20 research outputs found

    Unsupervised multi-scale change detection from SAR imagery for monitoring natural and anthropogenic disasters

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017Radar remote sensing can play a critical role in operational monitoring of natural and anthropogenic disasters. Despite its all-weather capabilities, and its high performance in mapping, and monitoring of change, the application of radar remote sensing in operational monitoring activities has been limited. This has largely been due to: (1) the historically high costs associated with obtaining radar data; (2) slow data processing, and delivery procedures; and (3) the limited temporal sampling that was provided by spaceborne radar-based satellites. Recent advances in the capabilities of spaceborne Synthetic Aperture Radar (SAR) sensors have developed an environment that now allows for SAR to make significant contributions to disaster monitoring. New SAR processing strategies that can take full advantage of these new sensor capabilities are currently being developed. Hence, with this PhD dissertation, I aim to: (i) investigate unsupervised change detection techniques that can reliably extract signatures from time series of SAR images, and provide the necessary flexibility for application to a variety of natural, and anthropogenic hazard situations; (ii) investigate effective methods to reduce the effects of speckle and other noise on change detection performance; (iii) automate change detection algorithms using probabilistic Bayesian inferencing; and (iv) ensure that the developed technology is applicable to current, and future SAR sensors to maximize temporal sampling of a hazardous event. This is achieved by developing new algorithms that rely on image amplitude information only, the sole image parameter that is available for every single SAR acquisition. The motivation and implementation of the change detection concept are described in detail in Chapter 3. In the same chapter, I demonstrated the technique's performance using synthetic data as well as a real-data application to map wildfire progression. I applied Radiometric Terrain Correction (RTC) to the data to increase the sampling frequency, while the developed multiscaledriven approach reliably identified changes embedded in largely stationary background scenes. With this technique, I was able to identify the extent of burn scars with high accuracy. I further applied the application of the change detection technology to oil spill mapping. The analysis highlights that the approach described in Chapter 3 can be applied to this drastically different change detection problem with only little modification. While the core of the change detection technique remained unchanged, I made modifications to the pre-processing step to enable change detection from scenes of continuously varying background. I introduced the Lipschitz regularity (LR) transformation as a technique to normalize the typically dynamic ocean surface, facilitating high performance oil spill detection independent of environmental conditions during image acquisition. For instance, I showed that LR processing reduces the sensitivity of change detection performance to variations in surface winds, which is a known limitation in oil spill detection from SAR. Finally, I applied the change detection technique to aufeis flood mapping along the Sagavanirktok River. Due to the complex nature of aufeis flooded areas, I substituted the resolution-preserving speckle filter used in Chapter 3 with curvelet filters. In addition to validating the performance of the change detection results, I also provide evidence of the wealth of information that can be extracted about aufeis flooding events once a time series of change detection information was extracted from SAR imagery. A summary of the developed change detection techniques is conducted and suggested future work is presented in Chapter 6

    Sea Ice Extraction via Remote Sensed Imagery: Algorithms, Datasets, Applications and Challenges

    Full text link
    The deep learning, which is a dominating technique in artificial intelligence, has completely changed the image understanding over the past decade. As a consequence, the sea ice extraction (SIE) problem has reached a new era. We present a comprehensive review of four important aspects of SIE, including algorithms, datasets, applications, and the future trends. Our review focuses on researches published from 2016 to the present, with a specific focus on deep learning-based approaches in the last five years. We divided all relegated algorithms into 3 categories, including classical image segmentation approach, machine learning-based approach and deep learning-based methods. We reviewed the accessible ice datasets including SAR-based datasets, the optical-based datasets and others. The applications are presented in 4 aspects including climate research, navigation, geographic information systems (GIS) production and others. It also provides insightful observations and inspiring future research directions.Comment: 24 pages, 6 figure

    The Impact of Different Image Thresholding based Mammogram Image Segmentation- A Review

    Get PDF
    Images are examined and discretized numerical capacities. The goal of computerized image processing is to enhance the nature of pictorial data and to encourage programmed machine elucidation. A computerized imaging framework ought to have fundamental segments for picture procurement, exceptional equipment for encouraging picture applications, and a tremendous measure of memory for capacity and info/yield gadgets. Picture segmentation is the field broadly scrutinized particularly in numerous restorative applications and still offers different difficulties for the specialists. Segmentation is a critical errand to recognize districts suspicious of tumor in computerized mammograms. Every last picture have distinctive sorts of edges and diverse levels of limits. In picture transforming, the most regularly utilized strategy as a part of extricating articles from a picture is "thresholding". Thresholding is a prevalent device for picture segmentation for its straightforwardness, particularly in the fields where ongoing handling is required

    The Impact of Different Image Thresholding based Mammogram Image Segmentation- A Review

    Get PDF
    Images are examined and discretized numerical capacities. The goal of computerized image processing is to enhance the nature of pictorial data and to encourage programmed machine elucidation. A computerized imaging framework ought to have fundamental segments for picture procurement, exceptional equipment for encouraging picture applications, and a tremendous measure of memory for capacity and info/yield gadgets. Picture segmentation is the field broadly scrutinized particularly in numerous restorative applications and still offers different difficulties for the specialists. Segmentation is a critical errand to recognize districts suspicious of tumor in computerized mammograms. Every last picture have distinctive sorts of edges and diverse levels of limits. In picture transforming, the most regularly utilized strategy as a part of extricating articles from a picture is "thresholding". Thresholding is a prevalent device for picture segmentation for its straightforwardness, particularly in the fields where ongoing handling is required

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements

    Scalable computing for earth observation - Application on Sea Ice analysis

    Get PDF
    In recent years, Deep learning (DL) networks have shown considerable improvements and have become a preferred methodology in many different applications. These networks have outperformed other classical techniques, particularly in large data settings. In earth observation from the satellite field, for example, DL algorithms have demonstrated the ability to learn complicated nonlinear relationships in input data accurately. Thus, it contributed to advancement in this field. However, the training process of these networks has heavy computational overheads. The reason is two-fold: The sizable complexity of these networks and the high number of training samples needed to learn all parameters comprising these architectures. Although the quantity of training data enhances the accuracy of the trained models in general, the computational cost may restrict the amount of analysis that can be done. This issue is particularly critical in satellite remote sensing, where a myriad of satellites generate an enormous amount of data daily, and acquiring in-situ ground truth for building a large training dataset is a fundamental prerequisite. This dissertation considers various aspects of deep learning based sea ice monitoring from SAR data. In this application, labeling data is very costly and time-consuming. Also, in some cases, it is not even achievable due to challenges in establishing the required domain knowledge, specifically when it comes to monitoring Arctic Sea ice with Synthetic Aperture Radar (SAR), which is the application domain of this thesis. Because the Arctic is remote, has long dark seasons, and has a very dynamic weather system, the collection of reliable in-situ data is very demanding. In addition to the challenges of interpreting SAR data of sea ice, this issue makes SAR-based sea ice analysis with DL networks a complicated process. We propose novel DL methods to cope with the problems of scarce training data and address the computational cost of the training process. We analyze DL network capabilities based on self-designed architectures and learn strategies, such as transfer learning for sea ice classification. We also address the scarcity of training data by proposing a novel deep semi-supervised learning method based on SAR data for incorporating unlabeled data information into the training process. Finally, a new distributed DL method that can be used in a semi-supervised manner is proposed to address the computational complexity of deep neural network training

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings

    Advanced Imaging Analysis for Predicting Tumor Response and Improving Contour Delineation Uncertainty

    Get PDF
    ADVANCED IMAGING ANALYSIS FOR PREDICTING TUMOR RESPONSE AND IMPROVING CONTOUR DELINEATION UNCERTAINTY By Rebecca Nichole Mahon, MS A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. Virginia Commonwealth University, 2018 Major Director: Dr. Elisabeth Weiss, Professor, Department of Radiation Oncology Radiomics, an advanced form of imaging analysis, is a growing field of interest in medicine. Radiomics seeks to extract quantitative information from images through use of computer vision techniques to assist in improving treatment. Early prediction of treatment response is one way of improving overall patient care. This work seeks to explore the feasibility of building predictive models from radiomic texture features extracted from magnetic resonance (MR) and computed tomography (CT) images of lung cancer patients. First, repeatable primary tumor texture features from each imaging modality were identified to ensure a sufficient number of repeatable features existed for model development. Then a workflow was developed to build models to predict overall survival and local control using single modality and multi-modality radiomics features. The workflow was also applied to normal tissue contours as a control study. Multiple significant models were identified for the single modality MR- and CT-based models, while the multi-modality models were promising indicating exploration with a larger cohort is warranted. Another way advances in imaging analysis can be leveraged is in improving accuracy of contours. Unfortunately, the tumor can be close in appearance to normal tissue on medical images creating high uncertainty in the tumor boundary. As the entire defined target is treated, providing physicians with additional information when delineating the target volume can improve the accuracy of the contour and potentially reduce the amount of normal tissue incorporated into the contour. Convolution neural networks were developed and trained to identify the tumor interface with normal tissue and for one network to identify the tumor location. A mock tool was presented using the output of the network to provide the physician with the uncertainty in prediction of the interface type and the probability of the contour delineation uncertainty exceeding 5mm for the top three predictions

    Contribution au recalage d'images de modalités différentes à travers la mise en correspondance de nuages de points (Application à la télédétection)

    Get PDF
    L'utilisation d'images de modalités différentes est très répandue dans la résolution de problèmes liés aux applications de la télédétection. La raison principale est que chaque image d'une certaine modalité contient des informations spécifiques qui peuvent être intégrées en un modèle unique, afin d'améliorer notre connaissance à propos d'une scène spécifique. A cause du grand volume de données disponibles, ces intégrations doivent être réalisées de manière automatique. Cependant, un problème apparaît dès les premiers stades du processus : la recherche, dans des images de modalités différentes, de régions en correspondance. Ce problème est difficile à résoudre car la décision de regrouper des régions doit nécessairement reposer sur la part d'information commune aux images, même si les modalités sont différentes. Dans cette thèse, nous nous proposons donc d'apporter une contribution à la résolution de ce problèmeThe use of several images of various modalities has been proved to be quite useful for solving problems arising in many different applications of remote sensing. The main reason is that each image of a given modality conveys its own part of specific information, which can be integrated into a single model in order to improve our knowledge on a given area. With the large amount of available data, any task of integration must be performed automatically. At the very first stage of an automated integration process, a rather direct problem arises : given a region of interest within a first image, the question is to find out its equivalent within a second image acquired over the same scene but with a different modality. This problem is difficult because the decision to match two regions must rely on the common part of information supported by the two images, even if their modalities are quite different. This is the problem that we wish to address in this thesisAIX-MARSEILLE2-Bib.electronique (130559901) / SudocSudocFranceF
    corecore