do an experiment” very 
similar to those made in empirical sciences. One picks out the important variables 
and makes a concrete experiment using them (e.g., collecting the data in a spread-
sheet through the data-capture command). On can study mutual inter-relationships 
between variables (e.g., using the scatter plot) and conjecture and validate a math-
ematical model, possibly by new experiments. In the end, one can investigate why 
such a model is obtained and produce a proof of a mathematical statement. All these 
steps follow a precise protocol: pick out variables, design the experiment, collect 
data, produce the mathematical model, and validate it. The protocol is made palpa-
ble by different specifi c commands in the (TI-Nspire) software, such as naming 
variables, animation or dragging, data capture, and producing a scatter plot. 

 Such practices within TI-Nspire are as crucial as the dragging practices within 
DGS. Both incorporate almost-empirical features that can support the transition 
from the empirical to the deductive side of mathematics. Baccaglini-Frank  (  in print  )  
has suggested how this can happen when the students are able to internalise such 
practices and to use them as  psychological tools  (Kozulin  1998 ; Vygotsky  1978 , 
p. 52 ff) for solving conjecture-generation problems. 

 In this sense, the practices with the software introduce new methods in mathe-
matics. Of course, the teacher must be aware of these potentialities of the software 
and integrated them into a careful didactical design. Such practices consist not only 
in the possibility of making explorations but also in the precise protocols that stu-
dents learn to follow according to the teacher’s design. Similarly, external data con-
cerning certain quantities are passed to a computer through the use of probes. In our 

   5   This procedure is very similar to the way Newton introduced his idea of scientifi c time as a 
 quantitative variable, distinguishing it from the fuzzy idea of time about which hundreds of phi-
losophers had (and would have) speculated (Newton, CW, III, p. 72).  
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case, the measures are collected through the “data capture” from the “internal 
experiment” made in the TI-Nspire mathematical world by connecting the three 
environments illustrated in Fig.  5.5a, b  (Geometrical, Numerical, Cartesian) through 
suitable software commands. From one side, these methods are empirical, but from 
the other side they concern mathematical objects and computations or simulations 
with the computer, not physical quantities and experiments. Hence, the term  almost-
empirical  (Arzarello  2009  ) , which recalls the vocabulary used by some earlier 
scholars; for example, Lakatos  (  1976  )  and Putnam  (  1998  )  claimed that mathematics 
has a  quasi - empirical  status (cf. Tymoczko  1998  ) . However, “almost-empirical” 
stresses a different meaning: The main feature of almost-empirical methods is the 
precise protocol that the users follow to make their experiments, in the same way 
that experimental scientists follow their own precise protocols in using machines. 

 Almost-empirical methods also apply within DGS environments; in fact, there 
are strong similarities between instrumented actions produced in TI-Ns and DGS 
environments. In addition, almost-empirical actions made by students in either envi-
ronment are not exclusively pragmatic but also have an epistemic nature. As we 
discuss below, they can support the production of abductions and, hence, the transi-
tion from an inductive, empirical modality to a deductive, more formal one.  

    3.2   Abductions in Mathematics Learning 

 Abduction is a way of reasoning pointed out by Peirce, who observed that abductive 
reasoning is essential for every human inquiry, because it is intertwined both with 
perception and with the general process of invention: “It [abduction] is the only 
logical operation which introduces any new ideas” (C.P. 5.171). 6  In short, abduction 
becomes part of the  process of inquiry  along with induction and deduction. 

 Peirce gave different defi nitions of abduction, two of which are particularly fruit-
ful for mathematical education (Antonini and Mariotti  2009 ; Arzarello  1998 ; 
Arzarello and Sabena  in print ; Baccaglini-Frank  2010a  ) , particularly when techno-
logical tools are considered:

    1.    The so-called  syllogistic abduction  (C.P. 2.623), according to which a  Case  is 
drawn from a  Rule  and a  Result . There is a well-known Peirce example about 
beans:

   Rule: All the beans    from this bag are white  
  Result: These beans are white  
  Case: These beans are from this bag    

 Such an abduction is different from a  Deduction  that would have the form: the 
 Result  is drawn from the  Rule  and the  Case , and it is obviously different from an 
 Induction , which has the form: from a  Case  and many  Results  a  Rule  is drawn. 

   6   Peirce’s work is usually referred to in the form C.P. n.m., with the following meaning. C.P. = 
Collected Papers; n = number of volume; m = number of paragraph.  



1135 Experimental Approaches to Theoretical Thinking: Artefacts and Proofs

Of course the conclusion of an abduction holds only with a certain probability. 
(In fact Pólya  1968 , called this abductive argument an  heuristic syllogism .)  

    2.    Abduction as “the process of forming an  explanatory hypothesis ” (Peirce, CP 
5.171; our emphasis).     

 Along this stream of thought, Magnani  (  2001 , pp. 17–18) proposed the following 
conception of abduction: the process of inferring certain facts and/or laws and 
hypotheses that render some sentences plausible, that explain or discover some 
(eventually new) phenomenon or observation. As such it is the process of reasoning 
in which explanatory hypotheses are formed and evaluated. A typical example is 
when a logical or causal dependence of two observed properties is captured during 
the exploration of a situation. The dependence is by all means an “explanatory 
hypothesis” developed to explain a situation as a whole. 

 As pointed out by Baccaglini-Frank  (  2010a , pp. 46–50), the two types of abduction 
correspond to two different logics of producing a hypothesis: the logic of  selecting a 
hypothesis  from amongst many possible ones (fi rst type) versus the logic of  constructing 
a hypothesis  (second type). According to Peirce (C.P. 5.14-212), an abduction in either 
form should be  explanatory ,  testable , and  economic . It is an  explanation  if it accounts 
for the facts, but remains a suggestion until it is verifi ed, which explains the need for 
 testability . The motivation for the  economic  criterion is twofold: it is a response to the 
practical problem of having innumerable explanatory hypotheses to test, and it satisfi es 
the need for a criterion to select the best explanation amongst the testable ones. 

 Abductions can be produced within DGS environments, and can bridge the gap 
between perceptual facts and their theoretical transposition through supporting a 
 structural cognitive unity  (see below) between the explorative and the proving 
phase, provided there is a suitable didactic design. 

 For example, Arzarello  (  2000  )  gave the following problem to students of ages 
17–18 (Grade 11–12) who knew Cabri-géomètre very well and had already had a 
course in Euclidean geometry. Moreover, the students knew how to explore situa-
tions when presented with open problems (see Arsac et al.  1992  )  and could con-
struct the main geometrical fi gures. The students were already beyond the third van 
Hiele level and were entering the fourth or fi fth one. (For the use of van Hiele levels 
in DGS environments, see Govender and de Villiers  2002 .) The problem read:

    Let ABCD be a quadrangle. Consider the perpendicular bisectors of its sides and their 
intersection points H, K, L, M of pairwise consecutive bisectors. Drag ABCD, considering 
all its different confi gurations: What happens to the quadrangle HKLM? What kind of fi g-
ure does it become?     

 Many pairs of expert 7  students typically solved the problem in fi ve “phases”:

    1.    The students start to shape ABCD into standard fi gures (parallelogram, rectan-
gle, trapezium) and check what kind of fi gures they get for HKLM. In some 
cases they see that all the bisectors pass through the same point.  

   7   Students who have acquired a suffi cient instrumented knowledge of dragging practices according 
to a precise didactical design. The word is taken from Baccaglini-Frank  (  2010a  ) .  
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    2.    As soon as they see that HKLM becomes a point when ABCD is a square, they 
consider this interesting; therefore they drag a vertex of ABCD (starting from 
ABCD as a square) so that H, K, L, M keep on being coincident.  

    3.    They realise that this kind of confi guration is also true with quadrilaterals that 
apparently have no special property. Using the trace command, they fi nd that 
whilst dragging a vertex along a curve that resembles a circle they can keep the 
four points together (Fig.  5.6 ). Hence they formulate the conjecture:  If the quad-
rilateral ABCD can be inscribed in a circle, then its perpendicular bisectors 
meet in one point, centre of the circle .   

    4.    They validate their conjecture by constructing a circle, a quadrilateral inscribed 
in this circle and its perpendicular bisectors, and observing that all of them meet 
in the same point (Fig.  5.7 ).   

  Fig. 5.7    Checking the conjecture with a construction       

  Fig. 5.6    Dragging with trace: generating a conjecture       
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    5.    They write a proof of the conjecture. This process mainly consists in  transforming 
(or eliminating) parts of the discussion held in the previous phases into a linear 
discourse, which is essentially developed according to the formal rules of proof.     

 Two major phenomena characterise the development above and are emblematic 
of these types of open tasks:

    1.    The production of an abduction: it typically marks a crucial understanding point 
in the process of solution;  

    2.    The structural continuity between the conjecturing phases 1–4 and the 
transforming-eliminating activities of the last phase.     

 In producing an abduction, students fi rst see a perceptual invariant, namely the 
coincidence of the four points in some cases (phases 1 & 2). So they start an explo-
ration in order to see what conditions make the four points H, K, L, M coincide 
(phases 2 & 3). A particular kind of dragging ( maintaining dragging : Baccaglini-
Frank  2010b  )  supports this exploration: Using the trace command they carefully 
move the vertexes of ABCD so that the other four points remain together; fi nally, 
they realise they have thus produced a curve that resembles a circle (phase 3), 
namely a second invariant. At this point, they conjecture a link between the two 
invariants and see the second as a possible “cause” of the fi rst; namely they produce 
an abduction in the form of an “explanatory hypothesis” (phase 4). 

 In producing a proof, (phase 5) the students write a proof that exhibits a strong 
continuity with their discussion during their previous explorations; more precisely, 
they write it through linguistic eliminations and transformations of those aforemen-
tioned utterances.  

    3.3   Maintaining Dragging as an Acquired Instrumented Action 

 The results discussed above were acquired through suitably designed teaching inter-
ventions, carefully considering the instrumented practices with the software, aimed 
at students’ interiorising those practices as psychological tools (cf. Vygotsky  1978  )  
they can use to solve mathematical problems. One approach to the instrumentation 
of dragging in DGS accords with this aim: the confi guration of the ‘ Maintaining 
Dragging  Conjecturing Model’ for describing a specifi c process of conjecture-gen-
eration, as developed by A. Baccaglini-Frank (   Baccaglini-Frank  2010a  )  and by 
Baccaglini-Frank and Mariotti  (  2010  ) . Enhancing Arzarello et al.’s  (  2002  )  analysis 
of dragging modalities (and of the consequent abductive processes), Baccaglini-
Frank developed a fi ner analysis of dragging. She has also advanced hypotheses on 
the potential of dragging practices, introduced in the classroom, becoming a psy-
chological tool, not only a list of automatic practices learnt by rote. 

 According to the literature (Olivero  2002  ) , spontaneous use of some typologies 
of dragging does not seem to occur frequently. Consequently, Baccaglini-Frank fi rst 
explicitly introduced the students to some dragging modalities, elaborated from 
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Arzarello et al.’s  (  2002  )  classifi cation, 8  then asked the students to solve open tasks 
like the problem on quadrilaterals in the previous section. In such problem-solving 
activities, a specifi c modality of dragging appeared particularly useful to students: 
 maintaining dragging  (MD). Maintaining dragging consists of trying to drag a base 
point whilst also maintaining some interesting property observed. In the example 
above, the solvers noticed that the quadrilateral HKLM, part of the  Cabri -fi gure, 
could “become” a single point; thus, they could attempt to drag a base point whilst 
trying to keep the four points together. In other words, MD involves both the recog-
nition of a particular confi guration as interesting and the attempt to induce the par-
ticular property to remain invariant during dragging. Healy’s  (  2000  )  terminology 
would denote such an invariant as a soft invariant as opposed to a robust invariant, 
which derives directly from the construction steps. Maintaining dragging is an elab-
oration of  dummy locus dragging  but differs slightly: dummy locus dragging can be 
described as “wandering dragging that has found its path,” a dummy locus that is 
not yet visible to the subject (Arzarello et al.  2002 , p. 68), whilst MD is “the mode 
in which a base point is dragged, not necessarily along a pre-conceived path, with 
the specifi c intention of the user to maintain a particular property.” (   Baccaglini-
Frank and Mariotti  2010  ) . 

 In the example above, MD happened in phases 2 and 3, when the students dragged 
the vertices of the quadrilateral in order to keep together the four points H, K, L, M. 
As in phases 3–4 of the example, when MD is possible, the invariant observed dur-
ing dragging may automatically become “the regular movement of the dragged-
base-point along the curve” recognised through the trace mark; this can be interpreted 
geometrically as the property “dragged-base-point belongs to the curve” (Baccaglini-
Frank  in print  ) . As pointed out by Baccaglini-Frank  (  2010b  ) , the  expert  solvers 
proceed smoothly through the perception of the invariants and immediately inter-
pret them appropriately as conclusion and premise in the fi nal conjecture. However, 
becoming expert is not immediate, since it requires a careful didactical design that 
pushes the students towards a suitable instrumented use of the MD-artefact. In fact, 
“from the perspective of the instrumental approach, MD practices may be consid-
ered a utilization scheme for expert users of the  MD- artefact  thus making MD an 
 instrument  (the  MD-instrument ) for the solver with respect to the task for producing 
a conjecture” (Baccaglini-Frank,  ibid. ). 

   8   Arzarello and his collaborators distinguish between the following typologies of dragging: 
  – Wandering dragging : moving the basic points on the screen randomly, without a plan, in order to 
discover interesting confi gurations or regularities in the fi gures. 
  – Dummy locus dragging : moving a basic point so that the fi gure keeps a discovered property; that 
means you are following a hidden path even without being aware of it. 
  – Line dragging : moving a basic point along a fi xed line (e.g. a geometrical curve seen during the 
dummy locus dragging). 
  – Dragging test : moving draggable or semi-draggable points in order to see whether the fi gure 
keeps the initial properties. If so, then the fi gure passes the test; if not, then the fi gure was not 
constructed according to the desired geometric properties.    
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 Baccaglini-Frank has organised this development of instrumented maintaining 
dragging (MD) in a Model (Baccaglini-Frank  2010a  )  that serves as a precise proto-
col for students, who follow it in order to produce suitable conjectures when asked 
to tackle open problems (Arsac  1999  ) . This protocol structurally resembles that 
illustrated above for data-capture with TI-Nspire software. It is divided into three 
main parts:

    1.    Determine a confi guration to be explored by inducing it as a (soft) invariant. 
Through wandering dragging the solver can look for interesting confi gurations 
and conceive them as potential invariants to be intentionally induced. (See phases 
1–2 in our DGS example).  

    2.    Searching for a Condition through MD: students look for a condition that makes 
the intentionally induced invariant be visually verifi ed through maintaining drag-
ging from path to the geometric interpretation of the path. Genesis of a Conditional 
Link through the production of an abduction. (See phases 2–3).  

    3.    Checking the Conditional Link between the Invariants and verifying it through 
the dragging test. (See phases 3–4).     

 After a conjecture has been generated through this process, the students (try to) 
prove their conjecture (see phase 5). 

 The MD-conjecturing Model relates dragging and the perception of invariants 
with the developing a conjecture, especially with the emergence of the premise 
and the conclusion. This apparently common process is well-illustrated by the 
MD-conjecturing protocol as a sequence of tasks a solver can engage in. 
Baccaglini-Frank’s model allows us to “unravel” the abductive process that sup-
ports both the formulation of a conjecture and the transition from an explorative 
phase to one in which the conjecture is checked.    9  The  path  (in our DGS example 
the circle created by the students in phase 4, Fig.  5.7 ) plays a central role by 
incorporating an answer to the solver’s “search for a cause” for the intentionally 
induced invariant (phase 3, Fig.  5.6 ), and thus leading to the premise of a poten-
tial conjecture. Its fi gure-specifi c component (the actual curve that can be repre-
sented on the screen) contains geometrical properties that may be used as a 
bridge to proof. 

   9   Arzarello et al.  (  1998a ,b, 2000,  2002  )  showed that the transition from the inductive to the 
 deductive level is generally marked by an  abduction , accompanied by a cognitive shift from 
 ascending to descending  epistemological modalities (see Saada-Robert  1989  ) , according to which 
the fi gures on the screen are looked at. The modality is ascending (from the environment to the 
subject) when the user explores the situation, e.g., a graph on the screen, with an open mind and to 
see if the situation itself can show her/him something interesting (like in phases 1, 2, 3 of our 
example); the situation is descending (from the subject to the environment) when the user explores 
the situation with a conjecture in mind (as in phase 4 of our example). In the fi rst case the instru-
mented actions have an explorative nature (to see if something happen); in the second case they 
have a checking nature (to see if the conjecture is corroborated or refuted). Epistemologically, the 
cognitive shift is marked by the production of an  abduction , which also determines the transition 
from an inductive to a deductive approach.  
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 When MD is used expertly, abduction seems to reside at a meta-level with respect 
to the dynamic exploration. However, abduction at the level of the dynamic explora-
tions only seems to occur when MD is used as a psychological tool (Kozulin  1998 ; 
Vygotsky  1978 , p. 52 ff). According to Baccaglini-Frank analysis, it seems that:

  if solvers who have appropriated the MD- instrument  also internalize it  transforming it into 
a psychological tool, or a fruitful “mathematical habit of mind” (Cuoco  2008  )  that may be 
exploited in various mathematical explorations leading to the generation of conjectures, a 
greater cognitive unity (Pedemonte  2007  )  might be fostered. In other words, it may be the 
case that when the MD instrument is used as a psychological tool the conjecturing phase is 
characterized by the emergence of arguments that the solver can set in chain in a deductive 
way when constructing a proof (Boero et al.  1996  ) . 

(Baccaglini-Frank  in print  )    

 Something similar pertains to the protocol of data-capture with TI-Nspire 
software, which also involves almost-empirical actions (discussed above). Such 
almost-empirical methods seem fruitful for supporting the transition to the theo-
retical side of mathematics, provided their instrumentation can produce their 
internalisation as psychological tools and foster cognitive unity. On the con-
trary, when such protocols are merely used “automatically” they tend to lead to 
conjectures with no theoretical elements to bridge the gap between the premise 
and the conclusion of the conditional link; in other words, they do not encourage 
cognitive unity. 

 Since it is crucial in the transition from arguments to proofs, from the empirical 
to the theoretical, in the next section we discuss cognitive unity as the latest research 
has elaborated it.  

    3.4   Cognitive Unity 

 Boero has defi ned  cognitive unity  as the continuity that may exist between the argu-
mentation of producing a conjecture and the construction of its proof (Boero et al. 
 1996  ) . He hypothesises that, in some cases, “this argumentation can be exploited by 
the student in the construction of a proof by organizing some of the previously pro-
duced arguments into a logical chain” (Boero et al.  2010 , p. 183). Pedemonte  (  2007  )  
has further refi ned this concept, introducing the notion of  structural continuity  
between argumentation and proof; that is, when inferences in argumentation and 
proof are connected through the same structure (abduction, induction, or deduc-
tion). For example, there is structural continuity between argumentation and proof 
if some abductive steps used in the argumentation are also present in the proof, as 
was the case in the problem of the distances of the houses from the school (see 
Fig.  5.5  and Boero et al.  2010  ) . 

 Recently, Boero and his collaborators (Boero et al.  2010 ,) have integrated their 
analysis of  cognitive unity  with Habermas’ elaboration (Habermas  2003  )  of  rational 
behaviour in discursive practices . They have adapted Habermas’ three components 
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of rational behaviour (teleologic, epistemic, communicative) to the discursive 
 practice of proving and have identifi ed:

    (A)    An  epistemic aspect  ,  consisting in the conscious validation of statements 
according to shared premises and legitimate ways of reasoning…;  

    (B)    A  teleological aspect , inherent in the problem-solving character of proving, 
and the conscious choices to be made in order to obtain the desired product;  

    (C)    A  communicative aspect , consisting in the conscious adhering to rules that 
ensure both the possibility of communicating steps of reasoning and the confor-
mity of the products (proofs) to standards in a given mathematical culture.     

 (Boero et al.  2010 , pp. 188) 
 In this model, the expert’s behaviour in proving processes can be described in 

terms of (more or less) conscious constraints upon the three components of rational-
ity: “constraints of epistemic validity, effi ciency related to the goal to achieve, and 
communication according to shared rules” ( ibid. , p. 192). As the authors point out, 
such constraints result in  two levels of argumentation :

   a level (that we call   – ground level ) inherent in the specifi c nature of the three com-
ponents of rational behaviour in proving;  
  a   – meta-level , “inherent in the awareness of the constraints on the three 
components”    

 ( ibid. , p. 192). 
 The two notions – cognitive unity and levels of argumentations – are important 

for analysing students’ thought processes in the transition from argumentations to 
proofs within technological environments (especially DGS) and in particular very 
useful for analysing indirect proofs.  

    3.5   Indirect Proofs 

 Antonini and Mariotti ( 2008 ) have developed a careful analysis of indirect proofs 
and related argumentations from both a mathematical and a cognitive point of view, 
and have elaborated a model appropriate for interpreting students’ diffi culties with 
such proofs. Essentially, the model splits any indirect proof of a sentence S (principal 
statement) into a pair ( s,m ), where  s  is a direct proof (within a theory T, for example 
Euclidean Geometry) of a secondary statement S* and  m  is a meta-proof (within a 
meta-theory MT, generally coinciding with classical logic) of the statement S* → S. 
However, this meta-proof  m  does  not  coincide with Boero et al.’s  (  2010  )  meta-level 
considered above; rather, it is at the meta-mathematical level. As an example, they 
consider the (principal) statement S: “Let  a  and  b  be two real numbers. If ab = 0 then 
a = 0 or b = 0” and the following indirect proof: “Assume that ab = 0, a  ¹  0, and b  ¹  0. 
Since a  ¹  0 and b  ¹  0 one can divide both sides of the equality ab = 0 by a and by b, 
obtaining 1 = 0”. In this proof, the secondary statement S* is: “let a and b be two real 
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numbers; if ab = 0, a  ¹  0, and b  ¹  0 then 1 = 0”. A direct proof is given. The  hypothesis 
of this new statement is the negation of the original statement and the thesis is a 
false proposition (“1 = 0”). 

 Antonini and Mariotti ( 2008 ) use their model to point out that the main diffi -
culty for students facing indirect proof consists in switching from  s  to  m . Yet the 
diffi culty seems less strong for statements that require a proof by contrapositive; 
that is, to prove B' → A' (secondary statement) in order to prove A → B (principal 
statement). Integrating the two models, we can say that switching from  s  to  m  
requires a well-established epistemic and teleological rationality in the students 
and in this respect does need the activation of Boero et al.’s  (  2010  )  meta-level of 
argumentation. 

 The distinction between this meta-level and the ground level in Boero et al.’s 
 (  2010  )  model may be very useful in investigating the argumentation and proving 
processes related to indirect proof. Based on this distinction, we introduce the notion 
of  meta-cognitive unity : a cognitive unity between the two levels of argumentation 
described above, specifi cally between the  teleological  component at the  meta-level  
and the  epistemic  component at the  ground level . 

 Different from structural and referential cognitive unity (Garuti et al.  1996 ; 
Pedemonte  2007  ) , meta-cognitive unity is not concerned with two diachronic stages 
in students’ discursive activities (namely argumentation and proving, which are pro-
duced sequentially), rather it refers to a synchronic integration between the two 
levels of argumentation. We hypothesise that the existence of such a meta-cognitive 
unity is an important condition for producing indirect proofs. In other words, lack-
ing the integration between the two levels of argumentation can block students’ 
proving processes or produce cognitive breaks like those described in the literature 
on indirect proofs. Meta-cognitive unity may also entail structural cognitive unity at 
the ground level and may develop through what we call ‘ the logic of not ’ (see 
Arzarello and Sabena,  in print  ) .  

    3.6   The Logic of Not 

 The  ‘logic of not ’ is an interesting epistemological and cognitive aspect of argumen-
tation that sometimes is produced by students who tackle a problem where a direct 
argument is revealed as not viable. 

 Their strategy is similar to that of a chemist, who in the laboratory has to detect 
the nature of some substance. For example, knowing that the substance must belong 
to one of three different categories (a, b, c), the chemist uses suitable reagents to 
test: if the substance reacts in a certain way to a certain reagent it may be of type a 
or b but  not  c, and so on. In such practices, abductive processes are usually used: if, 
as a  Rule , the substance S makes blue the reagent r and if the  Result  of the experi-
ment shows that the unknown substance X makes blue the reagent r, then the chem-
ist reasons that X = S ( Case  of the abduction). 
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 For example, we summarise the case of a student comprehensively discussed in 
Arzarello and Sabena  (  in print  ) . The student S (grade 9 in a science-oriented school) 
is solving the following task:

    The drawing  (Fig.  5.8 )  shows the graphs of: a function  f , its derivative, one of its anti-
derivatives .  Identify the graph of each function, and justify your answer.      

 The functions are differently coloured: the parabola red (indicated with R); the 
cubic (with a maximum point in the origin) is blue (B); the last (a quartic with an 
infl ection point in the origin) is green (G). S does not know the analytic representa-
tions of the functions but has only their graphs. As such, he refers to the functions 
only by their colours. 

 In the fi rst part of his protocol S checks which of the three functions can be  f . He 
does this by looking for possible abductions, which involve the features of the given 
graphs. 

 For example, he starts supposing that  f  is the red function, probably because it is 
the simplest graph, and wonders whether he can apply an abductive argument with 
the following form to conclude that its derivative possibly is the green function:

    1.    Rule: “any derivative of a    decreasing function is negative”  
    2.    Result: “the green function is negative”;     (ARG. 1)  
    3.    Case: “the green function is the derivative of  f ”     

 Like the metaphorical chemist, S is able fi rst to fi nd a ‘reagent’ that discriminates 
between the substances (functions) he is analysing and then to validate his hypoth-
esis with a further discriminating experiment, using his learnt practices with the 
graphs of functions. Arzarello and Sabena  (  in print  )  argue that some of S’s argu-
mentations are  teleological  and at the  meta - level : they address S’s own successive 
actions and his control of what is happening. The teleological component at the 
meta-level intertwines with the epistemological component at the ground level in a 

  Fig. 5.8    The given task       
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deep unity. This complex unity allows S to produce a proof by contraposition (the 
reasoning that logicians call “ modus tollens ”: from “A implies B” to “not B implies 
not A”). Through this transition to a new epistemological status for his statements, 
S can lighten the cognitive load of the task using Arzarello and Sabena’s ‘logic of 
not’, as written in part of S’s protocol:

  Then I compared the “red” with the “green” function: but, the “green” function cannot be a 
derivative of the “red” one, because in the fi rst part, when the “red” function is decreasing, 
its derivative should have a negative sign, but the “green” function has a positive sign.   

 Here the structure of the sentence is more complex than before: S is thinking 
towards a possible argument in the following form:

    1.    “any derivative of    a decreasing function is negative”  
    4.  “the “green” function has a positive sign”  (ARG. 2)    
    5.    “the “green” function cannot be a derivative of an

 increasing function”     

 Unlike the possible abduction ARG. 1 above, ARG. 2 has the form: (1) and not 
(2); hence not (3). Crucially, the refutation of the usual Deduction (Rule, Case; 
hence Result) has the same structure, because of the converse of an implication 
(“A implies B” is equivalent to “not B implies not A”) .  In other words, the refutation 
of an argument by abduction coincides with the refutation of an argument by deduc-
tion. Whilst abductions and deductions are structurally and cognitively different, 
their refutations are identical formally. So S can produce a form of deductive argument 
“naturally” within an abductive modality – though remarkably from an epistemo-
logical and cognitive point of view, because the apparently “natural” abductive 
approach of students in the conjecturing phases (Arzarello et al.  1998  )  often does 
not lead to the deductive approach of the proving phase (Pedemonte  2007  ) . The 
transition from an abductive to a deductive modality requires a sort of “somersault”, 
an inversion in the functions and structure of the argument (the Case and Result 
functions are exchanged) which may cognitively load the students. However, this 
inversion is not necessary in either the refutation of an abduction or the refutation of 
a deduction. An “impossible” abductive argument already has the structure of a 
deduction; namely, it is an argument by contraposition. Of course greater cognitive 
effort is required to manage the refutation of an abduction than to develop a simple 
direct abduction. But the coincidence between abduction and deduction in cases of 
refutation allows avoiding the “somersault”. 

 De Villiers (who does not use this terminology) has pointed out another possible 
use of the ‘logic of not’. He observes that in DGS environments it is important:

  …to sensitize students to the fact that although  Sketchpad  is very accurate and extremely use-
ful for exploring the validity of conjectures, one could still make false conjectures with it if 
one is not very careful. Generally, even if one is measuring and calculating to 3 decimal accu-
racy, which is the maximum capacity of  Sketchpad 3 , one cannot have absolute certainty that 
there are no changes to the fourth, fi fth or sixth decimals (or the 100th decimal!) that are just 
not displayed when rounding off to three decimals. This is why a logical explanation/proof, 
even in such a convincing environment as  Sketchpad , is necessary for absolute certainty. 

  (de Villiers  2002 , p. 9)   
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 One way of promoting students’ sensibility is to create some cognitive confl ict to 
counteract students’ natural inclination to just accept the empirical evidence that the 
software provides. For example, one can use an activity where students are led to 
make a false conjecture; though they are convinced it is true, it turns out false: In 
such cases the logic of not can drive them to produce a proof. 

 Thus, DGS has the potential of introducing students to indirect arguments and 
proofs; specifi cally, the use of “maintaining dragging” (MD) supports producing 
abductions. This can be fruitfully analysed in terms of the “logic of not”.  

    3.7   Indirect Proof Within DGS 

 Theorem acquisition and justifi cation in a DGS environment is a  “ cognitive-visual 
dual process potent with structured conjecture-forming activities, in which dynamic 
visual explorations through different dragging modalities are applied on geometri-
cal entities” (Leung and Lopez-Real,  2002 , p. 149). In this duality, visualisation 
plays a pivotal role in the development of epistemic behaviour like the Maintaining 
Dragging Model (Baccaglini-Frank and Mariotti  2010  ) . On the cognitive side, DGS 
facilitates experimental identifi cation of geometrical invariants through functions of 
variation induced by dragging modalities which serve as cognitive-visual tools to 
conceptualise conjectures and DGS-situated argumentative discourse (Leung  2008  ) . 
With respect to indirect proof within DGS, Leung proposed a visualisation scheme 
to “see a proof by contradiction” in a DGS environment (Leung and Lopez-Real 
 2002  ) . The scheme’s key elements were the DGS constructs of pseudo-object and 
locus of validity; together, they serve as the main cognitive-visual bridge to connect 
the semiotic controls and the theoretical controls in the argumentation process. This 
scheme developed out of a  Cabri  problem-solving workshop conducted for a group 
of Grade 9 and Grade 10 students in Hong Kong. The researcher gave the following 
problem to students to explore in the  Cabri  environment:

    Let ABCD be a quadrilateral such that each pair of interior opposite angles adds up to 
180◦. Find a way to prove that ABCD must be a cyclic quadrilateral.     

    3.7.1   The Proof 

 After exploration, a pair of students wrote down the following “ Cabri- proof” (Fig.  5.9 ).  
 The labelling of the angles in their diagram was not part of the actual  Cabri  fi g-

ure. The key idea in the proof was the construction of an impossible quadrilateral 
EBFD. However, the written proof did not refl ect the dynamic variation of the 
impossible quadrilateral in the  Cabri  environment that promoted the argumentation. 
An in-depth interview with the two students on how they used  Cabri  to arrive at the 
proof led to the construction of the cognitive-visual scheme.  
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    3.7.2   The Argumentation 

 The impossible quadrilateral EBFD, henceforth called a  pseudo-quadrilateral , in 
Fig.  5.9  plays a critical role in organising the cognitive-visual process that leads to 
the construction and justifi cation of a theorem. EBFD is a visual object that mea-
sures the degree of anomaly of a biased  Cabri  world with respect to the different 
positions of the vertices A, B, C and D. There are positions where the pseudo-
quadrilateral EBFD vanishes when a vertex of ABCD is being dragged. Figure  5.10  
depicts a sequence of snapshots in a dragging episode when C is being dragged until 
EBFD vanishes.  

 The last picture in the sequence shows that when C lies on the circumcircle 
C1 of the quadrilateral ABCD, E and F coincide, and at this instance, 
∠DEB + ∠DFB = 360◦ (a contradiction arising from the pseudo-quadrilateral 
EBFD). Furthermore, this condition holds only when C lies on C1; that is, when A, 
B, C and D are concyclic. The pseudo-quadrilateral EBFD and the circumcircle 
C1 play a dual role in an argumentation process. First, they restrict the quadrilateral 
ABCD to a special  confi guration that leads to the discovery that ABCD possesses 

  Fig. 5.10    Dragging the pseudo-quadrilateral EBFD       

  Fig. 5.9    The proof of the students       
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certain properties (through abductive inference). Second, they generate a  convincing 
argument that collapses onto a Reductio ad Absurdum proof (Fig.  5.9 ) acceptable in 
Euclidean Geometry.  

    3.7.3   The Scheme 

 Suppose A is a fi gure (quadrilateral ABCD in the  Cabri -proof) in a DGS environ-
ment. Assume that A satisfi es a certain condition C(A) (interior opposite angles are 
supplementary) and impose it on all fi gures of type A in the DGS environment. This 
 forced presupposition  evokes a ‘mental labelling’ (the arbitrary labelling of 
∠DAB = 2 a  and ∠DCB = 180-2 a  in the  Cabri -proof) which leads one to  act cogni-
tively  on the DGS environment. Thus C(A) makes an object of type A biased with 
extra meaning that might not necessarily be true in the actual DGS environment. 
This  biased DGS environment  exists as a kind of hybrid state between the  visual-true  
DGS (a virtual representation of the Euclidean world) and a  pseudo-true  interpreta-
tion, C(A), insisted on by the user. In this pseudo world, the user can construct an 
object associated with A which inherits a local property that is not necessarily con-
sistent with the Euclidean world because of C(A) (e.g., the impossible quadrilateral 
EBFD in the  Cabri -proof): We call such an object associated a  pseudo object  and 
denote it by O(A).When part of A (the point C) is being dragged to different posi-
tions, O(A) might vanish (or degenerate; i.e., a plane fi gure to a line, a line to a 
point). The path or locus on which this happens gives a constraint (both semiotic 
and theoretical) under which the forced presupposition C(A) is “Euclidean valid”; 
that is, where the biased microworld is being realised in the Euclidean world. This 
path is called the  locus of validity  of C(A) associated with O(A) (the circle C1). 

 In the Indirect Proof context (Antonini and Mariotti,  2008 ), one can interpret this 
scheme as follows: S is the principle statement “If the interior opposite angles of a 
quadrilateral add up to 180 ° , then it is a cyclic quadrilateral”; S *  is the secondary 
statement “If the interior opposite angles of a quadrilateral add up to 180 °  and its 
vertices can lie on two circles, then there exists a quadrilateral with the property that 
a pair of interior opposite angles add up to 360°.” (Fig.  5.11 )  

 In this scheme, T is Euclidean Geometry; s is a direct Euclidean proof. In    a DGS 
environment, the meta-proof m could be a kind of dragging-based visual logic. In 
the case discussed above, when a pseudo object and a locus of validity arise, m 
could be a drag-to-vanish MD visual logic. Thus the  composite proof 

      is an indirect proof that is both theoretical and DGS-mediated. 

  Fig. 5.11    Indirect proofs scheme       
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 In relation to the Boero-Habermas model (Boero et al.  2010  ) , the theoretical part 
(s) is the epistemological component (theoretical control) at the ground level where 
the existence of the pseudo-quadrilateral EBFD was deduced. The DGS-mediated 
part (m) is the teleological component (semiotic control) at the meta-level where the 
dragging-based argumentation took place. Hence the intertwined composite proof 
(m o s) can be seen as a meta-cognitive unity in which argumentation crystallises 
into a Reductio ad Absurdum proof. 

 Within the “logic of not”, the DGS-mediated part (m) allows a link from the 
abductive modality to the deductive modality. In the previous example of S, the 
distance between the two modalities was annihilated because of the coincidence 
between the negations of the abduction and of the deduction; here the distance is 
shortened through m: in both cases, the cognitive effort required is reduced. 

 Lopez-Real and Leung  (  2006  )  suggested that Formal Axiomatic Euclidean 
Geometry (FAEG) and Dynamic Geometry Environment (DGE) are ‘parallel’ sys-
tems that are “situated in different semiotic phenomena” instead of two systems 
having a hierarchical relationship (Fig.  5.12 ).  

  The vertical two-way arrow denotes the connection (networking) that enables an exchange 
of meaning between the systems. The horizontal arrow stands for a concurrent mediation 
process that signifi es some kind of mathematical reality. This perspective embraces the 
idea that dragging in DGE is a semiotic tool (or a conceptual tool) that helps learners to 
form mathematical concepts, rather than just a tool for experimentation and conjecture 
making that doesn’t seem to match the ‘logical rigour’ in FAEG.   (Lopez-Real and Leung 
 2006 , p.667)  

 In this connection, the MD dragging scheme – together with the construct of 
pseudo-object and locus of validity, and with the associated reasoning carried out, 
on the one hand, in the context of the DGS and, on the other hand, in T by the 
solver – may serve as channels to enable an exchange of meaning between the two 
systems (Fig.  5.13 ).  

 The idea of composite proof in DGS environment could possibly be expanded to 
a wider scope where there is a hybrid of Euclidean and DGS registers. Leung  (  2009  )  
presented such a case where a student produced a written proof that intertwined 
Euclidean and DGS registers. The fi rst results of Leung’s analysis are promising, 
opening new perspectives of investigation.    

Formal Axiomatic Euclidean 
Geometry

Geometry realized (reified) in DGE

  Fig. 5.12    From Lopez-Real    and Leung  (  2006  )        
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    4   Part 3: Towards a Framework for Understanding 
the Role of Technologies in Geometrical Proof 

 As discussed in Part 1, geometry may be split into what Einstein  (  1921  )  called 
“practical geometry”, obtained from physical experiment and experience, and 
“purely axiomatic geometry” containing its logical structure. Central to learning 
geometry is an understanding of the relationship between the technologies of geom-
etry and its epistemology. Technology in this context is the range of artefacts (objects 
created by humans) and the associated techniques which together are needed to 
achieve a desired outcome. Part 2 has set out in detail how the process of coordinat-
ing technologies with the development of geometric reasoning combines artefactual 
“know-how” with cognitive issues. In Part 3, we fi rst provide a model, using Activity 
Theory, that highlights the role of technology in the process. Second, this part dis-
cusses the mediational role of digital technology in learning geometry, and the 
implications for developing proofs. 

    4.1   Modelling Proof in a Technological Context 

 To analyse proof in a technological context, it is useful to consider a framework 
derived from Activity Theory, shown in Fig.  5.14  (Stevenson  2008  ) . The framework 
provides a way of describing the use of artefacts, (e.g., digital devices, straight-
edges, etc.) in processes of proving. Activity Theory, a framework for analysing 
artefact-based social activity, is a “theory” in the sense that it claims that such activ-
ity can be described as a system using the categories shown in Fig.  5.14 . In this 
section, we “fl esh out” the epistemological, cultural and psychological dimensions 
of the system in relation to technology and proof.  

 In Fig.  5.14 , the “object” of the system is the formulation of a problem which 
motivates and drives the proof process, with the “outcome” being the proof created 
from this system. “Artefacts” are any material objects used in the process, which in 
our case includes straight-edges, compasses and DGS. A “subject” is a person who 

Deduction

Abduction

Formal Axiomatic Deductive
Reasoning

Experimentation Facilitated by
DGS

Convincing Linguistic Logical
Arguments that explain WHY?

DGS-dependent Convincing
Arguments that explain WHY?

Composite ProofMD Dragging Scheme

  Fig. 5.13    The two semiotic systems: FAEG and DGE       
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is part of a “community” in which the activity is set; the community is “managed” 
through power structures that assign roles and status within a given context (e.g. class-
room, professional mathematics community). “Rules” comprise the relationships 
that defi ne different aspects of the system. 

 A “technology” in this system consists of the artefacts used, objects to which 
they can be applied, persons permitted to use the artefacts, and the sets of rules 
appropriate to each of the relationships which make up the system. Figure  5.14  
identifi es fi ve aspects of the interactions with technology useful for the analysis. 
‘Function’ covers the set of techniques applicable with the artefacts to a specifi c 
object, within a particular setting and social grouping. ‘Use’ relates to the ways in 
which individuals or groups actually behave with the artefacts within the social 
context, governed by the norms of community organisation. ‘Roles’ indicates the 
types of linguistic interactions adopted by the participants, and ‘Organisation’ refers 
to the groupings of those participating in the technology-based activities. Finally, 
‘Feasibility’ relates to the practical constraints placed on an activity by the physical 
and temporal location. 

 Figure  5.4  (Part 1) and its associated description highlight the cultural dimension 
of a mathematics classroom engaging in proof activities with technology (straight-
edge and compass or DGS) by linking together the fi ve aspects of the model in 
Fig.  5.14  (Use, Function, Roles, Feasibility and Organisation, cf. Stevenson  2008  ) . 
The model brings together both the selection of tasks related to the objectives and 
outcomes of activities and the teacher’s use of artefacts. In particular, it expresses 
how teachers tailor their use of artefacts to their specifi c classrooms in order to medi-
ate ideas about proof and its forms to their students. As a result, the model expresses 
how specifi c forms of activity and styles of linguistic interaction between pupils and 
teacher in a given physical location provide the context for studying proof. 

 Epistemologically, the system is defi ned by the rules governing the formal 
object of mathematical knowledge that is the context for the proof process (e.g., 
geometry). For “standard” proof, the technology consists of the artefacts needed 
to create the proof (e.g., paper and pencil) and the rules of inference that govern 
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  Fig. 5.14    Proving in a technological context: a framework from activity theory       
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how statements are organised. Their rules of inference describe the syntactical 
dimension of the process. A major claim for using proof as a method for obtaining 
knowledge is that, if “applied correctly”, the rules of inference preserve the 
semantic integrity of the argument forming the proof. Semantics deals with the 
meanings given to geometric statements and is concerned with the truth and 
knowledge claims that a proof contains. Technology, therefore, plays a key role in 
the relationship between the semantics and syntactical structures of a proof, rais-
ing the issue of whether syntax and semantics are separable or inextricably inter-
twined with the technology. 

 As the section “Abductions in mathematics learning” (Part 2) proposes, conjec-
tures become proofs by applying the technology of logical inference. Abduction is, 
epistemologically, a non-linear process which develops over a period of time and 
involves iterations between facts and the conjectured rules that gradually come to 
explain those facts. Constructing a proof involves restructuring a conjecture to suit 
the linear form of logical inference so that the technique can be applied to organise 
the argument “on the page”. Such linearisation re-interprets (or removes) the dia-
chronic aspect of abduction as an epistemological structure. In the process of trans-
lating conjecture into a proof, constructions, false starts, and strings of informal 
calculations are removed. References to sensorimotor processes in geometry are 
suppressed by talking about “ideal” points and lines, with the paper surface acting 
as a kind of window on the “real” geometry. (Livingstone  2006  ) . In terms of the 
model in Fig.  5.14 , the role of the teacher is crucial in helping learners make this 
linguistic transition. The extracts of dialogue related to this process of linearisation 
in Part 2 indicate how the cues and leads given by the teacher aid the learner in 
fi ltering the conjecture so that the techniques of inference can be used to organise 
it appropriately.  

 Adding DGS to this situation does not change the essential dynamic tensions 
resulting from the need to translate from one technological setting (straight-edge 
and compass or DGS) to another (rules of inference). The discussions in Part 2 of 
the “logic of not” and “indirect proof” (the ‘Use’ aspects of the model in Fig.  5.14 ) 
imply that abduction arises as a strategy to deal with those dynamic tensions.  

    4.2   Digital Technology as a Mediational Artefact 

 Learning how to use geometrical equipment, whether physical or digital, is part of 
the instrumentation of geometry (Verillion and Rabardel  1995  ) , the interplay 
between facility with artefacts and the development of psychological concepts. 
Physically, one has the experience of using a straight edge to draw a “straight line” 
and compasses to make a “curve”. In Lakoff’s  (  1988  )  framework, such actions 
can be interpreted as developing a “prototype”. The motor-sensory action of 
using a straight-edge and pencil, combined with the word “straight” and the 
Gestalt perception of the resulting mark on a surface, embodies the concept of 
“straightness”. 
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 This account raises the question of how far technology, in general, mediates the 
understanding of geometrical concepts, and how that mediation relates to proof in 
the formal sense. For example, rather than simply motivating proofs of results, does/
can/should DGS play an integral part in forming the conceptual structures that con-
stitute geometry? Much of the interest in DGSs lies in the representation of Euclidean 
geometry, but as Part 2 implies, DGSs provide a different kind of geometry from 
that obtained by paper and pencil construction, or by the axiomatic version of 
Euclidean geometry. Consequently, different versions of geometry emerge with 
these different technologies: “pencil geometry”, “digital geometry”, and “axiomatic 
geometry”. The question is not whether technology mediates knowledge, but how 
different technologies mediate different kinds of knowledge. Proof, as a means of 
establishing knowledge claims, should therefore take account of the mediational 
role that artefacts play in epistemology. 

 Learning non-Euclidean geometry, for example, has a number of complexities 
when compared to the Euclidean case. On the one hand, spherical geometry is rela-
tively straightforward, since learners may have everyday opportunities to develop 
visual intuitions. Being “smaller” than Euclidean space, spherical surfaces are both 
closed and bounded, and allow both physical and digital manipulation. On the other 
hand, hyperbolic space poses a different problem; it is “larger” than Euclidean 
space, so learners have diffi culty defi ning a complete physical surface to manipulate 
(Coxeter  1969  ) . The learning process also lacks opportunities for visual intuition and 
suffers from diffi culties in fi nding appropriate artefacts to support instrumentation. 
However, digital technologies offer possibilities for engaging with hyperbolic 
geometries that cannot be found otherwise (Jones et al.  2010  ) . Figure  5.15  shows 
how a two-dimensional Euclidean model can be obtained by projecting a hyperbolic 
surface, and illustrates the geometry associated with the projection. 

 Imagine that an Escher tessellation is spread isometrically across the hyperbo-
loid on the left-hand side of Fig.  5.15 . Viewing it as a projection onto a fl at disc 
gives the image in the centre of Fig.  5.15 . The grid for the tessellation is shown on 
the right of Fig.  5.15 , together with the basic hyperbolic triangle OAB used to tes-
sellate the disc. Triangle OAB shows one of the key differences between hyperbolic 
geometry and Euclidean: the angle sum of the hyperbolic triangles is less than 180°. 
The edge of the circle represents infi nity (it is called the “horizon”), which can be 

  Fig. 5.15    A genesis of the Poincaré disc for hyperbolic geometry       
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approached but never reached, as indicated by the “bunching” of the tessellations at 
the circumference of the central image and of the grid lines on the right. Further, 
“straight” lines in the hyperbolic world can be either Euclidean straight lines (in fact 
diameters of the horizon) or circular arcs (orthogonal to the horizon). 

 Using Turtle geometry, it is possible to animate the two-dimensional projective 
model of the hyperbolic surface to provide an artefact for exploring the geometry 
(Jones et al.,  ibid ). Taken from Stevenson  (  2000  ) , the following snippet shows the 
work of two adults (S and P) using the non-Euclidean Turtle microworld to illustrate 
the role of artefacts in mediating understanding of the geometry. In Fig.  5.16 , S and 
P fi rst draw the lines OA and OB; then they attempt to fi nd the line (AB) to close the 
triangle. Starting with the Turtle at B, pointing to the right of the screen, they turn it 
left through 135°, and use a built-in procedure called “Path” which indicates how 
the Turtle would travel if moved along that heading. They see that line does not 
close the triangle, so they turn the Turtle by a further 5° to the left. This time the path 
goes through A, and they refl ect on the screen results (Fig.  5.16 ).  

 S picks up a hyperbolic surface provided for them and reminds himself about 
the projection process (the left-hand side of Fig.  5.15 ). S comments on the diagram 
in Fig.  5.16 :

  S: We haven’t got 180, but it’s walking a straight-line path (refl ectively). 
   (S here refers to the metaphor that, in order to trace a straight line on a curved surface 

– in this case the hyperboloid, the Turtle must take equal strides, hence “walking a 
straight-line path”.) 

 P:  Yeah, you’ve probably got to turn. 
   (Instinctively, P thinks that a Turtle walking on the curved surface must turn to compen-

sate for the curvature. S is clear that this is not happening.) 
 S:  No, you don’t have to turn. It’s actually drawing a triangle on the surface. 
   (Looking at the hyperboloid, S imagines the Turtle marking out the triangle on the 

surface.) 
 S:  The projection defi es Pythagoras. No! Hang on, walking on the surface is defying it, isn’t it! 

Because we walk straight lines on the surface; we just see them as curves on the projection.   

  Fig. 5.16    The turtle within the hyperbolic world       
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 For S, the projection clearly preserves the geometric properties of the Turtle’s 
path on the surface. S believes that what they see is a fact about the geometry, not a 
result of the software or the projection. Two points are signifi cant: First, S’s insight 
would be impossible without both the material artefacts (physical surface and digi-
tal application) and the metaphor that turtles walk straight lines on curved surfaces 
by taking “equal-strides without turning” (Abelson and diSessa  1980 , p. 204). 
Second, S is convinced by what he sees, and provides an explanation about why the 
image preserves something about the geometry of the hyperbolic surface. 

 There remains the problem of what might constitute a proof that the angle sum 
of any hyperbolic triangle is always less than 180°. Given that the artefacts mediate 
the object of study (hyperbolic geometry), one can convert S’s insight into the tech-
nology of logical inference with its associated linearisation and the re-interpretation 
of the diachronic aspect. Proofs of the angle sum do exist, but they rely on the 
axiomatic approach described by Einstein and on the technology of inference 
(e.g. Coxeter  1969 , p. 296 ff.). However, the proofs are abstract and lack visual 
intuition; the digital and physical artefacts described here offer learners a more con-
crete and visual situation. 

 In the not too distant future, learners may use electronic media, rather than paper, 
to develop their work, which would enable them to embed digital applications. 
Effectively, this process will separate the technology of inference from the need to 
lay out arguments on paper as some kind of fi nal statement. As for the model pre-
sented in Fig.  5.15 , its value lies in being able to provide the cultural and pedagogic 
context for these activities; it embeds technologies in social relationships and human 
motivation. It also shows how dynamic tensions arise in reasoning due to confl icts 
between technologies. Coupled with Balacheff’s analysis of proof types  (  2008  ) , the 
model identifi es how the assumptions and expectations of those engaging in proof 
generate contradictions in their practices (Stevenson  2011  ) . 

 In closing, in this chapter we have discussed some strands of experimental 
mathematics from both an epistemological and a didactical point of view. We have 
intro duced some past and recent historical examples in Western culture in order to 
illustrate how the use of tools has driven the genesis of many abstract mathematical 
concepts. 

 The intertwining between concrete tools and abstract ideas introduces both an 
“experimental” dimension in mathematics and a dynamic tension between the 
 empirical nature  of the activities with the tools –which encompass perceptual 
and operational components– and the  deductive nature  of the discipline –which 
entails a rigorous and sophisticated formalisation. This  almost empirical  aspect 
of mathematics was hidden in the second half of the nineteenth and the fi rst half of 
the twentieth century because of a prevailing formalistic attitude. More recently, the 
perceptual and empirical aspects of the discipline have come again on the scene. 
This is mainly due to the heavy use of the new technology, which is deeply and 
quickly changing both research and teaching in mathematics (Lovasz  2006  ) . 

 We have illustrated the roles both perception and empiricism now play in 
proving activities within the classroom and have introduced some theoretical 
frameworks which highlight the dynamics of students’ cognitive processes 
whilst working in CAS and DGS environments. The learners use those 
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 technologies to explore  problematic situations, to formulate conjectures and 
fi nally to produce proofs. We have pointed out the complex interplay between 
inductive, abductive, and deductive modalities in the delicate transition from the 
empirical to the theoretical side in the production of proofs. This dynamic can 
be strongly supported by a suitable use of technologies, provided the students 
learn some practices in their use, for example the  maintaining dragging  scheme 
in DGS. We have also shown how the induced instrumental genesis can help 
learners in producing indirect proofs. 

 Finally, we have used Activity Theory to model the dynamic tension between 
empiricism and deduction as a consequence of  translating between different tech-
nologies , understood in the broadest sense as something that can mediate between 
different ontologies and epistemologies.       
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    5   Response to “Experimental    Approaches to Theoretical 
Thinking: Artefacts and Proofs” 

 Jonathan M. Borwein, and Judy-anne Osborn 

  An overview of the chapter.  The material we review focuses on the teaching of 
proof, in the light of the empirical and deductive aspects of mathematics. There is 
emphasis on the role of technology, not just as a pragmatic tool but also as a shaper 
of concepts. Technology is taken to include ancient as well as modern tools with 
their uses and users. Examples, both from teaching studies and historical, are pre-
sented and analysed. Language is introduced enabling elucidation of mutual rela-
tions between tool-use, human reasoning and formal proof. The article concludes by 
attempting to situate the material in a more general psychological theory. 

 We particularly enjoyed instances of the ‘student voice’ coming through, and 
would have welcomed the addition of the ‘teacher’s voice’ as this would have fur-
ther contextualised the many descriptions the authors give of the importance of the 
role of the teacher. We are impressed by the accessibility of the low-tech examples, 
which include uses of straight-edge and compass technology, and commonly avail-
able software such as spreadsheets. Other more high-tech examples of computer 
geometry systems were instanced and it would of interest to know how widely avail-
able these technologies are to schools in various countries (examples in the text 
were primarily Italian with one school from Hong Kong) and how much time-
investment is called upon by teachers to learn the tool before teaching with it. The 
general principles explicated by the authors apply equally to their low-tech and 
high-tech examples, and are thus applicable to a broad range of environments 
including both low and high-resourced schools. 

 The main theoretical content of the chapter is in the discussion of why and how 
tool-use can lighten cognitive load, making the transition from exploring to proving 
easier. On the one hand tool-use is discussed as it relates to the discovery of con-
cepts, both in the practical sense of students coming to a personal understanding, 
and in the historical sense of how concepts make sense in the context of the existence 
of a given tool. On the other hand the kinds of reasoning used in the practice of math-
ematics are made explicit – deduction, induction and a third called ‘abduction’ – with 
their roles in the stages of mathematical discovery, as well as how tool-use can 
facilitate these kinds of reasoning and translation between them. 

 Frequent use of the term ‘artefact’ is made in the writing, thus it is pertinent to 
note that the word has different and opposing meanings in the educational and the 
science-research literature. In the educational context the word means a useful 
 purposely human-created tool, so that a straight-edge with compass or computer-
software is an artefact in the sense used within the article. In the science-research 
literature, an artefact is an accidental consequence of experimental design which is 
misleading until identifi ed, so for instance a part of a graph which a computer gets 
wrong due to some internal rounding-error is an artefact in this opposite sense. 
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  The structure of the chapter.  There is an introduction: essentially a reminder that 
mathematics has its empirical side as well as the deductive face which we see in 
formal proofs. Then there are three parts. Part 1 begins with a discussion of the his-
tory of mathematics, with reference to the sometimes less-acknowledged aspect of 
empiricism. In its second half, Part 1 segues from history into modern teaching 
examples. Part 2 is the heart of the article. It deals with the kind of reasoning natural 
to conjecture-forming, ‘abduction’, the concept of ‘instrumentation’ and cognitive 
issues relating to ‘indirect proofs’; all through detailed examples and theory. Part 3 
reads as though the authors are trying to express a large and fl edgling theory in a 
small space. A general psychological paradigm called ‘Activity Theory’, is intro-
duced, which deals with human activities and artefacts. An indication of digital 
technology as a means of translating between different ways of thinking is given in 
this context. We now discuss each Part in more detail. 

  Part 1.  The historical half of Part 1 deals with geometric construction as a paradigmatic 
example, with the authors showing that since Euclid, tools have shaped concepts. 
For example, the straight-edge and compass is not just a practical technology, but 
helps defi ne what a solution to a construction problem means. For instance cube 
duplication and angle trisection are impossible with straight-edge and compass (i.e. 
straight lines and circles) alone, but become solvable if the Nicomedes compass 
which draws a conchoid are admitted. A merely approximate graphic solution 
becomes a mechanical solution with the new tool. The moral is that changing the set 
of drawing tools changes the set of theoretically solvable problems, so that practical 
tools become theoretical tools. Another theme is the ambiguity noted in Descartes’ 
two methods of representing a curve, by either a continuous motion or an equation; 
and subsequent historical developments coming with Pasch, Peano, Hilbert and 
Weierstrass, in which the intuition of continuous motion is suppressed in favour of 
purely logical relations. The authors perceive that historical suppression as having a 
 cost  which is only beginning to be counted, and rejoice that the increased use of 
computers is accompanying a revived intuitive geometric perspective. 

 This revival also offers the prospect of teachers who better understand mathe-
matics in its historical context. Ideally, their students will gain a better appreciation 
of the lustrous history of mathematics. It is not unreasonable that students fi nd hard 
concepts which took the best minds in Europe decades or centuries to understand 
and capture. 

 Part 1 is completed by examples from three educational studies followed by a 
discussion of the importance of the role of the teacher. Each example uses a tool to 
explore some mathematical phenomenon, with the teaching aim being that students 
develop a theoretical perspective. The fi rst study involved over 2,000 students in 
various year-groups and 80 teachers, setting straight-edge and compass in the wider 
context of mathematical “machines”. The second study, of Year 10 students, sits in 
the context of a particular DGS (Dynamical Geometry System), specifi cally the 
software called  ‘Cabri’ . Students fi rst revised physical straight-edge and compass 
work, then worked in the virtual  Cabri  world, in which their drawings become what 
are termed ‘Evocative Computational Objects’ | no longer just shapes but shapes 
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with associated  Cabri  commands and the capacity to be ‘dragged’ in interesting 
ways whose stability relates to the in-built hierarchical structure of the object. 
Interesting assertions made by the authors are that drag-ability relates to prove-
ability, and that the original pencil drawings become signs for the richer  Cabri  
objects. As in the previous study, a central aspect was student group discussion and 
comparison of solutions. The third study was of the use Year 9 students made of a 
CAS (Computer Algebra System) to explore the behaviour of functions. The 
 students initially made numerical explorations, from which they formulated conjec-
tures. Then, largely guided by a suggestion from their teacher, they substituted let-
ters for numbers, at which point the path to a proof became evident. 

 The way in which the role of the teacher is crucial, in all three studies, is 
described with reference to a model expressed in Fig.  5.4 . On the left of the dia-
gram, activities and tasks chosen by the teacher sit above and relate to mathematics 
as a general entity within human culture. On the right side of the diagram, student’s 
productions and discoveries from carrying out the tasks sit above and relate to 
the mathematical knowledge required by the school curriculum. The artefact 
(purpose-created tool) sits in the middle. Reading the picture clockwise in an arc 
from bottom left to bottom right neatly captures that teachers need to choose 
suitable tasks, students carry them out, and teachers help the students turn their 
discovered personal meanings into commonly understood mathematics. It is pointed 
out that as students discuss their use of artefacts, teachers get an insight into students’ 
thought-processes. 

  Part 2.  In Part 2, we get to the core of the article’s discussion of proving as the 
mental process of transitioning between the exploratory phase of understanding a 
mathematical problem to the formal stage of writing down a deductive proof. The 
central claim is that this transition is assisted by tools such as Dynamic Geometry 
System (DGS) softwares and Computer Assisted Algebra (CAS) softwares, pro-
vided these tools are used within a careful educational design. The concept of 
abduction is central to the authors’ conceptual framework. The term is used many 
times before it is defi ned – a forward reference to the defi nition in about the tenth 
paragraph of Part 2 would have been useful to us. It is worth quoting the defi nition 
(due to Peirce) verbatim:

  The so-called syllogistic abduction (C.P.2.623), according to which a Case is drawn from a 
Rule and a Result. There is a well-known Peirce example about beans: 

 Rule: All beans from this bag are white 

 Result: These beans are white Case: 

 These beans are from this bag   

 Clearly this kind of reasoning is not deduction. The conclusion doesn’t necessarily 
hold. But it might hold. It acts as a potentially useful conjecture. Nor, as the authors 
note, is this kind of reasoning induction, which requires one case and many results 
from which to suppose a rule. 

 The authors’ naming and valuing of abduction sits within their broader recogni-
tion and valuing of the exploratory and conjecture-making aspects of mathematics 
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which can be hidden in fi nal-form deductive proofs. Their purpose is to show how 
appropriate abductive thinking arises in experimentation and leads to deductive 
proofs, when the process is appropriately supported. 

 The role of abductive reasoning in problem solving strikes these reviewers as a 
very useful thing to bring to educator’s conscious attention. One of us personally 
recalls observing an academic chastise a student for reasoning which the academic 
saw as incorrect use of deduction, but which we now see as correct use of abduction 
in the early part of attempting to fi nd a proof. 

 An example of 10th grade students faced with a problem about distances between 
houses and armed with a software called TI-Nspire is presented in detail in this sec-
tion. The empirical aspect of mathematical discovery is described in an analogy 
with a protocol for an experiment in the natural sciences. We note that this example 
could be usefully adapted to a non-computerised environment. A point which the 
authors make, specifi c to the use of the computer in this context, is that the software 
encourages/requires useful behaviour such as variable-naming; which can then 
assist students in internalising these fundamental mathematical practices as psycho-
logical tools. 

 A teaching/learning example regarding a problem of fi nding and proving an 
observation about quadrangles, presented to 11th and 12th grade students is given. 
The authors give a summary of the steps most students used to solve the problem, 
and then interpret the steps in terms of the production of an abduction followed by 
a proof. The authors write

  In producing a proof, (Phase 5) the students write a proof that exhibits a strong continuity 
with their discussion during their previous explorations; more precisely, they write it 
through linguistic eliminations and transformations of those aforementioned utterances.   

 This statement is in the spirit of a claim at the start of Part 2 that empirical behav-
iour using software appropriately in mathematics leads to abductive arguments 
which supports cognitive unity in the transition to proofs. 

 The next main idea in Part 2 after ‘abduction’ is that of ‘instrumentation’. The 
special kind of ‘dragging’ which has been referred to during discussions of DGS 
softwares is recognised as maintaining dragging (MD), where what is being main-
tained during the dragging is some kind of visible mathematical invariant. 
Furthermore the curve that is traced out during dragging is key to conjecture-forma-
tion and potentially proof. 

 The third main concept dealt with in Part 2 is that of ‘indirect proof’ and the dif-
fi culties that students often have with it. The authors usefully describe how soft-
ware-mediated abductive reasoning may help, which they support with two plausible 
arguments. First, the authors note that indirect proofs can be broken up into direct 
proofs of a related claim (they use the term ‘ground level’) together with a proof of 
the relationship between the two claims (they use the term ‘meta level’). Thus an 
argument for software-mediated reasoning says that use of software helps students 
keep track of the two levels of argument. 

 Second, the authors argue that abduction is useful to students partly because of 
what happens to formal (mathematical) claims when they are negated. The authors 
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state that in some sense the cognitive distance between the conjecture and the proof 
is decreased in the negation step. They give two examples. The fi rst is a study of a 
Year 9 student presented with a delightful problem about functions and their deriva-
tives and anti-derivatives. In this case, refutation of an argument by abduction turns 
out to coincide with refutation of an argument by deduction. The second example is 
of a study of two students from Years 9 and 10 in Hong Kong given a problem about 
cyclic quadrilaterals in a  Cabri  environment. In this case, ‘dragging’ behaviour led 
the students to an argument which collapsed to a formal ‘reductio ad absurdum’. 

 To summarise one stream of thought from Part 2 relating to the practice of learn-
ing and teaching: (a) tool-use facilitates exploration, especially visual exploration; 
(b) exploration (in a well-designed context) leads to conjecture-making; (c) practi-
cal tool-use forces certain helpful behaviours such as variable-naming; (d) this 
‘instrumentation’ can lead to internalising tools psychologically; (e) for indirect 
proofs, the way negation works helps bridge the distance between kinds of reason-
ing used in conjecture-making and proof. 

 In the closing section of Part 2, the authors go beyond the claim that abduction 
supports proof and become more speculative. They quote Lopez-Real and Leung to 
claim that deduction and abduction are parallel processes in a pair of ‘parallel systems’, 
Formal Axiomatic Euclidean Geometry on the one hand, and Geometry realised in 
a Dynamic Geometry Environment (DGE) on the other hand, and that interaction 
between the two ways of knowing and storing information could be productive in 
ways not yet fully elucidated. It would be fascinating to see these ideas fl eshed out. 

  Part 3.  Part 3 introduces ‘Activity Theory’, a general framework concerned with the 
know-how that relates to artefacts, and attempts to situate the discussions of Parts 1 
and 2 in this context, however as readers we found it diffi cult to gain insight from 
this formulation lacking as we do previous detailed knowledge of Activity Theory. 
The attempted translation between languages is scanty, although there are some 
illuminating examples, for instance an interesting use of ‘turtle geometry’ to explore 
hyperbolic geometry is presented in this section, where the turtle geometry is 
regarded as an artefact within Activity Theory. This part also expands upon the idea 
of instrumentation, linking ideas about concept-development, Gestalt perception 
and embodiment. There is much here which could be further developed; and which 
assuredly will be. 

  Conclusions.  We fi rst highlight a notion which is implicit throughout the chapter, 
which is the valuing of the teaching of proof in schools. Proof is a central compo-
nent of mathematics however the valuing of the teaching of proof is not always 
taken for granted. For instance in the Australian context we know of instances of 
stark contrast, where the current state-based curricula does not emphasise proof (it 
is mentioned in the context of upper level advanced classes only), although we 
know of cases in which teacher-training does emphasise it. In short, we believe that 
there is often not enough teaching of proof in schools and that the chapter under 
review may help by providing a conceptual and practical bridge for students and 
their teachers between the activities of exploring mathematics and of creating and 
understanding proofs. 
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 We also highlight the authors’ own advisements about implementation in 
practice of the theory they have articulated. The authors emphasise that the role of 
the teacher is crucial both in lesson design and classroom interaction; as is neatly 
captured by Fig.  5.4  near the end of Part 1. They observe, for instance in their dis-
cussion of “maintaining dragging” in Part 2, that desired student understandings and 
behaviours often do not arise spontaneously. Further, they warn early in Part 1 
(quoting Schoenfeld) that counterproductive student behaviour can arise as unin-
tended by-products of teaching. At the end of Part 1 the authors give references to 
studies in which the kinds of  useful  interventions that teachers repeatedly make are 
analysed. It is helpful to have the centrality of the mathematics teacher made so 
clear. The importance of design and interaction are emphasised in quotations such 
as “The teacher not only  selects suitable tasks  to be solved through constructions 
and visual, numerical or symbolic explorations, but also  orchestrates  the complex 
transition from practical actions to theoretic arguments”; and “The teacher, as an 
expert representative of mathematical culture,  participates in the classroom dis-
course  to help it proceed towards sense-making in mathematics” (our emphasis). 

 In summary, this work repays the effort to read it. The historical perspective at 
the beginning brings the duality between empiricism and deductive reasoning use-
fully to mind. The examples, language and theory developed in Part 2 are likely to 
be clarifying and inspiring to both educators and theorists. The more speculative 
aspects at the end of Part 2 and in Part 3 call for further elucidation and development 
to which we look forward.     
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