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  Radiomics, an advanced form of imaging analysis, is a growing field of interest in 

medicine.  Radiomics seeks to extract quantitative information from images through use 

of computer vision techniques to assist in improving treatment.  Early prediction of 

treatment response is one way of improving overall patient care.  This work seeks to 

explore the feasibility of building predictive models from radiomic texture features 

extracted from magnetic resonance (MR) and computed tomography (CT) images of 

lung cancer patients.  First, repeatable primary tumor texture features from each 

imaging modality were identified to ensure a sufficient number of repeatable features 

existed for model development.  Then a workflow was developed to build models to 



 
 
 

 

xviii 

predict overall survival and local control using single modality and multi-modality 

radiomics features.  The workflow was also applied to normal tissue contours as a 

control study.  Multiple significant models were identified for the single modality MR- 

and CT-based models, while the multi-modality models were promising indicating 

exploration with a larger cohort is warranted.    

Another way advances in imaging analysis can be leveraged is in improving accuracy of 

contours.   Unfortunately, the tumor can be close in appearance to normal tissue on 

medical images creating high uncertainty in the tumor boundary.  As the entire defined 

target is treated, providing physicians with additional information when delineating the 

target volume can improve the accuracy of the contour and potentially reduce the 

amount of normal tissue incorporated into the contour.  Convolution neural networks 

were developed and trained to identify the tumor interface with normal tissue and for 

one network to identify the tumor location.  A mock tool was presented using the output 

of the network to provide the physician with the uncertainty in prediction of the interface 

type and the probability of the contour delineation uncertainty exceeding 5mm for the 

top three predictions.   



 

 1 

 

1 Introduction 

 
 
 

Advances in computer science and technology in medicine have opened new 

avenues of research to assist in the personalization of medicine.  Particularly in the area 

of cancer treatment, there has been an increased interest in individualized therapy to 

improve patient outcome.  The need for further individualization of treatment stems from 

the fact that cancer is a multi-faceted disease that is unique to almost every patient.  

Cancer is caused by one or more mutations that cause a cell to divide continuously by 

suppressing its ability to “switch off” when in close contact with other cells.  Normally, 

these aberrant cells are detected by the body and the immune system removes them 

before they can cause harm.  However, cancer cells have adapted ways of tricking the 

immune system into ignoring them and in some cases even helping them to grow.  As 

solid tumors get larger, they coerce the body into providing them with a network of blood 

vessels through angiogenesis to fuel their growth while simultaneously reducing the 

available nutrients for the rest of the body. As cancer is a result of mutations to an 

individual’s deoxyribonucleic acid (DNA), the resulting cancer cells are as unique as the 

DNA from which it mutated. 

In the early days of cancer treatment, there was a one size fits all approach. Every 

patient was treated the same way, however, some patients responded while others did 

not.  As we learned more about cancer physiology and the interactions between radiation 
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and the body, new techniques were developed to reduce exposure of the normal tissue 

and organs, and to better target the cancer lesions.  Research began to uncover which 

genetic mutations were present in patients who responded to treatment and those who 

did not, and which mutations lead to higher risk of developing cancer.  Existing treatments 

began to be individualized, different amounts of radiation were prescribed to individuals 

with the same cancer location, and alternative treatments such as chemotherapy were 

developed.  Combinations of different treatment techniques were employed for some 

cancers.  More recently, immunotherapy has grown to further target individual mutations 

to improve results.  Researchers have also begun to incorporate research from the field 

of computer vision to advance our understanding of cancer and to improve the ability to 

locate and treat cancer lesions. 

Medical images are acquired in nearly every cancer treatment diagnosis and during 

cancer treatment and response verification.  These images provide a snap shot of the 

current tumor environment at a macroscopic level.  The ability for the human eye to 

discern phenotypic features of a lesion is limited by the spatial resolution of the image 

being viewed and the observer’s ability to discern complex patterns, such as the range of 

characteristics present in a solid tumor, which can take years of training. During tumor 

growth, angiogenesis typically results in a network of chaotic blood vessels that leads to 

areas of proliferating cells, hypoxia, and necrosis as the nutrients source grows further 

away. Biopsies can only sample a small area of the tumor, leaving physicians without a 

detailed picture of the whole tumor volume and taking enough biopsies to characterize 

the full tumor volume would be extremely uncomfortable for the patient.  The use of 

medical images has an advantage over biopsies due to their non-invasive nature and 
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ability to capture the full tumor volume. The underlying biology of a tumor, such as the 

cell sizes, density, amount of vascularization and areas of necrotic, or dead, tumor and 

actively proliferating tumor, cannot easily be detected in medical images with high 

precision at present.  One area of active research in radiation oncology is to use computer 

vision techniques, such as texture analysis, to identify phenotypic signatures of the 

tumors to inform treatment options.  The biological differences in tumors are hypothesized 

to lead to changes in the visible tumors which may appear through more advanced 

analysis of the medical images.  By identifying these patterns, researchers may be able 

to link these differences to the underlying pathophysiology and more successful treatment 

regiments, thereby improving patient outcome and quality of life. 

In cancer treatment, there are two competing objectives: to eradicate the tumor cells 

and to prevent damage to the normal tissue. One of the best ways to reduce damage in 

healthy tissue is to reduce the amount of radiation delivered to it.  During the course of 

radiation treatment, the physician outlines the boundaries of the tumor or structure to be 

treated during contour delineation.  This contour of the tumor is referred to as the gross 

tumor volume (GTV).  The GTV is expanded upon during the treatment planning process 

by a margin to account for microscopic disease that is not evident to the human eye on 

the images.  The expanded volume is referred to as the clinical target volume (CTV).  

Depending on the treatment method, the CTV is expanded again to account for 

uncertainty in the ability to localize the tumor during treatment, such as set-up 

inconsistencies, mechanical tolerance of the equipment, etc., into the planning target 

volume (PTV).  For lung cancer and other mobile tumors, the CTV is first expanded into 

an internal target volume (ITV) due to the large amount of motion that can occur during 
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breathing combined with cardiac motion.  An ITV is constructed from a free breathing 

computed tomography (CT) scan where the entire path of the tumor from end inhalation 

to end exhalation is considered part of the ITV. This ITV is again expanded into a PTV to 

account for the uncertainty in set-up and mechanical tolerances.  During treatment, the 

prescribed radiation dose is delivered to the entire PTV with a desired coverage 

percentage, usually 95%. The larger the margins used to expand the tumor, the more 

normal tissue may be included in the treated volume and thereby irradiated to higher 

doses, increasing the chance of damage to the normal tissue.  On the other hand, margins 

that are not large enough risk missing a portion of the tumor, allowing it to recur and the 

patient to potentially undergo treatment again.  Recent advances in machine learning 

have shown the ability for a computer to learn how to differentiate between classes of 

images and locate different objects of interest by learning different features present in the 

images.  These networks are being actively explored to segment an image and could, in 

the future, assist with defining the target volumes with greater accuracy. 

This work will explore two different avenues of improving individualized treatment: 

using texture analysis to explore correlations between medical images and treatment 

response, and using machine learning via deep neural networks to improve contour 

delineation uncertainty.  The following section provides further details on the treatment 

process for non-small cell lung cancer (NSCLC), image types, predictive modeling 

through radiomics, contour delineation uncertainty, and techniques for image 

segmentation/classification using machine learning.  The section concludes with an 

overview of the dissertation, specific aims, and innovation. 
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1.1 Non-Small Cell Lung Cancer  

Lung cancer is the second most commonly diagnosed cancer in the United States 

behind skin cancer, and has the highest mortality rate of any cancer for both men and 

women in the world.1, 2  The World Health Organization estimates 19.4% of cancer related 

deaths are from lung cancer.2  The overall incidence rates for lung cancer have been 

declining; however, the overall 5-year survival rate for  all stages of lung cancer remains 

poor at 17.7%.3  Lung cancer has two main classifications, small cell lung cancer and 

NSCLC.  NSCLC, which is the focus of this work, accounts for approximately 86% of 

diagnosed lung cancer cases.4  As with most cancers, the earlier the cancer is diagnosed, 

the better the chance of survival.  Unfortunately, only 16% of cancers are diagnosed at a 

local stage which has a survival rate of 59.2%.3 For the majority of NSCLC patients, the 

cancer is more advanced at the time of diagnosis with 55% of patients being diagnosed 

with distant tumor spread and 24% being diagnosed with local-regional spread where 

there is a 31.4% 5-year survival rate.3   

NSCLC is typically diagnosed by a chest CT image, and the identified nodules are 

biopsied to determine histology.  In addition to the CT scan, a positron emission 

tomography (PET) image is typically acquired to help identify involvement of lymph nodes, 

metastases, and active tumor, especially in presence of collapsed lungs, called 

atelectasis, or other pathologies that make the tumor boundaries difficult to ascertain from 

CT images alone.  Atelectasis typically occurs near the tumor where the lesion growth 

has obstructed one or more air ways.  Depending on the location, this could collapse a 

small portion of the lobe, the entire lobe, or the entire lung.  Lung cancer can metastasize 

to different areas of the body, but most frequently metastasizes to the lymph nodes, 
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adrenal glands, and brain. For advanced stage lung cancer, a brain magnetic resonance 

image (MRI) is also typically obtained to check for metastasis as the PET scan would not 

be sufficient.  The high level of activity in the brain causes a proportionally high uptake of 

the PET tracer obscuring the location of any metastasis making MR, which has excellent 

soft tissue contrast, the ideal image for diagnosing metastases to the brain. 

As mentioned earlier, a biopsy is often taken in order to determine the histology of 

the tumor and also to look for the presence of genetic markers.  There are three common 

types of histology for NSCLC: adenocarcinoma, squamous cell carcinoma, and large cell 

carcinoma.  The adenocarcinoma typically begins development in the alveolae of the lung 

and is slower to grow. Squamous cell carcinoma typically begins in the cells that line the 

airways of the respiratory track and is faster growing than adenocarcinoma.  The large 

cell carcinoma has large and abnormal cells and is assumed to have neuroendocrine 

origin.  

Several different treatment options for NSCLC exist, and the treatment selected 

depends on several factors including location, size, and stage of tumor as well as the 

overall health of the patient.  For early stage and smaller tumors where the patient is 

healthy enough to withstand removal of part or all of a lung, the tumor can be removed 

by surgery.  Surgical options include pneumonectomy, lobectomy, segmental resection 

or video assisted thoracic surgery (VATS). Pneumonectomy removes the entire affected 

lung while a lobectomy removes the entire affected lobe.  If the tumor is small enough, 

only a portion of the lobe can be removed through a segmental resection or VATS. 

Surgery can be combined with radiation and/or chemotherapy to treat any possible 

microscopic disease remaining following surgery. When surgical resection is not possible, 
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radiation therapy with or without chemotherapy is the common course of action. 

Depending on which genetic markers are present, there are several emerging and 

established immunotherapy treatments that can be used to increase the overall survival 

of patients, protect normal tissue, or increase effectiveness of the radiation or 

chemotherapy.  During radiation therapy, high energy photos or protons are aimed at the 

lesion from several different angles.  As these photons and protons travel through 

different mediums, they deposit energy to the surrounding tissue or air.  The amount of 

energy imparted to the medium by charged and uncharged particles interacting within the 

volume per unit mass is referred to as the absorbed dose an is measured in Gray (Gy). 

During radiation treatment, typically the tumor is treated to a prescribed dose of between 

50-70 Gy.  Small tumors are candidates for Stereotactic Body Radiation Therapy (SBRT) 

where a small number (typically 1-5) of high dose treatment sessions, or fractions, are 

delivered to the tumor with ablation as the goal.  Larger tumors receive smaller dose 

fractions, approximately 1.8-2 Gy at a time, over a longer period of time, typically 6 weeks.  

The goal of the radiation treatment is to induce tumor cell death by destroying the 

DNA or preventing further cell division.  The radiation dose that is delivered to tissue can 

directly or indirectly damage the cells.  Direct damage is when the photon, or charged 

particles that the photon has excited such as electrons, interact with the DNA strands and 

break them.  More commonly these photons and charged particles cause indirect damage 

by interacting with the water in the body to create free radicals that damage the DNA.  

The higher the dose, the more damaging interactions occur.  As previously mentioned, 

the beams are spread out at different angles in order to reduce the dose delivered to the 

healthy tissue while overlapping the beams within the tumor and delivering the full 
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prescription dose.  In addition, breaking the total dose to be delivered into smaller 

fractions allows the healthy tissue to repair damage to the DNA between treatment 

sessions and can reduce the risk of normal tissue complications.  Tumor cells are also 

able to repair during the time between fractions, but they are less efficient and are 

preferentially damaged during radiation therapy. 

Response to radiation treatment is often determined by the response evaluation 

criteria in solid tumors (RECIST).  The RECIST criteria are based on a change in the sum 

of the longest diameter(s) of the lesion(s) and involved lymph nodes.  Treatment response 

is classified as complete response, partial response, progressive disease, or stable 

disease depending on the percentage decrease or increase in this longest length.5, 6 Lung 

tumors are known to shrink during the course of radiation treatment with various studies 

finding approximately 1.2% reduction of the tumor volume per day,7 or 44-51% reduction 

in volume by the end of treatment.8, 9 However, the decrease is not consistent from 

fraction to fraction.8  Therefore, final tumor response often cannot be determined using 

RECIST criteria until weeks following the completion of treatment. There is a desire to 

predict the treatment response earlier in order to provide the best patient care. By 

predicting response and tumor control earlier, physicians can potentially change the 

treatment regimen by modifying overall tumor dose, fractionation schedule, 

chemotherapy regimen, treatment goal, and other options. The additional information 

before or early into treatment also allows for the patient and physician to make better 

informed decisions about continuing and follow-up care. Researchers have been 

exploring various methods of predicating the tumor response with particular emphasis on 

pretreatment and early treatment features based predictive models. 
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1.2 Medical Imaging 

The models mentioned before are in part based on imaging features, including 

texture features, extracted from images that are routinely used in the treatment of various 

tumors and are acquired at various stages of the treatment process according to the 

individual studies.  Diagnostic images are used to determine the type and location of a 

lesion and to suggest areas for biopsies.  Once the cancer is diagnosed, planning or 

simulation images are taken.  The gold standard for radiation therapy is the CT image.  

The treatment process begins by acquiring CT simulation images of the patient in the 

treatment body position with any immobilization devices that will be used throughout the 

treatment process. These images are transferred to the treatment planning system and 

used to define the treatment target(s), organs at risk (OARs), and accurately construct 

the dose deposition within the body.  The tumor and OARs delineated on the planning CT 

images are typically used throughout the treatment process.  If the patient undergoes 

significant changes during treatment, such as drastic weight loss, resolution of 

atelectasis, or significant tumor volume reduction, additional CT images would be 

acquired to determine the need for re-planning. Follow-up CT images are used to 

determine the RECIST classification of a patient after completion of treatment.  Cone 

Bean Computed Tomography (CBCT) images are acquired prior to treatment to insure 

correct patient alignment and to monitor changes in patient anatomy for significant 

changes.   

For lung cancer and other advanced cancers, a PET scan is often taken in addition 

to the planning CT.  Unlike a CT image, PET images show little to no anatomy and are 

functional images instead. Radioisotope-labeled glucose, typically Fluorine 18 labeled 
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fluorodeoxyglucose (18F-FDG), is injected prior to the image acquisition. The intensity, or 

brightness, of a PET image is directly related to the uptake of the labeled glucose in the 

active tissue.  Since actively proliferating tumor cells have a higher metabolic need than 

the surrounding health tissue, the active tumor appears bright on the PET images. The 

PET image is useful in determining the lymph node involvement, identifying any distant 

metastases, and distinguishing tumor from similar appearing tissue surroundings such as 

near atelectasis. These PET images are frequently registered to the planning CT and 

used to assist in the delineation of the tumor in the previously mentioned cases.   

MRI has superior soft tissue contrast to CT images and is the imaging modality used 

extensively for brain tumors.  The contours are delineated for the brain on the MR image 

before being registered with the planning CT and transferred.  For lung tumors, it is hoped 

that the improved soft tissue contrast will aid in contour delineation near the mediastinum 

and in distinguishing between atelectaisis and tumor.  Depending on the imaging signal 

sequence applied to the tissue, MR scanners can generate anatomical images or 

functional images.  One example of functional MR imaging is the diffusion weighted (DW) 

sequence.  DW imaging seeks to capture the motion of water in and around cells.  A 

sequence of diffusion gradients are applied to the tissue to produce different signal 

strengths related to the amount and direction of water movement. More restricted water, 

such as in areas of inflammation due to injury, appear brighter and freely moving water 

appears darker.10 The DW images are acquired at different b-values, or strength of 

diffusion weighting as described by equation ( 1 ), typically at least a low b-value and a 

high b-value.   
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𝑏 = 𝛾$𝐺$𝛿$ Δ − )
*
																																																																		( 1 ) 

Where 𝛾 is the gyromagnetic ratio of the element of interest, most commonly hydrogen, 

𝐺 is the amplitude of the diffusion gradient pulse, 𝛿 is the duration of the diffusion gradient 

pulse, and Δ is the time between diffusion gradient pulse pairs.  At least two different b-

value DW images are then used to generate the apparent diffusion coefficient (ADC) map 

which captures the magnitude of diffusion of water within the tissues.  The ADC map is 

being researched as an alternative functional imaging modality to PET imaging. The ADC 

map’s intensity has the inverted meaning of the DW images where a dark signal indicates 

areas of restricted water movement. In tumor cells, the movement of water is more limited 

given the irregular shape and spacing of the cells in the tumor mass and necrotic regions 

which, similar to the standard uptake value (SUV) in PET images, can better discriminate 

between tumor and healthy tissue than anatomical appearance alone.  Several MRI 

sequences are designed to show anatomical features, unlike PET, potentially allowing for 

better specificity in location given the clearer definition of the anatomy without the 

additional CT scan. These anatomical MR images can be acquired in the same session 

as functional MR image sequences. Furthermore, the spatial resolution of a PET image 

is relatively poor when compared with CT and MR images, so a functional MR image 

could potentially increase the target definition.  For these reasons, there has been an 

increased interest in exploring the potential of MR in lung cancer predictive modeling as 

will be explored in this work. 

1.3 Predictive Modeling 

Predictive modeling is using patient data to discern trends that have the ability to 

give insight into the likely response to therapeutic treatment. These predictive models will 
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hopefully provide insight into probable treatment response allowing physicians to adapt 

treatment plans as necessary, determine appropriate follow-up care, and provide more 

detailed information to patients.  Statistical analysis of retrospective patient data is 

preformed to identify which factors correlate with desired or adverse outcomes. The 

patient data used in predictive modeling ranges from clinical factors, such as tumor stage, 

volume, location, and lung function test performance, to more advanced imaging features 

derived from computer vision techniques and radiomics and, more recently, genomic 

data.  The hypothesis underlying most of these studies is that the tumor microenvironment 

exhibits observable characteristics that can be used to predict response to different 

treatment regiments.  For lung cancer patients, overall survival, local control, freedom 

from distant metastasis, and radiation induced lung injury are the major clinical outcomes, 

or endpoints, that have been explored. Different modeling techniques have been explored 

including single modality image analysis for pretreatment images and, more recently, time 

series analysis on images acquired at multiple time points during the course of treatment. 

CT and PET are the most commonly studied imaging modalities for lung cancer, but with 

superior soft tissue contrast, MRI is experiencing increased interest. 

Pre-treatment images are of particular interest to researchers as they have the 

potential to provide insight into a treatment before it begins.  One model, by 

Balagurunathan et al.,11 found texture features related to homogeneity of the tumor were 

significant predictors in overall survival.  In particular, tumor with indicators of high  

homogeneity were predictive of longer survival.11   Another later model by Fried et al.,12 

used texture features extracted from pretreatment 4D contrast enhanced CT images and 

the 50% phase of the 4D CT image to stratify patients into risk groups based on Kaplan-
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Meyer curves.  They found a significant improvement in the stratification over models that 

only used clinical prognostic features.  The model’s classification repeatability was 

approximately 80% for overall survival, local regional control, and freedom from distant 

metastasis.12  Coroller et al.13 used pretreatment CT scans to predict distant metastases 

in lung cancer for adenocarcinoma histology.  They investigated features from the CT 

images, such as texture and shape descriptors, and clinical factors, such as the 

pretreatment tumor volume, for their ability to predict distant metastases.  Univariate 

analysis identified 35 prognostic features and multi-variate analysis was used to create a 

final model.  The final model with the combined clinical factors demonstrated a significant 

improvement in identifying patients with distant metastasis, p-value= 1.56 x 10-11.13   

In developing predictive models, the emphasis has primarily been on pretreatment 

imaging features and longitudinal studies have not been conducted in many instances.  

One early longitudinal predictive model for tumor response by Bral et al.,14 looked at the 

amount of volume regression as a predictor for metabolic complete remission of NSCLC.  

They found, by calculating the regression coefficient from fitting the volume change to a 

negative exponential curve and using a cut off of 0.03, they could predict the non-

responders with 80% accuracy while misclassifying only 16.4% of patients who achieve 

complete remission.14 George et al.,15 evaluated PET images acquired at two different 

time points: pretreatment and follow-up.  Texture features were extracted from the regions 

of interest (ROIs), in the case of this study the tumor volume, and used to create a 

subspace signature, which defines the collection of features identified by principal 

component analysis (PCA) to explain the most variation, for each subject at each time 

point.  Using the distance between the subspaces of two time points, the study was able 
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to predict the RECIST classification with an area under the time dependent receiver 

operating characteristic (ROC) curve of 0.6676 to 0.6817.15  This study only included 

imaging features extracted from PET images. In another study, Jabbour et al.,16 used the 

lung tumor volume reduction seen from weekly CBCT images acquired prior to treatment 

fractions from day 1 to end treatment on day 43.  The Cox proportional hazard models 

showed a 44.3% decrease in death for every 10% decrease in tumor volume between 

day 1 and day 43.16  More recently, Fave et al.17 explored the change in texture features 

extracted from weekly 4D CT scans’ ability to increase the predictive power for local 

recurrence, survival, and freedom from distant metastasis.  They found adding the change 

in texture features did improve the model for overall survival when compared to clinical 

factors and pretreatment features alone, but the same was not true of models predicting 

distant metastasis. They also found local recurrence was significantly predicted by the 

change in texture features alone.17  

1.3.1 Radiomics 

Recently, the fields of radiomics and radiogenomics have gained popularity.  The 

field of radiogenomics combines the information from clinical data and extracted imaging 

features with genetic markers to identify correlations between imaging features, genetic 

markers, and clinical information to predict a variety of clinical endpoints or genetic 

expression.18–20  Radiomics, on the other hand, seeks to combine features extracted from 

imaging and clinically available information to identify potential imaging biomarkers and 

utilize features in ways to predict response,11–13, 21–24 segment tissue,25, 26  classify lesions 

as benign or malignant,27–30 and evaluate other characteristics of a tumor.31–34  One 

advantage to investigating texture and other imaging features is the non-invasive nature 
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of the imaging.  Images are routinely acquired as part of the radiation therapy workflow, 

and therefore, by using those images, the patient is afforded no additional dose or time 

requirements.  The main advantage to extracting the imaging features is it quantifies 

characteristics of the intensity level patterns in the images that may not be readily 

apparent to a human observer.   Imaging, unlike a biopsy, is able to assess the entire 

tumor volume and quantify the patterns of heterogeneity within the tumor.  These patterns 

are hypothesized to arise from physiological and genomic characteristics of the tumor 

giving the physician insight into radio resistance and/or sensitivity, and genetic expression 

which, in turn, can influence treatment decisions.35, 36  

The general workflow for radiomics is comprised of three basic steps: imaging, 

feature extraction, and analysis.  The process begins with image acquisition in which 

single or multiple imaging modalities acquire images of the target. After image acquisition, 

the ROIs are defined specific to the problem being addressed and features are extracted. 

The extracted features are then analyzed for the end goal of the study, Figure 1.36  Each 

step has its unique challenges.  Multiple aspects of image acquisition can affect the 

features extracted from the images including different manufactures, reconstruction, slice 

thicknesses, imaging protocol, and contour delineation methods.29, 34, 37–41  Target 

delineation and generation of predictive modeling are two common uses for the extracted 

features.  Delineation seeks to identify regions that exhibit distinct characteristics from the 

surrounding medium that helps define the location of a tissue or ROI, where predictive 

modeling seeks to identify the features within an ROI that are correlated with treatment 

outcome or other clinical endpoints. There are thousands of possible features that can be 

extracted from the ROIs. This, coupled with various image preprocessing steps, makes 
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radiomics a very high dimensional problem.  High dimensional problems with limited data 

introduce another challenge: insufficient data to evaluate all the potential parameters.  As 

a result, different methods for reducing the number of features have been employed and 

analysis should control for false discovery rates.  Feature reduction seeks to employ 

statistical techniques to reduce the number of correlated features, thereby reducing 

redundancy, and to evaluate the features that are most clinically relevant.  By decreasing 

the number of features, the dimensionality of the problem is reduced.  False discovery 

rates arise when multiple hypotheses are being tested using same data.  If a large number 

of features are tested for significance, then some of them are bound to be significant due 

to chance.  If 100 features are tested at the 5% error rate, 5 features can be expected to 

be significant by chance alone.  A more detailed description of false error rate control can 

be found in 2.4 False Error Rate Control. While early research shows there is potential 

promise in radiomics, experts stress an overall need, as this field of study matures, to 

create best practices and standardize methods.36, 42–44 



 

 17 

 

In the following section, the texture features and image processing steps employed 

for this work will be described in further detail.  The texture features and imaging 

processing steps used are not intended to be an exhaustive sampling of all available 

texture features and image processing techniques but, rather, an application of the 

frequently reported and promising techniques from lung and other sites applied to NSCLC 

for MR and CT images. 

1.3.1.1 Texture	Features	

At the core of radiomics are the image features.  There are several types of image 

features that can be extracted from an image, many of them stemming from the field of 

Figure 1: Visual representation of the radiomics workflow.  The target is defined (top 
left), features are extracted (top right) and analyzed for the study end goal (bottom). 
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computer vision.  Information about the tumor volume, surface area, and shape can be 

determined from the physician delineated contours.  Texture features can be calculated 

to describe the different patterns of intensity within the contour or a neighborhood 

surrounding a location of interest. Texture analysis, or the use of texture features to 

describe an image, is used in the field of computer vision to classify images, perform 

segmentation, enrich details of objects in video games, and determine the shape of an 

object.45–47  First order texture features include basic histogram features derived from the 

intensity values.  Higher order texture features include the gray level co-occurrence matrix 

(GLCM), gray run length matrix (GLRLM), neighborhood gray tone difference matrix 

(NGTDM), gray level size zone matrix (GLSZM), and others which seek to capture 

spatially varying texture features.  These texture features are frequently investigated in 

the literature and are regarded as the easiest to compute.22   

The histogram texture features are the more traditional texture features relating to 

the intensity distribution within the ROI and do not include spatial information.  The ROI 

is first defined using autosegmentation, semi-automatic segmentation, or manual 

delineation.  Afterwards, a histogram of the intensity levels is created and used to 

compute statistical descriptions of the intensity distribution such as the mean, minimum, 

maximum, standard deviation, skewness, etc. Figure 2 shows an example of an intensity 

histogram derived from an example image slice. 
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The GLCM extracts features based on the probability of pixels (2D) or voxels (3D) 

at a given distance apart being from two different gray levels.48–51  The GLCM is an N by 

N matrix where N is the number of gray levels in the image matrix post any desired 

processing.  There are two hyper parameters that govern the GLCM calculation: the 

direction and the distance.   Each element in the GLCM matrix, p(i,j), represents the 

number times pixels/voxels of gray level i and j appear in a designated direction such as 

0, 90, or 45 degrees and distance, such as 1, 2 or 5 pixels/voxels, away from each other, 

seen in Figure 3. This matrix is normalized prior to calculation of the texture features 

making each element represent a probability as opposed to the number of elements.  The 

GLCM as described by Haralick et al.48 is symmetric and therefore p(1,2) is the same as 

p(2,1). By exploiting this symmetry, the number of connections needed to fully describe 

the image is reduced by a factor of two.48  A different GLCM can be calculated for each 

combination of the connection directions and distances.  In order to make the features 

more robust, the average of the 4 connected directions for 2D or the 13 directions for 3D, 

when exploiting symmetry, can also be averaged together thereby removing the 

directional dependence of the texture features.   
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Figure 2: Sample image with corresponding histogram.  The 
highlighted portion of the image corresponds to the highlighted count in 
the histogram. 
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The GLRLM describes features extracted from the probability of pixel or voxel with 

the same gray levels having an unbroken linear connection along a give direction of 

varying lengths.52–56  The GLRLM is an N by M matrix where N is the number of gray 

levels and M is the length of the longest continuously connected run of a single gray level 

in the specified direction, see Figure 4. Originally, the directions used were the principal 

directions such as 0 and 90 degrees as opposed to 45 degrees, but the diagonal 

directions can be calculated as well.  This type of analysis is useful in evaluating the linear 

structure of an image.  Each element in the GLRLM, p(i,j), represents the number of runs 

of gray level i with length j. The GLRLM is normalized before calculating the texture 

features and each element in the matrix now represents the probability of having a gray 

level i with length j.  The different directions can be averaged together like the GLCM to 

increase robustness by calculating a directionally independent feature.  The original  
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Figure 3: Sample image with corresponding gray level co-occurrence matrix(GLCM).  
Here the 0 degree and, with symmetry, 180 degree angles along the x-axis at a 
distance of 1 pixel hyper parameters are being used to calculate the GLCM. The 
highlighted boxes show corresponding calculations.  Notice the blue highlighted boxes 
in the image correspond to a value of 2 in the GLCM due to symmetry. 
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features proposed by Galloway52, were inspired by the Haralick features and  later papers 

expanded these features.53–56  

 

The GLZSM is an extension of the GLRLM in which connections in all directions are 

considered not just linearly in one direction.57, 58  The GLSZM is a N by M matrix where N 

is the number of gray levels desired in the image, and M is the number of pixels/voxels, 

making up the largest connected patch of a single gray level.  Each element of the 

GLSZM, p(i,j), represents the number of clusters of gray level, i, being comprised of a 

total j pixels/voxels, see Figure 5.  Unlike the two previous texture feature classes, the 

GLSZM does not have a directional dependence. Cluster sizes are determined by looking 

for pixels/voxels of the specified gray level that are adjacent to another pixel or voxel of 

the same desired gray level in any of the 8 (2D) or 26 (3D) connected directions and 

continuing until all connected pixels or voxels are identified.  Where the GLRLM captures 

linear structural information, the GLSZM, which was originally developed by Thibault et 

al.58 to classify cell nuclei, seeks to provide insight into large homogenous areas and 

intensity changes.  Prior to calculating the texture features, the matrix is normalized again 

transforming the raw counts into probabilities. The texture features calculated from the 

GLSZM are the same as for the GLRLM. 

Figure 4: Sample image with corresponding gray level run length matrix(GLRLM). 
The run length along the x+ direction is calculated with highlighted boxes showing 
corresponding calculations. 
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The NGTDM extracts features from the variation of gray levels in a local 

neighborhood around a selected pixel or voxel.59 The NGTDM is a 1 by N matrix where 

N is the desired number of gray levels. Unlike the other texture feature matrices, the 

elements of the NGTDM are not based on the number of different gray levels in a defined 

relationship with the gray levels spatial connected to it, but rather the average of the gray 

levels surrounding pixels/voxels of the specified gray level.  The NGTDM element values, 

p(1,i) represent the sum of average difference between pixels/voxels of intensity i and 

their surrounding neighbors throughout the entire ROI.  First, the average gray level in a 

neighborhood of defined size, such as the elements directly connected to the central pixel 

or voxel, of a desired gray level, i, excluding the central pixel or voxel of interest is 

calculated.  Then this average is subtracted from the central gray level, i, of interest 

thereby calculating the neighborhood gray tone difference.  This calculation is repeated 

for every pixel/voxel of intensity, i, throughout the valid portion of the image.  Finally, all 

the calculated differences per value of i are summed together to create the final element 

p(1,i) value in the NGTDM.  The valid portion of the image includes all pixels/voxels whose 

surrounding neighborhood is completely within the image boundaries.59  As with the other 

Figure 5: Sample image with corresponding gray level size zone matrix (GLSZM).  
Connections in any direction are considered in determining the zone size.  Highlighted 
boxes show corresponding calculations.  
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matrices, the values are normalized prior to calculating the texture features.  An example 

of the NGTDM can be seen in Figure 6. 

  

Texture features are dependent on the distribution of gray levels within the image. 

As such, even subtle changes to the gray level intensities can alter the value of the texture 

features calculated.  Ways to reduce or change this dependence can include quantizing 

the data into fewer bins than the number of gray levels in the ROI, and applying filters to 

strengthen texture features either directionally, as with wavelet filters and Gabor filters, or 

by scale, as with Laplace of Gaussian filters.  Wavelet filters act as simultaneous low and 

high pass filters and decompose an original image into pure edge (high pass), pure 

contrast (low pass), and combination of directional edges and contrast images.60  For a 

3D-image, the image is decomposed into 8 different images by applying different 

permutations of either the high pass or low pass portion of the filter on the row, column, 

and slice directions.  The decomposed image can be reconstructed with different weights 

to emphasize edges or contrast in different directions or throughout the image.  The 

Laplace of Gaussian filter identifies intensity changes within an image via the Laplace 

gradient operator after Gaussian blurring has been applied to the image.  The Gaussian 

Figure 6: Sample image with corresponding neighborhood gray tone difference 
matrix (NGTDM).  The average of the non-highlighted cells within the red box is 
subtracted from the highlighted central box in the image to calculate the highlighted 
value in the NGTDM. 
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filter blurs the features finer than the chosen width, allowing emphasis of different 

coarseness levels of detail.28  Gabor filter banks are similar to wavelets in that they are 

spatially and directionally defined; however, they have the form of a Gaussian modulated 

complex sinusoidal that highlights edges along the given direction and spacing.  These 

filters can be made rotationally invariant by either using a circularly symmetrical filter61 or 

by aligning the feature vectors for each image along the highest total energy, or dominant 

orientation, filtered image.62 

1.3.1.2 	Biomarker	Characteristics		

In order for the texture features extracted from the image to be clinically useful, they 

must meet certain requirements.  The potential for using radiomics features as biomarkers 

is still under investigation with varying degree of success having been reported thus far.  

Some features, such as the SUV in PET, have been studied in greater detail and can be 

linked to tumor characteristics such as metabolic activity.63  Other texture features, such 

as the ones presented earlier, are not directly linked to tumor phenotypes or other 

biological characteristics definitively and are being actively researched.11, 12, 18, 20, 22, 26, 40, 

64–68   Repeatability, reproducibility, dynamic range, non-redundancy, ease of calculation, 

and a reasonable link to a biological characteristic, radiographic appearance, or endpoint 

are all traits that are highly desirable for imaging features to be used in the predictive 

models for this work.36, 69, 70  Repeatability refers to the ability of a potential imaging 

biomarker to obtain the same value given a short time interval and under the same 

imaging acquisition conditions; while reproducibility is the ability to obtain a similar value 

for the imaging protocol under changes in equipment or centers.69  The dynamic range 

refers to the range of potential values of a feature.  If the dynamic range is too small, it 
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may not have the ability to distinguish between different classifications.36  With the large 

range of texture features being investigated, there is a high probability that one or more 

features are correlated.  The set of features used in predictive models should avoid highly 

correlated or redundant features as this leads to multicollinearity issues with the final 

model. To this end, researchers have been reducing the number of features by identifying 

the redundancies and utilizing only those features that are the most repeatable and have 

a larger dynamic range.36, 40, 71  In this work, the number of texture features will also need 

to be reduced due the limited number of patients available for the study.  In regression, 

at least twice as many observations as variables are recommended in order to have a 

decent fit.  Investigating the direct link between the texture features and tumor phenotype 

or genetic expression is in its infancy and is currently an area of research for different 

imaging modalities.20, 72 Despite the lack of a concrete link between the texture features 

and the underlying biological cause, texture features and their changes over the course 

of treatment can be useful if they are linked to the appearance of the tumor to an observer.  

The texture features are being investigated in this work, as said by Hunter et al., “under 

the hypothesis that they are related to gene expression and phenotype.”73  In other words, 

this work is assuming that texture features and changes in texture features beyond the 

threshold of repeatability are related to a biological or gene expression change.  This is 

not completely unfounded as areas of necrotic tissue appear different on images and 

chaotic vasculature may lead to inhomogeneity of the solid tumor appearance. 

Texture features are being actively investigated for CT, MR, and PET imaging 

modalities.  Several studies have successfully been conducted on the repeatability and 

reproducibility of texture features utilizing CT11, 12, 24, 26, 40, 41, 66, 71 and PET.31, 32, 34  
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However, researchers have had less success in determining the reproducibility of MR 

texture features in T1-weighted and T2-weighted images due to changes in imaging 

parameters,37 machine parameters,23, 29, 39, 74 imaging protocols,39, 74 and image 

characteristics.38, 75, 76  One recent study published by Gourtsoyianni et al.,77 on MR 

texture features for T2-weighted turbo spin echo sequences in liver images showed very 

low repeatability of higher order texture features (GLRLM, NGTDM, GLSZM) and more 

repeatable features in the global (histogram) and GLCM features.  Other than the 

Gourtsoyianni et al. study, the repeatability of the T1- and T2-weighted texture features 

has not been prominently studied in the literature. On the other hand, the repeatability of 

apparent diffusion coefficients (ADC) as calculated from different b-value diffusion 

weighted MR (DW-MR) images and dynamic contrast enhanced MR (DCE-MR) images 

have found success.64, 78, 79  

This work will seek to identify if there are any T1- and T2-weighted MR texture 

features that are repeatable under the same imaging conditions as a starting point for 

finding potential predictive models utilizing MR texture features. DW-MR and ADC texture 

features will also be evaluated for repeatability and compared to the literature. In addition, 

this work will also seek to identify CT features from the imaging protocols used at Virginia 

Commonwealth University (VCU) and compare them to the features found in the literature 

for agreement.  

1.4 Contour Delineation Uncertainty 

Accurate target localization is essential to radiation therapy. In the radiation 

treatment process, as previously mentioned, the physician delineates the GTV on the 

planning CT.  Afterwards the GTV is expanded by adding a margin to account for 
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microscopic disease that may not be seen with the unaided eye on the clinical images to 

the CTV often about 5-8mm for lung cancer.  The CTV is further expanded to account for 

different uncertainties which have been reported by Sonke and Belderbos80 as having 

standard deviations for interfraction setup errors of 4mm systematic error and 4mm 

random error, motion of 0-7mm systematic and 0-7mm random error, delineation 

uncertainty of 2-7mm systematic error, baseline shifts of 4mm systematic error and 3mm 

random error, and intrafraction target motion of 4mm systematic error and 4mm random 

error from their literature search. The traditional margin recipe used was proposed by van 

Herk81 and consisted of estimating systematic and random errors, such as those reported 

above, adding the all systematic errors in quadrature to get an overall estimate of the 

systematic errors and then doing the same for the random errors before using the overall 

estimates in a population based margin formula to achieve 90% of the population 

receiving a cumulative dose of 95% of the prescription to the CTV. In some cases, this 

population based margin could be quite large, such as the 12mm illustrated by van Herk 

for a prostate case.81  One particular danger for lung cancer patients, is the risk of 

toxicities, such as radiation induced pneumonitis, which are shown to correlate with the 

mean lung dose and the volume of the lung receive more than 20Gy, meaning smaller 

margins are desirable.  The use of 4D gating, breath hold, and image guided radiation 

therapy (IGRT) can be used to reduce the uncertainty from motion and set up.  With 4D 

gating, the respiratory motion is monitored and the beam is only turned on during a certain 

phase of motion.  Alternatively, with breath hold techniques, motion is limited by arresting 

breathing for periods of approximately 20s while the beam is on and allowing the patient 

to breath freely between breath holds.  With IGRT, images are taken prior to delivering 
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radiation to align the planning CT image with the anatomy of the day, reducing the 

uncertainty in the set up error. These techniques move away from the population based 

margin to a patient specific margin model aimed at reducing margins where possible.80  

However, these methods do not address uncertainties from contour delineation. 

The physician-drawn contour is taken as ground truth throughout the radiation 

treatment process. However, the contour delineation process can be complicated in areas 

where there is a lack of a clear boundary, such as low intensity difference between the 

tumor and the surrounding tissue.  In such instances, for example near areas of 

atelectasis in the lung, the boundary between the tumor and surrounding tissue is difficult 

to distinguish with the eye and can lead to multiple interpretations by single or multiple 

observers.  Studies have been conducted to quantify the amount of inter- and intra-

observer delineation uncertainty.  In a study comparing the contour delineation of NSCLC 

with 14 radiation oncologists and hematologic oncologists, Vorwerk et al.82 found good 

agreement (defined as more than 70% overlap) in 23.7% of radiation oncologists 

(different departments) and 35.9% (same department) on the PTV.  Karki et al.83 in a 

study with seven physicians found an average delineation uncertainty in the GTV of 

2.96mm, 2.06mm, and 2.77mm for CT only, PET/CT, and MRI respectively. Giraud et 

al.84 found uncertainty of 3.1 cm laterally, 2.8 cm anterioposteriorly, and 2.1 cm 

craniocaudally in a study on lung GTV delineation among radiation oncologists and 

radiologists. 

Different approaches have been studied to reduce the delineation uncertainty such 

as using a prescribed protocol,85 matched CT-PET instead of just CT images,86 and auto-

contouring;87 however, the delineation uncertainties remain larger than the mechanical 
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uncertainties.  Steenbakkers et al.86 noted a reduction in lung cancer delineation 

uncertainty, as measured by the standard deviation of the difference between the 

individual contours and the median contour, from 1cm with CT only to 0.4 cm with CT-

PET.  The greatest gains were made in regions bordering atelectasis from 1.9 cm to 0.5 

cm.   The auto-contouring and, in addition, autosegmentation based techniques seek to 

create an automatic or semiautomatic process by which an algorithm defines the 

boundaries of the tumor and/or thoracic organs with little to no input from the operator.  

These contours can then be checked and adjusted manually if needed.  Several of these 

algorithms are based off intensity changes.   Baardwijk et al.,87 suggested an auto-

contouring technique based on the source-to-background ratio for PET/CT images.  The 

manual contours were compared to the auto-contours, which had been edited by the 

physicians. Auto-contours showed a significant reduction in the variation of the contoured 

GTV.  Others use a grow region technique where the physician chooses a start seed, or 

seeds, within the target or at the boundary and the algorithm grows the contour from the 

identified seeds.  Gu et al.88 developed a single click grow region algorithm that would 

create an ensemble based final contour from the single internal start seed. This method 

was able to achieve a similarity index of almost 80% with two different observers with 

97% repeatability of the contours with 20 different starting seeds.88  Other methods 

include graph-cutting and snakes which seek to minimize energy and mutual information 

to determine a contour, but these methods are time consuming and computationally 

expensive in some cases.88, 89  Lu and Higgins89 suggested a live wire algorithm that 

created a suggested contour by connecting successively chosen points along the 

boundary of the contour.  The operator selects a starting point then moves the cursor to 
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another point along the boundary.  The algorithm suggests a contour path from the start 

point to the cursor location which can be accepted by clicking (thereby creating a new 

starting location for the next piece of the contour) or modified by moving the mouse until 

the desired boundary is created.  Both the inter- and intra-observer reproducibility were 

found to have a mean of about 98% with a maximum standard deviation of 0.98% for 2D 

and 3D contours, with a speed increase of up of 14 times for 2D and 28 times for 3D over 

manual contouring.89 

Autosegmentation algorithms, like those described above, are often based on 

intensity driven mechanisms, such as region growing and mutual information, that may 

fail in areas that are similar in intensity, such as atelectasis, for centrally located tumor 

near the mediastinum.  Other methods, like the live wire method, involve a lot of user 

intervention.  Machine learning and in particular deep learning based convolutional neural 

networks (CNNs) approaches have an advantage over purely intensity driven methods 

as they are able to incorporate information about texture and subtle changes in intensity 

patterns in addition to intensity level.  The incorporation of learned features may be able 

to differentiate areas of similar intensity and appearance.  After a neural network has been 

trained, results can be produced in seconds with very little user input giving them an 

advantage over live wire and other semi-automatic contouring processes.  Neural 

networks are also learning algorithms which means by adding corrected predictions into 

the training set, the network can continually be refined to get better with time allowing the 

algorithm to potentially perform better on difficult cases in the long run. 

The reduction of uncertainty in contour delineation would lead to a better and more 

consistent definition of the GTV and, by extension, normal tissue as well.  An increase in 
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accuracy of the target contour could also have an effect on the amount of dose escalation 

possible in the target.  Some studies have shown that an escalation in the dose is related 

to an increase in local control of the tumor and increased overall survival for NSCLS.90–92 

However, this effect is not fully understood as other studies have suggested that dose 

escalation could be harmful, most notably in the randomized stage III clinical trial by 

Bradley et al.93  Reducing the uncertainty in the contour delineation could potentially allow 

the proposed dose escalations without an increase in normal tissue complications.  

1.4.1 Machine Learning  

Machine learning is the use of programming algorithms to extract information from 

a dataset to perform a designated task and improve upon the results without each step 

being explicitly programmed.  In machine learning, the user provides a dataset, 

framework for the algorithm, and rules for updating results, but does not explicitly program 

each update step instead letting the algorithm learn the appropriate variables for each 

step through iteration.  For example, machine learning techniques have been used to find 

the separation between different classes such as species of iris flowers.  In this dataset, 

the algorithm uses the input data: sepal length, sepal width, petal length, and petal width, 

to predict the species of iris without being explicitly told that iris species “A” has a sepal 

length “x” and petal width “y.”  Instead the network learns the appropriate levels of “x and 

“y” necessary to distinguish the iris species. 
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Machine learning and neural networks have been around since the early 20th 

century.94  The very first neural networks, often referred to as McCulloch-Pitts neurons, 

were designed to mimic the function neurons in the brain and can be thought of as a logic 

gate, or series of logic gates, where each neuron accepts an input, calculates an 

activation, and if the activation is high enough, produces an output signal, Figure 7.  

 

As seen in Figure 7, each triangle represents a neuron where the input signals are 

summed and compared to a defined threshold, in this case a hard threshold, where the 

output is either 1 if larger or equal to the threshold, or 0 if less than the threshold.  Each 

of the inputs is multiplied by a weight indicated by the number above the input and output 

lines.  The input “A” and “B” are binary either 0 or 1 indicating either “on” or “off,” or 

activated (1) and not activated (0).  The neurons are arranged into layers as defined by 

inputs.  The first layer in the figure above has two neurons; they both accept the initial 

inputs.  The next layer contains only one neuron and is considered a new layer because 
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Figure 7: Example of a simple exclusive or (XOR) two-layer neural 
network.  Here the neuron is activated if the sum of the inputs “A” and 
“B” exceeds the threshold. The numbers along the line indicate the 
weight to multiply the signal by. All inputs and outputs in this example 
are 0 or 1.  
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it accepts inputs from the layer before it, regardless of whether it accepts the original input 

or not, as seen in Figure 8.  The final output of the network provides the result of the 

network analysis on the inputs.  Not pictured in either figure is the bias input to each 

neuron.  This bias input can be thought of as similar to the intercept term in the equations 

of a line.  The entire network can alternatively be visualized as a series of linear equations 

of form 𝑦 = 𝑎𝑥	 + 	𝑏 that are being solved with the “𝑥” representing the input, “𝑎” the 

weight, ”𝑏” the bias, and “𝑦” the output of each neuron. 

 

The learning part of machine learning developed when the networks were able to 

update their weights according to learning rules.  There are two types of learning: 

supervised and unsupervised.  In unsupervised learning, the network is not presented 

with a “correct” answer to compare the network output to, but rather is given a set of rules 

and tends to learn patterns that the network thinks are important within the confines of 

the rules.  On the other hand, in supervised learning, the network compares the output 

with the provided, or human defined, “correct” answer.  With either learning method, the 
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Figure 8: Another example of a two-layer XOR neural network.  
This time the original inputs “A” and “B” are transferred to the first 
and second layers of the network. 
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network calculates the error of the network output and uses this error throughout the 

network to update the weights iteratively until told to stop or it has met some criteria 

defined by the loss function.  The loss function and the optimization method govern how 

each network updates the weights.   

The loss function is chosen for the problem being solved.  In the case of a linear 

regression problem, the mean square error might be chosen; for a binary classification 

problem, binary cross entropy might be a better choice.  In semantic image segmentation, 

a Dice similarity loss is often employed.  The value of the loss function represents the 

error of the network, and the goal of the optimizer is to update the weights in a manner to 

minimize the loss.   

Early optimizers, or learning rules, were simple such as the Hebb rule95 for 

unsupervised learning where the output was multiplied by the learning rate, which dictates 

how large a step to take at each iteration, and the perceptron rule,96 where the difference 

between the output and “correct” answer is multiplied by the learning rate.  Today, there 

are several different optimizers available with one of the most common being stochastic 

gradient decent (SGD).  With the SGD optimizer, the derivative of the activation functions 

at each layer with respect to the bias and weights are multiplied by the learning rate and 

error from the loss function before being added to the existing weight.  The resulting 

values then travel backwards to the previous layer where they are again multiplied by the 

learning rate and derivative of the loss with respect to the weights and biases for the 

previous layer which are used to update the weights in the current layer and so forth until 

all weights in the network are updated in a process known as backpropagation.97  The 

learning rate dictates how large a change, or step, is taken along the gradient towards 
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the minimum.  Later variations of the SGD algorithm have modifications for regularizing 

the process to prevent overfitting, such as momentum, which retains a weighted 

“memory” of the previous weights to help prevent getting caught in local minima.   

The activation functions are essential to the learning process and should be chosen 

for the needs of the problem.  The hard activation function mentioned earlier is not the 

most useful and was replaced early on by soft activation functions.  These soft activation 

functions could output a range of values as opposed to just 0 and 1 for the hard activation 

functions.  Examples of soft activation functions include the sigmoid and hyperbolic 

tangent functions, which are characterized by low and high plateaus at large positive and 

negative values respectively, and a gradual slope between them allowing for maximum 

learning.  These soft activation functions allowed the network to reach convergence 

faster, or at all in some cases.  Today, there are a variety of different activation functions 

such as the very popular rectified linear units (ReLU), which keeps the positive portions 

of a linear function while setting the negative portion to 0, and the softmax normalized 

exponential function, which is used frequently in multi-class classification networks. 

As technology has advanced, neural networks have become more and more 

complicated but remained limited in application until the wide spread use of graphic 

processing units (GPUs).  Before GPUs, larger networks remained limited because of the 

time and computational power required to train a network and the large datasets needed 

for success.  GPUs allowed the time to train a network to be cut down from months to 

days and today the time has reduced further to minutes, fueling further exploration. With 

new neural network techniques the input expanded from binary signals to images.  In 

addition, as networks got larger, more and more training images were needed to 
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adequately train the networks.  Labeling of training examples began to be crowd-sourced 

in order to build larger training datasets.  In addition, techniques such as data 

augmentation, transfer learning, and utilizing image patches were employed to create 

adequate training sets for networks, especially in the medical field.  For medical, and 

image analysis in general, CNNs have become a particularly powerful tool.  

1.4.2 Convolutional Neural Networks   

CNNs are networks that use a series of filters of size n in the dimension space of 

the image, for example n by n for 2D images or n by n by n for 3D images, that are then 

convolved with the images in a kernel like fashion in order to build a map of hierarchical 

features.  One of the earliest networks, that later became known as a convolutional neural 

network, was developed by LeCun98 and was a series of shared weight convolutions. 

These networks were designed to “read” handwritten numbers and were later expanded 

to read hand written zip-codes.99  From this zip-code network, the basic structure of the 

CNNs used today began to appear: 1) a convolution layer, 2) a down sampling layer, 3) 

a convolution layer,4) a down sampling layer, and 5) a fully connected output layer.  These 

layers will be described in greater detail in the following sections herein.  Today, the CNN 

is the power house behind almost all image classification, object recognition and 

localization, and segmentation tasks, such as Alex NET100, GoogLeNet101, VGG Nets102, 

residual networks (ResNets)103, 104, efficient neural networks (E-Nets)105, CIFAR-net106, 

and others.  The structures of these newer networks have become more complicated than 

the basic structure outlined above. 

As research and network architectures evolved a new concept called deep learning 

gained popularity.  Deep learning refers to using several weight bearing layers in a 
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network.  Though there is no consensus as to how many layers are needed for a network 

to be considered “deep,”  the term is generally used in the literature for networks having 

greater than 5 weight bearing layers.  These deeper layered systems, such as ResNets, 

VGG, GoogLeNet, and others are able to learn more features from images.  However, 

they include a much larger parameter set and need larger datasets to train on.  

CNNs have become the go to for any type of neural network trained on raw image 

inputs.  Two areas of research that utilize CNNs, that are relevant to this work, are image 

classification and image segmentation.  The task of image classification is to identify 

which category an image belongs to.  The output is the best guess as to which category, 

such as cat, dog, bird, etc., the image represents.  Image segmentation strives to partition 

an image into regions having similar characteristics without assigning classes or labels.   

Semantic image segmentation, on the other hand, returns a map of what class each pixel 

or voxel is predicted to be, thereby determining the location of the class(es) throughout 

the image.  Semantic image segmentation is similar to another CNN heavy task called 

object detection.  However, the end goal of most object detection algorithms is a bounding 

box around the object rather than a pixel by pixel map. 

1.4.2.1 	Convolution	layers	

The convolution layer can be thought of as the feature detection layer.  The user 

defines the number and shape of the filters employed by this layer, as well as what stride 

and padding to use.  The stride defines how many pixels/voxels the kernel skips before 

the next calculations, while the padding adds additional pixels/voxels around the image 

to allow the kernel to get closer to the edges of the image.  Padding can be any amount, 

however, “same” and “valid” are the two most commonly used.  The “same’ padding 
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provides only enough padding around the image to allow for the same size after 

convolution with the filters, while ‘valid’ adds no padding allowing the output shape to be 

reduced.  

The output size of any layer can be calculated using the following equation: 

                                                        𝑂 = 1234$5
6

+ 1	     ( 2 ) 
where, 𝐼 is the size of one dimension of the input image, 𝐹 is the size of the filter, 𝑃 is the 

amount of padding, and 𝑆 is the stride.  This calculation is repeated for each image 

dimension.  Square or cube images and filters are often used, so this calculation is usually 

performed once per layer.  There are two other dimensions included in the size of the 

output layer: the channels and the number of filters.  Color images use 3 channels one 

for each of the red, blue, and green values, while gray scale images only have one 

channel.  Some techniques when working with medical images provide different slices of 

a 2D medial image to each of the 3 channels.107, 108  It is important to keep track of the 

output shape of each layer when designing a network as typical CNNs tend to reduce the 

size of the image and increase the number of filters as the network gets deeper. 

Each filter has its own set of weights and bias terms and seeks to capture 

information from a local portion of the input image.  At lower levels in the network, the 

convolutions act much like edge detectors and color pattern filters.  For example, when 

trying to classify an image as containing a face, the early filters may look for vertical edges 

such as the side of a nose or jaw and oval patches of white for the eyes, Figure 9.  The 

subsequent layers look at local patches of the lower level features from the previous layer 

and begin to construct higher level features of an image like, in continuing the example, 

eyes, lips, or nose.  This continues until the network learns which features need to be 

present in order to positively identity the image as a face.  Convolution layers are typically 
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followed by a non-linear activation function such as the ReLU activation function 

described earlier.  

 

CNNs can have a large number of weights and biases, also referred to as free 

parameters.  For one layer with 16 filters of size 5 by 5 convolved using a stride of 1 with 

an original image of size 50 by 50 and same padding, there are about 40,000 free 

parameters.  With CNNs, it is not uncommon to have tens to hundreds of thousands of 

free parameters.  In order to reduce the number of free parameters at a given layer, 

periodic down sampling or pooling is often employed. 

1.4.2.2 	Pooling	layers	

Pooling layers are often used to reduce the size of the layer input and number of 

parameters.  These layers employ a user defined filter size and stride but do not have 
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Image:4x4x1 Filters:	3X3X2 Output:	2x2x2

* 

* 

Figure 9: Example of a convolution layer for a 4x4x1 image with two 3x3 filters, valid 
padding and a stride of 1.  The filter weights are seen in the second column with the 
resulting output in the third column.  The portion of the image in the red box is 
convolved with the weights to produce the values within the red box in the output 
layer.  The entire filters slides over by one horizontally or vertically to fill the rest of the 
output image. 
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weights or biases to tune.  These layers are often not included in the count of how many 

layers a network contains.  Frequently, the stride will be chosen to have the same length 

as the filter size so as to have non-overlapping connections. Others, however, have 

employed a non-overlapping pooling layer with success.100 There are different types of 

pooling that can be applied.  The most common are maximum pooling and average 

pooling, Figure 10.  In maximum pooling, the largest value within the filter at each kernel 

stride is kept while average pooling, as the name suggests, averages the value within the 

filter and assigns the average to the corresponding pixel/voxel in the output.  Pooling 

layers typically are not followed by an activation function. 

 

1.4.2.3 Fully	Connected	layers	

Fully connected layers, as the name suggests, connects each element, pixel/voxel 

or neuron depending on the network architecture, of the input layer with each element of 

the output layer.  These layers serve to bring all the information the network has learned 

together to provide a final output.  In more recent years, the traditional dense fully 

connected layer has been replaced by the use of convolution layers using a filter size of 

2 2 4 2 3 4 2.5 3

3 3 2 4 4 4 2.8 2.5
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3 2 2 1

Max	Pool	 Average	PoolImage

Figure 10: Maximum and Average pooling layers with a 2x2 filter and a stride 
of 2.  Colored boxes in the image correspond to colored boxes in the output 
following pooling calculations. 
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1 for the given image dimensions, as it is computationally faster and accomplishes the 

same end goal.  The user defines how many output neurons are needed depending on 

the goals of the network.  For example, in the final layer of a classification network, the 

fully connected layer typically has the same number of neurons as classes being 

classified.  Each neuron in the final layer can be seen as measuring the probability of 

each class given the activation levels from each of the high level features learned by the 

network.  The fully connected layers are typically followed by an activation function with 

the very last layer utilizing the activation function necessary to provide the desired output 

from the network as described previously. 

1.4.2.4 Batch	Normalization	

Batch normalization layers seek to normalize the input values across the batch, or 

chunk of data with a user specified size, being analyzed by the network to maximize 

learning.  The activation functions that can be applied to a particular layer often have a 

region where learning is maximized and excessively large or small values saturate the 

activation function, making learning a very slow process.  During the process of training, 

the weights of the network are updated at the end of a batch.  The size of a batch is 

usually determined by how large the dataset is, where smaller datasets use batch sizes 

as small as 1, the desired speed of training, where larger batches trained faster, and the 

memory limits of the system, which provides the upper limit on the possible batch sizes.  

The batch normalization layer standardizes the batch of inputs to between a range of 

values such as -1 to 1 or 0 to 1 depending on the nature of the data in the batch to prevent 

saturation of the activation functions. While many networks employ normalization as a 
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pre-processing step, the batch normalization has been found to be particularly useful in 

ResNets.103 

1.4.3 Image Classification 

Image classification was one of the first areas to see significant improvement with 

machine learning.  The annual ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) began in 2010 and is a competition where programmers compete to have the 

algorithm with the highest accuracy on classifying images into one of 1000 classes.109  In 

2012, a machine learning algorithm employing CNNs came in first in the ILSVRC-2012 

competition with an error rate over 10% lower than the second place contestant.100  Since 

then, the winning algorithms have all been based on machine learning techniques.  

In medical imaging, image classification techniques have been employed for a 

variety of tasks such as classification of lesions as benign or malignant,110–113 

classification of interstitial lung disease,114–116 type and staging of brain tumors,117 and 

other computer aided diagnosis (CAD) tasks.  In 2016, the American Association of 

Physicists in Medicine (AAPM), National Cancer Institute (NCI), and SPIE hosted the 

LungX challenge, where participants classified lung nodules as benign or malignant.  

Three machine learning based techniques had an area under the ROC curve (AUC) better 

than obtained by guessing.  All participants had AUCs between 0.5 and 0.68 with the 

CNN based model having an AUC of 0.59.110 In 2017, Shen et al.113 developed a multi-

crop CNN that replaced one of the maximum pooling layers with a multi-scale maximum-

pooling layer. This network achieved an AUC of 0.93 for detecting the likelihood of 

metastasis in a lung nodule. 
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As mentioned previously, to train a network from scratch there needs to be a large 

amount of data available for training.  One method that has been applied in the medical 

field is transfer learning.  In the process of transfer learning, a pre-trained network such 

as AlexNet, which is trained in the classification of images such as banana, cat, dog, 

human, etc., is used with all but the last few layers frozen or very minimally modified.  

Frozen layers do not have their weights updated and subsequently calculate the features 

they were trained to detect for the application they were originally optimized for.  Minimally 

modified layers are trained on the new data but with a very small learning rate so as to 

preserve most of the pre-trained information.  The last layer, or last few layers, depending 

on the case, are retrained using the new input images for the desired task to essentially 

teach the output layers which of the pre-trained features relate to the new task.  Transfer 

learning can be accomplished with a much smaller training set than the original data, 

however, the new input data must be manipulated into the same format as the original 

task.  For instance, in order to use AlexNet for medical images as Gao et al.116 did in 

classifying interstitial lung disease, the input images first have to be sized to 244 by 244 

and artificially generate 3 “color” channels by using different Hounsfield unit (HU) windows 

for low attenuation, normal CT range, and high attenuation. They were able to achieve an 

overall accuracy of 87.9% on a patch size similar to the literature (31 by 31 pixels) with 6 

classes and 68.6% on their “holistic” patch method using large portions of the CT image.  

By contrast, Microbiana et al.114 built their own network from scratch to classify the 

interstitial lung disease into 7 classes.  Their network took as input a 32 by 32 patch of 

the image and had a similar architecture to AlexNet consisting of 5 convolution layers and 

an average pooling layer before 3 fully connected layers.  They were able to obtain an 
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overall accuracy with 7 classes of 85.6%, which is comparable to the pre-trained network 

by Gao et al. mentioned previously. 

In this work, image classification will be used to classify the type of tumor/normal 

tissue interface in an image patch using built from scratch CNNs.  The hope is that the 

CNN may recognize patterns within the CT image that would assist physicians in 

distinguishing the tumor from seemingly similar non-cancerous tissue, such as 

atelectasis, and reducing the contouring uncertainty in these regions. 

1.4.4 Image Segmentation 

Semantic image segmentation is the task of labeling each pixel/voxel in an image 

as belonging to a particular class or background.  The object of semantic images 

segmentation is to provide the location of the class(es) within the image frame.  For 

instance, the machine learning algorithms in new self-driving car software must identify 

and locate where objects such as traffic lights, signs, other vehicles, people, etc. are in 

order to navigate and stop appropriately. Image segmenting is also a natural next step 

from image classification. 

Image segmentation is of particular interest to the medical community.  Within the 

radiation oncology workflow, as described earlier, the physician takes the time to draw 

out the tumor contours as well as OARs.  This is a very time consuming process.  

Autosegmentation, such as the PET/CT method described earlier by Baardwijk et al.,87 

that are not based on machine learning techniques have been shown to reduce contour 

delineation uncertainty.  With the advent of deep learning, there has been an increased 

interest in using the technology for medical images segmentation. 
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The initial image segmentation algorithms arose from the patch wise image 

classification networks.  The classification was performed in a sliding window fashion over 

the entire image creating a map of classes predicted for each central pixel of each 

window, as described in the neuronal membrane segmentation paper by Ciresan et al.118 

Since then, a few variations of an extended concept have been developed for image 

segmentation as well, mainly the V-Net,119 U-Net,120 and E-Net.105  All three networks 

revolve around the same architecture consisting of two paths: the first path, or the encoder 

path, is the same basic structure as the image classification network usually modeled off 

the VGG102 network; the second path, or decoder path, is the reverse of the encoder path 

with up sampling instead of down sampling between the convolution layers.  The 

information from the encoder path with the same output size is passed to the decoder 

path following each up sampling to preserve the original spatial information.  The result 

is a pixel by pixel map of the classes.  The V-Net, U-Net, and E-Net vary in small details.  

For speed, the E-Net does not perform as many convolutions on the decoding path as 

the encoding path.  The U-Net appears to perform a set of convolutions on the smallest 

down sampled image before beginning the decoding path whereas the V-Net is a true 

mirror.  For image segmentation tasks, a Dice coefficient based cost function has been 

employed by some to improve accuracy.119, 121 This cost function measures the amount 

of overlap between the predicted segmentation and the true label segmentation.     

Image segmenting has been applied to a wide variety of anatomical locations 

including but not limited to: the brain122–124, prostate119, 121, knee125, heart126, and lung.127 

Novikov et al.127 modified the U-Net architecture to create three new variations by 1) 

adding drop out layers, which randomly modifies the weights to prevent overfitting, after 
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each of the convolution layers, 2) inverting the number of filters used so the largest 

number of filters was at the top layer, and 3) replacing the pooling layer with non-

overlapping convolution layers to segment the lungs, heart, and clavicles on chest 

radiographs.  The drop out layers and inverted number of filters had the best Dice 

similarity, 83.7% - 97.3% depending on the organ. In another paper by Moeskops et al.,128 

they used a classification network passed over the image to segment tissue on brain MRI, 

breast MRI and chest CT angiography with the same network.  The network showed very 

little confusion between image classes at less than 0.0005% and the Dice score for the 

brain tissue was between 80-90%, with the exception of the ventricular cerebrospinal 

fluid, which has a Dice dissimilarity of about 70%, the breast about 70%, and the cardiac 

ventricles about 60%.  

This work aims to utilize the image segmentation techniques to build an uncertainty 

model for the tumor boundary. This can be accomplished though expanding the 

classification network for the different interfaces, or training a new network to predict the 

presence of an interface and the probability associated with the label to provide a picture 

of uncertainty.  This tool could then be used by physicians to reduce contour delineation 

uncertainty. 

1.5 Overview of Dissertation 

1.5.1 Problem Statement and Purpose 

Despite the advances in cancer treatment, lung cancer, in particular, still has very 

low five-year survival rates.  This work seeks to investigate the feasibility of building early 

prediction of lung tumor response and survival, and using machine learning techniques 

to provide additional information to physicians during tumor delineation about expected 
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uncertainty.  Predicting response prior to or early in the treatment course could inform 

physician decision making, provide better patient care and improve identification of the 

best treatment plan for the patient.  Measuring change in tumor volume is one method of 

determining treatment response, but the classification of complete response, partial 

response, stable disease, or progressive disease is often determined  after the completion 

of treatment.  One area of growing interest is radiomics, which seeks to utilize imaging 

and texture features extracted from routine images combined with clinical information to 

assist in a variety of clinical applications.  Critically, image features that cannot be 

repeated precisely between acquisitions should not necessarily be relied upon in 

predictive models. Thus, before use in the clinic, repeatable and robust texture features 

that are capable of describing the changes due to treatment and differences in tissue 

must be identified. 

A factor potentially contributing to the low survival rate in lung cancer is the 

uncertainty in tumor delineation. Multi-modality imaging has been used to decrease 

physician target delineation uncertainty. However, inter- and intra-observer variation 

remains one of the largest uncertainty factors in radiation treatment, possibly leading to 

excess irradiation of normal tissue or under treatment of tumors.  Another field of growing 

interest is machine learning and in particular deep learning.  These techniques are being 

investigated for automatic segmentation to reduce contouring uncertainty for organs at 

risk and tumors, and to distinguish between malignant and benign lesions in computer 

vision because of their success segmenting and classifying parts of images as different 

materials that appear the same to a human observer.  Reducing the contour delineation 

uncertainty could lead to better patient outcomes through reliable targeting of the tumor 
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tissue and sparing of normal tissue structures.  In addition, knowing the level of 

uncertainty to expect in an image could help to more accurately define the tumor and 

spare additional normal tissue. 

This thesis will seek to explore multi-modality imaging texture features in predictive 

and machine learning techniques for uncertainty modeling.  The first aim is to investigate 

texture features from pretreatment and, where available, images acquired during 

treatment to determine the texture features’ repeatability within the tumor, and test their 

feasibility along with clinical features in a predictive model for tumor response and 

survival.  The second aim is to explore the feasibility of building a probabilistic model of 

inter-observer contour delineation uncertainty given patches from images to aid 

physicians in contour delineation. 

1.5.2 Specific Aims 

Specific Aim 1:  Develop and evaluate robust texture features extracted from 

multiple modality images for potential use in predictive modeling of non-small 

cell lung cancer tumor response. 

SA 1.1: Assess the robustness of texture features extracted from different imaging 

modalities.  Robustness will be evaluated based on repeatability between scans and, 

where possible, under different scanning conditions.  Image pre-processing techniques 

will be evaluated for their ability to improve robustness.   

SA1.2:  Investigate the feasibility of building a predictive model for tumor response 

utilizing the identified texture features extracted from multi-modality images, clinical 

factors, and observed changes throughout treatment for a limited number of patients.  

Models for CT and MR will be investigated, as well as a multi-modality model utilizing the 
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similarities and independent features among the modalities. The success of the models 

will be validated and the limitations of the models examined. 

Specific Aim 2:  Build an uncertainty model utilizing imaging features from 

single and multi-modality images and tumor characteristics to support physician 

contour delineation. 

SA 2.1 Determine the ability to predict the uncertainty in contour delineation from 

the tissue interface.  This sub-aim will first determine the degree of uncertainty in a tissue-

tumor interface, and then establish how well the interface type predicts the level of 

uncertainty. 

SA 2.2: Investigate deep machine learning techniques to distinguish between 

different tumor/normal tissue interfaces given a patch input of the image.  This sub aim 

will determine the extent to which machine learning techniques are able to learn features 

from input patches to distinguish different interfaces. 

SA 2.3: Investigate feasibility of building a tool using machine learned features to 

predict the level of uncertainty at a point of interest.  If the network to determine the 

interfaces is successful, this network could be extended to produce a probability map of 

interface location and uncertainty derived from the interface predictions.  If the network is 

not successful, a new network could be developed to predict the uncertainty directly. 

1.5.3 Innovation  

Predictive models for patient outcome after cancer treatment have utilized a variety 

of parameters acquired from different imaging modalities, but few have investigated 

different parameters across different modalities and different time points in treatment. The 

focus of many predictive models has often included only one imaging modality with 
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pretreatment imaging features.  This work seeks to explore the possibility of expanding 

the scope of the features utilized in the predictive models for tumor response to include 

features acquired during treatment for each imaging modality as image data allows and 

further explore the feasibility of combining multiple modalities into a single predictive 

model.  MR image features are not as well studied due to the effect different imaging 

protocol parameters have on the resulting texture features, therefore this work will seek 

to establish the reliability of the MR derived texture features by evaluating the repeatability 

of the MR derived texture features and identify a set of non-redundant features that can 

be used, similar to those identified for CT images and PET, in an effort to develop an MR 

predictive model. As mentioned earlier, there are several factors affecting the 

reproducibility of the MR texture features, therefore this work will only focus on 

establishing the repeatable texture features for the imaging protocols used at the VCU 

hospital and seek to establish the feasibility of producing an institution protocol specific 

predictive model for MR.  The exploration of the multimodality predictive models will seek 

to determine the features from CT and MR that when combined give the “best” tumor 

response predictive power. Furthermore, the incorporation of longitudinal features, data 

permitting, into models predicting response could identify texture features that change as 

a result of irradiation.  These changes in underlying physiological processes caused by 

irradiation in the tumor could arise from tumor cell death resulting in changes in cell 

density as necrotic regions develop and/or are cleared, cell vascularity as tumor size and 

areas of proliferation change, and reoxygenation as previously hypoxic regions gain 

access to oxygen.  
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Recent methods of improving contour delineation have generally focused on assisted 

or autosegmentation. However, this may be a very challenging approach for lung tumors 

due to subtle boundaries and the highly variable appearance of tumor tissue between 

patients.  Instead, a novel approach is proposed herein to stratify delineation uncertainty 

by tumor to normal tissue ‘interface’ type. Then, the focus of this work is to use this 

uncertainty estimate to assist the physician with manual contouring, rather than the 

challenging task of automatically delineating the tumor directly.  The developed tool seeks 

to predict the amount of uncertainty in the contour delineation given the tissue interface 

or around a point to help guide the physician and inform them of the level of uncertainty 

to expect.  Deep convolution neural networks seem particularly well suited to take an 

image output and classify the different tumor/normal tissue interfaces in the lung, and by 

expanding the classification task into an image segmentation for the interface, could be 

a tool used by physicians to reduce contour delineation uncertainty. 
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2 Specific Aim 1:  Repeatability of Magnetic Resonance 

Image Derived Texture Features and Use in Predictive 

Models for Non-Small Cell Lung Cancer Outcome 

 
 
 

2.1 Introduction 

As mentioned previously in the introduction chapter, there has been an increased 

interest in early prediction of treatment outcome to allow for changes to the treatment 

regimen with the goal of providing better patient care. In order to accomplish this, the 

previously mentioned sub aims were devised:  

• SA 1.1: Assess the repeatability of texture features extracted from different 

imaging modalities.   

• SA 1.2:  Investigate the feasibility of building a predictive model for tumor 

response. 

This aim seeks to first identify texture features appropriate for predictive models based 

on the repeatability of the texture features and image processing applied. Then the 

identified texture features are used to investigate predictive models for tumor response 

at end of treatment, and overall survival at 12, 18, and 24 months.  The feasibility of a 

multi-modality model is also investigated by combining texture features across CT and 

MR modalities. The predictive capability of the resulting models is evaluated and 
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compared.  In addition, the developed workflow is also applied to normal tissue ROIs as 

a control and to identify potential spurious results.   

The first part of the study investigated the repeatability of a variety of images 

including: T1-weighted Volumetric Interpolation Breath-Hold Examination (VIBE), T2-

weighted True fast MRI with steady state precession (TRUFISP), DW-MRI, ADC maps, 

and helical 4D CT scans for 15 patients with NSCLC before and during the course of 

radiotherapy. See Table 1 for summary of patient characteristics. 

While the repeatability portion of the study investigates several imaging protocols 

and incorporates multiple time points, the predictive modeling focuses on pretreatment 

CT, VIBE, and TRUFISP images only due to the limited availability of during treatment 

data.  The detailed results of the predictive models as well as descriptions of the methods, 

developed workflow, and analysis can be found in manuscript provided in Appendix I.  

The key finding in the repeatability study identified several features from the MRI and CT 

images that were candidates for use in predictive models due to repeatability and stability.  

Multiple significant models for overall survival were constructed from single modality MR 

and CT, as well as multi-modality models in the predictive modeling portion of the study.  

In addition, normal tissue was investigated as a control to help reduce spurious results, 

which led to identifying the medoid feature selection process as being more robust with 

the small number of subjects in our study.  It is recommended that the reader return to 

this chapter following reading the manuscript.  The following sections will provide 

additional details regarding methods and analysis not provided in the manuscript.  

Chapter 3 will discuss preliminary research used to develop the workflow presented in 
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the manuscript as well as exploratory research on the delta radiomics data from the 

different time points. 

  

2.2 Code Modifications 

As mentioned in Appendix I, this work used the open source radiomics toolkit 

develop by Vallieres et al.22 and was extended in-house.  For this work, only the texture 

feature calculation portion of the toolkit and associated functions were utilized including 

the volume preparation code.  The original GLCM texture feature calculation code 

included only 8 texture features: energy, contrast, entropy, homogeneity, correlation, 

variance, sum average, and dissimilarity.  This code was expanded to include the 

additional proposed features by Haralick48 and in subsequent papers49, 50 and, in the case 

of contrast, rewritten in a vectorized form to decreased calculation time.  Appendix II 

provides the mathematical formulation for all texture features used in this work.  In 

addition, the original code provided different methods for quantizing the gray levels before 

computing the texture features.  A new quantization method was written to use the gray 

Table 1: Summary of patient characteristics for texture feature repeatability 

Male	 10
Female	 5

Squamous	cell	carcinoma	 9
Adenocarcinoma	 6

IIB 3
IIIA 6
IIIB 4
IV 2

Yes 12
No 3

Mean	Dose	(Range)
61.6	(59.4-66)	Gy

59.1	(50.0-73.4)	years

Sex

Mean	Age	(Range)

Histology	

Stage

Chemotherapy
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levels as the bin levels in effect allowing for a “no quantization” option which was not 

present in the original code.   

For all images except the DW-MR and ADC maps, the texture feature extraction 

and image processing was performed in 3D.  The image protocol used at VCU to acquire 

the DW-MR and ADC maps only consisted of 7 slices, which was not sufficient to cover 

the entire tumor volume in one image set for some patients.  Therefore, repeated 7 slice 

image sets were obtained to cover the whole tumor volume. For all the DW images and 

ADC maps, a volume weighted average of the texture features extracted from 2D slices 

was taken and used as a surrogate for the 3D volume.  Additional details regarding this 

procedure will be discussed in the 3D Surrogate for Diffusion Weighted Images and 

Apparent Diffusion section.  The Vallieres code was again modified to perform a 2D 

wavelet decomposition. 

2.3 Extended workflow  

A simplified diagram of the workflow developed for this project is depicted in Figure 

1 of the manuscript in Appendix I.  Presented, in Figure 11 is a more detailed diagram of 

the workflow developed. The workflow can be thought of as three overarching steps: 

repeatability, clustering/feature reduction, and modeling.  The repeatability step identifies 

the repeatable and stable features which are then passed to the clustering step.  The 

clustering takes the repeatable and stable features and clusters them, determines the 

optimum number of clusters, and then selects a representative feature from each cluster.  

The representative features are then combined with the response data and model 

selection is performed in the final step.  Specific details on the methodologies employed 

are given in the Methods section of Appendix I. 
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Figure 11: Diagram of workflow developed for radiomic texture feature selection and 
modeling. 
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2.4 False Error Rate Control 

In radiomics, a large number of texture features and models are often tested as part 

of the hypothesis,increasing the probability of finding a statistically significant result purely 

by chance.  Often the type 1 error detection rate is set at 0.05 indicating a 5% chance of 

saying a result is significant when in reality it is not, or more commonly described as 

rejecting the null hypothesis when it is true.  If more than one family of comparisons is 

being tested for significance, the chance of committing a type 1 error increases.  In order 

to account for the increase in type 1 errors due to multiple comparisons, different 

familywise error rate control (FWER) and false discovery rate (FDR) procedures have 

been proposed.  

One of the most popular, and most stringent, FWER correction procedures is the 

Bonferroni correction.  The Bonferroni correction seeks to adjust the critical p-value by 

dividing it by the number of comparisons and using the corrected critical p-value to 

determine significance.129 However, the traditional variation of the Bonferroni correction 

lowers the power to correctly reject one or more false components of the hypotheses.   To 

maintain the power, a sequential Bonferroni correction was proposed by Holm130 and later 

popularized by Rice.131  In the sequential implementation of the Bonferroni correction, the 

model or univariate p-values from the multiple comparisons are first ordered from smallest 

to largest and compared to the appropriate level of the corrected critical p-value beginning 

with the smallest p-value compared to the first level of corrected critical p-value: the 

desired significance level divided by the number of comparisons.  If the smallest p-value 

is significant when compared to the first level of the corrected critical p-value, the next 

smallest p-value is compared to the second level of the corrected critical p–value: the 
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desired significance level divided by the quantity the number of comparisons – 1.  If the 

second smallest p-value is significant, then the third smallest is compared to the third 

level of the corrected critical p-value: the desired significance level divided by the quantity 

the number of comparisons – 2 and so forth until the calculated p-value is no longer 

significant when compared to the appropriate level of the corrected critical p-value.130, 131 

The Bonferroni correction in the case of a small dataset can be too restrictive as it 

increases the chance of a type 2 error (accepting the null hypothesis when it is false or 

saying a variable is not significant when in reality it is significant). In this case, using a 

FDR controlling procedure may be more appropriate as was used in the manuscript in 

Appendix I.  The FDR procedure adjusts the correction of the p-value using a 

predetermined acceptable error rate.  The Benjamini-Hochberg-Yekutieli (BHY)132, 133 

procedure is similar in nature to the sequential Bonferroni correction procedure except 

that the significance level is replaced by the acceptable error rate and is multiplied by the 

factor in equation ( 3 ) as opposed to just divided by the number of comparisons.  

<
=∗	 ?

@
A
@B?

     ( 3 ) 

where 𝑖 is the rank of the ordered p-value, and 𝑚	is the number of comparisons.  The 

corrected p-values resulting from the BHY procedure will always be less than or equal to 

the Bonferroni corrected p-values when the significance level and acceptable error rate 

are the same. 

2.5 Normal Tissue Determination 

The same workflow was applied to unirradiated normal tissue as a control 

experiment to identify spurious results under the assumption that texture features 

extracted from unirradiated normal tissue would not have a biological correlation with 
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treatment outcome.  Three different normal tissues were investigated including: air within 

the main airways, blood within the descending aorta, and contralateral out-of-field muscle 

in either the erector spinae or the infraspinatus muscles.  All three normal tissues where 

chosen because they would not experience changes due to radiation treatment, and were 

to a certain degree homogenous and allowed for reproducible ROI definition. 

The concordance correlation coefficient (CCC), and other correlation measures, are 

sensitive to the range of the values present in the population.134  If the range of values 

across the sampled population is very narrow, then small deviations from perfect 

correlation will result in a low CCC score, as seen in Figure 12.135, 136  For the air and 

blood samples, the repeatability of texture features was lower than expected for values 

such as the mean, which numerically only deviated by about 4 HU on a CT scan.  This 

was because the CT value across all patients was very similar as expected but was 

sensitive to any artifacts induced by the movement of blood in and out of the imaging 

slice.  Similarly, the air contour was sensitive to noise given the small range of values 

across patients.  The muscle contours produced a number of repeatable features in the 

same range as the tumor and was selected for further investigation as described in 

Appendix I. 
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Figure 12: Comparison of the Aorta ROI Mean HU values from the inspiration (0%) 
phase images from different times (top) and same scan inspiration (0%) and expiration 
(50%) phase (bottom) CT images demonstrating the difference observed in values for a 
homogeneous tissue. 
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2.6 Conclusion 

Texture features extracted from MR and CT images were utilized to develop 

predictive models for overall survival and local control for both single and multi-modality 

models for a small number of subjects.  The workflow developed ensured that repeatable 

and stable features were used as candidates for clustering and model selection.  The 

medoid representative cluster feature selection method appeared to select more robust 

texture features than the univariate selection method when compared to the model 

derived from unirradiated normal tissue.  The results are encouraging and further study 

into MR features for predictive models is warranted. 
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3 Specific Aim 1:  Preliminary and Supplementary 

Experiments for Radiomics Workflow Development and 

Predictive Modeling 

 
 
 

3.1 Introduction  

The work presented in the previous chapter and Appendix I was based on a final 

workflow developed through testing different methods of image processing and selecting 

features with desirable characteristics, such as repeatability and stability. The first step in 

developing the workflow was to determine which preliminary processing steps maximize 

repeatability of the texture features.  The focus of the preliminary workflow development 

research was on MR images and establishing if any of the texture features noted therein 

were repeatable under very similar scan conditions. The repeatability of CT and PET 

features have been studied to a greater extent by others,11, 20, 34, 40, 68, 71, 73, 137, 138 however, 

CT repeatability was still evaluated for completeness and comparison for applicable 

processing steps.   

The work presented in this chapter sought to evaluate some of the common image 

processing techniques and their effect on the repeatability of the texture features 

extracted from the different image types, such as bias correction for MR images, and 

wavelet decomposition and quantization of gray level values for both MR and CT.  Each 



 

 63 

of these steps changes the distribution of the gray level values and the resulting texture 

feature calculations, thereby affecting the repeatability.  By evaluating the different 

processes’ effects on repeatability as measured by the CCC, the image pre-processing 

steps were determined for the workflow.  

Methods of limiting and correcting visual artifacts in the image, such as applying HU 

thresholds in CT images and bias correction in MR images, aim at improving the 

qualitative look of an image.  Previous work by Hunter et al.,71 showed that the number 

of repeatable features decreased with increasing HU thresholds, and for this reason, we 

did not apply any threshold limits to the CT images. However, research into the 

repeatability of MR texture features revealed a dependence on the imaging parameters 

and acquisition methods.23, 29, 37–39, 74–77 To alleviate some of these dependencies, a single 

imaging protocol and MR instrument was used to acquire the MR images allowing for an 

assessment of the repeatability of texture features when image processing techniques, 

such as bias correction were applied, and will be discussed in the following sections. 

Wavelet decomposition and gray level quantization are other processing techniques 

that have been applied to make texture features more robust or to emphasize different 

structural contributions within an image.  The effect of quantization on texture features 

has been studied by various groups.50, 139, 140 Quantization seeks to reduce the sparsity 

of the GLCM, GLRLM, and GLSZM that can arise when the number of gray level is not 

quantized.  It can be thought of as smoothing the gray levels and reducing the noise in 

the image. However, by quantizing the images, fine textures can also be lost.  Wavelet 

decomposition can be thought of as a simultaneous high pass and low pass filter 

decomposing the image into contrast and edge emphasized images.60  By recombining 
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the different decomposed images at different levels, edges and other structural 

information can be strengthened before computing texture features as explored by 

Vallieres et al.22   

The remaining sections of this chapter are dedicated to the development of the 

surrogate 3D texture features derived from 2D slices for the DW-MR and ADC images 

and exploration of time dependent changes of the texture features through treatment. The 

imaging protocol for acquiring the DW-MR and ADC maps was limited in range due to 

recommendation from the manufacturer.  For some patients, the entire primary tumor was 

not covered by the imaging sequence and multiple overlapping sequences were acquired.  

A method for computing a volume averaged 3D texture feature surrogate was developed 

from the 2D slices. To investigate the differences in the texture features over the course 

of treatment, both population and individual changes were explored.  A summary of the 

available images at different time points can be seen in Table 2. The ‘_Thickness’ label 

denotes a comparison between images with different slice thicknesses, and the ‘_Order’ 

label denotes a comparison between images with different slice acquisition orders. 

Table 2: Summary of available images at different time points. 

 

Time	1 Time	2 Time	3
CT	 15 9 9

TRUFISP 15 10 9
VIBE 16 9 7
DWI_Thickness 4 2 2
DWI_Order 4 6 6
ADC_Thickness 4 2 2
ADC_Order 4 6 6
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3.2 Bias Correction  

The bias artifact is the result of signal intensity non-uniformity causing a smooth 

non-uniform change in the signal intensity unrelated to anatomical variation. Bias 

correction seeks to correct the non-uniformity of the signal in post processing leading to 

more uniform looking image intensity.  An example of the bias artifact and a corrected 

image can be seen in Figure 13. The VIBE image gradually loses intensity toward the 

center of the images in the top row.  The restored uniform intensity from the bias 

correction procedure can be seen in the bottom row.  There are several potential causes 

for the signal non-uniformity including: non-uniform B0 magnetic field, RF coil 

homogeneity, sensitivity of the surface coils, gradient fields inducing eddy currents, and 

others.141 

Figure 13: Example of bias artifact (top) and the corresponding bias corrected image 
(bottom) for one pair of inspiration/expiration VIBE images used in this study. 
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This study utilized the 32 non-contrast enhanced VIBE inspiration/expiration image 

pairs and the 34 non-contrast enhanced T2-weighted TRUFISP inspiration/expiration 

image pairs from all 15 patients and all time points throughout the course of radiation 

treatment. One experienced radiation oncologist delineated the primary tumor on either 

the inspiration or expiration image at random per patient to prevent systematic bias.  A 

ridged registration was performed utilizing the MIM version 6.6 (MIM Software Inc., 

Cleveland, OH) program between the inspiration and expiration images prior to 

transferring the contour to the corresponding image and adjusting as necessary.  

Volumes of the final tumors corresponded within ±10% of each other.  

Since the MR images exhibited the bias artifact, applying a bias correction would be 

a reasonable pre-processing step.  To evaluate the effect a bias correction pre-processing 

step has on the repeatability of texture features, a bias correction was applied utilizing the 

N4 Bias Correction Algorithm in the Advanced Normalization Toolkits (ANTs) developed 

by Tustison et al.142, 143  This algorithm uses an iterative approach to estimate the 

unbiased image, calculate the bias field correction and preform a comparison to the initial 

image.  To ensure a smoothly varying bias field correction, b-splines were used to 

produce the bias field correction.142  A mask of the air outside the body and the normal 

lung tissue, since the lungs are primarily air, was supplied to the algorithm.  The procedure 

for determining the ideal threshold for air within the lung of the TRUFISP and VIBE mask 

images and bias correction parameters was determined by experimentation on a phantom 

and approved by a radiation oncologist.  
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Fifty-nine different texture features, detailed in Table 3, were extracted from the 

unprocessed and bias corrected images utilizing the modified version of the radiomics 

code by Vallieres et al.,22 via the MIM MatLab (MatLab 2016b, MathWorks, Natick, MA) 

extensions. Details regarding the modifications are described in the 2.2 Code 

Modifications section of the previous chapter.  The mathematical description of each 

texture feature can be found in Appendix II.  Prior to calculating the texture features, the 

images were isotopically resampled to the axial in-plane pixel width of the image and 

pixels greater than 3 standard deviations from the mean of the ROI were removed as 

suggested by Collewet et al.75 to improve feature stability.  Texture features were 

computed for 5 different wavelet decomposition ratios, 1/2, 2/3, 1, 3/2 and 2, where the 

ratio of 1 represents the unfiltered image.22    

The repeatability between the inspiration/expiration images for each image pair was 

again assessed by the CCC, where texture features with a CCC of greater than 0.9 are 

considered repeatable.134, 144  First proposed in 1989, the CCC seeks to characterize the 

departure of a test and re-test measurement from the 45 degree line through the origin 

which represents perfect one-to-one correlation.134  Other methods of agreement exist, 

such as the Pearson correlation coefficient, paired t-test, and the interclass coefficient, 

but each has potential draw backs.  The Pearson correlation coefficient measures the 

linear agreement of paired points, but does not characterize deviation from perfect 

agreement.  The paired t-test addresses the mean of all samples but not individual 

deviations, and the inter class coefficient treats the test and re-test measurements as 

replicates instead of distinct measurements, though the appropriate ICC has been shown 

to be equivalent to the CCC.134, 145, 146 
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Results from the preliminary research demonstrated that there were texture features 

for the bias corrected (BC) and non-bias corrected images, both VIBE and TRUFISP 

images, that had a CCC of greater than 0.9 as can be seen in Figure 14 and Figure 15 

respectively.  The high number of texture features with a CCC greater than 0.9 for the 

non-bias corrected images was encouraging as it indicated several texture features that 

could be candidates for further analysis for both MR a multi-modality and MR specific 

predictive models.  The same was not true for the bias corrected images as seen in the 

VIBE_BC and TRUFISP_BC results in Figure 14 and Figure 15.  The number of texture 

feature that had a CCC of greater than 0.9 was much less than the non-bias corrected 

images indicating that the bias correction, while improving the visual appearance of the 

images, did not improve the stability of the texture features.  This could be due to the 

iterative nature of the bias correction algorithms not finding exactly the same solution for 

both the inspiration and expiration images.  Bias correction was not implemented as part 

of the workflow to increase the number of repeatable features. 

Table 3: List of the texture features evaluated in this work. 
Histogram GLCM NGTDM GLRLM GLSZM
Variance Energy Coarseness Short	Run	Emphasis	(SRE) Small	Zone	Emphasis	(SZE)
Skewness Contrast Contrast Long	Rum	Emphasis	(LRE) Large	Zone	Emphasis	(LZE)
Kurtosis Entropy Busyness Gray	Level	Non-Uniformity	(GLN) Gray	Level	Non-Uniformity	(GLN)
Standard	Deviation	(SD) Homogeneity Complexity Run	Length	Non-Uniformity	(RLN) Zone	Size	Non-Uniformity	(ZSN)
Mean Correlation Strength Run	Percentage	(RP) Zone	Percentage	(ZP)
Minimum SumAverage Low	Gray	Level	Run	Emphasis	(LGRE) Low	Gray	Level	Zone	Emphasis	(LGZE)
Maximum Variance High	Gray	Level	Run	Emphasis	(HGRE) High	Gray	Level	Zone	Emphasis	(HGZE)
Median Dissimilarity Short	Run	Low	Gray	Level		Emphasis	(SRLGE) Small	Zone	Low	Gray	Level	Emphasis	(SZLGE)
Quartlie1 Mean	Pair	Sum	(MeanPS) Short	Run	High	Gray	Level		Emphasis	(SRHGE) Small	Zone	High	Gray	Level	Emphasis	(SZHGE)
Quartile3 Variance	Pair	Sum	(VariancePS) Long	Run	Low	Gray	Level		Emphasis	(LRLGE) Large	Zone	Low	Gray	Level	Emphasis	(LZLGE)

Entropy	Pair	Sum	(EntorpyPS) Long	Run	High	Gray	Level		Emphasis	(LRHGE) Large	Zone	High	Gray	Level	Emphasis	(LZHGE)
Variance	Pair	Difference	(VariancePD) Gray	Level	Variance	(GLV) Gray	Level	Variance	(GLV)
Entropy	Pair	Difference	(EntropyPD) Run	Length	variance	(RLV) Zone	Size	Variance	(ZSV)
Information	Correlation	Measure	1	(InfoCorr1)
Information	Correlation	Measure	2	(InforCorr2)
Auto-Correlation	(AutoCorr)
Cluster	Prominence	(ClusterProm)
ClusterShade
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Figure 14: Top 25 repeatable texture features for the VIBE images. Highly repeatable 
texture features (CCC ≥ 0.95) are green, repeatable features (0.90 ≤ CCC < 0.95) are 
yellow, potentially repeatable features (0.85 ≤ CCC < 0.90) are orange, and not 
repeatable feature (CCC < 0.85) are pink. 
 

GLCM GLRLM GLSZM Highly	Repeatable	 Potentially	Repeatable
HIST NGTDM Repeatable Not	Repeatable

Wavelet	Ratio 0.5 0.67 1 1.5 2 Wavelet	Ratio 0.5 0.67 1 1.5 2
RLN 0.97 0.97 0.97 0.97 0.97 RLN 0.97 0.97 0.97 0.97 0.97
GLNS 0.97 0.96 0.97 0.96 0.97 GLNS 0.96 0.96 0.96 0.96 0.96
GLN 0.96 0.96 0.96 0.96 0.97 Coarseness 0.96 0.96 0.95 0.91 0.94
ZSN 0.97 0.97 0.96 0.96 0.96 ZSN 0.95 0.94 0.94 0.93 0.93
LZE 0.96 0.96 0.94 0.95 0.95 GLN 0.94 0.94 0.94 0.94 0.94
Coarseness 0.96 0.96 0.94 0.93 0.93 Skewness 0.93 0.93 0.94 0.94 0.92
Entropy 0.93 0.93 0.93 0.93 0.92 Kurtosis 0.87 0.87 0.87 0.87 0.85
Skewness 0.93 0.93 0.93 0.93 0.92 Strength 0.87 0.88 0.85 0.83 0.87
EntropyPD 0.94 0.93 0.93 0.92 0.91 ContrastN 0.92 0.90 0.85 0.82 0.81
Busyness 0.88 0.91 0.95 0.94 0.94 Busyness 0.87 0.86 0.88 0.86 0.81
EntropyPS 0.93 0.92 0.92 0.92 0.92 InfoCorr 0.84 0.82 0.81 0.83 0.86
SumAverage 0.93 0.93 0.93 0.92 0.91 ZSV 0.81 0.90 0.84 0.81 0.76
SZE 0.93 0.93 0.92 0.92 0.91 SZLGE 0.89 0.64 0.89 0.86 0.71
Quartile 0.92 0.92 0.92 0.92 0.92 SRLGE 0.89 0.64 0.87 0.86 0.71
ContrastN 0.94 0.94 0.93 0.91 0.87 LGRE 0.89 0.64 0.87 0.86 0.71
ClusterShade 0.92 0.92 0.92 0.92 0.91 LRLGE 0.89 0.64 0.88 0.85 0.69
Dissimilarity 0.93 0.93 0.92 0.91 0.90 LGZE 0.89 0.63 0.87 0.84 0.70
Energy 0.92 0.92 0.92 0.92 0.91 LZHGE 0.78 0.80 0.84 0.81 0.68
Median 0.91 0.91 0.92 0.92 0.92 GLVS 0.68 0.86 0.83 0.70 0.75
ZP 0.92 0.92 0.92 0.91 0.90 SZE 0.79 0.76 0.77 0.74 0.72
Homogeneity 0.93 0.92 0.92 0.91 0.89 ZP 0.78 0.77 0.76 0.74 0.72
RP 0.92 0.92 0.92 0.91 0.90 SumAverage 0.81 0.81 0.78 0.71 0.63
LRE 0.92 0.92 0.92 0.91 0.90 SRE 0.77 0.76 0.75 0.74 0.73
SRE 0.92 0.92 0.92 0.91 0.90 RP 0.77 0.76 0.75 0.74 0.72
Mean 0.91 0.91 0.91 0.91 0.91 LRE 0.76 0.76 0.75 0.74 0.72

VIBE	(T1-weighted) VIBE_BC	(T1-weighted)
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3.3 3D Surrogate for Diffusion Weighted Images and Apparent Diffusion 

Coefficient Maps 

As mentioned earlier in 2.2 Code Modifications, the DW and ADC images were not 

calculated in 3D.  A surrogate 3D texture feature was calculated by taking a volume 

Figure 15: Top 25 repeatable texture features for the TRUFISP images. Highly 
repeatable texture features (CCC ≥ 0.95) are green, repeatable features (0.90 ≤ CCC < 
0.95) are yellow, potentially repeatable features (0.85 ≤ CCC < 0.90) are orange, and 
not repeatable feature (CCC < 0.85) are pink. 

Wavelet	Ratio 0.5 0.67 1 1.5 2 Wavelet	Ratio 0.5 0.67 1 1.5 2
Coarseness 0.97 0.97 0.97 0.97 0.97 RLN 0.97 0.97 0.97 0.97 0.97
GLNS 0.96 0.96 0.96 0.97 0.97 ZSN 0.96 0.96 0.96 0.96 0.96
RLN 0.96 0.96 0.96 0.96 0.96 GLNS 0.95 0.95 0.96 0.96 0.96
GLN 0.96 0.96 0.96 0.96 0.96 Energy 0.94 0.96 0.96 0.95 0.95
ZSN 0.96 0.96 0.96 0.96 0.96 GLN 0.95 0.95 0.95 0.95 0.95
Variance 0.96 0.96 0.96 0.96 0.95 Coarseness 0.93 0.95 0.95 0.95 0.95
Energy 0.96 0.96 0.96 0.95 0.95 InfoCorr 0.87 0.91 0.92 0.92 0.93
VariancePS 0.96 0.96 0.96 0.96 0.95 Entropy 0.92 0.92 0.90 0.89 0.87
SD 0.96 0.96 0.95 0.95 0.94 GLVS 0.89 0.93 0.87 0.87 0.87
Complexity 0.96 0.96 0.96 0.94 0.91 Correlation 0.87 0.88 0.89 0.87 0.86
ClusterProm 0.95 0.95 0.95 0.94 0.92 Busyness 0.84 0.85 0.87 0.88 0.89
Entropy 0.96 0.95 0.95 0.93 0.92 EntropyPS 0.89 0.88 0.86 0.85 0.84
InfoCorr 0.91 0.93 0.94 0.94 0.94 SD 0.87 0.87 0.86 0.85 0.83
SZHGE 0.94 0.95 0.95 0.94 0.89 Minimum 0.85 0.85 0.87 0.85 0.80
EntropyPS 0.95 0.95 0.93 0.92 0.91 SZE 0.83 0.85 0.84 0.84 0.82
SZLGE 0.91 0.92 0.93 0.95 0.95 VariancePS 0.83 0.83 0.83 0.83 0.81
LGZE 0.91 0.92 0.93 0.94 0.95 ZSV 0.71 0.76 0.88 0.88 0.89
Quartile 0.93 0.93 0.93 0.93 0.93 ZP 0.83 0.84 0.82 0.81 0.80
HGZE 0.94 0.94 0.95 0.93 0.89 Variance 0.83 0.83 0.83 0.82 0.80
SZE 0.94 0.94 0.93 0.93 0.91 Maximum 0.82 0.82 0.81 0.80 0.78
SRHGE 0.94 0.94 0.94 0.93 0.89 RLV 0.70 0.61 0.89 0.90 0.88
AutoCorr 0.94 0.94 0.94 0.93 0.89 ContrastN 0.82 0.76 0.79 0.79 0.80
HGRE 0.94 0.94 0.94 0.93 0.89 GLV 0.62 0.72 0.79 0.88 0.87
LZLGE 0.90 0.92 0.93 0.94 0.94 Quartile 0.78 0.77 0.75 0.76 0.79
SRLGE 0.90 0.91 0.93 0.94 0.94 Kurtosis 0.77 0.77 0.76 0.76 0.75

TRUFISP TRUFISP_BC

GLCM GLRLM GLSZM Highly	Repeatable	 Potentially	Repeatable
HIST NGTDM Repeatable Not	Repeatable
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weighted average of the texture features extracted from 2D slices and is described in 

further detail later in this section.  

In order to calculate a 3D-like texture feature, a surrogate 3D texture feature was 

calculated from the 2D slices. Contour delineation was performed in the same manner as 

the VIBE and TRUFISP contour delineation described in the previous section. Instead of 

the repeat inspiration/expiration images, the DW images and ADC maps had either:  

different slice thicknesses, 4 mm or 6 mm, or different slice order acquisition, ascending 

or interleaved.  In the case of the DW images and ADC maps, the portion of the primary 

tumor present in each image acquisition was delineated and the process was repeated 

for all image sets necessary to cover the tumor.  Overlap between images covering the 

entire tumor was removed using the MIM software to calculate the intersection of contours 

in adjacent images and to subtract the intersection from one of the two overlapping 

contours.  The direction of subtracting a superior and inferior portion of the tumor contour 

was varied randomly to prevent systematic bias. Texture features were then calculated 

for each 2D slice covering the entire primary tumor contour volume.  The final texture 

feature value for the tumor was calculated by taking the weighted average by volume of 

the texture features. The different slice thickness images were denoted with “_Thickness” 

after the image name and the image pairs with different slice acquisition orders were 

denoted with “_Order” after the image name.     

The surrogate 3D texture feature was tested for robustness to missing voxels, which 

could be introduced during the subtraction of overlapping slices, by evaluating the 

convergence of the coefficient of variation for the texture feature values extracted from 

randomly resampled ROIs.  Five different resampling levels were tested: 10%, 25%, 50%, 



 

 72 

75% and 90%.  For each of the resampling levels, a random sampling of the indicated 

percentage of voxels was used to calculate the texture feature.  As the percentage of 

voxels utilized increased, the coefficient of variation for most of the texture feature value 

converged to less than 5 percent for both the DW images and ADC maps.  An example 

of the convergence for the mean ROI value can be seen in Figure 16. The low coefficient 

of variation combined with the convergence of most texture features seemed to indicate 

the surrogate 3D texture features were appropriate for use in the repeatability study as 

they are robust to changes in the voxels. 

Figure 16: Example of convergence of the coefficient of variation of the 3D surrogate 
mean texture feature for different b-value DW_Thickness images and the ADC_Thickness 
map (b0_1000_) as a function of percentage of pixels used for each of the wavelet ratios 
tested (top row shows wavelet ratios). 
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The DW image pulse sequence used an echo planar read out where the tissue was 

first excited and then multiple slices were read as the signal decays causing a slice to 

slice variation in the signal intensity with lower intensity present in slices acquired later in 

the sequence.  The slice to slice variation can be seen in the alternating bright and dark 

bands of the interleaved slice acquisition DW image in Figure 17.  In order to minimize 

the impact of the slice variation, the DW and ADC image were normalized prior to texture 

feature calculation by finding the average minimum and maximum intensity values of the 

slices and uniformly quantizing the intensity levels between this range.  

 

Figure 17: Example of slice intensity variation in sagittal DW 1000 b-value image.  This 
image was acquired with an interleaved slice acquisition pattern creating alternating slices 
with high (solid arrow) and low (dashed arrow) intensity. 

 

The same repeatability analysis was performed on the DW-MR and ADC 3D 

surrogate texture features as described in the previous section. Eight different b-value 

DW images were acquired: 0, 50, 100, 250, 500, 650, 800 and 1000 mm2/s and all 8 b-

value images were used to create the ADC map.  The b-value image that had the highest 

number of repeatable features was the 650 mm2/s for the DW_Thickness.  The DW_Order 
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image with the most repeatable texture features was a tie between the 50 mm2/s and 

100mm2/s, with the 100 mm2/s having more repeatable features across all wavelet ratios.  

However, the lower b-value represents perfusion rather than diffusion, so for analysis of 

the diffusion component was limited to the 650 mm2/s image which has the third largest 

number of repeatable features.  The results of the repeatability analysis were presented 

and discussed in the manuscript in Appendix I. 

3.4 Quantization and Wavelet Transforms 

The Vallieres22 code used for this work includes support for applying the wavelet 

transform at different ratios and quantizing the gray levels to a desired number of bins.  

The wavelet transform ratio selects the weighting of the band-pass sub bands, mixed high 

and low pass filter on different axes, to the pure high pass and low pass sub-bands, high 

pass or low pass along all axes.  By adjusting the ratio, different structural features or 

contrast features can be emphasized.  The quantization option allows for different binning 

schema for the gray levels which reduced the sparsity of the texture feature matrices 

when compared to the gray levels present.  While reducing the number of bins may 

reduce the effect of noise present in the image, it can also smooth over fine texture 

patterns. 

The VIBE, TRUFISP, and CT images were further analyzed for the effect 

quantization would have on the repeatability of the texture features.  The DW and ADC 

images were not included in this analysis due to the limited amount of data.  The texture 

features were analyzed by quantizing the number of gray level into 8, 16, 32, 64, and 256 

bins and comparing them to using the gray levels as the bins, or no quantization. The 

wavelet ratios for all image types were compared.  Aside from the different wavelet ratios 
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and quantization methods, all aspects of the image processing and texture feature 

extraction were the same.  In September of 2016, Vallieres released an update to the 

radiomics code that effected the calculation of some of the texture features, 

predominately the GLRLM and NGTDM. This lead to a reduction in the number of 

repeatable features when compared to the results in the bias correction section seen in 

Figure 14 and Figure 15. 

Initial experiments with clustering revealed that the different wavelet ratios of a 

texture feature appeared in the same cluster suggesting they contained redundant 

information. The wavelet ratios with the most repeatable features for the VIBE, TRUFISP, 

CT, DW, and ADC images were 0.67 and 1, the unfiltered image.  In light of this, the 

unfiltered image was kept and an average wavelet ratio texture feature was calculated by 

averaging the five wavelet texture feature values together.  The unfiltered and average 

texture feature values only were considered for clustering. 

Six different quantization levels were investigated and compared: 8, 16, 64, 128, 

256, and the number of gray levels.  For the VIBE, TRUFISP, and CT unfiltered images 

setting the number of bins equal to the number of gray levels resulted in at least 13 more 

repeatable texture features than any of the other quantization levels.  A similar pattern 

could be seen in the other wavelet ratios.  Since quantifying the gray levels did not 

improve the repeatability of the texture features, the final workflow used the number of 

gray levels as the bins.    

3.5 Delta Radiomics 

Investigation into the changes in texture features over the course of radiation 

treatment has been a new area of interest in the field of radiomics.  The hope with delta 
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radiomics is to detect features that are changing as a result of radiation treatment and 

therefore could more reliably predict a response to treatment.  Fave et al.17 recently 

published results that included delta radiomics features in predictive models for overall 

survival.  While the present work does not have enough data from different time points to 

create models, the texture features were evaluated for a significant change in the features 

throughout treatment. 

To assess if there was a difference in the population median of texture features 

between different time points, the Wilcoxon Rank sum test was used. To investigate if a 

significant change had occurred in an individual patient between the different time points, 

the confidence interval for the repeatability coefficient as described by Barnhart and 

Barboriak69 was calculated and evaluated under the hypothesis that a change occurred. 

All combinations of time point comparisons, time 1 to time 2, time 2 to time 3, and time 1 

to time 3, were analyzed for both the population and individuals. 

The repeatability coefficient to detect individual change at the 95% confidence level 

with 2 repeat images per subject is defined as: 

𝑅𝐶 = 1.96 2 ∗ 𝑤𝑆𝐷$ = 2.77 ∗ 𝑤𝑆𝐷	   ( 4 ) 

Where 𝑤𝑆𝐷, the within subject standard deviation, is the standard deviation of the 

difference between the test and retest values of the texture feature per subject divided by  

2 and summed over all subjects.   The confidence interval for the different time points 

becomes: 
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𝐿, 𝑈 = 𝑌T − 𝑌U − 𝑅𝐶, 𝑌T − 𝑌U + 𝑅𝐶    ( 5 ) 

where 𝑎 and 𝑏 are two different time points, 𝐿 is the lower bound, 𝑈 is the upper bound, 

and 𝑌 is the feature value of interest at the identified time point.  If the confidence interval 

includes 0, then no significant change for an individual has occurred. 

The Wilcoxon Rank test showed there were only a few texture features that had 

population differences that were significant at the 0.05 level.  The significant features were 

for the CT images: median from the intensity histogram between time points 1 and 2 for 

0.5 wavelet ratio (p=0.04) and homogeneity from the GLCM between time points 1 and 2 

for the 1, 1.5, and 2 wavelet ratios (p=0.04, p=0.03, and p=0.04 respectively); and for the 

VIBE images: correlation from the GLCM between time points 1 and 3 for 1.5 and 2 

wavelet ratios (p=0.045 and p=0.03 respectively).  There were no significant differences 

found for the TRUFISP, ADC_Order, ADC_Thickness, DWI_Order, or DWI_Thickness 

images.  

Delta radiomics for the ADC and DWI images sets were not calculated due to the 

small number of individuals with repeat imaging at different time points.  Most of the 

repeatable texture features showed a statistically significant change in at least 2 subjects 

at one or more time-point comparisons for the VIBE, TRUFISP, and CT images. For the 

unfiltered image and wavelet ratio 0.67, there were 7 texture features for the VIBE, 8 

texture features for the TRUFISP, and 0 for the CT images that did not exhibit a significant 

change in at least 2 individuals. Due to the same sample size of subjects containing all 

three time points, delta radiomics were not included in the creation of predictive models. 
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3.6 Conclusion 

The preliminary work helped to determine the image preprocessing steps that 

maximized the number of repeatable texture features for the CT and MR images.  The 

preprocessing steps maximized the number of repeatable texture features available for 

clustering and model selection.  For the MR images, bias correction did not increase the 

repeatability of texture features.  In light of this, unprocessed images were used for all the 

MR and CT images.  Additional research provided insight into the effects of quantization 

and the ratios of the wavelets.  The number of gray levels was selected to again maximize 

the number of repeatable features.  The unfiltered wavelet ratio was tied for the most 

number of repeatable features and, since the features of all wavelets clustered together, 

the unfiltered wavelets and the average of all the wavelet ratio texture features were used 

for clustering.  The preprocessing steps developed the initial steps of the workflow used 

in the manuscript in Appendix I. 

With the limited amount of repeat time data available for repeatability analysis on 

the DW, ADC, and the longitudinal data, a preliminary analysis was completed.  A 

surrogate 3D texture feature was developed to test the repeatability of the DW and ADC 

features.  The surrogate texture features were robust to changes in the contour due to 

the subtraction of overlapping images.  The longitudinal data, while not showing a 

significant change in the population data, revealed that many features appeared to 

demonstrate change on an individual level.  With increased data, a population change 

may be evident.  Further investigation of MR texture feature and delta radiomics is 

warranted. 
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4 Specific Aim 2:  Build an Uncertainty Model Utilizing 

Machine Learning Techniques 

 
 
 

4.1 Introduction 

This second aim seeks to build an uncertainty model utilizing imaging features and 

tumor characteristics to support physician contour delineation. As part of this second aim 

three sub aims were proposed:  

• SA 2.1 Determine the ability to predict the uncertainty in contour delineation 

from the tissue interface.   

• SA 2.2: Investigate deep machine learning techniques to distinguish between 

different tumor/normal tissue interfaces given a patch input of the image.   

• SA 2.3: Investigate feasibility of building a tool using machine learned 

features to predict the level of uncertainty at a point of interest.   

Machine learning techniques have recently been employed successfully in medical 

imaging for various tasks ranging from detecting lung nodules in images,113, 147 classifying 

radiation induced lung injury,114–116, 148 to image segmentation,105, 119, 121, 122, 125, 128, 149–151 

making machine learning an ideal tool to attempt classification of different tumor/normal 

tissue interfaces in lung tumors.  The expectation is that the CNN would be able to learn 

parameters that enable it to identify the boundary of the tumor with pathology and 

anatomy that are difficult for humans to distinguish from tumor, such as atelectasis.  Using 
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the output of the neural networks, more information could be provided to physicians to 

aid in contour delineation with increased accuracy. 

Our research group has previously investigated the amount of contour delineation 

uncertainty at the tumor and lymph node interfaces with normal tissues.  In the study by 

Karki et al.,83 seven observers contoured the primary tumor and affected lymph nodes for 

ten subjects on three image sets: MR, CT only, and PET/CT.  A median contour was 

calculated from the individual contours, and the bilinear distance was computed from 

each point on the median contour to each individual contour for each modality. The 

contour delineation uncertainty was estimated for each contour on each imaging modality 

by taking the root mean square (RMS) of the standard deviation of the bilinear distances.  

An experienced physician identified the regions on the median contour corresponding to 

the interface of the tumor, or affected lymph nodes, with the chest wall, lung parenchyma, 

hilum, mediastinum, vessels, and atelectasis.  The uncertainty for each interface type was 

determined utilizing bilinear distance as before, but only using the points identified as 

belonging to each interface.  The largest amount of uncertainty among the interfaces for 

all three modalities was between the primary tumor and atelectasis (p = 0.0006), while 

the interfaces with the least uncertainty were the tumor/lung for CT only and the 

tumor/mediastinum for PET and MRI.  A study by Steenbakkers et al.86 compared the 

difference in multi-physician contour agreement and delineation uncertainty, as measured 

by minimum distance between individual and median contour, using CT only and PET/CT 

images. They found a reduction in the uncertainty and increase in agreement when using 

the PET images in addition to the CT images. The anatomical area with the largest 
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improvement was near atelectasis, though improvement was seen in all interfaces 

examined: lung, mediastinum, chest wall, and lymph nodes. 

The amount of uncertainty in contour delineation appeared to be explained in part 

by the interface type with the tumor.  The first part of this aim endeavors to explore the 

correlation between interface type and contour delineation uncertainty and investigate the 

feasibility of using machine learning techniques to identify the interface type without 

physician input in order to provide additional information about the expected contour 

delineation uncertainty as an aid in improving contour delineation accuracy.   

4.1.1 Interface Uncertainty 

Using the bilinear distance gathered by Karki et al. for the primary tumor, further 

analysis of the uncertainty of each interface was investigated focusing on the CT only and 

PET/CT images.  The characteristics of the patients can be seen in Table 4.  The median 

uncertainty was analyzed using R (3.3.1) in R Studio (1.0.143, RStudios Inc., Boston, 

MA).  Analysis was preformed across all subjects and found the uncertainty was largest 

for the tumor/atelectasis interface for both the CT only and PET/CT images, and lowest 

for the tumor/vessel interface as seen in Figure 18 and Figure 19 respectively.  However, 

the trend for each patient varied with atelectasis, when present, generally exhibiting the 

highest median uncertainty while the other interfaces were more evenly spread as can be 

seen in Appendix III and Appendix IV. 
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Male	 7
Female	 3

Squamous	cell	carcinoma	 6
Adenocarcinoma	 3
Carcinoma	 1

IIB 1
IIIA 3
IIIB 6

Yes 7
No 3

Chemotherapy

Mean	Dose	(Range)
63	(45-66)	Gy

Sex

Mean	Age	(Range)
57.5	(50.0-64.6)	years

Histology

Stage

Table 4: Summary of Characteristics used in the study by 
Karki et al. and for the first portion of this aim. 
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Figure 18: Violin plots of the CT only uncertainty by interface type of all subjects where 
the width of the plot represents the probability density function (PDF) of values with the 
indicated standard deviation.  Along the center line is a box plot showing the first 
quartile, median, and third quartile along with the extreme minimum and maximum 
values within 1.5 times the inner quartile range. Values more extreme are indicated by 
dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 
interface, and Med indicates the mediastinum interface. 
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Figure 19: Violin plots of the PET/CT uncertainty by interface type of all subjects where 
the width of the plot represents the probability density function (PDF) of values with the 
indicated standard deviation.  Along the center line is a box plot showing the first 
quartile, median, and third quartile along with the extreme minimum and maximum 
values within 1.5 times the inner quartile range. Values more extreme are indicated by 
dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 
interface, and Med indicates the mediastinum. 
 
 Statistical analysis of the relationship between uncertainty and interface type 

revealed, for the PET/CT images, no significance for any of the interfaces. The 

atelectasis/tumor interface was trending towards significance with a p-value of 0.0752, 

but all other interfaces had p-values between 0.1073 and 0.7256.  K-means clustering of 

the uncertainty and spatial information of each point on the median contour for a given 

subject was attempted in Python (2.7) using the Sklearn package from scikit152 to try and 
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recover the interface boundaries.  The results of the k-means clustering were dominated 

by spatial information and failed to recover the interface boundaries.  When the spatial 

information was removed, the uncertainty also did not cluster by interface. A comparison 

of k-means clustering can be seen in Figure 20.  Qualitative inspection of the uncertainty 

showed it was largest in protruding regions of the tumor but within an interface the 

uncertainty did not have observable trends of homogeneity or increased uncertainty near 

boundaries with other interfaces. 

 

 While the interface type alone does not explain the amount of contour delineation 

uncertainty observed, knowing the amount of expected uncertainty in a given region of 

the image can provide additional information to the physician while contouring, allowing 

them to take the uncertainty into account while defining the region to be treated.  A 

comparison of the RMS uncertainty for the PET/CT delineated tumor overall and by 

interface can be seen in Figure 21.  The relationship between the interface type and the 

Figure 20:  K-means clustering for an example subject with the PET/CT 3D contour 
surface unrolled to be displayed in 2D.  The figure on the left shows the ground truth 
interface while the panel on the right shows the k-means clustering with only the 
uncertainty.  Color was used to differentiate different clusters 
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uncertainty level was explored and a convolutional neural network (CNN) was 

investigated for its ability to determine the interface type without aid from a physician as 

part of this work.  A tool to provide physicians with additional information about the 

uncertainty was proposed as the final product.  

 

4.2 Interface Type Identification Convolutional Neural Network 

The next phase of this specific aim endeavored to build a neural network to predict 

the interface type without user input.  Following the results of the initial network, additional 

network designs, techniques, and subjects were evaluated.  The following sections begin 

by describing the initial network design and dataset curation, and are followed by a 

description and results of the additional network designs implemented. 

Figure 21: Overall uncertainty RMS of the standard deviation of the bilinear 
distance for the primary tumor (PT) interfaces PET/CT imaging modality. 
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4.2.1 Methods 

The initial dataset for the first CNN used the same patients characterized in Table 

4.  The training dataset was created using the interface contours derived from the median 

contours used in the study by Karki et al.83  All contours were drawn with MIM (MIM 

Maestro v6.X, Cleveland, OH) and extracted using the MatLab extensions (2016b, 

MathWorks, Natick, MA) before being processed in Python (2.7)  for use in the developed 

CNNs.  An example of the interface contours can be seen in Figure 22.  First, each image 

and corresponding contours were resampled to have an isotropic voxel size of 0.5mm3.  

Then the bounding box containing all the interface contours for a subject was identified 

and a 4mm margin in each direction was added.  From the bounding box, patches of 12.5 

mm3, or 25 voxels3, were extracted along with the interface type label or a label indicating 

not an interface for the central voxel. This resulted in several thousand labeled patches 

across all subjects. 

Figure 22:  Examples of the aorta/tumor interface in green, the chest wall/tumor 
interface in yellow and atelectasis/tumor interface in pink. 
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As the number of patches extracted from each patient and interface type depended 

on the size and presence of an interface, the dataset was highly unbalanced.  To account 

for this unbalance in the data, a two stage training inspired by Havaei et al.123 was 

employed whereby the network was first trained on a balanced number of examples from 

each class randomly sampled across all subjects.  The second phase of training initialized 

the network weights using the weights learned in the first phase of training and continued 

to train the network on an expanded training set representing a “natural probability” where 

the number of examples from each training class is proportional to the frequency 

observed in the subjects.  The images are normalized across all training examples before 

training to have a mean of 0 and standard deviation of 1. Examples of the center slice of 

the normalized patches can be seen in Figure 23.  In addition, 20% of the training 

examples were withheld for an unseen testing validation set resulting in approximately 

13,000 examples for phase one training, 72,000 for phase two training, and 38,000 for 

testing. 
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Figure 23: Example of normalized center slice of the input patch.  The label is for the 
central pixel in each input example are as follows:  Row 1: aorta, lung, not interface; 
Row 2: atelectasis, hilum, not interface; Row 3: not interface, mediastinum, lung;  
Row 4: chest wall, hilum, atelectasis.  
 

The network employed for both phases of training was a 3D CNN with a structure 

similar to the VGG net.102 This small network consisted of two blocks of two convolutional 

layers followed by a maximum pooling layer, followed by two “fully connected” layers 

implemented as convolutional layers with a drop out layer in between.  A detailed 

explanation of each layer type can be found in section 1.4.2 Convolutional Neural 

Networks.  Unlike the VGG net, the filter size employed in this work decreased in size as 

the layers got deeper similar to the InvertedNet used by Novikov et al.127 without skip 

connections.  A diagram of the network architecture can be seen in Figure 24.  Valid 

padding was used in all layers.  Training was conducted using the Keras package153 

(version 2.1.6) with a Tensorflow (version 1.6) backend an M2050 Maxwell Nvidia GPU 
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(Nvidia, Santa Clara, CA) with an SGD optimizer with momentum for regularization using 

a categorical cross-entropy loss function.  The final class prediction was performed by the 

Softmax activation.  

Figure 24: Network architecture for the initial CNN network consisting of two blocks of 
two convolution layers followed by maximum pooling followed by two fully connected 
layers implemented as convolutional layers and dropout. 
 

 The network was evaluated for accuracy by computing the raw accuracy, number 

of correctly labeled test examples divided by the total number of test examples, and by 

analyzing the confusion matrix across all classes.  The accuracy for each class was 

assessed by calculating: 

                                                      	𝐴W =
X5

X5435Y43ZY
																																																																		( 6 ) 

where 𝑐 is the class being evaluated, 𝑇𝑃 is the true positive, sum of all correctly identified 

class, 𝐹𝑃W is the false positives, sum of all examples incorrectly labeled as class 𝑐, and 

𝐹𝑁W is the false negatives, the sum of all examples of class 𝑐 labeled as the incorrect 

class. The error rates, 𝜀 = 	1 −	𝐴W,  are reported in the results section below. 

4.2.2 Results 

Phase one training achieved accuracy on the unseen test set of 65% while the 

second phase of training improved the network accuracy to 70%.  The top two accuracy 

of the network following second phase training was 85%.   The confusion matrix results 
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following the second phase of training can be seen in Table 5.  The class with the highest 

error was the atelectasis (AT)/tumor with 18.7% accuracy followed closely by the not 

interface label with 16.8%.  The remaining interfaces had error rates of 13.4% 

hilum/tumor, 10.9% lung/tumor, 8.7% mediastinum (Med)/tumor, 3.8% chest wall 

(CW)/tumor, and 0.6% vessel(Aorta)/tumor.  

 

 

4.2.3 Discussion 

The result of this initial CNN showed it may be feasible to train a neural network to 

identify the interface type without physician input for a local patch.  The lower overall 

accuracy of the network suggested that improvements could be made by creating a 

deeper network and adding additional patients to the training dataset.  The need for 

additional training examples can be seen in the overfitting of the vessel(aorta)/tumor 

class.  In the dataset, only one subject had the vessel/tumor interface, meaning the 

unseen test examples were all from the same subject seen in the training, but different 

views, leading to the low error rate.  The testing set was comprised of a randomized 

selection of patches from each class from all subjects exposing the testing set to same 

type of bias seen by the vessel/tumor interface but to a lesser degree given the variety of 

Table 5: Confusion matrix following second phase of training for the initial CNN. 

[[2721	1561		808	1971		518		210			55] Not	Interface Lung Hilum AT Med CW Aorta Total	Labels
	[	180	7231		329		135			72				0				3] Not	Interface 2721 1561 808 1971 518 210 55 7844
	[		28		357	4847	1334		379				0			11] Lung 180 7231 329 135 72 0 3 7950
	[		62		486		515	4613		658		272				7] Hilum 28 357 4847 1334 379 0 11 6956
	[		50		165		382		287	2998			18				0] AT 62 486 515 4613 658 272 7 6613
	[			7				1			22		505			26	3687				0] Med 50 165 382 287 2998 18 0 3900
	[			9			21			41			10			10				0		973]] CW 7 1 22 505 26 3687 0 4248

Aorta 9 21 41 10 10 0 973 1064
Total	Prediction	 3057 9822 6944 8855 4661 4187 1049

Predicted	Label	

Tr
ue

	La
be

l
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subjects and views to be randomly selected from.  To reduce this bias and give a better 

real world accuracy, the test set should be comprised of completely unseen subject(s). 

In addition, the low class accuracy for the atelectasis and not interface suggested 

the network was struggling to identify these patches.  Part of the confusion for the 

atelectasis could come from the similarity of the atelectasis to the normal tissue on CT 

scans, which makes visually distinguishing the tumor difficult.  The mediastinum and 

hilum are both similar hybrid structures in the center of the thoracic cavity that contain 

multiple types of tissue, such as airways and/or blood vessels.  To reduce the confusion 

between these two structures, they could be combined into one class, as attempting to 

differentiate between mediastinum and hilum structures during contouring resulted in an 

anatomically often ambiguous separation.  The errors from the not interface class could 

be induced by the wide variety of possible patches included in the not interface class 

including normal tissue and tumor only tissue alike.  

Different pathways were investigated to implement the larger dataset and network 

design improvements to see if a deeper network is able to improve the accuracy by 

designing a network that could be used to predict the presence of an interface in general, 

and/or by designing a network to predict the presence of the tumor.   

4.3 Further Exploration of Network Predictions  

Following the success of the initial network, the number of patients was expanded 

to include a total of 39 patients.  Since the expanded patient set did not have median 

contours like the previous study, the tumor contour from the planning CT was used to 

create the interface contours for all patients.  Like the dataset before, the planning 

contours were created using the PET information as well as the CT scan.  The specificity 
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of the interface labels was also changed by expanding to include a label for airways/tumor 

and bone/tumor in addition to lung/tumor, atelectasis/tumor, mediastinum/tumor, chest 

wall/tumor, and vessel/tumor.  Also, the previous hilum/tumor was combined with the 

mediastinum, and bone was removed from the chest wall contours.  The updated patient 

characteristics can be seen in Table 6.  These patients were utilized for the reminder of 

the experiments in this aim.  In addition, training was conducted on either the K80 Kepler 

or P100 Pascal Nvidia GPUs. 

 

4.3.1 Interface Prediction Networks 

4.3.1.1 Expanded	Traditional	CNN	

Building upon the architecture used previously, the network was made deeper by 

adjusting the padding and adding an additional block of two convolutional layers followed 

by a maximum pooling layer.  This expanded network architecture can be seen in Figure 

Table 6: Summary for patient characteristic for machine learning 
study. 

Male	 24
Female 15

I 1
IIA 1
IIB 4
IIIA 16
IIIB 10
IV 7

Yes 32
No 7

62.2	(40.0-70.2)	Gy

Sex

Mean	Age	(Range)

Stage

Chemotherapy

Mean	Dose	(Range)

60.6	(50.0-74.6)	years
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25.  The two phase training was again employed, at first to balance the dataset, but early 

testing showed no improvement in the accuracy of the network with the second phase of 

training, so only phase one with balanced interface types across all subjects was used to 

train the revised CNN architectures.  The same method was employed to create the 

labeled dataset by extracting patches from each subject.  During training, one subject 

was withheld to be the unseen test set while a class balanced dataset for training was 

randomly selected from the remaining subjects.  This network was again trained using 

SGD with a momentum term and categorical cross-entropy as the loss function.   

The expanded network was first tested using an unseen test set following training 

that consisted of a reserved subset of the training set derived from all subjects to assess 

the improvement in network accuracy due to the additional subjects.  The overall accuracy 

of the network rose to 78% for best guess.  The network was then retrained and optimized 

this time by withholding one subject entirely for the test set and training the network on 

the remaining subjects.  The overall accuracy of the unseen subject for the optimized 

Figure 25:  Diagram of the revised CNN architecture to include an addition block of 
two convolutional layers followed by a maximum pooling layer.  
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parameters was 40%.  The largest source of error was the atelectasis interface where a 

large number of image patches were classified as atelectasis/tumor despite the subject 

not exhibiting atelectasis.  Following these results, the network was adapted again to 

employ the skip connection techniques of the ResNet architecture to see if more accuracy 

was possible with an even deeper network. 

4.3.1.2 ResNet	CNNs	

The ResNet like network, referred to as the ResNet CNN, was also developed 

incorporating the batch normalization scheme suggested by He et al. in their follow-up 

paper103 to the original paper104 introducing the ResNet architecture.  The ResNet 

architecture differs from the extended tradition CNN described in the previous section by 

employing skip connections to pass information learned in previous layers to later layers 

and the use of identity blocks to prevent overfitting.  These skip connections improve the 

ability of the SGD optimization to learn by removing the exploding and vanishing gradient 

problem often seen as networks get deeper allowing the potential for additional benefits 

from deeper architectures.104  

The ResNet architecture begins like the traditional CNN where the input undergoes 

a series of convolution layers and a maximum pooling layer. However, following the initial 

maximum pooling layer, a series of residual and identity blocks are added in place of the 

additional traditional convolutional layers before the final, fully connected layers.  The 

identity blocks and single residual blocks implemented in this work are descried in the 

2016 paper by He et al.103 using the “full pre-activation”  set up. The double residual block 

added an additional convolution layer with desired filters followed by batch normalization 

with ReLU activation before the final weight layer seen in the single residual block. To 
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create the double ResNet CNN, convolution 2a and convolution 2b as a group and 

convolution 3a and convolution 3b as a group in Figure 25 were replaced with the double 

convolution block, one for each group, with varying numbers of identity blocks following 

before the max pool layers. This network was still trained using SGD, with a momentum 

term and categorical cross-entropy as the loss function. 

The overall accuracy of the unseen test subject for the double ResNet CNN varied 

with the number of identity layers used from 49% without any identity layers to 52%, 43% 

and 30% for 1, 2, and 3 identity layers respectively.  For comparison, the test subject was 

kept the same as used to test the extended CNN in the previous section.  For the best 

preforming network and hyper parameters, the individual class confusion matrix can be 

seen in Table 7.  The error for each individual class in order from highest to lowest was 

as follows: 31.9% mediastinum (Med)/tumor, 26.8% vessel/tumor, 24.0% not interface, 

21.0% atelectasis (AT)/tumor, 17.2% air way (AW)/tumor, 14.5% lung/tumor, 1% 

bone/tumor, and 0% chest wall (CW)/tumor.  There were three interfaces not present in 

the test subject: the chest wall, atelectasis, and bone, as the subject has a centrally 

located tumor that did not obstruct an airway.  The mediastinum/tumor was most often 

confused with the vessel/tumor and air way/tumor.  The not interface patches also had a 

low number of correctly predicted labels most often being mistaken for atelectasis and 

mediastinum.   
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4.3.1.3 Encoder	Network	

Following analysis of  the results of the ResNet CNN, one more modification to the 

network architecture was attempted.  In order to improve the accuracy of the not interface 

labels, the labels were modified to change the not interface label from a class identification 

to an encoder, indicating the presence of any interface by the value of 1 and no interface 

with 0.  The labels of the remaining interface were unchanged. This change to the labels 

resulted in changes to the network architecture, the loss function utilized, and the 

balancing method for the data given to the network. 

 To better train the network using the encoder label and interface labels, the 

dataset provided to the network had to not only have a balanced number of patches 

between the different interface types excluding the not interface patches but also between 

the total number of patches containing interfaces and number of patches without any 

interfaces.  This resulted in more examples of the not interface patches being added to 

the training set.  The extended CNN was again modified by replacing convolution 2a, 

convolution 2b, convolution 3a, and convolution 3b in Figure 25 this time individually with 

the single residual blocks described in the previous section.  The encoder portion of the 

label was evaluated by the binary cross-entropy loss, while the remaining interface labels 

1	layer	lr	0.0005	accuracy	52%		using	normalization	to	0	mean	and	1	sd

Not	Interface Lung AT	 Med CW Vessel AW Bone Total	Labels
Not	Interface 169 98 133 194 0 72 85 2 753
Lung 24 598 12 35 0 0 84 0 753
AT 0 0 0 0 0 0 0 0 0
Med 12 18 118 414 0 141 50 0 753
CW 0 0 0 0 0 0 0 0 0
Vessel 4 9 261 233 0 240 6 0 753
AW 2 55 3 127 0 0 560 0 747
Bone 0 0 0 0 0 0 0 0 0
Total	Prediction	 211 778 527 1003 0 453 785 2

Tr
ue

	L
ab
el

Predicted	Label	

Table 7: Confusion matrix for the double ResNet CNN with one identity layer. 
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were evaluated with the categorical cross-entropy.  The total loss for the network was the 

summation of the binary cross-entropy and the categorical cross-entropy. Ideally, this 

allows the network to learn features that indicate an interface, and then for those that are 

an interface, distinguish which interface is present. 

The accuracy of the Encoder Net showed a compromise in the accuracy of 

identifying the interface type with the accuracy of identifying the presence of an interface.  

The highest accuracy achieved for identifying if an interface was present was 77% while 

the accuracy of identifying the interface type for the same network was only 37%.  With 

different hyper parameters, the interface type accuracy was able to reach 54% while the 

accuracy of identifying if any interface was present was only 66%.  This trade off 

suggested that creating two separate networks, one for each task, may be beneficial.  It 

further highlighted that the network may not be able to distinguish the tumor tissue from 

the surrounding healthy tissue, thereby identifying where interfaces between the tumor 

and normal tissue exist.  This was illustrated by creating a prediction map by preforming 

a sliding window prediction over the entire area of the image surrounding the tumor 

contour and plotting the prediction for the interface identification portion of the network 

only.  An example slice can be seen in Figure 26.   
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4.3.2 Single Task Networks  

Following analysis of the results of the previous networks, it appeared the task of 

determining where the tumor was located in order to identify the interfaces, and then 

identifying which interface was present was too ambitious for a single pass of the 

networks designed so far.  Considering this, it seemed appropriate to take a step back 

and evaluate simpler criteria for the network to identify.  Three different networks were 

Figure 26:  Illustrative slice from the prediction map for the unseen test 
subject from the encoder net.  The top and bottom images on the left side 
detail the ground truth interface type labels while the top and bottom images 
on the right demonstrate the predicted output of the encoder network for the 
presence of an interface of any type. 
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developed: the first and second were to break the Encoder Net into two separately trained 

networks, one to identify the location of any interfaces and the other to identify the type 

of interface given an input that was known to be an interface; the third network was 

developed to identify the location of the tumor.  The network architecture used for all three 

networks was the same: the Encoder Net architecture described above without the 

modifications to the loss function.  The data fed into each of the networks was different 

depending on the desired outcome and the filter size of the final layer was adjusted 

accordingly.  Instead of using only one test subject, the network was retrained three to 

five times with a different subject left out each time.  

4.3.2.1 BinaryRes_IF	Network	

The existing dataset was used to create the datasets for the interface location 

prediction network, referred to as BinaryRes_IF network, by modifying the labels.  The 

labels first disregarded the interface type information and instead collapsed them into one 

label indicating if any interface was present and leaving the not interface label unmodified.  

This created a binary set of labels indicating if the patch belonged the interface or not 

interface class.  The binary cross-entropy was used to train the BinaryRes_IF network.  

For this network, training was completed by alternating one of four test subjects.   

The accuracy of the new work for the first subject was 78%, the second subject 

was 63%, the third test subject was 80%, and fourth subject was 66%.  However, when 

the prediction maps were created, the results, while more specific, seemed to identify the 

region of the tumor and some interfaces instead of just the interface, Figure 27.  This 

observation was the motivation for the BinaryRes_Tumor network.   



 

 101 

 

Figure 27:  Illustrative slice of the comparison of the ground truth interface location with 
the output of the BinaryRes_IF network.  The top row represents the ground truth and 
output maps while the bottom rows shows the maps overlaid on the corresponding 
images slice. 

4.3.2.2 	BinaryRes_Tumor	Network	

In an attempt to determine a network’s ability to detect the location of the tumor, 

the existing network structure was repurposed.  A new dataset was created for the 

BinaryRes_Tumor network in the same manner as described in section 4.2.1 with the 

planning tumor contour being supplied instead of the interface contours.  This resulted in 

a series of patches with binary labels identifying the center pixel of the patch as being 

within the tumor contour or not.  Like the contour used in the initial and subsequent 
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networks, the tumor contours were created by physicians using information from the PET 

scan as well as the CT scan. The network was again trained with SGD optimization with 

a binary cross-entropy loss function five times with a different subject withheld for the 

testing each time. 

The network was able to achieve a relatively high accuracy for all 5 test subjects 

on the reserved set of patches with the accuracies ranging from 84% to 87%.  Prediction 

maps were again created for all subjects to visualize how well the network would perform 

on the entire image.  Analyzing these images indicated the network seemed to predict 

false positives in the muscle and atelectasis, Figure 28 , but overall seemed to capture 

most of the tumor.  Illustrative slices from all test subjects can be seen in Appendix V.  

The Dice score was calculated as a measure of how well the predicted tumor and original 

tumor contour were in agreement.  Conditional random fields (CRF) post processing was 

also applied using the pydensecrf package154 implementing the fast CRF by Krahenbuhl 

and Koltun155 to remove small areas of predicted classes that were not near similar labels.  

The Dice for the network output and CRF post processing can be seen in Table 8.  
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Figure 28:  Illustrative slice of the comparison of the ground truth tumor location 
with the output of the BinaryRes_Tumor network.  The top row represents the 
ground truth and output maps while the bottom rows show the maps overlaid on 
the corresponding images slice. 

Subject Pre-CRF Post-CRF
S 1 0.68 0.77
F 2 0.68 0.75
H103 3 0.60 0.69
M 4 0.60 0.68
W 5 0.68 0.78

Tumor

Table 8:Dice similarity coefficient for the BinaryRes_Tumor network 
predictions before and after CRF post-processing.  
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While the BinaryRes_Tumor network is able to identify the tumor with some 

precision, the number of false positives from regions such as atelectasis, at this time, is 

not conducive to building an uncertainty model.  Since the test subject seen above also 

had median contours drawn using the CT only, as well as the PET/CT from the study by 

Karki et al.,83 a Dice similarity coefficient between the network output and the median 

contours was calculated.  The Dice similarity between the network output and the CT only 

median contour was 0.65, while the Dice similarity between the network output and the 

PET/CT median contour was 0.69. However, when the post-processing was applied, the 

Dice for the PET/CT dropped to 0.66, while the CT only Dice similarity rose to 0.70.  This 

suggests the network predictions for the tumor location may be closer to those made by 

physicians only looking at a CT image rather than discerning any information from the CT 

image alone that would indicate areas of high metabolism as indicated on PET image.   

4.3.2.3 IF_Only	Network	

The last network explored was the IF_Only network which endeavors to predict the 

interface type of a patch known to be from an interface. The existing labeled interface 

patch dataset was again used to create the datasets for the IF_Only network by modifying 

the labels.  This time the existing dataset was first limited to only the patches known to 

contain an interface before the not interface class was removed from the labels of the 

remaining patches before training and testing.  The network was trained using SGD with 

a momentum term, categorical cross-entropy for the loss function and was trained five 

times using a different test subject each time. 

The IF_Only network resulted in an accuracy of between 38% and 65% across the 

five test subjects on the randomly selected test patches.  Prediction maps for all the 
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patches within each subject image were created like with the previous networks to 

visualize the network output.  For these prediction maps, only the patches identified in the 

physician defined interface contour, used as the ground truth, were extracted and fed to 

the trained network for predictions. From the prediction maps, there seemed to be greater 

accuracy in prediction of the interface than the test accuracy demonstrated as can be 

seen in Figure 29 and the illustrative slices from all test subjects in Appendix VI. The 

areas of the image not identified by the physicians were labeled as not interface for the 

purpose of illustration and were not part of the network prediction. 

Figure 29:  Illustrative slice comparing the ground truth physician interface labels 
with the IF_Only network output without post-processing.  The top row indicates the 
maps of predicted and true interface types while the bottom row shows the maps 
overlaid on the corresponding image slice. 
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The Dice overlap between the network prediction and the ground truth was 

calculated for each interface to assess the agreement between the network output and 

the physician identified interface locations across the whole image.  CRF post-processing 

was applied to the interface prediction labels to try and improve the Dice overlap.  The 

results can be seen in Table 9.   

The interface that the network had the most difficulty identifying was the 

mediastinum/tumor interface.  This interface was often confused with atelectasis, vessel, 

chest wall, and airways which all share a similar intensity on CT scans, and in the case 

of vessels and air ways, may be found throughout the mediastinum. One interesting 

observation, however, was the network’s ability to pick up on nearby structures, such as 

bone, that were not part of the physician ground truth label, Figure 30.  These incorrect 

labels may in some cases still be informative and show the ground truth may benefit from 

review or consensus and could affect the accuracy of labels such as the mediastinum. In 

the subjects with large regions of atelectasis, the network seemed able to identify the 

interface with higher accuracy. The network also seemed to be able to predict the lung, 

airways, bone, and chest wall interfaces with relatively high accuracy. The average class 

accuracy for the interfaces are: lung/tumor 82%, atelectasis/tumor 74%, 

Subject Pre-CRF Post-CRF Pre-CRF Post-CRF Pre-CRF Post-CRF Pre-CRF Post-CRF Pre-CRF Post-CRF Pre-CRF Post-CRF Pre-CRF Post-CRF
S 1 0.70 0.83 -- -- 0.12 0.22 0.73 0.84 0.46 0.64 0.31 0.42 -- --
F 2 0.64 0.75 0.04 0.04 0.27 0.25 -- -- -- -- -- -- -- --
H103 3 0.85 0.96 -- -- 0.42 0.68 0.56 0.67 -- -- -- -- -- --
M 4 0.65 0.80 0.51 0.79 0.11 0.12 0.54 0.68 0.22 0.44 0.42 0.51 -- --
W 5 0.69 0.84 0.34 0.54 0.18 0.19 -- -- 0.41 0.57 0.38 0.57 -- --

BoneLung AT Med CW Vessel AW

Table 9: Dice similarity coefficient comparison for IF_Only network predictions before 
and after CRF post-processing. 

-- indicates interface was not present for test subject, AT is the atelectasis/tumor 
interface, Med is the mediastinum/tumor interface, CW is the chest wall/tumor 
interface, and AW is the air way/tumor interface. 
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mediastinum/tumor 67%, chest wall/tumor 89%, vessel/tumor 82%, air way/tumor 91%, 

and bone/tumor 95%.  Similarly, the physician contour delineation uncertainty was also 

low for these interfaces as seen in Figure 21, while the atelectasis region had the largest 

contour delineation uncertainty.   

 

Figure 30:  Illustrative slice of comparison of the ground truth and predicted maps (top 
row) with the maps overlaid on the corresponding image. Of interest is the area predicted 
as bone and its proximity to the rib in the corresponding image. 
 

A summary of all the networks investigated as part of specific aim 2 can be seen in 

Table 10.   
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Table 10: Summary of networks investigated and findings. 
Network Name Task Description Results 

Initial CNN 
Identify interface 

type including ‘not 
interface’ class 

Traditional CNN structure 
with 6 weight bearing 

layers and small subject 
set. 

Interface types able to 
be identified with 

moderate accuracy 

Extended CNN 
Identify interface 

type including ‘not 
interface’ class 

Traditional CNN structure 
with 8 weight bearing 
layers and expanded 

subject set. 

Increased accuracy of 
predictions, but false 

positives for ‘not 
interface’ class 

ResNet CNN 
Identify interface 

type including ‘not 
interface’ class 

Modified extended CNN 
with skip connections 
across 2 convolution 

layers and followed by 
varying number of identity 

layers 

Reduced number of 
false positives from 

extended ResNet CNN, 
and achieved moderate 

accuracy 

Encoder Net 
Identify presence 
of interface and 

which type 

Modified extended CNN 
with skip connections 

across 1 convolution layer 
and followed by varying 

number of identity layers.  
Preforms 2 tasks 

simultaneously combined 
loss function and two 
predictions per patch.  

Trade off in accuracy 
regarding if a patch is 
an interface or which 
interface type.  Hinted 
the network may not 

identify tumor location 

BinaryRes_IF Identify presence 
of interface 

Modified encoder net for 
only interface presence.  

Input became binary labels 
with only one loss function 

and output per patch 

Confirmed suspicion 
that network was not 

identifying tumor 
location before 

identifing interface 

BinaryRes_Tumor Identify presence 
of tumor 

Same network as 
BinaryRes_IF, input data 
altered to contain labeled 
image patches indicating 

presence of tumor 

Network achieved good 
accuracy for most 

patients.  False 
positives in regions of 
involved lymph nodes, 
muscle, and atelectasis 

IF_Only 
Identify interface 
type without ‘not 
interface’ class 

Modified encoder net for 
only interface presence.  

Input became binary labels 
with only one loss function 

and output per patch 

Network achieved good 
accuracy for most 

interfaces particularly 
with top 2 and 3 results.  

Basis of information 
provided to physician 
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4.4 Uncertainty tool 

The uncertainty tool proposed by this aim seeks to combine the predictive power of 

the IF_Only network with a measure of uncertainty in the interface.  As discussed in 1.4 

Contour Delineation Uncertainty, a margin is added to the GTV to account for uncertainty 

such as inconsistencies in set-up, motion, mechanical uncertainties, and others. The 

contour delineation uncertainty is only one of the uncertainties counted as part of this 

margin which for lung cancer is approximately 5mm.  The proposed uncertainty tool seeks 

to provide the probability that the contour delineation uncertainty exceeds the 5mm 

threshold for the interface at the physician selected point. The confidence the network 

has in its interface type prediction is displayed along with the probabilities for the top three 

predictions to provide the physician with additional information. 

The probability of the contour delineation uncertainty exceeding a threshold was 

calculated utilizing the bilinear distances from the median contour to the individual 

contours from the study by Karki el al.83  For this work, only the data for the contours 

drawn using both the PET and CT images for the primary tumor were considered.  The 

probability of exceeding a threshold was calculated by dividing the total number of points 

exceeding the desired threshold by the total number of points evaluated.  The results of 

various thresholds by interface type can be seen in Table 11. 
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The IF_Only network was able to predict the type of interface with suitable accuracy 

for the best guess.  Looking at the top two predictions for the network, the accuracy 

increased to 55%-92% where 14% is guessing.  If the top three predictions are 

considered, the accuracy improves to 75%-97%.  The output of the IF_Only network 

provides the level of activation from the network for all classes providing a measure of 

certainty for the final class assignment.  The activation level of the top three interface 

predictions provides the physician with a measure of certainty from the network that can 

be used with the associated probability of exceeding the 5mm threshold. 

The proposed usage for this tool would be for the physician to click on a point of 

interest along the interface of the tumor.  The uncertainty tool extracts the image patch 

around the point of interest and runs the IF_Only prediction.  The uncertainty tool returns 

the top three interface predictions with the network’s activation levels and associated 

Interface/				
Threshold(mm) AT CW Hilum	 Lung Med Vessel

1 0.9677 0.6871 0.8297 0.8106 0.7062 0.6851
2 0.6615 0.2033 0.3871 0.2375 0.2519 0.0797
3 0.2856 0.0683 0.1375 0.0735 0.0894 0.0036
4 0.0840 0.0300 0.0431 0.0212 0.0285 0.0000
5 0.0264 0.0085 0.0144 0.0081 0.0131 0.0000
6 0.0091 0.0049 0.0047 0.0044 0.0051 0.0000
7 0.0047 0.0031 0.0009 0.0019 0.0009 0.0000
8 0.0018 0.0011 0.0000 0.0004 0.0000 0.0000
9 0.0007 0.0005 0.0000 0.0001 0.0000 0.0000
10 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

Table 11: Probability of contour delineation uncertainty exceeding various 
thresholds by interface type. 

The probability of exceeding the 5mm threshold is highlighted for all  
 interface types 
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probability of exceeding the 5mm threshold.  The physician can then use this information 

to adjust their contour accordingly.  A mock visualization can be seen in Figure 31. 

   

4.5 Conclusion and Future Work 

This aim developed a potential tool to provide additional information to physicians 

during contouring.  During the course of network exploration, two networks were 

developed that succeeded at performing tumor location and interface type identification 

for known interface patches.  The earlier network designs produced promising results at 

first glance; however, they seemed to struggle with identifying the location of the 

interfaces without guidance.   The initial task appeared too complex to complete in one 

Figure 31:  Mock contour assistance tool.  The network prediction with certainty and 
probability uncertainty exceeds 5mm is presented for the selected point (exaggerated 
red dot with arrow). 

Interface	
Network	
Certainty

Probability	
Uncertainty	
>	5mm

Mediastinum 0.16 0.013
Lung 0.42 0.008
Atelectasis 0.26 0.026
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pass for the simple CNN network structures investigated in this work.  The final tool gives 

additional information to the physicians, but does not propose a tumor contour as has 

been suggested to reduce contour delineation by other research.87  The information 

provided by the developed tool seeks to  improve the contour accuracy by making 

physicians aware of how much uncertainty to expect allowing them to use their best 

judgement in defining the treatment target. 

The networks in their current form have good accuracy, but not high enough for 

clinical use. Additional techniques could be implemented to refine and increase the 

accuracy of the network predictions to provide more accurate information to physicians.  

One such technique is a cascade network where the results of one network are fed to the 

next in order to increase the accuracy of the second network or to refine the output.123,156 

Christ et al.156 first trained a network to identify the liver then the second network identified 

the liver lesions.  For the interface prediction, this technique could increase the accuracy 

by first training the network to identify if an interface belongs to an easier to identify class 

such as lung/tumor interface and the second network could be trained to distinguish 

between similar tissues such as atelectasis and the mediastinum. 

In future work, the BinaryRes_Tumor network could be modified to include the PET 

data as an additional channel during network training and prediction which may improve 

the accuracy of the tumor identification.  This type of network could be used in an 

alternative manner to reduce tumor uncertainty by first suggesting a tumor contour and 

allowing the physician to refine the contour as necessary. An alternative potential 

extension with cascade networks could be to first train a network to identify the lung, 

including pathology within a candidate region, and then identify the tumor. This could 
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reduce the false positives in muscle tissue outside the lung.   The percentage certainty of 

the network for each voxel could then be used to highlight were the network was uncertain 

in the tumor location and a physician could expect larger uncertainty.  
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5 Conclusion 

 
 
 

The goal of this dissertation was to investigate the feasibility of building MR and multi-

modality predictive models for lung cancer and to investigate the feasibility of using 

machine learning techniques to build an uncertainty model to aid in contour delineation. 

The first aim of this work was to investigate the feasibility of building predictive models 

using single CT and MR modalities and multi-modality models.  Repeatability for the MR 

texture features was first determined and compared with the repeatability of CT features. 

Several texture features were identified as repeatable for MR and CT images suggesting 

MR could be used as a basis for predictive modeling provided standardized imaging 

techniques are used.  Next, a workflow for creating predictive models was developed and 

used to identify predictive models for single modality MR and CT features, as well as  

multi-modality models for local control at the end of treatment, and overall survival at 12, 

18, and 24 months. Two different feature selection techniques were investigated as part 

of the work flow.  After controlling for false discovery rates, multiple significant models 

were identified for overall survival while the local control at the end of treatment models 

were not significant.  A control experiment was conducted on normal tissue to further aid 

in identifying spurious results. The normal tissue models identified the medoid feature 

selection method as a more robust method for the small subject group used in this study 
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as it produced a smaller number of significant models for tumor outcome.  The accuracy 

of the significant MR models was comparable to the significant CT models and MR 

features appeared in the top multi-modality models as well, suggesting that further study 

of MR features in a larger patient cohort is warranted.    

The second aim of this work sought to investigate the feasibility of building an 

uncertainty model to aid in physician contour delineation.  This work built on previous 

work by Karki et al.83 to investigate the link between the tumor interface type and the 

amount of uncertainty.  While the interface type alone was not enough to explain the level 

of uncertainty, there appeared to be a relationship between uncertainty and interface type.  

Several convolution neural networks were tested to predict the interface type and tumor 

location from image patches.  The accuracy of the interface type prediction network 

developed achieved moderate accuracy on the best guess but was significantly improved 

by scoring the top 2 or 3 interface class accuracy. The tumor location network had an 

acceptable accuracy for most patients; however, still struggled with similar looking 

physiology, such as near atelectasis.  Further refinement would be needed for either 

network to be clinically acceptable, but the results show neural networks warrant further 

research in lung cancer. 

Improved patient treatment and outcome is a constant goal in radiation oncology.  

Being able to predict treatment outcome prior to, or early during treatment, and improving 

accuracy of treatment targets are two ways to improve on current practices.  The results 

of this work investigated the potential uses of radiomics in MR imaging for lung cancer as 

well as convolutional neural networks to assist in contour delineation by providing 
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physicians with addition information.  These techniques show promise and should be 

investigated further. 
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Abstract 

Purpose: To evaluate the repeatability of MRI and CT derived texture features and investigate 

feasibility of use in predictive single and multi-modality models for radiotherapy of non-small cell 

lung cancer. 15	

 

Methods: Fifty-nine texture features were extracted from unfiltered and wavelet filtered images.  

Repeatability of test-retest features from helical 4D CT scans, true fast MRI with steady state 

precession (TRUFISP), volumetric interpolation breath-hold examination (VIBE), and diffusion 

weighted MRI (both the acquired images and processed apparent diffusion coefficient (ADC) 20	

images) was determined by the concordance correlation coefficient (CCC).  A workflow was 

developed to predict overall survival at 12, 18, and 24 months and tumor response at end of 

treatment for tumor features, and normal tissue features as a control. Texture features were 

reduced to repeatable and stable features before clustering. Cluster representative feature 
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selection was performed by univariate or medoid analysis before model selection. P-values 25	

were corrected for false discovery rate. 

 

Results: Repeatable (CCC ≥ 0.9) features were found for both the tumor and normal tissue: CT: 

54.4% for tumor and 78.5% for normal tissue, TRUFISP: 64.4% for tumor and 67.8% for normal 

tissue, VIBE: 52.6% for tumor and 72.9% for normal tissue, DWI: 10.2% for tumor, ADC: 18.6% 30	

for tumor. Normal tissue control analysis found 7 significant models with 6 of 7 models utilizing 

the univariate representative feature selection technique. Tumor analysis revealed 12 significant 

models for overall survival and 0 for tumor response at end of treatment. The accuracy of 

significant single modality was about the same for MR and CT. Multi-modality tumor models had 

comparable performance to single modality models. 35	

 

Conclusion: MR derived texture features may add value to predictive models and should be 

investigated in a larger patient cohort.  Control analysis demonstrated the medoid 

representative feature selection method may result in more robust models. 

 40	
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Introduction  45	

 

In recent years, predictive models built on imaging features have been investigated as 

biomarkers for various clinical endpoints and anatomical sites. This research area, termed 
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‘radiomics’, seeks to extract a large number of pre-determined features from an image and use 

these features to phenotypically characterize the tissue in question. Imaging features that 50	

quantitatively describe tissue characteristics such as texture and shape are used in various 

models to predict treatment response.  In addition, a sub area of radiomics, delta radiomics, 

seeks to extract information from the changes in the extracted texture features as a result of 

treatment-induced changes.3–5  Both single time point, such as pre-treatment, and delta 

radiomics features have been used to explore correlations between the extracted features and  55	

histology6, gene mutation5, 7, local control8–11, distant metastasis, and overall survival3, 12–15.3, 16–18 

Utilizing the information contained in medical images is attractive for two reasons: it is non-

invasive and gives information of the whole tumor volume unlike a biopsy, and can often be 

extracted from images obtained for routine patient management purposes. Radiomics for lung 

cancer has primarily focused on computed tomography (CT) and positron emission tomography 60	

(PET) images.4, 5, 9, 19–22 Magnetic Resonance (MR) images, on the other hand, have been less 

prominently studied for use in lung cancer, partly due to the high variability in the extracted 

features due to variations in imaging protocol and acquisition signal.23–31 However, the superior 

soft tissue contrast and lack of additional dose to a patient treatment make MR a potentially 

useful imaging modality for lung cancer radiomics. In addition, with the introduction of MR 65	

simulation and use of MR for image guidance, MR images may become more common in the 

radiation treatment workflow which makes the exploration of their potential desirable. 

 

This work aims to first characterize the repeatability of MR texture features of lung cancer 

extracted from a single machine and imaging protocol and compare them to CT texture features 70	

extracted with the same workflow.  Then, for pretreatment CT and MR images, utilize the 

repeatable features to assess the feasibility of predicting local control and overall survival for 

each modality individually and for a set of multi-modality models.  For validation of the selected 

models in lung cancer and to serve as a control, predictive models were also constructed for 
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normal tissue features which were expected not to change in response to radiation treatment or 75	

predict treatment outcome for the same endpoints.   

 

Methods 

 

Patient characteristics  80	

This study utilized images of 15 subjects with non-small cell lung cancer enrolled on an IRB 

approved study. Diffusion weighted and morphological MRI and CT images before and during 

the course of radiotherapy were acquired in order to investigate the potential use of MRI in lung 

cancer treatment planning and response evaluation. All subjects underwent radiation therapy 

with or without concurrent chemotherapy for stage IIB to IV non-small cell lung cancer per 85	

department protocol. See Table 1 for summary of patient characteristics. 
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Images  90	

Five different imaging types were evaluated in this study: T1-weighted Volumetric Interpolation 

Breath-Hold Examination (VIBE), True fast MRI with steady state precession (TRUFISP), 

diffusion weighted MRI (both the acquired images and processed apparent diffusion coefficient 

(ADC) images), and helical 4D CT scans. The ADC maps were created utilizing 8 b-value DWI 

images (b-values between 0 and 1000 s/mm
2
). MR images were all acquired on a 1.5 T scanner 95	

(Avanto, Siemens, Munich, Germany), CT images were acquired as 4D images (Brilliance Big 

Bore, Philips, Amsterdam, Netherlands). Table	2 details the different imaging parameters used 

for each modality. 

 

Table	1:	Summary	of	patient	characteristics		
for	texture	feature	repeatability	study.		

	
	

Male	 10

Female	 5

Squamous	cell	carcinoma	 9

Adenocarcinoma	 6

IIB 3

IIIA 6

IIIB 4

IV 2

Yes 12

No 3

Mean	Dose	(Range)

61.6	(59.4-66)	Gy

59.1	(50.0-73.4)	years

Sex

Mean	Age	(Range)

Histology	

Stage

Chemotherapy
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Sets of CT and MR images were acquired on the same day before treatment (“Time 1”), 100	

approximately three weeks into treatment (“Time 2”) and/or at the conclusion of treatment 

(“Time 3”). To evaluate the repeatability of texture features extracted from the various imaging 

modalities, test-retest image sets were acquired utilizing the same protocol with a short break 

(“coffee break”) in between scans without repositioning the patients. Images were acquired 

utilizing 4D acquisition for the CT images, breath hold for the TRUFISP and VIBE images and 105	

respiration triggering for the DWI images.  The short time interval between the two image sets 

allows for evaluation of random changes in a texture feature as it can be assumed that there is 

no true physiological change in the tumor between the two images. The 4D CT images were 

comprised of 33 pairs of inspiration and expiration phase images. While the TRUFISP and VIBE 

images totaled 34 and 32 same session inspiration-expiration breath-hold image pairs 110	

respectively. For the diffusion weighted and corresponding ADC maps, there were 8 imaging 

pairs with slice thickness difference of 4mm or 6mm and 16 ascending or interleaved acquisition 

pattern image pairs for the repeatability analysis referred to as “Thickness” or “Order” 

respectively. Table 3 outlines the test – retest image pairs available for all subjects in the study. 

Table	2:	Summary	of	imaging	parameters	for	each	modality.	

	
	

CT TRUFISP VIBE DWI

Machine	 Phillips	Brilliance	Big	Bore Siemens	Avanto	1.5	T	 Siemens	Avanto	1.5	T	 Siemens	Avanto	1.5	T	

Contrast No No No No

Pixel	Spacing 0.98mm	to	1.37mm 0.74mm 1.57mm 2mm

Slice	Thickness	 3mm	 5mm 1.6mm	or	2mm 4mm	or	6mm

Gap 3mm 6.4mm 0 4.8mm	to	9.6mm	

In-plane	Matrix	Size 512	x	512 512	x	512 208	x	256 144	x	192

Breathing	Regulation Free	Breathing Breath	Hold Breath	Hold Respiration	Triggered

kVp 120	or	140 NA NA NA

Coil NA Body Body Body

Flip	angel	 NA 57	or	66	degrees 12	degrees 90	degrees

TR NA 3.65ms 3.56ms Various	

TE NA 1.82ms	to	1.89ms 1.28ms 74

Number	of	Echos NA 1 1 1

Echo	Train	length	 NA 1 1 1

Number	of	Averages	 NA 1 1 2

b-values
NA NA NA

0,	50,	100,	250,	500,	650,	

800,	and	1000	mm/s
2
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Region of Interest  

The primary gross tumor volume was delineated as the region of interest (ROI) by one 

experienced radiation oncologist on one of the images in the image pair using clinical 

segmentation and registration software (MIM Maestro v6.X, Cleveland, OH). The test and retest 

images were rigidly registered together, and the contour was transferred to the corresponding 120	

image and manually adjusted as necessary to ensure the volumes had a no greater than 10% 

difference and visually defined the tumor.  The normal tissue contours used to build a control 

model consisted of a cylindrical volume of 5.75 mL, sampled from an erector spinae or 

infraspinatus muscle outside the radiotherapy fields depending on primary tumor location. In 

addition to the muscle contours, blood contoured inside the descending aorta and air contoured 125	

inside the trachea were also tested.   

 

 

	

Table	3:	Summary	of	test-retest	image	pairs		
available	for	all	subjects	in	the	study.	

	
”Thickness”	refers	to	different		
slice	thicknesses	between	the	test	and	re-test	
images	and	”Order”	refers	to	different	
slice	acquisition	orders.	

Time	1 Time	2 Time	3
CT	 15 9 9

TRUFISP 15 10 9
VIBE 16 9 7
DWI_Thickness 4 2 2
DWI_Order 4 6 6
ADC_Thickness 4 2 2
ADC_Order 4 6 6
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Texture Features 130	

Fifty-nine texture features were extracted, Table 4, at five different wavelet ratios, 0.5, 0.67, 1, 

1.5, and 2, utilizing the Radiomics Matlab code (2016b, MathWorks, Natick, MA) by Vallières et 

al. which was extended in-house to include additional texture features, quantization by the gray 

level number, and to increase speed of code.16 Prior to feature extraction, all images were 

resampled to the in-plane voxel size, and for the MRI images, any voxels with intensity greater 135	

than +/- 3s from the mean were removed as suggested by Collewet et al. for greater feature 

stability.24   The gray level values were used as the bins for quantization resulting in a bin width 

of 1HU. 

 

The extracted texture features were from five different texture feature categories: the intensity 140	

histogram, the gray level occurrence matrix (GLCM) with features calculated as described by 

Haralick et al.32  and extended by Conners et al.33, the neighborhood gray tone difference matrix 

(NGTDM) with features calculated as described by Amadasun and King34, the gray level run 

length matrix (GLRLM) with feature described by Galloway35, and the gray level size zone 

difference matrix (GLSZM) with feature calculated as described by Thibault et al.36  The different 145	

Table	4:	List	of	all	59	texture	features	extracted	from	images.	

	
Texture	catagories	are:	Grey	Level	Co-Ocurrence	Matrix	(GLCM),	the	Neighborhood	Gray	Tone	Difference	
Matirx	(NGTDM),	Gray	Level	Run	Length	Maritx	(GLRLM)	and	Gray	level	Size	Zone	Matrix	(GLSZM)	
	

Histogram GLCM NGTDM GLRLM GLSZM
Variance Energy Coarseness Short	Run	Emphasis	(SRE) Small	Zone	Emphasis	(SZE)
Skewness Contrast Contrast	(ContrastN) Long	Rum	Emphasis	(LRE) Large	Zone	Emphasis	(LZE)
Kurtosis Entropy Busyness Gray	Level	Non-Uniformity	(GLN) Gray	Level	Non-Uniformity	(GLNS)
Standard	Deviation	(SD) Homogeneity Complexity Run	Length	Non-Uniformity	(RLN) Zone	Size	Non-Uniformity	(ZSN)
Mean Correlation Strength Run	Percentage	(RP) Zone	Percentage	(ZP)
Minimum Sum	Average Low	Gray	Level	Run	Emphasis	(LGRE) Low	Gray	Level	Zone	Emphasis	(LGZE)
Maximum Variance	(VarianceG) High	Gray	Level	Run	Emphasis	(HGRE) High	Gray	Level	Zone	Emphasis	(HGZE)
Median Dissimilarity Short	Run	Low	Gray	Level		Emphasis	(SRLGE) Small	Zone	Low	Gray	Level	Emphasis	(SZLGE)
Quartile1 Mean	Pair	Sum	(MeanPS) Short	Run	High	Gray	Level		Emphasis	(SRHGE) Small	Zone	High	Gray	Level	Emphasis	(SZHGE)
Quartile2 Variance	Pair	Sum	(VariancePS) Long	Run	Low	Gray	Level		Emphasis	(LRLGE) Large	Zone	Low	Gray	Level	Emphasis	(LZLGE)

Entropy	Pair	Sum	(EntropyPS) Long	Run	High	Gray	Level		Emphasis	(LRHGE) Large	Zone	High	Gray	Level	Emphasis	(LZHGE)
Variance	Pair	Difference	(VariancePS) Gray	Level	Variance	(GLV) Gray	Level	Variance	(GLVS)
Entropy	Pair	Difference	(EntropyPD) Run	Length	variance	(RLV) Zone	Size	Variance	(ZSV)
Information	Correlation	Measure	1	(InfoCorr1)
Information	Correlation	Measure	2	(InfoCorr2)
Auto-Correlation	(AutoCorr)
Cluster	Prominence	(ClusterProm)
ClusterShade
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texture categories capture first order texture features through the intensity histogram as well as 

second order features which encode information about the spatial distribution of the voxels 

through the other categories. The higher order features were derived from the GLCM, which 

measures the co-occurrence of different voxel intensities in a defined distance and direction 

away, the GLRLM, which measures characteristics of the distribution of connected isointense 150	

voxels in a given direction, the GLSZM, which extends the GLRLM feature to connected 

isointense voxels in all direction, and the NGTDM, which characterizes the difference between a 

voxel and its neighbors.  The GLCM and GLRLM feature were averaged across all directions to 

make features rotationally robust.  For all image sets except the DWI/ADC images, 3D texture 

features were calculated.  For several patients, the large tumor volumes were not completely 155	

covered by the DWI protocol. Therefore, multiple overlapping acquisitions were used to cover 

the entire tumor volume as recommended in the imaging protocol.  In this situation, because of 

slice to slice intensity variations, a surrogate 3D texture feature value was calculated for the 

DWI/ADC images by using a volumetrically weighted average of the texture features calculated 

from non-overlapping 2D slices.  160	

 

Repeatability Analysis 

An analysis of the repeatability of texture features extracted from each image type was 

performed with R (3.3.1) in R Studio (1.0.143, RStudios Inc., Boston, MA).  First, repeatability of 

texture features was assessed for all image types at all 3 time points by using the concordance 165	

correlation coefficient (CCC) as described by Lin et. al. utilizing all available time points for each 

image type.37 The CCC measures the correlation between two paired measurements by 

calculating the deviance from perfect one-to-one correlation.  
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Outcomes Modeling 170	

Texture features were evaluated for predictive power in logistic regression models for local 

control and overall survival.  Prior to model selection, the features were first reduced to 

repeatable and stable features before clustering.  After clustering, a representative feature from 

each cluster was selected as a candidate for modeling.  The “best” models were selected based 

on accuracy and fit according to each clinical endpoint. The workflow process can be seen in 175	

Figure 1 and is described in greater detail below.  

	
Figure	1:	Workflow	for	model	selection.		

Read	Raw	Texture	 Feature	Data

Remove	1	Subject	from	Raw	Data

Limit	to	Stable	and	Repeatable	
Test	Data,	Format	Data,	and	
Perform	 Z-Score	Normalization

Append	Results	
of	Each	Fold	to	

Separate	Data	Set	

Perform	 Test	Re-test	Analysis	to	
Determine	 CCC	and	Repeatable	

Features

Limit	Data	to	Only	Representative	
Features	and	Add	Response	Data:	

Modeling	Data

Perform	 Clustering,	 Determine	
Optimum	Number	 of	Clusters,	
and	Representative	Features	

Perform	 Logistic	Regressions	for	
Each	Endpoint	 and	Image	Type

Determine	 CCC	Stability	Across	K	
Leave-One-Out	Folds	and	Save	

Stable	Features	List

Select	‘Best’	 Models	Based	on	
Accuracy	and	AIC/BIC

Repeatability

Clustering

Modeling
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Feature Reduction 

Repeatability was again computed as part of the model selection workflow using a leave-one-

out cross validation of only the pretreatment images in order to select stable features and 

increase robustness of the models. During model selection, a feature was deemed repeatable if 180	

the CCC value exceeded a cut off of 0.9 as recommended by McBride.38 If the 0.9 cutoff failed 

to produce more than 5 repeatable texture features, the cutoff was lowered in 0.05 steps until at 

least 5 features were found with 0.7 being the minimum allowed cutoff to compensate for having 

less than the 25 recommended samples. The stability of the CCC calculation was determined by 

the coefficient of variation (COV) across all folds.  Texture features with a COV less than 5% 185	

were considered stable repeatable features and included in the feature reduction and model 

selection process.  

 

Representative Feature Selection 

A z-score normalization was then applied to the subset of repeatable and stable features before 190	

undergoing hierarchical clustering based on the absolute value of the Spearman distance using 

the Cluster Consensus Plus package (1.38.0, open source, Bioconductor.org) in R with an 85% 

subject resample and 1000 iterations.39  The optimum number of clusters was determined by 

identifying the highest median cluster consensus from the range of cluster numbers k=[5,7].  

The upper bound was selected in order to have twice as many pretreatment subjects images as 195	

texture features in the model as is generally recommended in regression,  and the lower bound 

selected to be the minimum number of clusters where the relative change in the area under the 

cumulative density function curve, which is the ‘Delta Area’ plot returned as part of the 

consensus cluster plus package output, appeared to become stable.39 

 200	

A representative feature was selected from each of the k clusters of the optimum number 

previously established by one of two methods: medoid or univariate prognostic power.  With the 
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medoid selection process, the Spearman correlation among cluster members was calculated 

and the feature with the highest average correlation was selected.20, 40  For the univariate 

prognostic power selection, a log likelihood ratio test was performed comparing the model with 205	

each individual feature to the model containing only the intercept, and the feature with the most 

significant log likelihood p-value was selected as the representative feature.3   

 

Model Selection 

Following feature reduction and representative feature selection, an exhaustive search of all 210	

possible models was performed for the CT, VIBE and TRUFISP pre-treatment images only.  

The sample size of the remaining image types and time points was too small for consideration. 

The logistf package41 in R was used to regress the selected variables to four different endpoints: 

Overall survival at 12 (OS_12), 18 (OS_18) and 24 (OS_24) months and tumor response at end 

of treatment (PT_endTx). For the OS_12, OS_18 and PT_endTx there were 14 available 215	

subjects. One subject was lost to follow up after 20 months and was not included in the OS_24 

dataset resulting in a total of 13 subjects’ data being available for modeling at this time point. 

The maximum likelihood equation was penalized using the Firth method42 to reduce small 

sample bias, and the “best” models were selected based on a combination of high leave-one-

out cross validation accuracy, low Akaike information criterion (AIC), and low Bayesian 220	

information criterion (BIC).  One model for each outcome, image type, and representative 

feature selection method was selected and compared resulting in a total of 48 models.  The 

selection methods and image processing methods were compared on the basis of corrected 

significance, and accuracy to determine the “best” 4 models for each image type. For 

significance testing, the log likelihood ratio test was used to compare the selected model to the 225	

model containing only the intercept.  The log likelihood ratio test p-values were corrected using 

the Benjamini-Hochberg-Yekutieli (BHY) procedure43   to control for multiple dependent 

comparisons with an acceptable false discovery rate of 0.05.  



 

 140 

 

	 13	

 

The single modality and muscle studies utilized all available pretreatment images, while the 230	

multi-modality study utilized the subset of 9 patients with all three pre-treatment images.  The 

multi-modality data set was created by concatenating all the repeatable and stable features from 

each of the three modalities into one data set then proceeding with clustering, representative 

feature determination, and model selection.  For comparison, the single modality clustering, 

representative feature determination and model selection process was repeated for the same 235	

subset of 9 patients. In the case of the single modality utilizing the full image set and muscle 

studies, only the best model was selected, while for the multi-modality and comparison single 

modality image study, the top 3 models were compared for trends due to the sample size. 

 

Results  240	

 

Repeatability 

Three different tissue types were investigated for the normal tissue control, blood within the 

descending aorta, air within the trachea and muscle.  The blood and air were not used as 

repeatability was difficult to establish using the CCC calculation as small difference between test 245	

and re-test value caused a large drop in CCC value with the narrow range of values in the 

population.  Analysis for the normal tissue control modeling was completed on texture features 

derived from the muscle contours and revealed a number of repeatable and stable features. For 

the wavelet with the highest number of repeatable features, each of the modalities achieved the 

following results:  CT: 55.9% of features were considered highly repeatable (CCC ≥ 0.95) and 250	

an additional 18.6% were considered repeatable (CCC ≥ 0.9), TRUFISP:  59.3% highly 

repeatable features and an addition 8.5% repeatable features, VIBE: 47.5% highly repeatable 
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features and an additional 25.4% repeatable features.  The DWI and ADC images were not 

tested for the normal tissue. 

 255	

The CCC score for the top 25 repeatable primary tumor features from all time points for each 

image type can been seen in Table 5. The b-value of 650 s/mm2 for the diffusion weighted 

images was selected because it had the most repeatable features for the images without 

perfusion contamination for both the DWI_Order and DWI_Thickness image sets.  For the 

wavelet with the highest number of repeatable features, each of the modalities achieved the 260	

following results:  CT: 39% of features were considered highly repeatable (CCC ≥ 0.95) and an 

additional 24.4% were considered repeatable (CCC ≥ 0.9), TRUFISP:  16.9% highly repeatable 

features and an addition 47.5% repeatable features, VIBE: 3.4% highly repeatable features and 

an additional 49.2% repeatable features, DWI_Order: 10.2% repeatable features, ADC_Order: 

18.6% repeatable features, DWI_ Thickness and ADC_Thickness: 0% repeatable features. 265	

There were several features that were repeatable across multiple modalities as can be seen in 

Table 5. In addition, texture features were found to be repeatable across the majority of the 

different wavelet filtered images in 97.5% for CT images, 76.1% for TRUFISP images, 84.8% for 

the VIBE images, 28.6% of the DWI_Order image, and 100% in the ADC_Order image.  The 

percentage of repeatable texture features from each category (histogram, GLCM,…) was 270	

approximately the same within each imaging modality. For the CT image all texture categories 

had a percentage of repeatable features between 60% and 80%, for TRUFISP the majority of 

texture feature categories were between 83%-100% with the exception of histogram features 

where only 40% were repeatable at any wavelet ratio, and for VIBE all texture categories were 

between 46% and 62% repeatable. For the DWI_Order, the GLRLM and GLSZM were both at 275	

8% and all other categories at 0% and for the ADC_Order, the GLCM, GLRLM and GLSZM 

were between 15% and 23% while the NGTDM had the most at 40% and the histogram feature 

the least at 0%. There were no repeatable features for the DWI_Thickness or ADC_Thickness. 
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Model Selection 280	

Preliminary analysis of feature clusters revealed that individual texture features from different 

wavelets were in the same clusters regardless of image type.   Therefore, only the texture 

feature values from the wavelet ratio 1, the unfiltered image, denoted “image_1” or “feature_1”, 

and texture feature values averaged across all wavelet ratios, denoted “image_avj” or 

“feature_avj”, were considered.  During feature reduction, the minimum repeatability cutoffs 285	

used for any leave one out fold for the primary tumors were: 0.9 for CT_avj and CT_1, 0.85 for 

VIBE_avj, VIBE_1, and TRUFISP_avj, and 0.8 for TRUFISP_1.  The minimum threshold for 

repeatability in any leave one out fold for the muscle was 0.9 for all image types.   

 

Regarding the normal tissue contours, for the VIBE_avj , VIBE_1 and CT_avj there were 32 290	

features available for clustering, TRUFISP_avj had 35, TRUFISP_1 had 29, and CT_1 had 25.  

The optimum number of clusters as determined by the highest median cluster consensus was 7 

for CT_1 and VIBE_avj, 6 for the CT_avj and TRUFISP_avj, and 5 for the VIBE_1, TRUFISP_1 

images. For CT, no models were found to be significant predictors of tumor outcome. For 

TRUFISP 6 of 16 models and 14/16 models for VIBE were found to be significant predictors of 295	

tumor outcome. The primary tumor had a similar number of repeatable and stable features for 

clustering and optimum cluster number as the normal tissue.  The number of repeatable and 

stable features remaining for clustering for the VIBE_avj was 41, VIBE_1 was 34, TRUFISP_avj 

was 25, TRUFISP_1 was 30, CT_avj was 32, and CT_1 was 35.  The optimum number of 

clusters as determined by the highest median cluster consensus was 7 for the VIBE_avj, 300	

TRUFISP_avj, and TRUFISP_1, 6 for the CT_avj and CT_1, and 5 for the VIBE_avj images. 

 

For the CT images, each filtering and feature selection method produced the same significant 

model.  The selected single modality model found to be significant by the BHY procedure was 
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for OS_12, with an accuracy of 0.93 ± 0.13The only significant models based on the TRUFISP 305	

images were derived from the unfiltered image with medoid feature selection.  The significant 

models from the BHY procedure were: OS_12 with accuracy 0.93 ± 0.13, and OS_18 with 

accuracy 0.87 ± 0.18.  OS_24 and PT_endTx were not determined to be significant.  The VIBE 

significant models were derived from all four combinations of filtering and representative feature 

selection processes with the univariate selection method producing more significant models 310	

than the medoid method PT_endTx was not predicted significantly by any of the tumor models. 

The highest accuracy achieved for the OS_12 was 0.93± 0.13, the OS_18 was 0.93 ± 0.13, the 

OS_24 was 0.86 ± 0.22. The	accuracy	of	the	significant	models	for	the	muscle	and	primary	

tumor	can	be	seen	in	Figure	4. 

 315	

Figure 3 depicts the frequency of texture features occurring within the significant models.  It can 

be seen that while the muscle texture features did produce significant models very few 

overlapped with texture features selected in the best primary tumor models. 
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 320	

	
Figure	4:	Accuracy	of	significant	models	for	primary	tumor	and	muscle	by	modality	and	
image	filtering/representative	feature	selection	technique.	

	
Figure	3:	Comparison	of	texture	features	utilized	within	significant	models		
derived	from	both	the	primary	tumor	and	muscle	tissue	by	modality	and	endpoint.		
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Following the analysis of the normal tissue and single modalities models, a multi-modality model 

selection and reduced subject single modality, referred to as reduced_SM, model selection was 

performed.  Multi-modal and reduced_SM model selection was performed for the PT_endTx, 

OS_12 and OS_24 only as the responses for the reduced patient set for OS_24 and OS_18 end 

points were identical.  In addition, the number of clusters was set to 5 due to the number of 325	

patient remaining.  None of the models were significant under the BHY procedure for any of the 

reduced_SM or multi-modality models. 

 

The top 3 multi-modality models had features from all three modalities represented. The 

TRUFISP derived features appeared in 26 of the 36 models more often than the VIBE (11/36) 330	

and CT (12/36) features.  The average accuracy of the top 3 models was comparable or more 

accurate than the reduced_SM models.  For the OS_12 and OS_24, the multi-modality average 

accuracy by wavelet filtering and representative feature selection ranged from 67% to 85% 

	
Figure	5:	Highest	model	accuracy	by	endpoint	and	modality	for	the	primary	tumor.	
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while the corresponding single modalities ranged in accuracy from 72% to 81%.  For the 

PT_endTx, the multi-modality accuracy had a range of 71%-88% and the corresponding single 335	

modalities ranged from 54%-88%.  Compared to CT only the OS_12 and OS_24 predictive 

ranges were 78%-81% and the PT_endTx was 67%-88% suggesting the multi-modal models 

may add some small accuracy benefits.  A comparison of the highest accuracy for top 3 models 

for all modalities can be seen in Figure 5. 

Discussion  340	

 

Our work evaluated the repeatability of MR derived texture features and their usefulness in 

predictive models as compared to and in combination with CT derived features and models. We 

were able to identify repeatable texture features and predictive models for the primary tumor in 

both the VIBE and TRUFISP image sequences that were significant under the BHY procedure 345	

and had promising accuracy.  In addition, we demonstrated the feasibility of constructing multi-

modality based predictive models that were comparable to the single modality predictive models 

for the primary tumor.  However, since the multi-modality models did not outperform the single 

modality models, this particular combination of multi-modality imaging does not appear 

warranted for the purpose of outcome prediction using above described radiomics approach.  350	

 

Finally, we evaluated the ability of radiomics in out-of-field un-irradiated normal tissue to predict 

tumor outcome. Because this tissue is minimally affected by radiation and tumor response, we 

expected to find no significant relationship between texture features in any modality and 

outcome.  The results of the normal tissue portion of this work emphasizes the need for caution 355	

as a number of MR based models were found to be significant predictors of outcome, but also 

demonstrates how such a technique can be used to assist in model development. For example, 

the use of univariate feature selection from a cluster gave a higher number of spurious results 
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compared to medoid based feature selection. From these results, one can select the medoid-

based method as potentially being more robust, presuming the muscle region has no true ability 360	

to predict patient response to therapy. Furthermore, the features from the significant models 

derived from primary tumor and muscle had no overlap.  

 

By using only one scanner and imaging protocol with manual contours from one physician, we 

were able to reduce many potentially confounding factors that affect texture feature 365	

repeatability.  The features we found to be repeatable for the CT images are comparable to 

findings by Larue et. al.12for their 4D CT images. The repeatability of MR features has not been 

as highly investigated in the literature.   One recent study published by Gourtsoyianni et. al.31 on 

MR texture feature repeatability showed very low repeatability of higher order texture features 

(GLRLM, NGTDM, LGSZM) and more repeatable features in the global (histogram) features 370	

and GLCM.  Some of the features our work found to be repeatable were in agreement with the 

study by Gourtsoyianni et al.; however, it should be noted that the Gourtsoyianni et al. study 

focused on T2-weighted turbo spin echo image technique for rectal cancer whereas this work 

utilized VIBE and TRUFISP image techniques and focused on non-small cell lung cancer. 

 375	

This study was the first, to our knowledge, to investigate the predictive power of un-irradiated, 

out-of-field normal tissue for clinical endpoints.  The discovery of significant predictive models 

on MRI derived from muscle tissue throws some doubt on the connection between the 

radiomics texture features extracted from the tumor and underlying biological processes as it 

suggests the correlation may be spurious. The lack of significant muscle-based models for the 380	

CT images and the reduced number of significant muscle-based models for the VIBE and 

TRUFISP image derived features, on the other hand, suggests that not all the results may be 

spurious and that refinement and further exploration of the general approach described here in 

a larger sample size is needed. It is of interest that the texture features present in the best 
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models were different for the primary tumor and muscle tissue.  In addition, the method of 385	

representative feature selection seemed to have a large impact on the significance.  Of the 7 

significant normal tissue models, 6 were formulated utilizing the univariate representative 

feature selection process.  Several authors3, 6, 12 have used univariate based feature selection 

methods to maximize the chance of predictive power, however, this may also increase the risk 

of finding spurious results.  The medoid method, on the other hand, may select more robust 390	

features by selecting the most similar feature within a cluster, therefore the authors suggest the 

use of the medoid representative feature selection method with the workflow presented in this 

work.   

 

Whereas CT and VIBE based primary tumor models did not seem to favor either the unfiltered 395	

or filtered images as the models have about equal accuracy and significance with the texture 

features averaged across wavelet ratios or unfiltered, TRUFISP tumor models prefer the 

unfiltered features. Overall, the VIBE images resulted in more repeatable and stable features 

than the TRUFISP with a minimum threshold and number of features closer to those derived 

from CT images.  In addition, the texture features selected can be related to tumor in-400	

homogeneity such as dissimilarity and contrast, from the NGTDM, that have been identified as 

correlating with outcome.45 In addition, when considering the significant normal tissue models as 

spurious, the pre-treatment images seemed to be a better predictor of overall survival at earlier 

time points as the significant medoid models were for the OS_12. 

 405	

Evaluating the primary tumor clusters across the different methods and image modalities, there 

appeared to be several general themes that could be identified.  All of the imaging modalities 

had a single cluster of features related to tumor homogeneity and another containing 

coarseness. Another theme present in all but two images were derived from the histogram 

features. Variance and energy related clusters appeared in CT and TRUFISP images.  The final 410	
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cluster theme consisted of image specific features that were unique clusters to each image type. 

These cluster themes suggest the repeatable and stable features seem to capture some similar 

underlying features of the tumor phenotypes regardless of modality such as homogeneity as 

well as identify where MR images may capture different subtleties suggesting that MR features 

may add additional value to predictive models over just using CT features alone. These results 415	

were further explored in a limited fashion through the multi-modality portion of this work.  

 

For the multi-modality study, our results showed that the accuracy of the top 3 multi-modality 

features were comparable to the top 3 reduced_SM derived models since there were no 

significant models for either reduced_SM or multimodality models with 9 subjects. Multi-modality 420	

models may have a small increased accuracy.  The TRUFISP image derived features were 

present in 72% of the top multi-modality models. With comparable performance and 

predominately TRUFISP based features, the results seem to suggest that the MR models could 

stand alone for predictive power.  However, with the small sample size further testing will be 

required.  Future work should also include information from the routinely acquired pre-treatment 425	

PET scans which have been shown to have some added benefit to CT3, 46 and MR.16   

 

Our work did not seek to evaluate robustness of texture features acquired on different imaging 

machines and locations which would be necessary to establish imaging texture features as 

biomarkers.  One of the main challenges facing radiomics as a whole is establishing a 430	

standardized protocol for image acquisition and texture feature extraction.44  There is a great 

variability of techniques currently used in radiomics and, so far, there has not been a firm 

conclusion on recommended procedure or best practices as far as image processing. As a 

result, the goal of this study was to assess feasibility and potential value for MR texture features 

while comparing them to CT models derived with the same texture feature extraction procedure.  435	
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The main limitation of our study is the small sample size. Due to the challenging nature and 

burden on patients of collection of multi-modality imaging at multiple time points along with 

repeatability studies, only a small pilot cohort was available.  However, techniques to minimize 

bias due to the small sample size were employed throughout.  The Firth small sample bias 440	

penalization to the maximum likelihood values was used during models selection when 

preforming the log likelihood ratio test against a model containing only the intercept.41  This 

procedure adds a small penalty to the maximum likelihood inversely proportional to the sample 

size.  When analyzing the CCC, all time points were considered together to provide a larger 

picture of the range of the texture features present in the subject population which seemed 445	

justified by the overall lack of a significant difference in the texture features when comparing the 

various time points of the populations under the Wilcoxon Rank test.  In addition, clinical factors 

were not included as model selection variables to allow maximum exploration of the texture 

features. Studies have shown that adding radiomics features to models with clinical factors have 

increased the predictive ability of models3 and future work should explore this possibility with 450	

MR features in a larger dataset. 

 

Conclusion  

In this study, we measured repeatability of MR and CT texture features and then used these to 

build models for estimating outcome after radiation therapy for non-small cell lung cancer.  The 455	

results show that MR images may hold valuable information in addition to the features from CT 

images and should be investigated further in a larger patient cohort.  
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GLCM GLRLM
HIST NGTDM
GLSZM

Table	5:	Table	of	top	25	repeatable	texture	features	for	all	image	types.	

	

Highly	Repeatable	
Repeatable
Potentially	Repeatable
Not	Repeatable

Wavelet	Ratio 0.67 1 0.67 1 0.67 1 0.67 1 0.67 1 0.67 1 0.67 1
EntropyPS 0.951 0.945 0.946 0.934 0.924 0.922 0.855 0.866 0.926 0.927 0.729 0.728
InfoCorr1 0.960 0.954 0.932 0.940 0.816 0.808 0.827 0.867 0.772 0.773 0.834 0.827
Coarseness 0.966 0.966 0.968 0.967 0.957 0.941 0.846 0.802 0.731 0.722
Entropy 0.955 0.946 0.932 0.929 0.879 0.898 0.931 0.931 0.794 0.796
EntropyPD 0.956 0.956 0.934 0.928 0.714 0.735 0.869 0.879 0.765 0.744
Median 0.959 0.960 0.914 0.916 0.852 0.852 0.806 0.806 0.713 0.713
Quartile3 0.930 0.929 0.922 0.921 0.869 0.869 0.809 0.809 0.738 0.738
VariancePS 0.952 0.950 0.962 0.961 0.847 0.847 0.781 0.781 0.740 0.740
AutoCorr 0.941 0.941 0.840 0.840 0.741 0.738 0.785 0.785
Complexity 0.954 0.946 0.956 0.955 0.912 0.914 0.819 0.820
Dissimilarity 0.962 0.959 0.926 0.921 0.837 0.837 0.801 0.801
Energy 0.962 0.958 0.918 0.921 0.864 0.876 0.917 0.921
GLN 0.956 0.938 0.934 0.935 0.889 0.890 0.921 0.925
GLNS 0.951 0.943 0.937 0.936 0.902 0.905 0.921 0.925
Homogeneity 0.943 0.947 0.923 0.918 0.870 0.864 0.776 0.772
LGRE 0.970 0.969 0.913 0.931 0.904 0.895 0.900 0.902
LGZE 0.970 0.969 0.920 0.936 0.902 0.874 0.926 0.927
Mean 0.959 0.959 0.911 0.912 0.847 0.846 0.800 0.802
SD 0.947 0.946 0.956 0.953 0.758 0.755 0.782 0.782
Skewness 0.929 0.932 0.870 0.869 0.789 0.794 0.769 0.769
SRHGE 0.942 0.942 0.834 0.834 0.740 0.737 0.787 0.787
SRLGE 0.970 0.969 0.913 0.931 0.906 0.899 0.912 0.914
SZHGE 0.948 0.950 0.834 0.834 0.733 0.726 0.789 0.789
SZLGE 0.970 0.969 0.920 0.936 0.905 0.884 0.904 0.901
Variance 0.951 0.949 0.962 0.961 0.773 0.769 0.764 0.764
Busyness 0.909 0.949 0.768 0.782 0.905 0.914
ClusterProm 0.951 0.947 0.834 0.834 0.823 0.824
ClusterShade 0.952 0.948 0.919 0.919 0.835 0.834
HGRE 0.941 0.942 0.745 0.741 0.787 0.787
HGZE 0.944 0.945 0.747 0.742 0.788 0.788
LRHGE 0.939 0.939 0.755 0.759 0.785 0.785
Maximum 0.850 0.850 0.807 0.807 0.750 0.750
SumAverage 0.933 0.932 0.837 0.840 0.741 0.741
SZE 0.941 0.948 0.941 0.937 0.930 0.921
VarianceG 0.963 0.961 0.828 0.834 0.881 0.882
ZSN 0.945 0.952 0.941 0.938 0.931 0.924
Contrast 0.954 0.952 0.809 0.809
ContrastN 0.955 0.960 0.939 0.926
Correlation 0.887 0.890 0.765 0.765
Kurtosis 0.852 0.839 0.729 0.729
LRLGE 0.970 0.969 0.893 0.877
LZHGE 0.684 0.771 0.780 0.781
MeanPS 0.715 0.714 0.801 0.801
Quartile1 0.959 0.961 0.789 0.789
RLV 0.912 0.895 0.626 0.688
VariancePD 0.950 0.951 0.826 0.826
GLV 0.771 0.732
GLVS 0.801 0.796
LRE 0.912 0.917
LZE 0.932 0.953
LZLGE 0.743 0.795
Minimum 0.692 0.692
RLN 0.914 0.917
RP 0.913 0.917
SRE 0.914 0.917
Strength 0.827 0.817
ZP 0.920 0.920
ZSV 0.844 0.632

ADC_Order
DWI_Thickness	
(b-value	650)

ADC_ThicknessCT TRUFISP
VIBE	(T1-
weighted)

DWI_Order	(b-
value	650)

Highly	Repeatable:	CCC	≥	0.95		 	 	 Repeatable:		0.90	≤	CCC	<	0.95		
Potentially	Repeatable:	0.85	≤	CCC	<	0.90	 																Not	Repeatable:	CCC	<	0.	
Texture	feature	abbreviations	are	listed	in	table	4.		Texture	features	are	arranged	in	decreasing	
order	of	frequency	across	all	modalities.		Gray	Level	Co-Occurrence	Matrix	(GLCM),	Gray	Level	
Run	Length	Matrix	(GLRLM),	Gray	Level	Size	Zone	Matrix	(GLSZM)	and	Neighborhood	Gray	Tone	
Difference	Matrix	(NGTDM).	
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Appendix II 

 
 
 

Formula for the fifty-nine texture features used in specific aim 1. 
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Histogram Texture Features 
 
Texture features are calculated from the intensity values in a region of interest. 
 
Feature  Formula  Description 

Mean 𝜇 = 	
1
𝑁

𝑝<

Z

<ab

 

 

𝑝<is element 𝑖 in the region of 
interest and N is the total 
number of elements in the 
region of interest 

Standard 
Deviation 𝜎 = 	

1
𝑁

𝑝< − 𝜇 $

Z

<ab

 

𝑝<is element 𝑖 in the region of 
interest, N is the total number 
of elements in the region of 
interest and µ is the mean 

Variance 𝑉 = 	
1

𝑁 − 1
𝑝< − 𝜇

Z

<ab

 

𝑝<is element 𝑖 in the region of 
interest, N is the total number 
of elements in the region of 
interest and µ is the mean 

Skewness 𝑠 = 	
1
𝑁 𝑝< − 𝜇 *Z

<ab

𝜎*
 

𝑝<is element 𝑖 in the region of 
interest, N is the total number 
of elements in the region of 
interest, µ is the mean and s 
is the standard deviation. 

Kurtosis 𝑘 = 	
1
𝑁 𝑝< − 𝜇 gZ

<ab

𝜎g
 

𝑝<is element 𝑖 in the region of 
interest, N is the total number 
of elements in the region of 
interest, µ is the mean and s 
is the standard deviation. 

Minimum Smallest 𝑝< in region of interest 𝑝<is element 𝑖 in the region of 
interest 

Median 
Middle 𝑝< in ordered list of all elements if 

odd or average of two middle values if 
even 

𝑝<is element 𝑖 in the region of 
interest 

Maximum Largest 𝑝<in region of interest 𝑝<is element 𝑖 in the region of 
interest 

Quartile 1 
The 𝑝< separating the lowest 25% of values 

from the upper 75% in ordered list of all 
elements 

𝑝<is element 𝑖 in the region of 
interest 

Quartile 3 
The 𝑝< separating the lowest 75% of values 

from the upper 25% in ordered list of all 
elements 

𝑝<is element 𝑖 in the region of 
interest 
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Gray Level Co-occurrence Matrix Texture Features 
 
Texture features are calculated from the gray level co-occurrence matrix 
 

Feature 	 Formula  Description 

Energy 𝑓b = 𝑝 𝑖, 𝑗 $

Zj

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM, 𝑁n is the number 
of gray levels 

Contrast 𝑓$ = 𝑛$ 𝑝 𝑖, 𝑗

Zj

kab

Zj

<ab

Zjp?

qar

 

𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM, 𝑁n is the number 
of gray levels. Sum over 
𝑖, 𝑗 for all 𝑖, 𝑗 where 𝑖 −
𝑗 = 𝑛 only 

Entropy 𝑓* = − 𝑝 𝑖, 𝑗 log	(𝑝 𝑖, 𝑗 )
v

kab

w

<ab

 

𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM, 𝑁n is the number 
of gray levels 

Homogeneity 𝑓g =
𝑝(𝑖, 𝑗)

1 + 𝑖 − 𝑗 $

Zj

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM, 𝑁n is the number 
of gray levels 

Correlation 𝑓x =
𝑖𝑗 𝑝 𝑖, 𝑗 − 𝜇y𝜇z

Zj
kab

Zj
<ab

𝜎y𝜎z
 

𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM, 𝜇y, 𝜇z, 𝜎y, and 
𝜎z are the mean µ and 
standard deviation 𝜎 of 
the marginal distributions 
(sum along the columns 
and rows respectively) 

Sum	Average 𝑓{ =
1
2

𝑖𝑝 𝑖, 𝑗

Zj

kab

+ 𝑗𝑝 𝑖, 𝑗

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM, and 𝑁n is the 
number of gray levels  

Variance 𝑓| = 𝑖 − 𝜇y $𝑝 𝑖, 𝑗

Zj

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM, 𝑁n is the number 
of gray levels, and 𝜇y is 
the mean of the row 
marginal distributions 
(sum along the columns) 
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Dissimilarity 𝑓} = 𝑖 − 𝑗 𝑝 𝑖, 𝑗

Zj

kab

Zj

<ab

 

(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM, and 𝑁n is the 
number of gray levels 

Mean	Pair	Sum 𝑓~ = 𝑥𝑆(𝑥)

$Zj

ya$

 

𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM, 𝑁n is the number 
of gray levels and 
𝑆 𝑥 = 𝑝(𝑖, 𝑗)<4kay  

Variance	Pair	
Sum 𝑓br = 𝑥 −	𝑓~ $𝑆(𝑥)

$Zj

ya$

 

𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM, 𝑁n is the number 
of gray levels, and 
𝑆 𝑥 = 𝑝(𝑖, 𝑗)<4kay  

Entropy	Pair	Sum 𝑓bb = − 𝑆(𝑥)log	(S x )

$Zj

ya$

	 

𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM, 𝑁n is the number 
of gray levels, and 
𝑆 𝑥 = 𝑝(𝑖, 𝑗)<4kay  

Variance	Pair	
Difference 𝑓b$ = 𝑥 − 𝑥𝐷(𝑥) $𝐷(𝑥)

Zj2b

yar

 

𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM, and 𝑁n is the 
number of gray levels 
and 𝐷 𝑥 =

𝑝(𝑖, 𝑗)<2k ay  

Entropy	Pair	
Difference 𝑓b* = − 𝐷 𝑥 log	(𝐷 𝑥 )

Zj2b

yar

 

𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM, and 𝑁n is the 
number of gray levels 
and 𝐷 𝑥 =

𝑝(𝑖, 𝑗)<2k ay  

Information	
Correlation	
Measure	1 

𝑓bg =
𝑓* + 𝑝 𝑖, 𝑗 𝑙𝑜𝑔 𝑝y,<𝑝z,k

Zj
kab

Zj
<ab

− 𝑝y,<log	 𝑝y,<
Zj
<ab

 

𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM, and 𝑁n is the 
number of gray levels, 𝑝y 
and 𝑝zare the distribution 
of sums along the 
column and rows 
respectively 

Information	
Correlation	
Measure	2 

𝑓bx = 1 − 𝑒2$ 2 ���� ��� ���� 4��
�j
@B?

�j
�B?  

𝑝y and 𝑝zare the 
distribution of sums 
along the column and 
rows respectively 
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Auto-Correlation 𝑓b{ = (𝑖𝑗)

Zj

kab

𝑝 𝑖, 𝑗

Zj

<ab

 
𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM 

Cluster	Shade 𝑓b| = 𝑖 + 𝑗 − 𝜇y − 𝜇z
* 𝑖, 𝑗

Zj

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM and 𝜇y, 𝜇z is the 
mean marginal 
distributions (sum along 
the columns and rows 
respectively) 

Cluster	
Prominence 𝑓b| = 𝑖 + 𝑗 − 𝜇y − 𝜇z

g𝑝 𝑖, 𝑗

Zj

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row 𝑖 and 
column 𝑗 element of the 
GLCM and 𝜇y, 𝜇z is the 
mean marginal 
distributions (sum along 
the columns and rows 
respectively) 
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Gray Level Run Length Matrix Texture Features 
 
Texture features are calculated from the gray level run length matrix 
 
Feature  Formula  Description 

Short	Run	
Emphasis 𝑆𝑅𝐸 =

1
𝑁

𝑝(𝑖, 𝑗)
𝑗$

Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (run length) 𝑗 
element of the GLRLM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Long	Rum	
Emphasis 𝐿𝑅𝐸 =

1
𝑁

𝑝(𝑖, 𝑗)𝑗$
Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (run length) 𝑗 
element of the GLRLM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Gray	Level	Non-
Uniformity 𝐺𝐿𝑁 =

1
𝑁

𝑝(𝑖, 𝑗)
Z�

kab

$Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (run length) 𝑗 
element of the GLRLM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Run	Length	Non-
Uniformity 𝑅𝐿𝑁 =

1
𝑁

𝑝(𝑖, 𝑗)

Zj

<ab

$Z�

kab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (run length) 𝑗 
element of the GLRLM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Run	Percentage 𝑅𝑃 =
𝑁

𝑝 𝑖, 𝑗 𝑗
 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (run length) 𝑗 
element of the GLRLM, and 
𝑁 is the total number of 
elements. 

Low	Gray	Level	
Run	Emphasis 𝐿𝐺𝑅𝐸 =

1
𝑁

𝑝(𝑖, 𝑗)
𝑖$

Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (run length) 𝑗 
element of the GLRLM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 
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High	Gray	Level	
Run	Emphasis 𝐻𝐺𝑅𝐸 =

1
𝑁

𝑝(𝑖, 𝑗)𝑖$
Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (run length) 𝑗 
element of the GLRLM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Short	Run	Low	
Gray	Level	
Emphasis 

𝑆𝑅𝐿𝐺𝐸 =
1
𝑁

𝑝(𝑖, 𝑗)
𝑖$𝑗$

Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (run length) 𝑗 
element of the GLRLM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Short	Run	High	
Gray	Level	
Emphasis 

𝑆𝑅𝐻𝐺𝐸 =
1
𝑁

𝑝(𝑖, 𝑗)𝑖$

𝑗$

Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (run length) 𝑗 
element of the GLRLM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Long	Run	Low	
Gray	Level	
Emphasis 

𝐿𝑅𝐿𝐺𝐸 =
1
𝑁

𝑝(𝑖, 𝑗)𝑗$

𝑖$

Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (run length) 𝑗 
element of the GLRLM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Long	Run	High	
Gray	Level	
Emphasis 

𝐿𝑅𝐻𝐺𝐸 =
1
𝑁

𝑝(𝑖, 𝑗)𝑖$
Z�

kab

Zj

<ab

𝑗$ 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (run length) 𝑗 
element of the GLRLM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Gray	Level	
Variance 𝐺𝐿𝑉 =

1
𝑁

𝑖𝑝 𝑖, 𝑗 − 𝜇n

Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (run length) 𝑗 
element of the GLRLM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 𝑁 
is the total number of 
elements, and 
 𝜇n =

b
Z

𝑖𝑝(𝑖, 𝑗)Z�
kab

Zj
<ab  
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Run	Length	
Variance 𝑅𝐿𝑉 =

1
𝑁

𝑗𝑝 𝑖, 𝑗 − 𝜇�

Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (run length) 𝑗 
element of the GLRLM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 𝑁 
is the total number of 
elements, and 
 𝜇� =

b
Z

𝑗𝑝(𝑖, 𝑗)Z�
kab

Zj
<ab  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 166 

Gray Level Size Zone Matrix Texture Features 
 
Texture features are calculated from the gray level size zone matrix 
 
Feature  Formula  Description 

Small	Zone	
Emphasis 𝑆𝑍𝐸 =

1
𝑁

𝑝(𝑖, 𝑗)
𝑗$

Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (zone size) 𝑗 
element of the GLSZM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Large	Zone	
Emphasis 𝐿𝑍𝐸 =

1
𝑁

𝑝(𝑖, 𝑗)𝑗$
Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (zone size) 𝑗 
element of the GLSZM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Gray	Level	Non-
Uniformity 𝐺𝐿𝑁𝑆 =

1
𝑁

𝑝(𝑖, 𝑗)
Z�

kab

$Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (zone size) 𝑗 
element of the GLSZM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Zone	Size	Non-
Uniformity 𝑍𝑆𝑁 =

1
𝑁

𝑝(𝑖, 𝑗)

Zj

<ab

$Z�

kab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (zone size) 𝑗 
element of the GLSZM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Zone	Percentage 𝑍𝑃 =
𝑁

𝑝 𝑖, 𝑗 𝑗
 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (zone size) 𝑗 
element of the GLSZM, and 
𝑁 is the total number of 
elements. 

Low	Gray	Level	
Zone	Emphasis 𝐿𝐺𝑍𝐸 =

1
𝑁

𝑝(𝑖, 𝑗)
𝑖$

Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (zone size) 𝑗 
element of the GLSZM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 



 

 167 

High	Gray	Level	
Zone	Emphasis 𝐻𝐺𝑍𝐸 =

1
𝑁

𝑝(𝑖, 𝑗)𝑖$
Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (zone size) 𝑗 
element of the GLSZM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Small	Zone	Low	
Gray	Level	
Emphasis 

𝑆𝑍𝐿𝐺𝐸 =
1
𝑁

𝑝(𝑖, 𝑗)
𝑖$𝑗$

Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (zone size) 𝑗 
element of the GLSZM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Small	Zone	High	
Gray	Level	
Emphasis 

𝑆𝑍𝐻𝐺𝐸 =
1
𝑁

𝑝(𝑖, 𝑗)𝑖$

𝑗$

Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (zone size) 𝑗 
element of the GLSZM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Large	Zone	Low	
Gray	Level	
Emphasis 

𝐿𝑍𝐿𝐺𝐸 =
1
𝑁

𝑝(𝑖, 𝑗)𝑗$

𝑖$

Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (zone size) 𝑗 
element of the GLSZM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Large	Zone	High	
Gray	Level	
Emphasis 

𝐿𝑍𝐻𝐺𝐸 =
1
𝑁

𝑝(𝑖, 𝑗)𝑖$
Z�

kab

Zj

<ab

𝑗$ 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (zone size) 𝑗 
element of the GLSZM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 
and 𝑁 is the total number of 
elements. 

Gray	Level	
Variance 𝐺𝐿𝑉𝑆 =

1
𝑁

𝑖𝑝 𝑖, 𝑗 − 𝜇n

Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (zone size) 𝑗 
element of the GLSZM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 𝑁 
is the total number of 
elements, and 
 𝜇n =

b
Z

𝑖𝑝(𝑖, 𝑗)Z�
kab

Zj
<ab  
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Zone	Size	
Variance 𝑍𝑆𝑉 =

1
𝑁

𝑗𝑝 𝑖, 𝑗 − 𝜇�

Z�

kab

Zj

<ab

 

𝑝(𝑖, 𝑗) is the row (gray level) 
𝑖 and column (zone size) 𝑗 
element of the GLSZM, 𝑁n is 
the number of gray levels, 𝑁� 
is the maximum run length, 𝑁 
is the total number of 
elements, and 
 𝜇� =

b
Z

𝑗𝑝(𝑖, 𝑗)Z�
kab

Zj
<ab  
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Neighborhood Gray Tone Difference Matrix Texture Features 
 
Texture features are calculated from the neighborhood gray tone difference matrix. 
 
Feature  Formula  Description 

Coarseness 𝑓b =
1
𝑁<

𝑁 − 2𝑑 $ 𝑠(𝑖)�
<ar

 

𝑠(𝑖) is the 𝑖th element of the 
NGTDM, 𝐺 is the maximum 
gray level, 𝑁< is the number 
of elements of with gray tone 
𝑖 in the image, 𝑁 is the total 
number of elements in the 
image, and 𝑑 is the size of the 
neighborhood used to 
calculate the NGTDM 

Contrast 

𝑓$ =
1

𝑁n 𝑁n − 1
𝑝<𝑝k 𝑖

�

kar

�

<ar

− 𝑗 $ 1
𝑁$ 𝑠(𝑖)

�

<ar

 

𝑠(𝑖) is the 𝑖th element of the 
NGTDM, 𝐺 is the maximum 
gray level, 𝑝<, 𝑝k =

Z�(@)
Z2$� �, 

𝑁<(k) is the number of 
elements of with gray tone 
𝑖(𝑗) in the image, 𝑁 is the 
total number of elements in 
the image, 𝑑 is the size of the 
neighborhood used to 
calculate the NGTDM, and 
𝑁nis the number of distinct 
gray levels. 

Busyness 𝑓* =
𝑝<𝑠(𝑖)�

<ar

𝑖𝑝< − 𝑗𝑝k�
kar

�
<ar

 

𝑠(𝑖) is the 𝑖th element of the 
NGTDM, 𝐺 is the maximum 
gray level, 𝑝<, 𝑝k =

Z�(@)
Z2$� �, 

𝑁<(k) is the number of 
elements of with gray tone 
𝑖(𝑗) in the image, 𝑁 is the 
total number of elements in 
the image, and 𝑑 is the size of 
the neighborhood used to 
calculate the NGTDM; 	𝑝< ≠
0, 𝑝k ≠ 0 

Complexity 𝑓g =
𝑖 − 𝑗

𝑁$ 𝑝< + 𝑝k
𝑝<𝑠 𝑖 + 𝑝k𝑠(𝑗)

�

kar

�

<ar

 

𝑠(𝑖) is the 𝑖th element of the 
NGTDM, 𝐺 is the maximum 
gray level, 𝑝<, 𝑝k =

Z�(@)
Z2$� �, 

𝑁<(k) is the number of 
elements of with gray tone 
𝑖(𝑗) in the image, 𝑁 is the 
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total number of elements in 
the image, and 𝑑 is the size of 
the neighborhood used to 
calculate the NGTDM; 𝑝< ≠
0, 𝑝k ≠ 0 

Strength 𝑓x =
𝑝< + 𝑝k 𝑖 − 𝑗 $�

kar
�
<ar

𝑠(𝑖)�
<ar

 

𝑠(𝑖) is the 𝑖th element of the 
NGTDM, 𝐺 is the maximum 
gray level, 𝑝<, 𝑝k =

Z�(@)
Z2$� �, 

𝑁<(k) is the number of 
elements of with gray tone 
𝑖(𝑗) in the image, 𝑁 is the 
total number of elements in 
the image, and 𝑑 is the size of 
the neighborhood used to 
calculate the NGTDM; 𝑝< ≠
0, 𝑝k ≠ 0 
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Appendix III 

 
 
 

Violin plots of the CT only interface uncertainty by individual subject.  
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Figure 1: Violin plots of the CT only uncertainty by interface type of subject A where the 
width of the plot represents the probability density function (PDF) of values with the 
indicated standard deviation.  Along the center line is a box plot showing the first 
quartile, median, and third quartile along with the extreme minimum and maximum 
values within 1.5 times the inner quartile range. Values more extreme are indicated by 
dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 
interface, and Med indicates the mediastinum interface. 
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Figure 2: Violin plots of the CT only uncertainty by interface type of subject B where the 
width of the plot represents the probability density function (PDF) of values with the 
indicated standard deviation.  Along the center line is a box plot showing the first 
quartile, median, and third quartile along with the extreme minimum and maximum 
values within 1.5 times the inner quartile range. Values more extreme are indicated by 
dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 
interface, and Med indicates the mediastinum interface. 
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Figure 3: Violin plots of the CT only uncertainty by interface type of subject F where the 
width of the plot represents the probability density function (PDF) of values with the 
indicated standard deviation.  Along the center line is a box plot showing the first 
quartile, median, and third quartile along with the extreme minimum and maximum 
values within 1.5 times the inner quartile range. Values more extreme are indicated by 
dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 
interface, and Med indicates the mediastinum interface. 
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Figure 4: Violin plots of the CT only uncertainty by interface type of subject G where the 
width of the plot represents the probability density function (PDF) of values with the 
indicated standard deviation.  Along the center line is a box plot showing the first 
quartile, median, and third quartile along with the extreme minimum and maximum 
values within 1.5 times the inner quartile range. Values more extreme are indicated by 
dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 
interface, and Med indicates the mediastinum interface. 
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Figure 5: Violin plots of the CT only uncertainty by interface type of subject I where the 
width of the plot represents the probability density function (PDF) of values with the 
indicated standard deviation.  Along the center line is a box plot showing the first 
quartile, median, and third quartile along with the extreme minimum and maximum 
values within 1.5 times the inner quartile range. Values more extreme are indicated by 
dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 
interface, and Med indicates the mediastinum interface. 
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Figure 6: Violin plots of the CT only uncertainty by interface type of subject J where the 
width of the plot represents the probability density function (PDF) of values with the 
indicated standard deviation.  Along the center line is a box plot showing the first 
quartile, median, and third quartile along with the extreme minimum and maximum 
values within 1.5 times the inner quartile range. Values more extreme are indicated by 
dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 
interface, and Med indicates the mediastinum interface. 
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Figure 7: Violin plots of the CT only uncertainty by interface type of subject M where the 
width of the plot represents the probability density function (PDF) of values with the 
indicated standard deviation.  Along the center line is a box plot showing the first 
quartile, median, and third quartile along with the extreme minimum and maximum 
values within 1.5 times the inner quartile range. Values more extreme are indicated by 
dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 
interface, and Med indicates the mediastinum interface. 
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Figure 8: Violin plots of the CT only uncertainty by interface type of subject N where the 
width of the plot represents the probability density function (PDF) of values with the 
indicated standard deviation.  Along the center line is a box plot showing the first 
quartile, median, and third quartile along with the extreme minimum and maximum 
values within 1.5 times the inner quartile range. Values more extreme are indicated by 
dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 
interface, and Med indicates the mediastinum interface. 
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Figure 9: Violin plots of the CT only uncertainty by interface type of subject O where the 
width of the plot represents the probability density function (PDF) of values with the 
indicated standard deviation.  Along the center line is a box plot showing the first 
quartile, median, and third quartile along with the extreme minimum and maximum 
values within 1.5 times the inner quartile range. Values more extreme are indicated by 
dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 
interface, and Med indicates the mediastinum interface. 
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Appendix IV 

 
 
 

Violin plots of the PET/CT only interface uncertainty by individual subject.  



 

 182 

 
Figure 1: Violin plots of the PET/CT uncertainty by interface type of subject A where the 
width of the plot represents the probability density function (PDF) of values with the 
indicated standard deviation.  Along the center line is a box plot showing the first 
quartile, median, and third quartile along with the extreme minimum and maximum 
values within 1.5 times the inner quartile range. Values more extreme are indicated by 
dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 
interface, and Med indicates the mediastinum. 
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Figure 2: Violin plots of the PET/CT uncertainty by interface type of subject B where the 

width of the plot represents the probability density function (PDF) of values with the 

indicated standard deviation.  Along the center line is a box plot showing the first 

quartile, median, and third quartile along with the extreme minimum and maximum 

values within 1.5 times the inner quartile range. Values more extreme are indicated by 

dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 

interface, and Med indicates the mediastinum. 
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Figure 3: Violin plots of the PET/CT uncertainty by interface type of subject F where the 
width of the plot represents the probability density function (PDF) of values with the 
indicated standard deviation.  Along the center line is a box plot showing the first 
quartile, median, and third quartile along with the extreme minimum and maximum 
values within 1.5 times the inner quartile range. Values more extreme are indicated by 
dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 
interface, and Med indicates the mediastinum.  
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Figure 4: Violin plots of the PET/CT uncertainty by interface type of subject G where the 

width of the plot represents the probability density function (PDF) of values with the 

indicated standard deviation.  Along the center line is a box plot showing the first 

quartile, median, and third quartile along with the extreme minimum and maximum 

values within 1.5 times the inner quartile range. Values more extreme are indicated by 

dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 

interface, and Med indicates the mediastinum. 
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Figure 5: Violin plots of the PET/CT uncertainty by interface type of subject I where the 

width of the plot represents the probability density function (PDF) of values with the 

indicated standard deviation.  Along the center line is a box plot showing the first 

quartile, median, and third quartile along with the extreme minimum and maximum 

values within 1.5 times the inner quartile range. Values more extreme are indicated by 

dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 

interface, and Med indicates the mediastinum. 
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Figure 6: Violin plots of the PET/CT uncertainty by interface type of subject J where the 

width of the plot represents the probability density function (PDF) of values with the 

indicated standard deviation.  Along the center line is a box plot showing the first 

quartile, median, and third quartile along with the extreme minimum and maximum 

values within 1.5 times the inner quartile range. Values more extreme are indicated by 

dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 

interface, and Med indicates the mediastinum. 
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Figure 7: Violin plots of the PET/CT uncertainty by interface type of subject M where the 

width of the plot represents the probability density function (PDF) of values with the 

indicated standard deviation.  Along the center line is a box plot showing the first 

quartile, median, and third quartile along with the extreme minimum and maximum 

values within 1.5 times the inner quartile range. Values more extreme are indicated by 

dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 

interface, and Med indicates the mediastinum. 
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Figure 8: Violin plots of the PET/CT uncertainty by interface type of subject N where the 

width of the plot represents the probability density function (PDF) of values with the 

indicated standard deviation.  Along the center line is a box plot showing the first 

quartile, median, and third quartile along with the extreme minimum and maximum 

values within 1.5 times the inner quartile range. Values more extreme are indicated by 

dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 

interface, and Med indicates the mediastinum. 
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Figure 9: Violin plots of the PET/CT uncertainty by interface type of subject O where the 

width of the plot represents the probability density function (PDF) of values with the 

indicated standard deviation.  Along the center line is a box plot showing the first 

quartile, median, and third quartile along with the extreme minimum and maximum 

values within 1.5 times the inner quartile range. Values more extreme are indicated by 

dots along the whiskers. AT indicates atelectasis interface, CW indicates the chest wall 

interface, and Med indicates the mediastinum. 
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Appendix V 

 
 
 

Examples of prediction map crated from the BinaryRes_Tumor network output.  

Illustrative slice from all test subjects spread evenly throughout the tumor contour.
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Figure 1: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 2: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 3: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 4: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 5: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 6: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 7: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 8: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 9: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 10: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 11: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 12: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 13: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 14: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 15: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 16: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice.  
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Figure 17: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 18: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 19: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 20: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 21: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 



 

 213 

 

 

Figure 22: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 23: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 24: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 25: Comparison of the ground truth tumor location map with the predicted location map 
from the BinaryRes_Tumor network following CRF post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Appendix VI 

 
 
 

Examples of prediction map crated from the IF_Only network output.  Illustrative 

slice from all test subjects spread evenly throughout the interface contours.
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Figure 1: Comparison of the ground truth interface labels map with the predicated labels 
map from the IF_Only network no post processing. The top row represents the map of 
true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 2: Comparison of the ground truth interface labels map with the predicated labels 
map from the IF_Only network no post processing. The top row represents the map of 
true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 3: Comparison of the ground truth interface labels map with the predicated labels 
map from the IF_Only network no post processing. The top row represents the map of 
true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 5: Comparison of the ground truth interface labels map with the predicated labels 
map from the IF_Only network no post processing. The top row represents the map of 
true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 4: Comparison of the ground truth interface labels map with the predicated labels 
map from the IF_Only network no post processing. The top row represents the map of 
true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 6: Comparison of the ground truth interface labels map with the predicated labels 
map from the IF_Only network no post processing. The top row represents the map of 
true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 7: Comparison of the ground truth interface labels map with the predicated labels 
map from the IF_Only network no post processing. The top row represents the map of 
true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 8: Comparison of the ground truth interface labels map with the predicated labels 
map from the IF_Only network no post processing. The top row represents the map of 
true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 9: Comparison of the ground truth interface labels map with the predicated labels 
map from the IF_Only network no post processing. The top row represents the map of 
true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 10: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 11: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 12: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 13: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 14: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 15: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 16: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 17: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 18: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 19: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 20: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 21: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 22: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 23: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 24: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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Figure 25: Comparison of the ground truth interface labels map with the predicated 
labels map from the IF_Only network no post processing. The top row represents the 
map of true and predicted labels while the bottom row shows the maps overlaid on the 
corresponding image slice. 
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