3,350 research outputs found

    Scalable Design Space Exploration via Answer Set Programming

    Get PDF
    The design of embedded systems is becoming continuously more complex such that the application of efficient high level design methods are crucial for competitive results regarding design time and performance. Recently, advances in Boolean constraint solvers for Answer Set Programming (ASP) allow for easy integration of background theories and more control over the solving process. The goal of this research is to leverage those advances for system level design space exploration while using specialized techniques from electronic design automation that drive new application-originated ideas for multi-objective combinatorial optimization

    Is "Better Data" Better than "Better Data Miners"? (On the Benefits of Tuning SMOTE for Defect Prediction)

    Full text link
    We report and fix an important systematic error in prior studies that ranked classifiers for software analytics. Those studies did not (a) assess classifiers on multiple criteria and they did not (b) study how variations in the data affect the results. Hence, this paper applies (a) multi-criteria tests while (b) fixing the weaker regions of the training data (using SMOTUNED, which is a self-tuning version of SMOTE). This approach leads to dramatically large increases in software defect predictions. When applied in a 5*5 cross-validation study for 3,681 JAVA classes (containing over a million lines of code) from open source systems, SMOTUNED increased AUC and recall by 60% and 20% respectively. These improvements are independent of the classifier used to predict for quality. Same kind of pattern (improvement) was observed when a comparative analysis of SMOTE and SMOTUNED was done against the most recent class imbalance technique. In conclusion, for software analytic tasks like defect prediction, (1) data pre-processing can be more important than classifier choice, (2) ranking studies are incomplete without such pre-processing, and (3) SMOTUNED is a promising candidate for pre-processing.Comment: 10 pages + 2 references. Accepted to International Conference of Software Engineering (ICSE), 201

    An Empirical Study of Graph Grammar Evolution

    Get PDF
    Vukovar, Croati

    Is "Better Data" Better than "Better Data Miners"? (On the Benefits of Tuning SMOTE for Defect Prediction)

    Full text link
    We report and fix an important systematic error in prior studies that ranked classifiers for software analytics. Those studies did not (a) assess classifiers on multiple criteria and they did not (b) study how variations in the data affect the results. Hence, this paper applies (a) multi-criteria tests while (b) fixing the weaker regions of the training data (using SMOTUNED, which is a self-tuning version of SMOTE). This approach leads to dramatically large increases in software defect predictions. When applied in a 5*5 cross-validation study for 3,681 JAVA classes (containing over a million lines of code) from open source systems, SMOTUNED increased AUC and recall by 60% and 20% respectively. These improvements are independent of the classifier used to predict for quality. Same kind of pattern (improvement) was observed when a comparative analysis of SMOTE and SMOTUNED was done against the most recent class imbalance technique. In conclusion, for software analytic tasks like defect prediction, (1) data pre-processing can be more important than classifier choice, (2) ranking studies are incomplete without such pre-processing, and (3) SMOTUNED is a promising candidate for pre-processing.Comment: 10 pages + 2 references. Accepted to International Conference of Software Engineering (ICSE), 201

    Diversifying focused testing for unit testing

    Get PDF
    Software changes constantly because developers add new features or modifications. This directly affects the effectiveness of the testsuite associated with that software, especially when these new modifications are in a specific area that no test case covers. This paper tackles the problem of generating a high quality test suite to cover repeatedly a given point in a program, with the ultimate goal of exposing faults possibly affecting the given program point. Both search based software testing and constraint solving offer ready, but low quality, solutions to this: ideally a maximally diverse covering test set is required whereas search and constraint solving tend to generate test sets with biased distributions. Our approach, Diversified Focused Testing (DFT), uses a search strategy inspired by GödelTest. We artificially inject parameters into the code branching conditions and use a bi-objective search algorithm to find diverse inputs by perturbing the injected parameters, while keeping the path conditions still satisfiable. Our results demonstrate that our technique, DFT, is able to cover a desired point in the code at least 90% of the time. Moreover, adding diversity improves the bug detection and the mutation killing abilities of the test suites. We show that DFT achieves better results than focused testing, symbolic execution and random testing by achieving from 3% to 70% improvement in mutation score and up to 100% improvement in fault detection across 105 software subjects

    Reactive approach for automating exploration and exploitation in ant colony optimization

    Get PDF
    Ant colony optimization (ACO) algorithms can be used to solve nondeterministic polynomial hard problems. Exploration and exploitation are the main mechanisms in controlling search within the ACO. Reactive search is an alternative technique to maintain the dynamism of the mechanics. However, ACO-based reactive search technique has three (3) problems. First, the memory model to record previous search regions did not completely transfer the neighborhood structures to the next iteration which leads to arbitrary restart and premature local search. Secondly, the exploration indicator is not robust due to the difference of magnitudes in distance matrices for the current population. Thirdly, the parameter control techniques that utilize exploration indicators in their feedback process do not consider the problem of indicator robustness. A reactive ant colony optimization (RACO) algorithm has been proposed to overcome the limitations of the reactive search. RACO consists of three main components. The first component is a reactive max-min ant system algorithm for recording the neighborhood structures. The second component is a statistical machine learning mechanism named ACOustic to produce a robust exploration indicator. The third component is the ACO-based adaptive parameter selection algorithm to solve the parameterization problem which relies on quality, exploration and unified criteria in assigning rewards to promising parameters. The performance of RACO is evaluated on traveling salesman and quadratic assignment problems and compared with eight metaheuristics techniques in terms of success rate, Wilcoxon signed-rank, Chi-square and relative percentage deviation. Experimental results showed that the performance of RACO is superior than the eight (8) metaheuristics techniques which confirmed that RACO can be used as a new direction for solving optimization problems. RACO can be used in providing a dynamic exploration and exploitation mechanism, setting a parameter value which allows an efficient search, describing the amount of exploration an ACO algorithm performs and detecting stagnation situations
    • …
    corecore