78 research outputs found

    Interactive searching and browsing of video archives: using text and using image matching

    Get PDF
    Over the last number of decades much research work has been done in the general area of video and audio analysis. Initially the applications driving this included capturing video in digital form and then being able to store, transmit and render it, which involved a large effort to develop compression and encoding standards. The technology needed to do all this is now easily available and cheap, with applications of digital video processing now commonplace, ranging from CCTV (Closed Circuit TV) for security, to home capture of broadcast TV on home DVRs for personal viewing. One consequence of the development in technology for creating, storing and distributing digital video is that there has been a huge increase in the volume of digital video, and this in turn has created a need for techniques to allow effective management of this video, and by that we mean content management. In the BBC, for example, the archives department receives approximately 500,000 queries per year and has over 350,000 hours of content in its library. Having huge archives of video information is hardly any benefit if we have no effective means of being able to locate video clips which are of relevance to whatever our information needs may be. In this chapter we report our work on developing two specific retrieval and browsing tools for digital video information. Both of these are based on an analysis of the captured video for the purpose of automatically structuring into shots or higher level semantic units like TV news stories. Some also include analysis of the video for the automatic detection of features such as the presence or absence of faces. Both include some elements of searching, where a user specifies a query or information need, and browsing, where a user is allowed to browse through sets of retrieved video shots. We support the presentation of these tools with illustrations of actual video retrieval systems developed and working on hundreds of hours of video content

    The Físchlár-News-Stories system: personalised access to an archive of TV news

    Get PDF
    The “Físchlár” systems are a family of tools for capturing, analysis, indexing, browsing, searching and summarisation of digital video information. Físchlár-News-Stories, described in this paper, is one of those systems, and provides access to a growing archive of broadcast TV news. Físchlár-News-Stories has several notable features including the fact that it automatically records TV news and segments a broadcast news program into stories, eliminating advertisements and credits at the start/end of the broadcast. Físchlár-News-Stories supports access to individual stories via calendar lookup, text search through closed captions, automatically-generated links between related stories, and personalised access using a personalisation and recommender system based on collaborative filtering. Access to individual news stories is supported either by browsing keyframes with synchronised closed captions, or by playback of the recorded video. One strength of the Físchlár-News-Stories system is that it is actually used, in practice, daily, to access news. Several aspects of the Físchlár systems have been published before, bit in this paper we give a summary of the Físchlár-News-Stories system in operation by following a scenario in which it is used and also outlining how the underlying system realises the functions it offers

    Indexing, browsing and searching of digital video

    Get PDF
    Video is a communications medium that normally brings together moving pictures with a synchronised audio track into a discrete piece or pieces of information. The size of a “piece ” of video can variously be referred to as a frame, a shot, a scene, a clip, a programme or an episode, and these are distinguished by their lengths and by their composition. We shall return to the definition of each of these in section 4 this chapter. In modern society, video is ver

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Automatic summarization of narrative video

    Get PDF
    The amount of digital video content available to users is rapidly increasing. Developments in computer, digital network, and storage technologies all contribute to broaden the offer of digital video. Only users’ attention and time remain scarce resources. Users face the problem of choosing the right content to watch among hundreds of potentially interesting offers. Video and audio have a dynamic nature: they cannot be properly perceived without considering their temporal dimension. This property makes it difficult to get a good idea of what a video item is about without watching it. Video previews aim at solving this issue by providing compact representations of video items that can help users making choices in massive content collections. This thesis is concerned with solving the problem of automatic creation of video previews. To allow fast and convenient content selection, a video preview should take into consideration more than thirty requirements that we have collected by analyzing related literature on video summarization and film production. The list has been completed with additional requirements elicited by interviewing end-users, experts and practitioners in the field of video editing and multimedia. This list represents our collection of user needs with respect to video previews. The requirements, presented from the point of view of the end-users, can be divided into seven categories: duration, continuity, priority, uniqueness, exclusion, structural, and temporal order. Duration requirements deal with the durations of the preview and its subparts. Continuity requirements request video previews to be as continuous as possible. Priority requirements indicate which content should be included in the preview to convey as much information as possible in the shortest time. Uniqueness requirements aim at maximizing the efficiency of the preview by minimizing redundancy. Exclusion requirements indicate which content should not be included in the preview. Structural requirements are concerned with the structural properties of video, while temporal order requirements set the order of the sequences included in the preview. Based on these requirements, we have introduced a formal model of video summarization specialized for the generation of video previews. The basic idea is to translate the requirements into score functions. Each score function is defined to have a non-positive value if a requirement is not met, and to increase depending on the degree of fulfillment of the requirement. A global objective function is then defined that combines all the score functions and the problem of generating a preview is translated into the problem of finding the parts of the initial content that maximize the objective function. Our solution approach is based on two main steps: preparation and selection. In the preparation step, the raw audiovisual data is analyzed and segmented into basic elements that are suitable for being included in a preview. The segmentation of the raw data is based on a shot-cut detection algorithm. In the selection step various content analysis algorithms are used to perform scene segmentation, advertisements detection and to extract numerical descriptors of the content that, introduced in the objective function, allow to estimate the quality of a video preview. The core part of the selection step is the optimization step that consists in searching the set of segments that maximizes the objective function in the space of all possible previews. Instead of solving the optimization problem exactly, an approximate solution is found by means of a local search algorithm using simulated annealing. We have performed a numerical evaluation of the quality of the solutions generated by our algorithm with respect to previews generated randomly or by selecting segments uniformly in time. The results on thirty content items have shown that the local search approach outperforms the other methods. However, based on this evaluation, we cannot conclude that the degree of fulfillment of the requirements achieved by our method satisfies the end-user needs completely. To validate our approach and assess end-user satisfaction, we conducted a user evaluation study in which we compared six aspects of previews generated using our algorithm to human-made previews and to previews generated by subsampling. The results have shown that previews generated using our optimization-based approach are not as good as manually made previews, but have higher quality than previews created using subsample. The differences between the previews are statistically significant

    Soccer Video Event Detection Via Collaborative Textual, Aural And Visual Analysis

    Get PDF
    Soccer event detection deals with identifying interesting segments in soccer video via audio/visual content analysis. This task enables automatic high-level index creation, which circumvents large-scale manual annotation and facilitates semantic-based retrieval. This thesis proposes two frameworks for event detection through collaborative analysis of textual, aural and visual features. The frameworks share a common initial component where both utilize an external textual resource, which is the minute-by-minute (MBM) reports from sports broadcasters, to accurately localize sections of video containing the desired events

    Multimedia Retrieval

    Get PDF

    Investigation Report on Universal Multimedia Access

    Get PDF
    Universal Multimedia Access (UMA) refers to the ability to access by any user to the desired multimedia content(s) over any type of network with any device from anywhere and anytime. UMA is a key framework for multimedia content delivery service using metadata. This investigation report analyzes the state-of-the-art technologies in UMA and tries to identify the key issues of UMA. The state-of-the-art in multimedia content adaptation, an overview of the standards that supports the UMA framework, potential privacy problems in UMA systems and some new UMA applications are presented in this report. This report also provides challenges that still remain to be resolved in UMA to make clear the potential key problems in UMA and determine which ones to solve

    Providing effective memory retrieval cues through automatic structuring and augmentation of a lifelog of images

    Get PDF
    Lifelogging is an area of research which is concerned with the capture of many aspects of an individual's life digitally, and within this rapidly emerging field is the significant challenge of managing images passively captured by an individual of their daily life. Possible applications vary from helping those with neurodegenerative conditions recall events from memory, to the maintenance and augmentation of extensive image collections of a tourist's trips. However, a large lifelog of images can quickly amass, with an average of 700,000 images captured each year, using a device such as the SenseCam. We address the problem of managing this vast collection of personal images by investigating automatic techniques that: 1. Identify distinct events within a full day of lifelog images (which typically consists of 2,000 images) e.g. breakfast, working on PC, meeting, etc. 2. Find similar events to a given event in a person's lifelog e.g. "show me other events where I was in the park" 3. Determine those events that are more important or unusual to the user and also select a relevant keyframe image for visual display of an event e.g. a "meeting" is more interesting to review than "working on PC" 4. Augment the images from a wearable camera with higher quality images from external "Web 2.0" sources e.g. find me pictures taken by others of the U2 concert in Croke Park In this dissertation we discuss novel techniques to realise each of these facets and how effective they are. The significance of this work is not only of benefit to the lifelogging community, but also to cognitive psychology researchers studying the potential benefits of lifelogging devices to those with neurodegenerative diseases
    corecore