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Abstrak 

Pengoptimuman koloni semut (ACO) boleh digunakan untuk menyelesaikan masalah 

sukar polinomial tidak berketentuan. Penerokaan dan eksploitasi adalah mekanisme 

utama bagi mengawal carian dalam ACO. Carian reaktif adalah satu teknik alternatif 

untuk mengekalkan kedinamikan mekanisme ini. Walau bagaimanapun, teknik 

carian reaktif  berasaskan ACO mempunyai tiga (3) masalah. Pertama, model 

memori yang merakam kawasan carian yang terdahulu telah tidak memindahkan 

struktur sekitaran secara lengkap kepada leleran berikutnya yang akan membawa 

kepada permulaan semula dengan sewenang-wenangnya dan carian setempat yang 

pramatang. Kedua, penunjuk penerokaan adalah tidak teguh disebabkan oleh 

perbezaan magnitud dalam matriks jarak bagi populasi semasa. Ketiga, teknik 

kawalan parameter yang menggunakan penunjuk penerokaan dalam proses maklum 

balas telah tidak mempertimbangkan masalah keteguhan penunjuk. Satu algoritma 

pengoptimuman koloni semut reaktif (RACO) telah dicadangkan untul mengatasi 

kekurangan carian reaktif. RACO terdiri daripada tiga komponen utama. Komponen 

pertama adalah satu algoritma max-min ant system reaktif untuk merakamkan 

struktur  sekitaran. Komponen kedua adalah satu mekanisme pembelajaran mesin 

berstatistik yang dinamakan ACOustic untuk menghasikan penerokaan yang teguh. 

Komponen ketiga adalah algoritma pemilihan parameter mudah suai berasaskan 

ACO untuk menyelesaikan masalah pemparameteran yang bergantung kepada 

kualiti, penerokaan dan kriteria berpadu untuk memberi ganjaran kepada parameter 

yang berpotensi. Prestasi RACO dinilai menggunakan masalah jurujual kembara dan 

umpukan kuadratik dan dibandingkan dengan lapan (8) teknik metaheuristik 

berdasarkan kadar kejayaan, pangkat tanda Wilcoxon, Chi-square dan relatif 

peratusan sisihan. Hasil kajian menunjukkan prestasi RACO adalah lebih baik dari 

lapan (8) teknik metahuristik dan ini mengabsah keberkesanan RACO boleh 

digunakan sebagai satu hala baru bagi penyelesaian masalah pengoptimuman. RACO 

boleh digunakan untuk menyediakan mekanisme penerokaan dan eksploitasi yang 

dinamik, menetapkan nilai parameter yang membolehkan carian yang cekap, 

menerangkan jumlah penerokaan yang dilaksanakan oleh algoritma ACO, dan 

mengesan keadaan genangan.  

Kata kunci: Pengoptimunan koloni semut, Carian reaktif, Dinamik penerokaan dan 

eksploitasi, Polinomial tidak berketentuan, Max-min ant system. 
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Abstract 

Ant colony optimization (ACO) algorithms can be used to solve nondeterministic 

polynomial hard problems. Exploration and exploitation are the main mechanisms in 

controlling search within the ACO. Reactive search is an alternative technique to 

maintain the dynamism of the mechanics. However, ACO-based reactive search 

technique has three (3) problems. First, the memory model to record previous search 

regions did not completely transfer the neighborhood structures to the next iteration 

which leads to arbitrary restart and premature local search. Secondly, the exploration 

indicator is not robust due to the difference of magnitudes in distance matrices for 

the current population. Thirdly, the parameter control techniques that utilize 

exploration indicators in their feedback process do not consider the problem of 

indicator robustness. A reactive ant colony optimization (RACO) algorithm has been 

proposed to overcome the limitations of the reactive search. RACO consists of three 

main components. The first component is a reactive max-min ant system algorithm 

for recording the neighborhood structures. The second component is a statistical 

machine learning mechanism named ACOustic to produce a robust exploration 

indicator. The third component is the ACO-based adaptive parameter selection 

algorithm to solve the parameterization problem which relies on quality, exploration 

and unified criteria in assigning rewards to promising parameters. The performance 

of RACO is evaluated on traveling salesman and quadratic assignment problems and 

compared with eight metaheuristics techniques in terms of success rate, Wilcoxon 

signed-rank, Chi-square and relative percentage deviation. Experimental results 

showed that the performance of RACO is superior than the eight (8) metaheuristics 

techniques which confirmed that RACO can be used as a new direction for solving 

optimization problems. RACO can be used in providing a dynamic exploration and 

exploitation mechanism, setting a parameter value which allows an efficient search, 

describing the amount of exploration an ACO algorithm performs and detecting 

stagnation situations.  

  

Keywords: Ant colony optimization, Reactive search, Dynamic exploration and 

exploitation, Nondeterministic polynomial, Max-Min ant system. 
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INTRODUCTION 

In the field of Artificial Intelligence (AI), significant numbers of mathematical 

problems are of practical and theoretical importance. An example of these problems 

is the combinatorial problem where we try to find the values for discrete variables. 

This is done particularly to satisfy certain specific conditions. The combinatorial 

problem can be further categorized into optimization and satisfaction problems. 

The optimization problem is aimed to find an optimal set of discrete objects. This set 

is known as the optimal solution of other candidate solutions (i.e., solution space). 

The objects of each of these solutions are called solution components (Bertsimas, 

Brown, & Caramanis 2011; Fletcher, 1997). On the other hand, the satisfaction 

problem is aimed to find a solution whose state satisfies a number of constraints or 

limitations. A problem is a scenario needed to be solved. An instance is a specific 

case of that scenario. For many combinatorial problems, the solution space for a 

given instance is large. As a result, it is not possible to be searched because of the 

functional dependency required between the size of any instance and the time and 

space to solve it. This is defined as the complexity of the problem (Carterette, 2011; 

Garey & Johnson, 1979).  

In the complexity theory, there are two classes of problems: polynomial and 

nondeterministic polynomial (Korte & Vygen, 2006). A problem that is as hard as 

any problem in the non-polynomial class is called NP-hard. There is no exact 

algorithm that can be used to find an optimal solution for NP-hard problems in 
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polynomial time. This objective has been replaced with finding good solutions in a 

reasonable time by the use of heuristic algorithms. This class of algorithms can be 

classified into constructive or iterative methods. This classification is done according 

to its way of generating solution. Heuristic algorithms can be further classified into 

stochastic or deterministic methods, based to its way of search.  

A constructive method always builds solution components from an empty set until it 

finds one candidate solution. An iterative method takes an arbitrary solution as an 

initial solution and modifies it iteratively. Both constructive and iterative methods 

employ the stochastic and deterministic methods. A stochastic method utilizes 

randomization to traverse the search space, while a deterministic method does not 

use randomization in its function. Moreover, deterministic search repeats its 

procedure each time it is applied to the same problem instance, but stochastic search 

may perform it differently (Hoos & Stützle, 2005; Rothlauf, 2011). However, the 

heuristic methods are restricted by the environment of the problem at hand. And this 

basically allows the search to be trapped in local optima, which is not the global 

optimal solution in search space of the CO problem under tackle.   

To address the problem of local optima, new search methods have emerged which 

allow robust diversification to be performed in the search space. These methods are 

called metaheuristics. They basically combine heuristic methods in higher-level 

metaphors. Examples of these metaphors are annealing, memory, evolution, and ant 

foraging behavior. The metaheuristics that are inspired from the stated metaphors 

are: simulated annealing (SA), tabu search (TS), evolutionary computation (EC), and 

ant colony optimization (ACO) respectively (Gendreau & Potvin, 2010). 
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A metaheuristic method is defined as “an iterative generation process which guides a 

subordinate heuristic by combining intelligently different concepts for exploring and 

exploiting the search space, learning strategies are used to structure information in 

order to find  efficiently near-optimal solutions” (Osman & Laporte, 1996; Zufferey, 

2012). Metaheuristics are divided into local search and population-based techniques. 

The local search technique manipulates single solution by exchanging segments of 

its components to produce better solutions while the population-based technique uses 

more than one solution. SA and TS algorithms belong to the former class, while GA 

and ACO belong to the later one. The search behavior differs from one metaheuristic 

to another based on the metaphor that the specific algorithmic components belong to. 

These components are exploration and exploitation (E&E) components as shown in 

Table 1.1.  

Table 1.1 

The Basic E&E Components in Metaheuristics 

Metaheuristic E&E component 

1.SA Acceptance criterion + cooling schedule 

2.TS Neighbor choice (tabu lists) aspiration criterion 

3.EC Recombination + mutation + selection 

4.ACO Pheromone update + probabilistic construction 

 

Exploration refers to the probing of unvisited regions within the search space, while 

exploitation refers to the search around good solutions in the current problem space 

regions. The dynamic balance between exploration and exploitation is essential in 

order to find new regions quickly and to reduce the search time in regions that have 

already been explored (Beer, Hendtlass, & Montgomery, 2012). 
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In other words, any metaheuristic algorithm should be designed in a way that 

considers the E&E balance role in its search behavior. The single-solution based 

metaheuristics are more exploitation-oriented, whereas the basic population-based 

metaheuristics are more exploration-oriented (Boussaïd, Lepagnot, & Siarry, 2013).  

In this light, ACO is grown as a population-based, metaheuristic, stochastic and 

constructive method for solving Combinatorial Optimization (CO) problems 

(Baghel, Agrawal, & Silakari, 2012). ACO is a popular framework in Swarm 

Intelligence (SI) (Merkle & Middendorf, 2005). SI utilizes the collective behavior of 

social insects to design algorithms or distributed problem-solving devices. In SI, 

swarms (i.e., agents) adapt quickly to the problem’s environment without 

reprogramming. This flexibility and robustness motivate several successful 

applications of ant algorithms (Mohan & Baskaran, 2012). 

ACO is inspired by the food foraging behavior of real ants. Once an ant finds a food 

source, the ant returns to its nest, depositing a chemical substance called pheromone 

to and from the nest. This trail will now guide other workers from the nest to the 

food source. The other ants return to the nest and deposit their own pheromone along 

the trail to reinforce their path. Therefore, the trail construction is a result of a 

positive feedback mechanism, the main component of the self-organization in the 

social insects (Bonabeau, Dorigo, & Theraulaz, 1999). It expresses that: the more 

these ants use a trail, the more attractive the trail becomes. A large number of 

foragers will quickly assemble around a food source. This cooperation also enables a 

colony to find the shortest path leading to a food source, and if the reinforcement 
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becomes too low after some time, the trail will disappear (Martens, Baesens, & 

Fawcett, 2011). 

The second ingredient of the self-organization in social insects is the negative 

feedback which uses to counterbalance the positive feedback: it may take the form of 

food exhaustion or saturation (Garnier, Gautrais, & Theraulaz, 2007). The type of 

indirect communication between ants is known as Stigmergy. This was originally 

proposed by Grasse in 1950s (Bonabeau et al., 1999). Grasse opined that the 

building activity depends on the colony and not on the workers ants themselves 

(Theraulaz & Bonabeau, 1999).  Notably, there were some experiments performed 

with real ants. These experiments showed how the Stigmergy mechanism can find 

the shortest path between the ant nest and the food source (Deneubourg, Aron, Goss, 

& Pasteels, 1990). This mechanism played a main role in designing the first ACO 

algorithm, namely ant system (AS), which is the base of subsequent ACO 

algorithmic frameworks (Dorigo, Gambardella, Middendorf, & Stützle, 2002).  

In ACO, a colony is a set of artificial ants which cooperates to find the best solution 

to a CO problem. These ants generally modify a sequence of numeric values 

associated with different states of the problem. This sequence is known as the 

artificial pheromone trail. The pheromone trail is the sole means of communication 

among artificial ants (Dorigo & Socha, 2007). Several ACO extensions have been 

proposed to solve new combinatorial optimization problems and to reach a balance 

point between exploration and exploitation as well. The max-min ant system 

(MMAS) algorithm is a prominent extension of ACO framework which presents 
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high quality solutions, together with the proof of convergence to the optimal 

solutions (Dorigo & Stützle, 2004).   

Generally, the exploration and exploitation balance is achieved by the proper 

management of a probabilistic memory model, i.e. the pheromone trail. This can be 

achieved using two complementary processes: probabilistic solution construction 

and pheromone update (Blum & Roli, 2003). An optional process of local search 

might be inserted to improve the quality solutions produced by probabilistic solution 

construction. In this way, the search concentrated quickly around high quality 

regions of search space which lead to premature convergence especially with large 

search spaces. One of the generic strategies to avoid the premature convergence is 

restarting the search based on some exploration triggers.  

Other exploration and exploitation components are the strategic parameters to be 

adjusted by the designer or the practitioner of the algorithm, by the algorithm itself, 

or by other adaptation algorithms (Dorigo, Maniezzo, & Colorni, 1991; Lopez-

Ibanez, 2010). These components are recruited to avoid convergence because of the 

sensitivity of ACO search to the parameters’ selection. Reactive search is a 

framework (Battiti, Brunato, & Mascia, 2008) that integrates machine learning 

techniques with local searches together with online parameters’ selection and 

restarting the search when the premature convergence occurs. An exploration 

indicator is harnessed as a trigger for restarting the search and as evidence for 

parameters adaptation. Overall, the ability of reactive search as a new technique to 

maintain the dynamism of the exploration and exploitation mechanics entails 
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integrating it with ant colony optimization to produce powerful approach for 

nondeterministic problem solving.  

1.1 Problem Statement 

The exploration versus exploitation dilemma arises when promising regions of 

search space need to be quickly identified without spending too much time in poor 

regions (Talbi, 2009). MMAS, the prominent ACO variant, has a relatively long 

initial exploration to avoid the quick convergence toward local optimum, where the 

algorithm is not able to generate new global solutions as run time passes (Maur, 

Stützle, & López-Ibáñez, 2010). Subsequently, the current memory model that 

records previous search regions is not able to completely transfer the neighborhood 

structures of current iteration to the next iterations which leads to an arbitrary restart 

and premature local search. Reactive search is a technique for automating 

exploration and exploitation using memory features and machine learning 

approaches for exploration indication (Battiti et al., 2008). The exploration 

indication (Pellegrini & Favaretto, 2012) in ACO-based reactive search is suffering a 

problem of robustness: Different circumstances entail assigning new value to the 

neighborhood threshold. The instability in threshold value assignment gets worse as 

fitness landscape flatten or local search procedure changed. Moreover, the 

performance of parameter adaptation methods is worsen if the standard CO problems 

are used or if more parameters are adapted (Pellegrini, Stützle, & Birattari, 2012). 

This is the result of involving poor indication schemes to evaluate the effect of the 

adaptive parameters’ selection on the search. Therefore, solving problems in the 

combination of successful local search and restarting procedures with the aid of 
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advanced memory features, together with adaptive parameters’ selection procedures 

and robust indication is an approach for effective ACO-based reactive search in 

order to automate the exploration and exploitation balance.  

1.2 Research Questions 

This research tries to answer the following questions: 

 How does the scheme of memory improve the restart and local search 

mechanisms in MMAS?  

 How can the exploration indicators perform more robustly in ACO 

algorithm?  

 How can a robust exploration indicator contribute in online parameter 

selection? 

 Does the combination of those reactive procedures improve the exploration 

and exploitation balance within the ACO algorithm?  

1.3 Research Objectives 

The main objective of this study is to propose a reactive approach for automating 

exploration and exploitation in ACO. The specific objectives are: 

 To develop a memory model for improving restart and local search 

mechanisms. 

 To enhance the exploration measurement in ACO in terms of robustness of 

indication.  

 To propose an adaptive parameters’ selection method based on robust 

indication.   

 To evaluate the performance of the proposed approach. 
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1.4 Significance of the Research 

The exploration and exploitation balance is crucial for better ACO performance. 

Reactive search is a technique for automating that balance by integrating machine 

learning and optimization in an online manner ("learning while optimizing"). The 

proposed approach improves the abilities of ACO in problem solving and addresses 

the circumstances that emerged from the ACO-based reactive search integration by: 

 Defining a new memory model for ACO. 

 Developing more effective ACO variants.  

 Improving the exploration indication in ACO. 

 Solving the parameterization problem by the intelligent tuning of parameters. 

 Providing a well-balanced exploration and exploitation mechanism for ACO 

method.  

The proposed approach can be applied for real-world applications when domain-

specific knowledge is available. The applications include industry applications such 

as industrial vehicle routing, car sequencing, power distribution applications such as 

voltage control and electric power distribution, telecommunications applications 

such as traffic grooming in optical networks and biological applications such as 

bioinformatics. All of the applications require optimal solutions that would benefit 

from the balance between exploration and exploitation. 

1.5 Scope of the Research 

This research proposes a new algorithmic approach for controlling the 

exploration/exploitation behavior in the standard ACO that is designed to solve 

single-objective, static, combinatorial optimization problems. To achieve such goal, 
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the optimization problem of traveling salesman problem (TSP) and the quadratic 

assignment problem (QAP) have been chosen as test-beds for the experiments of this 

research. There are several ant algorithms not fitting into the standard ACO 

metaheuristic framework, e.g. Fast Ant System algorithm. This research concentrates 

on the standard approach and omitted other approaches because they differ from 

ACO algorithms mainly in some aspects.  

For optimization problems to be solved by ACO, they have to be encoded in several 

ways. In this research, the feasible solutions are encoded using the concept of 

construction graphs. For most problems, there are alternative ways of encoding these 

solutions. Finding out which one is the best is out of the scope of this research. The 

solutions are constructed by the walk of ants through the construction graph. The 

dynamic problem-solving, i.e. changing the graph of the problem during the run, is 

also not considered.  

The parameters’ selection in ACO is problem independent. One of the disciplines for 

solving the problem is by following multiobjective optimization through operating 

more than objective functions: one for the problem under solving and one for the 

parameters’ selection problem. This approach is limited to the single-objective 

handling. However, it is easy to extend it to a multiobjective function by separating 

the objective function for the second problem from the one of the problems to be 

solved. The proper parameter values that are involved in the search process are 

changed during the run. Parameter tuning is not part of the scope of this research 

because it is trying to address the problem in an offline way, i.e. before the run.  
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1.6 Thesis Organization 

The remainder of this thesis is organized as follows. Chapter Two defines the 

concept of combinatorial optimization and the methods used to solve it. The chapter 

also outlines the biological inspiration and problem representation of ACO 

metaheuristic together with the prominent ACO algorithms as exemplified by 

MMAS. The rest of the chapter is divided into three divisions which focus on 

memory-based E&E strategies, exploration indication strategies and reactive-based 

parameters’ selection strategies. Chapter Three addresses the experimental 

methodology used in implementing this research.  After presenting high level 

abstraction of research framework, the summaries of three proposed memory model 

development, exploration indication enhancement and the proposal of adaptive 

parameters’ selection are provided. Descriptions on TSP and QAP are presented 

followed by explanation of benchmark methods and comparative measures. Chapter 

Four introduces the development of memory model based on the component-based 

and population-based schemes. The chapter starts by identifying the optimal point to 

start through experimental analysis for several ACO models. In addition, this 

Chapter introduces reactive heuristics and recursive local search technique based on 

component-based and population-based memory schemes respectively. Chapter 

Five presents twofold of E&E components: the exploration measurement and the 

adaptive parameters’ selection in ACO. For the first method, it describes the 

definition, modelling and implementation of a nature-inspired exploration indicator 

called ACOustic. It was done by combining clustering information with statistical 

information gathered during the run. It has been analyzed and compared to the state-

of-the art indicators in ACO literature. For the second component, this chapter 
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presents the development and evaluation of three variants of ACO-based adaptive 

parameters’ selection algorithm by which the parameters’ selection problem in ACO 

is addressed. The performance of reactive ant colony optimization approach, namely 

RACO is described in Chapter Six. The evaluation was done based on the 

experimental comparison approach to look into the impact of combining the 

proposed exploration and exploitation components in the above mentioned chapters.  

Chapter Seven concludes and outlines future directions of research. The chapter 

recalls the developed algorithmic components in the thesis and highlights the 

contributions made throughout the research. Finally, the thesis ends with suggestions 

for future works if any researchers wanted to embark on this kind of research.      
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LITERATURE REVIEW 

2.1 Introduction 

This chapter provides the background of the problem of this research and surveyed 

what have been done to solve the problems of E&E in ACO. A description about CO 

problems and their solving approaches; a more in-depth description about ACO and 

its various aspects; and the main E&E strategies in MMAS, are highlighted are in 

Sections 2.2 - 2.4.  The background and perspective related works about each of the 

three E&E aspects are provided in this chapter as follows. Firstly, the memory-based 

E&E strategies in ACO are discussed in Section 2.5. Secondly, the exploration 

measurement tools needed for controlling E&E are presented in Section 2.6. Thirdly, 

the adaptive parameter’s selection approaches in ACO are presented in Section 2.7. 

Section 2.8 provides a unified review about the abovementioned related works, i.e. 

the memory-based models, the exploration measures and parameter adaptation 

methods, while the chapter is summarized in Section 2.9. 

2.2 Combinatorial Optimization Problems 

Combinatorial (i.e. discrete) problems in AI can be classified as either optimization 

or satisfaction problems (Bertsimas et al., 2011; Fletcher, 1997). This research is 

focused on combinatorial problems in terms of optimization. To concentrate on 

optimization problems and not satisfaction problems is not a limitation, because any 

satisfaction problem can be formulated as an optimization problem. A CO problem is 

either a maximization problem or a minimization problem with an associated set of 
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instances (Korte & Vygen, 2006). This research focuses on minimization problems, 

as a maximization problem can easily be converted into a minimization problem. 

Each instance of CO problems can be represented as a tuple (S, f, Ω), where S is a 

set of candidate solutions and f is the objective function which is assigned to every s 

∈ S a value of f (s). The goal of optimization then is to find a solution (s) with a 

minimal f(s) (i.e. minimal cost). This solution called the globally optimal solution to 

the problem (S, f, Ω), and denoted by f (sopt). Ω is a set of constraints (e.g. in TSP 

route, each city has to be visited exactly once and that route has to start and end at 

the same city. Finding that route with a minimal cost is the task of artificial ants 

during the optimization process. This route is the globally optimal solution to the 

problem of TSP which is denoted by f (sopt)). The way to solve (S, f, Ω) problems is 

by enumerating all set of solutions (S) and picking the one with minimal cost. 

Following the complexity of the problem, it is infeasible for many problems as the 

size of the search space, denoted by |S|, grows exponentially with instance size 

(Carterette, 2011; Garey & Johnson, 1979). Hence, the kind of trade-off between the 

quality of solution and the computational efforts has to be considered. Several 

optimization methods are proposed in order to find the (near-) optimal solution to the 

problems based on the mentioned considerations.   

The optimization of the problem solves exactly or approximately based on the 

complexity of the problem as in Figure 2.1. The exact methods guaranteed the 

optimality of their solutions. For NP problems, finding the exact solutions is 

intractable. The approximate methods generate high quality solutions in a limited 
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amount of time, but they are not guaranteed the optimality of solutions (Russell & 

Norvig, 2010).  

Figure 2.1. Classical Optimization Methods 

Exact methods can be applied for CO problems of small size and simple structure. 

Following the size or the structure alone may not give much effect for applying the 

exact method. For example, some problems have a small size but their structure is 

very complex and vice versa. Another option is to implement this method in a large 

network of workstations (e.g. grid computing platform). In all cases, the exact 

methods must enumerate all the solutions of the search space and generate the 

optimal solution at the end. 
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In the class of exact methods, one can classify them according to their development 

community or their way of solving problems. Following the first division, dynamic 

programming and branch and X are developed in operations research community. 

While iterative deeping and constraint programming are developed in artificial 

intelligence community (Russell & Norvig, 2010). On the other side, following the 

second division, dynamic programming divides recursively the problem into 

subproblems based on the the principle that says “the subpolicy of an optimal policy 

is itself optimal”. Another way of problem solving is by representing the problem as 

a search tree (e.g. branch and X; and iterative deeping methods). The root of the tree 

is the problem itself and the leaf nodes are its solutions. Finally, the optimization 

problem can be modeled as a set of variables connected by a set of constraints. This 

way of problem solving is called constraint programming. With large size or 

complex problem instances, the optimality of solutions, guaranteed by exact 

methods, will be sacrificed by finding (near-) optimal solutions.     

In approximate methods, the general principle of applying this class of methods is to 

find good solutions for large size/complex problem instances in reasonable cost. 

They are classified according to their applicability into specific heuristic and 

metaheuristic methods. Unlike metaheuristics, the specific heuristic methods are 

designed to solve specific problems. Moreover, in practice, they are not useful for 

real life problems due to their way of guiding the search. They are more likely to fall 

in local optima, when the algorithm wastes the run time in unpromising regions of 

search space. In contrast, metaheuristics are general purpose methods. They are 

designed to escape from the local optima by using high level mechanisms. 
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Metaheuristics are algorithms designed to solve approximately a wide range of hard 

optimization problems without having to deeply adapt to each problem (i.e. general 

purpose algorithms). Indeed, the Greek prefix ‘‘Meta ’’, present in the name, is used 

to indicate that these algorithms are ‘‘higher level’’ heuristics, in contrast with 

problem-specific heuristics. They are classified, based on whether they manipulate a 

single solution or a collection of solutions at each stage, into local search 

metaheuristics and population-based metaheuristics (Boussaïd et al., 2013). In local 

search-based metaheuristics, a single solution is manipulated during the search, 

while in population-based ones, a whole population is involved. 

These two metaheuristics’ families have complementary characteristics. These are 

the local search methods which tend to intensify the search in local regions; they are 

exploitation-oriented. The population based methods allow diversifying the whole 

search space; they are exploration-oriented. Blum and Roli (2003) proposed a 

generic frame to understand how exploration versus exploitation is managed in 

metaheuristics (see Figure 2.2).  

 

Figure 2.2. The Exploration and Exploitation Frame 
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Each component can be located somewhere on or in between the three corners of 

that frame, namely OG= objective function guided, NOG= nonobjective function 

guided, and R=randomness. For example, the basic exploration and exploitation 

components in ant colony optimization are pheromone update and probabilistic 

construction, while in tabu search, it is the neighbor choice (tabu lists) aspiration 

criterion. In the first example, the pheromone update is the exploitation component 

that is guided by an objective function. This component is influenced by an 

evaporation mechanism. The pheromone update component can be found on the line 

between NOG and OG. In the second example, when the tabu list (a NOG 

component) is long, the search will be exploration-oriented, i.e. close to the corner 

R.     

 

The popularity of metaheuristics has been increased through their successful 

application to a large number of domains such as: engineering design, topology 

optimization and structural optimization in electronics, aerodynamics, fluid 

dynamics, telecommunications, automotive, and robotics; machine learning and data 

mining in bioinformatics and finance; system modeling, simulation and 

identification in chemistry, physics, and biology; control, signal, and image 

processing; planning in routing problems, robot planning, scheduling and production 

problems, logistics and transportation; and supply chain management (Talbi, 2009). 

The growing complexity of real-world problems has motivated metaheuristic 

designers to search for efficient problem-solving methods. Divide and conquer 

techniques are one way to solve large and difficult problems. Division of large work 
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into smaller parts and combining the solution of small problems to obtain the 

solution of large ones have been a practice in computer research since long ago. 

Swarm also exhibits the behavior of division of work and cooperation to achieve 

difficult tasks. Swarm intelligence metaheuristics are outstanding examples which 

show that nature has been an unending source of inspiration (Manju & Kant, 2013). 

In particular, ants have inspired a number of methods and techniques among which 

the most studied and the most successful is the general purpose optimization 

technique known as ant colony optimization (Dorigo & Stützle, 2010). 

2.3 Ant Colony Optimization 

Ant colony optimization (ACO) takes inspiration from the foraging behavior of some 

ant species. These ants deposit pheromone on the ground in order to mark some 

favorable path that should be followed by other members of the colony. Ant colony 

optimization exploits a similar mechanism for solving optimization problems. 

2.3.1 Biological Inspiration 

A colony of artificial ants and its characteristics are inspired by the real ants’ 

foraging behavior. Real ant foragers are traveling all the time to find food sources. 

Table 2.1 represents an emulation of the food foraging behavior and how it can be 

transformed to a CO problem (e.g. TSP).  

Table 2.1 

Artificial Ants versus Real Ants 

Real Ant Artificial Ant 

1. Food sources Problem solutions (the routes in TSP). 

 



 

 20 

2. Foraging to find and exploit the 

nearest food sources to the nest. 

Searching: exploring and exploiting the best 

solutions of the combinatorial problem. 

 

3. Lives on the ground environment 

where the time not considered. 

Associated with bi-dimensional grid termed 

construction graph. 

 

4. Pheromone is a chemical substance 

that ants lay it on the ground during their 

foraging. Its density is directly 

proportional to the quality of food. 

Artificial Pheromone is a numerical values 

assigned to the problem states during search. Its 

value inversely proportional to the quality of 

solution (the shortest distance). 

 

5. Stigmergy or multirenewal: indirect 

communication among ants when one of 

them changes the environment (laying 

pheromone) and the others make use of 

this change later (following that 

pheromone). 

 

Multiple communications: several artificial ants 

iteratively search based on the traveling salesman 

route. Each one behaves separately to construct 

its own route. At the end of the iteration, all ants 

have to finish constructing their own route. 

6. Mass Recruitment (or Pheromone 

trail) is a chemical trail of pheromone. 

Artificial Pheromone Trail is a vector of 

numerical values. Each trail represents a 

particular solution.  

 

7. Food Recruitment is the process 

whereby the ants are influenced by each 

other through using pheromone. 

 

Trail Reinforcement is the process whereby the 

artificial ants learn from each other. 

 

8. Autocatalytic behavior (i.e. positive 

feedback) is a collective behavior where 

the more ants follow the trail, the more 

attractive that trail becomes.    

Apply the following stochastic rule: the 

probability that an edge in a construction graph is 

included into the ant route is proportional to its 

pheromone value and heuristic value. 

 

9. Negative feedback is the process of 

limiting the positive feedback. It may 

result from the limited number of ants, 

the food source exhaustion, and the 

evaporation of pheromone or a 

competition between paths to attract 

foragers. 

 

Using evaporation rule to avoid stagnation. The 

evaporation should not be fast to prevent 

forgetting the previous experience and break 

down the cooperative behavior of artificial ants. 

10. No memory Has some memory called tabu list.  

 

11. No visibility Visibility is a static quantity derived from the 

distance between cities. It represents the heuristic 

desire to visit the next city. 

2.3.2 Problem Representation 

The ACO metaheuristic is based on a generic problem representation and the 

definition of the ants’ behavior (Dorigo & Stützle, 2004). Given this formulation, the 
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ants in ACO build solutions to the CO problem by moving concurrently and 

asynchronously on a predefined construction graph. Considering the CO problem 

(i.e. TSP) as defined in Section 2.1, there are some aspects that need to be 

characterized: i) a finite set of components of the problem: C= {c1, c2,…, cn}, where 

n is the number of components of the TSP problem; ii) a sequence of the states of the 

problem over the elements of C, such that each sequence is S=<ci, cj,…, ch,…>, and 

the set of all sequences is denoted by S; iii) a set of candidate solutions S* is a subset 

of S; iv) a set of feasible solutions N is a subset of S; v) a non-empty set of optimal 

solutions; and vi) a cost g (s, t) is associated with each candidate solution. 

TSP (S, f, Ω) has to be mapped to a complete connected graph called construction 

graph CGTSP = (C, L), where C is the set of nodes of the graph and L is the 

connections of those nodes. The artificial ants will walk randomly on CGTSP to build 

solutions of the TSP problem. The pheromone trail value τ and heuristic value can be 

associated with C or L. 

2.3.3 The ACO Metaheuristic 

ACO has been formalized into a metaheuristic for solving CO problems (Dorigo, Di-

Caro, & Gambardella, 1999; Dorigo & Di-Caro, 1999). A series of generic 

guidelines allows a boost in the use of ACO methodology for problem solving 

(Monteiro, Fontes, and Fontes, 2012). Firstly, a finite set C of solution components 

needs to be derived. This set C is used to assemble solutions for the CO problem. 

Next, a set of pheromone values τ is defined. The set τ is called the pheromone 

model and is commonly recognized as a parameterized probabilistic model. The 
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pheromone model is probabilistically used to generate solutions based on the 

solution components. To achieve this, the model associates the solution components 

to the pheromone values τi ∈ τ which forms the central components of the ACO 

metaheuristic. In general, the ACO approach attempts to solve an optimization 

problem by iterating the following two steps: i) construct candidate solutions by 

using the pheromone model. The pheromone model, as mentioned earlier, is a 

parameterized probability distribution over the solution space; and ii) modify the 

pheromone values by using candidate solutions in a way that it is deemed to bias 

future sampling towards high quality solutions (Blum, 2005a). The interaction 

between the two steps is presented in Figure 2.3 which illustrates a conceptual 

abstraction about how the ACO metaheuristic solves the CO problems. 

 

Figure 2.3. The Conceptual Framework of ACO 

The ACO metaheuristic defines the way of the solution construction, the pheromone 

update, and possible daemon actions. These are used to implement specific problems 

or centralized actions that cannot be performed by a single ant (Cordon, Herrera, & 
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Stützle, 2002). An informal high-level description about ACO metaheuristic 

functionality is given in Figure 4.2. 

 

Figure 2.4. The ACO Metaheuristic Pseudocode 

Parameter initialization: At the start of the algorithm, parameters are set and all 

pheromone variables are initialized to a value τi=0, which is a parameter of the 

algorithm. 

Ants’ generation and activity: The ants build solutions to the CO problem by 

traversing nodes of the construction graph one after another until it finishes 

constructing complete solutions. Each ant, to move to the next node, applies a 

stochastic mechanism, which is biased by the pheromone and heuristic values. 

Optionally, an ant deposits/releases some pheromone at the visited nodes stepby step 

(online step-by-step pheromone update) or delays it until it constructs the current 

solution (online delayed pheromone update). 

Pheromone evaporation: The aim of this activity is to decrease the pheromone 

values associated with all solutions. This mechanism is triggered by the environment 
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and it refers to the food exhausting in nature, while in the algorithm, it is used to 

allow the ants to explore new space regions. 

Daemon actions: This part contains all the centralized procedures, which cannot be 

performed by a single ant such as global pheromone update. Usually, the daemon 

action replaces the online delayed pheromone update with the offline delayed 

pheromone update.  

According to the way of updating pheromone, three algorithms have been 

developed: ant-density, ant-quantity and ant-cycle (Dorigo et al., 1991). The former 

two algorithms used the online update while the later used the offline update. 

Preliminary experiments run on a set of benchmark problems have shown that ant-

cycle’s performance was much better than that of the other two algorithms. This is 

the AS algorithm (Dorigo, Maniezzo, & Colorni, 1996; Dorigo, 1992). It was the 

basic model for subsequent successful ant algorithms. The other two algorithms (i.e. 

ant-density, ant-quantity) were abandoned.  

2.3.4 The First Ant Algorithm: Ant System 

This algorithm was the result of several experiments on the real ant foraging 

behavior. The experiments were conducted by Deneubourg et al. (1990). In AS, the 

main algorithmic components are outlined as follows:  

Construct ant solutions. Solutions assemble as a sequence of solution components 

C= {c1,…,cn}, which is derived from the problem under consideration. In the case of 

TSP, each edge of the TSP graph represents a solution component.  Ant (k), moving 
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from its current city (i) to the next city (j), will construct one step in its own solution. 

This solution starts with an empty sequence s = ‹ › and will be extended in each 

construction step, by adding new feasible solution components from the set N (sp) ⊆ 

C \ s. In each construction step, an ant chooses the next city stochastically through 

the following probabilistic decision (i.e. state transition) rule (Dorigo & Stützle 

(2010). 

𝑝𝑖𝑗
𝑘 = {

𝜏𝑖𝑗
𝛼 . 𝜇𝑖𝑗

𝛽

∑ 𝜏𝑖𝑙
𝛼 . 𝜇𝑖𝑙

𝛽
𝑐𝑖𝑙∈𝑁(𝑆𝑃)

 𝑖𝑓 𝑐𝑖𝑙 ∈ 𝑁(𝑆𝑃)

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,                                                                                  (2.1) 

where τij is the pheromone value adjusted by the parameter α and μij is the heuristic 

value, which is given by: 1/distance (i, j). μ is adjusted by the parameter β. The 

specification of N (sp) depends on the solution construction mechanism. In TSP, the 

solution construction mechanism restricts the set of traversable edges (i.e. N (sp)) to 

the set of untraversed edges by ant (k).  

Update pheromones. After the ants have built their tours and before the ants start to 

deposit pheromone, pheromone evaporation on all arcs is triggered. The main role of 

evaporation is to avoid too rapid convergence of algorithm (i.e. stagnation). It 

implements a useful form of forgetting the past history and focusing on new 

promising areas in the search space. Then, the ants deposit pheromone on 

pheromone trail variables associated to the visited arcs to make the visited arcs 

become more desirable for future ants. The updating phase is conducted through the 

following rules (Dorigo & Stützle, 2010). 

𝜏𝑖𝑗 = (1 − 𝜌). 𝜏𝑖𝑗 + ∑ ∆𝜏𝑖𝑗
𝑘

𝑚

𝑘=1
 ,                                                                                                (2.2) 
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where the ∆τij
k is determined by: 

∆𝜏𝑖𝑗
𝑘 = {

𝑄 𝐿𝑘⁄
0

                    𝑖𝑓 𝑎𝑛𝑡 (𝑘)𝑢𝑠𝑒𝑑 𝑒𝑑𝑔𝑒 (𝑖, 𝑗)𝑖𝑛 𝑖𝑡𝑠 𝑡𝑜𝑢𝑟,

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
                                        (2.3) 

where, Q is a constant and Lk is the length of the tour constructed by ant (k), while 

parameter ρ ∈ [0, 1] is a pheromone trail decay coefficient (i.e. evaporation rate). 

Once the ants finish the pheromone updating, they will die (i.e. current iteration has 

been finished). 

The amount of pheromone trail τij (t) associated to the arc (i, j) is intended to 

represent the learned desirability of choosing city j when the ant is in city i. The 

pheromone trail learning changes during the problem solving to reflect the ants’ 

experience with the problem search space. The pheromone amount deposited (∆τij
k) 

is inversely proportional to the quality of solutions (i.g. the shortest paths in TSP) the 

ants produced. This will direct the search toward good solutions.   

The memory of each ant is represented by what is called the tabu list, which contains 

the already visited cities. The memory is used to define, for each ant (k), the set of 

cities that an ant located on city i (i = 1, 2, 3,…, n) still has to visit. By exploiting the 

memory, an ant k can build feasible solutions (in the TSP, this corresponds to 

visiting a city exactly once). Furthermore, the memory allows the ant to cover the 

same path and apply online delayed pheromone update. 

The stochastic way in which the pheromone update prevents ants from ever reaching 

the optimum solution because it makes them reproduce the same solution, which 
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known as the stagnation problem. Even though the original AS algorithm achieved 

encouraging results for the TSP problem, it was later found to be inferior to state-of-

the-art algorithms for the TSP as well as for other CO problems. Therefore, several 

variants of AS have been proposed in order to improve its performance. Figure 2.5 

shows the chronological development of ACO metaheuristic framework over the 

years as drawn for this research. 

                      

 Figure 2.5. The Evolution of ACO Algorithmic Framework  

The first improvement in ACO, called the elitist ant system (EAS), consists in 

depositing additional pheromone using the best-so-far tour. Other improvements 

were ant based Q-learning algorithm (Ant-Q), ant colony system (ACS), MMAS, 

and rank-based ant system (RAS). The Ant-Q was intended to create a link between 

ACO and reinforcement learning. The pheromone update rule of Ant-Q has been 

simplified to produce ACS algorithm. It is for this reason that Ant-Q was abandoned 

while ACS was restrained. In MMAS, the pheromone trail strength has been 

bounded to the interval [tmin, tmax]. The pheromone update in MMAS and ACS are 
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performed using the elitist strategy. ASrank extends the elitism by using ranking 

strategy: it sorts the solutions according to their quality and the high ranked and 

elitist solution utilized in the pheromone update. The approximate nondeterministic 

tree search algorithm (ANTS) exploits the idea of lower bounds (LB) on the 

completion of a partial solution which is derived from branch-and-bound. The 

heuristic information, by means of lower bounds, will be computed to be used by 

each ant during the solution costruction. The objective function is more dynamic 

because it depends on the difference between LB and the ant’s solution qualities. 

The heuristic information in the ACO algorithm for data network routing, denoted as 

AntNet, is more reactive than ANTS. It depends on the instantaneous state of the 

node’s queues (i.e. the queue waiting time). The reinforcement learning of AntNet is 

based on the functions of the goodness of the ant’s path (i.e. ant’s trip time) and of 

the goodness of some relative measures which depends on the traffic conditions. In 

best-worst ant system (BWAS), while the best ant is utilized again to deposite 

pheromone (the elitisim), the worst ant also allows to subtract the pheromone. For 

dynamic optimization, population-based ACO (PACO) has been proposed. While the 

algorithm stems the max-min bounding from MMAS, it proposes a new pheromone 

deposite/subtract mechanism called FIFO-Queue. In beam search-based ACO 

(beam-ACO), the beam saerch stems the lower bound concept as in ANTS. Beam-

ACO uses parallel exploration by taking n nodes of search tree and expanding them 

in m direction based on the LBs; this results n*m partial solutions. 

  

According to Dorigo and Stützle (2010), the substantial difference among ACO 

variants is in the way of guiding the search. In other words, it is due to the way of 
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managing the exploration of the search space and the exploitation of the best 

solutions found. 

2.4 The Max-Min Ant System 

The MMAS algorithm is achieved by the strongest improvement over ACO variants 

for the TSP and it is among the best available algorithms for the QAP (Stützle & 

Hoos, 2000). The main modifications of MMAS are the continued use of elitist 

strategy; limiting the stagnation of the search by τmax and τmin bounds ; using τmax to 

initialize the trails, and finally smoothing (or restarting) the trails to stop the 

stagnation and to increase diversification feature (Stützle & Hoos, 1998). The 

modifications are discussed in more detail as follows.   

2.4.1 Pheromone Trail Update 

The MMAS uses only one ant to update the pheromone. This ant is called the best 

ant. For this choice, there are two possibilities: use the iteration-best ant or the 

global-best ant. The first technique is the best for long-term runs where the 

diversification aspect will be high. On the contrary, the second one is useful in short-

term runs with the risk of entering a stagnation situation. Allowing more ants to 

update the trails is the major following in ACO (e.g. ranking and generalized elitism 

strategies) (Stützle & Hoos, 1998). The modified updating rule relies on several 

feedback measures. At the start of the algorithm, the iteration-based update rule is 

used more often, while during the run of the algorithm, the frequency with which the 

global-based update is used increases. Following this technique will not guarantee 
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that the same solution components will not be reproduced by Equation (2.1) (Dorigo 

& Blum, 2005). In such situation, if it occurs for all nodes, the search stagnates. 

2.4.2 Pheromone Trail Limits 

The MMAS algorithm involves the pheromone trail limits to avoid the worst case of 

this phenomenon; it introduces pheromone trail limits to influence the selection 

probability of the respective solution component. The selection probability is 

determined by pheromone trails and heuristic information. Limiting the extreme 

values of pheromone trail can be denoted by τmin ≤  τij ≤  τmax. The parameter τmin has 

the main influence in avoiding the stagnation. The parameter τmax is still useful in the 

initialization phase. Initializing the pheromone trails with maximum values allows 

high exploration (Dorigo & Stützle, 2004). According to Dorigo, Birattari, and 

Stützle (2006); and Stützle and Hoos (2000), both τmin and τmax values are typically 

obtained empirically and tuned on the specific problem at hand. Nonetheless, some 

guidelines have been provided for defining τmin and τmax on the basis of analytical 

considerations. In particular, using the lower trail bounds improves the performance 

of MMAS compared with the quality of solutions of MMAS without using these 

limits.  

2.4.3 Pheromone Trail Restart 

The MMAS algorithm uses the restart, or so called re-initialization, whereby the 

pheromone trail by MMAS sets the value of pheromone deposited on all arcs to the 

maximum possible trail strength, i.e. to the quantity τmax. This type of setting will 

increase the initial exploration of the algorithm. To illustrate the usefulness of this 
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setting, the following situation will be considered. In the first iteration, the 

pheromone trails will be decreased according to the evaporation factor as follows: τij 

(t+1) = ρ. τij (t). Hence, the relative difference among pheromone trails will be as 

follows: ρ, ρ2, etc. On the contrary, if the lower pheromone trail is utilized for 

initialization, the difference among pheromone trails will increase more strongly. 

Thus, the selection probabilities according to Equation (2.1) will evolve more slowly 

when initializing the trails to τmax and, hence, the exploration of solutions is favored. 

2.4.4 Pheromone Trail Smoothing 

The pheromone trail smoothing (PTS) mechanism is designed in MMAS to increase 

the robustness of using these limits, especially the lower trail limits. This mechanism 

is known by smoothing the trails and is used to counteract the stagnation of search 

for long term running. This mechanism can be interpreted as an urgent update in 

order to produce new tours by influencing the probabilistic distribution for the tour 

construction stage in the next iteration. When MMAS has converged or is very close 

to convergence (as indicated by the average branching factor), this mechanism 

increases the pheromone trails proportionally to their difference to the maximum 

pheromone trail limit. The proposed mechanism has the advantage that for δ < 1, the 

information gathered during the run of the algorithm (which is reflected in the 

pheromone trails) is not completely lost, but merely weakened. For δ = 1, this 

mechanism corresponds to a re-initialization of the pheromone trails, while for δ = 0, 

PTS is switched off (Stützle & Hoos, 1998, 2000). 
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2.4.5 Pheromone Trail Learning 

After each iteration, the pheromone trail level on all arcs will be decreased. On the 

other side, the good arcs crossed by the best ants will be maintained to keep the high 

level of trail strength according to the reinforcement rule. Distinction between the 

good arcs and bad arcs during the run is interpreted in MMAS as a learning process 

(Favaretto, Moretti, & Pellegrini, 2009; Pellegrini, Favaretto, & Moretti, 2006; 

Stützle & Hoos, 1998). The evaporation rate ρ is played as the main rule in this 

process. The speed of learning depends on the value of ρ. There are two possibilities 

to assign ρ’s value: high and low values. With the high values, the speed of learning 

will be slow, so the algorithm needs to spend more iterations (i.e. more time to learn 

which arc is good) to do that. While with low values of ρ, the learning speed will 

increase, so that, with long and short-term runs, the low values of ρ are more 

preferable.  

2.4.6 Hybridizing with Local Search 

Although MMAS can be applied without coupling with local search procedures, very 

often its solutions’ quality is greatly improved if it is extended to include it. The first 

step in applying local search is the definition of a neighborhood structure over the set 

of candidate solutions. One common way of defining neighborhoods is via k-

exchange moves that exchange a set of k components of a solution with a different 

set of k components. This kind of local search called k-opt neighborhood. Three k-

opt heuristics have been implemented to improve the quality of solutions, they are 2-

opt, 3-opt and 2.5-opt (Johnson & McGeoch, 2007). The 2-5-opt is a restricted 
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version of 3-opt, where the segment of solutions that contains only one component is 

considered to check whether the exchanges result in an improved solution or not.  

From the exploration and exploitation point of view, the pheromone trail 

management plays the main role in changing the probabilistc distribution of search 

space (Dorigo & Stützle, 2010). If the pheromone concentration is high, then the 

probabilistic construction will tend to be aggressive and the exploration amount will 

be low. Both probabilistic construction and pheromone update components in ACO 

are guided by memory-based strategies. 

2.5 Memory-based Strategies for Exploration and Exploitation 

The rationale work for managing E&E in ACO is about how a memory model called 

pheromone is managed. The E&E remains the base for problem solving by search 

algorithms. According to Beer et al. (2012), “exploration refers to how widely an 

algorithm surveys the search space”. Beer et al. also defined the exploitation as “the 

speed at which the algorithm converges to a local minimum and is related to 

pheromone.” The study also showed that if exploration takes precedence, the 

algorithm will explore unproductive areas of the search space before reaching a 

solution; if exploitation is too strong, the algorithm may converge prematurely and 

produce a poor result (Beer et al., 2012). Dorigo (1992), in his Ph.D thesis, discussed 

different ways to achieve such balance. One of them is by sampling a good solution 

with the probability of one, while the bad solution with zero. This way of 

representation reflects the main drawback, which is the early stagnation. 

Alternatively, a simple way to do that is by exploiting the quality of solution of each 
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ant as a function of updating pheromone (Dorigo, 1992). Several memory-based 

E&E forms exist in the literature which can be classified as follows. 

2.5.1 Quality-Dependent Strategy 

This strategy first appeared in the AS algorithm as a solution to prevent stagnation 

(Dorigo et al., 1996). In this strategy, some measures utilize the quality of solution 

generated to calculate the amount of pheromone that should be deposited by ants. 

The main drawback of this strategy is its poor performance. As a result, the need to 

seek alternative ways to enhance the performance of ant algorithms arises. Talbi, 

Roux, Fonlupt, and Robillard (2001) extends this strategy in a similar way by 

allowing all ants to deposit pheromone, where the difference between the current 

solutions F(S) and the worst ones F(S-) and its proportionality to the best solution 

F(S*) represent the amount of pheromone to be used in the reinforcement process. It 

is also similar to the best-worst strategy in BWAS (Cordon, Herrera, & Moreno, 

2000) in exploiting the best and worst ants. The pheromone quantity laying on the 

solution components in this strategy may formulate differently. Following the 

Hyper-Cube Framework proposed by Blum, Roli, and Dorigo (2001), Blum and 

Blesa (2005) proposed an ACO algorithm to solve edge-weighted k-cardinality tree 

problems, where the pheromone reinforcement uses the convergence factor to 

calculate the quantity of deposited pheromone instead of using the objective 

function. Shyong, Pengyeng, and Bertrand (2004), in their ACO method to solve the 

minimum weight vertex cover problem (MWVC), proposed another formulation to 

derive the objective function, which is by using total weight of the nodes in the 

solution to calculate the quantity of the deposited pheromone in each iteration. 
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Solimanpur, Vrat, and Shankar (2005) used a scaling factor λ to adjust the amount of 

pheromone laid on the componenets of solutions F(Sk) that are closest to the global 

best solution F(S*). This method clearly avoids full convergence and encourages 

search along the vicinities of the global best solution in the hope that a better one can 

be found nearby. Bin, Zhongzhen, and Baozhen (2009) and Zhongzhen, Bin, and 

Chuntian (2007) have proposed a new strategy to update the increased pheromone, 

called ant-weight strategy, by which all ants are allowed to update their paths locally 

and globally. A solution is only entirely defined when all routes constructed are 

assembled. There are also two kinds of pheromone increments: local and global. The 

local pheromone increment uses the contribution of each arc to the prespective tour, 

which increases when a specific indicator decreases. The global one uses the total 

length of solution and the number of tours. Since the solution quality is the only 

trigger to decide how much the solution should be awarded, its effectiveness in 

dynamic environment needs to be improved. For example, in dynamic TSP some of 

the components of current solution may vary before the solution is evaluated. This 

mislead the way in calculating  its award on the assumption that its quality will be 

improved.  

2.5.2 Quality-Independent Strategy 

This strategy is applied in geographically distributed problems, like network 

problems, where the pheromone deposited by ants is equal to constant as in the 

simple-ant colony optimization algorithm (S-ACO). As in the case of real ants, 

autocatalysis and differential path length (DPL) are at work to favor the emergence 

of short paths (Dorigo & Di-Caro, 1999). Di-Caro and Dorigo (1998), in AntNet 
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algorithm, depended on this autocatalysis property. In network communication, 

where AntNet is applied, the environment changed so the pheromone amount 

deposited by the ant is switched off. Shyong et al. (2004), in their ACO method to 

solve the minimum weight vertex cover (MWVC) problem, stated that the solution 

does not necessarily constitute a path or a tree on the underlying graph; the objective 

function is a constant value (τ0). This fomula is equivalent to the local pheromone 

edupdate in ACS algorithm (Dorigo & Gambardella, 1997). In short, evaluate the 

solutions independently of their quality of solutions is more analogous to the 

behaviour found in real ant colonies. However, it is not a recurring theme in ACO 

research especially in static environments where the quality-based evaluation is the 

dominant theme as it can accelerate the convergence of ants toward optimal or near 

optimal solutions.  

2.5.3 Elitist Strategy 

A first improvement over AS was obtained by the elitist ant system (EAS) (Dorigo, 

1992). The basic idea of this strategy is to provide an additional reinforcement to the 

best-so-far solutions. This strategy is hereby to increase the exploitation by 

introducing a strong bias towards the solution components of the best-so-far 

solutions. Another elitist variation has been studied in MMAS and ACS, where 

either of the iteration-best solution or the best-so-far are used for elitist 

reinforcement. Maniezzo (1999), in ANTS algorithm, proposed a new formula to 

calculate the pheromone amount to be used in the reinforcement process and to 

determine the elitist solutions (Lavg). Lavg is the moving average of the last l 

solutions, that is, it is the average length of the l most recent tours generated by the 
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algorithm. If an ant’s solution is worse than the current moving average, the 

pheromone trail of the arcs used by the ant is decreased; if the ant’s solution is better, 

the pheromone trail is increased.  

 

Blum ( 2002) proposed a list (Lelite) to record the elite solutions found during the 

search (i.e. iteration-best solutions, best-so-far soluions and restarting best solutions) 

to be used in reinforcement. Following this work, Blum and Blesa (2005) proposed 

an ACO algorithm to solve edge-weighted k-cardinality tree problems, where the 

pheromone reinforcement uses three kinds of weighted solutions: best iteration 

solution Sk
ib, best global solution Sk

gb and best restart solution Sk
rb. In a different way, 

Rappos and Hadjiconstantinou (2004) developed a new approach considering the 

nature of the designing flow networks problem. The objective function for each edge 

consists of a fixed component and a variable component. Consequently, the authors 

decided to use two kinds of pheromone trails to be deposited: fixed trail Te (ij) and 

variable trail Tf (ij). There are also two kinds of ants: reliable ant and flow ant. Only 

flow ant is allowed only to reinforce both trails. Whereas the second ant is used to 

add a reliability arc to that solution produced by the flow ant.   

 

Ku-Mahamud and Alobaedy (2013) used two kinds of trail reinforcement during the 

run of the algorithm: pheromone reinforcement and heuristic reinforcement, where 

the second one is triggered to reflect the first one. The concept is that when the best-

so-far ant globally updates their trail, the environment will be changed, and thus a 

new heuristic value will be obtained. This enhancement affects the convergence 

behavior of ACS in its application to two NP-hard problems: TSP and Job 
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Scheduling in Grid computing and produced good results. Alaya, Solnon, and 

Ghedira (2004) calculated the objective function such that the pheromone amount 

deposited on the solution components is inversely propositional to the difference 

between iteration-best solution and the best-so-far solution. Therefore, the closer the 

solution is to the global best solution, the higher the quantity of pheromone is 

deposited.    

 

The concept of elitism is inspired from the genetic algorithm (GA), where the best 

solution is found in the current iteration corresponding to the fittest individuals of the 

current generation (Goldberg & Holland, 1988). The main drawback of this strategy 

is that the local search aspects represented by exploitation will be more important 

than the global search aspects represented by exploration, and that contrasts with the 

idea of inventing metaheuristics.  

2.5.4  Rank-Based Strategy 

Another improvement over the elitist strategy is the rank-based strategy, which was 

first proposed in RAS algorithm (Bullnheimer, Hartl, & Straub, 1997). The idea of 

ranking is inspired also from the genetic algorithm field: first, the population is 

sorted according to fitness, and then the probability of being selected depends on the 

rank of an individual. The ranking strategy is used to counteract the shortcoming of 

the elitist strategy. The contribution of ASrank is obtained by sorting tours constructed 

by m ants by their lengths and to be weighted then according to their rank in that 

sorted list. The pheromone amount will be deposited according to the rank of the ant, 

while only the m* best ants are considered for reinforcement. With ranking 
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strategies, the balance between exploration and exploitation can be achieved. 

Comparing with elitist versions of ant systems, rank-based version is slightly better 

results. However, it likely to stuck in local optima which demonstrates the stagnation 

behaviour especially with large scales environments.  

2.5.5 Trail Learning Strategy 

The trail learning strategy allows stronger exploitation to be achieved by applying 

the new aggressive decision rule of ACS algorithm (Dorigo & Gambardella, 1997) 

and by applying Q-learning of Ant-Q (Gambardella & Dorigo, 1995). An important 

contribution in ACS is in the decision rule used by the ants during the construction 

process; so-called pseudo random proportional rule. In which, the probability for an 

ant to move from city i to city j depends on a random parameter q, which is 

uniformly distributed over [0, 1], and a parameter q0. Where, if q ≤ q0, then j = 

argmax cij∈N (sp) {πij
α

. ηij
β} (i.e. a biased exploitation: intensifies the knowledge 

available about the problem πij
α

 and ηij
β), otherwise (if q > q0), the decision rule 

which operates the transaction rule in AS is used (i.e. a biased diversification). 

Tuning q0 allows to modulate the degree of diversification and to choose whether to 

concentrate the activity of the system on the best solutions or to explore the search 

space.  

Blum and Blesa (2005) introduced some changes to the probability distribution rule 

defined for ACS (Dorigo & Gambardella, 1997) in order to solve k-minimum 

spanning tree problems. An ant starts its solution by randomly choosing the first arc 

to enter the solution tree. Then, at each step of the construction, the next solution 
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component is chosen deterministically if q ≤ 0.9, and probabilistically if q > 0.9. 

This rule assigns equal weight to the pheromone and the heuristic values by 

eliminating parameters α and β from the exponents of the pheromone and heuristic 

values respectively. Given that the probabilistic rule is only triggered whenever a 

random number q > 0.9, the search for solutions in 90% of the cases usually 

concentrated on relatively good areas.  

In Altiparmak and Karaoglan (2007), if the global best solution has not changed after 

50 iterations, then 10% of the solutions reconstruct randomly to increase the 

diversification. Afshar (2005) proposed a new probability distribution rule for ACO 

algorithms. The strategy is defined to prevent a domination of the pheromone trails 

in the ants’ decision, by incorporating an additive form instead of the usual 

multiplicative form. This way, the author expects both pheromone and heuristic 

information to have an active role in the decision. This new probability distribution 

rule comes with a modification of the heuristic value, which is a simple normalizing 

procedure in which every heuristic value will be between zero and one regardless of 

the problem size. The major drawback of this stratgey is that its aggressive 

exploitation entail a loss in effeciancy of exploration even when the 

exploration/exploitationan is configured fairly, e.g. assigning 50% to parameter q0 in 

ACS.    

2.5.6 Online-Offline Update Strategy 

To balance the strong exploitation of pseudo random proportional rule, ACS 

introduced the local pheromone update (i.e. online update). It is performed by all the 
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ants after each construction step. Each ant applies it only to the last edge traversed. 

The main goal of the local update is to diversify the search performed by subsequent 

ants during iteration: by decreasing the pheromone concentration on the traversed 

edges, ants encourage subsequent ants to choose other edges and, hence, to produce 

different solutions. This makes it less likely that several ants produce identical 

solutions during one iteration.  

The offline pheromone update is applied at the end of each iteration by only one ant, 

which can be either the iteration-best or the best-so-far. However, the update formula 

is slightly different. The parallel local update and stochastic global update rules 

increase the cooperation rule among agents and maintain the balance between local 

search and the global one (i.e. exploitation and exploration respectively). The global 

search is maintained by local rule: the pheromone amount concentrates on the arc (i, 

j) because the aggressive construction rule (i.e. pseudo random proportional rule) 

will be eaten by the respective ant using the local update rule. On the other hand, the 

local search is maintained by the global search:  the pheromone amount is reinforced 

on the arc (i, j) that only belongs to the global best solution to encourage other 

foraging ants to search near the good solutions (Dorigo & Gambardella, 1997; 

Dorigo, 2007) 

The online-offline update is recurred strategy in most ACO literature, not only ACS. 

Shyong et al. (2004) used the local update in each construction step. Similarly, 

Eswaramurthy and Tamilarasi (2009) have also used the global and local updating 

rule, but considered arcs instead of nodes. They applied their approach on Job Shop 
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Scheduling Problem. This strategy can cause oscillations during the costruction of 

solution leading to a large fluctuations in its performance. 

2.5.7 Best-Worst Strategy 

This strategy is epitomized in BWAS (Cordon et al., 2000) as another improvement 

of that one in AS. It incorporates evolutionary computing concepts where it uses the 

same probability distribution rule and evaporation mechanism. BWAS is 

characterized in its best-worst pheromone trail updating rule, where the arcs 

belonging to the best solution is reinforced and the ones that belonged to the worst 

solution and not present before in the best solution is penalized. BWAS is further 

characterized by using pheromone trail mutation, where the diversity in the search 

process is introduced. Each pheromone trail associated with each arc is mutated with 

the probability Pm by adding or subtracting the mutation rate τthreshold in each 

iteration. This rate is less strong in the early stages of the algorithm and stronger in 

the latter ones where the stagnation is stronger. Maniezzo (1999), in ANTS 

algorithm, used the best-worst concept as well. In his method, the pheromone trails 

that belong to a particular solution is increased or decreased based on the degree of 

best or worst of that solution compared with the average solution quality of the last k 

solutions. Guntsch and Middendorf (2002), in FIFO-queue ACO algorithm, utilized 

implicitly the best-worst idea to propose a fast pheromone update rule. After each 

iteration, the best-or-worst solutions need to be added or removed from the 

population solution, then only the pheromon trails that belong to them will increase 

or decrease. However, this model still suffers from the slow convergence and low 
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searching efficiency (Dorigo & Stützle, 2004). The good solutions may not be 

produced by the reinforcement learning of ants. 

2.5.8 Bounding Strategy 

In this strategy, bounding the small values of the pheromones in the components of 

the solution by a minimum bound (τmin) and the extremely large values by a 

maximum bound (τmax), was investigated. The minimum bound is used to avoid 

prohibiting the choice of those arcs with small values of pheromone, while the 

maximum bound is used to avoid choosing the extremely big values for pheromone 

which will lead to the construction of the same solution, over and over again. 

The first application to this strategy was proposed by Stützle and Hoos (2000) in 

MMAS. The author defines the pheromone maximum bound based on the 

evaporation rate ρ and the cost of the best-so-far solution while the minimum bound 

is calculated based on maximum bound τmax and the number of arcs (i.e. solution 

components) and the probability of finding a best solution. Therefore, whenever a 

new global best solution is found, τmin must also be updated. The bounding strategy 

can be denoted by τmin ≤ τij ≤ τmax. Experiments have shown that the τmin has the main 

force to avoid stagnation, while the τmax is still useful to derive τmin and is used in 

pheromone initialization. Both parameters τmin and τmax are adaptively changed 

during the run of the algorithm. Once a new solution is found by the ants, their 

values will be updated. The important thing is how to manage their values update 

during the run. The author found a strong relation among the two parameters and 

their influence on the E&E balance (Stützle & Hoos, 1999). A better balance can be 



 

 44 

provided by controlling the tightness of the trail limits by introducing the parameter 

min-factor: τmin = τmax/ min-factor. Venables and Moscardini (2006) and Altiparmak 

and Karaoglan (2007) both used the same formula as in MMAS to find τmax, but 

changed the way to find τmin. It is easy to see that τmax and τmin are adaptively changed 

when a new best solution is found.  

Blum and Blesa (2005) defined another limitation schema, where [τmin, τmax] = 

[0.001, 0.999], and re-initializing schema, when the convergence factor becomes 

closer to 1. Bin et al. (2009) reformulated the two bounds according to the distance 

between the depot and the other customers which are denoted by d0i in vehicle 

routing problem (VRP), where bounds have to initialize when the algorithm starts. It 

is worth to mention that this strategy recurred in several ACO approaches and not 

only in the standard ACO. For example, in PACO approach, the pheromone values 

are never zero because of the minimum limitation used (Guntsch & Middendorf, 

2002). The shortcoming of this strategy is that the scope of its impact appears only in 

the final phase of search making it ineffective in short-run application such as 

querying.   

2.5.9 Restarting/Smoothing Strategy 

This adaptive strategy entail increase the exploration of search by redistributing the 

pheromone amount among the incident arcs. It relies on changing the pheromone 

distribution by resetting pheromone values when some triggers are reactivated. It is 

applied successfully to guide the search of ant colony based on tabu search algorithm 

(ANTabu) (Talbi et al., 2001), and MMAS algorithm. Blum ( 2002) introduced a 
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new re-initializing scheme for MMAS in his Hyper-Cube Framework (HCF) (Blum 

& Dorigo, 2004). Venables and Moscardini (2006) proposed a new restarting 

mechanism. If the percentage of τmin arcs exceeds 50%, then all arcs in the 

pheromone matrix will reset to τmax and bounds have to be updated according to the 

global best solution. Bui and Zrncic ( 2006) developed an approach for helping ants 

to recognize the bad arcs and the good arcs. They proposed a new way to calculate 

the initial pheromone τ0, τmin and τmax and then used the value of (τmax - τ0) to reset the 

arcs that exceed τmax, and the value of (τ0 + τmin) to reset arcs values that go under τmin.  

The pheromone amount can be redistributed by smoothing strategy: increasing the 

pheromone trails proportionally to their difference to the maximum pheromone trail 

limit (Stützle & Hoos, 1998, 2000). Experimental results showed that applying this 

strategy can lead to high quality solutions, especially in the long run of MMAS. 

However, its performance is highly dependent on parameterization. When its 

intermediator (δ) < 1, the information gathered during the run of the algorithm 

(which is reflected in the pheromone trails), is not completely lost, but merely 

weakened. For δ = 1, this mechanism corresponds to restarting the pheromone trails, 

while for δ = 0, the pheromone trail smoothing strategy is switched off.  

2.5.10 Colony-Level Interaction Strategy 

This strategy is used explicitly for parallel implementations and multiobjective 

optimization (Middendorf, Reischle, & Schmeck, 2000). However, its implicit goal 

is to achieve a fine-tuned balance between intensification and diversification by 

multiple colonies and interaction between them in some way (Blum, 2002). 
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Kawamura, Yamamoto, and Suzuki (2000) developed the first multi ant colony 

optimization algorithm, where several colonies work in multi-E&E levels and share 

their experience by exchanging information. Aljanaby, Ku-Mahamud, and Norwawi 

(2010) proposed interacted multi ant colony optimization algorithm (IMACO) based 

on ACS. This work exploited the ACS built-in E&E strategies from one side and 

benefited from MACO’s (multi ant colony optimization algorithm) advantages over 

ACO. Rahmani, Dadbakhsh, and Gheisari (2012) enhanced this strategy by adding 

the repulsion mechanism to reduce the likelihood that all colonies’ exchanging 

information uses only the optimal solution. The dependency on the number of ants 

which is the principle shortcoming of this way entails two major issues. First, the 

computational efforts will be increased to produce one population. Second, this 

approach will not perform efficiently when applied in stochastic local search 

algorithms considering that local search is fundamental for finding high quality 

solutions.  

2.5.11 Population-Based Strategy 

This strategy is designed for dynamic optimization problems by using the population 

to facilitate a faster pheromone update process than the standard way. Utilizing the 

population concept entailed keeping track of the good solutions (i.e. exploitation) 

and omitting the visited solutions by removing them from the pheromone matrix (i.e. 

exploration). Guntsch (2004) is the first to propose a population-based ACO 

approach (PACO) in his Ph.D thesis. Guntsch and Middendorf (2002) developed the 

first PACO algorithm which is known as FIFO-queue ACO algorithm. This strategy 

keeps the stronger options of the previous strategies, such as the trail learning, the 
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bounding and the best-worst, in the standard ACO. Despite that the real benefit of 

population-based strategy was postulated to dynamic optimization it opens the way 

for applying a new diversity preservation technique called niching. It is used in the 

PACO algorithm, particularly to solve multiobjective problems in a multiple area 

search space. Niching generally aims to achieve diversity of search focus (Angus, 

2008). However, two disadvantages can be recognized in this strategy. Its 

pheromone update will follow the quality-independent approach and its design is not 

well suited for static optimization. 

2.5.12 Hybridizing Strategy 

This strategy places ACO in relations with other approximation methods to produce 

algorithms with new hybrid E&E mechanisms. For example, the hybridization of 

MMAS algorithm with local search (Stützle, 1999) and that of ACO with beam 

search (Blum, 2005b). The vast literature on ACO verifies obtaining high quality 

solutions when local search algorithms are coupled with ACO. For example, the 

implementation of k-opt heuristics with MMAS. The experiments (Stützle, 1999) 

showed that the quality improvement returned by 3-opt is better than that of 2-opt 

and 2.5-opt. However, the extra computational time required for 3-opt was not worth 

the small quality improvement yielded unless speedup techniques are included. The 

speedup techniques that are involved in the early implementation of ACO are 

avoiding the redundancy in search space, restricted neighbor list and don’t-look bits. 

The recent implementations of ACO concern on how better integration between local 

search procedures and construction solutions is achieved (Gambardella, 

Montemanni, & Weyland, 2012).   



 

 48 

Blum, Puchinger, Raidl, and Roli (2011) justified this hybridizing technique by 

saying, “Research in metaheuristics for CO problems has lately experienced a 

noteworthy shift towards the hybridization of metaheuristics with other techniques 

for optimization. At the same time, the focus of research has changed from being 

rather algorithm-oriented to being more problem-oriented. Nowadays, the focus is on 

solving the problem at hand in the best way possible, rather than promoting a certain 

metaheuristic.” However, they cautioned the use of this type of strategy without 

clear guidelines by mentioning, “The research community should make an effort to 

move towards a sound scientific methodology consisting of theoretical models for 

describing properties of hybrid metaheuristics and using an experimental 

methodology as done in natural sciences.” The exploration amount, therefore, is 

automated in a history-sensitivity way, i.e. automated exploration: the exploration is 

changed only when there is evidence that more or less exploration is needed. The 

amount of exploration is increased or decreased based on a feedback scheme.  

2.6 Exploration Measures in ACO 

Several existing techniques can be used to determine the amount of exploration and 

exploitation needed in an ACO algorithm. These techniques can also be applied to 

aid the balance between exploration and exploitation. Battiti et al. (2008) stated that, 

“An automated heuristic balance for the “exploration versus exploitation” dilemma 

can be obtained through feedback mechanisms, for example, by starting with 

intensification, and by progressively increasing the amount of diversification only 

when there is evidence that diversification is needed.” 
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2.6.1 Distance of Solutions 

This is the simplest indication that can utilize the calculation of the number of arcs 

contained in one solution but not in the other. This indicator focuses on the 

duplicated arcs between two solutions, and if the degree of similarity is high, then 

the exploration amount is low (Dorigo & Stützle, 2004). A disadvantage of this 

measure is that it is computationally expensive. There are O(n2) possible pairs to be 

compared and each single comparison has a complexity of O(n). 

2.6.2 Average Lambda-Branching Factor 

This measure, introduced in Gambardella and Dorigo (1995), depends directly on the 

pheromone trail values, and it makes it more suitable for tracking the ant behavior 

while the computation is going on. This technique measures the diversity of the 

pheromone trail values more directly and it does not change much from iteration to 

iteration (Stützle, 1999). The branching factor is the first proposed indicator in ACO 

algorithms, and can be defined as follows. Let ph_max (i, j) and ph_min (i, j) be the 

maximum and minimum pheromone amount respectively of all the arcs that exit 

from node i, and let d be the difference between two amounts, i.e., ph_max (i, j) and 

ph_min (i, j). The branching factor of node I is the number of arcs that is greater than 

λ*d + ph_min (i, j), where 0 ≤ λ ≤ 1. The average of lambda branching factor of all 

nodes gives an indication of the amount of exploration conducted by each ant. The 

disadvantage of this factor is its dependency on the value of parameter λ. 
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2.6.3 Entropy 

In information theory, uses to measure the confusion degree based on the probability 

of random events (Wang, 2013). Entropy is recurring theme in parameter tuning of 

metaheuristics (Eiben & Smit, 2011). This diversity indicator firstly introduced by 

Pellegrini (2006) to analyze the behaviour of some ant algorithms against the change 

in parameters’ values. Colas and Monmarch (2008) have applied this concept during 

the solution construction in order to adapt the search of ACO as follows. At each 

node, the ant will calculate the selection probabilities of all other nodes, i.e. entropy, 

according to the following rule. 𝜀𝑖 =  − ∑ 𝑝𝑖𝑗
𝑙
𝑗=1 log 𝑝𝑖𝑗 where pij is the probability of 

choosing arc (i, j) when being in node i, and l, 1 ≤ l ≤ n-1, is the number of possible 

choices. Therefore, finding the average of all entropies will be in the same way. 

Nevertheless, recruiting this formula in constructing solution is not efficient because 

it will complicate the calculations inside the colony.   

2.6.4 Convergence Factor 

The convergence factor was introduced by Blum (2002) to be used in hyper–cube 

framework. It is used for tracking what is called as the extent of keep stuck, which is 

the converging phase of all ants. Dorigo and Stützle (2004) mentioned it as a good 

way to calculate the amount of exploration using the rule: ∑ 𝑚𝑖𝑛{𝜏𝑚𝑎𝑥 −𝜏𝑖𝑗𝜖 𝑇

 𝜏𝑖𝑗 , 𝜏𝑖𝑗 −  𝜏𝑚𝑖𝑛}/ 𝑛2, where T is the pheromone matrix, and τij is the pheromone trails. 

Seo (2009) recruited this measure in calculating how close the pheromone values on 

the updated arcs from the maximum and minimum threshold of pheormone. The 

major drawback of this measure is in its applicable for only max-min ant colony 

framework, which can be considered as a loss of generality. 
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2.6.5 Acceptance Criteria  

Acceptance criterion is the condition under which the new local optimum can be 

considered satisfy to be replaced with the current one (Boussaïd et al., 2013). This 

tool has been used with the restart strategy to increase the exploration amount in 

MMAS and BWAS algorithms. It has been firstly introduced in ACO by Stützle 

(1999) in his thesis: if the ilast be the iteration counter i in which the best iteration 

solution has been found, and then restarting can be modeled by the acceptance 

criteria 𝑅𝑒𝑠𝑡𝑎𝑟𝑡(𝑠′′ , 𝑠′′′, ℎ𝑖𝑠𝑡𝑜𝑟𝑦) where it equals to 𝑠′′ 𝑖𝑓 𝑓(𝑠′′) < 𝑓(𝑠); 

𝑠′′′ 𝑖𝑓 𝑓(𝑠′′  ) ≥ 𝑓(𝑠) 𝑎𝑛𝑑 𝑖 − 𝑖𝑙𝑎𝑠𝑡 > 𝑖𝑟 or S otherwise. Based on the formula 

above, the value of s’’’ is generated randomly by a new initial solution which 

corresponds to a restart of the algorithm. This formula is typically used in MMAS 

and BWAS. The amount of exploration will be increased without guarantee that the 

same regions are not visited again. Another weakness is the difficulty of decision-

making during the run, i.e. whether to use extreme acceptance criteria (preferring 

exploitation) or to accept any criteria (preferring exploration).   

2.6.6 Exploration Measure/ Similarity Ratio  

It refers to simple possibilities that indicate how much the solutions are similar, i.e., 

how much the search is exploitive. This can be done by finding the final solutions 

generated by ants, and then apply some statistics tools such as the standard deviation 

and the variation coefficient. One example of these statistics is the standard deviation 

of the objective function of solutions constructed after each iteration, e.g., the length 

of the tours in TSP. The exploration amount will be high if the standard deviation is 

near to one, and low if near to zero. 
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Because of the dependency of the standard deviation on the scale of the problem, a 

better option is to use the variation coefficient. It is the quotient of the standard 

deviation and the average of the objective function of the generated solutions 

(Dorigo & Stützle, 2004). This measure is firstly utilized in the constraint 

satisfaction solver, as proposed by Solnon and Fenet (2005), in order to control the 

E&E balance.  

This moves away from the previous tools in literature. Its aim is quantifying the 

exploration of the search space. Pellegrini, Favaretto, and Moretti (2009) have 

defined it as follows. Let a graph G= (N, A) represent a CO problem, where N is the 

set of nodes and A is the set of arcs, and |N| = n and |A| = a. Each solution S to this 

problem is denoted by S1= {x1, x2,…, xa} and S2= {y1, y2,…, ya}. Each xi represents 

the probability, denoted by Pi, of selecting this arc during the construction of 

solution S. The distance D between S1 and S2 is 𝐷(𝑆1, 𝑆2) =  √∑ (𝑑𝑖)2
𝑖∈𝐴   where di=xi 

- yi if xi.yi=0 and di=0 otherwise. 

Based on this definition, S1 and S2 can be clustered, if they are the closest solutions, 

using appropriate data clustering procedure. An agglomerative hierarchical 

procedure in data mining (Rajaraman & Ullman, 2012) is considered here. 

Iteratively, the maximum distance between the new cluster and the other solutions 

keep calculating until the stopping criteria. The stopping criteria stop when the 

distance between the two closest clusters is greater than a predefined threshold. 

Pellegrini et al. (2009) defined the quantity of exploration by the number of clusters 

built. 
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A new technique for measuring the effect of parameter variation based on this tool 

has been proposed by Favaretto et al. (2009). The study emphasized on using this 

tool due to its accuracy in indicating the actual behavior of the procedure. This 

technique may also serve as an indicator for defining parameter adaptation strategies. 

However, the technique restricts the parameter adaptation with offline approach. The 

online parameter adaptation may represent the first step in the direction of 

exploration and exploitation automation in ACO. 

2.7 Reactive-based Parameters’ Selection  

The problem of parameter selection arises when an algorithm needs to select optimal 

values for its parameters from a relatively large search space of values. The balance 

between two opposing processes, namely, exploration and exploitation, has to be 

maintained in this selection. The parameters’ selection differs not only from problem 

to problem, but also from region to region in the same search space. The situation is 

more complex and more sensitive with stochastic algorithms. The question is what is 

the methodology to handle this situation? According to Battiti et al. (2008), reactive 

search advocates the integration of subsymbolic machine learning techniques into 

search heuristics for solving complex optimization problems with an emphasis on 

opportunities for learning and self-tuning strategies (Figure 2.6).  
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Figure 2.6. Reactive Search Optimization 

The word reactive hints at a ready response to events during the search through an 

internal feedback loop and dynamic adaptation. In reactive search, the history of the 

search and the knowledge accumulated while moving in the configuration space is 

used for self-adaptation in an autonomic manner; the algorithm maintains the 

internal flexibility needed to address different situations during the search.  

 

The next important question is how the exploration and exploitation in ACO are 

controlled based on reactive search? According to Lopez-Ibanez and Stützle (2014), 

ACO algorithms are just an example of problem-solving methods, which often have 

several parameters that allow the user to control the balance between exploration of 

new solutions and exploitation of the best solutions found. The study of the impact 

of various parameters on the behavior of ACO algorithms has been an important 

subject since the first articles of Colorni et al. (1991). However, a default parameter 

configuration is often used in practice, without taking into account differences in 

computational environment or termination criteria. This practice frequently leads to 

suboptimal results. Lopez-Ibanez and Stützle further stated, “One way to address this 
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issue is to not rely on default parameter settings, but instead to automatically 

configure the parameter settings.” Pellegrini, Stützle, and Birattari (2010) justified 

using the automatic configuration by saying “to alleviate algorithm designers from 

the tedious and error-prone task of hands-on parameter adaptation”. To date, proper 

management of control-parameter settings allowed the E&E balance to be achieved. 

However, which control-parameter setting to which yield the best result has 

remained to be answered. The parameters setting of metaheuristics are problem 

dependent and there is no optimal parameter setting which will work with every 

problem (Eiben, Michalewicz, Schoenauer, & Smith, 2007).  

 

One possibility for automatic configuration task is following the offline parameter 

tuning approaches (Stützle & Lopez-Ibanez, 2013). Examples of offline approaches 

are F-Race (Birattari, Stützle, Paquete, & Varrentrapp, 2002), I/F-Race 

(Balaprakash, Birattari, & Stützle, 2007), CALIBRA (Adenso-Diiaz & Laguna, 

2006), and ParamILS (Hutter & Leyton-brown, 2009). The main cost associated to 

offline algorithm configuration is the expensive use of resources in the priori 

experimental phase. Moreover, any search algorithm needs to be applicable for the 

vast domain of combinatorial problems, which entails that the amount of E&E needs 

to be changed dynamically with the optimizing process. Realizing this, the need for 

automating E&E balance, during the run, is imperative. It is foreseeable that better 

results can be achieved and faster convergence will occur when intelligent control is 

applied. 
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Another possibility is to change the parameter setting during the algorithm runtime, 

i.e. online approach, which is called parameter control. It is a radically different 

method. Pellegrini, Stützle, and  Birattari ( 2010b) explained the difference: “In 

online tuning, no additional resource is necessary before actually tackling an 

instance and a high flexibility is achieved by adapting the configuration to an 

instance, depending on the specific phase of the search. This flexibility is paid for in 

terms of design complexity: the online method must be incorporated in the 

implementation of the optimization algorithm. Thus, a very good understanding of 

all different features of the algorithm is necessary for obtaining an effective online 

method. Hence, an online method must be designed for a specific algorithm, and it 

cannot directly be exploited on different ones.”  

Following the online approach, and according to Eiben et al. ( 2007) and Stützle, et 

al. (2012), there are four general questions need to be answered: i) what are the 

parameters that need to be changed during the search process?; ii) how will the 

change be made? (i.e., pre-scheduled, adaptive, search-adaptive and self-adaptive); 

iii) what is the evidence upon which the change is made? (e.g., quality of solutions, 

diversity of solutions, or the entropy of pheromone); and iv) what is the level of the 

change (i.e., ant level or colony level)? 

Parameter control strategies modify the parameters during the run in different 

manners: pre-schedule, adaptive and self-adaptive. The first manner assumes that all 

CO problems are the same in their global characteristics, which is not true. The 

second manner adapts to the local characteristics of the regions of the search space 

through a feedback. It has the advantage of no augmentation in the complexity of the 
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problem. On the other hand, it suffers limitations: a complexity of implementation 

and presenting new hyper-parameters which also need to be tuned. The third manner 

has the advantage of tuning parameters “for free”, where its implementation is 

simple and there are no hyper-parameters which need to be tuned. Besides increasing 

the complexity of the problem, it is linked to the structure of the algorithm. 

2.7.1 Pre-Scheduled Approach 

In this approach, the problem is observed from an offline perspective: static 

parameters are substituted by (deterministic or randomized) functions depending on 

the computational time or on the number of algorithm iterations. There is 

surprisingly little work on pre-scheduled parameter variation for ACO algorithms, 

where an algorithm tunes itself by scheduling its parameter variations with their 

iterations. Merkle and Middendorf (2001) were the first to study the effect of 

parameter variation during the run of the algorithm. They considered the ACO 

algorithm for the resource-constrained project scheduling problem. Their 

contribution was in decreasing the value of the parameter β linearly over the run of 

an algorithm due to concentrating the individual influence of β on the first iterations 

of the algorithm. Merkle, Middendorf, and Schmeck (2002) also considered the same 

problem and proposed to modify the parameter β, and the evaporation rate ρ. For β, 

they proposed a schedule as described before. For ρ, they proposed to start at a small 

value for increasing the initial diversification of the search space and to later set the 

evaporation rate to a high value for having an intensive search around the best 

solutions found by the algorithm. Meyer (2004) proposed another schedule for α (i.e. 

the pheromone influence parameter). The author exploited annealing scheduling in 
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simulated annealing method (Kirkpatrick, Gelatt, & Vecchi, 1983) to schedule the 

increase of the values of this parameter. Maur et al., (2010) examined two 

deterministic MMAS variants. In the first one, the parameter of the number of ants 

(m) starts with (1) and then increases by one every (10) iterations until the value 

becomes equal to the number of variables (n). In the second variant, the parameter of 

exploration/exploitation, denoted by (q0), decreases starting from (0.99) until (0.0). 

Both variants showed good results in context of anytime behavior and quality of 

solutions. The same strategy is followed by Liu and Yang (2011) by considering 

more parameters. Alobaedy and Ku-Mahamud (2015) applied the strategic 

oscillation concept to control the exploration/exploitation parameter (q0) after fixing 

the oscillation step size. The approach has been implemented on the colony level 

with positive results. The problem with such deterministic assignment of parameter 

values is that the number of iteration needed for convergence is unknown. In fact, 

devising proper values for parameters must be adapted based on the search progress. 

2.7.2 Adaptive Approach 

In adaptive approach, parameters are modified according to either the diversity of the 

pheromone trails or the quality of solutions. The searching behavior of the algorithm 

is considered. To determine this behavior, some measurement tools have been 

proposed, such as branching factor (Gambardella & Dorigo, 1995), entropy-based 

measure (Yancang & Wanqing, 2007) or exploration measure (Pellegrini et al., 

2009). 
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The first adaptive approach in ACO was introduced by Yancang and Wanqing 

(2007). They varied the parameters α and β over time using the information entropy 

theory (i.e. the uncertainty of probability). They succeeded in adapting α and β 

values according to the searching algorithm. During the early stages of the search, 

the value of α is small to allow an extensive diversification of the search space; the 

value of α increases over time to improve the local search ability of the algorithm. 

They suggested the opposite adaptation for β. Zhiyong, Yong, Jianping, Youjia, and 

Xu (2008) proposed a variant of ACS that uses the cloud model proposed by Deren, 

Kaichang, and Deyi (2000) for electing the solution to be used to determine the 

amount of deposited pheromone. As in Yancang and Wanqing (2007), this work also 

exploits the entropy measurement tool to control parameter q0 by decreasing it once 

much more by the pheromones concentrated on minority edges. Chusanapiputt, 

Nualhong, Jantarang, and Phoomvuthisarn (2006) proposed a method to solve the 

unit commitment problem using a variant of AS. Three of the algorithm’s parameters 

are adapted using two modules for reducing the search space. The first module is for 

recording the infeasibility of some solutions to be avoided later, while the other is for 

recovering high-quality candidate path neighbors.  

 

Zhaoquan, Han, Yong, and Xianheng (2009) and Zhifeng, Han, Yong, and Ruichu 

(2007) proposed a variant of ACS for TSP. They introduced a clear relation between 

the parameter ρ and the amount of pheromone associated with arcs. The main idea is 

that good ants have the higher pheromone. Amir, Badr, and Farag (2007) added a 

fuzzy logic controller module to the ACS algorithm for TSP for adapting the value 

of β and q0. The adaptive approach uses two performance measures: i) the difference 
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between the optimal solution and the best one found; and ii) the variance among the 

solutions visited by a population of ants. Kov and Skrbek (2008) described a simple 

and effective approach to treat the colony as castes. Each caste of ants uses a 

different parameter setting. They indicated that a decreasing schedule for β can give 

a good performance. In addition, the number of ants m is adapted according to the 

improvement of the solution quality obtained by each caste. This approach 

successfully improves the convergence of the standard MMAS. Experimentally, the 

results are promising. However, they did not mention more details about their 

methodology. 

 

In this approach, the adaptation rule can be applied when the measure being 

monitored hits a previously set threshold. For example, decreasing the diversity 

under a given value, the statistics and fuzzy rules can be considered as forms of 

evidence to apply the adaptation. Neyoy, Castillo, and Soria (2013, 2015) 

implemented fuzzy logic controller to adjust the pheromone concentrate parameter, 

denoted by (α). The rule of adaptation relied on λ-branching factor as an exploration 

indicator. Various fuzzy systems are proposed to control the diversity of solutions in 

order to maintain exploration and exploitation in ACO (Olivas, Valdez, & Castillo, 

2015). Collings and Kim (2014) augmented the use of fuzzy controller for the 

adaptation-based, stagnation detection and control. Two fuzzy controllers were 

proposed by Liu et al. (2011) to adjust the parameters of the number of ants and the 

evaporation rate dynamically. The problem with such adaptation rules is that the user 

must determine the threshold values for triggering the rule activation. The users do 
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not have such intuition, whereas the algorithm itself has the ability to do that 

implicitly.  

2.7.3 Search-Adaptive Approach 

Search-Adaptive is a way to implicit-adapting the parameters of ACO algorithm, in 

which, the algorithm utilizes other search methods for adapting its parameters. Pilat 

and White (2002) used the GA method for adjusting some ACS parameters, namely, 

β, q0, and ξ. At each iteration, crossover and mutation operators are used to tune four 

of the ants’ parameters before constructing solution. In the same way, Gaertner and 

Clark (2005) used ants to communicate with the environment and produce new 

solutions, while GA was chosen to exchange the new generations with the old ones. 

Ants are initialized with a random parameter setting within predefined ranges. The 

authors studied the parameter dependencies among β, q0 and ρ and conclude there 

was no statistically significant correlation to be found when the TSP problem is 

considered. Zhifeng, Ruichu, and Han (2006) did not present the relation between 

the parameters in their proposed self-adaptive approach for ACS in TSP. The 

parameters named β, q0 and ρ have been adapted using a Particle Swarm 

Optimization method (PSO) (Zhifeng et al., 2006), which selects the best values 

within a predefined range of parameters value. While in Weixin and Huanping 

(2007), Artificial Fish Swarm Algorithm (AFSA) has been used for the same 

purpose and focused on α, ρ and Q in a variant of ACS. As previous studies, the 

former method considered the ant’s level, while the latter considered the colony level 

in the parameters variation. Garro et al. (2007) proposed another mechanism to adapt 

α, β and another specific parameter. They used crossover and mutation in GA to 
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evolve the generation of parameters to each kind of ant. In the crossover, the best 

explorer and worker ants’ parameters are combined to generate a new offspring, and 

then one of the parameters is mutated. Anghinolfi, Boccalatte, Paolucci, and 

Vecchiola (2008) used local search to self-adapt two of variant ACS parameters 

named β and q0, and then applied the enhanced method to solve single machine total 

weighted tardiness scheduling problem. The proposed method firstly increases and 

decreases the current parameter values by a fixed amount to produce the parameter 

space of the current setting. The neighbors of the current setting are locally searched 

by an ant that belongs to a different colony. Finally, the best iteration ant is allowed 

to exchange its setting with the old one. The multicolonies with multisetting 

paradigm is conducted in this approach, which is repeated in Melo, Pereira, and 

Costa’s research (2010), which considered the following ACS parameters: α, β, ρ 

and q0. The distinction between the two approaches is that the latter used mutation 

operator for exchanging the best setting with the worst one. The proposed 

mechanism has contributed a new measurement tool to indicate the disturbance of 

parameters, and then each parameter to be disturbed will be substituted by the best 

one in the best colony. 

 

Following this approach requires encoding parameter settings so that the search-

adaptive mechanisms can find the optimal adaptation. However, extending the 

solution size obviously increases the search space and makes the search process 

more time-consuming. 
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2.7.4 Self-Adaptive Approach 

This is another way to implicit-adapting for ACO parameters, in which, the 

algorithm utilizes itself instead of using other search methods for adapting its 

parameters. The first work was introduced by Randall (as cited by Gaertner & Clark, 

2005 and Stützle et al., 2010). He suggested evolving parameters based on an extra 

pheromone matrix which are maintained solely for this purpose known by 

parameters matrix. This mechanism is tested by adapting the parameters β, q0, ρ, and 

ξ for ACS applied to TSP and the quadratic assignment problem. The comparison of 

the results to the default parameter settings is somehow inconclusive. As in 

Randall’s study, Forster, Bickel, Hardung, and Gabriella (2007) applied a parameter 

matrix to adapt parameters, where each column represents a parameter and each row 

represents a different value to that parameter. Each ant has to construct a tour of its 

own parameter setting. In the two previous approaches, there are no dependencies 

between parameters. In contrast, Martens, Backer, Haesen, Vanthienen, and Snoeck ( 

2007) proposed a self-adaptive approach based on the interdependent relation 

between α and β. In his ACO method, which is conducted as a classification task, 

each parameter value varied through a new vertex group in the construction graph. 

Khichane, Albert, and Solnon (2009) proposed two methods for tuning parameters α 

and β during the run of his ACO algorithm to solve constraint satisfaction problem. 

The two methods defined parameter setting for the colony and not for each ant. 

Similar to the work by Forster et al. (2007), Gaertner and Clark (2005), and Stützle 

et al. (2010), the method did not consider the interrelation between the parameters. 

However, the methods in Khichane et al. (2009) focused on learning the parameters 
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during the construction solution phase in two ways: a new parameter setting in each 

construction step, or a new parameter setting for all construction steps.  

 

According to Battiti and Protasi (2001), these approaches adapt typically very few 

(often only one) key parameters of an algorithm and require substantial insight into 

the algorithm’s behavior for their development. The challenge, however, is that the 

E&E balance in ACO is implicit, and as such, controlling it directly is difficult. 

Therefore, gaining a better understanding of the E&E balance requires knowing how 

to measure it.  

2.8 Discussion on Reactive-based ACO 

The rationale works in terms of E&E in ACO are the combination of pheromone 

management with local search procedures, auxiliary memories or local heuristic 

information and parameter adaptation (Battiti et al., 2008). This section discusses 

these categories together in order to reach a unified proposal for the exploration and 

exploitation problem.     

For the pheromone management, several strategies have been reviewed in this 

chapter. From the E&E perspective, the difference of E&E behavior is based on the 

amount of exploration promoted by these strategies. The findings of the various 

published research papers on AS extensions indicate that the best performing 

variants are MMAS and ACS. The aggressive exploitation in ACS produces good 

solutions for very short-term runs. Conversely, MMAS starts with a long exploration 

so that its early quality solutions are poor. Nevertheless, the final solution quality of 
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MMAS is the best among other ACO algorithms especially for long-term runs. The 

relative good performances of ACS in short-runs and MMAS in long runs are 

interpreted by the difference in their exploration/exploitation behavior. Figure 2.7 

provides a clear picture about the behavior’s difference among some well-known 

ACO algorithms.  

  

Figure 2.7. Variance of Exploration and Exploitation Behaviour in ACO 

These experiments have conducted by Dorigo and Stützle (2004) on the symmetric 

TSPLIB instance kroA100 where the percentage deviation from optimum refers to 

the quality of solutions and the average lambda branching factor refers to the 

exploration behavior. It can be concluded that although the search strategy of MMAS 

enables finding high quality solutions it tends to be over-explorative comparing with 

other algorithms. To ensure this point of view, Table 2.2 provides a comprehensive 

conceptual comparison between E&E search strategies in ACO. This comparison can 

be generalized for other ACO algorithms such as ANTS and Beam-ACO by adding 

one point for each ACO variant based on its specific search strategy. For example, 

the best-worst and online-offline strategies will score one points for ANTS as they 

are part of its structure while hybridizing with local search will score one point for 
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all ACO algorithms as its generic-exploitation purpose (Gambardella et al., 2012; 

Perez-Caceres, Lopez-Ibanez, & Stützle, 2014). 

Table 2.2 

Amount of Exploration and Exploitation in ACO Algorithms 

 

Exploration and Exploitation 

in ACO Algorithms 

AS EAS 

 

AS-

rank 

MMAS 

 

ACS 

 

BWAS PACO AntNet MACO 

Quality-dependent √ √ √ √ √ √ √ - √ 

Quality-independent - - - - - - - √ - 

Elitist - √ √ √ √ - - - - 

Rank-based - - √ - - - - - - 

Trail learning - - - √ √ - - - - 

Online-offline update √ - - - √ - - - - 

Best-worst - - - - - √ - - - 

Bounding - - - √ - - - - - 

Smoothing - - - √ - - - - - 

Restarting - - - √ - - - - - 

Colony-level interaction - - - - - - - - √ 

Population-based - - - - - - √ - - 

Hybridizing √ √ √ √ √ √ √ √ √ 

Score points 3 3 4 7 5 3 3 2 3 

 

The total score of MMAS was seven (7) comparing with others. For this end, the 

MMAS outperforms others experimentally and conceptually. Consequently, MMAS 

has been selected in the present study to be the base for more advanced exploration 

and exploitation components.  

For more advanced improvements on the top of MMAS other than the hybridization 

with local search, a population memory vector, denoted by (P), for deriving new 

pheromone management models is added (Oliveira, Stützle, Roli, & Dorigo, 2011). 

The amount of pheromone added/dropped relies on the size of the memory P which 

is denoted by |P|. This approach contributes in faster pheromone updates (Oliveira et 

al., 2011) and motivates the invention of more advanced structural features (Lin & 

Middendorf, 2013). However, the local search may become time-consuming when 
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the running time is tight or the computation of solution evaluation is high. Additional 

weakness in that the population memory vector is not able to transfer neighborhood 

structures that are formed either by construction solution procedure or by local 

search procedure from current iteration to future iterations. 

Another recurring theme in terms of exploration and exploitation is the harnessing of 

pre-heuristic information for the selection of solutions’ components. This E&E 

component plays a profound role in improving the internal behaviour of any ACO 

variant other than MMAS (Ku-Mahamud & Alobaedy, 2013). However, its priori 

availability is not guaranteed in problem-solving which may restrict its application 

and increase its limitation. Another shortcoming is that the formulation of heuristic 

functions is difficult and required deep knowledge about the CO problem under 

tackle which indeed will impose additional burden on the algorithm designer. These 

gaps entail building new kinds of internal heuristics in on-the-fly fashion which 

induce adapting reactive search characteristics (Battiti et al., 2008) based on the 

concept of “learning while optimizing”. Toward building effective ACO-based 

reactive search methods, Solnon (2010) stressed on learning more ACO parameters 

and using exploration indicators, such as the similarity ratio betweeen the solutions 

of current population, in parameter adaptation. A schematic description about the 

distribution of reactive characteristics in the literature is provided in Tables 2.3 and 

2.4.  

Among several exploration measures reviewed in this study, there are three recurring 

exploration indicators used for parameter adaptation. Those are the entropy, λ-

branching factor and similarity ratio.  
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Table 2.3  

Schematic Description of the Literature on ACO-based Reactive Search 

Authors 
Number of 

Parameters 

Exploration 

Indicator 

Reactive 

Characteristic 

ACO 

Model 

CO 

Problem 

Merkle et al.(2002) m, q0 deterministic 
LAC, LHP, SI, 

ASI 
AS scheduling 

Meyer (2004) m deterministic LAC, LHP, SI, 

ASI 
AS TSP 

Maur et al.(2010) α , β deterministic LAC, LHP, SI, 

ASI 
MMAS TSP, QAP 

Liu and Yang (2011) q0 deterministic LAC, LHP, SI, 

ASI 
MMAS VRP 

Alobaedy and Ku-Mahamud (2015) q0 deterministic LAC, LHP, SI, 

ASI 
ACS scheduling 

Yancang and Wanqing (2007) α , β entropy 
AGC, ALC, 

ASI 
AS TSP 

Zhiyong et al.(2008) q0 entropy 
AGC, ALC, 

ASI 

variant 

of ACS 
TSP 

Chusanapiputt et al.(2006) 
specific 

parameters 
deterministic AGC, ALC, 

LAC, ASI 

variant 

of AS 
industry 

Zhaoquan et al. (2009) ρ deterministic AGC, ALC, 

LAC, ASI 

variant 

of ACS 
TSP 

Zhifeng et al.(2007) β , q0 deterministic AGC, ALC, 

LAC, ASI 

variant 

of ACS 
TSP 

Amir et al.(2007) β , q0 entropy 
AGC, ALC, 

ASI 
ACS TSP 

Kov and Skrbek (2008) β, m deterministic 
AGC, ALC, 

LAC, ASI 
MMAS TSP 

Neyoy et al.(2013) α 
branching 

factor 

AGC, ALC, 

LAC, ASI 
RAS TSP 

Collings and Kim (2014) α , β, ρ 
branching 

factor 

AGC, ALC, 

LAC, ASI 
RAS TSP 

Liu et al. (2011) ρ ,m deterministic 
AGC, ALC, 

LAC, ASI 
AS 

Feature 

selection 

Olivas et al. (2015) α , ρ 
Similarity 

ratio 

AGC, ALC, 

LAC, ASI 
RAS TSP 

Gaertner and Clark (2005) β, q0 , ρ Relative 
AGC, LHP, SI, 

GM 
ACS TSP 

Weixin and Huanping (2007) 
specific 

parameters 
Relative AGC, LHP, SI, 

GM 

variant 

of ACS 
TSP 

Zhifeng et al.(2006) β, q0 , ρ Relative AGC, LHP, SI, 

GM 
ACS TSP 

Garro et al. (2007) 
specific 

parameters 
Relative AGC, LHP, SI, 

GM 

variant 

of AS 

path-

planning 

Anghinolfi et al.(2008) β , q0, Relative AGC, LHP, SI, 

GM 

variant 

of ACS 
scheduling 

Melo et al. (2010) α, β, ρ , q0 Relative AGC, LHP, SI, 

GM 
MACO 

Node 

placement 

Randall (2004) β, q0, ρ, ξ Relative AGC, LHP, SI, 

GM 
ACS TSP 

Martens et al.( 2007) and  Förster et 

al. (2007) 

specific 

parameters 
Relative AGC, LHP, SI, 

GM 

variant 

of 

MMAS 

Feature 

selection 

Khichane et al. (2009) α , β Relative AGC, LHP, SI, 

GM 

variant 

of 

MMAS 

Car 

sequencing  
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Table 2.4 

Abbreviations of the Reactive Characteristics  

Reactive Characteristic Abbreviation 

Adapted with global characteristics AGC 

Adapted with local characteristics ALC 

Less augmented complexity LAC 

Less hyper parameters LHP 

Simple implementation SI 

Algorithm structure independent ASI 

Follow a general methodology GM 

 

For applications of entropy (Yancang & Wanqing, 2007; Zhiyong et al., 2008; Amir 

et al., 2007), they associated with high augmented complexity as it complicates the 

calculations inside the colony. For the applications of λ-branching factor (Collings & 

Kim, 2014; Neyoy et al., 2013, 2015), the disadvantage is the dependency of 

branching factor on the value of its lambda parameter. Moreover, it is ineffective for 

analyzing the exploration behavior for CO problems other than TSP.  

For the similarity ratio, Olives et al. (2015) utilize the concept of fuzzy logic to 

schedule the value of parameters which can be considered as implicit deterministic 

approach. The problem with deterministic way is that the parameter adaptation is 

pre-scheduled according to a function of variation in the number of iterations.  

In exloration measurement literature, Pellegrini and Favaretto (2012) quantified the 

exploration as the number of clusters of solution visited. So far, this indicator, 

namely exploration measure has not applied in parameter adaptation. This indicator 

utilizes machine learning procedures to provide online heuristic information during 

the search. From reactive search point of view, the process of learning parameters, 

either offline (Lopez-Ibanez & Stützle, 2011; Pellegrini, Stützle, & Birattari, 2010a) 
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or online (Neyoy et al., 2013, 2015; Stützle et al., 2012), it must be coupled with 

machine learning procedures.  

Following this methodology, the integration of exploration measure with reactive-

based parameter adaptation methods may improve their performance. However, the 

exploration measure has a robust problem in its functionality to find the similarity 

between two clusters which can be concluded when the distance between them is 

greater than a predefined threshold ϵx where x% of their arcs does not exist in the 

cluster. In TSP, ϵx = 7.8 in MMAS without local search, ϵx = 17.5 in MMAS with 2-

opt local search and ϵx = 35.8 with 3-opt local search. The situation changes with the 

change of circumstances. This definition needs to be reconsidered in terms of 

robustness against the abovementioned situation which leads to an unstable 

measurement, especially when flat fitness landscape needs to be analysed. 

For the applications of relative indication, the adaptation relies on the improvement 

in quality of solutions produced by outer optimization scheme, i.e. the ACO 

algorithm itself as exemplified in the works of Anghinolfi et al. (2008), Förster et al. 

(2007), Khichane et al. (2009), Martens et al. (2007) and Randall (2004). Among 

them Khichane et al. (2009) and Randall (2004) have built their adaptation on the top 

of MMAS and ACS respectively. Following the implementation of these two 

methods, a critical analysis of parameter adaptation methods in ACO has been 

conducted in a comparison with MMAS by Pellegrini et al. (2012) showing the 

superiority of MMAS in standard benchmark CO problems such as TSP and QAP. 

Although Randall (2004)’s method succeeded in improving the performance of the 

standard ACS it does not provided any insights about MMAS. These empirical 



 

 71 

results confirm that MMAS is eligible to be a base paradigm for building success 

reactive parameters’ adaptation methods. This selection not only justified by the 

E&E strategies included in MMAS (see Table 2.2), but because of the fact that 

MMAS is very sensitive for adapting its parameters. From parameter adaptation 

search point of view, existing self-adaptive approaches in ACO are a good candidate 

if they adhere well to reactive methodology by utilizing more robust exploration 

indication in parameter learning.  

2.9 Summary  

The exploration versus exploitation dilemma is resident in ACO. Due to its 

importance, several strategies have been proposed to address it. The differences 

among ACO algorithms can be identified from their way of addressing this problem. 

For the self-contained background, AS algorithm, as the first proposed ACO 

algorithm, and MMAS algorithm, as one of the best-performing variants of AS, have 

been highlighted in this chapter. A conceptual comparison with other AS variants 

has been provided as well. Reactive framework is designed to achieve a proper E&E 

balance. The main aspects of reactive search to be applied in ACO are the memory 

model, the exploration measure, i.e. the feedback and the on-the-fly scheme for 

parameters’ selection. By the feedback scheme, a track of an exploitative search 

using local search is performed in order to promote exploration only as needed using 

restart. The feedback is the core of adaptive parameters’ selection methods. The 

abovementioned aspects have been detailed separately in their perspective sections. 

Finally, unified insight and interrelation among the various E&E aspects in related 
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studies have been provided at the end of this chapter.  In Chapter 3, the methodology 

used to undertake the research is presented.     
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RESEARCH FRAMEWORK AND METHODOLOGY 

3.1 Introduction 

This chapter presents the framework and methodology of this research. It starts with 

Section 3.2 that depicts the research framework and the methods used to achieve the 

objectives of the research. Based on the research objectives, the proposed methods 

are presented in Section 3.3, which briefly explains the roles of each method and the 

experimental design and the selected benchmarks for evaluating each method 

separately and the whole approach. Finally, this chapter is summarized in Section 

3.4.  

3.2 The Research Framework 

The high-level focus of this research is to propose a reactive approach that addresses 

the exploration and exploitation in ACO. The approach comprises of four steps; 

memory model development, exploration measurement enhancement, adaptive 

parameters’ selection and evaluation as in Figure 3.1. The first step to maintain this 

balance is changing the principle of “later aggressive exploitation” in MMAS 

memory model to “minimal exploration only if needed” and the principle of “long 

initial exploration first” in the same model to “exploitation is first”. This goal is 

achieved by twofold processes. Firstly, developing reactive heuristics as local 

heuristics in the transition probabilistic rule of construction solution function where 

ants’ experience can be transferred over restarts. Secondly, developing recursive 
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local search technique based on the scheme of population-based memory where 

previous population is archived and then improved by local search.  

 

The second step of exploration and exploitation balance concerns the feedback from 

the current search process in terms of population distribution. A machine learning 

indicator has been developed to characterize the over-exploitation state in general, 

not restricted to MMAS model only. For the state, it triggers the restart of search 

with the aid of local heuristics that recorded in terms of reactive heuristics. As 

opposed to this state, over-exploration is rare due to the role of recursive local 

search.     

 

Figure 3.1. High-level Research Framework 

In step three, the adaptive parameters’ selection provides automatic control of 

algorithmic parameters while solving the problem to improve the search efficiency. 

In order to do so, one needs to define the reward assignment scheme which rewards 

parameters based on the feedback from current search process. Different reward 

assignment schemes have been proposed to calculate the amount of reward to given 
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to the promising parameters. These are based on quality of solutions and/or diversity 

of solutions.  

The fourth step describes the experimental approach conducted to validate each of 

the above mentioned steps developed together or separately. In all existing 

metaheuristics, the experimental research was the main guide to design and develop 

any novel algorithm (Barr, Golden, Kelly, Resende, & Stewart, 1995). This 

methodology is useful for characterizing and understanding the complex behavior of 

the metaheuristic algorithms (Talbi, 2009). ACO metaheuristic is a history of 

experimental research (Dorigo & Stützle, 2004). This research follows the same 

methodology of designing the most successful ACO algorithms. The ultimate goal of 

parameter optimization and diversity strategies in this research is to improve 

algorithm performance, which results in better convergence behavior. Figure 3.2 

extends the aforementioned steps in detail and gives a conceptual view about the 

proposed approach. 
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Figure 3.2. Low-level Research Framework 

Stages    Methods                 Outputs 
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3.3 Research Methods 

This section presents the proposed methods and draws the roadmap for 

understanding the proposed approach. The memory development method is 

presented in Subsection 3.3.1. The exploration measurement and the online 

parameter’s selection methods are highlighted in Subsection 3.3.2 and Subsection 

3.3.3 respectively.  

3.3.1 Developing the Memory Model 

An auxiliary memorizing feature is added to control the probabilistic distribution 

after restart and to concentrate the search around the neighborhood of solutions 

produced by local searches. The memory model development includes two 

algorithmic components: reactive heuristics and recursive local search. The first 

component is defined before the search starts: RH =def [RH0]. The size of RH is 

equal to the pheromone model size. In the evaporation update, the arcs with a small 

pheromone amount are recorded in the model: rhi,j= {1, 0}. RH is reactivated when 

the stagnation occurs, i.e. at the point of restart. Then, it will be considered as a new 

input to the transition state rule: TourConstructionSolution (Τ, C, RH), where T is 

the pheromone information, and C is the heuristic information. Therefore, the ants 

will select the insignificant arcs that are neglected before to increase the exploration 

behavior. 

The recursive local search technique, the second algorithmic component, is designed 

to solve the premature exploitation where the current neighborhood structure is not 

transfered to next iterations using current local search procedures. A population 
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vector called P is designed to track the best-so-far solutions, the best-iteration 

solutions, and the old-best solutions. The first two solutions are the output of current 

local search, while the third solution is just a dropped solution from the vector P. 

The old-best solution is added again and again to the population if and only if the 

best-so far solution is not improved by local search. More details about this phase are 

discussed in Chapter Four.  

3.3.2 Enhancing the Exploration Measurement 

In this phase, the current exploration measurement is enhanced. Three criteria are the 

main proxies for this measurement: the variation in quality of solutions (∆OG), the 

variation in diversity of solutions (∆R) and the combination of both of them. The ∆R 

and ∆OG are analogies to exploration and exploitation respectively. Among several 

exploration measures in ACO literature, a few of them are compatible with the 

reactive search framework, while the rest are suffering a robust problem where the 

distance matrices that determine the diversity of solutions are in a different 

magnitude. Nature-inspired solutions to the problem are proposed. Both the 

biological and computational schemes are detailed in the first part of Chapter Five.         

3.3.3 Proposing Adaptive Parameters’ Selection Method 

Parameter adaptation is a high level control of exploration and exploitation balance. 

In this phase, three methods of adaptive parameters’ selection are proposed based on 

the feedback from the optimization process, i.e. the evidence that the current 

parameter values have succeeded in improving the quality of solutions. Here, the 

three exploration measures will be used as proxies to indicate the improvement. 
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Subsequently, good parameter values need to be awarded in an online reinforcement 

learning fashion. Three reward assignment strategies can be found in the second part 

of Chapter Five.    

3.4 Evaluation of the Proposed Approach 

In this stage, the algorithmic components of the proposed approach and the overall 

algorithm are evaluated. The evaluation links to all the above-listed stages and gives 

more flexibility to revise any stage for better performance. The performance 

evaluation of metaheuristics is very complex, and hence, Talbi (2009) listed three 

steps to conduct it in a fair manner. These are experimental design, measurement and 

reporting as shown in Figure 3.2.   

 

Figure 3.2. Performance Evaluation of Metaheuristic Algorithm 

As the experimental methodology has matured in the metaheuristic area, there have 

been increasing demands for a more careful evaluation using a good experimental 

design. To achieve this goal, two methodological aspects need to be conducted, 

which are defining the goals of the experiments and selecting the instances. The 

main goal of designing the experiments is to evaluate the quality of solutions and the 

robustness of the proposed methods. There are three kinds of solutions, namely the 
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optimal solutions, the iteration-best solutions and the bestso-far solutions. In terms of 

robustness, the design of experiments can show both the robustness of CO problem 

instances and the robustness of the algorithms’ parameters.  

 

According to Johnson (2001), achieving meaningful and publishable results is harder 

than the coding of an algorithm in the benchmarking analysis. Hence, a lot of efforts 

have to be channeled in assessing the results and investigating the behavior of the 

new algorithmic components. For the TSP coding, the implementation of Stützle 

(2004), i.e. ACOTSP.V1.3 software, is used. The c code has been released in the 

public domain and is available for free download on http://www.aco-

metaheuristic.org/aco-code/. For the QAP coding, the implementation of Taillard 

(2010), i.e. FANTQAP software, is used. The c code is available for free download 

on http://mistic.heig-vd.ch/taillard/codes.dir/fant_qap.c. Because of the similarity in 

the structures of TSP and QAP, the ACOTSP.V1.3 software has been extended to fit 

the QAP modeling for other ACO variants based on the implementation of Taillard. 

The validation for solving the QAP problem called tai10b.dat with the value five (5) 

for parameter R and the value hundred (100) for number of iterations gives the 

similar output as of Taillard (2010). 

 

The performance of any proposed algorithm can be determined statistically if it is 

compared to other algorithms when solving the same problem instances (Lafayette, 

2001). Therefore, and after defining the experiment’s goals, the selection of 

instances has been selected carefully. The test-beds will be two of the combinatorial 

problems, which are traveling salesman problem (TSP) (Lawler, Lenstra, Kan, & 
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Shmoys, 1985) and quadratic assignment problem (QAP) (Lawler, 1963). The 

following subsections provide detailed descriptions about the problems and how they 

can be modelled in ant colony optimization.  

3.4.1 The Traveling Salesman Problem  

The importance of TSP arises because of the extensive studies and the high 

recommendations by computer scientists to be used in the evaluation of new 

optimization algorithms. This problem has been proven as an NP-hard problem. It 

can be described as follows. An agent has to visit N nodes exactly once and return to 

the starting node with minimum cost, i.e. the shortest distance or the lowest visiting 

time. A cost matrix C = [cij] is searched to find a permutation 𝜋 ∶ {0, … , 𝑁 − 1} →

{0, … , 𝑁 − 1}, where cij represents the cost of visiting node (j) from node (i).  The 

goal is to minimize an objective function denoted by 𝑓(𝜋, 𝐶) as follows. 

𝑓(𝜋, 𝐶) = ∑ 𝑑(𝑐𝜋(𝑖),𝑁−1
𝑖=0  𝑐𝜋(𝑖+1)) +   𝑑(𝑐𝜋(𝑁), 𝑐𝜋(1))                                             (3.1) 

where 𝜋(𝑖) represents the ith node in permutation 𝜋, d is the distance between nodes 

and cij = cji ∀ i, j and the position of city (i) can be determined using the values of x-

axes, y-axes, i.e. xi and yi respectively, Hence, the cost matrix is calculated as 

follows. 

𝑐𝑖𝑗 =  √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2                                                                             (3.2)   

The dataset instances are taken from TSPLIB (Reinelt, 1991) benchmark library. 

TSP instances used in the experiments are classified according to their sizes (n): 
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small size where n=50-100 (such as eil51, berlin52, st70, eil76, pr76, gr96, rat99, 

kroA100, kroB100, kroC100, kroE100 and rd100), medium size where n=100-800 

(such as d198, lin318, pcb442, att532 and rat783), and large size where n> 800 (such 

as pcb1173, d1291 and fl1577). Figure 3.3 simplifies one type of TSP instances 

extracted from TSPLIB (see Appendix A for more detailed discretion). 

 

Figure 3.3. Sample Structure of TSPLIB File  

Selecting different structures of instances gives more understanding to the behavior 

of the proposed algorithmic components when tackling the TSP problem. In all 

instances, the n nodes represent specific locations in specific cities, e.g. Burma. The 

first five lines include some information about the problem being tackled, such as the 

data type, whether Euclidean, geographical or other types. The TYPE keyword 

specifies the type of data, e.g. symmetric, asymmetric or a collection of tours. The 
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keyword DIMENSION is the number of nodes for the TSP instances. The keyword 

EDGE_WEIGHT_TYPE specifies how the edge weight is defined, e.g. the keyword 

EUC_2D is the Euclidean distance in the plane, while the keyword GEO is 

geographical distance. The keyword NODE_COORD_ SECTION starts the node 

coordinates section. Each line is made of the node identifier, x and y coordinates. 

The node identifier is a unique integer ≥ 1.  The statistics about several TSP 

instances are summarized in Table 3.1. 

Table 3.1 

Description of Some TSP Instances 

File name Location 

att532.tsp Padberg/Rinaldi 

berlin52.tsp Berlin (Germany) 

bier127.tsp Juenger/Reinelt 

burma14.tsp Burma (Myanmar) 

d198.tsp Reinelt 

eil51.tsp Christofides/Eilon 

fl1577.tsp Reinelt 

gil262.tsp Gillet/Johnson 

gr96.tsp Europe 

kroA100.tsp Random 

lin318.tsp Lin/Kernighan 

pcb442.tsp Groetschel/Juenger/Reinelt 

pr299.tsp Padberg/Rinaldi 

rat783.tsp Pulleyblank 

rd100.tsp Reinelt 

st70.tsp Smith/Thompson 

3.4.2 The Quadratic Assignment Problem  

QAP is the hardest NP-hard problem. It has an important theoretical value in the 

study of the behavior of high performance algorithms. It can be described as a 

problem of assigning economic facilities to locations while minimizing costs as in 

Figure 3.4. A set of facilities (n) needs to be assigned to a set of locations (n) with 

given distances between the locations and given flows between the facilities. 
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Figure 3.4. High Level Description of QAP 

The flows and locations are two n × n matrices dented by W and R respectively, 

where 𝑤𝑝𝑞 is the flow between facility p and q and 𝑟𝑖𝑗 is the distance between 

location i and j. The objective is to place the facilities on locations in such a way that 

the sum of the product between flows and distances is minimal. The objective 

function denoted as 𝑓(∅) can be formulated as follows (Stützle, 1999).  

𝑓(∅) =  ∑ ∑ 𝑤𝑝𝑞𝑟∅𝑝∅𝑞

𝑛

𝑞=1

𝑛

𝑝=1

                                                                                                              (3.3) 

Let the flows and distances matrices complete undirected graphs whose edges will be 

valued after the assignment as designated in Figure 3.5. A QAPLIB instance file 

contains the size of matrices and the seed for random generated instances followed 

by facilities and locations matrices as in Figure 3.6, which describes the QAPLIB 

file, namely tai10b.qap.     
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Figure 3.5. A Graph Model for QAP Relaxation 

 

  Figure 3.6. Sample Structure of QAPLIB File 

The QAP instances with their feasible solutions are listed in alphabetical order by the 

names of their authors in Appendix B. The instances are taken from QAPLIB 

benchmark library (Burkard, Cela, Karisch, & Rendl, 1997). The QAP instances can 

be classified according to their structure into real-life instances (such as bur26a, 

bur26b, bur26c, bur26d, chr25a, els19 and kra30b), real-life-like instances (such as 

tai20b, tai25b, tai30b, tai35b, tai40b and tai80b), and random-generated instances 

(such as nug30, ste36b, tai30a, tai40a, tai50a, tai60a, tai80a and tai100a). Besides 
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the theoretical importance of QAP, it can be derived practically from various 

engineering designs, e.g. integrated circuit wiring, job scheduling, the typewriter 

keyboard design, and hospital layout.   

3.4.3 Benchmark Methods 

The main goal of the thesis is to build exploration and exploitation components that 

improve ACO-based reactive search, which result in better algorithm performance. 

To determine if the goal is achieved, the components introduced in this thesis are 

compared with distinguished benchmark methods. For each of the three 

contributions, the achieved results are compared against the benchmark methods 

which correspond to that contribution. Benchmark methods are described in the 

experimental design of each contribution chapter. Thereafter, the three contributed 

components are combined in a unified algorithm to evaluate the overall performance 

of the proposed reactive approach. The results of the unified algorithm are compared 

with several metaheuristics approaches for solving TSP and QAP. The description 

about the algorithms with which the proposed approach is compared is presented in 

the experimental design of Chapter Six. 

3.4.4 Comparative Measures 

As a stochastic method, ACO is not expected to give repeated or exact results, but 

approximate results. In order to measure and compare the performance of two or 

more methods, an accurate evaluation has to be executed. The computational 

performance of algorithms can be assessed by CPU Time Measure (CTM) to 

evaluate the speed of convergence. However, CTM is inconsistent with the principal 
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of accuracy (Moret, 2001). Eiben and Jelasity (2002) explained how the results may 

vary based on the programmer’s experience, the compiler, and the operating system. 

Johnson (2001) provides the Success Rate Measure (SRM), which is the suitable 

method to evaluate the convergence behavior after applying the new methods. SRM 

is the percentage of runs that terminate with success (i.e., finding the optimal 

solution). Therefore, it has been used in the first experiments in Chapter Four.  

Another suitable way to measure the computational performance is to use the Quality 

Solution Measure (QSM) (Aleti, 2012; Hooker, 1995). It is the mean of the best-so-

far solutions over the number of allowed iterations. This way of measurement is used 

frequently in the experiments conducted in Chapters Four, Five and Six. To restrict 

the randomness effect, each experiment runs 10-30 times. The cost results are 

reported as the relative percentage deviation (RPD) from the best known solution 

cost. This is calculated as follows (Lopez-Ibanez & Stützle, 2014).  

 ((the result cost − the best known cost) the best known cost ⁄ )  × 100      (3.1)  

Note that “min”, “med” and “max” represent the minimum, median and maximum 

RPD respectively. 

Non-parametric statistical tests, such as Wilcoxon signed-rank (Wilcoxon, 1945) and 

Chi-square (Battiti & Birattari, 2013), are used to confirm the significance of 

obtained results at the 95% confidence level. The expected results produced from the 

previous steps will be interpreted using the predefined goals of experiments. The 
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results will be reported in a graphical way so that the means is distinct and the 

performance is distinguishable.  

3.5 Summary 

This research aims to develop a metaheuristic algorithm that is able to manage the 

exploration versus exploitation dilemma in ACO. This entails a methodology that 

can guide the understanding of the complex exploration/exploitation behavior of the 

ACO algorithm. This research follows the experimental methodology which is used 

in the development of the most successful metaheuristics. It is impossible to omit the 

experimental approach from the metaheuristic algorithm development. To complete 

this aim satisfactorily, the three principles that should govern the experimental 

research methodology: generalizability, performance measures, and reproducibility 

have been covered. The experimental approach used to evaluate the performance of 

metaheuristics in a fair manner has been discussed and considered as a guide in the 

development of the proposed methods. The first proposed method, namely memory 

model development, is detailed in Chapter 4. 
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MEMORY MODEL DEVELOPEMENT AND ITS 

APPLICATIONS 

4.1 Introduction 

This chapter describes the proposed memory model to improve the restart and local 

search strategies in max-min ant system, the prominent ACO variant. The reactive 

heuristics and recursive local search technique are the two algorithmic components 

that are added to MMAS. A new MMAS variant is proposed based on MMAS, 

which is the reactive max-min ant system (RMMAS), and an exploitation 

mechanism called recursive local search (RLS). Section 4.2 shows the process of 

developing the proposed memory model. It includes the formulation of new reactive 

heuristics, their application to QAP, the experimental design for evaluating RMMAS 

algorithm, and the results of evaluation then followed by the development and the 

experimental design for evaluating of the RLS technique and the results of 

evaluation. Section 4.3 summarizes the chapter.         

4.2 Memory Model Development 

This section draws the roadmap to the development of the proposed memory model 

as shown in Figure 4.1. It includes two memory schemes; the component-based 

memory scheme and the population-based memory scheme, to address respectively 

the problems with restarts and local searches within the MMAS. Two algorithmic 

components have emerged, which are reactive heuristics and recursive local search 

technique. The components are evaluated as they are the underlines of RMMAS. 
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Two well-known combinatorial problems are used in evaluation, namely QAP and 

TSP.  

 

Figure 4.1. The Process for Memory Model Development 

4.2.1 Identifying Restart Mechanism  

Restart is a generic exploration mechanism. In order to address the problem of 

arbitrary restart, where the ants re-explore the same regions again and again, it is 

important to identify how the restart point can be determined effectively. To achieve 

this goal, let us consider an ACO algorithm suffers stagnation problem where the 

algorithm is not available for the quality of solutions by time. The said algorithm 

needs to restart the search so as to escape this situation. The critical issue is to 

indicate the best moment for restart. This can be done using exploration measures as 

feedback from the optimization process. The combination of two exploration 

indicators, the acceptance criteria with branching factor, is identified to perform the 

restart. For the acceptance criteria, it is calculated as follows. 

𝑅𝑒𝑠𝑡𝑎𝑟𝑡(𝑆𝑔𝑏 , 𝑆𝑘 , ℎ𝑖𝑠𝑡𝑜𝑟𝑦) = {
−𝑟𝑠                                                          𝑖𝑓 𝑓(𝑆𝑘) < 𝑓(𝑆𝑔𝑏)

+𝑟𝑠                       𝑖𝑓 𝑓(𝑆𝑘) ≥ 𝑓(𝑆𝑔𝑏) 𝑎𝑛𝑑  𝑖 − 𝑖𝑙𝑎𝑠𝑡 > 𝜖 
          

             (4.1) 
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where +rs indicates that the convergence happened when the solutions Sk since last 

best restart ilast did not improve for last ϵ iterations (e.g. 250 iterations). For the the 

average branching factor, it counts the number of factors greater than τmin + ϒ (τmax- 

τmin) in the current node in the construction graph, and then counts the average of all 

the counted factors.  

4.2.2 Formulating Reactive Heuristics 

Here is the second phase of solving the arbitrary restart in MMAS. The idea is to add 

new memories to help search agents, i.e. the artificial ants to record the history of 

their visited neighborhood structures. The ants in this way have two searching states, 

before and after restart point. In the first state, the ants’ search experience is 

memorized by the proposed component-based memory (CbM) scheme. Figure 4.2 

illustrates how the scheme works. 

 

Figure 4.2. The CbM Scheme in Memory Model Development 
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For some components of solution s produced by ant k, the pheromone intensity is 

decreased because of the evaporation influence. The CbM scheme helps in detecting 

these components to be considered as local heuristics in the probabilistic distribution 

after restart. Results (see Subsection 4.2.5) showed that this reactive heuristics 

guides the search for new regions in the search space, and hence improve the 

exploration behavior of restart strategies. During the optimization process, for some 

solutions’ components, the pheromone intensity is decreased below the predefined 

threshold (in MMAS denoted by 𝜏𝑚𝑖𝑛) because of the evaporation model influence. 

These are the unvisited solutions’ components. On-demand heuristics are defined to 

record the unvisited solution components; these are reactive heuristics (RHs). In 

particular, the evaporation formula in in Equation 4.2 (Stützle, 1999) is reformulated 

in the present research to include the ability of memorizing the current search as in 

Equation 4.3.  

𝜏𝑖𝑗 = (1 − 𝜌). 𝜏𝑖𝑗       ∀ 𝜏𝑖𝑗  ∈ 𝑇                                                                                                                        (4.2) 

𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑒 (𝑅𝐻, 𝑇, 𝜏𝑚𝑖𝑛) = {
𝑅𝐻 ← 𝑟ℎ1   𝑖𝑓𝜏𝑖𝑗 < 𝜏𝑚𝑖𝑛  

𝑅𝐻 ← 𝑟ℎ0   𝑖𝑓𝜏𝑖𝑗 ≥ 𝜏𝑚𝑖𝑛
                                                                        (4.3)     

Before the search process is started, RH is initialized to zero (0). The search progress 

continues together with recording the unvisited components until the next restart 

point. In this way, unexplored regions in the current search are shifted to the next 

search.  

Once the restart occurs, an improved formula is developed (based on the 

probabilistic distribution in ACO solution construction function) as described in 

Equation 4.4, in which the reactive heuristics 𝑟ℎ𝑖𝑗 is used in the present research.  
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𝑝𝑖𝑗
𝑘 = {

𝜏𝑖𝑗
𝛼 . 𝜇𝑖𝑗

𝛽
. 𝑟ℎ𝑖𝑗

∑ 𝜏𝑖𝑙
𝛼 . 𝜇𝑖𝑙

𝛽
. 𝑟ℎ𝑖𝑙𝑐𝑖𝑙∈𝑁(𝑆𝑃)

 𝑖𝑓 𝑐𝑖𝑙 ∈ 𝑁(𝑆𝑃)

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,                                                                                           (4.4) 

Hence, the ability of ants to remember their previous search influences their future 

decisions through utilizing three sources of information, which are pheromone trail 

(τij
α), pre-heuristics (μij

β
) and reactive heuristics ( rhij), instead of using only 

 τij
α, and μij

β
.  As a result of the aforesaid actions, the proposed RMMAS algorithm is 

emerged as depicted in Figure 4.3.   

Algorithm 4.1: RMMAS 

   InitializeParameters () 

   Initialize_T_Memory () 

   Initialize_RH_Memory () // CbM scheme 

   while (not terminate) do 

       for k ≔ 1 to m do  

             if (no stagnation) do 

                       ConstructSolutions (T, C)  

             else 

                          ReactiveRestart (Sgb, Sk, History) 

            ConstructSolutions (T, C, RH) 

             end-else 

             end-if 

             Sgb ← argmin{f(Sgb), f(Sk | k≔1 to m )} 

             Evaporate (RH, Τ, τmin) 

             DepositPheromone (Τ, Sgb) 

     end-for 

    end-while 

  end-algorithm 

Figure 4.3. The Pseducode for RMMAS Algorithm 

This alternative way of restart is important because of the following reasons. Firstly, 

the availability of pre-heuristic information is not given in advance for some 

combinatorial optimization problems such as QAP. Secondly, even if the pre-

heuristic information is given, its significant will be decreased subsequently because 

of the increasing influence of pheromone trail. Thirdly, upon restart and when the 

ants start to be biased toward high pheromone intensity, the search will stagnate. 
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Fourthly, comparing the pre-heuristic information which is useless with local search, 

the results in this chapter verified that the reactive heuristic can play a crucial role in 

improving the quality of solutions. With the risk of stagnation, together with the 

ineffectual restart, the reactive heuristic  rhij will be a very useful alternative 

solution.  

4.2.3 The Application to QAP 

This section discusses new circumstances in the application of reactive heuristics to 

combinatorial optimization algorithms with rugged fitness landscape such as QAP. It 

concerns the situation when local search routines are coupled with RMMAS. For the 

application, there are two cases: when pre-heuristics information is given in advance 

such in AS-QAP and ANTS-QAP implementations, and when it is ignored such as in 

MMAS-QAP implementation (Dorigo & Stützle, 2004). It is well known for the 

ACO community that the pre-heuristic information is useless with local search. 

Therefore, it will be omitted in the following implementation.    

The QAP can best be described as the problem of assigning a set of facilities (n) to a 

set of locations (n) with given distances between the locations and given flows 

between the facilities. The flows and locations are two n × n matrices dented by A 

and B respectively, where 𝑎𝑖𝑗 is the flow between facility i and j, and 𝑏𝑟𝑠 is the 

distance between location r and s. The objective is to place the facilities on locations 

in such a way that the sum of the product between flows and distances is minimal.  

When RMMAS is applied to QAP, like other ACO algorithms, the way the solutions 

are constructed has to be defined first. The way of MMAS in formulating QAP is 



 

 95 

followed by RMMAS. It is by assigning facilities in some order to locations. Thus, 

the pheromone trail 𝜏𝑖𝑗 refers to a specific location for facilities, that is, 𝜏𝑖𝑗 

represents the desirability of assigning facility i to location j. The ants are used to 

construct valid solutions for QAP, assigning every facility to exactly one location 

and not using a location by more than one facility. In this way, a facility is randomly 

chosen among the still unassigned ones. Then, this facility is put on some free 

location according to the following probability distribution rule (Dorigo & Stützle, 

2004). 

𝑝𝑖𝑗 =  {

𝜏𝑖𝑗

∑ 𝜏𝑖𝑙𝑙 𝜖 𝑈(𝑘)
, 𝑖𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑠𝑡𝑖𝑙𝑙 𝑓𝑟𝑒𝑒 

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                     (4.5) 

where U(K) denotes the set of unassigned items. The intuition behind this rule is to 

prefer the high 𝜏𝑖𝑗 values, which are the promising location j for facility i.  

Following the application of MMAS to QAP, RMMAS utilizes the pseudo-random 

proportional rule (one of the important features in ACS) (Dorigo & Stützle, 2004). 

𝑗 =  {
arg 𝑚𝑎𝑥𝑙 ∈𝑈 (𝑘) {𝜏𝑖𝑙}               𝑖𝑓 𝑝 ≤  𝑝0   (𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛)

𝑆                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛)                
                                                              (4.6) 

where p is a random number uniformly distributed in [0, 1] and S is a random 

variable with probability distribution given by Equation 4.7. The parameter p0 

controls the exploitation of the accumulated experience reflected in the pheromone 

trail matrix versus the biased exploration of new solutions.  
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In the following sections, the performance of RMMAS compared with the original 

performance of MMAS is presented. The results show that RHs are positively 

affected by the quality of solutions generated by RMMAS since it outperformed 

MMAS for short/long execution time on small/large scale instances of QAP. 

4.2.4 Experimental Design for Developing Reactive Heuristics 

The main goals of the experiments conducted in the development of RHs are: i) 

identifying effective reaction using various restart strategies; ii) evaluating RHs 

without local search; and iii) evaluating RHs when RMMAS is coupled with local 

search. To achieve these goals, TSP and QAP are used in the experiments. Six ACO 

variants, they are AS and EAS from Dorigo (1992), RAS (Bullnheimer et al., 1997), 

BWAS (Cordon et al., 2000), ACS (Dorigo & Gambardella, 1997) and MMAS (Stützle 

& Hoos, 2000), are used in the comparisons for TSP experiments, while only MMAS 

is used in the comparisons for QAP experiments, as MMAS is better than the other 

five ACO variants in solving QAP. The 3-opt local search algorithm is used 

wherever the local search is coupled with ACO in the experiments. CTM, SRM and 

QSM (see Chapter Three) are used as comparative measures in the evaluation. 

Wherever the results are indecisive, the non-parametric statistical tests, Wilcoxon 

and Chi-square, are used to verify the significance of such results. Ten experiments 

are conducted for each of the TSP and QAP instances. The running time for each 

experiment is set to 10 seconds. The execution times are proportional to the size and 

the structure of the instance. The same approach is applied in the work of 

Gambardella, Taillard, and Dorigo (1999). These time durations are for short-

execution. The experiments are conducted on a Windows 8 64-bit operating system, 
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processor Intel Core i3-3217U with CPU @ 1.80GHz, RAM 4GB. The proposed 

algorithm is coded in C language. The QAP and TSP instances are selected from 

QAPLIB (Burkard et al, 1997) and TSPLIB (Reinelt, 1991) repositories respectively.  

The parameter settings are selected from Dorigo and Stützle (2004) when ACO 

variants are coupled with local search for TSP, while the following configuration is 

followed when local search is excluded. The parameter settings are based on the 

literature of each ACO variant. The number of ants (m) is equal to the number of 

cities, except ACS where m is equal to 10. The pheromone intensity (α) and pre-

heuristic distance (β) are equal to 1 and 2 respectively for all variants. Evaporation 

rate (ρ) is 0.5 for AS and EAS; 0.1 for RAS, BWAS and ACS; and 0.02 for MMAS. 

Some ACO variants have several additional parameters. The settings for these 

parameters are: RAS: number of ranks (r) are 6; ACS: q0 is 0.9; local update 

parameter is 0.1; number of nearest neighbor cities is 20 for all ACO variants. The 

initial pheromone (τ0) is set to 1 𝜌 ∗ 𝐶𝑛𝑛⁄  in MMAS and to 1 𝑛 ∗ 𝐶𝑛𝑛⁄  in ACS. In the 

original papers of AS, EAS, and RAS, it did not exactly define the value of τ0. 

Hence, it is set to 1 𝜌 ∗ Cnn⁄ .  

ACO variants are tested with and without restart (+rs and –rs respectively). Those 

with restarts used in the experiments are as follows: i) using acceptance criteria with 

∈ = 250 and initial pheromone is set to τ0; ii) using the same setting for acceptance 

criteria but with initial value equal to τmax; and iii) using acceptance criteria and 

lambda branching factor with initial value equal to τmax. The parameter settings are 

selected from the literature of MMAS-QAP where the number of ants (m) is equal to 
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5; the pheromone intensity (α) is equal to 1; evaporation rate (ρ) is 0.8 and the 

exploration/exploitation parameter q0 is equal to 0.5. 

4.2.5 Results of Applying Reactive Heuristics  

The results of applying RHs to ACO are reported. The results are divided into three 

parts; these are the results of identifying effective reaction in ACO, the results of 

evaluating RHs without local search, and the results of evaluating RHs when coupled 

with local search.  

 

The first part of results reports the impact of RHs of restart reaction. The results 

showed that the SRM test for AS is worsened with restarts unlike elitist variants that 

tend to be more exploitative. The best performance with restarts was obtained by 

MMAS, while BWAS was the worst without restarts as illustrated in Tables 4.1 and 

4.2.  

Table 4.1 

Results of Identifying Effective Reaction using SRM and CTM Tests 

ACO 

variant 

SRM CTM 

-rs 

+rs 

-rs 

+rs 

τ0 τmax τ0 τmax 

Acceptance 

criteria 

Acceptance 

criteria 

Branching 

factor + 

Acceptance 

criteria 

Acceptance 

criteria 

Acceptance 

criteria 

Branching 

factor+ 

Acceptance 

criteria 

AS 0/10 0/10 0/10 - - - - - 

EAS 0/10 2/10 0/10 - - 3 - - 

RAS 1/10 2/10 3/10 - 0.1 0.2 0.13 - 

BWAS 0/10 0/10 0/10 - - - - - 

ACS 1/10 1/10 1/10 - 0.19 8.6 1.03 - 

MMAS 2/10 6/10 4/10 8/10 0.67 1.7 2 0.64 

 

It is worth mentioning that the quality of solutions is highly influenced if restarts are 

used. Using dual feedback criteria (i.e. branching factor and acceptance criteria), the 
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pheromone model of MMAS outperforms the others. The CTM test using dual 

feedback criteria in MMAS shows some improvement using restarts (0.64 sec). It 

can be concluded that the way of managing pheromone in the pheromone model is 

the key for a successful restart. The restart mechanism in these experiments is a 

straightforward example for reaction. The optimal solution for eil51.tsp is 426 and 

successful runs equal to the number of tries which are terminated with optimal 

solution/ number of tries, and the effect of the restarting mechanism in several ACO 

variants on the way of managing pheromone in the pheromone model is evaluated. 

The best effect is selected. 

Table 4.2 

Results of Identifying Effective Reaction using QSM Tests 

ACO 

variant 

QSM (Best) QSM (Mean) 

-rs 

+rs 

-rs 

+rs 

τ0 τmax τ0 τmax 

Acceptance 

criteria 

Acceptance 

criteria 

Branching 

factor + 

Acceptance 

criteria 

Acceptance 

criteria 

Acceptance 

criteria 

Branching 

factor+ 

Acceptance 

criteria 

AS 429 430 431 - 434 436 437 - 

EAS 428 426 427 - 433 430 431 - 

RAS 426 426 426 - 430 428 428 - 

BWAS 450 427 429 - 468 431 435 - 

ACS 426 426 426 - 428 430 427 - 

MMAS 426 426 426 426 427 427 427 426 

 

The second part of results is reported in Table 4.3, which displays the results of 

evaluating RHs in RMMAS without local search. The evaluation is comparison-

based where RMMAS is compared with MMAS in TSP. Excluding local search 

entails testing RH impact under high explorative environment. The quality of 

solutions measured by QSM in RMMAS is better than RMMAS. The best solutions, 

the mean of the best solutions within the ten tries are obviously superior to the 
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MMAS ones. The results show the stability in the performance of RMMAS because 

of the incorporating RHs.  

Table 4.3 

Results of Evaluating the Effectiveness of RHs in TSP without Local Search using 

QSM Tests 

TSP 

Optimum 

MMAS RMMAS 

instance 
QSM 

(Mean) 

QSM 

(SD) 
QSM (Best) 

QSM 

(Mean) 

QSM 

(SD) 
QSM (Best) 

berlin52 7542.0 7542.0 0.00 7542.0 7542.0 0.00 7542.0 

st70 675.0 677.1 1.85 675.0 676.9 2.88 675.0 

Eil76 538.0 538.6 0.52 538.0 538.4 0.52 538.0 

pr76 108159.0 108265.0 285.81 108159.0 108173.9 47.12 108159.0 

gr96 55209.0 55671.8 74.00 55601.0 55560.9 71.02 55434.0 

rat99 1211.0 1211.9 0.88 1211.0 1211.1 0.32 1211.0 

KroA100 21282.0 21342.0 52.14 21282.0 21334.4 47.96 21282.0 

KroB100 22141.0 22301.9 30.26 22237.0 22294.1 23.29 22237.0 

KroC100 20749.0 20797.0 69.12 20749.0 20789.1 68.57 20749.0 

KroE100 22068.0 22337.2 148.60 22068.0 22268.8 137.21 22068.0 

rd100 7910.0 7922.5 16.21 7910.0 7919.9 12.49 7910.0 

 

In fact, results of Table 4.3 reflect the impact of RHs under explorative environment 

as this experiment is without local search, the exploitation component and the 

population diversity is high as the TSP fitness landscape is rugged. The effectiveness 

of RHs is proportional to such ruggedness as more local optima entail more restart 

recalls.  At each restart, the use of RHs as local heuristics provides the transition 

probabilistic rule of construction solution function (see Equation 4.4) with a sketch 

of local optima in terms of one’s values (see Equation 4.3). In this way, the arbitrary 

behavior of restart mechanism to escape the stuck in local optima has become 

steadier resulting in high quality solutions.   

The third part of results is reported in Figures 4.4 and 4.5. The y-axis visualizes the 

quality of solutions measured by QSM (mean), while the x-axis presents each of the 

MMAS and RMMAS algorithms.  
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  (a)                                    (b) 

  (c)                                    (d) 

  (e)                                    (f) 

Figure 4.4. Results of Evaluating the Effectiveness of RHs in TSP with Local Search 

using QSM (Mean) Test 
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The said algorithms are coupled with 3-Opt local search to solve large TSP 

instances. This adherence to the 3-Opt way of local search (exploitation component) 

is to investigate the interrelation between RHs and stochastic local search in large 

search space. The overall performance of RMMAS outperforms one of MMAS in 

solving all TSP instances except rat732.tsp. However, the RMMAS is not a well-

tuned algorithm compared to MMAS.  

 

Again, the effectiveness of RHs has been verified in large search space under the 3-

Opt local search circumstance where ants explores distant neighborhoods of the 

current incumbent solution by conducting three moves from there to a new one if and 

only if an improvement was made. Using the local heuristics of RHs will help the 

ants to escape the local optima, if the improvement was not made. It further suggests 

steady movement to another untraversed neighborhood structure.    

 

In Figure 4.5, the y-axis visualizes the quality of solutions measured by QSM (SD) 

of the best solutions found during the ten runs conducted to solve TSP instances. The 

x-axis presents each TSP instance in the performance of MMAS and RMMAS 

algorithms when coupled with the 3-opt local search. The results showed that the 

proposed RMMAS has produced good solutions for all TSP instances.  
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Figure 4.5. Results of Evaluating the Effectiveness of RHs in TSP with Local Search 

using QSM (SD) Test 

For QAP, the results of evaluating RHs in QAP with local search are reported in 

Table 4.4. The results showed that RHs are useful for solving QAP, especially when 

pre-heuristics information is not given in advance. However, the results were 

inconclusive. Therefore, to verify the improvement in a more formal way, the 

Wilcoxon signed-ranks and Chi-Square statistical tests are performed as in Figure 

4.6. Wilcoxon test is performed with 0.05 significance level and one-tailed 

hypothesis. It is based on the positive and negative ranks of the compared 

algorithms. The statistical results showed the outperformance of RMMAS over 

MMAS in the number of ranks. In the comparison of means, MMAS collects (37), 

while RMMAS collects (135). The p-value is 0.001659. The result is significant at p 

≤ 0.05. In the comparison of standard deviations, MMAS collects (89), while 

RMMAS collects (101). 
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Table 4.4 

Results of Evaluating the Effectiveness of RHs in QAP with Local Search using QSM 

Tests 

QAP 
Best known 

Solution   
Seconds 

MMAS-QAP RMMAS-QAP 

instance 
QSM 

(Mean) 

QSM 

(SD) 

QSM  

(Best) 

QSM 

(Mean) 

QSM 

(SD) 

QSM  

(Best) 

bur26a 5426670 8 5427097 636 5426670 5427083 453 5426670 

bur26b 3817852 8 3817935 73 3817852 3817914 47 3817852 

bur26c 5426795 8 5426893 107 5426795 5426906 113 5426795 

bur26d 3821225 8 3821255 48 3821225 3821305 102 3821232 

bur26e 5386879 8 5387074 185 5386879 5386983   136 5386879 

bur26f 3782044 8 3782048 6 3782044 3782048 4 3782044 

bur26g 10117172 8 10117324 182 10117172 10117642 329 10117208 

bur26h 7098658 8 7098708 103 7098658 7098757 163 7098658 

chr25a 3796 4 4562 172 4304 4547 197 4258 

els19 17212548 2 17241610 43635 17212548 17247256 43395 17212548 

kra30a 88900 8 95609 224 95145 95600 313 94960 

kra30b 91420 9 92298 217 91900 92248 277 91910  

tai20b 122455319 3 122667105 172642 122455319 122577869 184990 122455319 

tai30b 637117113 9 638804383 580656 637743822 638791883 447120 637893225 

tai35b 283315445 15 284997173 371182 284180375 284723472 372055 284166043 

tai40b 637250948 24 639646179 677314 638452551 639486444 641417 638610455 

tai50b 458821517 50 461287056 853848 459959918 461197868 637008 459972346 

tai60b 608215054 90 612310940 960895 611081614 612127094 1104145 610575173 

tai80b 818415043 225 828968489 3493073 822936304 828329508 2059747 824542441 

 

 

Figure 4.6. Results of Evaluating the Effectiveness of RHS in QAP with Local 

Search using Wilcoxon Test 

The p-value is 0.40517. The result is not significant at p ≤ 0.05. In the comparison of 

best solutions, MMAS collects (40), while RMMAS collects (26). The p-value is 
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0.26763. The result is not significant at p ≤ 0.05.  In the number of ranks for the best 

solutions, RMMAS did not outperform MMAS, but the overall improvement is not 

affected. To verify the overall performance, the statistical Chi-square test (see Table 

4.5) for frequencies is performed. The significance level used is equal to 0.05. The 

result is significant at p < 0.05 because the p-value is < 0.00001.  

Table 4.5 

Results of Evaluating the Effectiveness of RHs in QAP with Local Search using Chi-

Square Test 

Number of ranks RMMAS ranks MMAS ranks Row Totals 

Ranks of the means 135  (105.29) 37  (66.71)   172 

Ranks of the SD's 101  (116.31)   89  (73.69)   190 

Ranks of the best solutions 26  (40.40)   40  (25.60)  66 

Column Totals 262 166 428 (Grand Total) 

 

So far, the advantage of RHs is to traverse the neighborhood structures drawn by 

ants. It may be dominated by the neighborhood structures drawn by local search 

procedures. In this way, the influence of RHs is significant only when local search is 

not applied. In fact, local search is one of the successful applications for improving 

the quality of solutions within ACO. Therefore, the recursive local search (RLS) 

technique has been used to avoid sacrificing neither the RHs nor local search. Its 

idea is based on reinforcing the influence of local search by solving its 

incompleteness in transferring the promising solutions found in previous generations 

of ants to the future generations.            

4.2.6 Recursive Local Search Development 

In the memory model development, the population-based memory (PbM) scheme is 

designed to promote continuous aggressive exploitation. This can be done using the 
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proposed RLS technique. It is designed to intensify the search inside the 

neighborhood structure. After ants generate their solutions, the local search 

procedures will be used to improve each solution before they enter a fixed size 

population vector, denoted as P. At the same time, the best solutions in the current 

iteration will be added into the P. While the number of added solutions does not 

exceed the maximum size of P, the addition process will continue. Once P is full, the 

old added solution, denoted by best_old solution, will be temporarily removed from 

P and entered into local search again. If the quality of the just removed solution is 

improved by the local search, then it will be added again into the P vector; otherwise 

it will be totally removed. Figure 4.7 depicts the scheme of this functionality.     

 

Figure 4.7. The PBM Scheme in Memory Model Development 

The RLS technique is designed to overcome the limitation in local search procedures 

in ACO, where they suffer a premature exploitation because of the incompleteness in 

transferring neighborhood structures found in the previous search to the next 

iterations. Figure 4.8 shows the pseducode of the RMMAS algorithm when coupled 

with the RLS technique.   The problem occurs because of the reliance on the current 

neighborhood structure with ignoring previous structures. In addition to the current 
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neighborhood structures, this mechanism exploits the old-best solutions that are the 

good solutions in previous structures. The local search procedures are the successful 

algorithms to traverse the neighborhood structures. Apart from using local search, 

the ants have their own way to search the neighborhood. Whether the best solution is 

the best so-far/iteration solution or the old best one, it has to enter a population 

vector. This recursive way of search neighborhood contributes in a more complete 

exploitation and is able to produce high quality solutions.   

Algorithm 4.2: RMMASRLS  

   InitializeParameters () 

   Initialize_T_Memory () 

   Initialize_RH_Memory () // CbM scheme 

   Initialize_P_Memory ()  // PbM scheme 

   while (not terminate) do 

       for k ≔ 1 to m do  

             if (no stagnation) do 

                       ConstructSolutions (T, C)  

             else 

                      ReactiveRestart (Sgb, Sk, History) 

     ConstructSolutions (T, C, RH) 

             end-else 

             end-if 

             Sib ← argmin{f(Sk | k≔1 to m )} 

             if (f(Sib) < f(Sgb))              

              Sgb ← argmin{f(Sgb), f(Sib)} 

 S’gb ← LocalSearch(Sib) 

 Sgb ← argmin{f(Sib), f(S’ib)} 

Add (Sgb) 

                  if (P = |P|)              

                  Sob ← Drop () 

 S’ob ← RLS (Sob) 

 Sob ← argmin{f(Sob), f(S’ob)} 

            else 

                  if(f(Sob) < f(Sgb)) 

      Add(Sob) 

 else 

     Add(Sib) 

             Evaporate (RH, Τ, τmin) 

             DepositPheromone (Τ, Sgb) 

     end-for 

  end-while 

end-algorithm  

Figure 4.8. The Pseducode for RMMAS Algorithm with RLS Technique 
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4.2.7 Experimental Design for Developing RLS Technique 

To test the influence of the RLS technique on ACO-based local search algorithms, 

two parts of experimental comparisons need to be conducted. These are to test the 

influence of RLS on the behavior of the several stochastic local search algorithms 

when solving the same CO problem, and to test the influence of RLS when solving 

different CO problems. Five ACO-based local search algorithms are used in the first 

type of experiments in TSP, while two CO problems are used in the second 

experiment. The results extend the findings of the previous sections. Ten tries of 

experiment are conducted for each instance of QAP used in the experiment. The stop 

condition is proportional to the size and the structure of the instance. The same 

approach is applied in the work of Gambardella, Taillard, and Dorigo (1999) for 

long/short execution time. The parameter settings are selected from the literature of 

MMAS-QAP, where the number of ants (m) is equal to 5; the pheromone intensity 

(α) is equal to 1; evaporation rate (ρ) is 0.8, and the exploration/exploitation 

parameter q0 is 0.5. The metrics that are needed to be tested are the average and 

standard deviations for finding the best quality of solutions for the ten independent 

runs, therefore, QSM tests are used as a comparative measure.  

4.2.8 Results of Applying RLS Technique 

The influence of the RLS technique on the optimization process is reported into two 

parts. These are the evaluation against various ACO’s performances in one CO 

problem and the evaluation against various CO problems in one ACO variant. 

Figures 4.9 (a)-(f) present the first part, while the second part is reported in Figures 

4.10 (a)-(f) for TSP, and in Tables 4.6 and 4.7 for QAP.  
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For the first part of results, the y-axis visualizes the quality of solutions measured by 

QSM of the mean of the best solutions found during the ten runs. The x-axis 

represents five standard stochastic local search algorithms, namely ASLS, EASLS, 

RASLS, ACSLS, BWASLS. The experiments covered three sizes of TSP instances: 

small, medium and large.  

  

   (a)                                                               (b) 

  

                           (c)                                                           (d) 

15776

15778

15780

15782

15784

15786

15788

d198

Q
SM

 (
m

e
an

)

TSP Instance

AS+LS(3-opt)

EAS+LS(3-opt)

RAS+LS(3-opt)

ACS+LS(3-opt)

BWAS+LS(3-opt)

RMMAS+RLS(3-
opt) 41950

42000

42050

42100

42150

42200

42250

lin318

Q
SM

 (
m

e
an

)

TSP Instance

AS+LS(3-opt)

EAS+LS(3-opt)

RAS+LS(3-opt)

ACS+LS(3-opt)

BWAS+LS(3-opt)

RMMAS+RLS(3-
opt)

50700

50800

50900

51000

51100

51200

51300

pcb442

Q
SM

 (
m

e
an

)

TSP Instance

AS+LS(3-opt)

EAS+LS(3-opt)

RAS+LS(3-opt)

ACS+LS(3-opt)

BWAS+LS(3-opt)

RMMAS+RLS(3-
opt)

8700

8750

8800

8850

8900

8950

9000

rat783

Q
SM

 (
m

e
an

)

TSP Instance

AS+LS(3-opt)

EAS+LS(3-opt)

RAS+LS(3-opt)

ACS+LS(3-opt)

BWAS+LS(3-opt)

RMMAS+RLS(3-
opt)



 

 110 

  
     (e)                                                                       (f) 

Figure 4.9. Results of Evaluating the Effectiveness of RLS on Various ACO 

Algorithms using QSM Test 
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of the tested algorithms starts to be disparate. In Figure 4.9 (b), the results confirmed 

the outperformance of the proposed algorithm. The proposed technique is beneficial 

in solving small scale instances for the TSP problem. 
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evaluated by this part of experiments, the proposed RLS mechanism is beneficial in 

solving all sizes of TSP even with tight run time.  

For the second part of results, the previous experiments are extended by considering 

various CO problems on one hand, and by the comparison with one ACO variant on 

the other hand. MMAS is considered in the comparison with RMMAS in TSP and 

QAP. In Figure 4.10, the y-axis visualizes the quality of solutions measured by QSM 

(mean) of the best solutions found during the ten runs conducted to solve TSP. 

 In Figures 4.10 (a)-(f), the results showed that the proposed technique outperforms 

MMASLS in all TSP instances. In the pcb442.tsp instance, the proposed algorithm 

did not profit from the RLS mechanism. It can be seen from the results that coupling 

different local search procedures with the MMAS algorithm did not affect the 

outperformance of the proposed algorithm. That is because of the aggressive 

exploitative behavior of RMMASRLS throughout the searching period with the ability 

to turn to exploration when it is needed.  
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  (a)                              (b)

  

     (c)                                      (d) 

 

     (e)                                    (f) 

Figure 4.10. Results of Evaluating the Effectiveness of RLS in TSP using QSM Test  

For the QAP, the results are reported in Tables 4.6 and 4.7. The results showed that 

that RMMASRLS performs better than the original MMAS for the short-runs. The 

insight that can be concluded is the effectiveness of RLS technique as an exploitation 

component when coupled with RMMAS for short and long runs.  
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Table 4.6 

Results of Evaluating the Effectiveness of RLS in QAP using QSM Test for Short-Run 

QAP 
Best known 

Solution   
Seconds 

MMASLS RMMASRLS 

instance 
QSM 

(Mean) 

QSM 

(SD) 

QSM 

(Best) 

QSM 

(Mean) 

QSM 

(SD) 

QSM 

(Best) 

bur26a 5426670 8 5427097 636 5426670 5426670 0 5426670 

bur26b 3817852 8 3817935 73 3817852 3817852 0 3817852 

bur26c 5426795 8 5426893 107 5426795 5426795 0 5426795 

bur26d 3821225 8 3821255 48 3821225 3821225 0 3821225 

bur26e 5386879 8 5387074 185 5386879 5386879 0 5386879 

bur26f 3782044 8 3782048 6 3782044 3782044 0 3782044 

bur26g 10117172 8 10117324 182 10117172 10117172 0 10117172 

bur26h 7098658 8 7098708 103 7098658 7098658 0 7098658 

chr25a 3796 4 4562 172 4304 4177 99 3984  

els19 17212548 2 17241610 43635 17212548 17212548 0 17212548 

kra30a 88900 8 95609 224 95145 94372 157 94130 

kra30b 91420 9 92298 217 91900 91523 120 91420 

tai20b 122455319 3 122667105 172642 122455319 122455319 0 122455319 

tai25b 344355646 5 345428471 762772 344653810 344379559 75620 344355646 

tai30b 637117113 9 638804383 580656 637743822 637218046 258852 637117113 

tai35b 283315445 15 284997173 371182 284180375 283768905 241686 283315445 

tai40b 637250948 24 639646179 677314 638452551 637375646 133920 637250948 

tai50b 458821517 50 461287056 853848 459959918 459293938 126779 459121468 

tai60b 608215054 90 612310940 960895 611081614 608922672 297495 608387539 

tai80b 818415043 225 828968489 3493073 822936304 822384964 1731411 820317326 

 

Table 4.7  

Results of Evaluating the Effectiveness of RLS in QAP using QSM Test for Long-Run 

QAP 
Best known 

Solution   
Seconds 

MMASRL RMMASRLS 

instance 
QSM 

(Mean) 

QSM 

(SD) 

QSM  

(Best) 

QSM 

(Mean) 

QSM 

(SD) 

QSM  

(Best) 

bur26a 5426670 50 5426670 0 5426670 5426670 0 5426670 

bur26b 3817852 50 3817853 4 3817852 3817852 0 3817852 

bur26c 5426795 50 5426796 2 5426795 5426795 0 5426795 

bur26d 3821225 50 3821225 0 3821225 3821225 0 3821225 

bur26e 5386879 50 5386879 0 5386879 5386879 0 5386879 

bur26f 3782044 50 3782044 0 3782044 3782044 0 3782044 

bur26g 10117172 50 10117172 0 10117172 10117172 0 10117172 

bur26h 7098658 50 7098658 0 7098658 7098658 0 7098658 

chr25a 3796 40 4154 116 3946 4042 144 3796 

els19 17212548 20 17212548 0 17212548 17212548 0 17212548 

kra30a 88900 76 94588 151 94340 94239 148 93930 

kra30b 91420 86 91517 88 91420 91434 29 91420 

tai20b 122455319 27 122455319 0 122455319 122455319 0 122455319 

tai25b 344355646 50 344496014 122804 344355646 344355646 0 344355646 

tai30b 637117113 90 637612929 440084 637152585 637128942 11091 637117113 

tai35b 283315445 147 284231012 101855 284027477 283378972 134301 283315445 

tai40b 637250948 240 638153448 381309 637598806 637259823 19516 637250948 

tai50b 458821517 480 460204146 349142 459529895 459036877 59112 458923553 

tai60b 608215054 855 610393364 462570 609780832 608563150 104995 608387539 
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The importance of the proposed technique is achieving the desired balance between 

RHs as an exploration contributor to the last phase of search and RLS as an 

exploitation contributor to the initial phase of search. Without RLS technique, the 

RMMAS algorithm tends to be more explorative and produces suboptimal solutions 

in short run. Without RHs, the algorithm RMMAS got stuck in some runs as it tends 

to be more exploitative. The balance is most evident on bur26x instances in which 

RMMAS succeeded in solve all instances to the optimality in short-run (see Table 

4.6). The same concern goes to the application of RMMAS to large instances where 

exploration and exploitation are needed decisively. The high quality solutions that 

produced by RMMAS for tai30b, tai35b, tai40b, tai50b and tai60b instances are 

another evident on the well E&E balance. Without this balance, the problem of 

premature exploitation induced by the incompleteness of traversing the 

neighborhood structures impedes the production of high quality solutions.   

4.3 Summary 

The memory is an essential component in reactive search. This chapter discussed the 

combination between additional memory features and the distributed computation of 

ACO. The component-based and population-based memory schemes are two sides of 

the same coin, which is the memory model. This help in addressing the problems of 

arbitrary restarts and premature exploitation in local search by the proposal of 

RMMAS, the new ACO variant. The E&E components of RMMAS, i.e. the reactive 

heuristics and recursive local search with the help of the memory model, have been 

evaluated independently using the experimental comparison approach. Different 

experimental designs have been used to ensure a fair comparison. Empirical and 
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statistical results have verified the significant improvements in the quality of 

solutions produced by RMMAS as the exploration and exploitation balance is the 

profound implication of this high performance. As the exploration versus 

exploitation is a dynamic strategy, the upcoming chapter elaborates on when and 

how this dynamism undertakes.  
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EXPLORATION MEASUREMENT AND ADAPTIVE 

PARAMETERS’ SELECTION 

5.1 Introduction 

This chapter discusses the exploration measurement and the parameters’ selection in 

ACO. Sections 5.2-5.4 propose the so-called ACOustic exploration indicator for the 

exploration measurement; its experimental design and results. It is important for 

reactive-based ACO search, tuning an ACO algorithm, online parameter values 

selection; describing the amount of exploration an algorithm performs, and detecting 

stagnation situations. Section 5.5 describes the parameters’ selection problem. 

Section 5.6 proposes the strategy of the selection of parameter values during the run. 

Section 5.7 proposes the strategy of rewarding the promising values. The proposals 

verified by experiments and results are described in Sections 5.8 and 5.9 

respectively. The chapter is summarized in Section 5.10.    

5.2 ACOustic for Exploration Measurement 

The process of enhancing the exploration measurement is introduced by proposing 

the ACOustic indicator. The idea of indication is inspired from the acoustical 

mimicry in the ants-parasites systems. The schema of this iterative process in nature 

is modeled as shown in Figure 5.1.  
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Figure 5.1. The Process of the Modeling and the Implementation of ACOustic 

The ACOustic mechanisms are implemented and evaluated within the ACO 

algorithm. ACOustic is a statistical machine learning tool inspired by the acoustic 

reaction in nature. So far, utilizing traditional measures, such as acceptance criteria, 

average λ-branching factor, entropy-based measures (Colas & Monmarch, 2008), or 

similarity ratio (Solnon & Fenet, 2005) do not satisfy the requirements of reactive 

search. They are simply not machine learning methods, except the exploration 

measure developed by Pellegrini et al., (2009). It utilizes agglomerative clustering to 

quantify the exploration as the number of clusters of solution visited as follows.  

 

𝐸 (𝐵, 𝐼, 𝑅, ℎ) = | 𝐿(𝐵, 𝐼, 𝑅, ℎ)|                                                                                                      (5.1) 

 

where, L is the set of clusters resulting from the solutions visited by the algorithm B 

when solving the instance I using the resources R and the seed h. Given such 

definition, two closest clusters can be concluded when the distance between them is 

greater than a predefined threshold ϵx where x% of their arcs does not exist in the 

cluster. However, the definition needs to be reconsidered in terms of robustness 

against various circumstances. 
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According to Pellegrini and Favaretto (2012), such threshold must be coherent with 

the magnitude of the distance matrix. In TSP, ϵx = 7.8 in MMAS without local 

search, ϵx = 17.5 in MMAS with 2-opt local search and ϵx = 35.8 with 3-opt local 

search. The situation changes with the change of circumstances. For example, ϵx = 

1.003 when it is applied to genetic algorithms with no local search, ϵx = 16.56 with 

2-opt local search, and ϵx = 46.5 with 3-opt local search. Therefore, this situation 

leads to an unstable measurement, especially when more rugged CO problem’s 

instances, such as QAP, need to be solved by algorithm B. This problem has been 

solved in ACOustic. To present the overall idea, the following subsections discuss: 

the biological schema; modeling ACOustic, the implementation and evaluation. 

5.2.1 The Biological Schema 

Rapid and effective communication between ants is a key attribute that enables them 

to live in dominant, fiercely protected societies. Myrmica ant colonies, in particular, 

are exploited by social parasites called Maculinea butterflies (Barbero et al., 2012). 

The process of Trophallaxis (i.e. distributing liquid food from the 'social stomach') 

between attendance worker and other nest-mates is the main process in the food 

foraging behavior of ants. The worker ants produce acoustics during the process. The 

Maculinea larvae interfere with the Myrmica system and produce similar acoustics to 

that of the colony. The high number of worker ants leads to a low relatedness 

between nest-mates. A greater variance in nest-mates’ acoustic signals leads to a 

higher likelihood of being infested (Barbero, Thomas, Bonelli, Balletto, & 

Schönrogge, 2009).  Through this indicator, the larva can decide the optimal point to 

leave the colony before it is discovered by other ants. 
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Figure 5.2. The Ants- Parasites System 

This given social membership in ants-parasites system, i.e. the Myrmica-Maculinea 

system, includes sharing resources such as the process of regurgitating and 

distributing liquid food in their 'social stomach' to other hungry nest-mates as 

illustrated in Figures 5.3 (a) and (b).  

 

                                   (a)                                                              (b) 

Figure 5.3. (a) The Trophallaxis and Antennation between Ants (b) Trophallaxis 

between Ants and Parasites  
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Myrmica workers frequently stridulate during the trophallaxis process. The 

stridulatory signal is simple and contains one type of massage, such as “food is 

exhausted”. Myrmica queens can generate distinctive sounds to reinforce their 

supreme social status. The Maculinea larva interferes with this system and produces 

similar sounds to that of the queen (Barbero et al., 2012) as shown in Figure 5.4.  

 

Figure 5.4. The Morphology (Upper Part) and Sounds (Lower Part) of the Acoustical 

Organs of (a) Parasites Queen and (b) Ant Queen 

The larva is able to evaluate the situation inside the nest whether to leave or stay. If 

the relatedness between nest-mates becomes high, then the likelihood of being 

clustered around the larva will become low. This is an indication to the larva to 

explore another nest before being killed; otherwise the larva will continue to exploit 

the current nest until further notice. The acoustic reaction in this process can be 

simplified in three basic components as shown in Figure 5.5.  
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Figure 5.5. The Scheme of Acoustical Indication in Nature 

In ACO modeling, the characteristics of artificial ants’ are inspired from the real 

ants’ foraging behavior. The construction graph simulates the environment that ants 

and larvae agents are moving on. For larvae agents, the interaction with the new 

environment is highly related with the state of penetration, i.e. the learning process. 

The agents can decide whether to continue with the current exploitation or to explore 

another environment. To simulate the process of characterizing the state of 

penetration, statistical analyzing and the agglomerative clustering algorithms are 

developed in this chapter.   

5.2.2 Modeling ACOustic 

In this subsection, the way of characterizing the state of penetration is used as a 

didactic tool to explain the idea behind the ACOustic’s proposal. The behavior of the 

ACO algorithm describes in terms of the exploration and exploitation processes. 

According to the scheme described in Figure 5.5, the natural scheme in parasites-ants 

system translates into problem-solving models as follows. 

 

Let a construction graph G = (N, A) represent a CO problem, where N is the set of 

nodes; A is the set of arcs; |A| = a and |N| = n. The fitness landscape of the given CO 
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problem is defined by: P is a population set which includes all solutions to the CO 

problem, where each solution 𝑠 ∈  𝑃 is assigned a fitness value f(s); and has a 

structure of neighborhood 𝑁 ⊆ 𝑃 × 𝑃. A colony of artificial ants performs a biased 

walk in this landscape with the goal of finding low f(s) (in the case of minimization 

problems). The set Cp(t) represents the collection of acoustics (sounds) that emanates 

from the landscape traversed by the ants of a perspective colony at time t where Cp(t) 

⊆ P(t) × P(t) where ci and ci+1 are two acoustics belonging to Cp(t) where ci = {x1, 

x2,…, xa}; ci+1= {y1, y2,…, ya} where the long signal of each acoustic is equal to a. 

The relatedness between two nest-mates is defined by the similarity between their 

acoustics. Two acoustics ci+1 and ci are considered as similar if their similarity 

neighborhood SN is below a predefined threshold X.  

𝑆𝑁 (𝑐𝑖+1, 𝐶𝑝(𝑡)) = min  𝑑(𝑐𝑖+1, 𝑐𝑖)                                                                                              (5.2) 

𝑠 ∈ 𝐶𝑝(𝑡), 𝑡 = 0. . 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐𝑖+1  ≠  𝑐𝑖 

𝑆𝑁 (𝑐𝑖+1, 𝐶𝑝(𝑡)) > 𝑋           exploration                                                                                      (5.3) 

𝑆𝑁 (𝑐𝑖+1, 𝐶𝑝(𝑡)) ≤  𝑋          exploitation                                                                                     (5.4) 

 

where d is the Euclidian distance between two acoustics in Cp(t) within Euclidian 

space Rn. Exploration occurs when SN of the two acoustics is greater than the 

boundary of the neighborhood threshold (X), otherwise, it is identified as 

exploitation.  

 

A population-based memory scheme is used to record the best-iteration solutions 

produced by the algorithm during the run. An agglomerative clustering procedure is 

applied to the recorded population every ten iterations. This is to determine the 

similarity features of the population through its acoustics during the past ten 
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iterations. A matrix of distances is defined to conduct the clustering, and then to 

detect the number of clusters. The Euclidean distance d between ci and ci+1 is a 

common way for finding similarity as follows. 

𝑑(𝑐𝑖  , 𝑐𝑖+1) =  √∑(𝑥𝑗 −  𝑦𝑗)
2

𝑎

𝑗=1

                                                                                                     (5.5) 

The quantity d may have different magnitudes so that it is normalized to the size of 

the population. 

𝑑𝑛𝑜𝑟𝑚 =   𝑑 |𝑃|⁄                                                                                                                                (5.6) 

 

Three statistic medians (mean, variance and standard deviation) are derived in (5.7), 

(5.8) and (5.9) respectively.  

𝑚𝑟(𝑡) = ∑ ∑ 𝐷𝑖𝑗

𝑚𝑎𝑥

𝑗=𝑖+1

𝑚𝑎𝑥−1

𝑖=1

((𝑚𝑎𝑥2 − max )/2)⁄                                                                   (5.7) 

𝑣𝑟(𝑡) = ∑ ∑ (𝐶 𝑖𝑗 −  𝑚𝑟)2

𝑚𝑎𝑥

𝑗=𝑖+1

𝑚𝑎𝑥−1

𝑖=1

                                                                                               (5.8) 

𝑠𝑡𝑑𝑟(𝑡) = √𝑣𝑟 (𝑚𝑎𝑥 − 1)⁄                                                                                                           (5.9) 

 

where Dij is the normalized distance between two acoustics and max is the maximum 

size of the distance matrix. In order to minimize the computational efforts and keep 

the algorithm non-weights the size of matrix fixes to ten, the agglomerative 

hierarchical technique is used for calculating the number of clusters as follows. 

𝐶𝑁𝑢𝑚  (𝐶𝑝(𝑡)) = | 𝐿 (𝐶𝑝(𝑡))|                                                                                                     (5.10) 
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where L is the set of clusters resulting from the solutions that are visited by the ants. 

The statistics and clustering information are combined. The relatedness between ants 

can be calculated by finding the difference between the mean of distances and the 

number of clusters by the standard deviation of distances as follows. 

𝑟𝑙𝑡𝑑𝑛𝑠𝑠 = (𝑚𝑟 − 𝐶𝑁𝑢𝑚) 𝑠𝑡𝑑𝑟⁄                                                                                                   (5.11) 

 

The definition of exploration and exploitation in (5.3) and (5.4) can be reformulated 

based on the relatedness between acoustics (𝑟𝑙𝑡𝑑𝑛𝑠𝑠 ) as follows. 

 

𝑟𝑙𝑡𝑑𝑛𝑠𝑠 > 𝑋𝑟𝑙𝑡𝑑𝑛𝑠𝑠                                                           (𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛)                                 (5.12) 

𝑟𝑙𝑡𝑑𝑛𝑠𝑠 ≤ 𝑋𝑟𝑙𝑡𝑑𝑛𝑠𝑠                                                           (𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛)                                 (5.13) 

where 𝑋𝑟𝑙𝑡𝑑𝑛𝑠𝑠 denotes the lowest degree of relatedness. It is detected by capturing 

the first value of 𝑟𝑙𝑡𝑑𝑛𝑠𝑠 within the first ten iterations. For instance, when 𝐶𝑁𝑢𝑚 is 

decreased from 10 to 8, this indicates that what is occurring at this moment is 

exploitation. In contrast, if 𝐶𝑁𝑢𝑚 stays as it is, this indicates the exploration is high. 

The assignment of 𝑋𝑟𝑙𝑡𝑑𝑛𝑠𝑠 has to be complete within the first ten iterations. 

Hereafter, each new value of 𝑟𝑙𝑡𝑑𝑛𝑠𝑠 will be characterized as either exploration or 

exploitation accordingly. 

5.2.3 ACOustic Implementation 

This subsection walks through the implementation of the ACOustic algorithm. The 

pseudocode of the algorithm is illustrated in Figure 5.6. The nearest neighborhood 

threshold X is entered, the vector of acoustics clusters Ci is defined and other 
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variables such as miniDist,𝐶𝑁𝑢𝑚, 𝑋𝑟𝑙𝑡𝑑𝑛𝑠𝑠 and max are initialized as in Figure 5.7. 

Following the biological way of finding similarities between acoustical signals made 

by individual queens and workers (Thomas, Schonrogge, Bonelli, Barbero, & 

Balletto, 2010), findSimilarities algorithm generates the matrix of Euclidean 

distances between artificial acoustics. Next, the statistical medians are calculated as 

in Figure 5.8. 

Algorithm 5.1: ACOustic () 

initialization() 

 while (not terminate()) do  

 {mr, stdr}=findSimilarities () 

 rltdnss = determineRelatedness (mr, stdr) 

end- while 
return rltdnss 

end- algorithm 

Figure 5.6. The Pseudocode of Acoustic Algorithm 

procedure initialization() 

Input: X  

Define: C = {C1, C2,.., C|a|} = {{c1}, {c2},.., {c|a|}}  

Initialize: miniDist, 𝐶𝑁𝑢𝑚, max 

end- procedure 

Figure 5.7. The Initialization Procedure 

Algorithm 5.2: findSimilarities () 

foreach Ch,  Ck ∈ C do 

  𝐷 = 𝑑𝑐ℎ ,𝑐𝑘
=  √∑ (𝑥𝑖

ℎ −  𝑥𝑖
𝑘)2𝑎

𝑖=1  

end-foreach 

 𝑚𝑟 =  (∑ ∑ (𝐷𝑖,𝑗/𝑚)𝑚𝑎𝑥
𝑗=𝑖+1

𝑚𝑎𝑥−1
𝑖=1 ((𝑚𝑎𝑥2 − 𝑚𝑎𝑥 )/2)⁄    

𝑣𝑟 =  ∑ ∑ (𝐶 𝑖𝑗 −  𝑚𝑟)2𝑚𝑎𝑥
𝑗=𝑖+1

𝑚𝑎𝑥−1
𝑖=1   

𝑠𝑡𝑑𝑟 =  √
𝑣𝑟

𝑚𝑎𝑥 − 1
 

end- algorithm 

  Figure 5.8. The Pseudocode of Find similarities Algorithm 
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In determineRelatedness, the minimum distance miniDist is calculated from the 

distance matrix that is generated earlier (Figure 5.9). The nearest two clusters are 

united, the distance matrix is recalculated, and finally miniDist and the number of 

clusters 𝐶𝑁𝑢𝑚 are updated. In Figure 5.9, the number of clusters and the statistics 

collected earlier are combined and returned as a relatedness quantifier denoted as 

rltdnss. 

Algorithm 5.3: determineRelatedness () 

miniDist = min
𝑐ℎ,𝑐𝑘 ∈ 𝐶 

𝑑𝑐ℎ ,𝑐𝑘
 

repeat 

      𝐶ℎ =  𝐶𝑘  ∪  𝐶ℎ 

      𝐶 =  𝐶 \{𝐶𝑘}    
     foreach Cw ∈ 𝐶 \{𝐶ℎ} do 

              𝑑𝑐ℎ ,𝑐𝑤
=  𝑑𝑐𝑤,𝑐ℎ

= min{𝑑𝑐ℎ,𝑐𝑤
, 𝑑𝑐𝑘,𝑐𝑤

} 

     end- foreach 

    miniDist = min
𝑐ℎ,𝑐𝑘 ∈ 𝐶 

𝑑𝑐ℎ ,𝑐𝑘
 

    nc = | 𝐶 | 
until (miniDist  ≤  X ) 

rltdnss ← mr – 𝐶𝑁𝑢𝑚/ stdr 

return rltdnss 

end- algorithm 

Figure 5.9. The Pseudocode of Determine Relatedness Algorithm 

5.3 Experimental Design for Developing ACOustic 

In this Section, ACOustic is applied for several standard ACO algorithms under 

various conditions. The implemented algorithms are AS, EAS, ACS, RAS, MMAS, 

BWAS. The aim of the application is: i) to examine the ability of ACOustic for 

monitoring the exploration behavior of ACO algorithms when searching two 

different fitness landscapes: TSP and QAP; and ii) to evaluate its performance 

against the state-of-the-art measurement tool in ACO. Its performance is reported to 

be compared with average λ-branching measure for TSP and with exploration 

measure for TSP and QAP. In the former comparison, the effect of the parameters of 
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MMAS algorithm on the exploration and exploitation mechanisms is analyzed. 

Several scenarios have been considered. In the latter comparison, the effect of the 

raggedness of fitness landscape is analyzed. The shape of the landscape of TSP 

versus the one of QAP is considered. 

The experimental setting follows the literature. The parameters analyzed are α, β, ρ 

and m. The parameter setting suggested by Pellegrini et al., (2012) has been 

considered. The stopping criteria considered is either the completion of 350sec (only 

the first 3000 iterations are reported) for large instances or finding the optimal 

solution for small instances. Using restarts and local search are denoted by +rs and 

+ls respectively. Using the same symbols with the minus sign gives the opposite 

meaning. The C coding is used in the implemented algorithms. The experiments are 

conducted on a Windows 8 64-bit operating system, processor Intel Core i3-3217U 

with CPU @ 1.80GHz, RAM 4GB. Each experiment is executed ten times to avoid 

the stochastic behavior. The main results of this application are figured as below. 

The TSP instances used in the experiments are selected from TSPLIB repository and 

from the 8th DIMACS challenge. Following the TSPLIB format, d198 instance is 

selected. Following the DIMACS format, one random instance is generated using 

portgen, the instance generator adopted in the 8th DIMACS TSP challenge. It is 

generated with size = 2000 and seed = 39200. The kra30a.qap instance used in the 

experiments is selected from the QAPLIB repository.  

5.4 Results of ACOustic’s Application 

The general performance of ACOustic is analyzed. The computational results are 

twofold. The first part of results reported the robustness of the proposed tool against 
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the difference in the raggedness of fitness landscapes (Figures 5.10-5.20). The 

second part of results reported the ability of the proposed tool to analyze the 

convergence behavior of ACO algorithms against different CO problems (Figure 

5.21) and different parameter settings (Figure 5.22).  

In Figures 5.10-5.15, the y-axis visualizes the exploration while the y-axis represents 

the number of objective function evaluations in TSP. The ability of ACOustic to 

provide the same exploration insights of the λ-branching measure and the 

exploration measure is tested. Results showed that ACOustic is able to draw the same 

shape of these measures. Since the neighborhood threshold is mutual characteristic 

between ACOustic and exploration measure, it will act as a mirror to reflect the 

robustness of each of them against the change in the value of the threshold and the 

change the ruggedness in the fitness landscape. For the neighborhood threshold of 

ACOustic, the statistical information gathered (mr and stdr of relatedness, see 

Equation 5.11) are combined with the number of clusters produced by the 

agglomerative clustering procedure included in ACOustic algorithm. With high 

ruggedness landscape, both parts of the Equation 5.11 give the same contribution. 

Therefore, one cannot find a slight difference between ACOustic and exploration 

measure. The comparison with λ-branching measure follows the same concern as it 

is statistical indicator.     
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Figure 5.10. Results of Comparing Acoustic with other Exploration Measures in 

TSP with Nearest Neighborhood Threshold = 8 

 

Figure 5.11. Results of Comparing Acoustic with other Exploration Measures in 

TSP with Nearest Neighborhood Threshold = 7 

 

Figure 5.12. Results of Comparing Acoustic with other Exploration Measures in 

TSP with Nearest Neighborhood Threshold = 6 
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Figure 5.13. Results of Comparing Acoustic with other Exploration Measures in 

TSP with Nearest Neighborhood Threshold = 5 

 

Figure 5.14. Results of Comparing Acoustic with other Exploration Measures in 

TSP with Nearest Neighborhood Threshold = 4 

 

Figure 5.15. Results of Comparing Acoustic with other Exploration Measures in 

TSP with Nearest Neighborhood Threshold = 3 
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In Figures 5.16-5.20, the y-axis visualizes the exploration while the y-axis represents 

the number of objective function evaluations in QAP. The robustness of ACOustic 

against two circumstances of reading the exploration behavior is compared to the λ-

branching measure and the exploration measure is tested. Results showed that using 

different values of neighborhood threshold ACOustic gives different insights than 

other measures. For the λ-branching, when the fitness landscape flattens, the 

statistical analysis becomes fruitless because of the high similarity ratio between the 

solutions. For exploration measure, the neighbourhood threshold will be of decisive 

importance in the comparison (see Figure 5.19). In contrast, ACOustic dedicates the 

first 10 iterations to calculate automatically the relatedness value (see Equations 5.12 

and 5.13). In this sense, it can adapt easily for the change in the ruggedness, which 

means it is able to indicate the diversity of population regardless of similarity ratio 

between the solutions.  The results showed significant robustness against the 

difference in the value of neighborhood threshold with flatten fitness landscape. 

 

Figure 5.16. Results of Comparing Acoustic with other Exploration Measures in 

QAP with Nearest Neighborhood Threshold = 8 
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Figure 5.17. Results of Comparing Acoustic with other Exploration Measures in 

QAP with Nearest Neighborhood Threshold = 7 

 

Figure 5.18. Results of Comparing Acoustic with other Exploration Measures in 

QAP with Nearest Neighborhood Threshold = 6 

 

Figure 5.19. Results of Comparing Acoustic with other Exploration Measures in 

QAP with Nearest Neighborhood Threshold = 5 
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Figure 5.20. Results of Comparing ACOustic with other Exploration Measures in 

QAP with Nearest Neighborhood Threshold = 4 

In Figures 5.21 and 5.22, the y-axis visualizes the exploration using ACOustic 

measure comparing with λ-branching measure. The y-axis presents the number of 

iterations. The general performance of five ACO algorithms, namely AS, EAS, RAS, 

ACS and BWAS, is reported in Figure 5.21.  In Figure 5.22 the effect of parameters 

on MMAS behavior is reported. 

     

    (a)                                                             (b) 

Figure 5.21. Results of Utilizing ACOustic (a) against Branching Factor (b)  to 

Evaluate Various Exploration Behaviours in TSP 

In Figure 5.21, the results of analyzing using the proposed measure showed that AS 

tends to be a very explorative algorithm. The rest of the tested algorithms either start 
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with a very short exploration phase followed by a very aggressive exploitation phase 

(e.g. EAS and RAS) or skip the initial exploration phase (e.g. ACS and BWAS). 

This is mainly achieved by a stronger emphasis given to the best tours found during 

the search.  

 

In general, when compared with λ-branching measure, the proposed measure draws 

the same shape for TSP. The same insights are gathered when the exploration 

behavior is influenced by parameter tuning.    

                   

              (a)                                    (b) 

       

                                (c)                                    (d) 
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       (e)                           (f)

   

                                   (g)             (h) 

Figure 5.22. Results of Utilizing Acoustic (left) against Branching Factor (right) to 

Evaluate the Effect of pheromone intensity (alpha) (a-b), pre-heuristic effect (beta) 

(c-d), evaporation rate (rho) (e-f) and the number of ants (m)(g-h) in TSP 

In Figure 5.22, the effect of varying the main parameters on the explorative and 

exploitative behavior of the MMAS +rs +ls algorithm is characterized. The proposed 

measure can detect the relationship between parameter values and local search. 

Figure 5.22 (a) shows clearly that the higher the value of pheromone intensity, the 

lower the exploration. The value (α = 1.0) is the ideal value to achieve a moderate 

behavior. In Figure 5.22 (c), the influence of pre-heuristics about the instance of the 
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problem to be tackled is tested. The higher value of parameter (β), the more greedy 

behavior is recorded to become at its peak when (β = 10). The evaporation ratio as a 

trail learning factor has distinct impact on the way of search. Increasing the value of 

(rho) results in the slow learning of pheromone trail parameters, and thereby, the 

chance of forgetting the previous search experience will increase. In this way, the 

value of (rho = 0.7) leads to the increase of the exploitation. The value of (rho = 0.5) 

seems ideal (Figure 5.22 (e)). Figure 5.22 (g) reports that the exploration is 

decreasing with respect to the number of ants. The greater the number of ants, the 

lower the number of iterations performed in a run, consequently, the lower the 

number of different probability distributions used. A high value of m implies that the 

likely edges are often the same. These insights are compatible with the common 

believes among ACO researchers.  

 

As shown, ACOustic measure is a very convenient tool for characterizing the 

diversity of population. This conclusion came as a result of its robustness against the 

state-of-the art measures in ACO and of effectiveness as a statistical machine 

learning indicator. Besides, the role of the PbM scheme (presented in Chapter Four) 

is exist as the statistical and clustering information of ACOustic is extracted from the 

population vector.  

5.5 ACO-based Adaptive Parameters’ Selection  

The state-of-the-art methods for parameters’ selection in ACO are self-adaptive 

methods (Pellegrini et al., 2012). They play a key role in solving several CO 

problems. However, they did not improve the performance of ACO in TSP and QAP, 
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except the work of Randall (2004) which has shown, explicitly, good results for TSP 

and QAP. There is an emphasis on adopting successful methodologies such as those 

in evolutionary metaheuristics.  

In this thesis, the process of developing reactive method denoted as APSACO for 

solving the problem of parameters’ selection in ACO adheres to the typical 

methodology in the field of parameters’ selection of evolutionary algorithms. The 

process of proposing APSACO for solving the problem of parameters’ selection in 

ACO is illustrated in Figure 5.23.  

 

Figure 5.23. The Process of Developing the APSACO 

Following the works of Failho (2010) and Aleti (2012), new insights for parameters’ 

selection in ACO are obtained and motivate the proposal of APSACO. Table 5.1 

shows the pros and cons of proposing APSACO compared with other adaptive 

parameters’ selection methods.  

The only disadvantage of the proposed method is its complex implementation. It is, 

for this context, similar to adaptive methods, while it differs in being free of the 

hyperparameters. It is able to adapt with the global and local characteristics of the 
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CO being tackled. These results from the robust indication for the exploration 

behavior, i.e. using ACOustic, of the algorithm applied. 

Table 5.1 

Conceptual Comparison between APSACO and Other Adaptive Parameters’ 

Selection Methods 

Considerations 

Classical adaptive parameters’ 

selection methods in ACO Proposed 

APSACO Pre-schedule  Adaptive  Self-

adaptive  

Adapted with global characteristics - √ √ √ 

Adapted with local characteristics - √ - √ 

Less augmented complexity √ √ - √ 

Less hyper parameters √ - √ √ 

Simple implementation √ - √ - 

Algorithm structure independent √ √ - √ 

Follow a general methodology - - √ √ 

Total scores 4 4 4 6 

 

The most important feature of APSACO is its automatous search due to the 

independent pheromone matrix for parameters and values. Figure 5.24 depicts the 

general scheme of the proposed method.   

 

Figure 5.24. The General Scheme for APSACO Method 
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In Figure 5.24, the ACO algorithm asks APSACO which of the parameters can be 

applied for the current iteration/s. The parameter selection strategy selects a 

parameter according to its empirical quality (Section 5.6 includes further details) 

during the last iterations. The selected parameter is applied and its impact is 

transformed into a reward, using reward assignment strategy, to be used in updating 

the quality of parameters. The reinforcement learning process in APSACO is guided 

by those two strategies.  

5.6 Parameters’ Selection Strategy 

In this strategy, the desirability of selecting the given parameter values V is affected 

proportionally by its empirical quality Q = {𝑞(𝑣11 ), 𝑞(𝑣12 ), … , 𝑞(𝑣1𝑚1
)  

, … , 𝑞(𝑣𝑘𝑚𝑘
)} where k is the number of parameters and m is the number of values for 

the kth parameter. Each parameter is associated with a range of values. The bounds of 

the ranges are set based on Dorigo and Stützle (2004). The jth parameter value for the 

ith parameter, i.e. the value vij, is selected as follows. 

𝑠(𝑣𝑖𝑗) =  𝑙𝑖 +  
𝑝(𝑣𝑖𝑗)

𝑚
 (𝑢𝑖 −  𝑙𝑖)          1 ≤   𝑖 ≤ 𝑘            𝑎𝑛𝑑        1 ≤ 𝑗 ≤ 𝑚                   (5.14) 

𝑝(𝑣𝑖𝑗) =  𝑞(𝑣𝑖𝑗) ∑ 𝑞(𝑣𝑖𝑙)
𝑛

𝑙=0
⁄                                                                                            (5.15) 

where li is the lower bound value of ith parameter; ui is the upper bound value of ith 

parameter; m is the number of values; and p is the proportional selection probability 

for value the vij. At the first application, the value of each parameter is chosen as the 

halfway point in its range. After that, the values are selected proportionally. If the 
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application is performed badly, then the application’s desirability of the parameter 

has to be decreased, otherwise it will be rewarded. This is by firstly evaluating the 

effect of the selected values and then updating the empirical quality of the selected 

values. 

5.7 Reward Assignment Strategies 

In this strategy, the empirical quality of each parameter gains rewards only if the 

application of the parameter achieves impact for the optimization process. The 

impact determined by the feedback collection strategy is translated into rewards 

denoted as 𝑟(𝑣𝑖𝑗). The reward will be added to the previous quality of the perspective 

value as follows.  

 𝑞(𝑣𝑖𝑗) = (1 −  𝜌) . 𝑞(𝑣𝑖𝑗) +  𝜌 .   𝑟(𝑣𝑖𝑗)                                                                                  (5.16)  

The value of ρ is automatically assigned within the recommended range. Based on 

this formula, there is another instance of exploration versus exploitation: the best 

values are extensively used, while other values which need to be tried from time to 

time are not considered yet. In finding a good balance of the two processes, the 

bounding strategy is involved where the quantity 𝜏𝑚𝑖𝑛 represents the minimum 

selection probability for all the parameter values. 

𝑞(𝑣𝑖𝑗) = (1 −  𝛾) . 𝑞(𝑣𝑖𝑗) +  𝛾 . 𝜏min                                                                                       (5.17)  

where the value of  𝛾 is automatically assigned by the proposed APSACO method 

itself. 



 

 141 

Through this strategy, the effect of parameter value choices on the search is 

transformed into rewards. It involves the exploration state, the quality of solutions or 

both for rewards’ calculation. To achieve this goal, three strategies are proposed, 

namely the Quality-based Reward Assignment (QRA), the Exploration-based 

Reward Assignment (ERA), and the Unified Reward Assignment (URA).  

5.7.1 Quality-based Reward Assignment 

This QRA strategy relies on the improvement in the quality of solutions in assessing 

the effect of the current population. The median of the objective functions of the 

current population is used as an effect proxy for the application of selected parameter 

values. The value of rewards is calculated as follows. 

𝑟(𝑣𝑖𝑗)  =  1
𝑔𝑙𝑜𝑏𝑎𝑙_𝑎𝑣𝑔⁄                                                                                                              (5.18)  

 The value of global_avg is the median of the objective function for the solutions 

that are recorded in the population-based memory.  

5.7.2 Exploration-based Reward Assignment 

In the ERA strategy, exploration is identified in terms of the relatedness amount 

between ants produced by ACOustic as follows. 

𝑓(𝑟𝑙𝑡𝑑𝑛𝑠𝑠) = {
𝑒𝑥𝑝𝑙𝑟 = 𝑒𝑥𝑝𝑙𝑟 + 1    𝑖𝑓 𝑟𝑙𝑡𝑑𝑛𝑠𝑠 >  𝑋𝑟𝑙𝑡𝑑𝑛𝑠𝑠              (𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛) 

𝑒𝑥𝑝𝑙 =  𝑒𝑥𝑝𝑙 + 1      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                   (𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛)
   (5.19) 

 

where the value of 𝑋𝑟𝑙𝑡𝑑𝑛𝑠𝑠 is the first relatedness value captured when the number of 

clusters decrease. It is worth mentioning that this characterization function is 
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deactivated during the stagnation of the search. The stagnation is flagged when the 

solutions 𝑆𝑘 since the last best restart ilast did not improve for the last 𝜖 iterations (e.g. 

250 iterations), i.e. if f (Sk) ≥ f (Sgb ) and  i - ilast > ϵ.  The rewards amount is derived 

from the impact of the application of parameter values which is calculated as 

follows. 

𝑟(𝑣𝑖𝑗)   =
𝑒𝑥𝑝𝑙𝑟 2

𝑒𝑥𝑝𝑙
                                                                                                                             (5.20)  

It is worth mentioning that the values of the exploration/exploitation quantifiers, i.e. 

explr and expl, are very sensitive to the value of the nearest neighborhood threshold. 

The higher the threshold is, the more sensitive the quantifier becomes. In the 

beginning of the search, the amount of exploration starts higher than the exploitation 

one. With this property, the behavior of the algorithm is automated in various phases 

of the search. This automates the balance between exploration and exploitation in 

response to the current state of the search.  

5.7.3 Unified Reward Assignment 

The URA strategy relies on the quality of solutions and the diversity of solutions in 

assessing the effect of the current parameter values. The rewards are calculated as 

follows. 

𝑟(𝑣𝑖𝑗)  =  𝐶𝑛𝑢𝑚 𝑔𝑙𝑜𝑏𝑎𝑙_𝑎𝑣𝑔⁄                                                                                                      (5.21)   

where the Cnum is the number clusters. Based on this equation, the exploration 

behavior plays a fundamental role in determining the amount of rewards. The higher 
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the number of clusters is, the higher the reward becomes. The contributed strategies 

are emerged in the body of the ACO algorithmic framework as shown in Figure 5.25.  

In initialization, the probability and the quality vectors are initiated. In select_param, 

the parameter values are either selected as the halfway point in their ranges, if that is 

the first application, or selected proportionally to be involved in the search. The ants 

construct their solutions and update the memory of pheromone. The effect of the just 

applied parameter values is transformed into rewards by assign_rewards. It is based 

on the feedback collected from the search, and updates on the quality of the current 

parameter values. The amount of rewards assigned depends on the way of feedback 

collected whether it focuses on the improvement in quality, the improvement in 

exploration behavior, or the relative improvement in both of them.          

Algorithm 5.5: APSACO 

Set the number of parameters to k 

Set the number of values to m 

Set the maximum and minimum ranges of parameter values 

Discretize the ranges R based on value of m 

for i = 1 to k do 

 vi ← ri   

d ← m/2 

for i = 1 to k do 

for j = 1 to m do 

 qij ← τmin  // It can be set to τ0 if another ACO variant is  applied  

    except the MMAS 

 sij  ← vid 

while (not termination_condition()) do 

 select_param () 

 construct_solutions () 

 update_ pheromone () 

 assign_rewards () 

end-while 

end-algorithm 

Figure 5.25. The Pseudocode of APSACO Algorithm 
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5.8 Experimental Design for Developing APSACO 

The goal of the empirical analysis is to evaluate the proposed APSACO against the 

state-of-the-art adaptation methods proposed for ant colony optimization. The 

implementation of four self-adaption methods is based on the work of two groups. 

The works of Randall (2004) and Forster et al. (2007) are in the first group, while the 

works of Martens et al., (2007) and Khichane et al. (2009) are in the second group. 

To capture the contribution of the groups independently of the problems or the 

algorithms for which they have proposed, the works of Randall and Khichane et al. 

are followed. In the first group, namely RandallG, the parameter values are selected 

online based on Randall’s way (Randall, 2004), where the parameters are 

independent, e.g. the parameters β, ρ, γ and q0. In the second group, namely 

KhichaneG, the parameter values are selected online based on Khichane’s way 

(Khichane et al., 2009), where the parameters are interdependent, e.g. the parameters 

α and β. The search space for the parameter values must be known in advance and 

discretized in both groups, except in the second group where the values are 

optimized a priori. Both groups are in the same level at which they manage 

parameters. The rewards given to the parameter values selected during the run are 

based on the best-so-far ant in colony-level rather than the ant-level. The ant-level 

setting is omitted because most of the parameters are colony-wise, so that they 

cannot be adapted to multiple settings in each iteration. The number of parameter 

values m remains constant at 20. The ranges for the parameters q0, ρ and γ are bound 

between the constant values of 0 and 1; for the parameter β is bound between the 

constant values of 5 and 1 and for the parameter α is bound between 1 and 2. 
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The MMAS algorithm is involved as a test-bed. It is used for solving TSP and QAP. 

For solving TSP, the MMAS is included in ACOTSP.V1.3 software (Stützle, 2004). 

The implementation of MMAS for QAP is based on the work of Stützle and Hoos 

(2000) and follows the general algorithmic framework of ACOTSP.V1.3. The 

pseudo-random proportional rule that is used in ACS is used in MMAS as well to 

gain high performance by default. A 2-opt local search procedure is used with 

MMAS for all QAP instances. 

The experiments are conducted on a Windows 8 64-bit operating system, processor 

Intel Core i3-3217U with CPU @ 1.80GHz, RAM 4GB. Each experiment is 

executed ten times to avoid the stochastic behavior. A maximum of 10 seconds is 

used as a termination condition for the run of particular algorithms. The QAP and 

TSP instances are selected from the QAPLIB and TSPLIB repositories as in Table 

5.2. 

Table 5.2 

The TSP and QAP Instances used in the Evaluation   

TSP QAP 

Name Size Best-Known Cost Name Size Best-Known Cost 

eil51 51 426 nug15 15 1150 

st70 70 675 nug20 20 2570 

eil76 76 538 tai25a 25 1167256 

gr96 96 55209 tai35a 35 2422002 

rd100 100 7910 ste36a 36 9526 

bier127 127 118282 tho40 40 240516 

d198 198 15780 sko49 49 23386 

5.9 Results of APSACO’s Application 

The adaptive parameters’ selection method has been applied to automate the 

exploration and exploitation during the run. In order to report the results of 
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application, non-parametric descriptive statistics are used. This is because the 

distribution of results is non-normal. The cost results are reported using RPD as a 

comparative measure. In order to track the RPD values at any time, CTM test has 

been utilized. Table 5.3 reports the results of the conducted experiments in which 

APSACO algorithm succeeded in accelerating the convergence to high quality 

solutions produced by the ACO algorithm. At the first iterations, APSACO assigns 

initial values to the perspective ACO parameters. Next, the values are selected 

proportionally according the quality of solutions. The desirability of selecting one 

parameter relies on its empirical quality (see Equation 5.16). Since the parameters of 

ACO algorithm are the main player in adjusting exploration and exploitation, their 

values will be selected automatically. This automation entails the direct projection on 

the exploration/exploitation behavior.      

In Table 5.3, the results reveal that APSACO with QRA shows very good results on 

QAP and less in TSP compared with other state-of-the-art methods. In TSP, while 

occasionally RandallG finds the best quality solutions (such as st70, gr96 and d198), 

the overall behavior of APSACO with QRA is better for small TSP problems without 

local search. In QAP, KhichaneG sometimes finds the best solution (such as tai35a). 

However, the overall performance of the proposed method is better.   

In Table 5.4, the comparison of the three proposed strategies of reward assignment is 

depicted. The QRA strategy was the best performance, while the ERA showed less 

performance and the URA came in the last. 
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Table 5.3 

The Results of Evaluating APSACO (QRA) against Other Parameters’ Selections 

Methods in TSP and QAP using RPD Test 

TSP/QAP 

Problem 

RandallG KhichaneG APSACO (QRA) 

 cost  runtime  cost  runtime  cost  runtime 

min med max med min med max med min med max med 

eil51 0.23 0.77 2.11 1.80 0.46 0.86 1.17 4.40 0.0 0.11 0.46 2.41 

st70 0.14 1.51 3.25 6.52 0.74 2.28 4.14 4.26 0.44 0.91 2.37 6.49 

eil76 0.18 1.41 2.97 3.77 0.92 1.89 2.60 4.86 0.0 0.29 0.92 5.70 

gr96 0.33 1.39 4.68 4.22 1.91 3.08 4.76 5.61 0.57 1.13 1.55 4.73 

rd100 0.05 1.10 3.53 5.27 1.01 2.64 6.11 6.91 0.32 0.76 1.87 8.24 

bier127 1.61 2.96 5.24 8.20 2.80 3.76 4.98 3.39 1.53 2.48 3.61 4.99 

d198 1.96 4.21 6.82 7.74 3.07 4.96 6.84 8.89 2.20 3.94 5.48 6.14 

nug15 0.0 0.0 0.0 0.22 0.0 0.0 0.0 0.19 0.0 0.0 0.0 0.05 

nug20 0.0 0.04 0.15 2.75 0.0 0.01 0.15 2.64 0.0 0.0 0.0 1.76 

tai25a 1.4 2.2 2.7 4.77 1.68 2.24 2.61 5.54 1.21 1.88 2.55 4.50 

tai35a 2.98 3.22 3.6 4.5 2.58 3.12 3.51 6.13 2.61 3.02 3.38 3.77 

ste36a 2.45 3.3 4.2 6.14 1.61 3.14 4.42 4.13 0.92 2.26 3.19 3.71 

tho40 1.52 1.88 2.11 5.31 1.39 1.98 2.32 6.33 1.05 1.73 2.08 4.92 

sko49 1.08 1.38 1.75 6.06 0.95 1.32 1.54 4.51 0.85 1.18 1.40 5.44 

Table 5.4 

The Results of Evaluating APSACO using QRA, URA and ERA in TSP and QAP using 

RPD Test 

TSP/QAP 

Problem 

APSACO (QRA) APSACO (URA) APSACO (ERA) 

 cost  runtime  cost  runtime  cost  runtime 

min med max med min med max med min med max med 

eil51 0.0 0.11 0.46 2.41 0.23 0.37 0.7 4.94 0.0 0.28 1.17 2.63 

st70 0.44 0.91 2.37 6.49 0.44 1.20 3.25 4.35 0.29 0.90 1.92 5.80 

eil76 0.0 0.29 0.92 5.70 0.0 0.44 1.11 5.70 0.0 0.61 0.92 4.65 

gr96 0.57 1.13 1.55 4.73 0.36 1.03 3.28 5.01 0.38 0.98 2.82 8.12 

rd100 0.32 0.76 1.87 8.24 0.05 1.18 2.98 5.91 0.01 0.13 0.91 6.63 

bier127 1.53 2.48 3.61 4.99 1.61 2.75 4.57 6.35 2.14 3.20 4.22 6.08 

d198 2.20 3.94 5.48 6.14 2.74 4.40 6.36 7.79 5.15 8.79 7.43 3.51 

nug15 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.22 0.0 0.0 0.0 0.27 

nug20 0.0 0.0 0.0 1.76 0.0 0.04 0.15 3.93 0.0 0.01 0.15 3.52 

tai25a 1.21 1.88 2.55 4.50 1.21 2.01 2.42 3.67 1.3 1.9 2.3 5.7 

tai35a 2.61 3.02 3.38 3.77 3.13 3.34 3.72 5.09 2.6 3.10 3.4 5.36 

ste36a 0.92 2.26 3.19 3.71 2.09 3.0 3.82 5.96 1.4 2.9 4.0 4.11 

tho40 1.05 1.73 2.08 4.92 1.26 1.77 2.15 5.45 0.9 1.84 2.3 5.97 

sko49 0.85 1.18 1.40 5.44 1.06 1.39 1.71 5.54 1.23 1.41 1.63 4.67 

 

The design of each of the proposed strategies determines the suitable situation to 

apply any of them. For example, when a restart mechanism is applied, the URA will 

be the promising choice because of its tendency to increase current exploration.         
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Figure 5.26. The Results of Evaluating APSACO using QRA, URA and ERA against 

Other Parameters’ Selections Methods in TSP using RPD Test 

In Figure 5.26, the overall performance of the proposed strategies outperforms the 

state-of-the-art methods for TSP instances. With small size instances, the three 

methods are the best. The QRA strategy was the best among all. In some cases, the 

ERA strategy outperforms (such as gr96 and rd100). However, when the size of the 

problem increases, the ERA has a worse performance because of its additional 

computations. The URA strategy is more robust.  

 

Figure 5.27. The Results of Evaluating APSACO using QRA, URA and ERA against 

Other Parameters’ Selections Methods in QAP using RPD Test 
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In Figure 5.27, the overall performance of the proposed strategies outperforms the 

state-of-the-art methods for QAP instances. With small size instances, the URA does 

not much improve the quality of solution comparing with QRA, ERA and 

KhichaneG. The QRA strategy produced the best average quality of solutions in all 

experiments.  

5.10 Summary 

The exploration measurement and the adaptive parameters’ selection in ACO are 

discussed in this chapter. For the exploration measurement, the problem of 

robustness in machine learning-based indicators has been solved by emerging simple 

statistics about current exploration to the design of those indicators. The results 

illustrated that the proposed indicator, denoted by ACOustic as inspired from the 

acoustic mimicry in nature, is more informative and more robust.  

 

For the adaptive parameters’ selection, the general schema of parameter adaptation is 

adopted based on successful methodologies in the field of evolutionary algorithms. 

Two independent issues are highlighted in the schema: the parameters’ selection 

strategy and the reward assignment strategy. Four parameter adaptation algorithms 

are implemented into two groups: RandallG and KhichaneG implementations. For 

the parameters’ selection, the implementation of the first group is followed. For the 

reward assignment, three contributed strategies, denoted by QRA, ERA and URQ, 

are proposed for improving the performance of the existing parameter adaptation 

methods in ACO. Three variants of APSACO algorithm are produced by varying the 

proposal of the perspective strategy. In the design of QRA, the general improvement 
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in the quality of solutions used a proxy for the impact of the selected parameters, 

while in ERA and URQ, the feedback collected via ACOustic is alternately the first 

proxy. By the said contribution, the parameters’ selection problem in ACO is 

addressed. The effectiveness of the proposed APSACO variants is evaluated against 

each other and against the state-of-the-art methods. Results showed that APSACO 

with QRA is the best among all. As the automation of exploration and exploitation 

has been implemented, Chapter 6 discusses projection of the proposed exploration 

and exploitation components on top of RMMAS algorithm to develop a more 

advanced reactive approach.     
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PROPOSED REACTIVE APPROACH FOR AUTOMATING 

EXPLORATION AND EXPLOITATION IN ACO 

6.1 Introduction 

The development of the proposed reactive ant colony optimization approach is 

presented. This chapter summarizes the final performance of RACO. Through the 

previous chapters, several exploration and exploitation components have been 

proposed and tested separately, whereas in this chapter, the components are merged. 

Section 6.2 depicts the general scheme of the proposed approach, namely RACO. 

Section 6.3 presents the experimental design of the RACO evaluation. The results 

and analysis for TSP and QAP are presented in Sections 6.4 and 6.5 respectively. 

The summary of the chapter is presented in Section 6.6.   

6.2 Proposed Reactive Approach 

The general scheme of RACO is presented in Figure 6.1. RACO starts solving CO 

problems by iterating two activities, namely ants’ activity and queen’s activity. An 

example of the ants’ activity is the probabilistic solution construction where each ant 

is able to take individual decisions. An example of the queen’s activity is every 

central decision can be taken to change the current search status. CO problems (such 

as TSP and QAP) are assembled as a finite set of solution components. Next, a set of 

pheromone values called the pheromone model is defined. The set of pheromone 

values is parameterized probabilistically to be used then in generating solutions 
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based on the solution components. Two reactive memory schemes, CbM and PbM, 

are defined in Chapter Four. CbM is derived from the solution components, while 

PbM is derived from the overall population of solutions. The candidate solutions are 

constructed using the pheromone model. The pheromone values are updated by the 

queen in such a way that it is biased in future towards high quality solutions.  

 

Figure 6.1. The General Scheme of RACO  

There are two different neighborhood structures; one is framed by the local search 

procedures, and the other one is framed by the ants. For this part of RACO, there are 

two basic E&E mechanisms: the reactive restart mechanism and the RLS 

mechanism.  In the former mechanism, the neighborhood drawn by ants is traversed 

before the restart just to record the unpromising regions. The regions are simply 

characterized using τmin threshold where the components of solutions below this 

threshold will be recorded in the CbM scheme in terms of reactive heuristics. After 
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restart, the reactive heuristic will be used as guidance for ants to decide the next 

component in the constructed solution. A high priority of selections is given to 

components associated to the reactive heuristics. In the latter mechanism, i.e. RLS, 

relies on the neighborhood structure drawn by local search procedures. An old-best-

so-far solution will be recorded in the PbM scheme to be used in future iterations as 

a reference for improvement in the quality of solutions. If the new produced solution 

is better than the old-best-so-far solution, it will be recorded in the memory; 

otherwise, the old-best-so-far solution will be recorded again in the memory.            

The second part of the queen’s activity is the exploration measurement. Using 

several exploration measures and absolute triggers, the queen characterizes the 

current state of search whether it is exploration or exploitation, then promotes a 

suitable reaction. The queen in this way controls the reinforcement learning process 

inside the colony by forcing other ants for being exploitative agents or being 

explorative ones. In the former choice, they keep searching around the structure of 

the neighborhood of good solutions, whereas, in the latter choice, they shift the 

search to another neighborhood structure. Several exploration indicators used within 

RACO in order to redirect the current search state from exploitation to exploration 

directly using the reactive restart mechanism. Traditional exploration indicators 

(such as λ-branching factor and acceptance criteria) are involved. A machine 

learning mechanism of indication called ACOustic (detailed in Chapter Five) 

emerges in this part. Using this indication mechanism, the exploration and 

exploitation can be absolutely quantified, put in relation with the quality of solutions 

in a unified way or relied on the quality of solutions only in a relative way.  
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The last part of the queen’s activities is the APSACO mechanism, in which the queen 

controls the way of the search based on the feedback collected from the search 

process. The mechanism automates the exploration and exploitation during the run 

based on the feedback collected. Internal reinforcement learning process is involved 

to learn the parameter values during the run. Through two strategies of parameters’ 

selection and reward assignment, the process is maintained. In the first iteration, the 

values are selected from the midway of their perspective ranges. Hereafter, they are 

selected in a proportional way to their approximate effect on the optimization 

process. The effect transforms into a reward to be assigned to the parameter values 

producing good quality solutions, good exploration/exploitation behavior, or good 

balance between the both of them.          

6.3 Experimental Design for RACO Evaluation 

The performance of RACO is evaluated by the comparison with other metaheuristics 

approaches to solve TSP and QAP. The evaluation metric is reported using the RPD 

test. The maximum number of iterations is equal to the same number of tours for the 

algorithms with which RACO is compared. An average of ten trails for the results is 

reported. For RACO parameter settings, the neighborhood threshold is fixed to (0.8) 

without tuning. The number of ants (m) is equal to (5), while the rest of the RACO 

parameters are configured adaptively using the ERA strategy. Hence, the RACO 

variant used in the experiments is denoted as RACOERA. 

For TSP, the instances are taken from TSPLIB (Reinelt, 1991), and then categorized 

into small, medium, and large sizes. Burma14, Dantzig42, Oliver30, Eil51, Eil76, 
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KroA100 and Eil101 are categorized as small, d198, lin318, att532 and rat783 as 

medium, and pr1002, u1060, pcb1173, d1291 and fl1577 as large sizes. The 

configuration of experiments is dictated based on the availability of the published 

results. Numerical experiments are executed to regenerate the results of other 

algorithms; otherwise, their performance is taken from the literature. The results of 

ACS and six MMAS variants are based on the implementation included in 

ACOTSP.V1.3 (Stützle, 2004), while the results of the iterated local search (ILS) are 

from Stützle (1998). Other algorithms with which RACO is compared are simulated 

annealing (SA), evolutionary programming (EP), genetic algorithm (GA), particle 

swarm optimization (PSO), and artificial bee colony (ABC).  The results of SA and 

EP are from Dorigo and Gambardella (1997). The results of GA and PSO are from 

Çunkaş and Özsağlam (2009) and the results of ABC are from Kocer and Akca 

(2014). 

For QAP, the benchmarking data are taken from QAPLIB (Burkard et al., 1997), and 

then classified into real-life, real-life-like and random-generated categories. These 

are bur26a, bur26b, bur26c, bur26d, bur26e, bur26f, bur26g, bur26h, chr25a, els19, 

kra30a and kra30b for the real-life category, tai20b, tai25b, tai30b, tai35b, tai40b, 

tai50b, tai60b and tai80b for the real-life-like category, and Nug30, Ste36b, Tai30a, 

Tai40a, Tai50a, Tai60a, Tai80a and Tai100a for the random-generated category. 

The configurations of long-run and short-run are conducted on real-life and real-life-

like instances. Different sizes of instances are tackled. The results of the algorithms 

used in the comparison are taken from the literature. The performance of MMAS, 

robust tabu search (Ro-TS), reactive tabu search (RTS), SA, genetic hybrid (GH), 
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and hybrid ant system (HAS-QAP) are from Stützle and Hoos (2000) and Stützle 

(1999), while the performance of object-guided ant colony optimization (OG-ACO) 

and hybrid artificial fish-school optimization (HAFSO) are from Ziqiang and Yi 

(2014). The run length is dynamic and is based on Gambardell, Thallard and Dorigo 

(1997) for the real-life and real-life-like instances, while for the random-generated 

instances; it is based on Ziqiang and Yi (2014).  

6.4 Results of the TSP Experiments 

RACO is applied to small-, medium- and large-sized TSP instances as shown in 

Tables 6.1, 6.2 and 6.3. In the small-sized instances’ experiments, the proposed 

algorithm achieved a 100% success rate by reaching the known optimum at the first 

four turns. The rate was 99% and 92% for the fifth and sixth turns. It was observed 

that RACO ended with 0% margin of error in small-sized TSP problems. The results 

confirmed that the combination of RH heuristics, RLS technique and QRA controller 

produce high quality solutions.  

 

In the medium-sized instances of experiments, the obtained RPT rates in the medium 

size were competitive. As it can be clearly seen in Table 6.2, the solutions of test 

problems d198, lin318, pcb442, att532 and rat783 through RACO produced the 

smaller error rate than others, except in MMAS-w algorithm, which was similar with 

lin318 and rat 783. Sometimes, the difference in performance is not very noticeable 

(such as d198 and lin318) between RACO and MMAS variants, but RACO 

monopolized its outperformance in all turns. In addition, the competitive results were 

produced by different MMAS variants and this is not the case with RACO. Some 
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TSP instances (such as lin318) contain several local minima, and to escape from 

those, the algorithm must change its behavior accordingly and in an online manner, 

which is the case with RACO. In general, this result gives an indicator that the 

quality of solutions produced by RACO is better due to the impedance of its search 

to be stagnated.   

Table 6.1 

Results of Comparing RACO with ACS, EP, SA, GA, PSO and ABC Algorithms in 

Small Size TSP Instances using RPD Test 

TSP instance ACS EP SA GA PSO ABC RACO 

Burma14 - - - 0.92 1.14 0.33 0.00 

Oliver30 0.00 0.00 0.95 - - - 0.00 

Dantzig42 - - - 2.05 2.08 0.71 0.00 

Eil51 0.51 0.24 4.24 2.11 2.45 1.89 0.09 

Eil76 1.71 1.31 8.41 2.56 3.16 6.31 0.13 

KroA100 1.17 - - 2.68 3.71 2.16 0.82 

Table 6.2 

Results of Comparing RACO with MMAS Variants, ACS+3-opt and ILS+3-opt 

Algorithms in Medium Size TSP Instances using RPD Test 

TSP 

instance 

MMAS-

w 

MMAS-

wnh 

MMAS-

wnts 

MMAS-

t 

MMAS-

tnh 

ACS+3-

opt 

ILS-3-

opt 

RACO 

d198 0.003 0.002 0.003 0.000 0.002 0.002 0.002 0.000 

lin318 0.000 0.011 0.078 0.005 0.02 0.17 0.085 0.000 

pcb442 0.26 0.25 0.24 0.25 0.24 0.26 0.28 0.010 

att532 0.079 0.091 0.082 0.15 0.096 0.17 0.086 0.040 

rat783 0.095 0.14 0.12 0.20 0.22 0.28 0.34 0.095 

 

In the large-sized instances of experiments, the results reported in Table 6.3 can be 

used to evaluate the scalability in addition to the quality of solutions because of the 

vast landscape of the tested TSP instances. Only MMAS-w and MMAS-wrnt were 
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considered in this part of comparison. It is observed that RACO performs well in 

terms of solution qualities and naturally in scalability because of the utilization of 

long-term exploration and exploitation dynamics. With large sized instances, the 

importance of reactive heuristics becomes less because the lower number of restart 

triggers. This observation suggests exchanging those traditional triggers (such as λ-

branching factor) with machine learning triggers (such as ACOustic).  

Table 6.3 

Results of Comparing RACO with MMAS Variants, ACS+3-opt and ILS+3-opt 

Algorithms in Large Size TSP Instances using RPD Test 

TSP 

instance 
MMAS-w MMAS-wnts ACS ILS-3-opt RACO 

pr1002 0.30 0.18 0.41 0.21 0.14  

u1060 0.34 0.36 0.29 0.14 0.26  

pcb1173 0.11 0.095 0.37 0.24 0.001  

d1291 0.041 0.055 0.14 0.15 0.037  

fl1577 0.28 0.10 0.35 0.65 0.022  

6.5 Results of the QAP Experiments 

RACO is applied to real-life, real-life-like and random-generated QAP instances as 

shown in Tables 6.5-6.9. The results of the experiments on real-life and real-life-like 

instances are reported for short and long runs. The results confirmed that the quality 

of solution produced by the RACO algorithm is better than others for QAP.  

From Table 6.5, where the RACO behavior is under strong time constraints, it is 

clear that RACO is well adapted to the real-life instances of QAP. For the bur26x 

instance, the results can show that the population-based methods (such as RACO, 

GH and HAS-QAP) perform better than the local search-based (SA and Ro-TS). In 

fact, Ro-TS and SA are not really competitive for these kinds of problems. For the 
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els19 instance, the ant-based metaheuristics are the better. For kra30a, HAS-QAP, 

GA and SA seem to be the best methods, whereas RACO produced the worse 

solutions. It is known that the performance of competitive algorithms rely on the 

type of QAP problems.  

Table 6.5 

Results of Comparing RACO with Ro-TS, RTS, SA, GH, HAS-QAP and MMAS-

QAP3-opt Algorithms in Real-Life QAP Instances for Short Run using RPD Test 

QAP 

instance 

Best-Known 

Solution 
Ro-TS RTS SA GH 

HAS-

QAP 

MMAS-

QAP3-opt 

RACO 

real-life instances:        

bur26a 5426670 0.208 — 0.185 0.060 0.027 0.010 0.000 

bur26b 3817852 0.441 — 0.191 0.090 0.106 0.000 0.000 

bur26c 5426795 0.170 — 0.137 0.004 0.009 0.000 0.000 

bur26d 3821225 0.249 — 0.379 0.003 0.002 0.000 0.000 

bur26e 5386879 0.076 — 0.228 0.003 0.004 0.000 0.000 

bur26f 3782044 0.369 — 0.224 0.006 0.000 0.000 0.000 

bur26g 10117172 0.078 — 0.139 0.006 0.000 0.000 0.000 

bur26h 7098658 0.349 — 0.368 0.003 0.001 0.000 0.000 

chr25a 3796 15.969 16.844 27.139 15.158 15.690 20.18 9.53 

els19 17212548 21.261 6.714 16.028 0.515 0.923 0.170 0.000 

kra30a 88900 2.666 2.155 1.813 1.576 1.664 7.551 6.068 

kra30b 91420 0.478 1.061 1.065 0.451 0.504 0.964 0.180 

 

From Table 6.6, where the run is longer, the results obtained with RACO were 

competitive to other ant-based algorithms for some instances, while it was better for 

most of the instances. For the bur26x instance, all the runs of RACO, MMAS-QAP3-

opt and HAS-QAP succeeded in finding the best solution known. The behavior of 

RACO and HAS-QAP is equivalent, except that RACO produced the best solution 

for the kra30b instance, whereas HAS-QAP was the best in solving the chr25a 
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instance. For the kra30a instance, the iterative methods such as GH are the best, 

while RACO and MMAS-QAP3-opt are the worst. From this table, the same 

conclusions for shorter runs can be drawn. In general, the behavior of RACO relies 

on the shape of the fitness landscape of QAP. 

Table 6.6 

Results of Comparing RACO with Ro-TS, RTS, SA, GH, HAS-QAP and MMAS-

QAP3-opt Algorithms in Real-Life QAP Instances for Long Run using RPD Test 

QAP 

instance 

Best-Known 

Solution 
Ro-TS RTS SA GH 

HAS-

QAP 

MMAS-

QAP3-opt 

RACO 

real-life instances:        

bur26a 5426670 0.0004 — 0.1411 0.0120 0.000 0.000 0.000 

bur26b 3817852 0.0032 — 0.1828 0.0219 0.000 0.000 0.000 

bur26c 5426795 0.0004 — 0.0742 0.000 0.000 0.000 0.000 

bur26d 3821225 0.0015 — 0.0056 0.0002 0.000 0.000 0.000 

bur26e 5386879 0.000 — 0.1238 0.000 0.000 0.000 0.000 

bur26f 3782044 0.0007 — 0.1579 0.000 0.000 0.000 0.000 

bur26g 10117172 0.0003 — 0.1688 0.000 0.000 0.000 0.000 

bur26h 7098658 0.0027 — 0.1268 0.0003 0.000 0.000 0.000 

chr25a 3796 6.9652 9.8894 12.4973 2.6923 3.0822 9.43 7.48 

els19 17212548 0.000 0.0899 18.5385 0.000 0.000 0.000 0.000 

kra30a 88900 0.4702 2.0079 1.4657 0.1338 0.6299 6.40 7.01 

kra30b 91420 0.0591 0.7121 0.1947 0.0536 0.0711 0.11 0.020 

 

The results of the experiments on the real-life-like instances are reported in Tables 

6.7 and 6.8. For short runs, the results showed that RACO has succeeded in finding 

the best solutions for all instances. It can be concluded from the short run 

experiments that RACO produces high quality solutions earlier than other methods. 

Therefore, it is suitable to deal with anytime applications. For long runs, the results 

confirm the robustness of the proposed approach. On the other side, other 
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population-based methods (such as GH, HAS-QAP and MMAS-QAP3-opt) showed 

better behavior than local-search methods (such as Ro-TS and SA) for the instances 

of taixxb type. The reason behind the outperformance of the population-based 

algorithms is that they were of higher exploration. Yet, the role of reactive heuristics 

dominates the role of other exploration components of RACO.  

Table 6.7 

Results of Comparing RACO with Ro-TS, RTS, SA, GH, HAS-QAP and MMAS-

QAP3-opt Algorithms in Real-Life like QAP Instances for Short Run using RPD Test 

QAP 

instance 

Best-Known 

Solution 
Ro-TS RTS SA GH 

HAS-

QAP 

MMAS-

QAP3-opt 

RACO 

real-life like instances:        

tai20b 122455319 6.700 — 14.392 0.150 0.243 0.170 0.000 

tai25b 344355646 11.486 — 8.831 0.874 0.133 0.316 0.006 

tai30b 637117113 13.284 — 13.515 0.952 0.260 0.262 0.001 

tai35b 283315445 10.165 — 6.935 1.084 0.343 0.591 0.040 

tai40b 637250948 9.612 — 5.430 1.621 0.280 0.382 0.004 

tai50b 458821517 7.602 — 4.351 1.397 0.291 0.545 0.146 

tai60b 608215054 8.692 — 3.678 2.005 0.313 0.673 0.136 

tai80b 818415043 6.008 — 2.793 2.643 1.108 1.292 0.592 

 

The results of the experiments on the random-generated instances show that RACO 

is better than other methods with all the scales of this type of QAP instances. This 

superiority to the modern swarm intelligence methods, i.e. OG-ACO and HAFSOA, 

confirms the harmony in combining the exploration and exploitation components of 

RACO.  
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Table 6.8 

Results of Comparing RACO with Ro-TS, RTS, SA, GH, HAS-QAP and MMAS-

QAP3-opt Algorithms in Real-Life like QAP Instances for Long Run using RPD Test  

QAP 

instance 

Best-Known 

Solution 
Ro-TS RTS SA GH 

HAS-

QAP 

MMAS-

QAP3-opt 

RACO 

real-life like instances:        

tai20b 122455319 0.000 — 6.7298 0.000 0.0905 0.000 0.000 

tai25b 344355646 0.0072 — 1.1215 0.000 0.000 0.04 0.000 

tai30b 637117113 0.0547 — 4.4075 0.0003 0.000 0.08 0.000 

tai35b 283315445 0.1777 — 3.1746 0.1067 0.0256 0.32 0.061 

tai40b 637250948 0.2082 — 4.5646 0.2109 0.000 0.14 0.000 

tai50b 458821517 0.2943 — 0.8107 0.2142 0.1916 0.30 0.093 

tai60b 608215054 0.3904 — 2.1373 0.2905 0.0483 0.36 0.049 

Table 6.9 

Results of Comparing RACO with OG-ACO and HAFSOA Algorithms in Random 

Generated QAP Instances using RPD Test 

QAP 

instance 

Best-Known  

Solution 
OG-ACO HAFSOA RACO 

 Number of  

Iterations 

random generated instances:      

Nug30 6124 0.294 0.291 0.007  1500 

Ste36b 15852 1.336 0.804 0.000  1800 

Tai30a 1818146 1.864 1.772 1.567  1500 

Tai40a 3139370 2.597 2.306 1.943  2000 

Tai50a 4941410 2.934 2.685 2.328  2500 

Tai60a 7208572 2.904 2.669 2.533  3000 

Tai80a 13557864 2.666 2.169 2.081  4000 

Tai100a 21125314 2.517 2.233 2.035  5000 

6.6 Summary 

The concern that the E&E components of RACO: reactive heuristics, recursive local 

search, and the quality-based reward assignment within the APSACO parameter 

controller, may interdependently conflict each other when they run together, are 

refuted. The schema of how the components interconnect has been figured in this 
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chapter. Results showed that the said components are operating harmoniously as 

RACO has superior to sixteen metaheuristic algorithms. The generality of RACO as 

an effective method for combinatorial optimization enables further extensions as 

explained in the next chapter.  
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CONCLUSION AND FUTURE WORK 

Ant colony optimization metaheuristic solves, stochastically, optimization problems 

by transforming a biological approach of real ants for finding food into a 

computational approach for finding high quality solutions. Traversing the search 

space of the problem challenged by a dilemma called the exploration versus the 

exploitation. Many previous studies have addressed important aspects of the 

dilemma, such as the role of memory models in learning while optimizing, the way 

in which those models are managed, e.g. pheromone model management, and the 

parameter setting. The problem with those studies is that they tried to solve the 

exploration and exploitation problem by focusing on one of the perspectives while 

neglecting the others as concluded in Chapter Two.  

Reactive search is a technique to improve the internal behavior metaheuristics by 

automating the exploration and exploitation states of search in online and offline 

manners. The feedback collected during the search reports to the user, in offline 

approaches, or reports to the algorithm itself, in online approaches, to evaluate the 

current state of the search and performs the suitable reaction to adjust it. 

Unfortunately, in reactive-based ACO methods, the online approaches are premature 

compared with offline ones. There are no general guidelines for adopting reactive 

search in improving the exploration and exploitation balance within ACO. Chapter 

Three proposes a unified methodology for improving the three aspects of reactive-

based ACO: memory, exploration indication, i.e. feedback, and parameterization.  
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7.1 Research Contributions 

This thesis presented a new ACO-based reactive approach for automating 

exploration and exploitation of ant colony optimization algorithms during the 

optimization process. The main contributions of the thesis are new reactive-based 

memory models, new nature-inspired exploration indicator, and new adaptive 

parameter selection strategy.  

In the first contribution, two memory-based components are provided: reactive 

heuristics (RHs) and recursive local search (RLS) (see Subsections 4.2.2 and 4.2.6) 

respectively. The arcs that their pheromone amount became below a predefined 

threshold are recorded in the CbM scheme in terms of reactive heuristics. RHs are 

deactivated until some events trigger them such as the occurrence of stagnation. The 

trigger activates the use of these heuristics after restarting the current search. The 

proposed heuristics improved the behavior of the restart mechanism and produced 

good results. Next, the problem of premature exploitation has addressed by the 

proposal of RLS, the exploitation mechanism. RLS records a population of solutions 

instead of arcs using the PbM scheme, which is a fixed size vector of the high quality 

solutions found in current and previous iterations. The imperial results showed that 

solving small and medium TSP instances are more profitable from RHs than larger 

instances. For all sizes of QAP instances, the RLS mechanism gives a higher impact 

than applying it to TSP. Two variants of MMAS, they are RMMAS and RMMASRLS 

(refer to Figures 4.3 and 4.8 respectively), are applied to TSP and QAP, and are 

proposed based on these contributions. The improvements are confirmed 

computationally and statistically.  
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In the second contribution, a more robust indication is achieved using the machine 

learning based indicator denoted as ACOustic (see Section 5.2). The idea of 

inventing this indicator is mitigated from the acoustic mimicry phenomena in natural 

ants-parasites systems.  Using ACOustic, the exploration process is redefined using 

the number of clusters as a metric. The amount of exploration is measured by the 

degree of relatedness between artificial ants. In spite of the computational cost of the 

application of ACOustic, it has shown empirically to be a more robust indicator. The 

significance of this proposal is not only in the improvement in the robustness of the 

indication, but also in the attempt of modeling the sounds of ants. The development 

of ACOustic can be invested in different ways and lead to propose more advanced 

E&E components not for ACO algorithms only, but for other metaheuristics.             

The third contribution concerns the proposal of three rewards assignment strategies 

for adaptive parameters’ selection. There are the quality-based, the exploration-based 

and the unified strategies (see Subsections 5.7.1, 5.7.2 and 5.7.3 respectively). After 

a proper value for a particular parameter is selected proportionally, it is applied to 

the optimization process. The impact of the application is transformed into numerical 

rewards. One of the proposed strategies can be applied to calculate the rewards based 

on the reported impact. The experimental results showed that the quality-based 

reward assignment strategy has the more impact than others. 

The three contributions are merged, in the unified RACO (see Chapter Six), and are 

empirically assessed to ensure that the quality of solutions produced does not 

worsen. The results showed that the contributed components operate more 
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harmoniously. The final algorithmic approach has been compared with eight 

algorithms in the application of TSP and six algorithms in the application of QAP.  

7.2 Future Work 

Automating the exploration and exploitation is promoted by the RACO proposal. 

RACO is assembled from several methods which are combined with the standard 

version of MMAS. Several more efficient and faster converging ACO variants exist, 

such as the PACO algorithm. Recent empirical studies confirmed that the pheromone 

evaporation in MMAS took a long time because of the need to divide every arc in the 

pheromone matrix in every iteration. This situation does not exist in PACO. 

Emerging RACO with the PACO approach in the near future can achieve better 

results than when combined with the standard algorithm.   

 

Coming back to the individual methods combined with RACO, some of the methods 

are designed in a very independent way, and it can be considered that the application 

to any of the ACO variants is just as a baseline. For the RLS proposal, it can be 

applied for any local search algorithm whether it is a stand-alone or hybridized with 

another algorithm. If this idea were to be implemented, there are several 

considerations need to be taken such as the criteria under which the solutions will be 

added/deleted to/from the population vector.  

 

For the ACOustic proposal in reporting the performance of ACO algorithms, it is 

important to examine more fitness landscapes for other CO problems such as vehicle 

routing problem (VRP) and car sequencing problem (CSP). It is suspected that new 
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insights can be discovered from analyzing such landscapes using the relatedness 

concept to indicate the amount of exploration. On the other hand, ACOustic can be 

used for controlling the dynamic transformation between exploration and 

exploitation for other metaheuristics such as the Artificial Bee Colony (ABC) 

algorithm. For ABC, ACOustic can be utilized as a machine learning trigger for 

controlling the dynamic for the transformation between the onlookers and the scouts, 

or can be used to determine the optimal point to immigrate the current neighborhood 

structure.                   

 

Another path for further work is the application of the APSACO strategy for other 

ACO variants such as ACS or other swarm intelligence algorithms. The Particle 

Swarm Optimization (PSO) algorithm is a good candidate due to the similar number 

of parameters used for adjusting the exploration and exploitation within PSO. Along 

the same line, there are other strategies for deriving the numerical rewards in relation 

with the size of population memory referring to the pheromone management in the 

PACO approach.   

 

A major drawback of the final recommended RACO method is that its application 

remains limited. It will be very useful to apply general enough adaptive parameter 

selection methods such as the ones applied in evolutionary algorithms. With the aid 

of ACOustic, the fitness improvement used in assessing the impact of the 

parameters’ application can be put in relation to the diversity of population in order 

to efficiently tackle multimodal problems especially when PSO is utilized as an 

underline algorithm or the adaptive operator selection (AOS) paradigm in 
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evolutionary algorithms, when it is used as a meta-optimization algorithm for the 

parameters’ selection problem, particularly, in RACO and, generally, in ACO. In 

order to generalize the scientific contributions proposed in this thesis, there is 

intention to prepare freely available source codes with well-designed interface of the 

proposed approach. More and more combinatorial optimization problems, e.g. VRP 

and CSP, can be modeled based on the construction graph concept.   
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Appendix A 

Technical Details of the TSPLIB Files 

A.1: TSPLIB File Format 

1- TSPLIB File Specification Section:  

 

* NAME : <string> Identifies the data file. 

 * TYPE :  <string> Specifies the type of data. Possible types are 

  * TSP          Data for a symmetric traveling salesman problem 

  * ATSP       Data for an asymmetric traveling salesman problem 

  * HCP         Hamiltonian cycle problem data. 

  * HPP         Hamiltonian path problem data (not available in TSPLIB) 

 * COMMENT : <string> Additional comments (usually the name of the contributor or the creator of 

the problem instance is given here). 

 * DIMENSION : < integer> the number of nodes. 

 * EDGE_WEIGHT_TYPE : <string> Specifies how the edge weights (or distances) are given. The 

values are: 

  * ATT              Special distance function for problem att48 and att532 

  * CEIL_2D      Weights are Euclidean distances in 2-D rounded up 

  * CEIL_3D      Weights are Euclidean distances in 3-D rounded up 

  * EUC_2D       Weights are Euclidean distances in 2-D 

  * EUC_3D       Weights are Euclidean distances in 3-D 

  * EXPLICIT    Weights are listed explicitly in the corresponding section 

  * GEO           Weights are geographical distances in kilometres (TSPLIB). Coordinates are 

given in the form DDD.MM where DDD are the degrees and MM the minutes 

  * GEOM         Weights are geographical distances in meters (used for the world TSP). 

Coordinates are given in decimal form     

  * GEO_MEEUS    Weights are geographical distances in kilometres, computed according 

to Meeus' formula.  Coordinates are given in the form DDD.MM where DDD are the degrees and 

MM the minutes 

  * GEOM_MEEUS   Weights are geographical distances, computed according to Meeus' 

formula. Coordinates are given in decimal form 

  * MAN_2D       Weights are Manhattan distances in 2-D 

  * MAN_3D       Weights are Manhattan distances in 3-D 

  * MAX_2D       Weights are maximum distances in 2-D  

  * MAX_3D       Weights are maximum distances in 3-D 

 * EDGE-WEIGHT_FORMAT : <string> Describes the format of the edge weights if they are given 

explicitly. The values are 

  * FULL_MATRIX      Weights are given by a full matrix 

  * UPPER_ROW        Upper triangular matrix (row-wise without diagonal entries) 

  * LOWER_ROW        Lower triangular matrix (row-wise without diagonal entries)      

  * UPPER_DIAG_ROW   Upper triangular matrix (row-wise including diagonal entries) 

  * LOWER_DIAG_ROW   Lower triangular matrix (row-wise including diagonal entries) 

  * UPPER_COL        Upper triangular matrix (column-wise without diagonal entries) 

  * LOWER_COL        Lower triangular matrix (column-wise without diagonal entries)   

  * UPPER_DIAG_COL   Upper triangular matrix (column-wise including diagonal entries) 

  * LOWER_DIAG_COL   Lower triangular matrix (column-wise including diagonal 

entries) 

 * EDGE_DATA_FORMAT : <string> Describes the format in which the edges of a graph are given, 

if the graph is not complete. The values are 

  * EDGE_LIST    The graph is given by an edge list 

  * ADJ_LIST     The graph is given by an adjacency list 
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* NODE_COORD_TYPE : <string> Specifies whether the coordinates are associated with each node 

(which, for example may be used for either graphical display or distance computations. The values are 

  * TWOD_COORDS      Nodes are specified by coordinates in 2-D 

  * THREED_COORDS    Nodes are specified by coordinates in 3-D 

  * NO_COORDS        The nodes do not have associated coordinates 

* DISPLAY_DATA_TYPE : <string> Specifies how a graphical display of the nodes can be 

obtained.  The values are 

  * COORD_DISPLAY    Display is generated from the node coordinates 

  * TWOD_DISPLAY     Explicit coordinates in 2-D are given 

  * BO_DISPLAY       No graphical display is possible.  

The default value is COORD_DISPLAY if node coordinates are specifies and NO_DISPLAY 

otherwise. In the current implementation, however, the value has no significance. 

  

2- TSPLIB File Data Section:  

Depending on the choice of specifications some additional data may be required. These data are given 

corresponding data sections following the specification section. Each data section begins with the 

corresponding keyword. The length of the section is either explicitly known form the format 

specification, or the section is terminated by an appropriate end-of-section identifier. 

 

 * NODE_COORD_SECTION: Node coordinates are given in this section. Each line is of the form 

<integer> <real> <real> if NODE_COORD_TYPE is TWOD_COORDS or <integer> <real> <real> 

<real> if NODE_COORD_TYPE is THREED_COORDS. The integers give the number of the 

respective nodes. The real numbers are the associated coordinates. 

 * EDGE_DATA_SECTION: Edges of the graph are specified in either of the two formats allowed in 

the EDGE_DATA_FORAT entry. If a type is EDGE_LIST, then the edges are given as a sequence of 

lines of the form <integer> <integer> each entry giving the terminal nodes of some edge. The list is 

terminated by a -1. If the type is ADJ_LIST, the section consists of adjacency list for nodes. The 

adjacency list of a node x is specified as <integer> <integer> ... <integer> -1 where the first integer 

gives the number of node x and the following integers (terminated by -1) the numbers of the nodes 

adjacent to x. The list of adjacency lists are terminated by an additional -1. 

 * FIXED_EDGES_SECTION: In this section, edges are listed that are required to appear in each 

solution to the problem. The edges to be fixed are given in the form (per line) <integer> <integer> 

meaning that the edge (arc) from the first node to the second node has to be contained in a solution. 

This section is terminated by a -1. 

 * DISPLAY_DATA_SECTION: 

 * If DISPLAY_DATA_TYPE is TWOD_DISPLAY, the 2-dimensional coordinates from which a 

display can be generated are given in the form (per line) <integer> <real> <real> the integers specify 

the respective nodes and the real numbers give the associated coordinates. The contents of this 

section, however, have no significance in the current implementation. 

 * TOUR_SECTION: A tour is specified in this section. The tour is given by a list of integers giving 

the sequence in which the nodes are visited in the tour. The tour is terminated by a -1. Note: In 

contrast to the TSPLIB format, only one tour can be given in this section. The tour is used to limit the 

search (the last edge to be excluded in a non-gainful move must not belong to the tour). In addition, 

the Alpha field of its edges is set to -1. 

 * EDGE_WEIGHT_SECTION: The edge weights are given in the format specifies by the 

EDGE_WEIGHT_FORMAT entry. At present, all explicit data are integral and is given in one of the 

(self-explanatory) matrix formats, with explicitly known lengths. 

* EOF Terminates input data. The entry is optional. 

 

A.2: TSPLIB File Reading Implementation 

void read_tsp(void)  

/*     

      FUNCTION: read TSP instance file 

      INPUT:    instance name 

      OUTPUT:   list of coordinates for all nodes 
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      COMMENTS: Instance files have to be in TSPLIB format, otherwise procedure fails 

*/ 

{ 

    struct point { 

                 double x; 

                 double y; 

    }; 

    FILE         *tsp_file; 

    char         buf[LINE_BUF_LEN]; 

    long int     i, j; 

    struct point *nodeptr; 

 

    tsp_file = fopen("burm14.tsp", "r"); 

    if ( tsp_file == NULL ) { 

 fprintf(stderr,"No instance file specified, abort\n"); 

 exit(1); 

    } 

    assert(tsp_file != NULL); 

    printf("\nreading tsp-file %s ... \n\n", "burm14.tsp"); 

 

    fscanf(tsp_file,"%s", buf); 

    while ( strcmp("NODE_COORD_SECTION", buf) != 0 ) { 

 if ( strcmp("NAME", buf) == 0 ) { 

     fscanf(tsp_file, "%s", buf); 

     TRACE ( printf("%s ", buf); ) 

     fscanf(tsp_file, "%s", buf); 

     strcpy(tsp_instance.name, buf); 

     TRACE ( printf("%s \n", tsp_instance.name); ) 

     buf[0]=0; 

 } 

 else if ( strcmp("NAME:", buf) == 0 ) { 

     fscanf(tsp_file, "%s", buf); 

     strcpy(tsp_instance.name, buf); 

     TRACE ( printf("%s \n", tsp_instance.name); ) 

     buf[0]=0; 

 } 

 else if ( strcmp("COMMENT", buf) == 0 ){ 

     fgets(buf, LINE_BUF_LEN, tsp_file); 

     TRACE ( printf("%s", buf); ) 

     buf[0]=0; 

 } 

 else if ( strcmp("COMMENT:", buf) == 0 ){ 

     fgets(buf, LINE_BUF_LEN, tsp_file); 

     TRACE ( printf("%s", buf); ) 

     buf[0]=0; 

 } 

 else if ( strcmp("TYPE", buf) == 0 ) { 

     fscanf(tsp_file, "%s", buf); 

     TRACE ( printf("%s ", buf); ) 

     fscanf(tsp_file, "%s", buf); 

     TRACE ( printf("%s\n", buf); ) 

     if( strcmp("TSP", buf) != 0 ) { 

  fprintf(stderr,"\n Not a TSP instance in TSPLIB format !!\n"); 

  exit(1); 

     } 

     buf[0]=0; 

 } 
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 else if ( strcmp("TYPE:", buf) == 0 ) { 

     fscanf(tsp_file, "%s", buf); 

     TRACE ( printf("%s\n", buf); ) 

     if( strcmp("TSP", buf) != 0 ) { 

  fprintf(stderr,"\n Not a TSP instance in TSPLIB format !!\n"); 

  exit(1); 

     } 

     buf[0]=0; 

 } 

 else if( strcmp("DIMENSION", buf) == 0 ){ 

     fscanf(tsp_file, "%s", buf); 

     TRACE ( printf("%s ", buf); ); 

     fscanf(tsp_file, "%ld", &n); 

     tsp_instance.n = n; 

     TRACE ( printf("%ld\n", n); ); 

     assert ( n > 2 && n < 6000); 

     buf[0]=0; 

 } 

 else if ( strcmp("DIMENSION:", buf) == 0 ) { 

     fscanf(tsp_file, "%ld", &n); 

     tsp_instance.n = n; 

     TRACE ( printf("%ld\n", n); ); 

     assert ( n > 2 && n < 6000); 

     buf[0]=0; 

 } 

 else if( strcmp("DISPLAY_DATA_TYPE", buf) == 0 ){ 

     fgets(buf, LINE_BUF_LEN, tsp_file); 

     TRACE ( printf("%s", buf); ); 

     buf[0]=0; 

 } 

 else if ( strcmp("DISPLAY_DATA_TYPE:", buf) == 0 ) { 

     fgets(buf, LINE_BUF_LEN, tsp_file); 

     TRACE ( printf("%s", buf); ); 

     buf[0]=0; 

 } 

 else if( strcmp("EDGE_WEIGHT_TYPE", buf) == 0 ){ 

     buf[0]=0; 

     fscanf(tsp_file, "%s", buf); 

     TRACE ( printf("%s ", buf); ); 

     buf[0]=0; 

     fscanf(tsp_file, "%s", buf); 

     TRACE ( printf("%s\n", buf); ); 

     if ( strcmp("EUC_2D", buf) == 0 ) { 

  distance = round_distance; 

     } 

     else if ( strcmp("CEIL_2D", buf) == 0 ) { 

  distance = ceil_distance; 

     } 

     else if ( strcmp("GEO", buf) == 0 ) { 

  distance = geo_distance; 

     } 

     else if ( strcmp("ATT", buf) == 0 ) { 

  distance = att_distance; 

     } 

     else 

  fprintf(stderr,"EDGE_WEIGHT_TYPE %s not implemented\n",buf); 

     strcpy(tsp_instance.edge_weight_type, buf); 
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     buf[0]=0; 

 } 

 else if( strcmp("EDGE_WEIGHT_TYPE:", buf) == 0 ){ 

     /* set pointer to appropriate distance function; has to be one of  

        EUC_2D, CEIL_2D, GEO, or ATT. Everything else fails */ 

     buf[0]=0; 

     fscanf(tsp_file, "%s", buf); 

     TRACE ( printf("%s\n", buf); ) 

  printf("%s\n", buf); 

     printf("%s\n", buf); 

     if ( strcmp("EUC_2D", buf) == 0 ) { 

  distance = round_distance; 

     } 

     else if ( strcmp("CEIL_2D", buf) == 0 ) { 

  distance = ceil_distance; 

     } 

     else if ( strcmp("GEO", buf) == 0 ) { 

  distance = geo_distance; 

     } 

     else if ( strcmp("ATT", buf) == 0 ) { 

  distance = att_distance; 

     } 

     else { 

  fprintf(stderr,"EDGE_WEIGHT_TYPE %s not implemented\n",buf); 

  exit(1); 

     } 

     strcpy(tsp_instance.edge_weight_type, buf); 

     buf[0]=0; 

 } 

 buf[0]=0; 

 fscanf(tsp_file,"%s", buf); 

    } 

    if( strcmp("NODE_COORD_SECTION", buf) == 0 ){ 

 TRACE ( printf("found section containing the node coordinates\n"); ) 

     } 

    else{ 

 fprintf(stderr,"\n\nSome error occurred finding start of coordinates from tsp file !!\n"); 

 exit(1); 

    } 

    if( (nodeptr = malloc(sizeof(struct point) * n)) == NULL ) 

 exit(EXIT_FAILURE); 

    else { 

 for ( i = 0 ; i < n ; i++ ) { 

     fscanf(tsp_file,"%ld %lf %lf", &j, &nodeptr[i].x, &nodeptr[i].y ); 

 } 

    } 

    TRACE ( printf("number of cities is %ld\n",n); ) 

    TRACE ( printf("\n... done\n"); )  

} 

 

 



 

 190 

Appendix B 

Statistical Details of the QAPLIB Files 

B.1: Burkard QAPLIB Files 

   Name    N     Feasible Solution      Permutation/Bound      Gap 

   --------------------------------------------------------- 

  Bur26a  26    5426670 (OPT)    (26 15 11 7 4 12 13 2 6 18 1 5 9 21 8 14 3 20 19 25 17 10 16 24 23 

22) 

  Bur26b  26    3817852                    3753198                1.69 % 

  Bur26c  26    5426795                    5361204                1.21 % 

  Bur26d  26    3821225                    3758687                1.64 % 

  Bur26e  26    5386879                    5334780                0.97 % 

  Bur26f  26    3782044                     3733941                1.27 % 

  Bur26g  26   10117172                   10055637              0.61 % 

  Bur26h  26    7098658                    7045690                0.75 % 

 

B.2: Christofides QAPLIB Files 

   Name    N     Feasible Solution      Permutation/Bound      Gap 

   ----------------------------------------------------------------- 

   Chr12a  12     9552 (OPT)    (7,5,12,2,1,3,9,11,10,6,8,4) 

   Chr12b  12     9742 (OPT)    (5,7,1,10,11,3,4,2,9,6,12,8) 

   Chr12c  12    11156 (OPT)    (7,5,1,3,10,4,8,6,9,11,2,12) 

   Chr15a  15     9896 (OPT)    (5,10,8,13,12,11,14,2,4,6,7,15,3,1,9) 

   Chr15b  15     7990 (OPT)    (4,13,15,1,9,2,5,12,6,14,7,3,10,11,8) 

   Chr15c  15     9504 (OPT)    (13,2,5,7,8,1,14,6,4,3,15,9,12,11,10) 

   Chr18a  18    11098 (OPT)    (3,13,6,4,18,12,10,5,1,11,8,7,17,14,9,16,15,2) 

   Chr18b  18     1534 (OPT)    (1,2,4,3,5,6,8,9,7,12,10,11,13,14,16,15,17,18) 

   Chr20a  20     2192 (OPT)    (3,20,7,18,9,12,19,4,10,11,1,6,15,8,2,5,14,16,13,17) 

   Chr20b  20     2298 (OPT)    (20,3,9,7,1,12,16,6,8,14,10,4,5,13,17,2,18,11,19,15) 

   Chr20c  20    14142 (OPT)    (12,6,9,2,10,11,3,4,15,18,7,13,16,5,14,17,19,1,8,20) 

   Chr22a  22     6156 (OPT)    (15,2,21,8,16,1,7,18,14,13,5,17,6,11,3,4,20,19,9,22,10,12) 

   Chr22b  22     6194 (OPT)    (10,19,3,1,20,2,6,4,7,8,17,12,11,15,21,13,9,5,22,14,18,16) 

   Chr25a  25     3796 (OPT)    (25,12,5,3,18,4,16,8,20,10,14,6,15,23,24,19,13,1,21,11,17,2,22,7,9) 

 

B.3: Elshafei QAPLIB Files 

   Name    N     Feasible Solution      Permutation/Bound      Gap 

   ----------------------------------------------------------------- 

   Els19   19   17212548 (OPT)   (9,10,7,18,14,19,13,17,6,11,4,5,12,8,15,16,1,2,3)  

 

B.4: Eschermann QAPLIB Files 

   Name    N     Feasible Solution      Permutation/Bound      Gap 

   ------------------------------------------------------------------------------  

   Esc16a 16     68 (OPT)     (2,14,10,16,5,3,7,8,4,6,12,11,15,13,9,1)  

   Esc16b 16     292 (OPT)     (6,3,7,5,13,1,15,2,4,11,9,14,10,12,8,16) 

   Esc16c 16     160 (OPT)     (11,14,10,16,12,8,9,3,13,6,5,7,15,2,1,4) 

   Esc16d 16     16 (OPT)     (14,2,12,5,6,16,8,10,3,9,13,7,11,15,4,1) 

   Esc16e 16     28 (OPT)     (16,7,8,15,9,12,14,10,11,2,6,5,13,4,3,1) 

   Esc16f 16     0 (OPT)     (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) 

   Esc16g 16     26 (OPT)     (8,11,9,12,15,16,14,10,7,6,2,5,13,4,3,1) 
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   Esc16h 16     996 (OPT)     (13,9,10,15,3,11,4,16,12,7,8,5,6,2,1,14) 

   Esc16i 16     14 (OPT)     (13,9,11,3,7,5,6,2,1,15,4,14,12,10,8,16) 

   Esc16j 16     8 (OPT)     (8,3,16,14,2,12,10,6,9,5,13,11,4,7,15,1) 

   Esc32a  32   130                    88                         32.31 %  

   Esc32b  32   168                   100                        40.48 %  

   Esc32c  32   642                    506                       21.18 %  

   Esc32d  32   200                    152                       24.00 %  

   Esc32e 32    2 (OPT)     (1,2,5,6,8,16,13,19,9,32,7,22,24,20,4,12,3, 

                               17,29,21,11,25,27,18,30,31,23,28,14,15,26,10) 

   Esc32f 32    2 (OPT)     (1,2,5,6,8,16,10,7,9,28,30,4,32,31,22,12,3, 

                               17,26,18,13,25,29,21,23,24,19,20,14,15,27,11) 

   Esc32g 32    6 (OPT)     (14,15,16,12,11,26,30,10,25,8,29,22,31,28, 

                               13,1,19,9,17,32,24,18,4,2,20,5,21,3,7,6,23,27) 

   Esc32h  32   438                   352                          21.00 %  

   Esc64a  64   116                    47                          59.49 %  

   Esc128 128    64                     2                            96.86 % 

 

B.5: Krarup QAPLIB Files 

Name    N     Feasible Solution      Permutation/Bound      Gap 

--------------------------------------------------------- 

Kra30a  30     88900              (OPT)     

(26,24,23,16,20,19,6,10,11,2,22,18,7,30,15,21,25,29,12,9,5,17,1,8, 13,28,14,3,4,27) 

Kra30b  30   91420              (OPT)    (23,26,19,25,20,22,11,8,9,14,27,30,12,6,28, 

24,21,18,1,7,10,29,13, 5,2,17,3,15,4,16)   

 

B.6: Nugent QAPLIB Files 

   Name    N     Feasible Solution      Permutation/Bound      Gap 

   ----------------------------------------------------------------- 

   Nug12   12    578 (OPT)    (12,7,9,3,4,8,11,1,5,6,10,2)                  

   Nug14   14   1014 (OPT)    (9,8,13,2,1,11,7,14,3,4,12,5,6,10)             

   Nug15   15   1150 (OPT)    (1,2,13,8,9,4,3,14,7,11,10,15,6,5,12)           

   Nug16a  16   1610                                       (OPT)    (9,14,2,15,16,3,10,12,8,11,6,5,7,1,4,13)       

   Nug16b  16   1240                                      (OPT)    (16,12,13,8,4,2,9,11,15,10,7,3,14,6,1,5)        

   Nug17   17   1732                                    (OPT)    (16,15,2,14,9,11,8,12,10,3,4,1,7,6,13,17,5)        

   Nug18   18   1930                                    (OPT)    (10,3,14,2,18,6,7,12,15,4,5,1,11,8,17,13,9,16)      

   Nug20   20   2570                                      (OPT)    

(18,14,10,3,9,4,2,12,11,16,19,15,20,8,13,17,5,7,1,6) 

   Nug21   21   2438                                    (OPT)    

(4,21,3,9,13,2,5,14,18,11,16,10,6,15,20,19,8,7,1,12,17)  

   Nug22   22   3596                                   (OPT)    

(2,21,9,10,7,3,1,19,8,20,17,5,13,6,12,16,11,22,18,14,15)  

   Nug24   24   3488                                  (OPT)    

(17,8,11,23,4,20,15,19,22,18,3,14,1,10,7,9,16,21,24,12,6,13,5,2) 

   Nug25   25   3744                                   (OPT)    

(5,11,20,15,22,2,25,8,9,1,18,16,3,6,19,24,21,14,7,10,17,12,4,23,13) 

   Nug27   27   5234                                   (OPT)    

(23,18,3,1,27,17,5,12,7,15,4,26,8,19,20,2,24,21,14,10,9,13,22,25,6,16,11) 

   Nug28   28   5166                                   (OPT)    

(18,21,9,1,28,20,11,3,13,12,10,19,14,22,15,2,25,16,4,23,7,17,24,26,5,27,8,6) 

   Nug30   30   6124                                       (OPT)    

(14,5,28,24,1,3,16,15,10,9,21,2,4,29,25,22,13,26,17,30,6,20,19,8,18,7,27,12,11,23)    
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B.7: Skorin-Kapov QAPLIB Files 

   Name    N     Feasible Solution      Permutation/Bound      Gap 

   ------------------------------------------------------- 

   Sko42     42    15812                   14934                5.56 % 

   Sko49     49    23386                   22004                5.91 % 

   Sko56     56    34458                   32610                5.37 % 

   Sko64     64    48498                   45736                5.70 % 

   Sko72     72    66256                   62691                5.38 % 

   Sko81     81    90998                   86072                5.41 % 

   Sko90     90   115534                  108493              6.10 % 

   Sko100a  100   152002               142668                6.14 % 

   Sko100b  100   153890               143872               6.51 % 

   Sko100c  100   147862                139402               5.73 % 

   Sko100d  100   149576                139898               6.47 % 

   Sko100e  100   149150                 140105               6.07 % 

   Sko100f  100   149036                  139452              6.43 % 

 

B.8: Taillard QAPLIB Files 

   Name    N     Feasible Solution      Permutation/Bound      Gap 

   ----------------------------------------------------------------- 

   Tai12a    12       224416 (OPT)     (8,1,6,2,11,10,3,5,9,7,12,4)                

   Tai12b    12     39464925 (OPT)     (9,4,6,3,11,7,12,2,8,10,1,5)               

   Tai15a    15       388214 (OPT)     (5,10,4,13,2,9,1,11,12,14,7,15,3,8,6)     

   Tai15b    15     51765268 (OPT)     (1,9,4,6,8,15,7,11,3,5,2,14,13,12,10)    

   Tai17a    17       491812 (OPT)     (12,2,6,7,4,8,14,5,11,3,16,13,17,9,1,10,15) 

   Tai20a    20       703482 (OPT)     (10,9,12,20,19,3,14,6,17,11,5,7,15,16,18,2,4,8,13,1) 

  Tai20b    20    122455319 (OPT)     (8,16,14,17,4,11,3,19,7,9,1,15,6,13,10,2,5,20,18,12) 

  Tai25a    25      1167256                     1016213                        12.94 % 

  Tai25b    25    344355646 (OPT)   (4,15,10,9,13,5,25,19,7,3,17,6,18,20,16,2,22,23,8,11,21,   

24,14,12,1)                                                                                       

  Tai30a    30      1818146                     1529135                        15.90 %  

   Tai30b    30    637117113                  40947945                      93.58 %  

   Tai35a    35      2422002                    1951207                        19.44 %              

   Tai35b    35    283315445                  32611838                      88.49 %  

   Tai40a    40      3139370                    2492850                          20.60 %              

   Tai40b    40    637250948                  46143753                       92.77 %  

   Tai50a    50      4941410                    3854359                         22.00 %              

   Tai50b    50    458821517                 40296004                        91.23 %  

   Tai60a    60      7208572                    5555095                         22.94 %  

   Tai60b    60    608215054                  50113782                       91.77 %  

   Tai64c    64      1855928                     896398                          51.71 %  

   Tai80a    80     13557864                    10329674                      23.82 %  

   Tai80b    80    818415043                   89169828                      89.11 %  

   Tai100a  100     21125314                  15824355                      25.10 %    

   Tai100b  100   1185996137                174687926                    86.28 %  

  Tai150b  150    498896643                 63007151                       87.37 %  

  Tai256c  256     44759294                 41291996                        7.75 % 
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