The deep learning, which is a dominating technique in artificial
intelligence, has completely changed the image understanding over the past
decade. As a consequence, the sea ice extraction (SIE) problem has reached a
new era. We present a comprehensive review of four important aspects of SIE,
including algorithms, datasets, applications, and the future trends. Our review
focuses on researches published from 2016 to the present, with a specific focus
on deep learning-based approaches in the last five years. We divided all
relegated algorithms into 3 categories, including classical image segmentation
approach, machine learning-based approach and deep learning-based methods. We
reviewed the accessible ice datasets including SAR-based datasets, the
optical-based datasets and others. The applications are presented in 4 aspects
including climate research, navigation, geographic information systems (GIS)
production and others. It also provides insightful observations and inspiring
future research directions.Comment: 24 pages, 6 figure