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Abstract

This research assesses the dynamic structure of the energy sector of the aggregate econ-

omy in the context of nonlinear mechanisms. Earlier studies have focused mainly on

the price of the energy products when detecting nonlinearities in time series data of the

energy market, and there is little mention of the production side of the market. More-

over, there is a lack of exploration about the implication of high dimensionality and time

aggregation when analyzing the market’s fundamentals. This research will address these

gaps by including the quantity side of the market in addition to the price and by sys-

tematically incorporating various frequencies for sample sizes in three essays. The goal

of this research is to provide an inclusive and exhaustive examination of the dynamics in

the energy markets.

The first essay begins with the application of statistical techniques, and it incorpo-

rates the most well-known univariate tests for nonlinearity with distinct power functions

over alternatives and tests different null hypotheses. It utilizes the daily spot price obser-

vations on five major products in the energy market. The results suggest that the time

series daily spot prices of the energy products are highly nonlinear in their nature. They

demonstrate apparent evidence of general nonlinear serial dependence in each individual
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series, as well as nonlinearity in the first, second, and third moments of the series.

The second essay examines the underlying mechanism of crude oil production and

identifies the nonlinear structure of the production market by utilizing various monthly

time series observations of crude oil production: the U.S. field, Organization of the

Petroleum Exporting Countries (OPEC), non-OPEC, and the world production of crude

oil. The finding implies that the time series data of the U.S. field, OPEC, and the world

production of crude oil exhibit deep nonlinearity in their structure and are generated by

nonlinear mechanisms. However, the dynamics of the non-OPEC production time series

data does not reveal signs of nonlinearity.

The third essay explores nonlinear structure in the case of high dimensionality of the

observations, different frequencies of sample sizes, and division of the samples into sub-

samples. It systematically examines the robustness of the inference methods at various

levels of time aggregation by employing daily spot prices on crude oil for 26 years as well

as monthly spot price index on crude oil for 41 years. The daily and monthly samples

are divided into sub-samples as well. All the tests detect strong evidence of nonlinear

structure in the daily spot price of crude oil; whereas in monthly observations the evidence

of nonlinear dependence is less dramatic, indicating that the nonlinear serial dependence

will not be as intense when the time aggregation increase in time series observations.
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Chapter 1

Introduction

Background Study. The energy sector has always had a substantial role in the ag-

gregate economy. The energy market, particularly the petroleum price and production

have significantly been influenced by exogenous shocks, such as geopolitical events, and

their fluctuations have frequently impacted the global economy. Petroleum prices have

been remarkably unstable over the last few years, escalating to a high of $145 in July

2008 and a declining to $30 in December 2008 as a result of global recession, reported

by the Energy Information Administration (EIA) in the International Energy Outlook

2011. Moreover, during the recent political unrest in the Middle East and the majority

of oil-supplying countries, the price of petroleum accelerated to nearly $113 per bar-

rel per day in May 2011 after being relatively stable at around $80 per barrel per day

since the 2008 global recession. Due to the important role of the energy market in the

aggregate economy fluctuations, the correlation between oil shocks and important eco-

nomic variables, such as aggregate output and employment, has been a long debated
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subject in economic literature. Hamilton (1983, 2003); Rotemberg and Woodford (1996)

among many other seminal studies have discovered negative correlation between energy

disruption and aggregate measure of main the economic variables.

However, to better examine the correlation between the energy sector and the econ-

omy, it is crucial to find an appropriate specification that fits the data generating mech-

anism more closely. As explained by Brockett, Hinich, and Patterson (1988), due to the

complication of linear and quadratic coefficients in the estimation of time series models, it

is necessary to check the nonlinear structure in the observed time series and to determine

which time series are not compliant to linear time series modeling.

Research Objectives. My research assesses the dynamic structure of the energy

sector of the aggregate economy in the context of nonlinear mechanisms. Previous studies

in the literature mainly focused on the price of the energy market and neglected the

production of crude oil, which is the variable that responds to the price. Furthermore,

the existing literature has mainly focused on the daily prices of the energy products

when detecting nonlinear mechanism in the market’s fundamentals. Moreover, there is

a lack of examination about utilizing different time aggregations and implication of high

dimensionality in analyzing the data generating mechanism in the energy market. My

research will address these gaps in three essays by considering the quantity side of the

energy market in addition to the price, systematically incorporating various sample sizes

with different frequencies, and by using high dimensional observations.

Essay One: Nonlinear Structure in Energy Products. The first essay begins

with application of statistical techniques and incorporates the most well-known univariate
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tests for nonlinearity with distinct power functions over alternatives and tests different

null hypotheses. The first essay is to examine the data generation mechanisms of the

five main energy products. It utilizes the daily spot price observations between January

1995 to August 2011 on crude oils, West Texas Intermediate (WTI–Cushing) and Europe

Brent, New Harpor heating oil, and New York conventional gasoline regular. Moreover,

daily spot prices on Henry Hub Gulf Coast natural gas from January 1997 is used for

the analysis. None of the utilized univariate tests have exactly the same null hypothesis

and they focus on different aspects of nonlinearity. The findings of the inference methods

reveal that there is strong evidence of nonlinear structure in the time series data, indi-

cating that each individual series exhibits general nonlinear serial dependence as well as

nonlinearity in the mean, variance, and skewness functions.

Essay Two: Nonlinear Dynamics in Crude Oil Production. The second

essay focuses on the dynamic properties of the crude oil production and is motivated

by the neglected quantity side of the energy market. There is extensive literature on

modeling the crude oil production prediction. The production of crude oil is one of

the main variables that impacts the aggregate output fluctuations and has significant

influence on different sectors. The aggregate economy often performs weekly after a

major disruption in crude oil supply that corresponds to the increase in the price of

oil. Hence, it is essential to study the dynamics of the production of crude oil to better

explore the production market’s fundamentals. The study will allow us to attain more

plausible empirical and forecasting results by a model specification that is more close

to the data generating mechanisms. The essay also examines the crude oil production
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time series data of the major oil producing parties by employing statistical methods

and econometrics techniques. The employed techniques focus on different aspects of

nonlinearity and reveal different forms of nonlinear structure in the data generating

mechanism. The essay utilizes monthly observations on the U.S. field production of crude

oil from January 1973 to June 2011 as well as Organization of the Petroleum Exporting

Countries (OPEC), non-OPEC, and the world production of crude oil. The sample period

of the last three time series observations is from January 1973 to January 2012. The tests

reveal significant signs of nonlinearity in all the time series observations, excluding non-

OPEC production of crude oil. The results of the underlying mechanism for non-OPEC

production can be attributed to the steady growth rate of the petroleum production for

those countries, which indicates that the supply of crude oil has not been significantly

disrupted by exogenous shocks such as geopolitical events. The OPEC production of

crude oil, however, has frequently experienced disruptions of crude oil production and

clear indications of nonlinear structure is reflected in the OPEC production time series

observations. The method to assess the nonlinear dynamics of crude oil production is a

new approach in uncovering the supply side of the energy market.

Essay Three: Time Aggregation in Nonlinear Analysis. The third essay ex-

amines the dynamic structure of the daily prices of crude oil with different frequencies,

higher dimensional cases, and by dividing the entire sample size into various sub-periods.

The chapter addresses the gap in the literature for a thorough investigation on various

time aggregation levels in the petroleum price market and will identify at which time

frequencies the nonlinear dependence cannot be detected. To this end, the essay utilizes
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daily spot price of crude oil, West Texas Intermediate (WTI), from January 2, 1986 to

April 30, 2012 consisting of 6642 observations. The period of time analyzed is divided

into three sub-periods: January 2, 1986 to December 30, 1993 consisting of 2039 ob-

servations, January 3, 1994 to December 31, 2003 consisting of 2511 observations, and

January 5, 2004 to April 30, 2012 consisting of 2092 observations. Moreover, the monthly

time series observations on the real price value of crude oil (WTI) is utilized. The sample

period of study is from January 1970 to March 2011 for a total of 494 observations and is

divided into two sub-samples: January 1970 to December 1991 for a total of 263 obser-

vations and January 1992 to March 2011 for a total of 231 observations. Incorporating

monthly observations to assess the existence of nonlinear structures in the time series

data generating mechanism of crude oil, when the time between observations increases,

distinguishes the approach of this chapter from the existing studies in the literature. To

carry out the analysis, the most widely univariate tests to detect nonlinearity are em-

ployed. These test will explore different attributes of nonlinear serial dependence and

focus on distinct aspects of nonlinearity. Hence, using the tests jointly can provide a bet-

ter understanding of the nature of the nonlinearity that may exist in the data generating

mechanism. The findings of the daily spot price of crude oil indicate strong evidence

of nonlinear structure in the data generating mechanism, whereas the signs of nonlinear

dependence in monthly observations is less significant. The chapter concludes that the

volume of nonlinear dependence differs by using various levels of time aggregation on

daily spot price of crude oil, and it declines by increasing the time between occurrences.

The findings are consistent with the results of the study by Patterson and Ashley (2000b).
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Dissertation Organization. This dissertation is organized into five chapters, in-

cluding the introduction. Chapter two assesses the nonlinear dynamic in time series of

various energy products. Chapter three analyzes the nonlinear dynamic structure in the

crude oil production market. Chapter four examines the role of time aggregation and high

dimensionality in dynamic structure of crude oil. The final chapter provides a summary

of findings and discusses their economic applications.
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Chapter 2

Nonlinear Structure in Time Series

of the Energy Products

2.1 Introduction

The energy sector, in particular the petroleum market, has played a key role in the

aggregate economy. Historically, this sector has been influenced by political disturbances.

Over the last four decades, the price of petroleum has dramatically increased in response

to a series of major events. For instance, during the recent political unrest in the Middle

East, the price of petroleum accelerated to nearly $113 per barrel per day in May 2011

after being relatively stable at around $80 per barrel per day since the 2008 credit crisis.

As a result of these various shocks, a large number of studies have centered their attention

on the correlation between the energy sector disruption and the aggregate economic

activity, such as Hamilton (1983, 2003); Rotemberg and Woodford (1996) among many

7



others.

However, to attain a more precise relation between the energy sector and the economy,

it is crucial to employ appropriate specifications, which are reasonably close to the data

generating mechanism, and to examine whether the time series observations in the market

are generated by a linear process or a nonlinear dynamic mechanism. As illustrated by

Brockett et al. (1988), given the nature of confounding linear and quadratic coefficients

in the estimation of time series models, it is important to detect nonlinear structure in

the observed time series and to determine which time series are not compliant to linear

time series modeling. If the nonlinearity is present in the data, choosing a nonlinear time

series can provide more plausible post sample forecasting ability (Ashley and Patterson

(2006)). Furthermore, investigating the sector’s data generating process helps to resolve

whether or not the market’s fluctuations are exogenous, as noted by Kyrtsou, Malliaris,

and Serletis (2009).

Therefore, in view of the importance of the energy sector in the aggregate economy,

it is vital to reveal the nature of the time series data generating mechanism of the prices

in the energy market and to assess the dynamic structure of the energy sector, which is

the goal of this chapter.

This chapter will uncover the daily data generating mechanism of observed time se-

ries of the five main energy products and assess the existence of a nonlinear structure

in the market’s fundamentals by employing statistical methods and econometrics tech-

niques. This study incorporates the most well-known univariate tests for nonlinearity

with distinct power functions over alternatives and tests different null hypotheses. It
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utilizes daily spot price observations between January 1995 to August 2011 on five major

products in the energy market – crude oil (West Texas Intermediate (WTI) and Europe

Brent), heating oil, gasoline and natural gas. This chapter is organized as follows: the

next two sections discuss the role of the energy market in the global economy; Section

Three reviews the related literature; Section Four describes the data and related different

unit root analysis; Section Five discusses the inference methods as well as the results of

performing the nonlinearity tests to examine the markets’ data generating mechanism; a

brief summary and conclusion for this chapter are offered in Section Six.

2.2 Energy Products: Price and Consumption

Energy Products Price

In the early 1970s to early 1980s, the price of oil increased considerably in response to the

major conflicts in the Middle East, which reduced the world supply of oil dramatically.

The first fall in supply in that decade was experienced in late 1973 as a result of tightening

the oil embargo by the Organization of the Petroleum Exporting Countries (OPEC).

Oil production was cut by five million barrels per day and the price of oil increased

400 percent in six months (Sill (2007)). Crude oil price reaction to a variety of global

geopolitical events is shown in Figure 2.1. The next dramatic increase in oil price occurred

as a result of the Iranian Revolution, which began in late 1978 and resulted in a drop of

3.9 million barrels per day of Iran’s crude oil production until 1981. In 1980, the Iran-

Iraq war began and by 1981 OPEC production declined by seven million barrels per day
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from its level in 1978. The world oil price jumped from $14 per barrel in 1979 to more

than $35 in 1981. The subsequent event was the Persian Gulf Crisis in 1990, when Iraq

invaded Kuwait and resulted in another sudden increase in crude oil price. The price of

crude oil, which was relatively stable, escalated from $16 per barrels per day in July to

more than $36 per barrel per day in September 1990.

Figure 2.1: Crude Oil Prices React to Variety of Geopolitical and Economic Events

Source: U.S. Energy Information Administration (2012), Thomson Reuters. Crude Oil Prices React
to a Variety of Geopolitical and Economic Events. What Drives Crude Oil Prices. Retrieved from:
http://www.eia.gov/finance/markets/spot-prices.cfm

After 1990, world oil demand had a dramatic increase during the global recovery

period of 2003–2007 until the global financial collapse in 2008, when the oil price escalated

to $134 per barrel per day in July 2008. Once again, the energy market encountered

another dramatic increase in oil prices as a result of unrest in the Middle East in 2011.
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The WTI spot price accelerated to nearly $120 per barrel per day in April 2011. Those

rises and falls in the energy market and the oil price shocks have influenced U.S. economy

through different channels. As Hamilton (1983) has noted in his paper, seven out of eight

postwar U.S. recessions were proceeded by a significant increase in price of petroleum.

In another paper, Hamilton (2011) states that the count as of 2011 stands at ten out of

eleven. High oil prices and energy supply disruptions may lead to economic downturns

due to the variations in the business cycle because of the supply shocks. Moreover,

oil price shocks may also influence the aggregate economic activity through monetary

policies. If a rise in oil price is related to general price inflation, monetary authorities may

adopt restrictive monetary policies, which could slow the economy’s growth.1 Bernanke,

Gertler, and Watson (1997) argue that the effect of oil price shocks on the economy

results in changes in monetary policies, i.e., increase in the interest rates, which causes

the downturn in economy.

Therefore, historically the energy market has always had a crucial role in the economy

and has a substantial impact on different sectors. Hence, it is critical to understand the

nature of the energy market and discover the structure of time series of energy products’

prices, which is essentially the aim of this section.

The Petroleum Consumption

Energy components’ demand, particularly petroleum, has increased over time. Figure

2.2 describes the changes in total petroleum consumption from 1990 to 2010 of the

Organization for Economic Cooperation and Development (OECD) countries, non-OECD

1Robert Pirog (2005), CRS report for congress.
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countries and also the WTI price levels. It is noticeable that rising oil prices held down

the growth of oil consumption growth in OECD countries in 2008 and 2009, in contrast

with non-OECD countries. This is partially because of a relatively slower economic

growth rate and more efficient transportation sectors, so the impact of the higher prices

has been more apparent in OECD countries2. However, in 2010, the OECD organization

consist of 34 countries, accounts for 53 percent of worldwide oil demand, and 41 percent

of this number belongs to the United States. The United States stands as the first

ranked consumer of the petroleum and almost all other energy components in the world

by reaching nearly 19180 thousands barrels per day for petroleum consumption in 2010.

Figure 2.2: OECD and Non OECD Petroluem Consumption, WTI Crude Oil Price

Source: Energy Information Administration (EIA)

Therefore, the industrialized countries consumption of crude oil is significantly more

2Oil Market Basics, Energy Information Administration (EIA).
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than developing countries, and North America, dominated by the United States, is the

second largest consuming area in the world, as it is demonstrated in Figure 2.3. For

instance, oil consumption in North America (the United States and Canada) is nearly

three gallons per day per capita3 while in the rest of the OECD countries is equal to 1.4

gallons per day per capita, and outside the OECD the is almost 0.2 gallons per day per

capita. 4

Figure 2.3: Global Petroleum Consumption in 2010 (Thousand Barrels Per Day)

Data Source: Energy Information Administration (EIA)

The United States economy may not be as energy dependent as in the previous

decades, but the market for petroleum has been known by strong demand growth over

time, in particular in from 2003 to 2007 as a result of global recovery. As also demon-

3Oil Market Basics, Energy Information Administration (EIA).
4Oil Market Basics, Energy Information Administration (EIA).
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Figure 2.4: Percentage of Petroleum Consumption in North America in 2011 (Thousand
Barrels Per Day)

Data Source: Energy Information Administration (EIA)

strated by Figure 2.4, the United States has the first spot in consuming the petroleum

product among the North American countries.

The escalation of global oil consumption, particularly by China and India, and also

the declining the output from oil-producing countries (such as Libya) can potentially

result in high prices for petroleum yet again and suppress the global economy.

2.3 Literature Review

There is an extensive body of literature about the energy market and its impacts on

economic activities. Also, there are studies that focus on the structure of the energy

market, the interaction of the energy market with other markets, and the energy related

policies. This section will review the most related literature to the subject of the paper

in three sections and will explain how the study contributes to the existing literature.
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2.3.1 Energy Market and its Impact on the Aggregate Economy

Hamilton (1983) uses Sim’s (1980) six-variable quarterly vector autoregressive (VAR)

model and shows that all but one of the U.S. recessions since World War II have been

preceded by a dramatic increase in the price of crude petroleum. He discusses the evi-

dence that is presented even over the period of 1948–72, which shows the significant and

nonspurious correlation, supporting the fact that oil shocks were a contributing factor

in at least some of the U.S. recessions prior to 1972. The same VAR model is employed

by Mork (1989) to investigate whether Hamilton’s results hold when the sample is ex-

tended to include the oil market collapse. The asymmetric response to oil price increase

and decrease is under particular investigation in Mork’s paper. The results confirm the

negative correlation with the oil price increase and the behavior of GNP growth.

In an extensive review, Hamilton (2003) analyzes the existing literature that relates

the oil price shocks to economic activity and states that oil price increases are much

more important than oil price decreases. Also, increases have significantly less predictive

content if they correct earlier decreases. According to Hamilton’s findings, the recent

increase in the oil price is because of an increase in demand, which differs from past

observations.

Oil price fluctuations have also affected the monetary policies. In a seminal study

Bernanke et al. (1997) investigate the responses of monetary policy to economic distur-

bances by focusing on oil price shocks and using VAR approach. They argue that the

effect of oil price shocks on the economy results from the monetary policies i.e., increase

in the interest rates that responds to oil price shocks and causes the downturn in the
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economy. Their view has been challenged by Hamilton and Herrera (2004). They state

that the monetary policies designed to offset the tightening consequences of oil price

shocks are not as influential as stated by Bernanke et al. (1997). Since the oil shocks

have more impact on the economy than Bernanke et al. (1997) argue, the feasibility of the

monetary policy to offset even a small shock is unpersuaded. Hamilton (2011) reviews

some of the literature on the macroeconomic effect of the oil shocks with a particular

focus on possible nonlinearities in the relation. He includes both supply and demand

shocks and concludes that the relation between GDP growth and oil prices is nonlinear.

2.3.2 Empirical Time Series Analysis of the Energy Market

Serletis (1992) examines the evidence for random walk behavior in the energy future prices

by employing the daily observations for crude oil, heating oil, and unleaded gasoline.

The findings indicate that the unit root hypothesis can be rejected if the possibilities

of a one-time break in the intercept and the slope of the trend function at an unknown

point of time are allowed. An extension to Serletis (1992) is another study by Elder

and Serletis (2007) that re-examines the empirical evidence for random walk behavior in

energy future prices. The paper employs a newly developed semi-parametric estimator

called the Walvelet OLS Estimator. Their finding with this new estimator suggests

that each energy return series displays unambiguous evidence of long memory, with no

evidence of infinite unconditional variance. As they state:

“The particular form of long memory is anti-persistence, characterized by the
variance of each series being dominated by high frequency (low wavelet scale)
components.”(Elder and Serletis (2007))
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Serletis and Herbert (1999) explore the degree of shared trends across the North

America energy market. They test for unit root in univariate time series representations

of six natural gas prices as well as power and fuel prices. Based on the augmented Dicky-

Fuller (ADF) unit root testing procedure, one of the paper’s findings shows that the

random-walk hypothesis cannot be rejected for the natural gas and fuel oil prices. The

power price series, however, appears to be stationary. Also, Serletis and Rangel-Ruiz

(2004) discuss the strength of shared trends and shared cycles between North American

natural gas and crude oil markets. Their results show that there has been “decoupling”

of the prices of these two sources of energy as a result of oil and gas deregulation in

the United States. In other work for analyzing the energy price behavior, Serletis and

Kemp (1998) investigate the basic stylized fact of energy price movements. The results

are robust compare to alternative measures of the cycle and indicate that crude oil and

heating oil prices are synchronous and procyclical whereas unleaded gasoline and natural

gas prices are lagging procyclically. Moreover, they find that energy prices are positively

and contemporaneously correlated with consumer prices and their cycles lead the cycle of

consumer prices, suggesting a possible role for energy prices in the conduct of monetary

policy.

2.3.3 Nonlinearities and Chaos in Economic Data

Identifying nonlinearities and chaos in economic data has attracted considerable attention

in the literature. Barnett, Gallant, Hinich, Jungeilges, Kaplan, and Jensen (1995) apply

nonlinear tests to detect nonlinear behavior or chaos in various monetary aggregate data
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series, and discuss the controversy that has arisen about the available results. They

use five inference methods to test for nonlinearity and chaos: the Hinich bispectrum

test, the BDS test, the Lyapunov exponent estimator of Nychka, the White’s test, and

the Kaplan test. The findings provide a possible explanation for the controversies that

exist regarding empirical evidence of chaos in economic data. They also state that the

source of controversies can be found in the lack of robustness of the inference. In another

influential study, Barnett, Gallant, Hinich, Jungeilges, Kaplan, and Jensen (1997) explore

the reasons for empirical difficulties with the interpretations of nonlinear and chaos tests’

results that have increased over time. They design and run a single-blind controlled

competition among the aforementioned five highly regarded tests for nonlinearity or chaos

with 10 simulated data series. The results shows that although there are some clear

differences among the power functions of the tests, there exists some consistency in their

inferences across the method of inference. They also discuss different issues that need to

be taken into consideration in interpreting the results. As they state

“One consideration is the difference in the power functions over alternative,
for fixed null. The other consideration is the differences in null hypotheses
of each test. The latter consideration produces a degree of noncomparability
of the tests and the possibility that some of the tests could be used jointly.”
(Barnett et al. (1997))

Barnett, Jones, and Nesmith (2004) test the existence of nonlinearity in the cointe-

gration relations of a system containing money demand variables, by applying the Hinich

bispectrum test. The findings have some evidence of nonlinearity, and therefore they

find that the issue is empirically relevant.The detection of chaos in economic data is also

examined by Barnett and Hinich (1993) using Divisa monetary aggregate and applying
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the Hinich bispectrum test. They produce a strong rejection of linearity with the Divisia

M1 data and state that these data are deeply nonlinear. Kyrtsou and Serletis (2006)

discuss univariate tests for independence and hidden nonlinear deterministic structure in

economic and financial time series. They apply the tests to Canadian exchange rate, us-

ing daily data over a 30-year period and they identify an interesting relationship between

high-dimensional nonlinearity and shocks.

Furthermore, interest in studying the behavior of the energy market and applying

the existing tests to detect the nonlinearities and chaos in this market has been growing

over time. Kyrtsou et al. (2009) discuss number of widely used univariate test from

dynamical system theory and apply them to the energy market. They apply these tests

to daily observations of the energy market for nearly 15 years. They find indications

consistent with nonlinear dependence in each of the markets. They also suggest that

an effective nonlinear model of energy prices would produce a deeper perception of the

energy market fluctuations than existing linear models. Sertletis and Gogas (1999) test

for deterministic chaos in the North American Natural Gas Liquids Market. They use

the Lyapunov exponent estimator and they find that there is evidence consistent with a

chaotic nonlinear generation process in natural gas liquid markets. Serletis and Andreadis

(2004) use daily observations on West Texas Intermediate crude oil prices, Henry Hub

natural gas prices, and various tests from dynamical theory to support a random fractal

structure for North American energy markets. The result is consistent with the reported

result by Serletis and Gogas (1999) as they find evidence of nonlinear chaotic dynamics in

North American natural gas liquids markets but not in crude oil and natural gas markets.
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As discussed above, there are studies in the literature that investigated the energy

market’s fundamentals by applying univariate nonlinearity tests to detect the nonlinear

structure in the energy market. This chapter will incorporate the Kaplan test, which

detects the general nonlinearity, to examine the nonlinear dependence in the energy mar-

ket more comprehensively. The kaplan test has not been applied to the energy products

so far, hence the study will provide more insights about the structure of the market.

Moreover, the study uses different sample data series for the prices of the major products

in the energy market and adds one main product of the energy makrket, which has not

been considered in the past studies.

2.4 Data Description and Unit Root Analysis

This essay uses daily prices data on five energy products obtained from Energy Informa-

tion Administration (EIA). The descriptions of the employed daily data are as follows:

• Daily spot price on crude oil: West Texas Intermediate (WTI-Cushing)5 and Eu-
rope Brent6. The sample period of 01/03/1995 to 08/16/2011 consists of 4174
observations for each series.

• Daily spot price on the New York Harbor heating oil7. The sample period of
01/03/1995 to 08/16/2011 consists of 4174 observations.

• Daily spot price on New York conventional gasoline regular8. The sample period
of 01/03/1995 to 08/16/2011 consists of 4174 observations.

5WTI-Cushing: A crude stream produced in Texas and southern Oklahoma, which serves as a refer-
ence or “marker” for pricing a number of other crude streams, is traded in the domestic spot market at
Cushing, Oklahoma. (Energy Information Administration (EIA))

6Brent: A blended crude stream produced in the North Sea region, which serves as a reference or
“marker” for pricing a number of other crude streams. (Energy Information Administration (EIA))

7The location specified in either spot or futures contracts for delivery of a product in New York
Harbor. (Energy Information Administration (EIA))

8Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes
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Table 2.1: Summary Statistics of Differenced Log Series

Sample Sample Standard Skewness Kurtosis Jarque-Bera
Series Mean Median Deviation (p-value)

WTI (Crude Oil) 0.0001 0.0004 0.0110 -0.1924 7.6120 0.0000
Europe Brent 0.0001 0.0003 0.0103 -0.1111 7.8295 0.0000
Heating Oil 0.0001 0.0000 0.0116 -1.4674 39.0782 0.0000
Gasoline 0.0001 0.0006 0.0122 0.0218 6.6622 0.0000
Natural Gas 0.0000 0.0000 0.0201 0.4861 22.6005 0.0000

• Daily spot price on Henry Hub Gulf Coast natural gas9. The sample period of
01/07/1997 to 08/16/2011 consists of 3654 observations for each series.

The descriptive statistics of the first differenced of the log levels for the prices are

reported in Table 2.1. Figures 2.5 to Figure 2.9 depict the prices of the variables during

the sample periods, and Figure 2.10 to Figure 2.14 demonstrate the log levels and the

first differenced log levels for each series in the Appendix A of this chapter.

Before conducting nonlinear and chaos analysis, the first step is to test for stochastic

trend (unit root) in each individual series and avoid any possible spurious regression.

The study employs three alternative tests for unit root to discover whether or not the

series’ behavior follow the random walk.

2.4.1 Unit Root Analysis

In order to carry out the nonlinear analysis, the first step is to test whether or not the

log price of each individual series follows a random walk or has unit root. This chapter

reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. (Energy
Information Administration (EIA))

9A gaseous mixture of hydrocarbon compounds, the primary one being methane delivered at the
Henry Hub in Louisiana. (Energy Information Administration (EIA))
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employs three alternative conventional test procedures to deal with the behavior of the

data, the Augmented Dickey-Fuller test (ADF), the Philips and Perron test (PP), and

the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test. The first employed test is the

augmented Dickey-Fuller (ADF) test to check the existence of a unit root in an AR(p)

process, the unit root test is carried out under the null hypothesis Ho : β = 0 versus the

alternative hypothesis Ha : β < 0 using the regression

∆yt = ct + βyt−1 +

p−1∑
i=1

φi∆yt−i + et (2.1)

where ct is a deterministic function of the time index t and ∆yj = yj − yj−1 is the

differenced series of yt. The t-ratio of the statistic is computed by

ADF − test =
β̂

std(β̂)
(2.2)

where β̂ denotes the least squares estimates of β, and the t-ratio is known as the aug-

mented Dickey-Fuller(ADF) unit root test – see Dickey and Fuller (1981) for details. The

error term is assumed to be homoscedastic and the value of p is set such that the error

is serially uncorrelated as well.

Furthermore, the Philips and Perron (1988) known as (PP) unit root test is employed

to test whether the log level of the series exhibit a random walk behavior. The PP test

differs from the ADF test in handling the serial correlation and heteroscedasticity in

the errors, and it allows for errors not to be independently and identically distributed

(iid). The PP unit root test is essentially based on Equation 2.1, but without the
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Table 2.2: Augmented Dickey-Fuller Unit Root Tests
Null Hypothesis: The log levels and the differenced log of the series have unit root

Lag length: Automatic Selection Based on SIC.

Log Level Crude Oil Brent Heating Gasoline Natural
WTI Europe Oil Gas

ADF Test Statistic (t
(β̂)

) -3.183 -2.875 -2.953 -3.502 -2.894

p-value∗ 0.087 0.170 0.145 0.039 0.164

DLog Level Crude Oil Brent Heating Gasoline Natural
WTI Europe Oil Gas

ADF Test Statistic (t
(β̂)

) -48.015 -63.855 -35.131 -61.932 -50.560

p-value∗ 0.000 0.000 0.000 0.000 0.000

∗ MacKinnon (1996) one-sided p-values.
Notes: The sample period for the spot prices is January 3, 1995 to August 16, 2011, except for natural
gas spot prices, which is from January 07, 1997 to August 16, 2011.

lag differences. While the ADF test correct for the higher-order serial correlation by

adding lagged difference terms to the right-hand side, the PP unit root test makes a

non-parametric correction to account for residual serial correlation Maslyuk and Smyth

(2008). Therefore, the PP test statistic is robust to a variety of serial correlation and

time-dependent heteroscedasticity. The test regression for PP test is

∆yt = β′Dt + πyt−1 + ut (2.3)

where ut is I(0) and can be heteroscedastic. The PP test corrects for any serial correla-

tions and heteroscedasticity in the error ut of the test regression by modifying the test

statistics tπ=0 and Tπ̂. Under the null hypothesis that π = 0, the PP statistic has the

same asymptotic distribution as the ADF t-statistic and normalized bias statistic – see

Philips and Perron (1988) for more details.

The t-statistics for the ADF and PP tests (t(β̂)andZt(π̂)) as well as the p-values for
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Table 2.3: Philips-Perron Unit Root Test
Null Hypothesis: The log levels and the differenced log of the series have unit root

Bandwidth: (Newey-West automatic) using Bartlett Kernel

Log Level Crude Oil Brent Heating Gasoline Natural
WTI Europe Oil Gas

PP Test Statistic (Zt(π̂)) -2.970 -2.905 -3.036 -3.565 -3.094

p-value∗ 0.140 0.160 0.122 0.032 0.107

DLog Level Crude Oil Brent Heating Gasoline Natural
WTI Europe Oil Gas

PP Test Statistic (Zt(π̂)) -65.323 -63.855 -64.445 -61.879 -59.182

p-value∗ 0.000 0.000 0.000 0.000 0.000

∗ MacKinnon (1996) one-sided p-values.
Notes: The sample period for the spot prices is January 3, 1995 to August 16, 2011, except for natural
gas spot prices, which is from January 07, 1997 to August 16, 2011.

the log levels of the series are reported in Table 2.2 and Table 2.3. In the specifications

of the unit root regressions for the ADF and the PP test in log level of the individual

series, the constant term as well as the time trend are included. As the results show in

Table 2.2 and Table 2.3, I fail to reject the null hypotheses of a unit root for the ADF

and PP tests for each of the variables in log levels at the 1% significant level.

Another test to verify the results of the ADF and the PP tests and to identify the

random walk behavior in the series is employed in this chapter as well. The test is

introduced by Kwiatkowski, Phillips, Schmidt, and Shin (1992) known as (KPSS) test.

The ADF and the PP unit root tests are carried out under the null hypothesis of whether

a time series is I(1). The KPSS test, on the other hand, is known as a stationary test

and will test the null hypothesis that the series is I(0), that is to say Ho : yt ∼ I(0). The

test is conducted under the null hypothesis of either level stationary or trend stationary

to investigate whether a series is I(0), I(1) or are not in fact informative about whether

they are stationary or follow random walk behavior. Table 2.4 shows the results for the
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Table 2.4: Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Unit Root Test
Null Hypothesis: The log levels and the differenced log of the series are stationary

Bandwidth: (Newey-West automatic) using Bartlett kernel

Log Level Crude Oil Brent Heating Gasoline Natural
WTI Europe Oil Gas

KPSS test statistic (LS) 7.123 7.081 7.024 7.050 3.801
KPSS test statistic (TS) 0.441 0.452 0.453 0.426 1.016

DLog Level Crude Oil Brent Heating Gasoline Natural
WTI Europe Oil Gas

KPSS test statistic (LS) 0.038 0.042 0.044 0.026 0.039
KPSS test statistic (TS) 0.036 0.029 0.030 0.020 0.034

Notes: The 1%, 5% and 10% critical values for KPSS test statistics (LS) [given in Kwiatkowski, Phillips,
Schmidt, and Shin (1992)] are 0.739, 0.463 and 0.347, respectively.
The 1%, 5% and 10% critical values for KPSS test statistics (TS) [given in Kwiatkowski et al. (1992)]
are 0.216, 0.146 and 0.119, respectively.
The sample period for the spot prices is January 3, 1995 to August 16, 2011, except for natural gas spot
prices, which is January 7, 1997 to August 16, 2011.

KPSS tests in which the first test statistic (LS) has the null hypothesis of level stationary

and the second test statistic (TS) tests the null hypothesis of trend stationary. Both t-

statistics exceed the 1%, 5% and 10% critical values given in Kwiatkowski et al. (1992).

Therefore, I can reject the null hypotheses of the stationarity of the log levels at the 1%,

5% and 10% significant levels. It is to be noted that in all the regressions for unit root

tests in log levels, the trend terms have been included to distinguish whether or not the

series are “trend stationary” (TS) model, where a stationary component is added to a

deterministic trend term.

The decision to deal with the random walk behavior is to transform the log levels into

the first differenced of the logs. The ADF and PP unit root test results, after performing

them on the first differenced log, indicate that I can reject the null hypotheses of unit

root in first differenced levels. Moreover, the null hypotheses of the KPSS test, level

and trend stationary, cannot be rejected in the first differenced log levels. Hence, I use
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the first differenced of the log levels for each individual series throughout the rest of the

paper unless otherwise noted.

2.5 The Inference Methods

In this section, the inference methods for detecting nonlinearities in this study will be

introduced. The BDS test, the Hinich bicovariance test, the Hinich bispectrum test, the

Engle LM test, the McLeod-Li test, and the Tsay test. All the above tests, except Hinich

bispectrum test, require to remove any serial dependence from the data via a prewhiten-

ing model. Any other serial dependence is the result of a nonlinear data generating

mechanism. The Hinich bispectrum test directly tests the data generating mechanism

and it is invariant to filtering of the data (Patterson and Ashley (2000a)). Moreover, the

Kaplan test is included as one of the inference methods to better capture the dynamic

structure of the energy market.

2.5.1 The BDS Test: A Test for Serial Independence

The well known Brock, Dechert, Scheinkman and LeBaron(1996) test, also known as the

BDS test, is one form of portmanteau tests for independence. Portmanteau tests are

residual-based tests in which the null hypothesis is well stated, but they do not have

a specific alternative hypothesis. The BDS test is a popular test to detect the serial

independence in time series data. The BDS test introduces a test of independence that

can be applied to the estimated residuals of any time series model, if the model can

be transformed into a form with independent and identically distributed errors. The
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test employs the correlation function (correlation integral) to calculate the test statistics.

The correlation function was introduced as a method of measuring the fractal dimension

of deterministic data. The correlation function (integral) measures of the sequential

pattern’s frequency that exist in the data – see Brock, Dechert, and Scheinkman (1986)

for more details. It is to be mentioned that the correlation function is different than

the correlation dimension, which is the method used in testing for chaos introduced by

Grassberger and Procaccia (1983). Barnett et al. (1995) state that correlation dimension

is potentially helpful in testing for chaos, however modeling for high-dimensional chaos

needs a large number of variables. Moreover, the sampling properties as well as the

derived distribution of the correlation dimension are unknown. Therefore, the BDS test

uses the correlation function as a test statistic Barnett et al. (1995). As they explain:

“Since the derived distribution of the correlation dimension is unknown, the
BDS test uses the correlation function as the test statistic. The asymptotic
distribution of the correlation function is known under the null hypothe-
sis of whiteness (independent and identically distributed observations). As
a result, the BDS test can be used to produce a formal statistical test of
whiteness against general dependence. However, the sampling distribution of
the BDS test statistic is not known under the null of chaos. When testing
for chaos by this means, we are left with the uncomfortable choice between
the correlation dimension, which produces a direct test for chaos, but only
when no substantial stochastic shocks exist within the model, or the corre-
lation function, which does have known sampling properties when there are
stochastic shocks within the model, but only under a different null hypothesis
(i.e. whiteness).”Barnett et al. (1995)

The BDS test is used to test the null of linearity against a variety of possible deviation

from independence in the series including nonlinearity and chaos. The test is applied to a

series of estimated residual after removing any linear structure. Under the null hypothesis

of independent and identically distributed (i.i.d) or whiteness, the BDS statistic is
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√
n
Cm,n(ε)− C1(ε)

m

σm(ε)
(2.4)

where Cm,n(ε) is the correlation integral, σm(ε) is the asymptotic standard deviation of

the numerator and m is the embedding dimension. The test converges to N(0, 1) under

the null hypothesis of whiteness – see Brock et al. (1986) for more details.

The BDS test statistic is a transformation of the correlation function, which asymp-

totically becomes a standard normal Z statistic under the null hypothesis of whiteness

(Barnett et al. (1995)). I apply the BDS test to the differenced log of the individual time

series of the energy data. The choice of the values of ε and m can be challenging in using

the BDS test. The results with BDS are reported in Table 2.5 for dimension 2–8 and the

chosen ε equals to one and two standard deviation of the data10.

Results with the BDS Test

I produce the BDS test statistic for all the embedding dimension from two to eight, and

the inferences are always the same and robust at each embedding dimension. As can be

observed in the Table 2.5, the results indicate the significance at the 1%, 5% and 10%

significance levels based on the asymptotic distribution. Therefore, the BDS test rejects

the null hypothesis of independent and identically distributed observations and detect the

nonlinearity in each energy product. The BDS test has high power against a numerous

nonlinear alternatives. Therefore, accepting the null hypothesis in BDS test indicates

that there are strong evidence for the null. Thus, it is suggested that the BDS test

10ε is calculated as a multiple of the standard deviation of the series.
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should be the first test to run. In the case of this study in which the linearity is rejected

with the BDS test, the results reflect little information to distinguish the existing forms

of nonlinearity in the data. Hence, I utilize the more focused tests to identify the other

possible forms of nonlinearity in the data – see Barnett et al. (1997) for more details.

2.5.2 Kaplan Test: A Test for Continuity and Determinism

There has been a wide range of methods in which reconstruction dynamics of the em-

ployed time series have been developed in order to characterize the dynamics in terms

of predictability or dynamical invariant Kaplan (1994). These classifications are often

employed to characterize whether the time series data are consistent with a deterministic

mechanism, or a stochastic mechanism. As Kaplan (1994) mentions, it is common to test

the predictability near every point in the time series in the nonlinear prediction method.

Even though it might not be possible to predict future values of time series at every

point, it may be likely to make accurate predictions at a few points. This may suffice for

detecting the underlying determinism. Moreover, when deducing dynamics from a time

series, continuity is often the only safe assumption one can make about a possible deter-

ministic mechanism for a time series. Kaplan (1994) proposed a test for determinism in a

time series based on consistency with a continuous dynamical mapping. The test answers

a question like, “If two points xi and xj are very close together, are their images xi+1

and xj+1 also close together?” (Kaplan (1994))11. In other words, deterministic solution

paths, unlike stochastic processes, have the property that points that are close together

11A test based on continuity in phase space proposed by Daniel Kaplan, Centre for Nonlinear Dynam-
ics, Department of Physiology, McGill University.
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Table 2.5: BDS Test Z-Statistic (Dimension 2–8)

Difference Log of Crude Oil- WTI
ε

m 1σ p-values 2σ p-values

2 8.6502 0.000 13.1413 0.000
3 11.2398 0.000 16.9129 0.000
4 12.7804 0.000 18.5466 0.000
5 13.7043 0.000 19.4291 0.000
6 14.9684 0.000 19.9851 0.000
7 16.6185 0.000 20.5845 0.000
8 18.2287 0.000 20.6910 0.000

Difference Log of Crude Oil- Europe Brent
ε

m 1σ p-values 2σ p-values

2 6.2676 0.000 7.5338 0.000
3 8.4860 0.000 10.14615 0.000
4 10.4088 0.000 12.0745 0.000
5 12.2642 0.000 13.2835 0.000
6 14.2073 0.000 14.2686 0.000
7 16.1597 0.000 15.0526 0.000
8 17.9577 0.000 15.6694 0.000

Difference Log of Heating Oil
ε

m 1σ p-values 2σ p-values

2 8.96026 0.000 11.6395 0.000
3 11.7476 0.000 14.6171 0.000
4 13.2784 0.000 15.9821 0.000
5 14.7733 0.000 16.8227 0.000
6 16.6146 0.000 17.7109 0.000
7 16.2660 0.000 18.3812 0.000
8 19.9599 0.000 18.8056 0.000

Differenced Log of Gasoline
ε

m 1σ p-values 2σ p-values

2 6.6834 0.000 9.9913 0.000
3 8.2688 0.000 11.1637 0.000
4 9.7411 0.000 12.4350 0.000
5 10.9942 0.000 13.0850 0.000
6 12.3876 0.000 13.8142 0.000
7 13.7737 0.000 14.4790 0.000
8 15.2485 0.000 15.0990 0.000

Differenced Log of Natural Gas
ε

m 1σ p-values 2σ p-values

2 14.8284 0.000 19.98.61 0.000
3 18.3402 0.000 22.2270 0.000
4 20.6047 0.000 23.3393 0.000
5 22.7769 0.000 24.2032 0.000
6 25.5779 0.000 24.9886 0.000
7 28.3910 0.000 25.5891 0.000
8 31.3578 0.000 26.1315 0.000
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are close under their image in phase space. Therefore, when the underlying function

linking image and pre-image together is continuous, if the points xi and xj are close their

images xi+1 and xj+1 are close together as well. In the case of chaos, the output plot

of the system is hardly distinguishable from a stochastic process. Therefore, detecting

the continuity of the system can be a difficult procedure, even when the data is entirely

deterministic. However, it is easier to detect deterministic structure when plotting the

solution path in phase space (xt+1 plotted against xt and lagged values of xt) than in

plotting xt versus t (Barnett et al. (1995)). Based on the above facts, the Kaplan test has

strictly positive lower bound for a stochastic process, but not for a deterministic solution

path. The statistic tests the null hypothesis that the data is deterministic against the

alternative, which is that the data comes from a particular stochastic process. If the test

statistic is smaller for the data than for the stochastic process by a statistically signifi-

cant amount, then the stochastic process is rejected as an alternative to other forms of

nonwhite structure (Barnett et al. (1995)). The test is computed by an adequately large

number of linear processes that plausibly might have produced the data. The test proce-

dure involves producing a linear stochastic process surrogate data12 for the observed data.

The next stage is to determine a noisy continuous nonlinear dynamical solution path to

better describe the observed data. If the value of the test statistic from the surrogate is

not small enough compared to the computed value of the test statistic from the observed

data, a noisy continuous dynamical solution is concluded. As described by Barnett et al.

(1995), the test procedure is formally stated as follows: If the time series data arise from

12Surrogate data is random data generated with the same mean, variance, and autocorrelation function
as the original data.
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a deterministically chaotic dynamical system, the value of xt+1 is a single-valued function

of the state of the system at time t. Let the vector xt = (xt, xt−1, ..., xt−m−1) embedded

in m-dimensional “phase space” and obtained from a m-dimensional vector xi
T
i=1 in state

space. Then there exists a function f(xt) such that f(xt) = xt+1, where xt+1 is called

the “image” of the point xt in phase space. If the system is perfectly deterministic with

a continues f , close points in m-dimensional phase space have close image, whereas in a

stochastic system close points in phase space may produce different images. The Kaplan

test investigates if the function f is continuous based on the evidence provided the ob-

served time series data. In the similar delta-epsilon proofs of continuity, δ is the distance

in phase space and ε is the distance of the images. For a given choice of embedding

dimension m, the distance in the phase space is calculated as δij = |xi− xj| and the dis-

tance between their image is calculated as εij = |xi+1 − xj+1| for all i and j. It is useful

to construct the average of the values of εij conditional on the corresponding values of

δij satisfying δij < r and define the average as E(r). It is expected to have E(r)→ 0 as

r → 0 for a perfectly deterministic system with continuous f , whereas if the underlying

system is stochastic the convergence may not happen as a point xi may have different

images. The statistic for the Kaplan test is defined as K ≡ limr→0E(r). The non-zero

value of K can be interpreted as “goodness of fit” measure from fitting a continuous

model of some fixed order to an infinite amount of data. If this measure is smaller for

the observed data than for surrogate data generated by a model that satisfies a stated

null hypothesis, then the null hypothesis should be rejected (Barnett et al. (1995)). As

stated by Garcia (2007), another way of interpreting the non-zero value of K is as the
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level of nondeterminism or the amount of noise in the data. If the system is stochastic

the amount of K is expected to be higher for nearly deterministic ones. Therefore, we

should reject the null hypothesis when K on the observed data is smaller than K on the

surrogate data. In other words, the hypothesis of linearity is rejected in order to test if

the value of the statistic from the surrogates is never small enough compared to the value

of the statistic obtained from the original data. Since the distribution of the statistic

table is not laid out, Kaplan proposes two different methods to compute the minimum

value of K obtained from the surrogates. The first approach is to estimate the minimum

value of K from a finite sample of surrogates, and impute that to the population of the

surrogates. Another approach involves the computation of the mean and standard error

of the values of K from the finite sample and the subtraction of a multiple of (2 or 3) to

obtain the an estimate of population minimum Alharbi (2009). This chapter uses twenty

surrogate time series using the same approach suggested by Kaplan. The surrogate data

is a random realization from time series data of the energy markets generated with the

same mean, variance, and autocorrelation functions as the original data. Moreover, the

lag embedded time series is also generated using 2, 3, 4, and 5 dimensional spaces.

The result of the Kaplan test for daily spot prices of five energy products are reported

in Table 2.6. Also, the results of the Kaplan test are graphically summarized in the Ap-

pendix B of this chapter. The plot of delta versus epsilon shows the sign of discontinuity

is all cases, when delta goes to zero, epsilon does not.
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Results of the Kaplan Test

The null hypothesis of the Kaplan test is stochastic linearity of the process. As mentioned

by Barnett et al. (1995), the Kaplan test involves a strong power against chaos and is

expected not to accept the null facing with chaotic series although current form of test can

either accept or reject linearity. It is worth mentioning that the Kaplan test is designed

where the dynamical functional form underlying the time series data is unknown, and

the main purpose is to determine if there is evidence of deterministic mechanism or not.

The results of the Kaplan test are displayed in Table 2.6 for embedding dimension(m) 2,

3, 4 and 513.

The mean, minimum, and standard deviations are computed over twenty surrogates

for each time series. Moreover, K statistic is calculated for each series. The null of

stochastic linearity is rejected when the computed K for each daily spot price of energy

product is less than the minimum of K statistic from surrogates or KSmin that is K <

KSmin. As suggested by Kaplan, the t-statistic is calculated as a tool to find the results

significance as: t = K−KSmean
KSsd

, where KSmean and KSsd are the mean and standard

deviation for KS values for surrogates.

As displayed in Table 2.6, the test rejects the null of linearity of the daily spot price

on crude oil, West Texas Intermediate, and Gasoline in all dimensions at the 1% signifi-

cance level excluding dimension=2 of WTI. Moreover, the null of linearity is rejected for

Heating Oil and Natural Gas in all the embedding dimensions at the 1% significance level

13The Kaplan test was carried out using the original MATLAB codes provided with gratitude by
Professor Daniel Kaplan and modified based on the analysis in this study: The MATLAB source code
for the Kaplan test can be also retrieved from http://www.macalester.edu/ kaplan/software/

Kaplan, Daniel. (1996). Delta-Epsilon [Computer MATLAB Software]. Retrieved from:
http://www.macalester.edu/ kaplan/software/.
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Table 2.6: Kaplan Test Statistic: Results from Daily Spot Prices on Five Energy Products

Log Level Embedding Mean K Std. dev. of K Min K K statistic t-Statistic
Dimension on surrogates on surrogates on surrogates on energy data

Crude Oil WTI 2 0.0126 0.0012 0.0102 0.0102 -2
3 0.0126 0.002 0.0086 0.0092 -1.7
4 0.0127 0.0011 0.0105 0.0084 -3.90
5 0.013 0.0022 0.0086 0.0077 -2.40

Brent Europe 2 0.0117 0.0009 0.0098 0.0103 -1.54
3 0.0114 0.0011 0.0092 0.0094 -1.81
4 0.0112 0.0016 0.008 0.0086 -1.62
5 0.0114 0.0024 0.0066 0.008 -1.41

Heating Oil 2 0.0131 0.0015 0.0101 0.01 -2.06
3 0.0128 0.002 0.0088 0.0089 -1.95
4 0.013 0.0028 0.0074 0.0086 -1.57
5 0.0128 0.0019 0.009 0.008 -2.52

Gasoline 2 0.0244 0.0024 0.0196 0.0163 -3.37
3 0.0234 0.0037 0.016 0.0141 -2.51
4 0.0219 0.0036 0.0147 0.0121 -2.72
5 0.0214 0.0051 0.0112 0.0106 -2.11

Natural Gas 2 0.0138 0.0008 0.0121 0.012 -2.21
3 0.0139 0.0008 0.0121 0.0108 -3.52
4 0.0135 0.0017 0.0101 0.0102 -1.94
5 0.0141 0.0018 0.0105 0.0094 -2.61

Notes: K is the Kaplan test statistic. Twenty surrogates were used to compute the mean and standard
deviation. The sample period for the daily spot prices is January 3, 1995 to August 16, 2011, except for
natural gas spot prices, which is January 07, 1997 to August 16, 2011.

excluding embedding dimension=4 . It is concluded that the null of linearity is rejected

in favor of nonlinearity for the majority of embedding dimensions in all individual series.

These results are consistent with the results by the BDS test. However, unexpectedly

the null of linearity of the daily sport price on crude oil, Europe Brent cannot be rejected

The Kaplan test detects the evidence of general nonlinearity in observed time series.

The chapter proceeds with more focused tests to investigate other possible forms of

nonlinearity in the observed time series such as third order nonlinearity.
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2.5.3 Tests for Nonlinearity

The Hinich Bicovariance Test

As noted by Patterson and Ashley (2000a) the Hinich Bicovariance test assumes xt is a

realization from a third-order stationary stochastic process and tests for serial indepen-

dence. It uses the sample bicovariances of the data. The (r, s) sample bicovariance is

defined as

C3(r, s) = (N − s)−1
N−s∑
t=1

xtxt+rxt+s 0 ≤ r ≤ s. (2.5)

The sample bicovariances, Equations 2.5, are a generalization of a skewness parameter.

The C3(r, s) are all zero for zero mean, serially i.i.d data.

Non-zero values for the C3(r, s) are projected from observations in which xt depends

on lagged cross-products, such as xt−ixt−j and higher order terms.

Let G(r, s) = (N − s)0.5C3(r, s) and define X3 as

X3 =

φ∑
s=2

s−1∑
r=1

[G(r, s)]2 (2.6)

Under the null hypothesis that xt is a serially i.i.d process, Hinich and Patterson (1995)

show that X3 is asymptotically distributed as χ2[φ(φ− 1)/2] for φ < N0.5. They recom-

mend using φ = N0.4 based on their simulations. Under the assumption that E((xt)
0.5)

exists, the X3 statistic will discover nonzero third-order correlations. It can be consid-

ered as generalization of the Box-Pierce portmanteau statistics – see Hinich and Patterson

(1985) for more discussion.
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The Hinich Bispectrum Test

A process is said to be third-order nonlinear dependence if the skewness function in the

frequency domain is not flat as a function of frequency pairs. The definition of the square

of the skewness function is shown in Equation 2.8. This form of the nonlinearity is called

third order, since the skewness function is a normalization of the Fourier transform of the

third-order autocovariances. That Fourier transform is called the bispectrum (Barnett

et al. (1997)).

The Hinich bispectrum test is a nonparametric test that examines the third-order

moments (bicovariance) of the data in the frequency domain to obtain a direct test for

a nonlinear generation mechanism, regardless of any linear independence that might be

present in the data. Therefore, when the tests rejects the null (the skewness function

is flat), there is no need to check the possibility that the linear prewhitening model has

failed to remove all linear serial dependence in the data (Ashley and Patterson (2006)).

Hinich (1982) develops this test for flatness of bispectrum. He argues that the bispec-

trum in the frequency domain is easier to interpret than multiplicity of the third-order

moments cxxx(r, s) : s ≤ r, r = 0, 1, 2 · · · in the domain. Barnett and Hinich (1993) ex-

plain the computation of the test statistic. For frequencies f1 and f2 in the principle

domain

Ω = (f1, f2) : 0 < f1 < 0.5, f2 < f1, 2f1 + f2 < 1

is the Hinich bispectrum of the series at frequency pair (f1, f2), and its double Fourier

transformation of the third-moments function is:
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Bxxx(f1, f2) =
r=∞∑
r=−∞

s=∞∑
s=−∞

cxxx(r, s)exp[−2π(f1r + f2s)]. (2.7)

The square of the skewness function Γ2(f1, f2) is defined in terms of the bispectrum as:

Γ2(f1, f2) =
|Bxxx(f1, f2)|2

Sxx(f1)Sxx(f2)Sxx(f1 + f2)
(2.8)

where Sxx(f) is the (ordinary power) spectrum of xt at frequency f . If the time series xt

is linear then the squared of skewness function Γ2(f1, f2) is constant over all frequency

pairs (f1, f2) in Ω, and the skewness function Γ2(f1, f2) is zero over all frequencies if

xt is Gaussian. Linearity and Gaussianity can be tested using a sample estimator of

the skewness function Γ2(f1, f2) – see Barnett and Hinich (1993) for more details on

computation of the test and Hinich (1982) for more details on the test.

Engle LM Test

The test was proposed by Engle (1982) to examine nonlinearity in the second moment,

particularly for ARCH disturbances. The test employs the Lagrangian multiplier pro-

cedure and runs the OLS regression and saves the residuals. Then, the next step is to

regress the squared residuals on a constant and p lagged values of the squared residuals

and test NR2 as a χ2
p.

ε̂2t = α0 +

p∑
j=1

αj ε̂
2
t−j + ut (2.9)
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The test statistic is based on the R2 of the regression similar to the common methods

in most Lagrange Multiplier tests. Under the null hypothesis of a linear generating

mechanism for xt, NR
2 for the above regression is asymptotically distributed as χ2

p.

The McLeod-Li Test

McLeod and Li (1983) developed a portmanteau test for nonlinear statistical dependence

in the squared-residual autocorrelations of fitted ARMA models. The tests looks at

the autocorrelation function of the squares of the prewhitened data and tests whether

corr(x2t , x
2
t−j) is nonzero for some j. The autocorrelation at the lag j for the squared

residuals x2t is estimated by

r̂(j) =

∑N
t=1(x

2
t − σ̂2)(x2t−j − σ̂2)∑N
t=1(x

2
t − σ̂2)

, whereσ̂2 =
N∑
t=1

x2t
N

(2.10)

Under the null hypothesis that xt is an i.i.d process, McLeod and Li (1983) showed

that, for sufficiently large and fixed L,

Q = N(N + 2)
L∑
j=1

r̂2(j)

N − j
(2.11)

is asymptotically χ2
L under the null hypothesis of a linear generating mechanism for the

data. They have set L = 20 for their small-sample simulation in their examination.

The Tsay Test

The Tsay (1986) test explicitly look for quadratic serial dependence in the data, using

quadratic terms lagged up to K periods. Let the K = k(k+1)/2 column vectors V1, ..., Vk
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contains all the unique cross-products of the form xt−ixt−j, where i ∈ [i, k] and j ∈ [j, k].

Let v̂t,i denote the projection of vt,i on the subspace orthogonal to xt−1, ..., xt−k, which

is the residuals from a regression of vt,i on xt−1, ..., xt−k. The parameters γi, ..., γk are

estimated by applying OLS to the regression equation:

xt = γ0 +
k∑
i=1

γiv̂i, t+ ηt (2.12)

Then, the Tsay test statistic is the usual F statistic for testing the null hypothesis

that γ1, ..., γk are all zero.

The Results for Nonlinearity Tests

The results for the Hinich bicovariance, the Hinich bispectrum, the McLeod-Li, the En-

gle, and the Tsay test are reported in Table 2.7 and Table 2.8, for both bootstrapping

the significance levels and asymptotical distributions14. As stated by Patterson and

Ashley (2000a) the described tests are only asymptotically justified similar to the most

econometrics procedure. Therefore, the significance levels of all the tests are consis-

tently bootstrapped. Also, the significance levels based on the asymptotic distributions

are computed – see Patterson and Ashley (2000a) for further details on the bootstrap

simulation.

Based on the Hinich and Patterson (1985)’s simulation, where N is the sample size for

each individual series, φ = N0.4 is used in the Hinich bicovariance test. Moreover, the test

14The nonlinear software was thankfully provided by Professor Douglas M. Patterson. The source,
instruction on running the toolkit program, and analysis can be found in Patterson and Ashley (2000a):
“A Nonlinear Time Series Workshop: A Toolkit for Detecting and Identifying Nonlinear Serial Depen-
dence”, Kluwer Academic Publishers: Norwell. Available at: http://www.wkap.nl/.
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is calculated using up to 15 lags and also with the number of bootstrap iterations equal

to 1000. As displayed by the results, based on the bootstrapped as well as asymptotic

distributions, this test rejects the null hypothesis that xt is a serially i.i.d process in every

case at the 1%, 5% and 10% significance levels.

The Hinich bispectrum test, on the other hand, examines the third order moments

(bicovariance) of the data in frequency domain to obtain a direct test for a nonlinear gen-

erating mechanism. More importantly, this test focuses on nonlinear serial dependence,

and it substantially differs from Hinich bicovariance test in using the sample bicovari-

ance of the data. The Hinich bispectrum test accepts the linearity if it cannot reject

the flatness of bispectrum, and accepts the Gaussianity if the bispectrum is flat and also

equals to zero. As can be observed in the Table 2.8, the results of Gaussianity indicate

extremely small p-values for each energy components market in the case of asymptotic

distribution. As a result the null hypothesis of the Gaussianity is rejected at the 10%

significance level. Moreover, the null of linearity for each individual series exhibits a very

significant results by very small p-values for the 80 percent fractile bispectrum linearity

test for every series. Hence, in the case of asymptotic distribution, the null hypothesis

of the linearity is also rejected at the 1%, 5% and 10% significance levels for each indi-

vidual series. In other words, the rejection of linearity provides strong evidences for the

presence of the third order nonlinearity in the data generating process as also noted by

Barnett et al. (1997). Ashley and Patterson (2006) show that the bispectrum Bxxx(f1, f2)

is consistently estimated using an average of appropriate triple products of the Fourier

representation of the observed time series. The average is taken over a square containing
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M adjacent frequency pairs. Hinich (1982) showed that M must be above the N0.5 to

consistently estimate Bxxx(f1, f2). The results are calculated for M to equals to N0.6.

The Engle LM test (1982) examines nonlinearity in the second moments. Under the

null hypothesis of a linear generating mechanism for xt, NR
2 for the regression Equation

2.9 is asymptotically distributed as χ2
p. The results are reported for p (lagged values)

equals to 5, and they exhibit substantially small p-values at the 10% significance level

in both bootstrapped and asymptotic distributions. Therefore, the null hypothesis of

nonlinearity in the second moments is rejected in all cases. Following the literature, the

results are quoted for p=5.

The null hypothesis of xt is an i.i.d process in McLeod and Li (1983) test is also

rejected for up to 24 lags in bootstrapped and asymptotic distributions. As shown in

the tables, the results yield very small p-values at the 10% significance level. Here the

results are reported for L = 24.

Table 2.7: Significance Level for Nonlinearity Tests
Bootstrap Simulation

Series Crude Oil Brent Heating Gasoline Natural
WTI Europe Oil Gas

Bicovariance (φ = N0.4) 0.000 0.000 0.000 0.000 0.000
Engle(p = 5) 0.000 0.000 0.000 0.000 0.000

McLeod-Li(L = 24) 0.000 0.000 0.000 0.000 0.000
Tsay (k = 5) 0.000 0.000 0.000 0.000 0.000

Notes: Number of bootstrap iterations =100.
The sample period for the spot prices is January 3, 1995 to August 16, 2011, except for natural gas spot
price, which is January 07, 1997 to August 16, 2011.

The results for Tsay test is reported using k=5. Following the existing literature in the

subject the value of k = 5 is used here. The reported results based on the bootstrapped

as well as asymptotic distributions, are indicating that the null hypothesis is rejected in
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Table 2.8: Significance Level for Nonlinearity Tests
Asymptotic Distribution

Series Crude Oil Brent Heating Gasoline Natural
WTI Europe Oil Gas

Bicovariance (φ = N0.4) 0.000 0.000 0.000 0.000 0.000
Bispectral (Gaussianity) 0.000 0.000 0.000 0.000 0.000

(M = N0.6)
Bispectral (Linearity) 0.000 0.000 0.000 0.000 0.000

(M = N0.6)
Engle(p = 5) 0.000 0.000 0.000 0.000 0.000

McLeod-Li(L = 24) 0.000 0.000 0.000 0.000 0.000
Tsay (k = 5) 0.000 0.000 0.000 0.000 0.000

Notes: The sample period for the spot prices is January 3, 1995 to August 16, 2011, except for natural
gas spot prices, which is January 07, 1997 to August 16, 2011.

10% significance level.

Therefore, based on the bootstrapped and asymptotic distributions, the results for

the nonlinear tests reveal that the employed data have clear evidence of nonlinearity in

their structure. The time series prices data of energy products exhibit nonlinearity in the

mean, variance and skewness functions. These results are consistent with other reported

findings in the literature, such as Kyrtsou et al. (2009). The evidence for significant

nonlinearity in data generating mechanism in the energy market offers to model the time

series data with an accurate specifications that reflects dynamics in the data, which helps

to obtain valid parameter estimations.

2.6 Summary and Conclusion

This chapter employed statistical and econometrics techniques to investigate the non-

linear dependence in the energy market. The techniques involve the most widely used

univariate tests to detect the nonlinearity in the observed time series data. To examine
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whether the time series data in the energy market exhibit nonlinearity in their gener-

ating mechanism, the study utilized the daily spot prices of five major products in the

energy market over 16 years. The results indicate that the daily spot prices of crude oil

(West Texas Intermediate (WTI) and Europe Brent), heating oil, gasoline and natural

gas exhibit deep nonlinearity in their structure.

None of the tests have exactly the same null hypothesis and they differ in the power

against the alternative hypothesis. The tests focus on different aspects of nonlinearity and

detect distinct features of nonlinear serial dependence in the data. Additionally, using the

tests jointly can produce deeper perception into the nature of the nonlinearity that may

exist in the data. The BDS test is a test of general nonlinearity in the process against

all other possible alternative null hypothesis of linearity and has a high power against

numerous classes of alternative hypotheses. The results of the BDS test indicate that the

linearity is rejected; hence it is a compelling indication to employ more particular tests

that consider the more detailed features of nonlinearity. The attributes of the Kaplan test

seem to be comparable to the BDS test. However, Barnett et al. (1997) state that in their

experiments the Kaplan test, unlike the BDS test, acquired the right answer with both

large and small samples. The results for the Kaplan tests detect evidence of nonlinearity

in all the time series data excluding the daily spot price on crude oil (Europe Brent). The

Hinich bicovariance test focuses on the third-order moments (time domain) of the data

and detected nonlinearity in each series. The Hinich bispectrum test examines the lack

of third-order nonlinear dependence (frequency domain), and the associated Gaussianity

test, is a test of a necessary and not sufficient condition for Gaussianity15. The results of

15See Barnett et al. (1997) for more details.
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the Hinich bispectrum suggest that the observed time series data in the energy market

are generated by a nonlinear, non-Gaussian process. The Engle Lagrangian multiplier

(LM) test focuses on the nonlinearity in the second moment. The null hypothesis of no

ARCH-type disturbances is rejected by the Engle-LM test. The McLeod-Li test rejects

the null hypothesis of linearity in the variance as well. Finally, the Tsay test rejects the

null hypothesis of linearity in each individual series. Therefore, all the tests detect strong

evidence of nonlinear structure in the time series data, indicating that the employed time

series in various markets of the energy products are generated by a nonlinear mechanism.

As noted by Ashley and Patterson (2006), the evaluation of the time series models

is based on the goodness of fit and the post sample forecasting ability. Prediction can

be improved by nonlinear models when there is evidence of nonlinearity in the data

generating process (Maravall (1983); Tong (1983); Ashley and Patterson (2006)). The

main implication of nonlinearity in the observed data is that the series cannot be properly

forecasted with linear models when there are signs of nonlinearity in the data. Therefore,

in view of the importance of the energy sector in aggregate economic activity, it is essential

to check the existence of nonlinearity in the time series data of the energy market. The

investigation will allow us to attain more plausible empirical results by employing an

efficient time series modeling that coincides with the data generating process dynamics.
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Appendix A: Data Description, Key Terms, and Def-

initions

The definition of the energy market products in the Appendix A of this chapter are

adopted from Energy Information Administration (EIA).

Figure 2.5 represents the Cushing, OK WTI spot price FOB (Dollars per Barrel).

The variable West Texas Intermediate (WTI- Cushing) is defined as follows:

• West Texas Intermediate (WTI - Cushing:) A crude stream produced in Texas and

southern Oklahoma, which serves as a reference or “marker” for pricing a number

of other crude streams and which is traded in the domestic spot market at Cushing,

Oklahoma.16

• Crude Oil: A mixture of hydrocarbons that exists in liquid phase in natural

underground reservoirs and remains liquid at atmospheric pressure after passing

through surface separating facilities. Depending upon the characteristics of the

crude stream, it may also include:

– Small amounts of hydrocarbons that exist in a gaseous phase in natural under-

ground reservoirs but are liquid at atmospheric pressure after being recovered

from oil well (casinghead) gas in lease separators and are subsequently com-

mingled with the crude stream without being separately measured. Lease

condensate recovered as a liquid from natural gas wells in lease or field sepa-

ration facilities and later mixed into the crude stream is also included;

16Energy Information Administration (EIA).
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– Small amounts of nonhydrocarbons produced with the oil, such as sulfur and

various metals;

– Drip gases, and liquid hydrocarbons produced from tar sands, oil sands,

gilsonite, and oil shale.

Liquids produced at natural gas processing plants are excluded. Crude oil is refined

to produce a wide array of petroleum products, including heating oils; gasoline, diesel

and jet fuels; lubricants; asphalt; ethane, propane, and butane; and many other products

used for their energy or chemical content.17

Figure 2.5: Daily Cushing, OK WTI Spot Price FOB (Dollars per Barrel)

Data Source: Energy Information Administration (EIA)

Figure 2.6 represents Europe Brent spot price FOB (Dollars per Barrel). The variable

Europe Brent is defined as follows:

17Energy Information Administration (EIA).
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Brent: A blended crude stream produced in the North Sea region which serves as a

reference or “marker” for pricing a number of other crude streams.18

Figure 2.6: Daily Europe Brent Spot Price FOB (Dollars per Barrel)

Data Source: Energy Information Administration (EIA)

Figure 2.7 represents New York Harbor No. 2 Heating Oil Spot Price FOB (Dollars

per Gallon). The variable New York Harbor is defined as follows:

New York Harbor: The location specified in either spot or futures contracts for delivery

of a product in New York Harbor.19

Figure 2.8 represents New York Harbor Conventional Gasoline Regular Spot Price

FOB (Dollars per Gallon). The variables Conventional Gasoline and the New York Har-

bor are defined as follows:

Conventional Gasoline: Finished motor gasoline not included in the oxygenated or re-

formulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate

18Energy Information Administration (EIA).
19Energy Information Administration (EIA).
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Figure 2.7: Daily New York Harbor No. 2 Heating Oil Spot Price FOB (Dollars per
Gallon)

Data Source: Energy Information Administration (EIA)

blending (RBOB) as well as other blendstock.20

New York Harbor: The location specified in either spot or futures contracts for delivery

of a product in New York Harbor.21

Figure 2.9 represents Henry Hub Gulf Coast Natural Gas Spot Price ($/ MMBTU).

The variable U.S. Gulf Coast is defined as follows:

U.S. Gulf Coast: The location specified in either spot or futures contracts for delivery of

a product in any port city along the coastline of Texas and Louisiana.22

Figures 2.10, 2.11, 2.12, 2.13 and 2.14 show the log and the differenced log of the

individual series.

20Energy Information Administration (EIA).
21Energy Information Administration (EIA).
22Energy Information Administration (EIA).
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Figure 2.8: Daily New York Harbor Conventional Gasoline Regular Spot Price FOB
(Dollars per Gallon)

Data Source: Energy Information Administration (EIA)

Figure 2.9: Daily Henry Hub Gulf Coast Natural Gas Spot Price ($/MMBTU)

Data Source: Energy Information Administration (EIA)

50



Figure 2.10: Log and Differenced Log of West Texas Intermediate (WTI) Spot Price
(Dollars/Barrel)

Data Source: Energy Information Administration(EIA)

Figure 2.11: Log and Differenced Log of Europe Brent Spot Price (Dollars/Barrel)

Data Source: Energy Information Administration(EIA)
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Figure 2.12: Log and Differenced Log of New York Harbor Heating Oil Spot Price FOB
(Dollars per Gallon)

Data Source: Energy Information Administration(EIA)

Figure 2.13: Log and Differenced Log of New York Harbor Conventional Gasoline Regular
Spot Price FOB (Dollars per Gallon)

Data Source: Energy Information Administration(EIA)
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Figure 2.14: Log and Differenced Log of Henry Hub Gulf Coast Natural Gas Spot Price
($/MMBTU)

Data Source: Energy Information Administration(EIA)
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Appendix B: Figures of the Kaplan Results for Em-

bedding Dimension 2 – 5

Figures 2.15 to 2.18 display the Kaplan test results. In other words, the plots of δ versus

ε are shown in Figures 2.15 to 2.15. The signs of discontinuity are revealed in the plots:

as δ goes to zero, ε does not in each daily spot prices of energy products.

Figure 2.15: Delta vs. Epsilon, The Kaplan Test Results from Daily Spot Prices on Five
Energy Products, Lag Embedded=2
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Figure 2.16: Delta vs. Epsilon, The Kaplan Test Results from Daily Spot Prices on Five
Energy Products, Lag Embedded=3

Figure 2.17: Delta vs. Epsilon, The Kaplan Test Results from Daily Spot Prices on Five
Energy Products, Lag Embedded=4
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Figure 2.18: Delta vs. Epsilon, The Kaplan Test Results from Daily Spot Prices on Five
Energy Products, Lag Embedded=5
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Chapter 3

Nonlinear Dynamic Structure in

Crude Oil Production

3.1 Introduction

There has been a great interest in various literature on crude oil supply and projection

of oil production. Among many approaches of modeling and forecasting the future of

crude oil production, the “Hubbert Curve”1, which was presented in 1956 by M. King

Hubbert, has been widely used as a basic tool in forecasting the market. Based on

Hubbert’s model, the cumulative production can be characterized by a logistic function,

and the first derivation of the logistic function would define the yearly production by

a bell-shaped curve. The Hubbert Model correctly predicted that the United States oil

production would peak in the early 1970s. Since then the model has been widely used

1The Hubbert Theory was named after the petroleum geologist with Shell Oil, M. King Hubbert
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in forecasting the peak of the world’s oil production. Campbell and Laherrere (1998)

predicted the global oil production by enhancing the Hubbert model. Campbell and his

co-author’s models have been the most widely published bottom-up models of crude oil

production for global prediction, as noted by Brandt (2010). Therefore, the question of

when “the maximum production, a peak, would occur” is a magnitude of those studies

that predict crude oil production.

Furthermore, since the first oil shock of the 1970s and political unrest in Organization

of the Petroleum Exporting Countries (OPEC), crude oil production has been a crucial

variable in defining real GDP growth rate as well as monetary policies that might lead

to CPI inflation (Bernanke et al. (1997); Hamilton (1983) among many others). Hence,

it is important to consider production of crude oil, which is the variable that responds

to price, when analyzing the energy market because the disruption in the production

variable has a major impact in aggregate economic activity as well. As a results, the

production of crude oil is a central variable to be properly forecasted. However, to define

a more accurate projection of crude oil production, it is crucial to employ appropriate

specifications, which are close to the data generating mechanism and to examine whether

the time series observations in the market are generated by a linear process or a nonlinear

dynamic mechanism. If the nonlinearity is present in the data, choosing a nonlinear time

series can provide more plausible post-sample forecasting ability (Ashley and Patterson

(2006)).

This essay, along with the other chapters in this dissertation will provide a compre-

hensive analysis on the structure of the energy market. This chapter is motivated by
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the largely neglected quantity side of the energy market and the characteristics of the

dynamics properties in the time series of crude oil production. The dynamic structure

of the time series data in context of the nonlinear mechanism in production of crude oil

has never been assessed. This study incorporates the most well-known univariate tests

for nonlinearity with distinct power functions over alternatives and tests different null

hypotheses. It utilizes monthly observations on the U.S. field production of crude oil

from January 1920 to June 2011 as well as OPEC production of crude oil, non-OPEC

countries production of crude oil, and the world production of crude oil. The sample

period for last three time series observations is from January 1973 to January 2012. This

chapter begins with a review of the disruption of crude oil and its impact on the aggregate

economy. Section Three reviews the related literature. Section Four describes the data

and various unit root analyses. Section Five discusses the inference methods as well as

the results of performing the nonlinearity tests to examine the markets’ data generating

mechanism. Lastly, a brief summary and conclusion for this chapter are discussed in

Section Six.

3.2 Exogenous Shocks in Production of Petroleum

Crude oil is the primary energy source of the world’s total energy demand. The pro-

duction of crude oil has involved a dramatic growth rate from 1973 to 2012 by nearly

39 percent. However, this rate has been affected several times by major events. The

first fall in supply was experienced in late 1973 as a result of tightening the oil embargo

by OPEC. Oil production was cut by five million barrels per day and the price of oil
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increased by 400 percent in six months (Sill (2007)), attributed to the “first oil shocks”.

The next dramatic drop in production occurred as a result of the Iranian Revolution,

which began in late 1978 and resulted in a drop of 3.9 million barrels per day of Iran’s

crude oil production until 1981. In 1980, the Iran-Iraq war began and by 1981 the OPEC

production declined by seven million barrels per day from its level in 1978. In 1973 the

average of OPEC oil production was nearly 29.6 million barrels per day and by April

1982, when the next drop in production occurred, the OPEC supply averaged nearly 15

million barrels per day. The share of the production of crude oil by OPEC dropped from

53 percent in 1973 to 28 percent in 1982. OPEC increased the production of crude oil in

subsequent years, but oil producers operating outside OPEC contributed to major per-

centage of the world’s oil in recent years. In 2009, OPEC participated almost 40 percent

in the world’s total production while non-OPEC supply of crude oil represents nearly 60

percent of total world supply in the last ten years. Only ten countries produce about

three-quarters of total non-OPEC oil supply, with the largest producer Russia as noted

by Cline (2010). Figure 3.1 displays the area of crude oil production by each individual

series.

It is worth mentioning that despite escalations in oil prices and efficient energy policies

to reduce the energy intensity in recent years, the demand for energy components, and

as a result production, has increased over time. In 2010 the Organization for Economic

Cooperation and Development (OECD) countries, accounts for 53 percent of worldwide

oil demand and 41 percent of this number belongs to the United States. Therefore, the

growth in consumption resulted in rising in production such that by January 2012 world
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Figure 3.1: Crude Oil Production, OPEC, Non-OPEC Countries, and the World (Thou-
sand Barrels per Day)

Data Source: Energy Information Administration(EIA)

oil production has reached nearly 76 million barrels per day in which 43 percent is share

of OPEC countries and 57 percent is non-OPEC countries crude oil production.

As can be seen in Figure 3.2, the rise in the non-OPEC production of crude oil exhibits

slow and steady growth rate and does not display major fluctuations. Considering the

nature of the production market and the constraint of the petroleum availability, there

are major debates around forecasting the world’s peak oil production for OPEC and

non-OPEC. The related literature is to be discussed in the next section.
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Figure 3.2: Crude Oil Production Overview (Thousand Barrels per Day)

Data Source: Energy Information Administration(EIA)

3.3 Literature Review

3.3.1 Nonlinear Approach in Crude Oil production

There are studies in different literatures that consider crude oil production to be nonlin-

ear. A major study in the petroleum industry is by Hubbert (1959), who introduced a

bell-shaped function to capture nonlinear dynamics in the oil production. In the Hubbert

model, the cumulative production is assumed to be a logistic function, and the annual

rate of production would be characterized by a bell-shaped curve over time (Kaufmann

and Cleveland (2001)). The Hubbert Model correctly predicted that the United States

oil production would peak in early 1970s. Since then the model has been widely used in
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forecasting the world’s peak oil production. Campbell and Laherrere (1998) predicted

the global oil production by enhancing the Hubbert model. Campbell and his co-author’s

models have been most widely published bottom-up models of crude oil production for

global prediction, as noted by Brandt (2010). Haubrich and Meyer (2007) state that

there are some economic reasons for considering a nonlinear (logistic curve) pattern for

the production data. Using two different approaches, linear and nonlinear, they estimate

the peak in oil production. In analyzing the nonlinear unit root properties, Maslyuk

and Smyth (2009) test for nonlinearities and unit root in crude oil production. Their

findings indicate that for eleven countries, out of seventeen OPEC and non-OPEC mem-

bers, a unit root was present in both regimes that they consider in their study. Brandt

(2010) assesses existing oil supply models and their accuracy in predicting the future of

oil production. He classifies the main present models into five categories along with four

dimensions of variability. Brandt (2010) states that the existing models have proceeded

not very successfully in describing the future of global oil production.

To acquire a more accurate prediction of the world’s peak oil production, it is crucial

to employ appropriate specifications, which are reasonably close to the data generating

mechanism, and to examine whether the time series observations in the market are gen-

erated by a linear process or a nonlinear dynamic mechanism. As explained by Brockett

et al. (1988), given the nature of confounding linear and quadratic coefficients in the

estimation of time series models, it is important to test for significant nonlinearity in

the observed time series and to determine which time series are not amenable to linear

time series modeling. If the nonlinearity is present in the data, choosing a nonlinear
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time series can provide a more plausible post-sample forecasting ability (Ashley and Pat-

terson (2006)). Therefore, the conventional linear time series modeling may not yield

the most plausible results when there is significant nonlinearity in the data generating

mechanism. Hence, it is essential to check the existence of the nonlinearity in the data

before applying the empirical analysis. Numerous studies have addressed the issue in

other literature, such as monetary economics, by applying univariate nonlinearity tests

to detect the nonlinear structure in the economic data as well as the energy market.

Barnett et al. (1995) apply nonlinear tests to detect nonlinear behavior or chaos in

various monetary aggregate data series, and discuss the controversy that has arisen about

the available results. They use five inference methods to test for nonlinearity and chaos:

the Hinich bispectrum test, the BDS test, the Lyapunov exponent estimator of Nychka,

the White’s test, and the Kaplan test. The findings provide a possible explanation for

the controversies that exist regarding empirical evidence of chaos in economic data. They

also state that the source of controversies can be found in the lack of robustness of the

inference. In another influential study, Barnett et al. (1997) explore the reasons for em-

pirical difficulties with the interpretations of nonlinear and chaos tests’ results that have

increased over time. They design and run a single-blind controlled competition among

the aforementioned five highly regarded tests for nonlinearity or chaos with 10 simulated

data series. The results shows that although there are some clear differences among the

power functions of the tests, there exists some consistency in their inferences across the

method of inference. Barnett et al. (2004) test the existence of nonlinearity in the cointe-

gration relations of a system containing money demand variables, by applying the Hinich
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bispectrum test. The findings have some evidence of nonlinearity, and therefore they find

that the issue is empirically relevant. Kyrtsou and Serletis (2006) discuss univariate tests

for independence and hidden nonlinear deterministic structure in economic and financial

time series. They apply the tests to Canadian exchange rate, using daily data over a

30-year period and they identify an interesting relationship between high-dimensional

nonlinearity and shocks.

Furthermore, interest in studying the behavior of the energy market and applying

the existing tests to detect the nonlinearities and chaos in this market has been growing

over time. Kyrtsou et al. (2009) discuss number of widely used univariate test from

dynamical system theory and apply them to the energy market. They apply these tests

to daily observations of the energy market for nearly 15 years. They find indications

consistent with nonlinear dependence in each of the markets. They also suggest that

an effective nonlinear model of energy prices would produce a deeper perception of the

energy market fluctuations than existing linear models. Sertletis and Gogas (1999) test

for deterministic chaos in the North American Natural Gas Liquids Market. They use

the Lyapunov exponent estimator and they find that there is evidence consistent with a

chaotic nonlinear generation process in natural gas liquid markets. Serletis and Andreadis

(2004) use daily observations on West Texas Intermediate crude oil prices, and Henry

Hub natural gas prices and various tests from dynamical theory to support a random

fractal structure for North American energy markets. The result is consistent with the

reported result by Serletis and Gogas (1999) as they find evidence of nonlinear chaotic

dynamics in North American natural gas liquids markets but not in the crude oil and
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natural gas markets.

As discussed above, some studies in the literature have investigated the energy mar-

ket’s fundamentals by applying univariate nonlinearity tests to detect the nonlinear struc-

ture in the energy market. However, existing literature focuses mainly on the price of the

energy markets, and there is little mention of the production of the petroleum, which is

the variable that responds to the price. Therefore, in order to provide a more inclusive

study of the energy market structure, it is essential to study the quantity side of the mar-

ket. This chapter will address the gap and assess the existence of any possible nonlinear

structure in the data generating mechanism of crude oil production in the United States

as well as OPEC, non-OPEC, and the world production of crude oil.

3.4 Data Description and Unit Root Analysis

This essay employs monthly observations on four different crude oil production time series

obtained from Energy Information Administration (EIA).

• Monthly observations of the U.S. field production of crude oil. The sample period
is from January 1920 to June 2011.

• Monthly observations of OPEC production of crude oil. The sample period is from
January 1973 to January 2012.

• Monthly observations of the Non-OPEC production of crude oil. The sample period
is from January 1973 to January 2012.

• Monthly observations of the world production of crude oil. The sample period is
from January 1973 to January 2012.
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Table 3.1: Summary Statistics of Differenced Log Series—Production of Crude Oil

Sample Sample Standard Skewness Kurtosis
Crude Oil Pro-
duction

Mean Median Deviation

US Field 0.0006 0.0004 0.0239 0.0500 5.9722
OPEC Members 0.0001 0.0010 0.0160 -1.6405 8.5220
Non-OPEC Mem-
bers

0.0003 0.0005 0.0039 -0.1376 0.5552

World 0.0003 0.0007 0.0071 -1.5682 8.9481

Notes: The sample period for the U.S. field production of crude oil is from 1920:01 to 2002:12.
The sample period for OPEC, Non-OPEC, and the World production of crude oil is from
January 1973 to January 2012.

The descriptive statistics of the first difference of the log levels production is reported

in Table 3.1. Figures 3.3 to 3.6 in the Appendix A depict monthly observations on

the U.S., OPEC members, non-OPEC members, and the world production of crude oil,

respectively.

Figures 3.7, 3.8, 3.9, and 3.10 show the log and the differenced log of the individual

series.

3.4.1 Unit Root Analysis

In order to conduct the nonlinear analysis, the first step is to test whether or not the

log level of the time series of crude oil production follows a random walk or has unit

root. The two most well-known test procedures are employed to deal with the random

walk behavior of the data, the Augmented Dickey-Fuller test (ADF) and the Philips and

Perron test (PP).

The augmented Dickey-Fuller (ADF) test checks the existence of a unit root in an AR(p)
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Table 3.2: Augmented Dickey-Fuller Unit Root Tests
Null Hypothesis: The log levels and the differenced log of the series have unit root

Lag length: Automatic Selection Based on SIC.

Log Level U.S. Production OPEC Members Non-OPEC Members World
Production Production Production

ADF Test Statistic (t
(β̂)

) -1.833 -2.3092 -2.4640 -3.5446

p-value∗ 0.687 0.4267 0.346 0.0359

DLog Level U.S. Production OPEC Members Non-OPEC Members World
Production Production Production

ADF Test Statistic (t
(β̂)

) -7.693 -22.0506 -27.3432 -23.5878

p-value∗ 0.000 0.000 0.000 0.000

∗ MacKinnon (1996) one-sided p-values.
Notes: The sample period for the U.S. field production of crude oil is from 1920:01 to 2002:12. The
sample period for OPEC, Non-OPEC, and the World production of crude oil is from January 1973 to
January 2012.

process, the unit root test is carried out under the null hypothesis Ho : β = 0 versus the

alternative hypothesis Ha : β < 0 using the regression

∆yt = ct + βyt−1 +

p−1∑
i=1

φi∆yt−i + et (3.1)

where ct is a deterministic function of the time index t and ∆yj = yj − yj−1 is the

differenced series of yt. The t-ratio of the statistic is computed by

ADF − test =
β̂

std(β̂)
(3.2)

where β̂ denotes the least squares estimates of β, and the t-ratio is known as the aug-

mented Dickey-Fuller(ADF) unit root test – see Dickey and Fuller (1981) for details. The

error term is assumed to be homoscedastic and also the value of p is set such that the

error is serially uncorrelated.

Furthermore, the Philips and Perron (1988) known as (PP) unit root test is employed
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to test whether or not the log level of the series exhibit a random walk behavior.

The PP test, unlike the ADF test, allows for errors not to be independently and

identically distributed (iid), and it is essentially based on Equation 3.1, but without the

lag differences. While the ADF test correct for the higher-order serial correlation by

adding lagged difference terms to the right-hand side, the PP unit root test makes a

non-parametric correction to account for residual serial correlation Maslyuk and Smyth

(2008). Therefore, the PP test statistic is robust to a variety of serial correlation and

time-dependent heteroscedasticity. The test regression for PP test is

∆yt = β′Dt + πyt−1 + ut (3.3)

where ut is I(0) and can be heteroscedastic. The PP test corrects for any serial correla-

tions and heteroscedasticity in the error ut of the test regression by modifying the test

statistics tπ=0 and Tπ̂.

Under the null hypothesis that π = 0, the PP statistic has the same asymptotic

distribution as the ADF t-statistic and normalized bias statistic – see Philips and Perron

(1988) for more details.

The t-statistics for the ADF test (t(β̂)andZt(π̂)) as well as the p-values for the log levels

and differenced log of the production time series are reported in Table 3.2.

A constant term as well as the time trend are included in the specifications of the

unit root regressions for the ADF and the PP tests in log level for each individual time

series. As displayed by the results in Tables 3.2 and 3.3, the null hypotheses of a unit

root for the ADF and PP tests in log levels are rejected at the 1% significance level in
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Table 3.3: Philips-Perron Unit Root Test
Null Hypothesis: The log levels and the differenced log of the series have unit root

Bandwidth: (Newey-West automatic) using Bartlett Kernel

Log Level U.S. Production OPEC Members Non-OPEC Members World
Production Production Production

PP Test Statistic (Zt(π̂)) -3.232 -2.060 -2.5768 -3.332

p-value∗ 0.018 0.5662 0.2913 0.0624

DLog Level U.S. Production OPEC Members Non-OPEC Members World
Production Production Production

PP Test Statistic (Zt(π̂)) -64.110 -22.781 -27.952 -26.3351

p-value∗ 0.000 0.000 0.000 0.000

∗ MacKinnon (1996) one-sided p-values.
Notes: The sample period for the U.S. field production of crude oil is from 1920:01 to 2002:12. The
sample period for OPEC, Non-OPEC, and the World production of crude oil is from January 1973 to
January 2012.

each case.

The decision to deal with the random walk behavior is to transform the log levels

into the first differenced of the logs. The ADF and PP unit root test results in 3.2

and 3.3 indicate that the null hypotheses of unit root in first differenced levels can be

rejected. Hence, the first differenced of the log for each individual production times series

throughout the rest of the paper will be used unless otherwise noted.

3.5 The Inference Methods

The following inference methods for detecting nonlinearities are employed in this section:

The BDS test, the Hinich bicovariance test, the Hinich bispectrum test, the Engle LM

test, the McLeod-Li test, and the Tsay test. Each of the aforementioned tests excluding

the Hinich bispectrum test, require to remove any serial dependence from the data via

a prewhitening model. Any other serial dependence is the result of a nonlinear data

generating mechanism. The Hinich bispectrum test directly tests the data generating
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mechanism and it is invariant to filtering of the data (Patterson and Ashley (2000a)).

Moreover, the Kaplan test is considered in the inference methods to assess the dynamic

structure of the market more precisely.

3.5.1 The BDS Test: A Test for Serial Independence

The widely held Brock, Dechert, Scheinkman and LeBaron(1996) test, also known as the

BDS test, is one form of portmanteau tests for independence. Portmanteau tests are

residual-based tests in which the null hypothesis is well stated, but they do not have a

specific alternative hypothesis. The BDS test Brock et al. (1986) is a popular test to

detect the serial independence in time series data. The BDS test introduces a test of

independence that can be applied to the estimated residuals of any time series model, if

the model can be transformed into a form with independent and identically distributed

errors. The test employs the correlation function (correlation integral) to calculate the

test statistics. The correlation function was introduced as a method of measuring the

fractal dimension of deterministic data. The correlation function (integral) measures of

the sequential pattern’s frequency that exist in the data – see Brock et al. (1986) for

more details.

The BDS test is used to test the null of linearity against a variety of possible deviation

from independence in the series including nonlinearity and chaos. The test is applied to a

series of estimated residual after removing any linear structure. Under the null hypothesis

of independent and identically distributed (i.i.d) or whiteness, the BDS statistic is
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√
n
Cm,n(ε)− C1(ε)

m

σm(ε)
(3.4)

where Cm,n(ε) is the correlation integral, σm(ε) is the asymptotic standard deviation of

the numerator and m is the embedding dimension. The test converges to N(0, 1) under

the null hypothesis of whiteness [The details for the test statistic and the formula can be

found in Brock et al. (1986)].

The BDS test is applied to the differenced log of the time series of the U.S., OPEC,

non-OPEC, and the the world production of crude oil. The choice of the values of ε and

m may be a challenge in using the BDS test. The results with BDS are reported in Table

3.4 for dimension 2–8 and the chosen ε equals to one and two standard deviation of the

data2.

Results with the BDS Test

The BDS test statistic is produced for all the embedding dimension from two to eight.

As can be observed in the Table 3.4, the results indicate the significance at the 10%

level based on the asymptotic distribution for the U.S. and OPEC production of crude

oil. The null hypothesis of the BDS test is rejected at the 1% significance level for the

non-OPEC and the world production of crude oil indicating that the nonlinear structure

is significant in the U.S. and OPEC production of crude oil.

The BDS test represent a high power against numerous nonlinear alternatives. There-

fore, accepting the null hypothesis in the BDS test indicates that there are strong evidence

2ε is calculated as a multiple of the standard deviation of the series.
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Table 3.4: BDS Test Z-Statistic (Dimension 2-8)

U.S. Production of Crude Oil (1920:01–
2011:06)

ε
m 1σ p-values 2σ p-values

2 23.3336 0.000 16.8553 0.000
3 25.7004 0.000 14.2563 0.000
4 27.6393 0.000 11.4692 0.000
5 31.3215 0.000 9.0335 0.000
6 37.8373 0.000 7.5150 0.000
7 49.5211 0.000 7.0203 0.000
8 65.3457 0.000 6.2050 0.000

OPEC Members Production of Crude Oil
(1973:01–2012:01)

ε
m 1σ p-values 2σ p-values

2 6.8381 0.000 5.3932 0.000
3 8.2316 0.000 5.6121 0.000
4 9.7325 0.000 6.1709 0.000
5 11.5644 0.000 6.5206 0.000
6 13.6929 0.000 6.6346 0.000
7 16.2910 0.000 6.6855 0.000
8 19.5460 0.000 6.7479 0.000

Non-OPEC Members Production of Crude Oil
(1973:01–2012:01)

ε
m 1σ p-values 2σ p-values

2 3.47 0.0005 4.1717 0.0000
3 3.5567 0.0004 4.1202 0.0000
4 3.4460 0.0006 4.0617 0.0000
5 2.9808 0.0029 3.1990 0.0014
6 2.7839 0.0054 2.7547 0.0059
7 2.5461 0.0109 2.5563 0.0106
8 2.1983 0.0279 2.3173 0.0205

World Production of Crude Oil (1973:01–
2012:01)

ε
m 1σ p-values 2σ p-values

2 6.3063 0.0112 6.3063 0.0000
3 8.0802 0.0116 8.0802 0.0000
4 9.5669 0.0092 9.5669 0.0000
5 11.1495 0.0226 11.1495 0.0000
6 12.9776 0.0101 12.9776 0.0000
7 15.2389 0.0089 15.2389 0.0000
8 17.8683 0.0104 17.8683 0.0000
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for the null. Hence, it is recommended that the BDS test should be the first test to per-

form. The current results reflect little information to distinguish the existing forms of

nonlinearity in the time series data of oil production. The Kaplan test is employed to

verify the BDS tests results. Then the chapter will proceed to utilize more focused tests

to identify the other possible forms of nonlinearity in the data – see Barnett et al. (1997)

for more details.

3.5.2 Kaplan Test: A Test for Continuity and Determinism

There has been a wide range of methods in which reconstruction dynamics of the em-

ployed time series have been developed in order to characterize the dynamics in terms

of predictability or dynamical invariant Kaplan (1994). These classifications are often

employed to characterize whether the time series data are consistent with a deterministic

mechanism, or a stochastic mechanism. As Kaplan (1994) mentions, it is common to test

the predictability near every point in the time series in the nonlinear prediction method.

Even though it might not be possible to predict future values of time series at every

point, it may be likely to make accurate predictions at a few points. This may suffice for

detecting the underlying determinism. Moreover, when deducing dynamics from a time

series, continuity is often the only safe assumption one can make about a possible deter-

ministic mechanism for a time series. Kaplan (1994) proposed a test for determinism in a

time series based on consistency with a continuous dynamical mapping. The test answers

a question like, “If two points xi and xj are very close together, are their images xi+1
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and xj+1 also close together?” (Kaplan (1994))3. In other words, deterministic solution

paths, unlike stochastic processes, have the property that points that are close together

are close under their image in phase space. Therefore, when the underlying function

linking image and pre-image together is continuous, if the points xi and xj are close their

images xi+1 and xj+1 are close together as well. In the case of chaos, the output plot

of the system is hardly distinguishable from a stochastic process. Therefore, detecting

the continuity of the system can be a difficult procedure, even when the data is entirely

deterministic. However, it is easier to detect deterministic structure when plotting the

solution path in phase space (xt+1 plotted against xt and lagged values of xt) than in

plotting xt versus t (Barnett et al. (1995)). Based on the above facts, the Kaplan test has

strictly positive lower bound for a stochastic process, but not for a deterministic solution

path. The statistic tests the null hypothesis that the data is deterministic against the

alternative, which is that the data comes from a particular stochastic process. If the test

statistic is smaller for the data than for the stochastic process by a statistically signifi-

cant amount, then the stochastic process is rejected as an alternative to other forms of

nonwhite structure (Barnett et al. (1995)).

The test is computed by an adequately large number of linear processes that plausibly

might have produced the data. The test procedure involves producing a linear stochastic

process surrogate data4 for the observed data. The next stage is to determine a noisy

continuous nonlinear dynamical solution path that describes the observed data more ac-

3A test based on continuity in phase space proposed by Daniel Kaplan, Centre for Nonlinear Dynam-
ics, Department of Physiology, McGill University.

4Surrogate data is random data generated with the same mean, variance, and autocorrelation function
as the original data.
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curately. If the value of the test statistic from the surrogate is not small enough compared

to the computed value of the test statistic from the observed data, a noisy continuous

dynamical solution is concluded. As described by Barnett et al. (1995), the test proce-

dure is formally stated as follows: If the time series data arise from a deterministically

chaotic dynamical system, the value of xt+1 is a single-valued function of the state of the

system at time t. Let the vector xt = (xt, xt−1, ..., xt−m−1) embedded in m-dimensional

“phase space” and obtained from a m-dimensional vector xi
T
i=1 in state space. Then there

exists a function f(xt) such that f(xt) = xt+1, where xt+1 is called the “image” of the

point xt in phase space. If the system is perfectly deterministic with a continues f , close

points in m-dimensional phase space have close image, whereas in a stochastic system

close points in phase space may produce different images. The Kaplan test investigates

if the function f is continuous based on the evidence provided the observed time series

data.

In the equivalence delta-epsilon proofs of continuity, δ is the distance in phase space

and ε is the distance of the images. For a given choice of embedding dimension m, the

distance in the phase space is calculated as δij = |xi − xj| and the distance between

their image is calculated as εij = |xi+1 − xj+1| for all i and j. It is useful to construct

the average of the values of εij conditional on the corresponding values of δij satisfying

δij < r and define the average as E(r). It is expected to have E(r) → 0 as r → 0 for

a perfectly deterministic system with continuous f , whereas if the underlying system is

stochastic the convergence may not happen as a point xi may have different images. The

statistic for the Kaplan test is defined as K ≡ limr→0E(r). The non-zero value of K can
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be interpreted as “goodness of fit” measure from fitting a continuous model of some fixed

order to an infinite amount of data. If this measure is smaller for the observed data than

for surrogate data generated by a model that satisfies a stated null hypothesis, then the

null hypothesis should be rejected (Barnett et al. (1995)). As stated by Garcia (2007),

another way of interpreting the non-zero value of K is as the level of nondeterminism

or the amount of noise in the data. If the system is stochastic the amount of K is

expected to be higher for nearly deterministic ones. Therefore, we should reject the

null hypothesis when K on the observed data is smaller than K on the surrogate data.

Since the distribution of the statistic table is not laid out, Kaplan proposes two different

methods to compute the minimum value of K obtained from the surrogates. The first

approach is to estimate the minimum value of K from a finite sample of surrogates,

and impute that to the population of the surrogates. Another approach involves the

computation of the mean and standard error of the values of K from the finite sample

and the subtraction of a multiple of (2 or 3) to obtain the an estimate of population

minimum (Alharbi (2009)).

This chapter uses twenty surrogate time series using the same approach suggested by

Kaplan. The Surrogate data is a random realization from time series data of the energy

markets generated with the same mean, variance, and autocorrelation function as the

original data. Moreover, the lag embedded time series is also generated using 2, 3, 4, and

5 dimensional spaces.

The result of the Kaplan test for the production of crude oil for the four series are

reported in Table 3.55. Also, the results of the Kaplan test are graphically summa-

5The Kaplan test was carried out using the original MATLAB codes provided with gratitude by
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rized in Appendix B of this chapter. The plot of delta versus epsilon shows the sign of

discontinuity is all cases, when delta goes to zero, epsilon does not.

Results of the Kaplan Test

The null hypothesis of the Kaplan test is stochastic linearity of the process. As mentioned

by Barnett et al. (1995), the Kaplan test involves a strong power against chaos and is

expected not to accept the null facing with chaotic series although current form of test

can either accept or reject linearity. The Kaplan test is designed where the dynamical

functional form underlying the time series data is unknown, and the main purpose is to

study if there is evidence of deterministic mechanism or not.

The results with the Kaplan test are displayed in Table 3.5 for embedding dimension(m)

2, 3, 4 and 5. The mean, minimum, and standard deviations are computed over twenty

surrogates for each time series. Moreover, K statistic is calculated for each series. The

null of stochastic linearity is rejected when the computed K for each daily spot price of

energy product is less than the minimum of K statistic from surrogates or KSmin that

is K < KSmin. As recommended by Kaplan, the t-statistic is calculated on the results

significance as: t = K−KSmean
KSsd

, where KSmean and KSsd are the mean and standard

deviation for KS values for surrogates.

As can be observed from Table 3.5, the test rejects the null of linearity in the U.S.

production of crude oil, OPEC members production of crude oil, and the world production

of crude oil in all dimensions. The interesting fact is the null of linearity cannot be rejected

Professor Daniel Kaplan and modified based on the analysis in this study:
Kaplan, Daniel. (1996). Delta-Epsilon [Computer MATLAB Software]. Retrieved from:
http://www.macalester.edu/ kaplan/software/.
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Table 3.5: Kaplan Test Statistic: Production of Crude Oil

Log Level Embedding Mean K Std. dev. of K Min K K statistic t-statistic
Dimension on surrogates on surrogates on surrogates on energy data

U.S. Production 2 0.0233 0.0021 0.0191 0.0152 -3.857
3 0.0227 0.003 0.0167 0.0121 -3.533
4 0.0233 0.0037 0.0159 0.0091 -3.837
5 0.0214 0.0035 0.0144 0.0072 -4.057

OPEC Production 2 0.0181 0.0018 0.0145 0.0122 -3.277
3 0.0186 0.0033 0.012 0.01 -2.606
4 0.018 0.0031 0.0118 0.0082 -3.161
5 0.0184 0.0036 0.0112 0.0074 -3.055

Non-OPEC Production 2 0.0043 0.0004 0.0034 0.0039 -0.962
3 0.0042 0.0006 0.0029 0.0038 -0.664
4 0.0042 0.0005 0.0030 0.0038 -0.677
5 0.0041 0.001 0.0021 0.0037 -0.4

World Production 2 0.0078 0.0006 0.0065 0.006 -2.883
3 0.008 0.0009 0.0060 0.0052 -2.821
4 0.008 0.0011 0.0058 0.0045 -3.181
5 0.0082 0.0013 0.0056 0.0041 -3.153

Notes: K is the Kaplan test statistic. Twenty surrogates were used to compute the mean and standard
deviation. The sample period for the U.S. field production of crude oil is from 1920:01 to 2002:12. The
sample periods for OPEC, Non-OPEC, and the World production of crude oil is from January 1973 to
January 2012.

for non-OPEC supply of crude oil. The phenomenon can be attributed to slow growth

rate in oil supply in those countries. As can be observed in the plot of time series of

non-OPEC crude oil production members, the growth rate of the series is a slow trend,

indicating that the non-OPEC members production of crude oil has not been significantly

influenced by the various fluctuations in the market.

3.5.3 Tests for Nonlinearity

In this section, other forms of nonlinearity will be examined by employing more focused

tests such as Hinich bispectrum test, which explore third order nonlinearity.
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The Hinich Bicovariance Test

As noted by Patterson and Ashley (2000a), the Hinich Bicovariance test assumes xt is a

realization from a third-order stationary stochastic process and tests for serial indepen-

dence. It uses the sample bicovariances of the data. The (r, s) sample bicovariance is

defined as

C3(r, s) = (N − s)−1
N−s∑
t=1

xtxt+rxt+s 0 ≤ r ≤ s. (3.5)

The sample bicovariances, Equations 3.5, are a generalization of a skewness parameter.

The C3(r, s) are all zero for zero mean, serially i.i.d data. Non-zero values for the C3(r, s)

are projected from observations in which xt depends on lagged cross-products, such as

xt−ixt−j and higher order terms.

Let G(r, s) = (N − s)0.5C3(r, s) and define X3 as

X3 =

φ∑
s=2

s−1∑
r=1

[G(r, s)]2 (3.6)

Under the null hypothesis that xt is a serially i.i.d process, Hinich and Patterson (1995)

show that X3 is asymptotically distributed as χ2[φ(φ− 1)/2] for φ < N0.5. They recom-

mend using φ = N0.4 based on their simulations. Under the assumption that E((xt)
0.5)

exists, the X3 statistic will discover nonzero third-order correlations. It can be consid-

ered as generalization of the Box-Pierce portmanteau statistics – see Hinich and Patterson

(1985) for more discussion.
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The Hinich Bispectrum Test

A process is said to be third-order nonlinear dependence if the skewness function in the

frequency domain is not flat as a function of frequency pairs. The definition of the square

of the skewness function is shown in Equation 3.8. This form of the nonlinearity is called

third order, since the skewness function is a normalization of the Fourier transform of the

third-order autocovariances. That Fourier transform is called the bispectrum (Barnett

et al. (1997)).

The Hinich bispectrum test is a nonparametric test that examines the third-order

moments (bicovariance) of the data in the frequency domain to obtain a direct test for

a nonlinear generation mechanism, regardless of any linear independence that might be

present in the data. Therefore, when the tests rejects the null (the skewness function

is flat), there is no need to check the possibility that the linear prewhitening model has

failed to remove all linear serial dependence in the data (Ashley and Patterson (2006)).

Hinich (1982) develops this test for flatness of bispectrum. He argues that the bispec-

trum in the frequency domain is easier to interpret than multiplicity of the third-order

moments cxxx(r, s) : s ≤ r, r = 0, 1, 2 · · · in the domain. Barnett and Hinich (1993) ex-

plain the computation of the test statistic. For frequencies f1 and f2 in the principle

domain

Ω = (f1, f2) : 0 < f1 < 0.5, f2 < f1, 2f1 + f2 < 1

is the Hinich bispectrum of the series at frequency pair (f1, f2), and its double Fourier

transformation of the third-moments function is:
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Bxxx(f1, f2) =
r=∞∑
r=−∞

s=∞∑
s=−∞

cxxx(r, s)exp[−2π(f1r + f2s)]. (3.7)

The square of the skewness function Γ(f1, f2) is defined in terms of the bispectrum as:

Γ2(f1, f2) =
|Bxxx(f1, f2)|2

Sxx(f1)Sxx(f2)Sxx(f1 + f2)
(3.8)

where Sxx(f) is the (ordinary power) spectrum of xt at frequency f . If the time series xt

is linear then the squared of skewness function Γ2(f1, f2) is constant over all frequency

pairs (f1, f2) in Ω, and the skewness function Γ2(f1, f2) is zero over all frequencies if

xt is Gaussian. Linearity and Gaussianity can be tested using a sample estimator of

the skewness function Γ2(f1, f2) – see Barnett and Hinich (1993) for more details on

computation of the test and Hinich (1982) for more details on the test.

Engle LM Test

The test was proposed by Engle (1982) to examine nonlinearity in the second moment,

particularly for ARCH disturbances. The test employs the Lagrangian multiplier proce-

dure and runs the OLS regression and saves the residuals. Then the next procedures is to

regress the squared residuals on a constant and p lagged values of the squared residuals

and test NR2 as a χ2
p.

ε̂2t = α0 +

p∑
j=1

αj ε̂
2
t−j + ut (3.9)
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As most Lagrange multiplier tests, the test statistic is based on the R2 of the regression.

Under the null hypothesis of a linear generating mechanism for xt, NR
2 for the above

regression is asymptotically distributed as χ2
p.

The McLeod-Li Test

McLeod and Li (1983) developed a portmanteau test for nonlinear statistical dependence

in the squared-residual autocorrelations of fitted ARMA models. The tests looks at

the autocorrelation function of the squares of the prewhitened data and tests whether

corr(x2t , x
2
t−j) is nonzero for some j. The autocorrelation at the lag j for the squared

residuals x2t is estimated by

r̂(j) =

∑N
t=1(x

2
t − σ̂2)(x2t−j − σ̂2)∑N
t=1(x

2
t − σ̂2)

, whereσ̂2 =
N∑
t=1

x2t
N

(3.10)

Under the null hypothesis that xt is an i.i.d process, McLeod and Li (1983) showed

that, for sufficiently large and fixed L,

Q = N(N + 2)
L∑
j=1

r̂2(j)

N − j
(3.11)

is asymptotically χ2
L under the null hypothesis of a linear generating mechanism for the

data. They have set L = 20 for their small-sample simulation in their examination.

The Tsay Test

The Tsay (1986) test explicitly looks for quadratic serial dependence in the data, using

quadratic terms lagged up to K periods. Let the K = k(k+1)/2 column vectors V1, ..., Vk
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contains all the unique cross-products of the form xt−ixt−j, where i ∈ [i, k] and j ∈ [j, k].

Let v̂t,i denote the projection of vt,i on the subspace orthogonal to xt−1, ..., xt−k, which

is the residuals from a regression of vt,i on xt−1, ..., xt−k. The parameters γi, ..., γk are

estimated by applying OLS to the regression equation:

xt = γ0 +
k∑
i=1

γiv̂i, t+ ηt (3.12)

Then, the Tsay test statistic is the usual F statistic for testing the null hypothesis

that γ1, ..., γk are all zero.

The Results for Nonlinearity Tests

The results (significance levels) for the Hinich bicovariance, the Hinich bispectrum, the

McLeod-Li, the Engle, and the Tsay test are reported in Table 3.6 and 3.7, for both

asymptotical distribution and bootstrapping simulation6.

As stated by Patterson and Ashley (2000a), the described tests are only asymptoti-

cally justified similar to most econometrics procedures. Therefore, the significance levels

of all the tests are routinely bootstrapped. Also, the significance levels based on the

asymptotic distributions are computed – see Patterson and Ashley (2000a) for further

details on the bootstrap simulation.

In the Hinich bicovariance test, I use φ = N0.4 based on the Hinich and Patterson

(1985)’s simulation, where N is the sample size for each individual series. The test is

6The source of the nonlinear software was thankfully provided by Professor Douglas M. Patterson.
The source, instruction on running the toolkit program, and analysis can be found in Patterson and
Ashley (2000a): “A Nonlinear Time Series Workshop: A Toolkit for Detecting and Identifying Nonlinear
Serial Dependence”, Kluwer Academic Publishers: Norwell. Available at: http://www.wkap.nl/.
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calculated using up to 15 lags and also with the number of bootstrap iterations equal

to 100. As displayed by the results, based on the bootstrapped as well as asymptotic

distributions, the test rejects the null hypothesis that the time series of oil production is

a serially i.i.d process at the 10% significance level for the U.S., OPEC, and the world

production of crude oil. The null hypothesis cannot be rejected in non-OPEC production

of crude oil at the 5% significance level.

The Hinich bispectrum test examines the third order moments (bicovariance) of the

data in frequency domain to obtain a direct test for a nonlinear generating mechanism.

More importantly, this test focuses on nonlinear serial dependence, and it is different than

the procedure of the sample bicovariance data than the Hinich bicovariance test described

earlier. The Hinich bispectrum test accepts the linearity if it cannot reject the flatness

of bispectrum, and accepts the Gaussianity if the bispectrum is flat and is also equal to

zero. As can be observed in the Table 3.6, the results of Gaussianity indicate extremely

small p-values for oil production variables in the case of asymptotic distribution. As a

result the null hypothesis of the Gaussianity is rejected at the 10% significance level.

Moreover, the null of linearity for time series of oil production exhibits significant

results by very small p-values for the 80 percent fractile bispectrum linearity test for

time series data of crude oil production. Hence, the null hypothesis of the linearity is

also rejected at the 10% significance level. In other words, the rejection of linearity

provides strong evidence for the presence of the third order nonlinearity in the data

generating process of crude oil production as also noted by Barnett et al. (1997).

Ashley and Patterson (2006) show that the bispectrum Bxxx(f1, f2) is consistently
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estimated using an average of appropriate triple products of the Fourier representation

of the observed time series. The average is taken over a square containing M adjacent

frequency pairs. Hinich (1982) showed that M must be above the N0.5 to consistently

estimate Bxxx(f1, f2). The results here are caculated for M equals to N0.6.

Table 3.6: Significance Level for Nonlinearity Tests
Asymptotic Distribution

Series U.S. Production OPEC Members Non-OPEC Members World
Production Production Production

Bicovariance (φ = N0.4) 0.000 0.000 0.085 0.000
Bispectral (Gaussianity) 0.000 0.000 0.000 0.000

(M = N0.6)
Bispectral (Linearity) 0.000 0.005 0.000 0.000

(M = N0.6)
Engle(p = 5) 0.000 0.014 0.066 0.000

McLeod-Li(L = 24) 0.000 0.000 0.004 0.001
Tsay (k = 5) 0.000 0.000 0.203 0.000

Notes: The sample period for the U.S. field production of crude oil is from 1920:01 to 2002:12. The
sample period for OPEC, non-OPEC, and the world production of crude oil is from January 1973 to
January 2012.

Table 3.7: Significance Level for Nonlinearity Tests
Bootstrap Simulation

Series U.S. Production OPEC Members Non-OPEC Members World
Production Production Production

Bicovariance (φ = N0.4) 0.000 0.000 0.120 0.000
Engle(p = 5) 0.003 0.030 0.090 0.000

McLeod-Li(L = 24) 0.001 0.000 0.000 0.000
Tsay (k = 5) 0.000 0.000 0.220 0.000

Notes: Number of bootstrap iterations =100
The sample period for the U.S. field production of crude oil is 1920:01 to 2002:12. The sample period
for OPEC, non-OPEC, the world production of crude oil is from January 1973 to January 2012.

The Engle LM test (1982) examines nonlinearity in the second moment. Under the

null hypothesis of a linear generating mechanism for xt, NR
2 for the regression Equation

3.9 is asymptotically distributed as χ2
p. The results are reported for p (lagged values)

equals to 5, and they exhibit substantially small p-values for the U.S. and the world pro-
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duction of crude oil at the 10% significance level in both asymptotic and bootstrapped

distributions. The null hypothesis of the Engle-LM test is rejected at the 5% significance

level for the OPEC crude oil production. The Engle-LM test rejects the null hypoth-

esis for non-OPEC production of crude oil at the 1% significance level. Following the

literature, the results are reported for p=5 for the Engle-LM test.

The null hypothesis of the McLeod and Li (1983) test is rejected for up to 24 lags in

bootstrapped and asymptotic distributions. As shown in Tables 3.6 and 3.7, the results

yield very small p-values at the 10% significance level. The results are calculated for

L = 24 for the McLeod and Li test.

The result of the Tsay test is reported for the value of k = 5. The reported results

based on the bootstrapped as well as asymptotic distributions indicate that the null

hypothesis is rejected at the 10% significance level of all the series excluding the non-

OPEC production of crude oil. The null hypothesis of the Tsay test cannot be rejected

in non-OPEC crude oil production at the 10% significance level.

Therefore, based on the bootstrapped and asymptotic distributions, the results for

the nonlinear tests reflect that the employed time series of the U.S., OPEC, and the world

production of crude oil have clear evidence of nonlinearity in their structure. The time

series data of non-OPEC production of crude oil does not reveal signs of nonlinearity in

the data generating mechanism.
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3.6 Summary and Conclusion

There exists an extensive literature on modeling the future of crude oil production. In

order to attain an accurate projection about the future of oil supply, it is essential to

employ a model specification that is supported by the data and reflects the underlying

mechanism of the market’s dynamics. This chapter presents a new approach to assess

the dynamic structure in the data generating mechanism of crude oil production in the

context of a nonlinear mechanism. The study employs statistical and econometrics tech-

niques, which involves the most widely used univariate tests, to investigate the nonlinear

dependence in the supply side of the energy market.

To study the time series data of crude oil production in context of the nonlinear

mechanism, the study utilized monthly observations of the U.S. field production of crude

oil from January 1920 to June 2011, OPEC production, non-OPEC, and the world pro-

duction of crude oil from January 1973 to January 2012. The results indicate that the

observed time series data on production of crude oil ,excluding non-OPEC countries

production, exhibit deep nonlinearity in their structure.

The BDS test is a test of general nonlinearity in the process, against all other possible

alternative nulls of linearity and has a high power against the numerous classes of alter-

native hypotheses. The results of the BDS test indicate that the linearity is rejected in

all the time series data at the 5% level of significance, excluding non-OPEC production

of crude oil. However, the null of nonlinearity is rejected at the 1% level of significance

in the non-OPEC time series data. The Kaplan’s test features seem to be comparable to

the BDS test. However, Barnett et al. (1997) state that in their experiments the Kaplan
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test, unlike the BDS test, acquired the right answer with both large and small samples.

The results for Kaplan tests detect evidence of nonlinearity in all the time series data

apart from the non-OPEC production of crude oil. Given the results from the BDS test

and the Kaplan test, there are convincing evidence of the importance of employing more

particular tests that explore the more detailed features of nonlinearity.

The Hinich bicovariance test focuses on the third-order moments (time domain) of the

data and detected nonlinearity in each series excluding non-OPEC at the 5% significance

level. The Hinich bispectrum test examines the lack of third-order nonlinear dependence

(frequency domain), and the associated Gaussianity test, is a test of a necessary and

not sufficient condition for Gaussianity7. The results of the Hinich bispectrum suggest

that the observed time series data in the supply side of the energy market are generated

by a nonlinear and a non-Gaussian process. The Engle Lagrangian multiplier (LM) test

focuses on the nonlinearity in the second moment. The null hypothesis of no ARCH-type

disturbances is rejected by the Engle-LM test in the U.S. field and the world production

of crude oil. The null hypothesis of non-ARCH disturbances is rejected in OPEC and

non-OPEC production of crude oil at the 1% and 5% levels of significance, respectively.

The McLeod-Li test also rejects the null hypothesis of linearity in the variance for each

individual series. Finally, the Tsay test rejects the null hypothesis of linearity in each

individual series. However, the null hypothesis cannot be rejected in the case of the

non-OPEC countries production of crude oil in Tsay test. Therefore, all the tests detect

strong evidence of nonlinear structure in the time series data of the U.S. field, OPEC,

and the world production of crude oil, indicating that the employed series are generated

7See Barnett et al. (1997) for more details.
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by a nonlinear mechanism. However, non-OPEC production of crude oil reveals different

and notable results. The dynamics of the non-OPEC production time series data is not

nonlinear in its structure.

The results of the underlying mechanism for non-OPEC production can be attributed

to the nature of the market for those countries. As displayed in Figure 3.2, the growth

rate of the production market for non-OPEC production exhibits a steady rate and

has not been significantly influenced by exogenous shocks, and non-OPEC time series

production data does not reflect evidence of nonlinear structure in its data generating

mechanism. OPEC production of crude oil, however, has been frequently disrupted as

a result of geopolitical events, and clear indications of nonlinearity are reflected in the

OPEC production time series observations.

To enhance the projection of the production of the crude oil market, one needs to

consider the nature of the energy market in order to examine nonlinear dynamics in

its data generating mechanism. As explained by Ashley and Patterson (2006), if the

nonlinearity is present in the data, choosing a nonlinear time series can provide more

reasonable post-sample forecasting ability. Therefore, in consideration of the significance

of the production of crude oil in the aggregate economy, detecting nonlinear dynam-

ics in the market’s fundamentals will allow researchers to utilize a more accurate time

series modeling, which is reasonably close to the data generating mechanism. A compli-

ant model that is supported by the data will provide an accurate empirical results for

projection of the crude oil production market.
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Appendix A: Data Description, Key Terms and Defi-

nitions

The variable Crude Production is defined as follows:

The volume of crude oil produced from oil reservoirs during given periods of time.

The amount of such production for a given period is measured as volumes delivered from

lease storage tanks (i.e., the point of custody transfer) to pipelines, trucks, or other media

for transport to refineries or terminals with adjustments for (1) net differences between

opening and closing lease inventories, and (2) basic sediment and water (BS&W).8

Figure 3.3 represents the U.S. field production of crude oil.

Figure 3.3: Monthly U.S. Field Production of Crude Oil (Thousand Barrels/Day)

Data Source: Energy Information Administration (EIA)

8Energy Information Administration (EIA).
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Figure 3.4 represents the Organization of the Petroleum Exporting Countries (OPEC)

production of crude oil. The growth rate of the production of OPEC countries from

January 1973 to January 2012 is nearly 12 percent.

Figure 3.4: Monthly OPEC Production of Crude Oil (Thousand Barrels/Day)

Data Source: Energy Information Administration (EIA)

Figure 3.5 represents the non-OPEC Countries production of crude oil. The growth

rate of the production of non-OPEC countries from January 1973 to January 2012 is

nearly 70 percent.

Figure 3.6 represents the World’s production of crude oil. The growth rate of the

world production from January 1973 to January 2012 is nearly 38.96 percent.

Figures 3.7, 3.8, 3.9, and 3.10 show the log and the differenced log of the individual
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Figure 3.5: Monthly non-OPEC Production of Crude Oil (Thousand Barrels/Day)

Data Source: Energy Information Administration (EIA)

series.
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Figure 3.6: Monthly World Production of Crude Oil (Thousand Barrels/Day)

Data Source: Energy Information Administration (EIA)

94



Figure 3.7: Log and Differenced log of U.S. Field Production of Crude Oil (Thousand
Barrels)

Data Source: Energy Information Administration(EIA)
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Figure 3.8: Log and Differenced log of OPEC Production of Crude Oil (Thousand Bar-
rels/Day)

Data Source: Energy Information Administration(EIA)
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Figure 3.9: Log and Differenced log of non-OPEC Production of Crude Oil (Thousand
Barrels/Day)

Data Source: Energy Information Administration(EIA)

97



Figure 3.10: Log and Differenced log of World Production of Crude Oil (Thousand
Barrels/Day)

Data Source: Energy Information Administration(EIA)
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Appendix B: Figures of the Kaplan Results for Em-

bedding Dimension 2 – 5

Figures 3.11 to 3.14 display the Kaplan tests results. In other words, the plots of δ versus

ε are shown in Figures 3.11 to 3.14. The signs of continuity are revealed when δ goes to

zero, so ε does. The legend of each graph is explained as:

• U.: U.S. Production of Crude Oil

• OP: OPEC Members Production of Crude Oil

• No: Non-OPEC Members Production of Crude Oil

• Wo: World Production of Crude Oil

Figure 3.11: Delta vs. Epsilon, The Kaplan Test Results for Production of Crude Oil,
Lag Embedded=2
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Figure 3.12: Delta vs. Epsilon, The Kaplan Test Results of Production for Crude Oil,
Lag Embedded=3

Figure 3.13: Delta vs. Epsilon, The Kaplan Test Results of Production for Crude Oil,
Lag Embedded=4
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Figure 3.14: Delta vs. Epsilon, The Kaplan Test Results of Production for Crude Oil,
Lag Embedded=5
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Chapter 4

Dynamic Structure of the Spot Price

of Crude Oil: Does Time

Aggregation Matter?

4.1 Introduction

The majority of existing studies on dynamic structure of crude oil price have focused

on daily prices of the market, and there is little mention of existence of nonlinearity

in the other time frequencies such as monthly prices. Main studies that utilized daily

observations of the energy market, such as Kyrtsou et al. (2009) among many others,

have found evidence of nonlinear dependencies in the energy market. The main goal of

this chapter is to employ various levels of time aggregation of the energy market including

higher dimensional cases, different sample sizes and frequencies, and dividing the daily
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observations into sub-periods to assess the dynamic structure of the energy sector in

context of nonlinear mechanism. The chapter addresses the gap in the literature for an

inclusive investigation at different level of time aggregation of the energy market and is

following the approach of Patterson and Ashley (2000b) on the analysis of stock market

return. As they state, nonlinearity is considered as a possible procedure of stochastic

dependence. The volume of the dependence decreases with the increase in the time

between observations and nonlinear stochastic cannot be captured if the time within

observations is adequately large.

Nonlinearity in energy market was also examined by Kyrtsou and Serletis (2006),

where they discuss a number of widely used univariate tests from dynamical system the-

ory. They apply the tests to daily observations of the energy market for nearly 15 years

and find indications consistent with nonlinear dependencies in each of the markets. Iden-

tifying nonlinearity in the price of crude oil is a vital key to plausibly and accurately

forecast this major variable, which is one the most influential factors in the aggregate

economy. This chapter, motivated by uncovering the energy market fundamentals, will

discover that at which time aggregation level the stochastic dependence or nonlinearity

cannot be detected in the price of crude oil. To this end, this study incorporates the most

well-known univariate tests for nonlinearity with distinct power functions over alterna-

tives and tests different null hypotheses. It employs daily spot prices on crude oil, West

Texas Intermediate (WTI-Cushing) from January 2, 1986 to April 30, 2012 consists of

6642 observations obtained from Energy Information Administration (EIA). The period

of time analyzed is divided into three sub-periods: January 2, 1986 to December 30,
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1993 consisting of 2039 observations, January 3, 1994 to December 31, 2003 consists of

2511 observations, and January 5, 2004 to April 30, 2012 consists of 2092 observations.

Moreover, the monthly time series observations on the price of crude oil is utilized that

is real values on the price of crude oil, West Texas Intermediate. The sample period of

study is from January 1970 to March 2011 for a total of 494 observations as well as two

sub-samples: January 1970 to December 1991 for a total of 263 observations and January

1992 to March 2011 for a total of 231 observations. Incorporating monthly observations to

assess the existence of nonlinear structures in the time series data generating mechanism

of crude oil, when the time between observations increases, distinguishes the approach of

this chapter from existing literature. This chapter is organized as follows. The next sec-

tion reviews the related literature. Section Three describes the various employed datasets

and related unit root analysis. Section Four discusses the inference methods as well as

the results of performing the nonlinearity tests to examine the market data generating

mechanism. A brief summary and conclusion for this chapter are offered in Section Five.

4.2 Literature Review

A large body of literature in analyzing the behavior of the energy market assesses the

dynamic structure of daily observations. Kyrtsou et al. (2009) discuss a number of widely

used univariate tests from dynamical system theory and apply them to the energy market.

They apply these tests to daily observations of the energy market for nearly 15 years.

They find indications consistent with nonlinear dependencies in each of the markets. They

also suggest that an effective nonlinear model of energy prices would produce a deeper
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perception of the energy market fluctuations than existing linear models. Sertletis and

Gogas (1999) test for deterministic chaos in the North American Natural Gas Liquids

Market. They use the Lyapunov exponent estimator and they find that there is evidence

consistent with a chaotic nonlinear generation process in natural gas liquid markets.

Serletis and Andreadis (2004) use daily observations on West Texas Intermediate crude

oil prices and Henry Hub natural gas prices and various tests from dynamical theory to

support a random fractal structure for North American energy markets. The result is

consistent with the reported result by Serletis and Gogas (1999) as they find evidence

of nonlinear chaotic dynamics in North American natural gas liquids markets but not in

crude oil and natural gas markets. Identifying nonlinearities and chaos in economic and

financial data has attracted considerable attention as well.

Patterson and Ashley (2000b) analyze the behavior of the stock market return by ex-

amining daily, weekly, and monthly returns. Their results indicate that strong nonlinear

dependence exists in daily and weekly sample intervals, however the nonlinear depen-

dence is considerably reduced in monthly observations. Kyrtsou and Serletis (2006)

discuss univariate tests for independence and hidden nonlinear deterministic structure in

economic and financial time series. They apply the tests to Canadian exchange rate, us-

ing daily data over a 30-year period and they identify an interesting relationship between

high-dimensional nonlinearity and shocks. Barnett et al. (1995) apply nonlinear tests to

detect nonlinear behavior or chaos in various monetary aggregate data series, and dis-

cuss the controversy that has arisen about the available results. They use five inference

methods to test for nonlinearity and chaos: the Hinich bispectrum test, the BDS test,
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the Lyapunov exponent estimator of Nychka, the White test, and the Kaplan test. The

findings provide a possible explanation for the controversies that exist regarding empiri-

cal evidence of chaos in economic data. They also state that the source of controversies

can be found in the lack of robustness of the inference. In another influential study, Bar-

nett et al. (1997) explore the reasons for empirical difficulties with the interpretations of

nonlinear and chaos tests’ results that have increased over time. They design and run a

single-blind controlled competition among the aforementioned five highly regarded tests

for nonlinearity or chaos with 10 simulated data series. The results shows that although

there are some clear differences among the power functions of the tests, there exists some

consistency in their inferences across the method of inference. They also discuss different

issues that need to be taken into consideration in interpreting the results.

As mentioned earlier, there are studies in the literature that focus on the daily time

series of the energy market to examine the market’s fundamentals. However, existing

literature mainly focuses on the daily time series data when analyzing the market. In

order to attain an inclusive perception of the data structure in the energy market, this

chapter will incorporate monthly observations as well as carrying out the analysis by

dividing daily observations into sub-periods. The approach will address the gap in the

literature by exhausting all possible cases in time series of crude oil price.
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4.3 Data Description and Unit Root Analysis

4.3.1 Daily Data

This chapter assesses the dynamic structure of the energy market by employing daily

spot price on crude oil, West Texas Intermediate, from January 2, 1986 to April 30,

2012 consisting of 6642 observations obtained from Energy Information Administration

(EIA). To perform the analysis on daily data, the data is divided into three sub-periods

as follows:

• The first daily spot price sub-period is from January 2, 1986 to December 30, 1993
consisting of 2039 observations.

• The second daily spot price sub-period is from January 3, 1994 to December 31,
2003 consisting of 2511 observations.

• The third daily spot price sub-period is from January 5, 2004 to April 30, 2012
consisting of 2092 observations.

The sub-periods are divided such that at least one oil price shock or counter shock,

when oil price experiences a sudden decline due to oversupply or recession, are in the

period under investigation.

Unit Root Analysis

In order to conduct the nonlinear analysis, the first step is to test whether or not the

log price of each individual series follows a random walk or has unit root. I employ two

alternative conventional test procedures to deal with the behavior of the data, the aug-

mented Dickey-Fuller test (ADF) and the Philips and Perron test (PP). The augmented
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Table 4.1: Augmented Dickey-Fuller Unit Root Tests - Daily Spot Prices on WTI
Null Hypothesis: The log levels and the differenced log of the series have unit root

Lag length: Automatic Selection Based on SIC.
Log Level Daily Price WTI Daily Price WTI Daily Price WTI

01/02/1986 - 12/30/1993 01/03/1994 - 12/31/2012 01/05/2004 - 04/30/2012
ADF Test Statistic (t

(β̂)
) -3.134 -2.353 -1.852

p-value∗ 0.0984 0.4048 0.6790

DLog Level Daily Price WTI Daily Price WTI Daily Price WTI
01/02/1986 - 12/30/1993 01/03/1994 - 12/31/2003 01/05/2004 - 04/30/2012

ADF Test Statistic (t
(β̂)

) -18.606 -29.934 -23.759

p-value∗ 0.000 0.000 0.000

∗ MacKinnon (1996) one-sided p-values.

Dickey-Fuller (ADF) test checks the existence of a unit root in an AR(p) process. The

unit root test is carried out under the null hypothesis Ho : β = 0 versus the alternative

hypothesis Ha : β < 0 using the regression

∆yt = ct + βyt−1 +

p−1∑
i=1

φi∆yt−i + et (4.1)

where ct is a deterministic function of the time index t and ∆yj = yj − yj−1 is the

differenced series of yt. The t-ratio of the statistic is computed by

ADF − test =
β̂

std(β̂)
(4.2)

where β̂ denotes the least squares estimates of β, and the t-ratio is known as the aug-

mented Dickey-Fuller(ADF) unit root test – see Dickey and Fuller (1981) for details. The

error term is assumed to be homoscedastic and also the value of p is set such that the

error is serially uncorrelated.

Furthermore, the Philips and Perron(1988) known as (PP) unit root test is employed
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to test whether or not the log level of the series exhibits a random walk behavior. The PP

test differs from the ADF test in handling the serial correlation and heteroscedasticity

in the errors, and it allows for errors not to be independently and identically distributed

(iid). The PP unit root test is essentially based on Equation 4.1, but without the

lag differences. While the ADF test corrects for the higher-order serial correlation by

adding lagged difference terms to the right-hand side, the PP unit root test makes a

non-parametric correction to account for residual serial correlation Maslyuk and Smyth

(2008). Therefore, the PP test statistic is robust to a variety of serial correlation and

time-dependent heteroscedasticity. The test regression for PP test is

∆yt = β′Dt + πyt−1 + ut (4.3)

where ut is I(0) and can be heteroscedastic. The PP test corrects for any serial correla-

tions and heteroscedasticity in the error ut of the test regression by modifying the test

statistics tπ=0 and Tπ̂. Under the null hypothesis that π = 0, the PP statistic have the

same asymptotic distribution as the ADF t-statistic and normalized bias statistic – see

Philips and Perron (1988) for more details.

The t-statistics for the ADF and PP tests (t(β̂)andZt(π̂)) as well as the p-values for the

log levels of the series are reported in Table 4.1 and Table 4.2.

In the specification of the unit root regressions for the ADF and the PP test in log

level of the individual series, I included the constant term as well as the time trend

to distinguish whether or not the series are “trend stationary” (TS) model, where a

stationary component is added to a deterministic trend term. As the results show in
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Table 4.2: Philips-Perron Unit Root Test - Daily Spot Prices on WTI
Null Hypothesis: The log levels and the differenced log of the series have unit root

Bandwidth: (Newey-West automatic) using Bartlett Kernel
Log Level Daily Price WTI Daily Price WTI Daily Price WTI

01/02/1986 - 12/30/1993 01/03/1994 - 12/31/2012 01/05/2004 - 04/30/2012
PP Test Statistic (Zt(π̂)) -3.379 -2.723 -2.457

p-value∗ 0.0984 0.2265 0.3497

DLog Level Daily Price WTI Daily Price WTI Daily Price WTI
01/02/1986 - 12/30/1993 01/03/1994 - 12/31/2003 01/05/2004 - 04/30/2012

PP Test Statistic (Zt(π̂)) -37.459 -49.174 -43.924

p-value∗ 0.000 0.000 0.000

∗ MacKinnon (1996) one-sided p-values.

Tables 4.1 and 4.2, I fail to reject the null hypotheses of a unit root for the ADF and PP

tests for each of the variables in log levels at the 1% significant level.

The decision to deal with the random walk behavior is to transform the log levels into

the first differenced of the logs. The ADF and PP unit root test results indicate that the

null hypotheses of unit root in first differenced levels at the 10% significance level can be

rejected.

The descriptive statistics of the first difference of the log levels for the daily price of

crude oil are reported in Table 4.3. All the three sub-periods reveals sample kurtosis larger

than three, which is the kurtosis value for normal distribution, and imply “leptokurtic

distributions”. Figures 4.1, 4.2, and 4.3 display the differenced log levels for the previously

mentioned sub-periods. As it is noticeable in those plots there are major variations during

different times such as towards the last months of 1991 as a result of the Persian Gulf War

or in summer 2008 as a consequence of the Global Financial Crisis. These kurtosis values

underline the image of unstable crude oil market and its price fluctuations in response

to different geopolitical and economics events in the sub-periods.
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Table 4.3: Summary Statistics of Differenced Log Series - WTI Daily Spot Price

WTI Daily Sample Sample Standard Skewness Kurtosis
Spot Price Mean Median Deviation

01/02/1986–12/30/1993 0.0006 0.0004 0.0239 0.0500 5.9722
01/03/1994–12/31/2003 0.0001 0.0004 0.0107 -0.3715 4.8853
01/05/2004–04/30/2012 0.0002 0.0004 0.0109 -0.0010 4.4603

4.3.2 Monthly Data

The monthly data includes real values on the spot price of crude oil, West Texas Inter-

mediate. The sample period of January 1970 to March 2011 consists of 494 observations

obtained from International Financial Statistics (IFS). To carry out the analysis, the

monthly data is divided into two sub-samples: January 1970 to December 1991 for a

total of 263 observations and January 1992 to March 2011 for a total of 213 observations.

The monthly sample and sub-sample are defined as following:

• Monthly data is real values on the price of crude oil, West Texas Intermediate, from
January 1970 to March 2011 for a total of 494 observations.

• First sub-sample monthly data on the spot price index is from January 1970 to
December 1991 for a total of 263 observations.

• Second sub-sample monthly data on the spot price index is from January 1992 to
March 2011 for a total of 231 observations.

Unit Root Analysis

The two most widely used conventional tests, the ADF and the PP tests, are employed to

check the existence of unit root in monthly data. The methods of the test are explained

in the previous section. In the specification of the unit root regressions for the ADF
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Figure 4.1: Differenced log of West Texas Intermediate (WTI) Spot Price (Dol-
lars/Barrel) - 01/02/1986 – 12/30/1993

Data Source: Energy Information Administration(EIA)

and the PP test in log level of the individual series, I included the constant term as well

as the time trend to distinguish whether or not the series are “trend stationary” (TS)

model, where a stationary component is added to a deterministic trend term. As the

results show in Tables 4.4 and 4.5, I fail to reject the null hypotheses of a unit root for

the ADF and PP tests for each of the variables in log levels at the 10% significant level.

The decision to deal with the random walk behavior is to transform the log levels into the

first differenced of the logs. The ADF and PP unit root test results indicate that I can

reject the null hypotheses of unit root in first differenced levels at the 10% significance

level. Hence, I use the first differenced of the log levels for each daily individual series
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Figure 4.2: Differenced log of West Texas Intermediate (WTI) Spot Price (Dol-
lars/Barrel) - 01/03/1994 – 12/31/2003

Data Source: Energy Information Administration(EIA)

throughout the rest of the paper unless otherwise noted.

The descriptive statistics as well as the plot of differenced log levels of the monthly

observations on prices are displayed in Table 4.6, Figures 4.4, 4.5, and 4.6, respectively.

The kurtosis statistic is particulary large and implies a leptokurtic distribution for the

sample periods of January 1970 to March 2011 and January 1970 to December 1991. As

shown by Figure 4.4, the extreme fluctuations are indications of the volatile market and as

a result a heavy tail distribution. The first significant deviation occurs around January

1974, when the first oil shock happened in late 1973 and early 1974. Other extreme

fluctuations took place as a result of OPEC oversupply about February 1986, the Persian

Gulf War around August 1990, and the Global Financial Crisis in 2008. In addition to
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Table 4.4: Augmented Dickey-Fuller Unit Root Tests - Monthly Spot Price Indices on
WTI

Null Hypothesis: The log levels and the differenced log of the series have unit root
Lag length: Automatic Selection Based on SIC.

Log Level Monthly Price WTI Monthly Price WTI Monthly Price WTI
1970:01 - 2011:04 1970:01 - 1991:12 1992:01 - 2011:04

ADF Test Statistic (t
(β̂)

) -2.409 -1.468 -2.944

p-value∗ 0.374 0.8381 0.150

DLog Level Monthly Price WTI Monthly Price WTI Monthly Price WTI
1970:01 - 2011:04 1970:01 - 1991:12 1992:01 - 2011:04

ADF Test Statistic (t
(β̂)

) -17.336 -12.816 -11.640

p-value∗ 0.000 0.000 0.000

∗ MacKinnon (1996) one-sided p-values.
The sample period for monthly price of crude oil, West Texas Intermediate (WTI), is from 1970:01 to
2011:04 for a total 495 observations. The sample sub-periods for the monthly spot prices: January 1970
- December 1991 and January 1992 - April 2011, a total of 264 and 231 observations, respectively.

Table 4.5: Philips-Perron Unit Root Test - Monthly Spot Price Indices on WTI
Null Hypothesis: The log levels and the differenced log of the series have unit root

Bandwidth: (Newey-West automatic) using Bartlett Kernel

Log Level Monthly Price WTI Monthly Price WTI Monthly Price WTI
1970:01 - 2011:04 1970:01 - 1991:12 1992:01 - 2011:04

PP Test Statistic (Zt(π̂)) -2.290 -1.288 -2.88

p-value∗ 0.4378 0.888 0.169

DLog Level Monthly Price WTI Monthly Price WTI Monthly Price WTI
1970:01 - 2011:04 1970:01 - 1991:12 1992:01 - 2011:04

PP Test Statistic (Zt(π̂)) -17.336 -12.666 -11.640

p-value∗ 0.000 0.000 0.000

∗ MacKinnon (1996) one-sided p-values.
The sample period for monthly price of crude oil, West Texas Intermediate (WTI), is from 1970:01 to
2011:04 for a total 495 observations. The sample sub-periods for the monthly spot prices: January 1970
- December 1991 and January 1992 - April 2011, a total of 264 and 231 observations, respectively.
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Figure 4.3: Differenced log of West Texas Intermediate (WTI) Spot Price (Dol-
lars/Barrel) - 01/05/2004 – 04/30/2012

Data Source: Energy Information Administration(EIA)

the aforementioned events, there are yet other occasions that influenced the crude oil

market price to be more unstable. The extreme value of the kurtosis statistic is the

reflection of the crude oil market’s nature throughout the years. The second sub-period

(1992:01 – 2011:03), however, reveals a smaller value than three for kurtosis statistic,

which implied a smaller tail-frequency and a flatter top than the normal distribution

(Platykurtic distribution).
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Table 4.6: Summary Statistics of Differenced Log Series - West Texas Intermediate (WTI)
Monthly Spot Price Index

Monthly Spot Sample Periods Sample Standard Skewness Kurtosis
Price Index Mean Median Deviation

WTI 0.0030 0.000 0.0358 1.8815 24.7710
(1970:01–2011:03)
WTI 0.00291 0.000 0.0366 3.9287 41.8937
(1970:01–1991:12)
WTI 0.0031 0.0063 0.0356 -0.7759 1.9473
(1992:01–2011:03)

4.4 The Inference Methods

This section introduces the inference methods for statistically detecting nonlinearities

in data generating mechanism of the employed time series observations: The BDS test,

the Kaplan test, the Hinich bicovariance test, the Hinich bispectrum test, the Engle LM

test, the McLeod-Li test, and the Tsay test. It is to be noted that all the above tests,

except Hinich bispectrum test, require to remove any serial dependence from the data

via a prewhitening model. Any other serial dependence is the result of a nonlinear data

generating mechanism. The Hinich bispectrum test directly tests the data generating

mechanism and it is invariant to filtering of the data (Patterson and Ashley (2000a)).

4.4.1 The BDS Test: A Test for Serial Independence

The well known Brock, Dechert, Scheinkman and LeBaron(1996) test, also known as the

BDS test, is one form of portmanteau tests for independence. Portmanteau tests are

residual-based tests in which the null hypothesis is well stated, but they do not have a

specific alternative hypothesis. The BDS test Brock et al. (1986) is a popular test to
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Figure 4.4: Differenced log of West Texas Intermediate (WTI) Monthly Spot Price Index
(Dollars/Barrel)

Data Source: International Financial Statistics (IFS)

detect the serial independence in time series data. The BDS test introduces a test of

independence that can be applied to the estimated residuals of any time series model, if

the model can be transformed into a form with independent and identically distributed

errors. The test employs the correlation function (correlation integral) to calculate the

test statistics. The correlation function was introduced as a method of measuring the

fractal dimension of deterministic data. The correlation function (integral) measures of

the sequential pattern’s frequency that exist in the data – see Brock et al. (1986) for

more details. It is to be mentioned here that the correlation function is different than

the correlation dimension, which is the method used in testing for chaos introduced by

Grassberger and Procaccia (1983). Barnett et al. (1995) state that correlation dimension
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Figure 4.5: Differenced log of West Texas Intermediate (WTI) Monthly Spot Price Index
(Dollars/Barrel) January 1970 - March 2011

Data Source: International Financial Statistics (IFS)

is potentially helpful in testing for chaos, however modeling for high-dimensional chaos

needs a large number of variables. Moreover, the sampling properties as well as the

derived distribution of the correlation dimension are unknown, therefore the BDS test

uses the correlation function as a test statistic Barnett et al. (1995).

The BDS test is used to test the null of linearity against a variety of possible deviation

from independence in the series including nonlinearity and chaos. The test is applied to a

series of estimated residual after removing any linear structure. Under the null hypothesis

of independent and identically distributed (i.i.d) or whiteness, the BDS statistic is

√
n
Cm,n(ε)− C1(ε)

m

σm(ε)
(4.4)
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Figure 4.6: Differenced log of West Texas Intermediate (WTI) Monthly Spot Price Index
(Dollars/Barrel)

Data Source: International Financial Statistics (IFS)

where Cm,n(ε) is the correlation integral, σm(ε) is the asymptotic standard deviation of the

numerator and m is the embedding dimension. The BDS test statistic is a transformation

of the correlation function, which asymptotically becomes a standard normal Z statistic

under the null hypothesis of whiteness Barnett et al. (1995). I apply the BDS test to the

differenced log of the daily and monthly price of crude oil. To carry out the BDS test,

the data is prefiltered by fitting the linear ARMA model, and the BDS test is applied

against the remaining nonlinear structure in residuals. The choice of the values of ε and

m can be challenging in using the BDS test. The results with BDS are reported in Tables

4.7 and 4.8 for dimension 2-8 and the value of ε equals to 1 and 2 standard deviation of

the data1.

1ε is calculated as a multiple of the standard deviation of the series.
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Results with the BDS Test

I produce the BDS test statistic for the embedding dimension from two to eight, and

the inferences are always the same and robust at each embedding dimension. The BDS

method tests the null hypothesis of linearity of the process, which has high power against

numerous nonlinear alternatives. The test is run for the three sub-periods of daily spot

prices of crude oil as well as monthly spot prices in the entire sample size from January

1970 to March 2011 and the two sub-periods of the monthly prices as described in the

data description section.

Daily Data

The BDS test results for the three sub-periods of daily spot prices of crude oil are dis-

played in Table 4.7. As can be observed, the results indicate the significance at the 1%,

5% and 10% levels based on the asymptotic distribution. Therefore, the BDS test rejects

the null hypothesis of independent and identically distributed observations and detects

the nonlinearity in all the daily sub-period time series observations. Therefore, when the

time between observations is not large, the BDS test detect nonlinearity in all cases and

shows an underlying nonlinear system.

Monthly Data

The results of monthly data for the entire sample and the two sub-samples are displayed

in Table 4.8. The results reveal interesting facts about monthly data. Strong nonlinear

dependence is shown in the whole sample and the first sub-sample at all dimensions.
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Table 4.7: BDS Test Z-Statistic (Dimension 2-8)

Daily Spot Price of Crude Oil (WTI)
(01/02/1986–12/30/1993)

ε
m 1σ p-values 2σ p-values

2 15.5429 0.000 11.5245 0.000
3 19.3594 0.000 14.1430 0.000
4 22.7812 0.000 16.2379 0.000
5 26.0529 0.000 17.7021 0.000
6 29.7307 0.000 18.9850 0.000
7 33.7293 0.000 19.8804 0.000
8 38.6443 0.000 20.6548 0.000

Daily Spot Price of Crude Oil (WTI)
(01/03/1994–12/31/2003)

ε
m 1σ p-values 2σ p-values

2 4.3339 0.000 6.9100 0.000
3 5.9073 0.000 9.1127 0.000
4 6.9195 0.000 9.7959 0.000
5 7.7156 0.000 10.2777 0.000
6 8.7967 0.000 10.7110 0.000
7 10.0576 0.000 11.0819 0.000
8 11.3930 0.000 11.2764 0.000

Daily Spot Price of Crude Oil (WTI)
(01/05/2004–04/30/2012)

ε
m 1σ p-values 2σ p-values

2 7.8861 0.000 11.9767 0.000
3 10.2783 0.000 15.3180 0.000
4 11.8994 0.000 17.2187 0.000
5 12.8264 0.000 18.1921 0.000
6 13.8714 0.000 18.8699 0.000
7 15.0360 0.000 19.4220 0.000
8 16.2019 0.000 19.7599 0.000
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However, the nonlinear dependence is not as strong in the second sub-sample, particulary

where ε is calculated as a first multiple of the standard deviation of the series.

The BDS test has high power against numerous nonlinear alternatives. Therefore,

accepting the null hypothesis in BDS test indicates that there is strong evidence for the

null. In that sense, it is suggested that the BDS test should be the first test to run. In the

case of this study in which the linearity is rejected with the BDS test in most cases, the

results reflect little information to distinguish the existing forms of nonlinearity in the

data. To verify the BDS test, the Kaplan test is employed, which is a similar model to

the BDS test. Furthermore, I utilize the more focused tests to identify the other possible

forms of nonlinearity in the data – see Barnett et al. (1997) for more details.

4.4.2 Kaplan Test: A Test for Continuity and Determinism

There has been a wide range of methods in which reconstruction dynamics of the em-

ployed time series have been developed in order to characterize the dynamics in terms

of predictability or dynamical invariant Kaplan (1994). These classifications are often

employed to characterize whether the time series data are consistent with a determin-

istic mechanism, or a stochastic mechanism. As Kaplan (1994) mentions, it is common

to test the predictability near every point in the time series in the nonlinear prediction

method. Even though it might not be possible to predict future values of time series at

every point, it may be likely to make accurate predictions at a few points. This may

suffice for detecting the underlying determinism. Moreover, when deducing dynamics

from a time series, continuity is often the only safe assumption one can make about a
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Table 4.8: BDS Test Z-Statistic (Dimension 2-8)

Monthly Spot Price of Crude Oil (WTI)
(1970:01–2011:03)

ε
m 1σ p-values 2σ p-values

2 6.6402 0.000 7.6051 0.000
3 8.2962 0.000 8.4290 0.000
4 9.5298 0.000 8.9864 0.000
5 10.5471 0.000 8.9948 0.000
6 12.6705 0.000 9.2969 0.000
7 14.6477 0.000 9.3050 0.000
8 17.0018 0.000 9.2616 0.000

Monthly Spot Price of Crude Oil (WTI)
(1970:01–1991:12)

ε
m 1σ p-values 2σ p-values

2 6.5397 0.000 4.2893 0.000
3 8.0014 0.000 5.3004 0.000
4 8.1749 0.000 5.8527 0.000
5 8.3150 0.000 5.9218 0.000
6 8.8078 0.000 6.2110 0.000
7 9.1136 0.000 6.2970 0.000
8 9.3985 0.000 6.2975 0.000

Monthly Spot Price of Crude Oil (WTI)
(1992:01–2011:03)

ε
m 1σ p-values 2σ p-values

2 2.5360 0.0112 4.0298 0.0001
3 2.5245 0.0116 3.9660 0.0001
4 2.6035 0.0092 4.2307 0.000
5 2.2795 0.0226 4.0933 0.000
6 2.5717 0.0101 4.1728 0.000
7 2.6174 0.0089 3.9522 0.0001
8 2.5629 0.0104 3.7664 0.0002
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possible deterministic mechanism for a time series. Kaplan (1994) proposed a test for

determinism in a time series based on consistency with a continuous dynamical map-

ping. The test answers a question like, “If two points xi and xj are very close together,

are their images xi+1 and xj+1 also close together?” (Kaplan (1994))2. In other words,

deterministic solution paths, unlike stochastic processes, have the property that points

that are close together are close under their image in phase space. Therefore, when the

underlying function linking image and pre-image together is continuous, if the points xi

and xj are close their images xi+1 and xj+1 are close together as well. In the case of

chaos, the output plot of the system is hardly distinguishable from a stochastic process.

Therefore, detecting the continuity of the system can be a difficult procedure, even when

the data is entirely deterministic. However, it is easier to detect deterministic struc-

ture when plotting the solution path in phase space (xt+1 plotted against xt and lagged

values of xt) than in plotting xt versus t (Barnett et al. (1995)). Based on the above

facts, the Kaplan test has strictly positive lower bound for a stochastic process, but not

for a deterministic solution path. The statistic tests the null hypothesis that the data

is deterministic against the alternative, which is that the data comes from a particular

stochastic process. If the test statistic is smaller for the data than for the stochastic

process by a statistically significant amount, then the stochastic process is rejected as

an alternative to other forms of nonwhite structure (Barnett et al. (1995)). The test is

computed by an adequately large number of linear processes that plausibly might have

produced the data. The test procedure involves producing a linear stochastic process

2A test based on continuity in phase space proposed by Daniel Kaplan, Centre for Nonlinear Dynam-
ics, Department of Physiology, McGill University.
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surrogate data3 for the observed data. The next stage is to determine a noisy continuous

nonlinear dynamical solution path better describes the observed data. If the value of the

test statistic from the surrogate is not small enough compared to the computed value

of the test statistic from the observed data, a noisy continuous dynamical solution is

concluded. As described by Barnett et al. (1995), the test procedure is formally stated as

follows: If the time series data arise from a deterministically chaotic dynamical system,

the value of xt+1 is a single-valued function of the state of the system at time t. Let the

vector xt = (xt, xt−1, ..., xt−m−1) embedded in m-dimensional “phase space” and obtained

from a m-dimensional vector xi
T
i=1 in state space. Then there exists a function f(xt) such

that f(xt) = xt+1, where xt+1 is called the “image” of the point xt in phase space. If

the system is perfectly deterministic with a continues f , close points in m-dimensional

phase space have close image, whereas in a stochastic system close points in phase space

may produce different images. The Kaplan test investigates if the function f is contin-

uous based on the evidence provided the observed time series data. In the equivalence

delta-epsilon proofs of continuity, δ is the distance in phase space and ε is the distance

of the images. For a given choice of embedding dimension m, the distance in the phase

space is calculated as δij = |xi − xj| and the distance between their image is calculated

as εij = |xi+1 − xj+1| for all i and j. It is useful to construct the average of the values of

εij conditional on the corresponding values of δij satisfying δij < r and define the average

as E(r). It is expected to have E(r) → 0 as r → 0 for a perfectly deterministic system

with continuous f , whereas if the underlying system is stochastic the convergence may

3Surrogate data is random data generated with the same mean, variance, and autocorrelation function
as the original data.
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not happen as a point xi may have different images. The statistic for the Kaplan test is

defined as K ≡ limr→0E(r). The non-zero value of K can be interpreted as “goodness of

fit” measure from fitting a continuous model of some fixed order to an infinite amount of

data. If this measure is smaller for the observed data than for surrogate data generated

by a model that satisfies a stated null hypothesis, then the null hypothesis should be

rejected (Barnett et al. (1995)). As stated by Garcia (2007), another way of interpreting

the non-zero value of K is as the level of nondeterminism or the amount of noise in the

data. If the system is stochastic the amount of K is expected to be higher for nearly de-

terministic ones. Therefore, we should reject the null hypothesis when K on the observed

data is smaller than K on the surrogate data. In other words, the hypothesis of linearity

is rejected in order to test if the value of the statistic from the surrogates is never small

enough compared to the value of the statistic obtained from the original data. Since the

distribution of the statistic table is not laid out, Kaplan proposes two different methods

to compute the minimum value of K obtained from the surrogates. The first approach is

to estimate the minimum value of K from a finite sample of surrogates, and impute that

to the population of the surrogates. Another approach involves the computation of the

mean and standard error of the values of K from the finite sample and the subtraction of

a multiple of (2 or 3) to obtain the an estimate of population minimum (Alharbi (2009)).

This chapter uses twenty surrogate time series using the same approach suggested by

Kaplan. The Surrogate data is a random realization from time series data of the energy

markets generated with the same mean, variance, and autocorrelation function as the

original data. Moreover, the lag embedded time series is also generated using 2, 3, 4, and
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5 dimensional spaces.

Results with the Kaplan Test

The null hypothesis for the Kaplan test is stochastic linearity of the process. As men-

tioned by Barnett et al. (1995), the Kaplan test involves a strong power against chaos and

is expected not to accept the null with chaotic series although the current form of test can

either accept or reject linearity. It is worth mentioning that the Kaplan test is designed

where the dynamical functional form underlying the time series data is unknown, and

the main purpose is to decide if there is evidence of a deterministic mechanism in the

observed data.

Daily Data

The results with the Kaplan test for the daily spot price of the sub-periods are displayed

in Table 4.9 for embedding dimensions (m) 2, 3, 4 and 5. The mean, minimum, and

standard deviations are computed over twenty surrogates for each time series. Moreover,

the K statistic is calculated for each series. The results of the Kaplan test are graphically

summarized in Appendix B of this chapter. The null hypothesis of stochastic linearity

is rejected when the computed K for each daily spot price of crude oil is less than the

minimum of the K statistic from surrogates or KSmin that is K < KSmin. As suggested

by Kaplan, the t-statistic is calculated as a tool to identify the results’ significance as:

t = K−KSmean
KSsd

, where KSmean and KSsd are the mean and standard deviation for KS

values for surrogates.

As it can be observed in Table 4.9, the test rejects the null of linearity in the first
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Table 4.9: Kaplan Test Statistic: Results from Daily Spot Price on Crude Oil

Daily Price Embedding Mean K Std. dev. of K Min K K statistic t-statistic
Dimension on surrogates on surrogates on surrogates on energy data

Crude Oil WTI 2 0.0135 0.0018 0.0099 0.0075 -3.31
(01/02/1986 - 12/30/1993) 3 0.0132 0.0024 0.0084 0.0063 -2.83

4 0.0132 0.0038 0.0056 0.0056 -1.99
5 0.0144 0.0041 0.0062 0.0061 -2.01

Crude Oil WTI 2 0.012 0.0006 0.0106 0.0099 -3.042
(01/03/1994 - 12/31/2003) 3 0.0124 0.0013 0.0098 0.0105 -1.46

4 0.0123 0.0017 0.0089 0.0089 -1.99
5 0.0119 0.0024 0.0071 0.0072 -1.93

Crude Oil WTI 2 0.0123 0.0014 0.0095 0.0065 -4.08
(01/05/2004 - 04/30/2012) 3 0.0123 0.0013 0.0097 0.0023 -7.64

4 0.0121 0.0018 0.0085 0.0129 0.48
5 0.0125 0.0019 0.0087 0.0063 -3.25

Notes: K is the Kaplan test statistic. Twenty surrogate were used to compute the mean, standard
deviation, and minimum over the 20 surrogate. The sample sub-periods for the daily spot prices:
January 2, 1986 - December 30, 1993, January 3, 1994 - December 31, 2003, and January 5 2004 - April
30, 2012 consists of 2039, 2511, and 2092 observations, respectively.

sub-period of the daily spot price of crude oil in all dimensions, excluding embedding

dimension=4. The null hypothesis cannot be rejected in the second sub-period of crude

oil daily spot price in embedding dimensions equal to 3, 4, and 5. The test rejects the null

of linearity of the embedding dimension=2. The null of linearity is rejected in the third

sub-periods of crude oil daily spot price in dimensions equal to 2, 3, and 5. However, in

embedding dimension=4, the test cannot reject the null hypothesis of linearity.

Monthly Data

The Kaplan test detects the evidence of general nonlinearity in observed time series.

The Kaplan test rejects the null in the first sample of monthly data, which includes

the entire observations. However, in the monthly sub-samples the null hypothesis is

rejected only in embedding dimension=2. This chapter proceeds with more focused tests

to investigate other possible forms of nonlinearity in the observed time series, such as
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Table 4.10: Kaplan Test Statistic: Results from Monthly Spot Price Index on Crude Oil

Monthly Price Embedding Mean K Std. dev. of K Min K K statistic t-statistic
Dimension on surrogates on surrogates on surrogates on energy data

Crude Oil WTI 2 0.0517 0.0054 0.0409 0.0230 -5.3
(01:1970 - 03:2011) 3 0.0496 0.0064 0.0368 0.0293 -3.17

4 0.0498 0.0094 0.031 0.0226 -2.89
5 0.0539 0.0086 0.0367 0.0231 -3.58

Crude Oil WTI 2 0.0389 0.0021 0.0347 0.0270 -5.66
(01:1970 - 12:1991) 3 0.0398 0.004 0.0318 0.0218 -4.49

4 0.0372 0.0069 0.0234 0.0345 -0.39
5 0.0375 0.007 0.0235 0.0491 -1.66

Crude Oil WTI 2 0.0447 0.0042 0.363 0.0296 -3.59
(01:1992 - 03:2011) 3 0.0418 0.0083 0.0252 0.0293 -1.5

4 0.0395 0.0088 0.0219 0.0290 -1.19
5 0.048 0.0126 0.0228 0.0193 -2.27

Notes: K is the Kaplan test statistic. Twenty surrogates were used to compute the mean and standard
deviation. The sample period for monthly price of crude oil, West Texas Intermediate (WTI), is from
1970:01 to 2011:04 for a total 495 observations. The sample sub-periods for the monthly spot prices:
January 1970 - December 1991 and January 1992 - April 2011, a total of 264 and 231 observations,
respectively.

third order nonlinearity.

4.4.3 Tests for Nonlinearity

The Hinich Bicovariance Test

As noted by Patterson and Ashley (2000a), this test assumes xt is a realization from

a third-order stationary stochastic process and tests for serial independence using the

sample bicovariances of the data. The (r, s) sample bicovariance is defined as

C3(r, s) = (N − s)−1
N−s∑
t=1

xtxt+rxt+s 0 ≤ r ≤ s. (4.5)

Therefore, the sample bicovariances are a generalization of a skewness parameter. The

C3(r, s) are all zero for zero mean, serially i.i.d data. One would expect non-zero values
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for the C3(r, s) from data in which xt depends on lagged cross-products, such as xt−ixt−j

and higher order terms. Let G(r, s) = (N − s)0.5C3(r, s) and define X3 as

X3 =

φ∑
s=2

s−1∑
r=1

[G(r, s)]2 (4.6)

Under the null hypothesis that xt is a serially i.i.d process, Hinich and Patterson (1995)

show that X3 is asymptotically distributed as χ2[φ(φ − 1)/2] for φ < N0.5. Based on

their simulation, they recommend using φ = N0.4. Under the assumption that E((xt)
0.5)

exists, the X3 statistic detects nonzero third-order correlations. It can be considered as

generalization of the Box-Pierce portmanteau statistics – see Hinich and Patterson (1985)

for more discussion.

The Hinich Bispectrum Test

A process is said to be third-order nonlinear dependence if the skewness function in the

frequency domain is not flat as a function of frequency pairs. The definition of the square

of the skewness function is shown in Equation 4.8. This form of the nonlinearity is called

third order, since the skewness function is a normalization of the Fourier transform of the

third-order autocovariances. That Fourier transform is called the bispectrum (Barnett

et al. (1997)).

The Hinich bispectrum test is a nonparametric test that examines the third-order

moments (bicovariance) of the data in the frequency domain to obtain a direct test for

a nonlinear generation mechanism, regardless of any linear independence that might be

present in the data. Therefore, when the tests rejects the null (the skewness function
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is flat), there is no need to check the possibility that the linear prewhitening model has

failed to remove all linear serial dependence in the data. Ashley and Patterson (2006)

Hinich (1982) develops this test for flatness of bispectrum. He argues that the bispec-

trum in the frequency domain is easier to interpret than multiplicity of the third-order

moments cxxx(r, s) : s ≤ r, r = 0, 1, 2 · · · in the domain. Barnett and Hinich (1993) ex-

plain the computation of the test statistic. For frequencies f1 and f2 in the principle

domain

Ω = (f1, f2) : 0 < f1 < 0.5, f2 < f1, 2f1 + f2 < 1

is the Hinich bispectrum of the series at frequency pair (f1, f2), and its double Fourier

transformation of the third-moments function is:

Bxxx(f1, f2) =
r=∞∑
r=−∞

s=∞∑
s=−∞

cxxx(r, s)exp[−2π(f1r + f2s)]. (4.7)

The square of the skewness function Γ2(f1, f2) is defined in terms of the bispectrum as:

Γ2(f1, f2) =
|Bxxx(f1, f2)|2

Sxx(f1)Sxx(f2)Sxx(f1 + f2)
(4.8)

where Sxx(f) is the (ordinary power) spectrum of xt at frequency f . If the time series xt

is linear then the squared of skewness function Γ2(f1, f2) is constant over all frequency

pairs (f1, f2) in Ω, and the skewness function Γ2(f1, f2) is zero over all frequencies if

xt is Gaussian. Linearity and Gaussianity can be tested using a sample estimator of

the skewness function Γ2(f1, f2) – see Barnett and Hinich (1993) for more details on

computation of the test and Hinich (1982) for more details on the test.
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Engle LM Test

The test was proposed by Engle (1982) to examine nonlinearity in the second moment,

particularly for ARCH disturbances. The test employs the Lagrangian multiplier proce-

dure and runs the OLS regression and saves the residuals. Then the next procedures is to

regress the squared residuals on a constant and p lagged values of the squared residuals

and test NR2 as a χ2
p.

ε̂2t = α0 +

p∑
j=1

αj ε̂
2
t−j + ut (4.9)

As most Lagrange multiplier tests, the test statistic is based on the R2 of the regression.

Under the null hypothesis of a linear generating mechanism for xt, NR
2 for the above

regression is asymptotically distributed as χ2
p.

The McLeod-Li Test

McLeod and Li (1983) developed a portmanteau test for nonlinear statistical dependence

in the squared-residual autocorrelations of fitted ARMA models. The tests looks at

the autocorrelation function of the squares of the prewhitened data and tests whether

corr(x2t , x
2
t−j) is nonzero for some j. The autocorrelation at the lag j for the squared

residuals x2t is estimated by

r̂(j) =

∑N
t=1(x

2
t − σ̂2)(x2t−j − σ̂2)∑N
t=1(x

2
t − σ̂2)

, whereσ̂2 =
N∑
t=1

x2t
N

(4.10)

Under the null hypothesis that xt is an i.i.d process, McLeod and Li (1983) showed
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that, for sufficiently large and fixed L,

Q = N(N + 2)
L∑
j=1

r̂2(j)

N − j
(4.11)

is asymptotically χ2
L under the null hypothesis of a linear generating mechanism for the

data. They have set L = 20 for their small-sample simulation in their examination.

The Tsay Test

The Tsay test introduced by Tsay (1986) examines the nonlinearity in the mean while

Engle (1982) test checks the evidence for nonlinearity in the variance. The Tsay (1986)

test explicitly look for quadratic serial dependence in the data, using quadratic terms

lagged up to K periods. Let the K = k(k + 1)/2 column vectors V1, ..., Vk contains all

the unique cross-products of the form xt−ixt−j, where i ∈ [i, k] and j ∈ [j, k]. Let v̂t,i

denote the projection of vt,i on the subspace orthogonal to xt−1, ..., xt−k, which is the

residuals from a regression of vt,i on xt−1, ..., xt−k. The parameters γi, ..., γk are estimated

by applying OLS to the regression equation:

xt = γ0 +
k∑
i=1

γiv̂i, t+ ηt (4.12)

Then, the Tsay test statistic is the usual F statistic for testing the null hypothesis

that γ1, ..., γk are all zero.
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4.4.4 The Results for Nonlinearity Tests

Daily Data

Table 4.11: Significance Level for Nonlinearity Tests - Daily Spot Price of Crude Oil
Asymptotic Distribution

Sample Daily Price WTI Daily Price WTI Daily Price WTI
01/02/1986 - 12/30/1993 01/03/1994 - 12/31/2012 01/05/2004 - 04/30/2012

Bicovariance (φ = N0.4) 0.000 0.000 0.000
Bispectral (Gaussianity) 0.000 0.000 0.000

(M = N0.6)
Bispectral (Linearity) 0.000 0.001 0.000

(M = N0.6)
Engle(p = 5) 0.000 0.000 0.000

McLeod-Li(L = 24) 0.000 0.000 0.000
Tsay (k = 5) 0.000 0.000 0.000

Notes: The sample sub-periods for the daily spot prices: January 2, 1986 - December 30, 1993, January
3, 1994 - December 31, 2003, and January 5 2004 - April 30, 2012 consists of 2039, 2511, and 2092
observations, respectively.

Table 4.12: Significance Level for Nonlinearity Tests - Daily Spot Price of Crude Oil
Bootstrap Simulation

Sample Daily Price WTI Daily Price WTI Daily Price WTI
01/02/1986 - 12/30/1993 01/03/1994 - 12/31/2012 01/05/2004 - 04/30/2012

Bicovariance (φ = N0.4) 0.000 0.000 0.000
Engle(p = 5) 0.000 0.000 0.000

McLeod-Li(L = 24) 0.000 0.000 0.000
Tsay (k = 5) 0.000 0.000 0.000

Notes: The sample sub-periods for the daily spot prices: January 2, 1986 - December 30, 1993, January
3, 1994 - December 31, 2003, and January 5 2004 - April 30, 2012 consists of 2039, 2511, and 2092
observations, respectively.

The results of the Hinich bicovariance, the Hinich bispectrum, the McLeod-Li, the

Engle, and the Tsay tests for the daily spot prices are reported in Table 4.11 and 4.12 for

both asymptotical and bootstrapping distributions4. As stated by Patterson and Ashley

(2000a), the described tests are only asymptotically justified similar to most econometrics

4The source of the nonlinear software was thankfully provided by Professor Douglas M. Patterson.
The source, instruction on running the toolkit program, and analysis can be found in Patterson and
Ashley (2000a): “A Nonlinear Time Series Workshop: A Toolkit for Detecting and Identifying Nonlinear
Serial Dependence”, Kluwer Academic Publishers: Norwell. Available at: http://www.wkap.nl/.
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procedures. Therefore, the significance levels of all the tests are normally bootstrapped.

Also, the significance levels based on the asymptotic distributions are computed – see

Patterson and Ashley (2000a) for further details on the bootstrap simulation.

In the Hinich bicovariance test, I use φ = N0.4 based on Hinich and Patterson (1985)’s

simulation, where N is the sample size for each individual series. Moreover, the test is

calculated using up to 15 lags and also with the number of bootstrap iterations equal

to 100. As displayed by the results, based on the bootstrapped as well as asymptotic

distributions, this test rejects the null hypothesis that xt is a serially i.i.d process in every

case at the 1%, 5% and 10% significance levels.

The Hinich bispectrum test, on the other hand, examines the third order moments

(bicovariance) of the data in frequency domain to obtain a direct test for a nonlinear

generating mechanism. More importantly, this test focuses on nonlinear serial depen-

dence and it substantially changes the usage of the sample bicovariance data more than

the Hinich bicovariance test described earlier. The Hinich bispectrum test accepts the

linearity if it cannot reject the flatness of bispectrum, and accepts the Gaussianity if the

bispectrum is flat and also equals to zero. As can be observed in Table 4.11, the results

of Gaussianity indicate extremely small p-values for each energy components market in

the case of asymptotic distribution. As a result the null hypothesis of the Gaussianity

is rejected at the 1%, 5% and 10% significance levels. Moreover, the null of linearity for

each individual series exhibits very significant results by very small p-values for the 80

percent fractile bispectrum linearity test for every series. Hence, in the case of asymptotic

distribution, the null hypothesis of the linearity is also rejected at the 1%, 5% and 10%
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significance levels for each daily sub-period time series. In other words, the rejection of

linearity provides strong evidence for the presence of the third order nonlinearity in the

data generating process as also noted by Barnett et al. (1997). Ashley and Patterson

(2006) show that the bispectrum Bxxx(f1, f2) is consistently estimated using an average

of appropriate triple products of the Fourier representation of the observed time series.

The average is taken over a square containing M adjacent frequency pairs. Hinich (1982)

showed that M must be above the N0.5 to consistently estimate Bxxx(f1, f2). The results

here are reported for M to the integer nearly equals to N0.6.

The Engle LM test (1982) examines nonlinearity in the second moment. Under the

null hypothesis of a linear generating mechanism for xt, NR
2 for the regression Equation

4.9 is asymptotically distributed as χ2
p. The results are reported for p (lagged values)

equals to five, and they exhibit substantially small p-values at the 1%, 5% and 10%

significance levels in both bootstrapped and asymptotic distributions. Therefore, the

null hypothesis of nonlinearity in the second moment is rejected in all cases. Following

the literature, the results are quoted for p=5.

The null hypothesis of the McLeod and Li (1983) test that is xt is an i.i.d process is

also rejected for up to 24 lags in bootstrapped and asymptotic distributions. As shown

in the results, the results yield very small p-values at the 1%, 5% and 10% significance

levels. The results are calculated for L = 24.

The Tsay test (Tsay (1986)) examines the nonlinearity in the quadratic terms. Fol-

lowing the existing literature in the subject, the value of k = 5 is used here. The reported

results, based on the bootstrapped as well as asymptotic distributions, indicate that the
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null hypothesis is rejected at the 1%, 5%, and 10% significance levels.

Therefore, based on the bootstrapped and asymptotic distributions, the results for

the nonlinear tests reveal that the daily data in crude oil production for any consid-

ered sub-period have clear evidence of nonlinearity in its structure. The price of crude

oil exhibits nonlinearity in mean, variance and skewness functions in all of the daily

sub-periods. These results are consistent with other reported findings in the literature,

such as Kyrtsou et al. (2009). The evidence for significant nonlinearity in data gener-

ating mechanism in the energy market encourage modeling the time series data into an

appropriate specification in order to obtain valid parameter estimations.

Monthly Data

Table 4.13: Significance Level for Nonlinearity Tests - Monthly Spot Price of Crude Oil
Asymptotic Distribution

Sample Monthly Price WTI Monthly Price WTI Monthly Price WTI
(1970:01–2011:04) (1970:01–1991:12) (1992:01–2011:04)

Bicovariance (φ = N0.4) 0.000 0.000 0.000
Bispectral (Gaussianity) 0.000 0.000 0.000

(M = N0.6)
Bispectral (Linearity) 0.000 0.998 0.725

(M = N0.6)
Engle(p = 5) 0.645 0.950 0.000

McLeod-Li(L = 24) 1.000 1.000 0.000
Tsay (k = 5) 0.002 0.003 0.001

Notes: The sample period for monthly price of crude oil, West Texas Intermediate (WTI), is from 1970:01
to 2011:04 for a total of 495 observations. The sample sub-periods for the monthly spot prices: January
1970 - December 1991 and January 1992 - April 2011, total of 264 and 231 observations, respectively.

The results of the nonlinearity tests for the monthly spot prices of crude oil are dis-

played in Tables 4.13 and 4.14. The parameter values for each test are set to similar

values of the daily spot prices. The McLeod-Li test and the Engle test have distinctively
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Table 4.14: Significance Level for Nonlinearity Tests - Monthly Spot Price of Crude Oil
Bootstrap Distribution

Sample Monthly Price WTI Monthly Price WTI Monthly Price WTI
(1970:01–2011:04) (1970:01–1991:12) (1992:01–2011:04)

Bicovariance (φ = N0.4) 0.000 0.020 0.000
Engle(p = 5) 0.180 0.360 0.000

McLeod-Li(L = 24) 0.600 0.750 0.000
Tsay (k = 5) 0.010 0.040 0.000

Notes: The sample period for monthly price of crude oil, West Texas Intermediate (WTI), is from 1970:01
to 2011:04 for a total of 495 observations. The sample sub-periods for the monthly spot prices: January
1970 - December 1991 and January 1992 - April 2011, total of 264 and 231 observations, respectively.

high power against alternative in the first monthly sample period and the sub-sample of

January 1970 to December 1991 for both asymptotic distribution and bootstrap simula-

tion. However, the null hypotheses of the McLeod-Li test and the Engle test are strongly

rejected in the monthly sample of January 1992 to April 2011. The results of Gaus-

sianity shows extremely small p-values for each daily sample in the case of asymptotic

distribution. Hence, the null hypothesis of the Gaussianity is rejected in 10% signifi-

cance level. The null of linearity cannot be rejected in the sub-samples of the monthly

observations. However, the null of linearity for the sample of January 1970 to April 2011

series exhibits a very significant result by very small p-values for the 80 percent fractile

bispectrum linearity test for the series. Hence, in the case of asymptotic distribution,

the null hypothesis of the linearity is rejected at the 10% significance level for the first

sample of monthly observations and the rejection of linearity provides strong evidence for

the presence of the third order nonlinearity in the data generating process as also noted

by Barnett et al. (1997). The null hypotheses of the Hinich bicovariance and the Tsay

tests are rejected for all the monthly samples in bootstrap simulation and asymptotic

distribution.
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4.5 Summary and Conclusion

The goal of this chapter is to carry out the nonlinear analysis by employing various

datasets with different features. The study explores the robustness of the inference

methods, including higher dimensional cases, observations with different frequencies, and

division of the daily and monthly time series periods into sub-periods. As Patterson and

Ashley (2000b) mentioned, nonlinearity can be considered as a type of stochastic depen-

dence and this dependence will fade away as the time between observation increases. The

chapter not only utilizes statistical techniques to investigate the nonlinear dependence

in the energy market, but also examines whether the time series data of spot price of

crude oil in daily and monthly frequencies exhibit any difference in terms of nonlinearity

in their generating mechanism.

To perform the analysis and achieve the objectives, the study utilizes daily spot prices

on crude oil (WTI) from the period of January 1, 1986 to April 30, 2012 for a total of 6642

observations and divides them into three sub-periods as described in the data description

section. Moreover, the monthly spot price index on crude oil is analyzed. The sample

period is from January 1970 to March 2011 consists of 494 observations, which is divided

into two sub-samples as well.

To carry out the analysis the most widely used univariate tests to detect the non-

linearity in the observed time series data are employed. It is to be noted that none of

the tests have exactly the same null hypothesis and they differ in the power against the

alternative hypothesis and focus on different aspects of nonlinearity. They will detect

distinct attributes of nonlinear serial dependence in the data. Furthermore, using the

139



tests jointly can produce better perception of the nature of the nonlinearity that may

exist in the data.

The BDS test is a test of general nonlinearity in the process, against all other possible

alternative null hypothesis of linearity, and has high power against the numerous cate-

gories of alternative hypotheses. The results of the BDS tests for the daily data indicate

that the linearity is rejected in all the sub-periods. In the case of monthly time series

observations, the BDS test rejects the null of nonlinearity in all three monthly samples.

The Kaplan test features seem to be comparable to the BDS test. However, as Bar-

nett et al. (1997) state in their experiments, the Kaplan test provides the right answer

with both large and small samples. In the case of daily sub-periods, the results of the

Kaplan tests detect evidence of nonlinearity in the first and third sub-periods, excluding

the embedding dimension four. The test rejects the null of linearity in the second daily

sub-period only in embedding dimension one. The Kaplan test for monthly observation

displays signs of nonlinear dependence for the first sample in all embedding dimensions.

The results of the Kaplan test for the second and thirds sub-samples are rather nonspe-

cific. The null of linearity is rejected in two out of four embedding dimensions in those

sub-samples. Hence, the findings of the BDS test and the Kaplan test suggest to proceed

with more detailed tests that consider the specific features of nonlinearity.

The Hinich bicovariance test focuses on the third-order moments (time domain) of

the data and detected nonlinearity in each series. The Hinich bispectrum test exam-

ines the lack of third-order nonlinear dependence (frequency domain), and the associated

Gaussianity test, which is a test of a necessary and not sufficient condition for Gaus-
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sianity5. The results of the Hinich bispectrum for the sub-period of daily data suggest

that the observed spot price of the crude oil are generated by a nonlinear, non-Gaussian

process. The monthly data, however, reveals different results for the second and third

sub-samples. The Gaussianity is rejected in all three monthly samples, but linearity is

strongly accepted in the second and third sub-samples. The Engle Lagrangian multiplier

(LM) test focuses on the nonlinearity in the second moment. The null hypothesis of no

ARCH-type disturbances is rejected by the Engle-LM test for the three daily sub-periods.

The McLeod-Li test also rejects the null hypothesis of linearity in the variance for daily

observations. The Engle and the McLeod-Li tests, which are sensitive to the ARCH-type

disturbances, exhibit high power for the second and the third sub-sample monthly data,

whereas the Engle and the McLeod-Li tests reject the null for the entire monthly obser-

vation. The Tsay test rejects the null hypothesis of linearity for daily as well as monthly

observations for each sup-period.

Therefore, all the tests detect strong evidence of nonlinear structure in the daily spot

price of crude oil, whereas in monthly observations the evidence of nonlinear dependence

is less dramatic. The findings suggests that nonlinear dynamic dependence is remarkable

in daily spot prices of crude oil. Since prediction can be improved by nonlinear models

when there is evidence of nonlinearity in the data generating process (Maravall (1983);

Tong (1983); Ashley and Patterson (2006)), the series cannot be accurately forecasted

with a linear model. Therefore, the variation of nonlinear dependence by utilizing dif-

ferent time aggregations on crude oil observations needs to be taken into consideration

when predicting the price of crude oil.

5See Barnett et al. (1997) for more details.
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In the case of forecasting the daily spot price of crude oil, a model specification that

reflects the nonlinear dynamics of the market will provide more accurate empirical results

(Ashley and Patterson (2006)) since nonlinear dependence can be detected in daily time

series observations. However, in the case of monthly time aggregation, when signs of

nonlinear data generating mechanism is less significant, utilizing the other models that

comply with the market’s structures will ensure proper model specification. This chapter

exhausts all of the possible cases for studying the dynamics of crude oil price and provides

insightful understanding of the crude oil market data generating mechanism.
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Appendix A: Data Description, Key Terms and Defi-

nitions

Figures 4.7 to 4.18 in this section represent the Cushing, OK WTI spot price FOB (Dollars

per Barrel) for daily and monthly frequencies. The variable West Texas Intermediate

(WTI- Cushing) is defined as follows:

• West Texas Intermediate (WTI - Cushing:) A crude stream produced in Texas and

southern Oklahoma, which serves as a reference or “marker” for pricing a number

of other crude streams and which is traded in the domestic spot market at Cushing,

Oklahoma.

• Crude Oil: A mixture of hydrocarbons that exists in liquid phase in natural

underground reservoirs and remains liquid at atmospheric pressure after passing

through surface separating facilities. Depending upon the characteristics of the

crude stream, it may also include:

– Small amounts of hydrocarbons that exist in a gaseous phase in natural under-

ground reservoirs but are liquid at atmospheric pressure after being recovered

from oil well (casinghead) gas in lease separators and are subsequently com-

mingled with the crude stream without being separately measured. Lease

condensate recovered as a liquid from natural gas wells in lease or field sepa-

ration facilities and later mixed into the crude stream is also included;

– Small amounts of nonhydrocarbons produced with the oil, such as sulfur and

various metals;
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– Drip gases, and liquid hydrocarbons produced from tar sands, oil sands,

gilsonite, and oil shale.

4.5.1 Daily Data

Figure 4.7: Daily Cushing, OK WTI Spot Price FOB (Dollars per Barrel) (01/02/1986
– 12/30/1993)

Data Source: Energy Information Administration (EIA)
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Figure 4.8: Daily Cushing, OK WTI Spot Price FOB (Dollars per Barrel) (01/03/1994
– 12/31/2003)

Data Source: Energy Information Administration (EIA)
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Figure 4.9: Daily Cushing, OK WTI Spot Price FOB (Dollars per Barrel) (01/05/2004
– 04/30/2012)

Data Source: Energy Information Administration (EIA)
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Figure 4.10: Log and Differenced log of West Texas Intermediate (WTI) Spot Price
(Dollars/Barrel) (01/02/1986 – 12/30/1993)

Data Source: Energy Information Administration(EIA)
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Figure 4.11: Log and Differenced log of West Texas Intermediate (WTI) Spot Price
(Dollars/Barrel) (01/03/1994 – 12/31/2003)

Data Source: Energy Information Administration(EIA)
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Figure 4.12: Log and Differenced log of West Texas Intermediate (WTI) Spot Price
(Dollars/Barrel) (01/05/2004 – 04/30/2012)

Data Source: Energy Information Administration(EIA)

149



4.5.2 Monthly Data

Figure 4.13: WTI Monthly Spot Price Index (Dollars per Barrel) (1970:01 – 2011:03)

Data Source: International Financial Statistics (IFS)
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Figure 4.14: WTI Monthly Spot Price Index (Dollars per Barrel) (1970:01 – 1991:12)

Data Source: International Financial Statistics (IFS)
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Figure 4.15: WTI Monthly Spot Price Index (Dollars per Barrel) (1992:01 – 2011:03)

Data Source: International Financial Statistics (IFS)
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Figure 4.16: Log and Differenced Log of WTI Monthly Spot Price Index (Dollars per
Barrel) (1970:01 – 2011:03)

Data Source: International Financial Statistics (IFS)
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Figure 4.17: Log and Differenced Log of WTI Monthly Spot Price Index (Dollars per
Barrel) (1970:01 – 1991:12)

Data Source: International Financial Statistics (IFS)
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Figure 4.18: Log and Differenced Log of WTI Monthly Spot Price Index (Dollars per
Barrel) (1992:01 – 2011:03)

Data Source: International Financial Statistics (IFS)
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Appendix B: Figures of the Kaplan Results for Em-

bedding Dimension 2 – 5

4.5.3 Daily Spot Price of Crude Oil

Figures 4.19 to 4.22 display the Kaplan tests results for daily spot price of crude oil.

In other words, the plots of δ versus ε are shown in Figures 4.19 to 4.22. The signs of

continuity are revealed when δ goes to zero, so ε does.

The legend of each graph is explained as:

• Fi: The first daily spot price sub-period is from January 2, 1986 to December 30,

1993 consists of 2039 observations.

• Se: The second daily spot price sub-period is from January 3, 1994 to December

31, 2003 consists of 2511 observations.

• Th: The third daily spot price sub-period is from January 5, 2004 to April 30, 2012

consists of 2092 observations.

4.5.4 Monthly Spot Price Index of Crude Oil

Figures 4.19 to 4.22 display the Kaplan tests results for monthly spot price index of crude

oil. In other words, the plots of δ versus ε are shown in Figures 4.19 to 4.22. The signs

of continuity are revealed when δ goes to zero, so ε does.

The legend of each graph is explained as:
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Figure 4.19: Delta vs. Epsilon, The Kaplan Test Results of Daily Price for Sub-Periods,
Embedding Dimension=2

• 1s: Monthly spot price index of crude oil. The sample period is from January 1970

to December 1991 consists of 494 observations.

• 2n: Monthly spot price index of crude oil. The sample period is from January 1992

to March 2011 consists of 263 observations.

• 3r: Monthly spot price index of crude oil. The sample period is from January 1970

to March 2011 consists of 231 observations.
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Figure 4.20: Delta vs. Epsilon, The Kaplan Test Results of Daily Price for Sub-Periods,
Embedding Dimension=3
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Figure 4.21: Delta vs. Epsilon, The Kaplan Test Results of Daily Price for Sub-Periods,
Embedding Dimension=4
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Figure 4.22: Delta vs. Epsilon, The Kaplan Test Results of Daily Price for Sub-Periods,
Embedding Dimension=5
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Figure 4.23: Delta vs. Epsilon, The Kaplan Test Results of Montlhy Spot Price on WTI,
Embedding Dimension=2
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Figure 4.24: Delta vs. Epsilon, The Kaplan Test Results of Montlhy Spot Price on WTI,
Embedding Dimension=3
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Figure 4.25: Delta vs. Epsilon, The Kaplan Test Results of Montlhy Spot Price on WTI,
Embedding Dimension=4

163



Figure 4.26: Delta vs. Epsilon, The Kaplan Test Results of Montlhy Spot Price on WTI,
Embedding Dimension=5
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Chapter 5

Conclusion and Economic

Application

This dissertation includes three essays and assesses different features of the nonlinear dy-

namic structure of the energy sector in the context of nonlinear mechanisms. The research

incorporates the production side of the energy market and explores the implications of

high dimensionality and time aggregation when analyzing the market’s fundamentals.

Earlier studies, however, mainly focused on the price of the energy products and uti-

lized daily frequency time series observations when detecting nonlinearities in the energy

markets.

The first essay begins with application of statistical techniques and incorporates the

most well-known univariate tests for nonlinearity with distinct power functions over al-

ternatives hypothesis. The main goal of the first essay is to uncover the data generation

mechanisms of the five main energy products. It utilizes the daily spot prices observations
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on crude oils, West Texas Intermediate (WTI-Cushing) and Europe Brent, New Harpor

heating oil, and New York conventional gasoline regular, and Henry Hub Gulf Coast nat-

ural. These tests reveal different forms of nonlinearity in the data generating mechanism

and detect strong evidence of nonlinear structures in the time series data. The results

indicate that each individual series exhibits general nonlinear serial dependence, as well

as nonlinearity in the mean, variance, and skewness functions.

The second essay explores the nonlinear dynamics of the crude oil production, and it

is motivated by the largely neglected quantity side of the energy market. The production

of crude oil is one of the central variables in defining the aggregate economy fluctua-

tions and has significant impacts on various sectors. Hence, in view of the importance

of the production of crude oil, understanding the dynamics of the production of crude

oil is crucial. The examination of the production market’s fundamentals will provide

more accurate empirical and forecasting results by employing a closer specification to

the data generating mechanisms. This essay employs statistical methods to examine the

underlying mechanism of the time series data in the production market of crude oil. This

essay uses monthly observations on the U.S. field production of crude oil, Organization

of the Petroleum Exporting Countries (OPEC), non-OPEC, and the world production

of crude oil. The tests detect strong evidence of nonlinearity in all the time series ob-

servations, with the exception of non-OPEC production of crude oil. The dynamics in

the non-OPEC production time series data can be attributed to the nature of the mar-

ket for those countries. The petroleum production for those countries exhibits a steady

growth rate and has not been significantly influenced by exogenous shocks. On the other
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hand, OPEC production has often experienced disruptions of crude oil production and

clear indications of nonlinear structure are reflected in the OPEC production time series

observations.

The third essay focuses on the time aggregation and high dimensionality when as-

sessing the nonlinear dynamics in the daily prices of crude oil. This essay utilizes daily

spot price and monthly real price of crude oil, West Texas Intermediate (WTI) for over

26 years. The entire sample is divided into three sub-periods consisting of 2039 obser-

vations, 2511 observations, and 2092 observations. The sample period of study is from

January 1970 to March 2011 for a total of 494 observations as well as two sub-samples:

January 1970 to December 1991 for a total of 263 observations and January 1992 to

March 2011 for a total of 231 observations. Incorporating monthly observations to assess

the existence of nonlinear structures in the time series data generating mechanism of

crude oil, when the time between observations increases, distinguishes the approach of

this chapter from existing studies in the literature. To perform the analysis the most

widely univariate tests to detect nonlinearity are employed to explore different aspects

of nonlinear serial dependence. Daily spot price of crude oil reveals strong evidence of

nonlinear structure in the data generating mechanism. In monthly observations, how-

ever, the nonlinear dependence is less significant. In summary, the power of nonlinear

dependence varies by using different levels of time aggregation on daily spot price of crude

oil. This chapter considered all of the possible cases for studying the dynamics of crude

oil price and provides insightful understanding of the crude oil market data generating

mechanism.
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The nonlinearity and testing for nonlinear dynamics in the data generating mecha-

nism have important economic applications and are becoming more common in empirical

economics. The growing interests resulted from the fact that economic events are not

essentially linear and a macroeconomic model may yield more plausible empirical results

if the nonlinear features are considered in its nature. Employing linear time series models

may cause misspecifications when the utilized time series is nonlinear. As Ashley and

Patterson (1989) state “if the null hypothesis of linearity can be rejected for macroeco-

nomic time series variables, then there would be serious misspecifications in the model

by employing linear time series modeling”. Also, Brockett et al. (1988) state that usual

linear model coefficients can be shown to be biased in the face of a nonlinear time series

structure. In the case of this research, where strong evidence of nonlinear structure in

most of the utilized time series is detected, it is critical to employ an appropriate speci-

fication that reflects the dynamics of the data in the energy markets. In related studies,

Hamilton (2011b) investigates nonlinearities and the macroeconomic effects of oil shocks

and concludes that the relation between GDP growth and oil price is nonlinear. Also,

Hamilton (2003) uses a flexible approach to identify the nonlinear relation between oil

price change and GDP growth.

Moreover, interest in nonlinear forecasting models in economic literature has been

growing in recent years. If nonlinearity is present in the data, choosing a nonlinear time

series can provide more plausible post-sample forecasting ability (Ashley and Patterson

(2006)). Various studies in the literature have concluded that nonlinear models yield

better empirical results than linear models, such as Tersvirta (2005); Matias and Re-

168



boredo (2012); Suarez and Lopez (2011) among many others. As Tersvirta (2005) states,

a potential effective model involves a systematic examination for finding a proper model

that reflects the dynamic of the data and can be found only among the well-defined

set of nonlinear models, such as: smooth transition regression (STR) models, switching

regression and threshold autoregressive models, Markov-switching model, autoregressive

neural network (ANN) models, time-varying autoregressive model, and nonlinear moving

average models.

Another important implication of nonlinear structure in the energy market time se-

ries observations is inferences relevant to perfect markets. Under the perfect market

assumption of complete contingent claims with perfect competition, perfect arbitrage,

and free entry, general equilibrium time solutions are shocked martingales, having no

information in past realizations that can be used for speculation about the future. But

nonlinear stochastic processes contain structure that can be used for profitable specula-

tion. The energy market is characterized not only by unpredictable exogenous shocks,

but by multiple forms of market failure, such as barriers to entry (e.g., cartels on the

supply side) and incomplete contingent claims. As a result, the relevant theory cannot

rule out informative nonlinearity, which this study finds.
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