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Abstract
Lifelogging is an area of research which is concerned with the capture of many aspects

of an individual’s life digitally, and within this rapidly emerging field is the significant chal-

lenge of managing images passively captured by an individual of their daily life. Possible

applications vary from helping those with neurodegenerative conditions recall events from

memory, to the maintenance and augmentation of extensive image collections of a tourist’s

trips. However, a large lifelog of images can quickly amass, with an average of 700,000

images captured each year, using a device such as the SenseCam.

We address the problem of managing this vast collection of personal images by investi-

gating automatic techniques that:

1. Identify distinct events within a full day of lifelog images (which typically consists

of 2,000 images) e.g. breakfast, working on PC, meeting, etc.

2. Find similar events to a given event in a person’s lifelog e.g. “show me other events

where I was in the park”

3. Determine those events that are more important or unusual to the user and also select

a relevant keyframe image for visual display of an event e.g. a “meeting” is more

interesting to review than “working on PC”

4. Augment the images from a wearable camera with higher quality images from ex-

ternal “Web 2.0” sources e.g. find me pictures taken by others of the U2 concert in

Croke Park

In this dissertation we discuss novel techniques to realise each of these facets and how

effective they are. The significance of this work is not only of benefit to the lifelogging

community, but also to cognitive psychology researchers studying the potential benefits of

lifelogging devices to those with neurodegenerative diseases.
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Chapter 1

INTRODUCTION

The important events in our lives define our being, and it is important to remember these

events. In fact Conway argues that autobiographical memory affects us to the very core and

defines who we are [40]. McAdams also argues that memory is crucial to self-definition

[98], and Lampinen, Beike, & Behrend acknowledge the contribution of Sir Fredric Bartlett

who recognised in 1932 that memory was not a mechanical process but a meaning-making

system [84]. In the past exaggeration and repeated storytelling were used to remember. In

fact shared memories are a part of our social self, and define who we are as a group of

people e.g. it is the memories of shared experiences with one’s family that create the close

ties and bonds, and reminiscing these memories together not only improves one’s memory,

and the memory of the family, but also create a tighter social bond between those people.

Therefore in essence memories do affect us to the core, and in fact define our relationships

too. Given that populations are generally getting older and that the number of those with

memory impairments is ever increasing [9], information scientists are now exploring using

technology to aid memory.

Almost everything we do these days is in some way monitored or logged by computers.

We’ve come to accept, or maybe just ignore, this massive surveillance because it brings us

benefits. We have a more secure feeling when we know there is CCTV present, we get

itemised billing from phone companies, and we get convenience and even loyalty bonuses
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with some of our regular purchases.

Lifelogging is the term used to describe recording different aspects of our daily life, in

digital form, for our own exclusive personal use. It is a form of reverse surveillance, some-

times termed sousveillance, referring to us, the subjects, doing the watching of ourselves.

Lifelogging can take many forms, such as the application which runs on a mobile phone to

‘log’ all your activities and then present all those activities in a calendar format.

Human memory is recognised as being far from perfect and through the ages human

beings have devised many methods to aid their memory [9], from ancient cave paintings, to

verbal story telling with embellishments, to written manuscripts to maintain a more accurate

historical account, to audio and video recorders in the recent past. In terms of individuals

remembering aspects/activities of what they themselves have been doing, the written diary

has been popular for a long number of years. More recently, with the advent of computing

technology and the Internet, many individuals have begun to maintain online blogs to detail

aspects of their activities.

One of the primary goals of lifelogging is to move individuals towards total mem-

ory/experience recall [15]. The lifelogging community attempt to achieve this goal by

automatically capturing electronic data from numerous sources of information (Figure 1.1),

e.g. web pages visited, e-mails sent and received, audio recordings of conversations, etc.

An interesting area in this field of research is visual lifelogging, i.e. an individual capturing

activities through the medium of images or video. It is particularly important to do this

through passive capture, meaning the use of devices that automatically capture images or

video, thus requiring no conscious effort by the user to take images, which leads to him

or her acting in a more natural manner. Baddeley recognises the use of cave-paintings and

visual mnemonics (first known to be used by the Greek poet Simonides in about 500 B.C.)

through the ages to aid the remembrance of past events [9], thus highlighting the importance

of visual imagery to memory (as found by Brewer in 1986 [24]). We will later show that

cue-based recall is very helpful in neural retrieval mechanisms, in particular when those

cues are lifelog images taken from one’s own perspective.
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Figure 1.1: Overview of MyLifeBits, a project exploring the challenges posed in recording
and retrieving personal information from multiple sources of data [60].
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The visual lifelogging community has mainly concentrated on the challenges of minia-

turising the hardware devices, and of how to store the vast quantities of data. Only recently

has the focus been placed on how to manage and organise these large quantities of data to

act as effective memory retrieval cues.

We will now firstly provide more details on the SenseCam, a passive capture visual

lifelogging device. Thereafter we will detail potential scenarios where such a device may

be of real-life benefit to individuals, whether they be tourists or have neurodegenerative

conditions. While capture and storage of visual lifelog images is relatively straightfor-

ward, a major challenge which has faced the community is that of effectively managing

and retrieving relevant content. We will discuss in detail the particular challenges posed

by lifelogging, and detail a number of focused areas in which we make a contribution. Fi-

nally in this chapter we state the hypothesis of this thesis and provide a structure of how the

remainder of this thesis is organised.

1.1 The SenseCam

We will now describe the visual lifelogging device that we use, the SenseCam, in more

detail. The SenseCam [71], developed by Microsoft Research Cambridge, is a small wear-

able device that is worn via a lanyard around the neck as displayed in Figure 1.2. The

SenseCam incorporates a digital camera and multiple sensors including: sensors to detect

changes in light levels, an accelerometer to detect motion, a thermometer to detect ambient

temperature, and a passive infrared sensor to detect the presence of a person. Sensor data is

captured approximately every 2 seconds and based on these readings it is determined when

an image should be captured [71]. If there is no image captured based on sensor activity

over a predetermined time period (50 seconds), an image will be automatically captured.

All the sensor data is correlated with the captured SenseCam images when downloaded to

a computer. Images are stored onboard the device, with an average of about 2,000 images

captured in a typical day, along with associated sensor readings. The SenseCam is capable
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Figure 1.2: Note the SenseCam device worn via a lanyard around the user’s neck.

of storing approximately 15 days worth of data onboard, before it is required to download

the images to a standard PC via a USB cable. It is required to charge the SenseCam every

night.

Other work in the literature has touched on potential applications based on pictures and

sensor values recorded by the SenseCam. Gemmell, Aris & Lueder show a small applica-

tion to replay the SenseCam images of an interesting trip [59]. Due to its passive capture

nature, this device may be liked by tourists as no effort is needed to capture images, thus

allowing individuals to more fully enjoy their tourist trip. Hodges et. al. [71] detail the

potential benefits of a personal visual diary such as that generated by the SenseCam. In

preliminary experiments they have found that the use of a SenseCam dramatically aided

a female subject, with limbic encephalitis1, to recall events that happened during her day

when reviewing SenseCam images. From our own personal experiences there is a notice-

able improvement in the short-term memory recall of activities experienced during days

while a SenseCam device was worn.

In fact the SenseCam has now become the prevalent lifelogging device with regard to

memory focused studies. Investigations on the benefits of visual lifelogging to the hu-

man memory are now being carried out in the University of Exeter, the Medical Research

Council in Cambridge, the University of Leeds, The Oliver Zangwill Centre for Neuropsy-

chological Rehabilitation in Ely (all U.K.), Duke University, Columbia Medical School,

University of Illinois Urbana-Champaign (all US), the University of Toronto, and the Hal-
1A form of encephalitis which is an acute inflammation of the brain
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var Jonson Centre for Brain Injury Ponoka in Alberta (both Canada). All of this research

activity is making use of the SenseCam device2. This means that in essence the contribu-

tions made in this thesis are of value not only to the lifelogging community, but also to the

cognitive psychology community.

1.2 Motivation Scenario

In this section we will now detail 2 best-case motivation scenarios, envisaging how users

will interact with their own captured visual lifelog data. The first case involves how an

individual with a neurodegenerative disease can be aided to help remember a recent family

event. The second case involves a tourist reviewing images of a memorable trip.

1.2.1 Memory Aid Scenario

Consider this scenario as a potential benefit that may be offered by lifelogging. Mary was

healthy throughout her whole life, but unfortunately in her early sixties she has developed

a memory impairment. This has been very distressing for Mary as she now very much

struggles to remember events that happened as recently as the previous day. Until recently

she has been embarrassed to talk to others for fear of forgetting seemingly trivial pieces of

information, e.g. who she met at church 3 days ago, etc. However, recently she has begun

to wear the SenseCam, a visual lifelogging device. She now puts it on at the start of every

day after letting it charge overnight when sleeping. Every evening she uploads images to

her PC, and our software automatically processes this data. As Mary’s SenseCam takes

approximately 2,000 images per day, it would overwhelm herself and her husband John to

look through all these images. Therefore we automatically segment sequences of the images

into distinct events/activities, e.g. when she had breakfast in the morning, when she went

for a walk in the afternoon, when she was talking to Ann next door, etc. This helps herself

and John more easily review what Mary has done in any given day. Indeed they particularly

enjoy reviewing their Grandson’s 4th birthday that took place last Friday. Naturally there
2http://research.microsoft.com/sensecam/memory.htm
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were some routine/mundane events in the morning first of all, so our software makes these

events appear smaller, while the main event of the birthday gathering is magnified so as

to catch John and Mary’s attention. By playing through the images of this event Mary

can remember that she was talking to her friend Jack about how quickly her Grandson

is growing. For certain events John can prompt Mary on what she was doing, with the

SenseCam images being very beneficial. Indeed Mary wonders what other times recently

she was talking to Jack, so our system provides her with the ability to retrieve other similar

events to the one of talking to Jack. She is then provided with a list of other potentially

relevant events, which she quite enjoys looking at as they trigger some memories.

1.2.2 Tourist Scenario

Consider the following scenario as a motivation for the role of lifelogging. Aiden decides to

go on a one day holiday to Dublin city centre and he wears his SenseCam all day long. That

evening he wishes to review the SenseCam images of his day. Firstly it will be important

for his viewing application to automatically identify the different activities/events he had

for that day, e.g. in the morning he has breakfast at home, then gets the bus into the city

centre, walks around O’Connell St., then gets a meal, etc. However, some of those events

would be more important than others. Aiden has breakfast every morning, therefore its an

unimportant event to him because it occurs regularly. However, while in the city centre he

started talking to his friend John and this was a very important event due to its uniqueness

as Aiden had not talked to John for quite a while, especially in Dublin city. That evening

Aiden wonders when he was last talking to John, and he uses the application to find previous

occasions similar to this. He can see that he had last talked to John 1 month ago, while it was

almost 3 months ago since he talked to John in O’Connell St. However, he also nostalgically

notices that he was talking to his friend Mary in O’Connell St. 2 weeks ago, as this event is

visually quite similar to that of talking to John earlier today. While reviewing the event of

talking to his friend Mary, he notices that he was at a football match later that evening. After

browsing through some past memories Aiden then looks at his favourite picture from his
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trip today; an image of Trinity College. However, with the SenseCam images being of a low

quality, quite understandable given that it is a passively capturing wearable camera, Aiden

would like to get other pictures of Trinity College. Therefore the system then automatically

retrieves images from numerous Internet sources that are taken in the same area as Trinity

College, which provide additional memory retrieval cues for Aiden to reflect happily on his

trip. Aiden is very amused to look at these high-resolution pictures, taken by other people,

which are very similar to what he experienced earlier today.

1.3 Problem of Reviewing Lifelog Data

We have introduced what lifelogging is, and then focused on a visual lifelogging device, the

SenseCam. We have also listed possible uses of such a device through ideal case motivation

scenarios. However, we will now detail the difficulties in designing effective and automated

lifelogging applications.

The majority of past research in the visual lifelogging domain has covered hardware

miniaturisation [94] and also storage of images [60]. However, these challenges have been

relatively well solved [71] in terms of better wearable devices, and in terms of inexpensive

storage [15]. The challenge is now that of retrieving relevant information from the vast

quantities of captured data. [15, 7, 89, 87].

Extensive research has taken place on the management of personal image collections in

Dublin City University and elsewhere [116, 73]. However, these applications only consider

pictures taken with current state of the art digital camera and mobile phone technology.

With passively capturing wearable cameras, like the SenseCam device, the scale and fre-

quency of images is much more significant. This brings us different challenges to those

posed by current personal photo management applications.

One method to review images captured by the SenseCam is to use the SenseCam Image

Viewer [71]. In essence this contains ‘. . . a window in which images are displayed, and a

simple VCR-type control which allows an image sequence to be played slowly (around 2
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images/second), quickly (around 10 images/second), re-wound and paused . . . ’ However

it takes upwards on 2 minutes to play through a day’s worth of SenseCam images, which

translates to 15 minutes to review all the images from 1 week. We believe a one page visual

summary of a day containing different images representing encountered activities or events,

coupled with the ability to search for events or similar events, could provide a much more

useful method to manage SenseCam images. Lin and Hauptmann state that ‘. . . continuous

video need to be segmented into manageable units . . . ’ [89]. A similar approach is required

with respect to a lifelog collection of recorded personal images or video, and in Chapter 2

we will motivate in more detail why the approaches we have taken exploit characteristics

of the human memory system.

Previous research in this area has been carried out on very limited datasets. No groups

have captured data for the duration of an entire day over an extended period of time. Using

the Deja View Camwear [123] Wang et. al. in their work state that ‘. . . one of the authors

carried the camwear, and recorded on average 1 hour of video every day from May to June

. . . ’ [155]. Similarly Lin and Hauptmann record data for only between 2 and 6 hours on

weekdays [89], while others only capture for small time periods in the day too [146]. For all

the experiments in this thesis we organised the collection of approximately 2 million lifelog

images, passively captured by 12 wearers over a period of two years. 6 of those users have

worn the SenseCam for at least one month, at an average of almost 10 hours per day. This

means that we have collected a larger and more diverse dataset than other research groups,

thus adding a stronger degree of significance to the results reported in this dissertation.

1.4 The Challenge

Even though we believe that visual lifelogging technologies, such as the SenseCam, will be

very helpful as memory aids, we recognise that considerable difficulties exist in managing

and retrieving lifelog data. We now specify four facets that we believe are important in terms

of addressing this considerable challenge of managing lifelog data. These facets are: 1)
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Figure 1.3: An overview of the challenges that this thesis addresses. Images are segmented
into distinct events, which then enable those events to be compared against each other. By
comparing events against each other we can then determine an importance score for each
and every event. A keyframe must be selected for each event, which can also be augmented
with material from external sources of information.

Event segmentation, 2) Event Importance, 3) Event Retrieval, and 4) Event Augmentation

as illustrated in Figure 1.3. We now detail why we believe these are important challenges

to address.

Techniques used in the traditional video retrieval domain are not necessarily suited to-

wards managing lifelog data, as Aizawa notes that ‘ . . . the result of capturing human activ-

ities is a huge amount of multimedia data. New applications, different from those of tradi-

tional multimedia processing of TV and movies, will appear . . . ’ [1]. Lin and Hauptmann

state that a lifelog of ‘. . . continuous video need to be segmented into manageable units . . . ’

[89]. A similar approach is required with respect to a lifelog collection of recorded per-

sonal images or video as the SenseCam captures 2,000 images on an average day creating

a sizable collection of images even within a short period of time, e.g. over 14,000 images

per week which equates to approximately 700,000 images captured per year. Therefore no
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one individual could ever hope to retrieve images of encountered activities from their lives

just by browsing. The challenge is to create an application to manage this large collection

of images which raises the issue of how to organise this large image collection into “man-

ageable” segments that can be easily retrieved by users. As will be detailed later in this

dissertation, the human autobiographical memory system generally stores episodes of one’s

life. This is why we believe sequences of images must be segmented into distinct events or

activities, and this process must be performed automatically (see “Event Segmentation” to

top left of Figure 1.3).

Even when a lifelog of SenseCam images is segmented into events, there will still be

approximately 20 distinct events in a user’s day, which translates to over 7,000 events per

year. The human mind stores autobiographical memories in a linked or associative manner,

whereby we think of other semantically/conceptually related memories to a given memory

[9]. In all aspects of the lifelogging domain it has been recognised that retrieval of relevant

content is an important and significant challenge, e.g. by Bell & Gemmell [15]; Wang et.

al. [155]; Ashbrook, Lyons & Clawson [7]; etc. We also believe that users should be given

the ability to retrieve other similar events to any given event, e.g. “what other times was I at

the park?”, “show me other events of poster sessions”, etc. This process, which is illustrated

as “Event-Event Comparison” on the left hand side of Figure 1.3, should automatically go

through the user’s entire lifelog of events to find relevant items to a query event.

As mentioned in the previous paragraph, a user will experience approximately 20 events

every day. The human mind more strongly encodes distinct autobiographical memories

[120]. Indeed in studying the potential benefits of SenseCam images for those experi-

encing memory difficulties, Berry et. al. note that users are not interested in reviewing

routine/mundane/“boring” events [17]. Indeed they point to other memory studies which

indicate that even people with intact memory struggle to remember low salience and fa-

miliar events as they are generally uninteresting [40, 32, 90]. In browsing through content,

Tancharoen & Aizawa note that ‘. . . content-based features from audiovisual data are nec-

essary to detect the significant scenes from our life . . . ’ [145]. As a result we believe that it
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would be useful to highlight or place more emphasis on events that are likely to be more im-

portant or interesting to the user as they browse through their lifelog of images. This should

be processed automatically, and it also means that less important events can have less em-

phasis placed on them, or they may even be not displayed to the user at all as illustrated by

the “Interactive Browser” in Figure 1.3.

In 1945 Vannevar Bush recognised that the human memory ‘. . . operates by association.

With one item in its grasp, it snaps instantly to the next that is suggested by the association

of thought . . . ’ [28]. As will be detailed in Chapter 2, human memory generally operates by

associating linked items together, we feel that it may be useful to augment an individual’s

SenseCam images of an event with images, and possibly videos, from other external sources

of information e.g. if a wearer attends a big football match, it may enhance their enjoyment

and also provide cues to other memories of the match if they were able to easily view

additional photos and videos of the event; similarly if someone is at the Eiffel tower in

Paris, their experience of reviewing their SenseCam event may be enhanced by photos taken

by others in that location, where even a photo of a nearby park bench may be relevant

as it evokes memories of the user sitting there. This presents a considerable challenge

in intelligently mining the Internet to return relevant content, as illustrated by the “Event

Augmentation” stage to the right hand side of Figure 1.3.

1.5 Hypothesis

Due to the fact that visual encoding is a strong facet of the human memory system [24],

we believe that a wearable camera such as the SenseCam will be potentially beneficial to

provide strong cues to retrieve autobiographical memories. The SenseCam has become a

widely used device not only in the lifelogging domain, but also in the domain of memory

studies. However, there exists a substantial challenge in managing the large collection of

personal information collected by this device. To realise this, images will have to be seg-

mented into distinct events e.g. having breakfast, being in work, at lunch, etc. The next
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challenge will be to automatically determine which of those events are most important or

unusual e.g. going to a football match will be more memorable than working in front of

a computer. Thereafter it will be necessary to have the ability to search for similar events

to an example event e.g. ‘find me other times when I was talking to my friend John’. The

final challenge will be that of augmenting the low-quality images from the wearable camera

with higher quality images from external data sources, e.g. after attending a football match

in Wembley the user will have the option to augment those images with location-tagged

images from an external source like the Flickr database (containing 65 million geotagged

images at the time of writing, but owing to its content being driven by a very large commu-

nity of users, this is expanding by approximately 1 million images every fortnight).

Given that much research has indicated the effectiveness of cue-based recall, and that

visual images in particular offer strong cues, we believe that visual lifelogging can offer an

effective memory aid. However, given the overwhelming number of images captured by

visual lifelogging devices like the SenseCam, the hypothesis of this dissertation is that:

In order for visual lifelogging technologies to effectively provide autobio-

graphical memory retrieval cues it is necessary to automatically:

• effectively segment a large collection of personal images into distinct

events

• accurately determine which of those events are most unusual

• usefully provide the ability to link similar events together

• augment images from the low-resolution wearable device with higher

quality images from external data sources.

Later in this dissertation we will anecdotally review the effectiveness of the cues pro-

vided by our automatic techniques. However, before that we will address each facet of the

hypothesis individually. The structure of this thesis is organised as follows:
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Chapter 2 gives an overview how technology may exploit certain aspects of the human

memory system on occasion. A history of lifelogging research will then be presented, with

a particular emphasis on visual lifelogging. Thereafter the technical intricacies of other

researchers attempting to address the challenges of managing a visual lifelog will be ex-

plained, and also how the work carried out in this thesis differs to the prior work carried out

by these other researchers.

Chapter 3 provides a detailed explanation of how sequences of images should be ef-

fectively segmented into distinct events or activities. The extensive experimentation and

evaluation of this approach is also explained, detailing the areas of particular strength.

Chapter 4 addresses the challenge of accurately determining the similarity between any

given lifelog events. Again extensive experimentation is carried out to evaluate the accuracy

of the proposed approaches.

Chapter 5 proposes and evaluates the introduction of novelty as a useful technique to

help determine the most important events in a given day of lifelog data. This chapter also

explores the optimal method for selecting a keyframe image from a lifelog event.

Chapter 6 introduces the idea of augmenting SenseCam events with images/videos

taken by many other people which have been made available on the Internet. This chap-

ter proposes a number of methods to realise this idea, and extensive evaluation is carried out.

As the previous chapters have concentrated on technical evaluations of algorithms,

Chapter 7 investigates the usability of a complete real lifelog browsing application which

incorporates work from the previous four chapters. This chapter will in essence test the

hypothesis of this dissertation by providing focused retrieval cues to end users. The effec-

tiveness of our automated techniques in exploiting aspects of the human memory system to
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provide retrieval cues will be anecdotally reviewed.

Finally Chapter 8 concludes on the value of this work to the visual lifelogging domain,

while also suggesting further areas of research to be undertaken in the future.

1.6 Contributions of Dissertation

The major contributions resulting from the work carried out towards this dissertation in-

clude:

• A review of cognitive science literature to investigate how best to exploit aspects of

the human memory system in helping users review their own lifelog data.

• An improved event segmentation technique which only uses motion based sensors.

Other important discoveries in using TextTiling, peak scoring and thresholding tech-

niques are detailed in Chapter 3.

• Only 30% of image features need to be extracted for effective retrieval performance.

Extensive evaluations are also carried out on normalisation and fusion techniques in

Chapter 4.

• We discover that the introduction of novelty detection to the lifelogging domain is

effective in identifying routine events, which are generally less interesting (Chapter

5).

• We have identified that an image quality keyframe selection technique is helpful in

those events containing a large amount of visual change. In other events the sim-

ple approach of selecting the middle image in an event as the keyframe is sufficient

(Chapter 5).

• We have introduced the idea of augmenting one’s lifelog with images/videos from

the Internet so as to provide additional memory retrieval cues. To achieve this we
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introduce a technique to automatically construct textual queries by only having prior

location information.

• Software distributions of work carried out towards the realisation of this thesis have

been released to approximately 10 research institutions working with SenseCams.

• This dissertation has resulted in a number of peer-reviewed publications [50, 48, 47,

49, 46]
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Chapter 2

BACKGROUND

Initially this chapter will provide a high-level overview of various investigations in cogni-

tive psychology literature on how the human memory system functions. We will show that

visual images are an excellent memory stimulant, and that in particular humans can retrieve

past memories more easily when we are provided with visual cues towards those memories.

This then motivates our desire to use visual lifelogging as being of potential benefit as mem-

ory aids. This chapter investigates work carried out by others in the domain of lifelogging,

and gives a clear indication of the contribution of the work of this thesis to the domain.

Then more general lifelogging work is described, followed by a particular emphasis on the

visual lifelogging community. Thereafter some of the practical benefits associated with

lifelogging are discussed. The important challenges that this domain needs to address are

summarised, and finally detailed reviews are carried out on other event segmentation work

as well as work on retrieving similar events, determining the most important events, and

augmenting low-quality SenseCam images with high-quality external images.

2.1 Literature Review of the Human Memory System

We will now present a high-level overview on findings from the cognitive psychology field

on the human memory system. It is our intention to motivate how various aspects of the
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human memory system can be exploited so as to aid us to more easily retrieve thoughts of

past experiences from memory.

2.1.1 Layout of the Human Memory System

Atkinson and Shiffrin proposed a multi-store of memory in 1968 [8], as illustrated in Fig-

ure 2.1. The model states that there are 3 distinct memory systems present in the human

brain, namely one to deal with sensory inputs, one that relates to short-term memories, and

finally a distinct system that deals with long-term memories only. Since 1968 more ad-

vanced, and complex, memory systems have been proposed. In 1994 Schacter and Tulving

summarised that there are five different memory systems [128]: short-term memory where

we process a small number of items in working memory; procedural memory where we

learn skills such as riding a bicycle; semantic memory which is knowing facts such as Paris

is the capital of France; episodic memory which is the encoding of knowledge about per-

sonal or autobiographical memories (i.e. event memories); and the perceptual represen-

tation system which isn’t just one system but several for the various perceptual modalities

(e.g. visual representation system, auditory representation system, etc.)

We feel that the Atkinson-Shiffrin model provides a better starting point to grasp the

basic functioning of the brain with regard to processing memories and we will now explore

the three memory stores described in this system [8].

2.1.1.1 Sensory Memory

As we just explained Atkinson & Shiffrin proposed that there are 3 distinct memory sys-

tems within the human brain [8]. We now provide an overview on the first aspect within

the Atkinson & Shiffrin model, namely the sensory memory system. In an influential

book on the human memory system, Baddeley describes the sensory memory system is

“. . . intimately involved in our perception of the world . . . ” [9]. In essence the sensory

memory store only stores information for fractions of a second, and for each of the senses

e.g. visual, audio, touch, smell, etc. Baddeley feels that this memory store, while important,
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Figure 2.1: The human memory architecture as proposed by Atkinson & Shiffrin (source:
Elsweiler [54]).

“. . . is probably best seen as part of the process of perception . . . ” and he also notes that

we are able to measure a wide variety of senses of information (smell, touch, vision, tem-

perature, etc.) but our brain only stores a small number of these senses [9]. This indicates

that our brain highlights senses that are more important and chooses to store those.

2.1.1.2 Short-Term Memory

Having commented on the sensory memory system, we will now comment on the second

memory system in the Atkinson & Shiffrin model, the short-term memory system. El-

sweiler notes that much early work on short-term memory was concentrated on determining

the amount of information that could be stored, how long it could be stored for, and why

the information was then lost from the short-term memory system [54]. Indeed a seminal

paper in the area is that of Miller in 1956 suggesting the capacity of short-term memory

was 7 ± 2 items [101]. Although suggesting that short-term memory is of a fixed capacity,

Miller explains how the process of “chunking” allows a greater amount of information to

be stored e.g. the character sequence “b - i - k - e” is encoded as a single item/word “bike”.

Purdy et. al. point towards more recent research which has indicated that the capacity of

short-term memory isn’t limited to a fixed number of items [120], but rather to how much a

person can pronounce in approximately 1.5 seconds as proposed by Schweickert & Boruff
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Figure 2.2: The Working Memory Model as proposed by Baddeley & Hitch (source: El-
sweiler [54]).

[130]. Indeed Naveh-Benjamin and Ayres conducted an experiment to test how many digits

English, Spanish, Hebrew, and Arabic speakers could remember; it was found that English

speakers could remember just over 7 digits, whereas the Arabic speakers remembered less

than 6 digits, owing to the fact that there are more multisyllabic digits in Arabic than in

English [107]. Regardless of the precise amount of information that can be stored in short-

term memory, Elsweiler points out that it is only retained for between 0.5 and 4 seconds,

and he points to a number of theories ranging from “. . . decay - forgetting due to decay of

unused information . . . and interference - forgetting because of new information interfering

with old information . . . ”, but this debate remains unresolved [54].

However, Baddeley states that short-term memory doesn’t represent just one system,

but a complex set of interacting sub-systems referred to as working memory [9]. Bad-

deley and Hitch argued that the term short-term memory should be replaced by working

memory, which is a more thorough concept that considers an element of processing in ad-

dition to memory storage [10] as illustrated in Figure 2.2. Purdy et. al. make it clear that

“. . . Baddeley’s model should be considered as an expansion of the Atkinson-Shiffrin model;

it does not contradict or replace it . . . ” The “working memory” framework proposed by

Baddeley and Hitch consists of three components: 1) Phonological Loop (holds informa-

tion in an acoustic format); 2) Visuospatial Sketchpad (holding information in a visual

format); and 3) Central Executive (which is responsible for various control functions)

[10].

Indeed Purdy et. al. have pointed towards past evidence suggesting humans translate

visual stimuli into acoustic codes for short-term processing which supports evidence of the
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phonological loop existing [120]. However, they acknowledge this is not always the case as

deaf individuals use visual codes during short-term memory processing, and also they point

to studies carried out by Posner and his colleagues which suggest that participants some-

times rely on visual codes for representing short-term memories which provides evidence

for the existence for the visuospatial sketchpad in memory [119].

In this particular subsection we have shown that short-term memory has a limited capac-

ity, and that items decay quickly from this memory system. More recent researchers refer

to this memory system as the working memory system. More information can be stored

through the process of “chunking” information items, e.g. a sequence of letters chunks into

a word, or a sequence of images could be chunked into a single image explaining the story

of those images.

2.1.1.3 Long-Term Memory

Having described the sensory and short-term memory systems from the Atkinson & Shiffrin

model, we now explore that last memory system proposed in their model, the long-term

memory system. Atkinson and Shiffrin stated that the long-term memory system retains

data for periods longer than 30 seconds and they speculate that it is unlimited in capacity

[8]. Baddeley states that “. . . of the three types of memory - sensory memory, working mem-

ory and long-term memory - the one that corresponds most closely to the lay person’s view

of memory is long-term memory. This represents information that is stored for considerable

periods of time . . . ” [9]. Anderson divides long-term memory into declarative and proce-

dural memories [6]. Elsweiler notes that procedural memories refer to remembering skills

e.g. how to ride a bicycle, how to walk, how to swim, etc. [54]. Anderson further splits

up declarative memories into semantic and episodic memories, which are also identified by

Schacter & Tulving [128]. We now explore each of these in a little more detail.

Semantic memories: Semantic memories are knowing about facts e.g. Paris is the

capital of France, England won the soccer world cup in 1966, China is the most populous

country in the world, etc.
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Episodic memories: Episodic memories refer to those that are of personal experiences

e.g. remembering when one’s child first talks, recalling a conversation with one’s friends

from the previous evening, etc. Conway takes a slightly different position arguing that

episodic memories are short term (in the order of just minutes or hours) e.g. remembering

you closed the fridge door, that you made coffee, etc. He states that episodic memories are

a bridge between working memory and autobiographical memory [39], “. . . we conceive of

episodic memory as a system that contains experience-near, highly event specific, sensory-

perceptual details of recent experiences- experiences that lasted for comparatively short

periods of time. These sensory-perceptual episodic memories do not endure in memory un-

less they become linked to more permanent autobiographical memory knowledge structures,

where they induce recollective experience in autobiographical remembering . . . ” Mean-

while Tulving describes that “. . . episodic memory does exactly what the other forms of

memory do not and cannot do - it enables the individual to mentally travel back into her

personal past . . . ” [149].

Purdy et. al. believe that the case of a famous test subject, H.M., is a strong indication

that short-term memory and long-term memory are quite distinct from each other [120].

They detail the critical role played by the hippocampus1 in memory using the case of a

subject (H.M.) who had severe epileptic seizures, and surgeons attempted removing the

hippcampi from his brain. The surgery relieved the epileptic seizures, but H.M. then had an

inability to learn new events. “. . . he had some trouble remembering information from one

to three years before the operation, but little trouble remembering older events . . . he would

read the same magazine repeatedly without any loss of interest . . . he had enormous diffi-

culty learning new facts and remembering new events, but he has little difficulty learning

new skills . . . ” Maguire, in a neuroimaging analysis, also highlights the role played by the

hippocampus which is activated in retrieving episodic memories [93]. In some instances

an impaired hippocampus may leads to severe memory impairments such as amnesia. In

fact Baddeley also notes that Alzheimer’s disease accounts for over 50% of cases of de-
1The name of a particular region in the brain. There are 2 hippocampi in the brain, both are approximately

symmetrical to each other in terms of their location on the brain.
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mentia, and occurs in 10% of people over 65. The likelihood of having Alzheimer’s disease

increases with age [9].

To summarise this particular subsection we have detailed aspects related to the long-

term memory system in the Atkinson & Shiffrin model. According to Schacter & Tulving

this memory system can be broken up further into procedural, semantic, and episodic mem-

ories [128]. Episodic memory is of particular interest to us, as it is responsible for how we

store our autobiographical memories e.g. remembering what you did on your 24th birthday.

We have finally pointed towards evidence stating that there are many people in the world

who have difficulties in accessing their long-term autobiographical memories.

2.1.2 Importance of Cues to Aid Retrieval of Items in Memory

There is a body of research indicating that providing people with memory cues, that are

quite similar to the way the particular memory is encoded in the brain, will lead to en-

hanced retrieval of memories. Purdy et. al. state that “. . . scores on recognition tests are

usually much higher than scores based on recall . . . ” [120]. This indicates that users prefer

to be prompted with cues, rather than being asked to retrieve memories from scratch. Bad-

deley also echoes this point, stating that “. . . it is as if the cues direct you to search in the

appropriate location in memory, and as such allow access to traces which would otherwise

have been missed. While there is no doubt that both cueing and recognition can reveal

information which is not accessible using straightforward unaided recall, it could also be

argued that the memory trace is present but not strong enough to allow recall . . . ” [9]. In

essence good cues, which are related to how the brain encoded the memory in question,

lead to strong retrieval performance.

Elsweiler comments in great detail on the cue-dependent forgetting theory introduced

by Tulving in 1974, “. . . which argued that information is available in memory but cannot

be accessed without the appropriate “cue” . . . ” [54]. Tulving later developed this theory

into the encoding specificity principle, in which memory performance is dependent on the

similarity between the information in memory and the information/cue available at retrieval
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time [148]. Elsweiler also points to other studies with results endorsing Tulving’s theory on

strong cues leading to better recall [54]. Indeed in a study of memory about office activities

in a desktop computing environment, Czerwinski & Horvitz also found that cue based recall

is much more effective for retrieving memories than free recall [44].

Finally Elsweiler details that the discriminating value of a cue impacts its effectiveness

in retrieving memories in the brain, “. . . people have been shown to falsely remember words

based on their similarity e.g. if given a list of cake ingredients to remember such as flour,

sugar, butter etc., people will often claim to have remembered eggs appearing in the list.

This is known as the Deese/Roediger-McDermott effect [126]. This effect can be minimised

by providing discriminative cues - cues that ensure that participants utilise specific recol-

lections rather than relying on general familiarity . . . ” [54]. However, Schacter et. al.

have shown that images are effective discriminative cues, through presenting subjects with

images along with words in the list of cake ingredients, leading to better discrimination for

the ingredients present [127].

2.1.3 Importance of Encoding towards Memory Retrieval

We have just motivated that cued recall is more effective than free recall in aiding people

to access autobiographical memories, however it is now worthwhile to consider what the

most effective cues that can be provided are. It is interesting to note research indicates

that it is easier to retrieve experiences from memory when the retrieval cue is quite close

to the encoding cue. Godden & Baddeley carried out a study on teaching new words to

scuba divers on land and under water [63], and discovered in the words of Purdy et. al.

that “. . . performance was relatively poor, however, when participants learned and recalled

under different conditions. Thus, making the conditions at retrieval (underwater) the same

as those at encoding (also underwater) led to good retrieval . . . ” [120]. Purdy et. al.

indicate that memories initially decay very quickly, but then more slowly over time [120],

in reporting a study on the retention of mathematical skills learned by a class, they “. . . still

found measurable levels of retention 50 years later. In fact most of the forgetting appears
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to take place in the first few years after the material was learned . . . retention in long-term

memory, even for intervals up to 55 years, are a function of initial encoding . . . ” These

studies indicate that proper encoding is important to aiding retrieval of memories from the

brain.

Visual encoding is strong: Indeed Brewer has found that more than 80% of randomly

sampled memories consisted of visual images [24]. To further reinforce the notion that im-

ages are important to memory retrieval, Shepard has found that people have a much better

memory of pictures presented to them than merely a list of words [134]. It is our belief

that this recognition of images will be even stronger if the images presented to people are

actually images of personal meaning to them, as it has been reported that the “generation

effect” indicates that people remember things better if they generated those things them-

selves [66, 54]. Indeed Conway believes that autobiographical memories are very often in

the form of visual mental images [39].

Remembering vs. knowing: Gardiner describes 2 distinct elements of autobiographi-

cal memory, autonoetic (self-knowing) consciousness and noetic (knowing) consciousness.

Autonoetic consciousness “. . . is the mental reinstatement of personal experiences of previ-

ous events at which one was present. Noetic consciousness is expressed without any such

self-recollection but simply in awareness of familiarity, of knowing . . . ”. Berry et. al.

[17] have indicated that visual images taken of one’s life may be helpful in terms of “re-

membering” an episode in their life, commentating that, “. . . retrieval of a visual image

distinguishes autobiographical memory from autobiographical knowledge, that is, visual

images enable a person to recollect or relive an event, rather than simply know of an event

. . . ”.

Encoding viewpoint is important: Burgess et. al. speculate that people with episodic

memory impairments may be hampered in recognising happenings from a different view-

point [27]. They report on a study carried out by Vargha-Khadem et. al. on a patient,

Jon, with a focal bilateral hippocampal pathology [151]. In this study they used a virtual

reality system to present objects located in three-dimensional space and tested recognition
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memory for their locations. It was noted by Burgess et. al. that “. . . Jon’s enormous impair-

ment when the viewpoint was changed but only mild impairment from the same viewpoint

strongly indicates a role for the hippocampus in storing allocentric representations of ob-

ject locations . . . ” We believe that it may be helpful for people with such impairments to

have visual images taken from their perspective/viewpoint as retrieval cues, as they would

be encoded in a similar fashion to those autobiographical memories recorded in the brain.

Memories can be temporally encoded: Larsen, Thompson, & Hansen note that “. . . people

are quite accurate in judging the time of events, that is, temporal judgements are normally

unbiased estimates of actual time in the past . . . ” [86]. Essentially people are quite good

at narrowing down when particular autobiographical memories happened to a specific time

period, which could be a day, week, month or year. Davies & Thompson believe that peo-

ple use extraordinary events as anchors when trying to retrieve memories from the past,

although people still do have a good sense of the temporal ordering of those memories [45].

Encoded memories are linked by association: Baddeley comments on the richness

and flexibility of how memories are stored in the human brain, stating that “. . . memory is

concerned with concepts or ideas; which are in some cases clearly related to words but

are not in themselves words . . . ” [9]. The meaning of this is that when we think of a cer-

tain autobiographical memory, our mind finds associations with other long-term memories

that are conceptually similar to the given autobiographical memory in question. Indeed El-

sweiler notes that the storage of “. . . our memories of experiences, events and stories are

determined not only by the story itself, but by our background knowledge . . . ” [54] meaning

that we try and associate new experiences with semantic and episodic information already

stored in memory.

Distinctiveness is important in memory encoding: Purdy et. al. argue that the no-

tion of distinctiveness is very important in memory encoding [120], stating that “. . . the

more distinctly a memory is coded, the easier it will be to recall that memory later . . . ”.

They report the Von Restorff effect which shows that even nonsense syllables become more

memorable than meaningful words when the nonsense syllable is the isolated item on the
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list. This notion of distinctiveness is very important, and we believe that those memories

that are most interesting for users to review from their own lives, are the events which were

most distinct to the user e.g. talking to a new person, going to a new place, etc.

To summarise this subsection we have detailed the way in which memories are encoded

in the brain impacts on the retrieval of those memories/experiences at a later time. We have

shown that visual images are important to memory retrieval, and in particular help people

“remember” an event better than simply “know” about it. Also we have looked into the fact

that for people with severe memory impairments, they may only encode autobiographical

memories from just one fixed viewpoint. We have pointed towards research showing that

in general people are quite accurate in judging the time of events, while also indicating that

memories are stored in an associative fashion in the brain. Finally we have made it clear

that the notion of distinctiveness is very important in memory encoding.

2.1.4 Considering Technology to Aid Memory Retrieval

Thus far we have given a high-level overview of how the human memory system functions.

There are 3 major categories of memory system: sensory, short-term, and long-term. We

have shown that short-term memory has a limited information capacity, although this can

be somewhat increased through the process of chunking. We have shown that there are

two type of long-term memory, semantic memory (e.g. knowing London is the capital of

England) and more interestingly episodic/autobiographical memories (e.g. remembering

events that you personally experienced). Conway has argued that these autobiographical

memories are very important and in fact define who we are and how we act [40]. We have

shown that cued recall leads to better retrieval of memories from the brain than free recall,

i.e. good memory cues are important. Better retrieval cues are those that most closely

resemble the way that the memories in question were initially encoded in the brain. We

have also detailed how such memories are mainly visually encoded in the brain. The visual

viewpoint in which memories are encoded is also an important feature on how episodic
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memories are encoded, as is how distinctive the memories are.

However as we pointed out there are a growing number of people with memory impair-

ments, e.g. 10% of people over the age of 65 have Alzheimer’s disease [9]. Indeed Schacter

notes that while biological memory generally serves us well, it is highly selective and fal-

lible [126]. Indeed many times people comment that they wish they had better memory,

and this is perhaps what has driven people towards maintaining written diaries, i.e. to help

people remember what they did. Naturally given that diaries take much effort to maintain,

the idea of exploiting technology to aid memory has come into focus. Barreau states that

‘. . . Digital memories surpass biological memories by enabling people to directly see and

interact with captured information. This powerful capability can help people manage their

personal information . . . ’ [13].

In fact some recent research making use of lifelogging images has shown much promise

in providing good cues to retrieve autobiographical memories [71, 17, 131, 87]. Indeed we

shall now provide an overview of the origins of the lifelogging field, then some reasons

as to how it can be a possible solution in providing effective memory cues, and finally the

challenges that must be solved so as to make this technology usable.

2.2 A History of Lifelogging

Pictures, books, monuments, and storytelling were all used so as to leave a “legacy” of

oneself or of a group of people. Human memory is far from perfect and throughout history

we have devised many techniques to help us remember what we did. Traditionally the

written diary has been a very popular means for people to record events that have happened

in their lives. For much of this time, diaries have been used almost as a form of release for

individuals to get inner most thoughts “off their chest”, however still a large number were

used as a form of record for important happenings in a person’s life, e.g. weddings, births

of children, a son/daughter leaving home, etc.

In 1917 Buckminster Fuller, an American scientist, was “. . . determined to employ my
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already rich case history, as objectively as possible . . . ”2, and so he began recording every

minute detail of his life in diary format. For the rest of his life, and 500 volumes later, he had

an extensive record of all his lawyer bills, medical documents, plus written descriptions of

much of the minute details of his life. However, this required a significant effort to not only

capture information, but also to retrieve it. Vannevar Bush, who coordinated the activities

of approximately 6,000 scientists in the application of science to warfare, recognised the

potential benefits of automatically managing the overwhelming amount of information and

events that we encounter [28]. In a visionary paper in 1945 outlining where the future

focuses of scientific researchers should lie after the 2nd World War effort, he envisioned a

“Memex” device which would extend the human memory, and which would be a ‘. . . device

in which an individual stores all his books, records, and communications, and which is

mechanized so that it may be consulted with exceeding speed and flexibility . . . ’.

For quite a while the idea of managing personal information wasn’t entertained until the

advent of personal computing, and in particular until the ability to store a very large amount

of data was possible. Steve Mann, now a researcher at the University of Toronto, spent

much time, from the 1970’s onwards, trying to capture much of what he saw through the

design of head-mounted video cameras as illustrated in Figure 2.3 [94]. His vision opened

up a whole new, very rich, source of information which is of much benefit and addition to

an individual’s lifelog.

However apart from these pioneers the field of lifelogging is a relatively new but rapidly

expanding area of research. As noted by Gordon Bell and Jim Gemmell, ‘. . . in recent years,

however, rapid advances in storage, sensor and processor technologies have paved the way

for new digital recording and retrieval systems that may go far beyond Bush’s vision . . . ’

[15]. They have noted that in 20 years time a 250 terabyte hard drive (“capable of holding

tens of thousands of hours of video and tens of millions of photographs”) may well only

cost $600, which should be enough to store all of the personal information encountered

in an individual’s lifetime. Indeed O’Hara gives a good overview on what motivates us to
2www.bfi.org/node/105
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investigate lifelogging activities stating that “. . . Every piece of information is such that it is

very unlikely, but just possible, that it is valuable. Before technology allowed comprehensive

storage, our strategy was usually to try to estimate which information is likely to be more

valuable and to keep that. Now there is no reason to stick to that philosophy . . . ” [113] i.e.

we don’t want to delete anything!

Of these recent projects, perhaps the most extensive lifelogging effort is the MyLifeBits

project which is attempting to relate many different sources of information together into one

integrated framework to enable users search for multiple types of information at any given

instance in time [61, 60, 15, 35]. The sources of information that they attempt to store

and retrieve include: instant messaging text, web pages visited, e-mails received, telephone

conversations, television programmes watched, radio listened to, audio recorded conversa-

tions, GPS tracklog, and also SenseCam images. All this data is stored in a large database,

the MyLifeBits database. The various strands of information are associated through time

stamps. They attempt to make real the vision of Vannevar Bush that many items should

be linked together, because the human memory works by associating items together. As

also postulated by Kelly & Jones the end-goal lifelogging system should incorporate many

sources of information, such as: web pages, e-mail, GPS, Bluetooth, images, etc. [78].

The MyLifeBits project is very broad, and within this there exist many challenges, one

such example being the management of audio recordings. Ellis & Lee have investigated the

segmentation of audio data into distinct activities (e.g. in the house, on the subway, at the

park, at work, in a meeting, etc.), and also the clustering and retrieval of audio events (e.g.

find me other times I was in the park, other times I was at a play, etc.) [53, 52]. Vemuri has

also investigated the retrieval of audio activities and recognises that recording everything is

relatively straightforward, but searching for specific audio snippets is a considerable chal-

lenge [153]. Staying on the theme of audio-focused lifelogging efforts, Kern, Schiele and

Schmidt address the challenge of classifying a person’s activities based not only on audio

activity levels but also on movement/accelerometer sensors, which were found to be quite

useful [109].
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Bristow et. al. in Birmingham University [25] have conducted a user study to de-

fine the different types of contextual information that are important in terms of wearable

computing. A few of the highlighted types of context that were mentioned include: loca-

tion, people, time, indoors/outdoors, physiological indicators, weather, and how frequently

a task is done. The SenseCam captures time, movement data, possibly the presence of

people (through passive infrared sensor), the temperature, and through our novelty analysis

(described later) an indication of how frequently an activity has taken place; thus incorpo-

rating many of the contextual sources of information suggested by Bristow et. al. [25].

2.2.1 Focus on Miniaturisation and Storage

Much research in the past has concentrated on miniaturising visual lifelogging capture de-

vices so as to encourage more users to become comfortable with this concept. Several

research groups have had visual lifelogging devices that required users to wear a laptop car-

ried on a bag around their backs [144, 89] and in some cases a head mounted camera [147].

As McAtamney and Parker note in their study, both the wearer and the subject talking to

them are aware of personal recording devices while holding conversations [99]. Therefore

it is desirable to decrease how noticeable a wearable device is so as to encourage more

natural interactions with the wearer.

Steve Mann has pioneered the effort to make these visual lifelogging devices smaller

[94, 95]. Figure 2.3 illustrates the work carried out by Mann over 3 decades to make visual

lifelogging devices less intrusive. Blum, Pentland, & Troster focus on when an image

should be captured/triggered in their “InSense” project [22]. They identify activities using

trained classifiers on captured sensor data, and using this information they can identify a

given activity in real-time. Therefore more pictures are taken during interesting activities,

and images are captured less frequently during routine/mundane activities. The “InSense”

system is a bit cumbersome in terms of its dimensions though (see pack in Figure 2.4).

Research is still ongoing in trying to make lifelogging devices even smaller and more

ubiquitous. Given the prevalence of mobile/cell phones, the WayMarkr project of New
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Figure 2.3: The evolution of Steve Mann’s personal video capture devices since the 1970’s
Source: Mann [94].

Figure 2.4: The “InSense” system developed at MIT stores data on a PDA contained within
the pack Source: Blum, Pentland, & Troster [22].
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York University uses a mobile phone affixed to a strap so as to take pictures automatically

[26]. As it is a mobile phone they can extract cell tower ID for location information. The

best feature of the project is that photos are uploaded to a remote data warehouse, therefore

storage on the device is not an issue. In this project much focus has been on the capture

and storage of information, as opposed to the retrieval and organisation of all the images.

The DietSense project in UCLA also makes use of a mobile/cell phone, hung via a lanyard

around the neck in a SenseCam like fashion, to capture pictures automatically [122]. The

goal of this project is to assist medical doctors reviewing the dietary intake of patients

so as to make more informed decisions in recommending personalised diets. However,

Reddy et. al. do identify a significant challenge in automatically managing this form of

captured lifelog data [122], and in fact we have worked in collaboration with the DietSense

researchers at UCLA providing them with analysis tools to manage their lifelog collection,

using techniques that will be mentioned in this thesis in due course.

Microsoft Research in Cambridge, U.K., has further advanced the field through the

introduction of the SenseCam [71]. The SenseCam is small and light and from experience

of wearing the device, after a short period of time, it becomes virtually unnoticed to the

wearer. The SenseCam holds advantages over video recorders as the device only takes

images on average 3 times per minute, thus allowing a person to quickly review all the

images to gist what has happened in a given day, rather than the requirement of watching

a video clip in real time. An even bigger advantage is the fact that storage requirements

are reduced, and also privacy concerns are not as grave as the camera takes snapshots as

opposed to continuous footage. The SenseCam is now used by not only lifelogging research

groups, but also by research groups investigating the benefits offered by lifelogging to those

with memory impairments, as will be detailed in section 2.2.4.

Ashbrook, working in Georgia Tech, envisages that the lifelogging device of the fu-

ture will be quite like the SenseCam but also with video capture and an LCD screen for

reviewing images [7]. This device would also automatically upload images to a user’s blog.

However, this is a position paper, with no such implementation currently existing.
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Given the large advances taken by the hardware industry in producing hard drives, the

problem of storage limitation has disappeared. As stated earlier Bell & Gemmell predict

that it will be possible for a person to store their whole lifelog of data for $600 worth of

storage within the next 20 years. While there is still effort in terms of hardware miniatur-

isation, and increasing the lifespan of batteries, the lifelogging field are now on top of the

challenge of recording/capturing the visual information that we encounter.

2.2.2 Shifting Towards Retrieval

Given that the majority of past efforts have been on the physical hardware of the lifelogging

devices, it is only recently that as a community we have moved towards the very consider-

able challenge of making the content understandable and searchable.

Gemmell & Bell [61, 60, 15] and Tancharoen & Aizawa [3, 145, 146, 144, 72, 2] have

produced many papers, and the common theme in all is that the biggest challenge facing

the lifelogging community is that of efficient retrieval of information that is useful to the

user. The work carried out in this dissertation is focused on the efficient management and

effective retrieval of lifelog data that suits the information need of the user.

Extensive research has taken place on the management of personal image collections in

Dublin City University and elsewhere [116, 73]. However, these applications only consider

pictures taken with current state of the art digital camera and mobile phone technology.

With passively capturing wearable cameras, like the SenseCam device, the scale and fre-

quency of images is much more significant. This entails a different set of challenges to

those posed by current personal photo management applications.

2.2.3 Privacy Concerns

As lifelogging has become more prevalent, so has the awareness of the potential benefits

that it offers. However, some people have expressed some concern over the fact that many

of the mundane details of our lives will be recorded, and they feel that there are some

drawbacks to this.
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For example Bannon in the University of Limerick points out that it’s very important

to forget things as well as remember them, “. . . Forgetting is a central feature of our lives,

yet it is a topic which has had relatively little serious investigation in the human and social

sciences . . . Forgetting is not some unfortunate limitation of the human, but is rather a

necessary mental activity that helps us to filter the incoming sensory flood, and thus allows

us to act in the world . . . ” [12]. Nack in the University of Amsterdam has also raised

concerns about lifelogging devices and their potential intrusiveness [104]. Both authors

feel that these concerns outweigh the benefits offered by lifelogging devices.

Indeed, from personal experience of capturing an audio lifelog dataset, we experienced

great resentment and unease by others [50]. Some work colleagues were initially uneasy

about visual information being captured, but after time they came to accept or trust this

source of information, even when in the hands of others. However, almost everyone was

uncomfortable with audio information being recorded, and a great deal of suspicion and

fear surrounded how such information would be stored. Bell & Gemmell in espousing their

vision of lifelogging are very conscious in stressing that the stored information must be

secure [15].

It is interesting to consider the views of someone outside the field of lifelogging, and

Allen, a law professor, points out that lifelogging could fuel excessive self-absorption, “

. . . since users would be engaged in making multimedia presentations about themselves all

the time . . . ” [4]. She also points out that lifelogging “ . . . would extend the longevity

of personal misfortune and error . . . dredging up the past can hurt feelings, stir negative

emotions, and ruin lives . . . ”. She is also concerned about the secure storage of lifelog

data. She concludes that “. . . a counter-technology to block lifelog surveillance should be

designed and marketed along with lifeloggers. The owner/subject of a lifelog should be

able to delete or add content at will. No one should copy a lifelog or transfer a lifelog to a

third party without the consent of its owner . . . ”.

On the topic of lifelogging and privacy concerns, O’Hara makes an interesting counter-

argument to the views of Allen, in expressing that “. . . reconciliation has been possible in
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Germany and South Africa partly because of commemoration of the horrors of the holocaust

and apartheid . . . ” [113]. In fact Emma Berry of Microsoft Research and Addenbrooke’s

memory clinic in Cambridge, U.K., made an excellent point on a BBC Radio 3 memory

program arguing that the SenseCam can aid forgetting at times, e.g. if ones grandmother

had a severe case of Alzheimer’s disease and had become quite violent in her last few years,

one would perhaps struggle to remember the happy occasions with their mother . . . however

if she had a SenseCam her whole life, it would be possible to look at those pictures of

the times when she was healthy, this would influence one’s thoughts on their grandmother

better, and help them forget how violent she has been recently3.

It is beyond the scope of this thesis to deal with the sociological aspects of lifelogging,

however it is important that the reader is aware of such concerns being expressed by other

members of the community. We are not of the opinion that everyone should be wearing

lifelogging devices, however we feel that those who may benefit from wearing, and indeed

rely on, such devices should be allowed do so.

2.2.4 Memory Benefits

While there are “invasion of privacy” concerns associated with lifelogging, and while these

concerns must be addressed before this area becomes mainstream, it is important to ac-

knowledge that there are many applications which will be of great benefit to a large number

of users.

As Schacter notes, biological memory serves us well, but it is highly selective and

fallible [126]. The goal of automated lifelogging capture and retrieval has come into focus.

Barreau states that ‘. . . Digital memories surpass biological memories by enabling people

to directly see and interact with captured information. This powerful capability can help

people manage their personal information . . . ’ [13].

Microsoft Research and the Memory Clinic in Addenbrooke’s Hospital in Cambridge,

U.K., point out that lifelogging systems do not capture human “experience”, rather they
3http://www.bbc.co.uk/programmes/b00dkvqw
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capture a set of cues to help trigger the “remembering” of human experiences [131]. In

one piece of work they explore 4 basic questions: 1. Do SenseCam images improve our

memory? 2. Can people recognise images as their own? 3. How does the effect of remem-

bering change over time? And 4. Are manually captured images better retrieval cues than

passively captured ones (taking into account the generation effect mentioned by Slamecka

and Graf [135] whereby we regard our own generated content as more memorable)? It is in-

teresting to note that ‘. . . in 95% of cases, when subjects reported any part of an event, they

were able to report all the constituent parts . . . ’. Regarding their findings as regards to the

aspects explored in their work: 1. Does the SenseCam significantly help improve people’s

memories? YES; 2. Do people recognise their own images? YES; 3. How does the effect

of remembering change over time? Over time we can remember more with the SenseCam

than we normally would, however the power of the cues does deteriorate in terms of “re-

membering”4, but in terms of “knowing”5 it seems less sensitive to the passage of time -

interestingly even before viewing images people had better memory of events when they

wore the SenseCam than not, which may be due to them taking manual pictures and re-

membering doing that, or comments passed on it; And 4. Are manually captured images

better retrieval cues than passively captured ones? Contradicting the generation effect, pas-

sive capture seemed to do better (not significantly so it was stressed) than manual capture

in helping the subjects remember. In conclusion the results of this work indicate that lifel-

ogging supports both the ability to remember and to know what happened in one’s personal

past, with the “knowing” being most effective.

Berry et. al. carried out a study to investigate the benefits of lifelogging to a 63 year old

lady with limbic encephalitis [17]. In this study the woman had access to a SenseCam over

a 12 month time period. She was able to review recorded events with her husband, who

could help her retrace what they did together to assist her memory. The results of this small

scale study are quite impressive as illustrated in Figure 2.5. Here it can be seen that the

potential benefits offered by a visual lifelog can be better than the traditional written diary.
4can re-experience event in the “mind’s eye”
5can’t specifically remember, but other knowledge makes them “know” it happened
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Figure 2.5: This graph illustrates the potential benefits offered by the SenseCam to those
with memory impairments Source: Hodges et. al. [71].

In personal communication with Emma Berry and Georgina Brown of Microsoft Research

and the Addenbrooke’s Memory Clinic in Cambridge, UK. we have been informed that 4

others with memory impairments were given lifelogging devices, and the results again are

promising in terms of their memory recall.

Harper et. al. also show that the SenseCam is a good aid to remembering past activities,

in that it provides new perspectives on the past and users like to review the images too, find-

ing them quite amusing to watch [69, 68]. They note that “ . . . what we find with devices

like SenseCam is that, although they might not act as memory prostheses, they most em-

phatically don’t miss the mark in offering memory-related experiences that appeal to users

. . . ” Harper et. al. also comment that people wearing SenseCams capture more “natural”

photos, with one participant suggesting that “ . . . there is simply no other way of getting

results of this kind . . . ”

To further illustrate the suitability of the SenseCam towards work of this nature, Baecker

et. al. are using the SenseCam to investigate the benefit of multimedia biographies to

those with Alzheimer’s [11]. Fleck is investigating the benefits of the SenseCam to school

teachers [55]. Furthermore Greenberg et. al. are exploring the usefulness of the SenseCam

38



as a technology to support students’ memory and reflection [65].

Not all the benefits offered by lifelogging are just to aid the human memory. Lifelogging

also offers other potential applications and benefits and a selection of these will now be

discussed.

Ashbrook in Georgia Tech feels that automatically converting a lifelog into an online

blog is a potentially significant application [7]. Given the large explosion of web blogs and

also personalised “Web 2.0” social networking sites, this ability to automatically summarise

one’s day and make it available for friends online may well be very popular. He does

recognise there are still big problems in efficiently browsing and searching the recorded

lifelog data, which is what we are attempting to address in this dissertation.

Fleck & Fitzpatrick in Sussex carried out a study indicating that the SenseCam could be

useful in terms of supporting reflective learning [55]. A study was conducted on students

reviewing their performance at arcade games, and how SenseCam images help promote

discussion and retain memories of the event.

Hodges et. al. note that ‘. . . the act of stopping to take a photograph is very disrup-

tive; it can break the patient’s train of thought and it may be inappropriate from a social

perspective’ [71]. Taking this into account, we have described a motivation scenario in the

introductory chapter of this thesis whereby lifelogging devices can be useful tourist aids.

The wearer of the device can relax and enjoy their holiday, without the burden and hassle

of having to manually capture photographs.

2.2.5 Challenges in Aiding Memory Retrieval via Visual Lifelogging

As we noted at the start of this chapter, it is believed that autobiographical memories are

mainly visually encoded in the brain, and the visual viewpoint that memories are encoded

from can provide good cues to aid retrieval. The SenseCam records pictures from the

viewpoint of the user, thus being able to provide recall cues that are very close to how

the original memories/experiences were encoded in the user’s brain. To quickly digest large

volumes of SenseCam information, we believe that it will be useful to chunk sequences of
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SenseCam images into distinct events or activities, thus allowing a user to quickly browse

through his or her images. We detailed evidence supporting the fact that more unusual

episodes are encoded strongly in the memory system, thus it will be desirable to draw

the attention of the users to these events when reviewing their SenseCam images. Also

given that we have described how the human mind organises memories in an associated

manner, it will be useful to enable users to search for events/memories related to any specific

event/memory that the user encounters.

A significant challenge is in managing the large collection of personal images that are

generated by the SenseCam. This problem is made very difficult due to the age-old chal-

lenge of addressing the “semantic gap”. Much effort has been made in the video and image

research communities in addressing this difficult challenge [143]. As was stated towards

the end of Chapter 1, the hypothesis of this dissertation is that:

In order for visual lifelogging technologies to effectively provide autobio-

graphical memory retrieval cues it is necessary to automatically:

• effectively segment a large collection of personal images into distinct

events

• accurately determine which of those events are most unusual

• usefully provide the ability to link similar events together

• augment images from the low-resolution wearable device with higher

quality images from external data sources.

Previous approaches used by others to address these challenges will now be discussed

in the remaining subsections.

2.3 Event Segmentation Approaches

This section will review techniques used by others to segment sequences of lifelog images

into distinct events or activities as illustrated in Figure 2.6 e.g. breakfast, working on PC,
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at a meeting, etc. Zacks, who studies how representation in the brain works, notes that

“. . . segmenting ongoing activity into events is important for later memory of those activities

. . . ” [158]. Staying in the field of cognitive science, Newtson, Engquist, & Bois note that

“. . . breakpoints [between events] tend to correspond to points at which the most physical

features of the action are changing . . . ” [108]. Indeed, in the lifelogging community it

has been recognised by Lin & Hauptmann that a visual lifelog should be segmented into

shots/activities/events to make it manageable [89].

Figure 2.6: Segmenting sequences of lifelog images into distinct events/activities.

In the traditional video retrieval domain it has long been accepted that video should be

organised into shots [136, 42]. Thus it is natural to segment a lifelog into distinct activities

like the “table of contents” approach discussed by Xiong et. al. [156]. Video consists of

a series of images usually taken at 25 frames per second; the relative difference between

adjacent images from the same shot is thus quite minor unless there is huge movement of

objects within the frame, or of the actual camera. Existing image analysis techniques for

shot boundary detection use this information to compare visual similarity between adjacent

frames and if similar, then assume the images are from the same shot. Exceptions to this

also occur where there is a gradual transition in a shot bound, like a fade from one shot to

another, but the above is a generic description of how shot boundary detection works. In

video retrieval the performance of modern shot boundary detection systems is over 95% in

terms of precision and recall, with respect to hard cuts [141]. However, when it comes to

gradual transitions the performance is just over 80% which may indicate an upper bound
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for event segmentation performance with respect to the lifelogging domain. In the case of

segmenting adjacent SenseCam images into events, these images are taken at a rate of up to

3 images per minute and the difference between adjacent SenseCam images is thus likely to

be much greater than for adjacent frames in video. This poses a different kind of challenge

to hard cut detection in video segmentation. Finally our wearable device captures images

at a very low quality and uses a fisheye lens which accentuates the challenge even more

so. Thus while it may appear on first examination that there are similarities between video

segmentation and SenseCam image event detection, this domain poses different challenges

to video structuring.

In terms of comparison with techniques applied to the traditional photo management

domain, the techniques we are using and propose to use for measuring SenseCam image

similarity do use the same low-level image similarity measures as can be used in comparing

photos. However, there is no process applied in the traditional photo management domain

which is equivalent to structuring SenseCam images into events. Images taken by existing

digital cameras are manually taken at irregular intervals and events are normally determined

by the time interval between successive images, as there are generally periods of hours, or

even days or weeks, between successive images thus making it relatively straightforward to

segment into events [64]. These techniques can’t be used with wearable cameras as images

are taken on average three times every minute. As with the video domain, it may initially

appear that the lifelogging domain can take techniques from the traditional image domain to

segment images into events. However, as we have just highlighted, the lifelogging domain

presents very significant challenges on closer inspection.

In the lifelogging domain, Lin & Hauptmann propose a time-constrained variation of

the k-means clustering algorithm to cluster images together based on their visual features

while also considering what clusters their temporal neighbours belong to [89]. A weakness

of this approach is that the number of events/clusters must be fixed to a value k, and also

only one data source is considered (in fairness, Lin & Hauptmann only had video footage

available [89]). Additionally they don’t identify the boundaries between all events; instead
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of having multiple events of “working at PC” in a day, they will cluster all these events

together. In this respect, the time-constrained clustering technique of Yeung & Yeo [157]

used in the video domain for story boundary detection is more appropriate as it will retain

all the local “working at PC” clusters (hence allowing us to identify the boundaries between

them and their adjacent activities). Wang et. al. segment their lifelog of video into 5 minute

clips, however real events are not always 5 minutes in duration [155]. In our published work

we focused on investigating what individual and combined data sources yield the richest

source of information for activity segmentation [50]. However, the selection of a threshold

for the number of events in a day was arbitrarily fixed at 20, and only the precision of the

segmentation was computed as we had no detailed groundtruth of valid event boundaries

from which to calculate recall. In this published work we also discovered that recording

audio is not necessary to segment lifelog data into distinct events/activities [50].

Adjacent groups of images are contrasted against each other to determine how different

they are. Higher difference scores between images indicate a greater likelihood of this

being a boundary between distinct lifelog events. In our work we compare adjacent sensor

values, but we can also compare adjacent images by considering the pixel properties of

each image. Images can be represented by characteristics such as the colours present in

them, and also the edges present and the texture too. The MPEG-7 descriptor language

is a standard introduced to recommend how images should be represented [125]. This

standard details a range of descriptors for an image’s colour (e.g. colour space, dominant

colour(s), scalable colour, colour layout, colour structure, etc.), an image’s texture (e.g.

homogenous texture, edge histogram, etc.), an image’s shape (e.g. region shape, contour

shape, etc.), etc. In this thesis we use 4 low-level MPEG-7 descriptors: colour layout

captures the spatial distribution of colour in an image, which is computationally efficient;

scalable colour measures the colour distribution over an entire image, which is good at

identifying general scenes (e.g. park is generally green, while workplace is another colour);

while the edge histogram descriptor captures the spatial distribution of edges [112, 20],

which is again good at identifying general scenes (e.g. not many edges when at a beach, but
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Figure 2.7: Retrieving other events that are semantically similar to a given lifelog event.

defined edges when working on PC); and colour structure measures the spatial structure of

the colours in an image as well as their frequency of occurrence [100].

The MPEG-7 descriptors are represented by vectors, therefore it is necessary to compare

the similarity of any given vectors [82, 124]. Also given a number of content and contextual

sources are captured by the SenseCam it is also necessary to normalise [103, 132] and fuse

[56] those sources together. This will be covered in more detail in Chapter 3 on event

segmentation.

2.4 Retrieving Similar Events

Having detected the presence of distinct lifelog events, and given that many people in the

lifelogging community have talked of the major challenge being that of retrieval, we now

discuss how we approach retrieving other similar/related events to a given lifelog event (as

illustrated in Figure 2.7).

To retrieve similar SenseCam events to a given SenseCam event in a lifelog it is neces-

sary to firstly determine how to represent SenseCam events, and then how to compare those

event representations against each other. We will now discuss each of these challenges in a

separate subsection, and detail approaches taken by others in the literature.
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2.4.1 Representing Events as Units for Retrieval

Representing an event (consisting of many images) can be done using a single image, anal-

ogous to a video keyframe. Smeaton & Browne [137] note that in video retrieval the middle

frame is often chosen as the shot/event keyframe image [118, 51], which is then used as the

unit to represent that entire shot. We investigate this method to represent lifelog events.

While selecting the middle image of an event is highly efficient in a computational

sense, it may not always be the more representative image of the event. Cooper & Foote

[41] investigate two keyframe selection methods, namely: 1) Selecting the individual image

that is closest to all the other images in the event; and 2) Selecting the individual image that

is closest to all the other images in the given event, but also is most distinct from all the other

images in the other events. These video keyframe selection methods will be investigated to

select images to represent events as units for retrieval.

Above we have described techniques that select a single image from the event to rep-

resent that event, however another approach is to take an average value from a selection

of images in the event. In the video domain, FXPAL represent shots by the average of the

block histogram values of all the images in each segment for the TRECVid 2007 summari-

sation task [34]. This technique is also investigated in this thesis as a unit for retrieval.

With regards to choosing a keyframe in the video domain, Smeaton notes that ‘. . . The

danger of choosing from the start or end of a shot is the increased likelihood of picking

up artefacts from the previous shot if there has been a gradual rather than a hard shot

transition . . . ’ [136]. This applies to the lifelogging domain too given the difficulty in

achieving accurate event segmentation and as a result in this thesis we investigate if data

near the middle of an event should be more strongly weighted than that at the start or end

of an event.

2.4.2 Comparing Lifelog Events

Having decided how all the events in a lifelog should be represented, the next challenge is

to determine how to compare given events to a query event from the lifelog.
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Wang et. al. use the event of interest as a query video to find other similar videos based

on visual and audio features [155]. We intend to extend the work of Wang et. al. [155] as

instead of using 2 sources of information to find similar events, we display the benefits of

using other contextual sources of information to find similar events.

Again given there are a number of content and contextual sources captured by the Sense-

Cam it is necessary to normalise [103] and fuse [56] those sources together. The technical

details of this will be covered later in this dissertation.

In an interesting contrast to the approaches described thus far, Hori & Aizawa ignore

image content in retrieving related lifelog events because they found it would probably

not be useful [72]. They retrieve similar events to a given lifelog event using contextual

sources only; e.g. brain wave analyser, GPS, accelerometer and gyro sensors. However,

in experiments detailed in Chapter 4 of this thesis we show that image content is very

important in terms of retrieving relevant lifelog events to given query events captured by

SenseCam users.

Voorhees provides an overview of how experiments are carried out in the text and video

retrieval domains [154]. This thesis follows her experimentation methodology and also uses

the same evaluation metrics: precision, precision@N, recall, F-Measure, and mean average

precision. Precision refers to the percentage of similar events proposed by the system,

which are relevant, while precision@N refers to the percentage of events in the top N items

of a ranked list that are relevant. Recall refers to the percentage of similar events retrieved

out of all the known similar events. To determine the recall a groundtruth or recall basis

needs to be determined. The F-Measure is a trade off between both precision and recall

(
2 ∗ precision ∗ recall

precision + recall
). Mean average precision is a metric to give an indication of how

well a system returns many of the relevant results in highly ranked positions. For more

details of these metrics, please refer to an overview paper written by Ellen Voorhees [154].
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2.5 Determining Event Importance and Selecting Keyframe Im-

ages

Given that a user will on average capture over 7,000 events per year (approximately 20 per

day), it will be useful to highlight those events that are more important. We envisage an in-

terface showing keyframe images from each event, with more important events being given

a large size/emphasis on screen as illustrated in Figure 2.8. In this section we discuss why

such a facet is useful, and what approaches others have taken to attempt to automatically

determine the importance of lifelog events.

In studies on the potential benefits of lifelogging to the human memory, Berry et. al.

note that ‘. . . Mrs B did not recall all of the autobiographical events recorded by SenseCam.

For example, she remembered little of events three and nine. When discussing his wife’s

lack of recall for these events, Mr B said that they were “not memorable”, in that they were

“boring” to her. Mr B described them as “dreary days walking through dreary little towns

. . . Nothing stood out”. Similarly, Mr and Mrs B did not think it necessary to record routine

or mundane daily events . . . ’ [17]. Considering these comments we feel that it will be

useful to automatically emphasise those lifelog events that may be of more interest to users,

and to hide, or at least decrease the emphasis of, routine/mundane events.

In SenseCam user experiments Lee & Dey investigated the importance of selecting

good images as cues for memory recall in which they found 4 general categories performed

best as memory cues: people, the action taken, any object involved, and place [87]. They

state the caregivers of people with Alzheimer’s disease ‘. . . experience great strain as they

are required to support the increasing episodic memory needs in addition to the physical

needs of normal aging . . . ’. Firstly they shadowed caregivers in a home for a number

of days in an ethnographic study. They found that the lives of the people with episodic

memory impairments (EMI) are made more pleasurable when the caregiver gives them a

cue to remembering a certain event, rather than just giving the EMI the whole story without

giving them a chance to jog their memory. However, as the caregivers are under great strain,
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Figure 2.8: Identifying those events that may be more interesting to review and then dis-
playing them appropriately to users.
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sometimes they just blurt out the whole story in frustration. Considering this, Lee & Day

then asked the people with EMIs to wear SenseCams, and afterwards printed out 100 photos

of certain events. The researchers sat down with the EMIs and went through the photos to

identify which individual images gave the best memory cues for a certain event. Eventually

they narrowed each event down to the 6 images that provided the best memory cues. As

stated at the beginning of this paragraph they found 4 general categories of cues (from 14

experiences) were most effective: people (7 of the 14), action (4), object (2), and place (1).

Therefore to determine the importance of a given event or activity it may well be useful

to highlight those events with people present. Determining the importance of events in the

domain of lifelogging was first introduced by Tancharoen and Aizawa [145] and in their

work they determine conversational scenes as being very important events. To detect these

automatically, they used automatic face detection to determine events containing face-to-

face conversations.

The concept of novelty detection has been used in the text [33] and video [58] domains.

With respect to the lifelogging domain, novelty works on the premise that those events

that are novel (e.g. rarely occurring events such as going to a rock concert) will be more

important to a user than those events that occur frequently (e.g. having breakfast in the

morning). The concept of novelty has not previously been used in relation to reviewing

one’s life in the domain of large collections of images captured by wearable cameras. Varian

discusses ranking based on dissimilarity [152]: ‘. . . Now, the interesting thing about the

economist’s notion of the value of information is that it is only new information that matters

. . . it is better to look at risky choices early in the search process . . . a document that has

a low expected payoff may still be presented earlier, if it has a chance of yielding a large

payoff early in the search . . . in some cases, an optimal search involves looking at the riskiest

items first!’. Routine/mundane events are quite analogous to documents with a low expected

payoff, while more dissimilar/novel lifelog events are quite analogous to the risky choices

that we may decide to emphasise to the user. In the video domain Gaughan determines

the most novel items/events being those that are visually most dissimilar to all the other
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items/events [57]. This thesis applies Gaughan’s work to the lifelogging domain, and also

extends it by incorporating contextual sources of information (i.e. from the sensors onboard

the SenseCam).

Markou and Singh present an extensive review of various statistical approaches to de-

tecting novelty in their journal paper [96], many of which are concentrated on defining

correct threshold values. As this thesis uses novelty to rank events from most novel to least

novel, it is not necessary to have a threshold to define whether an event is sufficiently novel

or not.

We have been describing techniques to calculate the importance of events. Now the

focus is shifted towards discussing methods to select a representative/keyframe image from

each event (consisting on average of almost 100 images). Smeaton & Browne [137] note

that in video retrieval the middle image is often chosen as the shot/event keyframe image

e.g. [118, 51]. In literature this approach is generally used as the baseline on which to com-

pare all other approaches. Other standard approaches include those discussed by Cooper

& Foote [41] (see Section 2.4.1). In this thesis we will detail an approach to selecting a

keyframe image by considering the “quality” of individual images, and then selecting the

image in the event with the highest quality score. This will be described in more detail later

in Chapter 5.

2.6 Event Augmentation

As described in the motivation scenario in the introductory chapter, many users may like

to use lifelogging devices as a tourist tool, whereby they can passively capture images and

thus enjoy the experience of being there without interruption. We envisage a scenario where

the experience of users reviewing images of a special trip would be enhanced by having

their lifelog event automatically augmented with images taken from external sources, as

outlined in Figure 2.9. The novelty of our work is in augmenting SenseCam images with

images/videos from external sources of data (i.e. the Internet), we now discuss somewhat
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Figure 2.9: Augmenting lifelog events with images/videos from external sources of infor-
mation.

related work carried out by others in literature.

The goal of the MyLifeBits project [60] is to store a significant amount of the experi-

ences that an individual will encounter in his or her lifetime in digital format, and then to

make that data searchable. Therefore the MyLifeBits project contains a database that logs

many activities such as: Internet browser logging, interface activities, media files played,

e-mails sent/received, SenseCam images, GPS location data, etc. This means that it is pos-

sible to augment SenseCam images with other pieces of information such as the location a

picture was taken, whether the user was working with any particular application on their PC

at the time a picture was taken, etc. It is our intention to augment SenseCam images with

images from external data sources, and to investigate whether this is useful to users or not.

Lim et. al. attempt to recognise images taken by tourists on mobile phones, and then

augment the tourist’s photo with a textual description of a recognised monument [88]. They

call this system the Snap2Tell system, whereby they have the STOIC database which con-

tains 5,278 images of 101 Singapore tourist locations (they have a minimum of 16 images

per scene). They then do a novel form of matching image patches around salient regions

of the images, and return the database image closest to the picture taken by the tourist on
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their mobile phone. The image is returned along with a textual description of the attraction

to the phone. A weakness of this approach is that the database of images is restricted to

5,278 images. O’Hare et. al. have done something very similar too [115]. In essence

they selected 6 example query images and attempted to identify similar photos from other

users’ collections. They filtered firstly based on location, investigating the optimal distance

to filter results by. There didn’t appear to be a significant difference in filtering by 200m

(smallest distance) or by within the same city (around 5-10km), probably due to the small

dataset available. They did an image:image similarity matching between the query image

and the resultant images. The main conclusion of their work is that it is necessary to firstly

filter by location before attempting matching images based on low-level features. Nini &

Batouche have done similar work in that they try to identify fixed objects and then provide

extra augmented information on those objects [110]. Like the work of Lim et. al. [88] a

limitation of all these systems is that the dataset of images is of a fixed size. Kawamura

et. al. also produce a memory augmentation paper, but it is based on using RFID tags to

identify objects in a fixed scene [76].

Since we expect lifelogging devices to become more commonplace in future, and given

the phenomenal growth of multimedia content on websites, we introduce the idea of aug-

menting lifelog events with “Web 2.0” content, where individual users make small contri-

butions in uploading images/videos. We investigate aggregating these small contributions

over an enormous scale of users, which can thus automatically enrich the experience of in-

dividuals reviewing their trips or events, by providing them with a large number of relevant

items of information mined from millions of other individuals.

Kennedy and Naaman detail a clustering method to select images of a location that are

both representative and also distinct, e.g. showing images from the Flickr “Web 2.0” site

taken from multiple view points of Big Ben in London, and also pictures of other landmarks

in London too [80]. They focus on diversity of results, and in effect the information task is

displaying images on a browser. The information need of our event augmentation work is

different as it’s very specific, where users only want to see images of say the Eiffel Tower,
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Figure 2.10: This graph illustrates the phenomenal growth of geotagged images on the
Flickr website.

and not other regions in Paris.

The work in this thesis will attempt to find similar pictures in the same location as those

lifelog images taken by a wearable camera using the Flickr6 and Panoramio7 websites. The

Flickr site has over 65 million geo-tagged images (at time of writing) and is growing at a rate

of approximately 500,000 geotagged images per week as illustrated in Figure 2.10. This

overcomes the limitations of other systems which have only been able to augment lifelog

images with limited datasets of information [88, 115, 110, 76]. The significant research

challenge here is to find how to identify the relevant images from the Flickr website to a

given lifelog event. Afterwards, we also explore augmenting lifelogs with images from

other non-geotagged sources on the Internet such as Yahoo!, MSN, and YouTube; this will

be covered in much greater detail in Chapter 6 of this thesis.
6www.flickr.com
7www.panoramio.com
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2.7 Summary

Initially in this chapter we have pointed towards evidence that visual images are an excellent

memory stimulant, and that in particular humans can retrieve past memories more easily

when they are provided with visual cues towards those memories. We pointed out that

many people have memory impairments and that technology perhaps may be useful as

a memory aid, particularly given that cued recall is better at retrieving autobiographical

memories than free recall. This motivated us to then discuss the history of lifelogging and

that in the past people kept diaries to record mundane events. However, this required much

effort and even as far back as 1945, Vannevar Bush recognised that someday in the future

we would have the capability to automatically record many aspects of our lives [28]. As

computing technology advanced from the late 1970’s onwards, so did the efforts in creating

and miniaturising lifelogging devices, with Steve Mann being at the forefront of such efforts

[94]. The big challenge now facing the lifelogging community is the retrieval of information

that is relevant to end users, and this has been noted by many respected researchers in the

community [61, 60, 3, 144]. We have also discussed a study carried out by researchers

from the memory clinic in Addenbrooke’s hospital in Cambridge, U.K., which indicates

that lifelogging applications may indeed be beneficial memory for people with memory

impairments [17].

The work in this thesis is concentrated on the visual lifelogging domain and in particu-

lar on the SenseCam which is the prevalent device in this domain, especially with respect to

memory-based experiments, i.e. we concentrate on how to automatically structure and man-

age images generated by the SenseCam. We have motivated that the important challenges

include being able to:

• effectively segment a large collection of personal images into distinct events

• accurately determine which of those events are most unusual

• usefully provide the ability to link similar events together
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• augment images from the low-resolution wearable device with higher quality images

from external data sources.

In this chapter we have discussed the work carried out in literature by other research

groups attempting to address these challenges. With respect to segmenting sequences of

images into distinct events or activities, we have shown that past research was conducted

on single sources of information and tested on small datasets. In determining the most

important events in a person’s lifelog, face detection has been used to identify events con-

taining face-to-face social interaction. We also discuss novelty detection techniques used in

other domains, and why we investigate it in the work towards this thesis. In terms of retriev-

ing similar SenseCam events to a given event, others have used either image content only,

or sensory context only; in this thesis we will examine the combination of both together.

Finally we introduce the novel concept of augmenting one’s lifelog with images from the

Internet and “Web 2.0” websites.

The next chapter of this thesis will discuss our approach to segmenting sequences of

SenseCam images into distinct events or activities. This chapter is the underlying basis for

the work discussed in the other chapters that succeed it, e.g. before we can search for similar

activities to a given activity, we firstly must identify all the activities in the entire dataset.

After discussing contributions made towards the segmentation of lifelog images into dis-

tinct events/activities, we will then discuss retrieving similar events to a given SenseCam

event (Chapter 4), determining keyframe images for events and how important they are

(Chapter 5), augmenting events with images from external sources (Chapter 6), and small-

scale experiments to investigate the usefulness of these approaches as cues to retrieving

autobiographical memories in a system presented to users (Chapter 7).
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Chapter 3

SEGMENTING SEQUENCES OF

IMAGES INTO EVENTS

In order for visual lifelogging technologies to effectively provide autobio-

graphical memory retrieval cues it is necessary to automatically:

. . .

• effectively segment a large collection of personal images into distinct

events

. . .

A SenseCam captures 2,000 images on an average day creating a sizable collection

of images even within a short period of time, e.g. over 700,000 images per year. To help

manage such a substantial quantity of information it is important to automatically split these

collections into manageable segments (Figure 3.1) by identifying the boundaries between

different daily events, e.g. having breakfast, working in front of a computer, attending a

game of football, etc. (Figure 3.2). This takes advantage of the fact that “. . . segmenting

ongoing activity into events is important for later memory of those activities . . . ” [158].

In this dissertation we will chunk images into semantic events, and this chapter will now

provide details on how to effectively achieve this aim.

56



Figure 3.1: Segmenting a day’s of SenseCam images into distinct events.

Figure 3.2: An example of distinct activities. The aim of this chapter is to identify the
transition between events/activities.
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Figure 3.3: An example of a boundary between activities.

The aim of automatic event detection is to determine boundaries that signify a transition

between different activities of the wearer. For example if the wearer was working in front

of his computer and then goes to a meeting, or was watching TV and then goes to prepare

a meal, we believe it will be desirable to automatically detect the boundary between the

segment of images of him working at the computer, and the segment of images of him

being at a meeting as shown in Figure 3.3. In essence the aim is to detect moments of

change, whether they be visual, sensory, or otherwise.

This chapter investigates the performance of numerous event segmentation techniques.

3.1 Processing of Images into Events

In this section details will be provided on our algorithm which segments sequences of lifelog

images into distinct events/activities. The challenge of segmentation is very important, and

one on which the other chapters of this thesis rely upon.

In our approaches to segmentation sequences of SenseCam images are firstly broken up

into a series of chunks, where the boundary between these chunks correspond to periods

when the device has been turned off for at least 2 hours (e.g. when the user has gone to

sleep). Usually each chunk corresponds to a day’s worth of SenseCam images.

Each image is then represented by image and sensor values. Use was made of the ace-

Toolbox [112], a content-based analysis toolkit based on the MPEG-7 eXperimental Model

(XM) [125], to extract low-level image features for each image. There are a multitude of

available MPEG-7 descriptors, and we have proposed 4 that are particularly well suited

towards SenseCam images. To recap, the MPEG-7 descriptors we use are colour layout,

colour structure, scalable colour, and edge histogram [20]. The colour layout descriptor
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is to capture the spatial distribution of colour in an image; the colour structure descriptor

measures the spatial structure of the colours in an image as well as their frequency of occur-

rence [100]; the scalable colour descriptor measures the colour distribution over an entire

image; while the edge histogram descriptor captures the spatial distribution of edges [112].

It takes approximately 30 minutes to process a larger than average day of 2,500 images

on a 2.4GHz Pentium 4 machine with 512Mb RAM. These MPEG-7 descriptors are repre-

sented as vector values. The sensor values associated with each and every image include:

accelerometer (tri-axis)1, ambient temperature, light level, and passive infrared detector.

To segment a day of images into distinct events, as outlined in Figure 3.4, processing

follows these steps:

• Compare adjacent image/sensor values against each other to determine how dissimi-

lar they are (Item 2 in Figure 3.4).

• Combine the various data sources together in an optimal manner (3).

• Determine a threshold value whereby higher dissimilarity values indicate areas that

are likely to be event boundaries (4).

• Remove successive event boundaries that occur too close to each other (5).

3.1.1 Comparing Adjacent Image/Sensor Values

The motivation for comparing adjacent images against each other is to identify periods of

time in which there is a large dissimilarity in visual or sensory values, thus indicating a high

probability of change in activities undertaken by the wearer. To achieve this aim there are 2

main areas of investigation:

• How to quantify the difference between adjacent image/sensor values?

• How to select values for comparison i.e. is it optimal to compare single adjacent

values or blocks of adjacent values?
1The 3 units are combined together in a Euclidean type fashion as detailed by Ó Conaire et. al. [38]
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Figure 3.4: Overview of how we automatically segment sequences of SenseCam images
into distinct events.
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3.1.1.1 Quantifying Difference Between Adjacent Image/Sensor Values

As the sensor sources of information are all represented by single scalar values it is straight-

forward to compare sensor readings from adjacent readings. To calculate the difference

between two light level readings, x and y, the answer is ds in Equation 3.1 below:

ds(x, y) = |x − y| (3.1)

However the image MPEG-7 features are represented by vector values. The colour

layout feature is represented by a vector of 12 bin values; colour structure is a 32 bin vector;

scalable colour is a 64 bin vector; and edge histogram is an 80 bin vector. These values are

concatenated together to produce a 188 bin vector i.e. early fusion. However, to calculate

the difference/dissimilarity between two adjacent images (represented by MPEG-7 vector

values), there are numerous approaches that can be taken. In experiments carried out in

this thesis a number of vector distance/similarity techniques were investigated, particularly

since no extensive experiments have been carried out to investigate these in the domain of

lifelogging before. The following metrics were investigated:

Euclidean Distance: Discussed in [82]

deuc(x, y) =

√√√√
d∑

i=1

(xi − yi)2 (3.2)

Manhattan Distance: Discussed in [82]

dman(x, y) =
d∑

i=1

|xi − yi| (3.3)

Squared Chord Distance: Discussed in [82]

dcrd =
d∑

i=1

(
√

xi −
√

yi)2 (3.4)
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Square Chi-Squared Distance: Discussed in [82]

dchi(x, y) =
d∑

i=1

(xi − yi)2

xi + yi
(3.5)

Canberra Distance: Discussed in [82]

dcan(x, y) =
d∑

i=1

|xi − yi|
|xi| + |yi|

(3.6)

Bray-Curtis Distance: Discussed in [82]

dbry(x, y) =
d∑

i=1

|xi − yi|
xi + yi

(3.7)

Histogram Intersection Distance: Discussed in [124]

dhis(x, y) = 1 −
∑d

i=1 min(xi, yi)∑d
i=1 yi

(3.8)

Kullback-Leibler Distance: Discussed in [124]

dkul(x, y) =
d∑

i=1

xi log
xi

yi
(3.9)

Jeffrey modification of Kullback-Leibler Distance: Discussed in [124]

djef (x, y) =
d∑

i=1

(xi log
xi

mi
+ yi log

yi

mi
) (3.10)

where mi =
xi + yi

2
X2 Statistics Distance: Discussed in [124]

dxst =
d∑

i=1

(xi − mi)2

mi
(3.11)

where mi =
xi + yi

2
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Figure 3.5: Illustration of possible false positive event boundaries.

3.1.1.2 Selecting Number of Adjacent Values to Compare

Having presented a number of techniques for comparing individual images against each

other to see how similar/different they are, we now discuss how to select values for compar-

ison i.e. is it optimal to compare single adjacent values or blocks of adjacent values? The

result of this processing stage is, for the image and sensor data sources, is a list of similar-

ity scores. Those instances of adjacent images/sensor values being more different indicate

times where it is more likely that the user has began a new activity.

As just stated, if adjacent images are sufficiently dissimilar it is quite probable that a

boundary between events has occurred. However, this is not always the case. As the Sense-

Cam is a wearable camera that passively captures images, it captures from the perspective of

the wearer. Also an average of 22 seconds exists between adjacent captured images. There-

fore if one is talking to a friend but momentarily looks in the opposite direction an image

may be taken by the SenseCam. However, more than likely the wearer will then turn back to

their friend and continue talking. If only adjacent images are compared the wearer looking

momentarily in the opposite direction would trigger an event boundary, as both images are

very different in their visual nature. This phenomenon is illustrated in Figure 3.5.

We address this problem by using an adaptation of Hearst’s Text Tiling algorithm [70].

This involves the comparison of two adjacent blocks of images against each other, to deter-
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Figure 3.6: Our adaptation of TextTiling.

mine how similar they are. As an example in Figure 3.6 in we use a block size of 5, then

slide forward by 1 image and repeat the similarity calculation. If the two adjacent blocks of

5 are broadly similar (using the average vector value of all the images in each block) then

it is quite likely no event boundary has occurred, however if the two blocks are sufficiently

dissimilar, it is quite likely that there has been a change in the wearer’s activities. In us-

ing this approach, the effect of outlier images, like the wearer briefly changing his point of

view, is less detrimental to the detection of changes in the wearer’s activities, as illustrated

in Figure 3.6 with the house and tree icons.

3.1.2 Combining Various Data Sources

After comparing adjacent image and sensor values against each other, there will be a sepa-

rate list of difference values for each individual source. The greater the difference value, the

greater the likelihood that an event boundary has taken place. However, sometimes a flash

of bright light may make the light sensor indicate that an event boundary has taken place,

while in fact the other sensors have recorded no notable change taking place. Therefore we

investigate the benefits of fusing together all available sources of information, and we now

detail our approach in achieving this.

Montague and Aslam note that “A successful [search] system will consistently improve

on the best of its inputs, no matter how many input systems are available” [103]. Given that

there are numerous sources of information available in the lifelogging domain the challenge

of combining these sources optimally is quite important. The SenseCam device presents 5

sources of information: the content of the actual image, the accelerometer/motion sensor,
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the ambient temperature, the light level sensor, and whether the passive infrared sensor

detects body heat or not. The process of combining multiple sources has two distinct stages,

firstly normalisation, and then fusion.

There are two different types of fusion, early fusion and late fusion. Early fusion refers

to when sources of information are combined together before they are manipulated to indi-

cate the resulting output, whereas late fusion refers to when sources are firstly manipulated

to produce an output and are then combined together. In the segmentation work in this

thesis the 4 MPEG-7 descriptors are early fused together to produce a 188 bin vector, as

detailed in the previous section. All other fusion discussed in this section, from this point

onwards, is late fusion i.e. where the sources have already been manipulated so that they

provide an indication of an image being an event boundary. Then those scores can be fused.

3.1.2.1 Normalisation of Data Sources

Before data sources can be combined together it must be ensured that they are all on the

same scale, e.g. from a sample day of 2,006 images (taken by one user on 30/03/07) the

difference in the light level for successive images returned a scalar value of up to 9,587

(with an average of 982), whereas the difference in the ambient temperature reading of suc-

cessive images only returned a scalar difference as large as 13 (with an average of 0.23).

Consequently it is important to normalise the readings from all the data sources to a com-

mon scale, so that they can be compared to each other in a fair manner, and fused correctly.

A number of techniques proposed by Montague and Aslam [103] are investigated in this

work:

Min-Max Normalisation: Shift all scores so that the minimum score is zero, and then

scale the resulting values so that the maximum score is equal to one (i.e. divide the resulting

values by the maximum score).

Sum Normalisation: Shift all values so that the minimum score is zero again, but this

time scale the resulting values so that their sum equals one (i.e. divide the resulting values

by the sum of all their scores).
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Mean-Shift Normalisation: Shift all scores so that the mean of those scores is zero,

and then scale the resulting values so that the standard deviation is equal to one (i.e. divide

the resulting values by the standard deviation of all their scores).

Also a fourth technique was investigated, which is an adaptation of the Min-Max nor-

malisation, Standard Normalisation: Scores are not shifted, but are simply scaled by the

maximum score (i.e. just divide all the raw values by the maximum score)

3.1.2.2 Fusion of Data Sources

Once the data sources have been normalised to a common scale, the process of combination,

or fusion, can be carried out. Again as with the normalisation stage, no experiments have

previously been carried out in the lifelogging domain to indicate the optimal information

fusion approaches. Fox and Shaw propose a number of fusion techniques [56] that are

applied to the lifelogging domain in this thesis:

CombSUM: Resultant value is the sum value of all the sources

CombMAX: Resultant value is the maximum value from the source

CombMED: This time the median value is selected

CombMIN: The minimum value is selected

CombANZ: Return the sum of values divided by number of non-zero scoring sources

CombMNZ: Return sum of values multiplied by number of non-zero scoring sources

As mentioned, there are 5 data sources, each of which may be used, to indicate how

likely an image is to be an event boundary i.e. the larger the difference in adjacent values,

the more likely it is to be an event boundary. However, it is possible that not all 5 sources

are good at identifying event boundaries, therefore numerous combinations of sources will

also be tested. Also particular sources may be very good at identifying event boundaries,

therefore it is desirable to attach a greater confidence, or weighting, to such sources of
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information. Consequently the confidence/weighting to be assigned to each source of in-

formation is also investigated in this thesis.

3.1.3 Peak Scoring and Determining Threshold to Identify Event Boundaries

The previous processing stages produce a list of scores indicating how likely each is to be an

event boundary. The next stage involves selecting the actual instances that are most likely to

be event boundaries. This section covers two approaches to automatically realise this stage

of processing. Firstly the benefits of exaggerating, or emphasising, the most likely images

are investigated, and secondly the selection of an appropriate threshold is explored.

3.1.3.1 Peak Scoring

Given a list of scores, as illustrated in Figure 3.7, the aim is to have them match the user

groundtruth boundaries (the vertical lines). Higher scores indicate a greater likelihood of an

event boundary taking place. In this case it is desirable to exaggerate the instances where

peaks occur. To achieve this we introduce a method referred to as peak scoring. Each

individual score is compared to its adjacent neighbours, for as long as they are monoton-

ically decreasing. The individual score in question is then changed to equal the value of

its difference to the smallest leftmost neighbour added to the difference between it and the

smallest rightmost neighbour (where the scores have also been monotonically decreasing).

This is illustrated in Figure 3.8 whereby the highlighted instance will have a new score of

h1 + h2. We refer to this approach as peak scoring for the remainder of this thesis. The

bottom half of Figure 3.8 illustrates the effects of the peak scoring approach on the values

of Figure 3.7. The result is a more “spiky” graph where images with higher scores are ex-

aggerated much more sharply than other “noisy” images (with respect to their likelihood of

being an event boundary). This thesis investigates if the proposed technique is beneficial

towards the automatic segmentation of images into events.
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Figure 3.7: Event boundary likelihood scores from a sample day using the temperature
source of information before peak scoring.

Figure 3.8: An overview of how our peak scoring approach functions. For a given peak, we
consider the difference to the lowest value to its left (h1) while scores are monotonically
decreasing, and similarly the difference to lowest value to its right (h2). These two differ-
ence scores are then added to give a new peak score, which is a more “spiky” value as can
be viewed in the bottom graph.
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Figure 3.9: All values above the line in question are selected as the event boundaries for
this sample day - this highlights the importance of selecting an appropriate threshold value.

3.1.3.2 Threshold Selection

All the previous stages gave a likelihood of each instance being an event boundary between

sequences of images, however no decision was made on which instances should be selected

as the final event boundaries. Therefore, following peak scoring our next task is to auto-

matically determine which instances should be chosen as boundaries (Figure 3.9). We do

this by automatically choosing a threshold value based on all the peak scoring values just

produced. All values above the threshold line are selected. As a result if the threshold

value is selected too low, there will be a number of false boundaries detected; however if

the threshold is too high a value, there will be a number of valid boundaries undetected. In

this thesis we investigate two thresholding techniques, one non-parametric (Kapur) and one

parametric (Mean).

Kapur thresholding [75] is an entropy based technique that automatically selects the

relevant threshold given a range of values. All the values are firstly divided up into a number

of histogram bins e.g. if range of values was from 1-6, and 2 bins are used, then bin 1 will

contain the count of elements that are in the range 1-3, and bin 2 will contain the count of

elements that are in the range 4-6. The Kapur method then automatically selects a threshold

dividing the histogram into two probability distributions, one representing the object/event
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and one representing the background noise [37]. Work in this thesis investigates the optimal

number of bins to select for Kapur thresholding in the lifelogging domain. The threshold is

set to the value of bin j that maximises E in Equation 3.12.

E =
Ej

Aj
+ logAj +

EN − Ej

AN − Aj
+ log(AN − Aj) (3.12)

Mean thresholding [133] is a parametric technique that selects the relevant threshold

given a range of values. This method approximates that the background noise is Gaussian

and is therefore the dominant mode in the histogram. Consequently the threshold is selected

by adding k standard deviations to the mean [37]:

Tmean = µ + kσ (3.13)

Work in this thesis investigates the optimal value of k with regards to the lifelogging

domain.

3.1.4 Post-Processing: Boundary Gaps

At certain times, such as running to catch a bus, there may be a large amount of visual and

sensory change in successive images, and neighbouring images may be proposed as discrete

events, even after thresholding. In reality only one of these should be selected as the event

boundary. In effect we are seeking to explore the minimum length of time that every event

must be. Therefore we investigate, for an image proposed as a boundary, the optimum

amount of time to ignore subsequent images proposed as boundaries, e.g. 2, 3, 4, 5, 10,

etc. minutes, as illustrated in Figure 3.10. We refer to this approach as post-processing

boundary gap in the remainder of this thesis.
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Figure 3.10: An overview of our post-processing boundary gap method.

3.2 Event Detection Experimental Setup

We now describe the setup for our event detection experiments on 5 users (information

retrieval experts aged 25-35) who each wore a SenseCam over a one month period. After-

wards each user reviewed their SenseCam collection and manually marked the boundary

image between all events for each day, to create a groundtruth. It is important for privacy

reasons that the owner of the lifelog images is the person who groundtruths those images,

as by their nature lifelog images are highly personal.

Users made use of the Microsoft SenseCam Image Viewer software [71] to identify

images that were at the boundary of two distinct events/activities (Figure 3.11). Users

could create a bookmark on the left panel of images they believe to be boundaries between

two semantically distinct events. The main panel of the application is for playing all of the

lifelog images as a video, with buttons to play, pause, fast forward, rewind, etc.

Kahneman et. al. detail the activities of 909 women where they carried out a ques-

tionnaire, and prompted the women to list down their activities and how they felt during

these activities [74] . They discovered that there was an average of 14.1 episodes during

the day and that the average episode duration was 61 minutes. We believe that more events

would have been identified if the users had access to digital lifelog data of their days, as

they would have improved recall. In the experiments for this section of the thesis users
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Figure 3.11: Microsoft Research SenseCam Image Viewer Application [71].

User Avg Daily Total Num Groundtruthed Avg Events Avg Images Images
Duration Images Events Per Day Per Day Per Event

1 13h 08m 80,934 995 28 2,312 81
2 9h 27m 76,810 875 18 1,600 88
3 10h 41m 44,447 348 17 2,116 128
4 7h 45m 27,929 329 13 1,117 85
5 9h 15m 41,043 439 19 1,783 93

Table 3.1: Statistics on data gathered by our users for event segmentation experiments.

were asked to manually identify event boundaries, and it was stressed to these users to

judge event boundaries based on the semantic meaning for that user personally. Table 3.1

provides a breakdown of the 271,163 images captured and groundtruthed by the 5 users. It

is interesting to note that here users identified an average of 19.1 events/activities/episodes

per day, which somewhat corresponds to the 14.1 that Kahneman et. al. found in their

study, when taken into account that the 5 users in the study in this thesis were reviewing a

digital lifelog (which aids recall [13]).

It is interesting to note that in total there were 2,986 boundaries annotated in our set

which represents a sizeable collection. This data was split into a training and test set. As

mentioned at the beginning of the previous section, sequences of SenseCam images are
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broken up into a series of chunks where each chunk usually corresponds to a day’s worth

of SenseCam images. Not wanting to segment these chunks when dividing the data into

training and test sets, the data was divided as closely as possible to give training and test

set sizes of 50%. This results in a training set of 139,097 images (51.3%) and a test set of

132,051 images (48.7%, corresponding to 62 day’s worth of images). The complete set of

test images can be segmented in less than 2 minutes of CPU time on a desktop machine

and over 3,000 parameter combinations were tested and measured against the groundtruth.

Some of these approaches will now be presented in the next section.

3.3 Evaluation/Results

We now discuss the effectiveness of our approach to the detection of boundaries between

events. We evaluate numerous variations of our own approach, and eventually compare to

prior techniques used in segmenting sequences of lifelog images into events. To evaluate

the effectiveness of each approach, three different metrics were used: precision, recall, and

F1-Measure:

Precision: This is a measure of the percentage of boundaries proposed by the system that

are accurate;

Recall: This is a percentage measure of how many of all the groundtruth boundaries were

identified;

F1-Measure: This is a trade off between recall and precision, F1 =
2 ∗ precision ∗ recall

precision + recall
.

Unless stated, results in this section are reported in terms of F1-Measure as it is desired

to maximise both precision and recall. Parameters were optimised on the training set, and

all results reported are on the test set.
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Vector Distance Method F1-Measure
Histogram Intersection 0.6271

Euclidean 0.6253
Manhattan 0.6166

Squared Chord 0.6023
Jeffrey Mod KL 0.6020

Bray Curtis 0.6013
Square Chi Squared 0.5907

X2 Statistics 0.5905
Kullback Leibler 0.5869

Canberra 0.5684

Table 3.2: Segmentation performance of vector distance methods.

Figure 3.12: Breakdown of vector distance performances by day.

3.3.1 Best Vector Distance Method

As images are represented by MPEG-7 vector values, a number of vector distance/similarity

techniques were investigated, and it should be noted that no extensive experiments have

been carried out to investigate vector distance techniques in the domain of lifelogging be-

fore. Table 3.2 shows the performances of the 10 similarity measures for image vector

comparison which we investigated, and shows the Histogram Intersection distance (which

was also the best trained parameter) performs best overall.

As is be observed in Figure 3.12 the Histogram Intersection approach performs better

than the Canberra approach (which was the worst performing overall) most of the time (on
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44 out of 62 days), but not always (Canberra better on 16 out of 62 days). When comparing

Histogram Intersection approach another high performing approach like Euclidean, there

is no clear best method, as Histogram Intersection is better on 31 days while the Euclidean

approach is better on 30 days.

3.3.2 Effects of TextTiling

As explained earlier, due to the nature of the SenseCam taking 3 snapshot images per

minute, there may be certain images where the user briefly looked or moved in an opposite

direction. While semantically this may be meaningless, it may be recorded as significant

by one or more of the image and sensor sources of information. Therefore we introduced

the TextTiling technique whereby blocks of values are compared against each other, so as to

smooth out any outlier values.

The TextTiling approach was found to perform better on average (than non-TextTiling)

for the Image (0.6023 vs. 0.5387), passive infrared (0.5151 vs. 0.0844), and temperature

(0.4854 vs. 0.4218) data sources2. The optimal TextTiling block size for the image source

was to use the average value of 5 images grouped together, while for the temperature and

passive infrared sensors it was optimal to use a block size of 8 images. The latter are

sources of information that change more slowly, e.g. the ambient temperature value will

change slowly over time.

However comparing individual adjacent values performs better than TextTiling for the

sources of information that do change quickly (e.g. motion values change quickly when

user is sitting down and then decides to walk to another location) namely the accelerometer

(0.5284 vs. 0.3307) and light (0.5209 vs. 0.3988) sensors.

Table 3.3 summarises the usefulness of TextTiling overall on average for each source.

On inspection of Figure 3.13 it is noticeable that initially recall is better than precision,

but recall drops off at quite a fast rate as the window size increases, while the precision
2The performance figures calculated here are not final system results as some of these sources were later

omitted in the fusion stage. Therefore in this subsection results reported are just the overall segmentation
performance using each source individually, hence the performance isn’t against the baseline F-Measure of
0.6271 reported in all other subsections

75



Data Source TextTiling Optimal? Block Size
(num images)

MPEG-7 Image TRUE 5
Accelerometer FALSE 1

Light FALSE 1
Temperature TRUE 8

Passive Infrared TRUE 8

Table 3.3: This table lists the information sources where TextTiling is useful.

Figure 3.13: Note the effects of changing the TextTiling block size on the image source of
information.

initially increases, before gently decreasing. This is to be expected and holds true for all the

other sources, as by taking larger block sizes, more significant events will be detected (e.g.

large visual change between being in car and then in front of PC), however fine-grained

events will be missed (i.e. the event may have a shorter number of images than the size of

the TextTiling block).

Finally Figure 3.14 illustrates the performance of the TextTiling technique compared

against the Shot Boundary Detection technique on the MPEG-7 image source for each day

in the test set from all the users. It is evident that while the TextTiling approach works

better overall (0.6023 vs. 0.5387), it does not always do so as the shot boundary detection

technique works better on 21 out of the 62 days.
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Figure 3.14: Performance benefits in using TextTiling on the image source of information.

3.3.3 Optimal Normalisation Technique

Given that there will be a list of difference scores computed for each individual source of

information, a number of techniques were investigated so as to fuse the scores together.

Given that no one source will always perform optimally, performance may be improved by

combining multiple sources together. Before the results lists from the previous processing

stages can be fused together, it is firstly necessary to normalise the lists to the same scale

i.e. scores from the light sensor will be on a different scale to scores produced by the

temperature sensor. We now investigate the performance of 4 standard data normalisation

techniques described earlier: Standard, Min-Max, Sum, and Mean-Shift.

Mean-Shift performed poorly because many normalised scores were negative values

(this problem was also experienced by Montage and Aslam in their experiments [103]).

There was little difference in the the Min-Max (0.5852) and Standard (0.5854) normal-

isation techniques. In fact the Min-Max and Standard techniques are basically identical as

the datasets will generally have sensor or image similarity values of 0, hence the minimum

score is shifted to 0 for the Min-Max technique (just like the Standard technique). Overall

the Sum method performs best with an overall F-Measure score of 0.6271, however as il-

lustrated in Figure 3.15 it isn’t always better than the other techniques (on 21 out of the 62

days in the test set Min-Max normalisation outperformed Sum).
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Figure 3.15: Breakdown of daily segmentation performances by normalisation approach.

3.3.4 Optimal Fusion Technique

Having determined that Sum normalisation is the best technique to put all the boundary

likelihood scores from the various sources on to the same scale, we now investigate the

optimal approach to fuse those scores together. As discussed earlier in this chapter we

investigate 6 different fusion methods: CombANZ, CombMAX, CombMED, CombMIN,

CombMNZ and CombSUM. Given that some sources may be more reliable than others,

we also performed extensive training so as to assign weights, or confidence scores, to each

individual source.

Figure 3.16 shows that individually all the sources performed comparatively, even if

more emphasis/weighting/confidence is placed on each individual source when weighted

with other sources. The MPEG-7 and accelerometer sources perform slightly better, but not

to a great degree. After extensive training, where fusion weights were altered in steps of

0.05, a fusion of the image and accelerometer sources performed best with the weightings

outlined in Table 3.4.

As the best trained system is only combining two sources of information the perfor-

mances of the CombMIN and CombMED approaches will return the same score, as will

the CombMNZ and CombSUM approaches. Therefore in this paragraph the following fu-

sion method results are investigated: CombANZ, CombMAX, CombMIN, and CombSUM.
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Figure 3.16: Effects on segmentation performance by increasing confidence (x-axis) on
information sources.

Fusion Parameter MPEG-7 + Sensors
Fusion Type CombMIN

MPEG-7 Weight 0.65
Acc Combined Weight [38] 0.35

Acc X weight 0.0
Acc Y weight 0.0
Acc Z weight 0.0
Light weight 0.0

Temperature weight 0.0
Passive Infrared weight 0.0

Table 3.4: Summary of best trained fusion parameters for event segmentation.
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Figure 3.17: Breakdown of daily segmentation performances by fusion approach.

Overall, the optimal fusion approach is that of CombMIN (0.6271) which performs quite a

bit better than the CombANZ (0.5430), CombMAX (0.5298), and CombSUM (0.5753) ap-

proaches. This approach is not always better though, as on inspection of Figure 3.17 it can

be seen that the CombMIN approach is not the best performing approach 28.7% of the time

(24 out of the 62 days of data in the test set). However, on those days that CombMIN isn’t

the best performing approach, it performs very close to the other approaches, only being on

average 0.0216 worse than the best performing approach of the particular days in question.

3.3.5 Effects of Peak Scoring

After the scores from the various sources have been fused into a single list of event boundary

likelihood scores, we now investigate if our proposed peak scoring technique can help im-

prove event detection performance even further. Peak scoring exaggerates any peak values

in the list of the scores and makes a graph of all the values appear more spiky (as illustrated

back in Figure 3.8).

We found that on average it is better to use our proposed peak scoring method which

boosts the F1-Measure figures for overall boundary identification from 0.5393 to 0.6271.

Out of the 63 days of test data from the 5 users, on 60 of these days the peak scoring method

resulted in better segmentation performance, as illustrated in Figure 3.18.
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Figure 3.18: Effects on daily segmentation performances by using peak scoring or not.

It is in fact interesting to note that the peak scoring performs worse in terms of precision

(Figure 3.19), but always better in terms of recall (Figure 3.20). This is due to the “spiky”

nature of the output of the peak-scoring approach (Figure 3.8), in which peaks are exagger-

ated, thus proposing more event boundaries, which increases recall but can propose more

false boundaries too, which has a detrimental effect on precision. However, in terms of the

F-Measure, using peak scoring is much better.

3.3.6 Optimal Thresholding Technique

Given that the facets thus far produce a likelihood score that instances in the day are event

boundaries, we still have to select a final set of instances as proposed event boundaries. As

a result in this section we investigate three thresholding techniques to select either the top

20 likelihood values in a given day (RIAO approach), or to select a threshold value based on

the likelihood scores and select only instances that score higher (Kapur and Mean methods).

While the thresholding approach used in an earlier publication of our work [50] per-

forms best overall in terms of the number of true positives returned, and the Kapur method

performs best in terms of recall, the performance of the mean thresholding approach per-

formed best on the test dataset in terms of producing both high recall and precision values,

as is evident in Table 3.5.
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Figure 3.19: Effects on daily segmentation precision performances by using peak scoring
or not.

Figure 3.20: Effects on daily segmentation recall performances by using peak scoring or
not.

Thresholding Precision Recall F1-Measure
Method

Mean (k = 3.4) 0.6294 0.6249 0.6271
Kapur (64 bins) 0.4891 0.7121 0.5799
RIAO (top 20) 0.6789 0.4642 0.5514

Table 3.5: Breakdown of daily segmentation performances by thresholding approach.
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Figure 3.21: Performance effects of changing the mean thresholding parameter ”k”.

Observing the effects of changing the mean thresholding parameter on the test set k it

can be seen in Figure 3.21 that as the threshold is increased precision is enhanced, but recall

is much worse. In training we found a value of 3.4 for k was optimal.

3.3.7 Optimal Post-Processing Boundary Gap Method

Finally due to the nature of the data, where certain moments may have quite a bit of noisy

data, some of the proposed events after thresholding may be too short in nature. As a result

we carry out a post processing step to delete any events that are less than x minutes in

length, and merge such events with the next event in question. This step is referred to as the

post-processing boundary gap in this thesis.

As the magnitude of this parameter is increased, precision also increases, as the effects

of over-segmentation (and thus false positives) is nullified (i.e. one false boundary triggered

very soon after a true boundary will be ignored). However, this leads to a negative change

in the level of recall too, as illustrated in Figure 3.22. Through experimentation we found

that a gap of 3 minutes produced the best F1-Measure.
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Figure 3.22: Performance effects of changing the post-processing boundary gap parameter.

Fusion Parameter Sensors Only
Fusion Type CombMIN

MPEG-7 Weight 0.0
Acc Combined Weight [38] 0.25

Acc X weight 0.35
Acc Y weight 0.0
Acc Z weight 0.0
Light weight 0.0

Temperature weight 0.0
Passive Infrared weight 0.4

Table 3.6: A summary of the best trained fusion weights using only the sensor sources of
information.

3.3.8 Incorporating Only Sensor Sources

As stated earlier, it takes approximately 30 minutes to extract the MPEG-7 descriptor val-

ues from a busy day of 2,500 SenseCam images. Therefore it was decided to investigate the

event segmentation performance of the system described using sensor sources alone. By

using only sensor sources, event segmentation processing is just a few seconds of computa-

tion time. A fusion of the accelerometer and passive infrared sources (sensor sources only,

hence extremely quick processing time), outlined in Table 3.6, provided the best trained

parameters.

The overall event segmentation performance of this Sensors Only system was 0.6072 as
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Figure 3.23: This graph illustrates the daily segmentation performances are comparable
between using just the sensors and the best trained overall (MPEG-7 + Sensors) approach.

against a performance of 0.6271 by the best system which incorporates MPEG-7 sources.

On inspection of Figure 3.23 the Sensors Only system (thin line) performs comparatively to

the MPEG-7 + Sensors system, as it is better on 28 of the 62 days (the MPEG-7 + Sensors

system is better on 34 days). It is interesting to observe that in terms of overall performance

for each user, the Sensors Only system works better for 3 out of the 5 users (users 3, 4, and 5

in Figure 3.24). A possible explanation for this is that users 3, 4, and 5 generally wore their

devices in a more office-bound environment. The users were working hard at desks most

of the day, so any movement changes generally meant going for a meeting, going to lunch,

going home, etc. Whereas users 1 and 2 had more active lifestyles in that they were less

office bound, and also at weekends were quite active, therefore motion events detected by

the sensors may not always have a semantic meaning to the user. However, as can be seen

in Figure 3.24 the sensor based segmentation still works very good (relative to MPEG-7 +

Sensors) for both users 1 and 2.

3.3.9 Comparison of System against State of the Art

Approaches of other research groups were implemented to allow the experiments in this

thesis be compared against the current state of the art. This was done because it is imprac-
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Figure 3.24: This graph illustrates the average performance on each user’s data of the sen-
sors only approach versus the best trained overall approach.

tical to apply our findings on the data of others and unreliable to compare performances

across different data sources. The other approaches we implemented and compare against

are:

• Princeton - Wang et. al. segment their lifelog of video into 5 minute clips of fixed

length, however real events are not always 5 minutes in duration [155].

• Yeung-Yeo - Yeung & Yeo detail a time-constrained clustering technique for story

boundary detection in the video domain [157]. A weakness of this approach is that

the number of events/clusters must be fixed to a value k, and also only one data source

is considered (in fairness Yeung & Yeo only had video footage available).

• RIAO - In earlier published work we focused on investigating what individual and

combined data sources yield the richest source of information for activity segmen-

tation [50]. However, the selection of a threshold for the number of events in a day

was arbitrarily fixed at 20, and only the precision of the segmentation was computed

as we had no detailed groundtruth of valid event boundaries from which to calculate

recall.

• Sensors Only - The best performing system from earlier in this chapter which uses
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Thresholding Precision Recall F1-Measure
Method

Sensors Only 0.6102 0.6043 0.6072
Yeung-Yeo 0.4318 0.5152 0.4698

RIAO 0.6488 0.3209 0.4294
Princeton 0.1910 0.9781 0.3196

Table 3.7: Overall comparison of event segmentation techniques against the prior state of
the art.

Figure 3.25: Breakdown of daily segmentation performances of our proposed approaches
versus other approaches in literature.

only sensor sources.

Table 3.7 details the overall performance of each approach. It is observed that the

approach proposed in this thesis performs much better in terms of the important F1-Measure

than other approaches in the literature. Figure 3.25 shows the results on a day to day basis

and it can be seen that the approaches from earlier in this chapter are consistently better

than the previous known alternative. Our proposed approach performs better on 45 out of

62 days and 29.2% better overall than the next best system (Yeung & Yeo [157]).

3.4 Summary

In our hypothesis we have stated that we aim to “. . . effectively segment a large collec-

tion of personal images into distinct events . . . ” The work reported in this chapter was to
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investigate intelligent techniques to segment sequences of SenseCam images into distinct

events or activities, which is important for later recall of memories and also helps to digest

the large volume of personal images that can be collected. This challenge is somewhat

analogous to the challenge of scene boundary detection in the video domain, but there are

additional complexities inherent with segmenting sequences of lifelog images: 1) The fact

that video is captured at approximately 25 frames per second, while lifelog images from the

SenseCam are captured approximately just 3 times per minute, and 2) Lifelog images on

the SenseCam are taken with a fisheye lens and are only 640 x 480 pixels in size, thus they

are of low image quality. A number of questions are investigated in this chapter: attempting

to determine the best vector distance technique to compare adjacent images against each

other; whether to compare single adjacent images or blocks of adjacent images (TextTil-

ing); the optimal normalisation and fusion techniques; whether to increase the likelihood of

peak differences between adjacent (blocks of) images being event boundaries or not (peak

scoring); the optimal normalisation technique to use; and determining the minimum amount

of time that each event should last (post-processing boundary gap).

5 users each wore a SenseCam for one month, collecting a total of 271,163 images.

The users then created a manual groundtruth of the images that were boundaries between

different activities/events. In all 2,986 boundaries were identified, which is a test collection

of considerable size.

The best trained system achieved a precision of 0.6294, a recall of 0.6249, and a F1-

Measure of 0.6271. The best vector distance comparison method we found to use overall

is the Histogram Intersection approach, even though it is not always the best method to use

in each specific instance, it will perform best overall. The introduction of the TextTiling

technique on the MPEG-7 source of information results in an 11.8% performance increase,

while for the temperature sources it results in an improvement of 15.1%, and finally for the

passive infrared source it results in massive improvements of 510.3%. However, for sources

of information that can quickly change in values, it is optimal to only compare adjacent im-

ages e.g. the accelerometer source is 59.8% better when not using TextTiling, and the light
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source is 30.6% better when not using TextTiling. The optimal normalisation technique

to use is the Sum normalisation approach, while the optimal fusion technique is that of

CombMIN. After training it was decided to use just 2 sources of information: the MPEG-7

sources (early fused together, weighting of 0.65) and the accelerometer source (weighting

of 0.35). The introduction of Peak Scoring results in a performance gain of 16.3%, and is

thus recommended. The mean thresholding technique with a parameter of k = 3.4 is the

best thresholding technique to use (8.1% better than the Kapur thresholding technique). Fi-

nally a Post-Processing Boundary Gap of 3 minutes was decided as the minimum length

that each event/activity should be in duration.

Overall the incorporation of MPEG-7 + sensor sources offers an F1-Measure of 0.6271,

however a system based on sensor sources only will perform almost as well (0.6072). Given

the large reduction in processing time it is recommended to use this approach in systems

that incorporate many users collecting significant amounts of data. This system has been

proven to work better than other approaches in previous literature in this area of research;

29.2% better than Yeung & Yeo [157], 41.4% better than an earlier publication of our own

[50], and 90% better than Wang et. al. [155].

3.5 Conclusions and Contributions

• We utilise an adaptation of Hearst’s TextTiling technique [70] to compare “blocks”

of adjacent images or sensor values. This technique performs optimally on sources

of information where the values change slowly, i.e. the image, temperature, and pas-

sive infrared sensor sources. For those sources of information where the values can

change very quickly it is better to compare adjacent readings i.e. the accelerometer

and light level sensors.

• We investigated a number of vector distance techniques with no single technique

performing significantly better than the rest. The simple Manhattan and Euclidean

techniques perform almost as well as the best performing Histogram Intersection
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technique.

• We also investigated a number of normalisation and fusion techniques. We found

the Sum normalisation technique worked best, while the CombMin fusion technique

performed optimally.

• After the fusion stage it is highly recommended to use our Peak Scoring technique to

exaggerate the large changes in activity.

• We discovered that a parametric based thresholding technique with a relatively high

threshold (of 3.4 times the mean of all the values) has a large impact on final segmen-

tation performance.

• No system should allow events to be less than 3 minutes in duration.

• Our most important discovery is that segmentation performance can be adequately

achieved through the use of only onboard sensor values. This means that the costly

process of extracting image features is not necessary and thus processing is performed

significantly more quickly. It was found that a combination of accelerometer sensors

along with the passive infrared sensor performed best among the onboard sensors. In

fact, the nature of the passive infrared (PIR) sensor means that it is very sensitive to

movement, and when the SenseCam is not stationary, the PIR sensor is in essence

another motion sensor. To conclude we believe that only motion based sensors are

needed to segment a lifelog of images into distinct events.

• We have published papers on event segmentation at the 2007 RIAO [50] and 2008

WIAMIS [48] conferences.
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Chapter 4

IDENTIFYING SIMILAR EVENTS

In order for visual lifelogging technologies to effectively provide autobio-

graphical memory retrieval cues it is necessary to automatically:

. . .

• usefully provide the ability to link similar events together

. . .

A user will, on average, collect 700,000 SenseCam images over an entire year which

relates to an average of 7,000 events. For a user looking at a particular event (e.g. talking

to a friend), he may desire to search for other similar events (owing to the fact that the

human mind stores information in an associative manner) and review his past experiences

by clicking and viewing on relevant items, which then inspires the user to look at other

related events and browse through them. However, if a user is capturing approximately 8

thousand events per year, she will soon be overwhelmed by such a volume of information,

therefore it will be useful to provide search/retrieval facilities. The experiments detailed in

this chapter aim to identify the optimal techniques to usefully provide the ability to retrieve

relevant events to any given SenseCam event, as illustrated in Figure 4.1.

Traditionally the lifelogging community has been focused on the miniaturisation of cap-

ture devices, and also on the problem of storing the very large amounts of data generated by

these devices. In this chapter we firstly identify that the community are only now attempt-
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Figure 4.1: Retrieving other events that are similar to a given lifelog event.

ing to address the significant challenge of retrieving material from a lifelog that is relevant

to a user’s information need.

Retrieval in the domain of lifelogging has been investigated before, however experi-

ments have been on very small datasets confined to the data of one user [155, 89, 146, 53].

Also, the retrieval systems have been based on content sources only [89, 53, 155], or context

sources only [146, 31], and no lifelogging researchers have looked at combining content and

contextual sources1. The combination of context and content to the area of retrieving lifelog

data is the research contribution of this chapter.

In terms of managing huge volumes of SenseCam events, we allow users to filter and

browse using the 3 axes of who, where, and when i.e. who was at the event, where was the

event, and when was the event. To complement these 3 axes we can also filter lifelog content

by using higher level semantic features which has shown great promise for filtering based

on concepts other than named people [30]. However, whether one’s collection of lifelog

events is filtered or not, there is a need to either browse all events or to do searching and

event matching. In the case of the latter it is necessary to determine techniques to identify

the optimal content-based system to retrieve other relevant events to any given SenseCam
1In using the words “content” and “context” we are somewhat influenced by our background in video

retrieval, whereby we mean that “content” is features that can be derived from image pixels or audio recordings,
and “context” is any other sources that can be gathered, e.g. SenseCam sensor values.
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event. This case is illustrated in Figure 4.1 where for a search scenario on the 5th event of

the first day, all similar events from other days are linked to it.

To retrieve events similar to a given event in a lifelog it is necessary to firstly determine

how to represent SenseCam events, and then how to compare those event representations

against each other. We compare our proposed approach to a selection of other lifelog-

ging retrieval methods. Two datasets are used, one of 273,744 SenseCam images with

a groundtruth which also allows the tuning of retrieval parameters, and one of 1,864,149

SenseCam images where users judged retrieved events to a given query event for each ap-

proach. We discuss how we address the challenges of retrieval in lifelogs throughout the

remainder of this chapter.

4.1 Approaches to Finding Similar Events

We will now discuss possible approaches towards retrieval of SenseCam events. The aim is

to find similar events to a given event, as displayed in Figure 4.1. However, at the most basic

level an event will consist of many images. Therefore the first question is how to represent

an event? The next question can then be asked; how to compare those event representations

against each other to find similar events?

Investigations could be carried out looking at using different vector distance, normal-

isation, fusion, and individual source weightings for representation and search variables,

however our work should use the same value for both (representation and search) variables.

If Manhattan distance is the best distance metric to compare individual SenseCam images

against each other (to represent the events), then it is probably also the best at comparing

whole event representative values against each other (to search for similar events).

We now detail our approaches towards representing SenseCam events, and then how we

retrieve similar events to a given event by using those event representation values.
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4.1.1 Event Representative Approach

On average each SenseCam event consists of almost 100 images. Each of those images is

represented by a vector value, however it is desirable to obtain a single vector that is repre-

sentative of the values of all 100 vectors. Therefore how should each event be represented?

There are a number of approaches that we investigated, including:

1. Middle Image - Use the middle image from the event

2. Event Average - Get the average value of all the features across all the images in the

event

3. Exhaustive Within Event Keyframe Select the image within the event that is closest

to all the images in the event. To select an event representative image Cooper & Foote

select the image that is closest to all other images in the event which requires (n ∗ n

comparisons, where n is the number of images in a given event) [41].

4. Within Event Keyframe - Select the image within the event that is closest to the

average value of all images in the event.

5. Exhaustive Cross Event Keyframe Select the image within the event that is closest

to all the other images in the event, but most different to all the other images in all

the other events of the same day. Cooper & Foote discuss this method to select an

event representative image [41], resulting in a processing load of n ∗ m where m is

the number of images in a day.

6. Cross Event Keyframe - Select the image within the event that is closest to the

average value of all the images in this event, but most different to the average value

of all the images in the other events of that same day. This reduces processing from

n ∗ m to n ∗ e, where m is the number of images in a day, and e is the number of

events in a day, with [e << m, typically m = 90 ∗ e].

7. Quality Keyframe - Select the image within the event that has the highest image

“quality” score. This image may be a good representation of the semantic meaning
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of the event. We discuss the notion of image “quality” in much detail in the next

chapter.

8. Middle N - Select the average value of all the features across the middle n images in

the event. Given that sequences of SenseCam images can be segmented into distinct

events or activities quickly using sensor values, we investigate extracting the MPEG-7

image descriptor values only from a selection of images in the middle of each event.

The premise of this is that images in the middle of an event are more likely to be

representative of the semantic meaning of that event. Also by taking the average of a

number of images, the effect of single poor quality or outlier images is less damaging

on retrieval performance.

If using the Cross Event or Exhaustive Cross Event Keyframe representation technique

there is a trade off as to how much importance to place on the image that is closest to all the

images (or average) within the same event, as opposed to the image that is most different

to all the images (or average) from all the other events. This trade-off will be empirically

determined.

4.1.2 Weighting of Images towards Middle of Event

When comparing images against each other to determine the event representative image, or

when selecting the average features of all the images to represent the event, the benefits of

weighting more strongly those images towards the middle of the event will be investigated.

The rationale behind this is that those images at the start and end of the event may in fact

belong to the previous/next events (as event segmentation may not always be perfect) or

may belong to a transition from/to the previous/next events. Therefore it is investigated

whether linearly weighting images towards the middle of an event is worthwhile.
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4.1.3 Vector Distance Approach

When using the “within” or “cross” event selection images from the representation-keyframe

approach it must be determined how to compare images against each other, and also how

to compare event representative images/vectors against each other. The MPEG-7 features

of each image (or event representation) are represented as a vector. Therefore the optimal

vector distance comparison method is investigated for these tasks. The following methods

(which are described in Chapter 3) are investigated: Bray-Curtis, Canberra, Euclidean, His-

togram Intersection, Jeffrey Modification of Kullback-Leiber, Kullback-Leiber, Manhattan,

Square Chi Squared, Squared Chord, and X2 Statistics.

4.1.4 Fusion of Data Sources

As there are a number of information sources available (MPEG-7 from images , accelerom-

eter, light, passive infrared, and ambient temperature values) it is necessary to investigate

the optimal normalisation and fusion techniques. Normalisation is necessary as the scores

from the particular data source are on different scales, and it is therefore required to nor-

malise these sets of scores to be on the same scale. By doing this, it is then possible to

combine various sources of information together. The following normalisation techniques,

explained in the segmentation chapter, are investigated: Mean-Shift, Min-Max, Sum and

Standard. After normalisation, it is then possible to combine the results from the various

data sources which may offer more reliable retrieval results. A number of possible fusion

methods, also detailed in the previous chapter, are investigated: CombANZ, CombMAX,

CombMED, CombMIN, CombMNZ, CombSUM.

Given that certain sources of information may be more reliable in terms of comparing

any 2 given lifelog events to determine how similar they are, we empirically train parame-

ters to investigate which sources of information should be used, and how much confidence

should be attached to each source e.g. it may be desirable that more emphasis should be

placed on the MPEG-7 source when comparing events to the reference event, i.e. we want

to put more emphasis on events that are visually similar to the query event, as opposed to
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say those that are of a similar ambient temperature.

As explained in Chapter 3, there are a multitude of available MPEG-7 descriptors, and

we have selected 4 that are well suited towards SenseCam images. To recap, the MPEG-7

descriptors we use are colour layout, colour structure, scalable colour, and edge histogram

[20]. It will be investigated which of those sources of information are most useful (when

early fused) in comparing event representations against each other.

4.1.5 Summary of Approaches to be investigated

In this section we have detailed that to retrieve similar events to a given lifelog event, it

must firstly be determined how all events should be represented. On average each event

consists of almost 100 images, and we will investigate a number of techniques to select a

single representative image, or an average value of all (or a selection of) the images. We

also investigate whether it will be useful to more strongly weight those images towards the

middle of a given SenseCam event, on the premise that they are more likely to represent the

semantic meaning of events.

It is only then, after deciding on how to represent all the events in an individual’s lifelog

collection, that it is possible to compare all events against each other to determine how

similar they are. Given that MPEG-7 image values are represented by vector values, we

will investigate the optimal vector distance comparison technique to use in the retrieval

of lifelog events. Also given that there are a number of different sources of information

available to represent all the events, it is necessary to investigate combining these sources

together. This involves investigating various normalisation and fusion methods, as well as

investigating how much confidence to place on the various sources of information.

We now move on to the next sections which describe experiments we set up to investi-

gate the effectiveness of our proposed approaches, and how the various facets of the system

perform on real user queries.
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4.2 Experimental Setup

In experiments to investigate the effectiveness of our retrieval approaches, we asked 5 users

(information retrieval specialists aged 25-35) to collect SenseCam data. We collected two

datasets, one of 273,744 images, and another of 1,864,149 images. The first and smaller

dataset was used to construct an extensive groundtruth of relevance judgements. To have a

sufficient number of relevant events to train parameters on, it was decided to go for more

general queries in this dataset e.g. driving, at work on PC, eating, etc. The purpose of

the second and larger dataset was to investigate how the performance of the best systems,

trained on the smaller dataset, translates to an extensive lifelog of images. Also the queries

used on the larger dataset were much more specific e.g. “what other times was I talking to

John?”, “what other times was I on an aeroplane?”, etc. We will now describe the experi-

mental setup of firstly the smaller dataset with the relevance judgements, and secondly the

very large dataset with the very specific user-generated queries.

4.2.1 Dataset with Relevance Judgements

In experiments to investigate the effectiveness of our retrieval approaches, we asked 5 differ-

ent users to collect SenseCam data over a period of 30 days. A total of 273,744 SenseCam

images were used in this experiment (all images of less than 4KB in size were ignored,

as these are images of total darkness, i.e. when SenseCam is behind a coat, etc.). These

images were segmented into events using the optimal segmentation approach identified in

Chapter 3 on event segmentation. Table 4.1 summarises some of the main statistics broken

down by user.

Each and every image has sensor values associated with it, and also MPEG-7 descriptor

values were extracted. It takes approximately 30 minutes to process a larger than average

day of 2,500 images (on a 2.4GHz Pentium 4 machine with 512MB RAM). Therefore to

process all the images it took approximately 75 hours (150 days data, and 30 minutes to

process each day).
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User Total Num Num Avg Events Avg Images Images
Images Events Per Day Per Day Per Event

1 79,595 1,071 30 2,274 74
2 76,023 892 19 1,584 85
3 42,700 409 19 2,033 104
4 40,715 492 20 1,629 83
5 34,711 422 18 1,509 82

Table 4.1: Statistics on data collected for the “general” dataset.

User Num judgements to make
1 6,728
2 6,526
3 4,327
4 4,859
5 4,577

Table 4.2: The number of judgements to make going if we were to use the traditional
pooling approach.

4.2.1.1 Constructing a Groundtruth

10 diverse query events were selected for each user, thus giving a total of 50 queries/topics.

The users were then asked to judge a large number of potentially relevant events against

each query event to build up a groundtruth of data. This was done in a TRECVid style

pooling approach [154]. In calculating the events to be judged 43 possible system variations

were output in which the top 100 results from each run (i.e. a pooling depth of 100) were

stored. If the users were asked to evaluate all the (pooled top 100) returned results, for each

of the 10 topics on the 43 system variations, it would result in 43,000 judgements to be

made by each user. However, by removing duplicates this still requires an average of 5,404

judgements from each user (Table 4.2):

This would result in a large annotation burden on individual users; therefore it was

investigated if any possibility existed to have the users judge on fewer results but to still

keep almost all the relevant results. The results to be judged are given to the user if they

appear in any of the pooled results from the 43 system runs, then it was investigated to

see how many would be retrieved if users judged only those results that were returned by

a number of the pooled systems (see Table 4.3). This was investigated on a sample query
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Num systems Unique events Num correct Precision Recall F Score
proposing event returned events

(in top 100)
No Pooling 891 106 0.119 1.000 0.213

1 479 93 0.194 0.877 0.325
2 363 85 0.234 0.802 0.373
3 296 80 0.270 0.755 0.411
4 266 75 0.282 0.708 0.418
5 239 63 0.264 0.594 0.380
6 221 57 0.258 0.538 0.363

Table 4.3: The effects of specifying the number of systems that must propose an event as
relevant in the pooling process.

User Num judgements to make Original Number of judgements from Table 4.2
1 3,192 6,728
2 3,913 6,526
3 3,309 4,327
4 3,568 4,859
5 3,655 4,577

Total 17,637 27,017

Table 4.4: The final number of judgements that were requested from our users on the “gen-
eral dataset” pooled list.

event from user 2 in Table 4.1 in which he was working on his computer.

It was eventually decided to proceed with the bolded row in Table 4.3, i.e. if a user is to

judge any result, it will have to be proposed by at least 3 of the 43 different pooled systems.

This places the least amount of judgment effort on the users, while still having a high recall

figure from which to construct an extensive groundtruth to carry out the experiments that

will be detailed in due course. This reduces the average amount of judgements expected

from each user from 5,404 to 3,528 (see Table 4.4).

Figure 4.2 displays a screenshot of the application we developed where users judged

the similarity of the pooled list of potentially relevant events against a given query/topic

event. This application allowed a rapid form of annotation. The top section of the screen

is updated with 40 sample images from a new event after the user clicks on the “yes” (“y”)

or “no” (“n”) mouse/keyboard buttons to judge the relevance of the current event. After all

images have been annotated for a given query event, the entire page is refreshed with a new
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Figure 4.2: A screenshot of the application on which our users judged the similarity of
potentially relevant events to reference events.

query event appearing below the line (100 sample images are displayed for query events

since they are not constantly updated). The user is notified that they are annotating results

for a new query event.

As an interesting point of reference there were “only” 7,393 results judged in TRECVid

2001 (which was a workshop of TREC that year), although these were judged by 2 dif-

ferent assessors [142]. This doesn’t need to be done with SenseCam data as the only true

judge can be the wearer of the individual device itself, due to the highly personal nature of

SenseCam images. In TRECVid 2002 just 1 assessor judged the shots (as the ’01 agree-

ment between assessors was very good, 84.6%) giving a groundtruth of 23,681 judgments

[140]. In TRECVid 2003, 39,077 judgments were made in the search task [139]. The exper-

iments in this thesis are carried out on a groundtruth of 17,637 judgments from 5 different

users across 5 different datasets. Compared to early TRECVid systems, the scale of our

groundtruth is not insignificant, thus giving the retrieval results in this chapter a greater

degree of gravity.
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Figure 4.3: This unsorted graph illustrates the concentration of relevant results that each
topic has associated with it (unsorted).

4.2.1.2 Dividing Data into Training & Test Sets

After the groundtruthing stage the 50 queries (50×5 users) were then divided into a training

and test set. Taking the queries in the order that they were judged we get the distribution

of relevant events as illustrated in Figure 4.3: The y-axis percentage values indicate the

number of returned relevant result events for this query against the total number of events

in the whole database for the given user.

However to select training and testing sets it wouldn’t be correct to just take the first

6 or 7 queries as the training set and the last 3 or 4 as the test set, as there may be an

uneven/unfair balance in the distribution in the number of relevant results contained in each.

Therefore it was decided, for each user, to sort the queries by those that returned the most

relevant results, as illustrated in Figure 4.4:

To split into training and test sets it was decided to follow the sampling method outlined

in Table 4.5). This will therefore result in each user providing 6 queries for training, and 4

queries for testing. In terms of overall system judgement this means that there will be 30

queries (6 x 5 queries) for training and 20 queries for testing purposes. Another possible
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Figure 4.4: This unsorted graph illustrates the concentration of relevant results that each
topic has associated with it (unsorted).

method to divide the data into training and test sets is to use n-fold cross validation which is

useful when data is sparse [106]. However, in tests carried out in comparing both methods,

with training time for the n-fold cross validation exceeding 30 hours, there was found to

be only a 1.8% difference in both approaches with a very strong correlation of 0.99. For

the sake of simplicity we use the aforementioned method of 30 fixed queries for training

and 20 fixed queries for testing, rather than the more complicated method of n-fold cross

validation.

4.2.2 Larger Dataset with Specific User-Generated Queries

A disadvantage of the dataset used in section 4.2.1 is that while it was necessary to select

very general queries to produce a sufficient number of relevant events on which to tune

retrieval parameters, these queries are not representative of all possible user query classes.

Therefore we decided to create a second dataset on which users were asked to construct

real world queries with very specific information needs. This dataset is also much more

extensive in terms of size, thus adding to the challenge of producing good retrieval results,
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Query Rank Training/Test Set?
(Figure 4.4)

1 Test
2 Training
3 Training
4 Test
5 Training
6 Training
7 Test
8 Training
9 Training

10 Test

Table 4.5: Our selection method for dividing queries into training and test sets.

User Total Num Num Num Avg Events Avg Images Images Num
Images Events Days Per Day Per Day Per Event Queries

1 1,686,424 19,995 614 33 2,747 84 5
2 92,837 1,182 60 20 1,547 79 6
3 44,173 443 21 21 2,103 100 5
4 40,715 505 23 22 1,770 81 7

Table 4.6: Statistics on data gathered for the “specific” dataset.

but which also provides a more realistic evaluation of how such systems may perform in the

real world.

In experiments to investigate the effectiveness of our retrieval approaches for real user-

generated queries on extensive datasets, we asked 4 users to collect SenseCam data over a

long period of time. A total of 1,864,149 SenseCam images were used in this experiment.

These images were segmented into 22,125 events using the optimal segmentation approach

identified in Chapter 3. Table 4.6 summarises some of the main statistics broken down

by user. As opposed to the “general” dataset where 4 MPEG-7 image descriptors were

extracted for each image, in this “specific” dataset two MPEG-7 features (scalable colour

and edge histogram) were extracted for all of the images, taking an average of 13 minutes

to process a typical day of 2,500 images, thus taking a total of 156 hours.

Users were asked to select a number of query events that they would like to see a

list of potentially similar events to. They were presented with an event based browser (as
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Figure 4.5: A screenshot of the browser we used to mark events for annotation in the “spe-
cific dataset”.

illustrated in Figure 4.5) to sift through their SenseCam images. The calendar allows the

investigator to browse to a day of interest. The vertical column of images in the centre

then displays each event for a selected day, and once clicked all images from the event are

shown on the right of the screen. The users can select events to be query events by clicking

on the “tag event” button. A list of tagged events is displayed under the calendar on the left

hand side of the screen. In total, 23 events were selected to be used as queries (see “Num

Queries” column in Table 4.6).

The retrieval of potentially relevant events was then processed for each query event in

our dataset. Users were presented with a screen full of candidate events (20 from each

approach) in which they had the option to select other events relevant to their lifelog query

event, which were in turn highlighted with a green background (see Figure 4.6). The 6
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Figure 4.6: Screenshot of the application used to relevance judgements on specific user-
generated queries.

keyframe images chosen for each candidate event were spread evenly e.g. first is image

16% through event, second 33%, third 50%, etc. Below each candidate image there is a

“Link” button which opens all the images of that event in a new browser window. 1,736

unique candidate events were retrieved for presentation to users for judgement.

4.3 Evaluation of Event Retrieval Approaches

In this chapter we introduce the importance of retrieving relevant lifelog events to a given

event. We have proposed a number of approaches to address this challenge. In this section

we now detail our findings on the effectiveness of our approaches towards retrieving rele-

vant events. The dataset of “general” queries with associated relevance judgements allowed

us to tune various system parameters, and also to investigate the usefulness of various facets

of the retrieval system.

In the training phase, an appropriate evaluation metric must be chosen on which to auto-

matically tune various parameters. For the training phase of the segmentation experiments

(see Chapter 3) the F-Measure was identified as the most important metric. However, be-
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cause we are dealing with the challenge of retrieval in this section it is more important to

have many relevant results returned with a high ranking, therefore measures such as preci-

sion @5 or precision @10 become important. Precision @N are measures relevant to this

challenge, however they don’t take into account the number of relevant documents in total,

which is important for users who like to browse through many results. Standard information

retrieval precision and recall measures are not suitable either, as they do not consider the

ranking positions of the relevant results. In addition this dataset has an average of 44 rele-

vant results per query, and if a high number of results are returned for every query (say 200),

then it is quite likely that many systems will return these 44 relevant results, and therefore

the overall recall and precision scores will always be the same across runs. The F-Measure

is derived from precision and recall, so therefore it suffers from the same problem of not

considering the ranked positions of relevant documents/events.

Eventually it was decided, in the training phase at least, to train based on the system

that gives the best Mean Average Precision (MAP) score of the top 200 documents. The

main argument for using MAP is that it takes into consideration the ranking of relevant

results, with higher ranked relevant results being scored more highly than the same number

of lowly ranked relevant results. However, it also takes into account the total number of

relevant documents that can be obtained for a given query too. This is a desirable trait,

and this is reflected by the importance placed by the TRECVid community on the MAP

evaluation metric. MAP is calculated as the mean of the average precision scores for all the

queries. Average precision for the results returned for a given query is calculated as follows

in Equation 4.1:

AveP =
∑N

r=1(P (r) − rel(r))
RN

(4.1)

where RN = total number of relevant documents

The best trained parameters (see Table 4.7) performed with a mean average precision

of 0.3608 on the 20 test queries over all 5 users. A summary of the results is available in

Table 4.8. The best trained parameters perform better on the test set than in the training
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Research Variable Parameter Value
Keyframe selection event average

Vector distance Canberra
Weight middle images No

Normalisation Min Max
Fusion Comb MAX

Within/cross event weight N/A
MPEG7 features colour structure, scalable colour, edge histogram
MPEG7 weight 0.293

Accelerometer weight 0.057
Light weight 0.203
PIR weight 0.197

Temperature weight 0.25

Table 4.7: A summary of the best trained parameters in the “general dataset”.

Mean Average Precision 0.3608
precision 0.1748

recall 0.7021
f-Measure 0.2798

p @ 5 0.6000
p @ 10 0.5000
p @ 20 0.4375
p @ 30 0.3983
p @ 40 0.3725
p @ 50 0.3480

Table 4.8: A summary of how well the system with the best trained parameters performed
on the test set.

set (MAP of 0.3381), an explanation for this is the fact that, on average, the test set topics

contain a slightly greater concentration of relevant results due to the method of segmenting

the queries into training and test sets (see Table 4.5).

We will now investigate the effects on the final retrieval performance of various facets

explained earlier in this chapter.

4.3.1 Optimal Event Representative Approach

As lifelog events consist of almost 100 images on average, an appropriate technique must be

chosen to represent each event using a single set of values. Then using these event represen-

tative values we are able to compare events with each other to determine how similar they
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Figure 4.7: An examination on the retrieval performance affects by changing the event
representation method on the test set. Topics are sorted based on their performance using
the “Event-Average” approach.

are. Earlier in this chapter we described various techniques to represent an event, ranging

from choosing an individual image to selecting the average value from a number of images.

The best trained parameter regarding the selection of a keyframe to represent an event

was the approach of calculating the average value of all the images within the particular

event for each source i.e. getting average of all the bin values of MPEG7 features, the ac-

celerometer source, the passive infrared source, the temperature source and the light source.

It can be seen that across many of the topics the “Event Average” approach works best (in 9

out of 20 topics as illustrated by the thick black continuous line in Figure 4.7). The “Cross

Event” approach works quite well too, but it is much more computationally expensive than

the “Event Average” approach (115 seconds vs. 42 seconds total processing time)2.

Investigating if these results hold true across all users, Figure 4.8 displays that the

“Event Average” approach performs best across all users too.
2Total processing time refers to the time it takes to represent all events in the database and then to investigate

the similarity of each and every event against the query event, and finally to evaluate the performance of the
ranked list against the groundtruth). It should be noted that this is performed over a very large database, and
the retrieval part of this processing consumes a very small amount of time. This processing was carried out on
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Figure 4.8: An examination on the retrieval performance affects on each user’s dataset by
changing the event representation method on the test set.

On the “specific” topics, from the larger dataset of 1.86 million images, the differ-

ence between the Event Average and Middle Image approaches is not as pronounced (0.217

P@10 for event average vs. 0.170 for middle image keyframe). However, still on 14 of

the 23 topics the event average approach performs best, and overall we believe this is the

superior approach.

4.3.2 Benefits of Weighting Images towards Middle of Event

Earlier in this chapter we rationalised that images in the middle segment of an event are

more likely to be representative of the semantic meaning of that event, than those images

towards the tail end of events. Therefore we investigated to see if linearly weighting images

in the middle of events more strongly leads to increased retrieval performance.

On the test set it is only slightly better to weight images towards the middle of an event

(MAP of 0.3666 vs. 0.3608). In considering Figure 4.9, it is apparent that over a range of

topics the performance difference is almost negligible. Indeed the best trained parameter in

a 2.4GHz Pentium Dual Core machine with 2GB RAM.

110



Figure 4.9: An examination on the retrieval performance affects on the ”general queries”
test set by changing whether images should be more strongly weighted towards the middle
of an event or not.

the training phase is not to weight images towards the middle (MAP score on training set

of 0.3374 vs. 0.3240).

4.3.3 Vector Distance Evaluation

Given that we represent an event by the average of all its features, it must then be determined

how to compare event representations against each other to see how similar they are. The

sensor sources of information are represented by single scalar values, and this means that

a simple difference value is appropriate. However, as the image source of information is

represented by a vector value, there are a number of possible techniques that can be used to

determine how similar two event representative vectors are. We now discuss our findings

on the optimal such technique for comparing events against each other, to see how similar

they are.

The best trained parameters indicate that the colour structure, scalable colour, and

edge histogram MPEG-7 descriptors should be included, while the colour layout descriptor
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Figure 4.10: An examination on the retrieval performance affects on the ”general queries”
test set by changing the vector distance method. Results are sorted by the Canberra method.

should be discarded (0.3702 MAP vs. 0.3695). There was quite a variance in the overall

MAP score with changes in the vector distance metric used to compare MPEG-7 features

(i.e. ranging from 0.3606 MAP for Canberra to 0.2123 for Squared Chord distance). As

can be viewed in Figure 4.10, Figure 4.11, and Table 4.9 the Canberra distance almost al-

ways performs better than the other distance metrics. An explanation for why approaches

such as Canberra, Manhattan, and Euclidean work well is probably linked to the fact that

the scalable colour bin values can be negative as well as positive (The other 3 MPEG7

descriptors always produce positive bin values). The 3 mentioned vector distance metrics

consider absolute differences and have positive denominators too, so therefore the effect of

large negative values does not affect the final result for each comparison, which will always

be positive. The other vector distance metrics can produce both positive and negative re-

sults and absolute magnitude values aren’t considered. This may be an explanation for the

affected performance.
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Approach MAP
Canberra 0.3607

Manhattan 0.3209
Euclidean 0.3054

Histogram Intersection 0.2705
Jeffrey Mod Kullback Leiber 0.2613

Kullback Leiber 0.2391
Bray Curtis 0.2138

Square Chi Squared 0.2130
X2 Statistics 0.2130

Squared Chord 0.2123
Pearson 0.1107

Table 4.9: This table lists the overall retrieval performance of each vector distance approach
on the “general queries” test set.

Figure 4.11: An examination on the retrieval performance affects on each user’s data in the
”general queries” test set by changing the vector distance method.
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4.3.4 Optimal Normalisation Technique

Each and every data source will produce a score for how similar every event is to a given

event. It is useful to combine these scores together to give an indication of how similar each

event is to a given event, by considering all sources of information. However, before these

sources of information can be combined together, it is firstly necessary to normalise these

sets of scores to a common range. We now discuss the optimal normalisation technique that

we have found.

The best trained normalisation technique was the Min-Max approach. This technique

also worked best on the test set too as evidenced in Figure 4.12. In 17 out of 20 topics this

technique was the best performing normalisation technique, especially when compared to

the Mean Shift and Sum normalisation techniques. It is noted that the Standard approach

(i.e. divide all scores by maximum score) provides the exact same scores as the Min-Max

technique, therefore indicating many scores of zero were encountered in normalising the

data sources before fusion3.

4.3.5 Optimal Fusion Technique

Given a normalised score for each and every data source, it is then possible to combine

these scores together. The advantage in doing this is that while the temperature source of

information tells us that 2 sources of information are similar, the light and MPEG-7 sources

may say otherwise. Only considering candidates where all sources of information indicate

similarity will lead to improved retrieval performance, and leave an end user more satisfied

with search results. Therefore we investigate: 1) Which sources of information should

be considered, 2) How much confidence should be attached to each source, and 3) Which

fusion technique to use to combine the sources together.

The best trained fusion technique was that of CombMAX (selecting the maximum nor-

malised value from all the 5 sources). On the test set this was also the case with the
3The reason for this is the query event was compared to itself, thus always giving a similarity score of zero

(the optimal score) in the set of figures. This would be dealt with in a post-processing stage of the application
which removes this query event from the results list. This last pass occurs after the normalisation step however.
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Figure 4.12: An examination on the retrieval performance affects on the ”general queries”
test set by changing the normalisation technique.

CombMAX performing best, with strong performances also produced by the CombANZ,

CombSUM, and CombMNZ approaches (Figure 4.13). The CombMED and CombMIN ap-

proaches perform quite poorly. These methods select the source with the smallest (or one

of the median) scores. Its interesting to note that fused scores nearer zero indicate those

events that are more likely to be similar to the reference event. The performances of Comb-

MIN as opposed to that of CombMAX indicate that the optimal source to select is the least

certain source. The more conservative CombMAX method performs best in this case, as it

selects the least certain source. This mirrors the event segmentation experiments where the

most conservative fusion technique (CombMIN in that case, as scores towards 1 were more

desirable) proved most successful.

In terms of how much confidence to attach to each source of information, the best

trained weights for the different sources on the training set are outlined in Table 4.10. As

can be seen from Figure 4.14 the MPEG 7 source of information performs very strongly as

more emphasis is put on it, whereas the overall performance suffers if too much emphasis

is put on any one of the other sources (see Figure 4.15, Figure 4.16, Figure 4.17, and
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Figure 4.13: An examination on the retrieval performance affects on the ”general queries”
test set by changing the data fusion method.

MPEG 7 0.293
Accelerometer 0.055

Light 0.203
PIR 0.197

Temperature 0.250

Table 4.10: A summary of the optimal fusion weights as determined in the “general queries”
training dataset.

Figure 4.18).

Figure 4.19 displays the performance of the sources of information on their own. Again

it can be seen that the MPEG7 data source is the most valuable single source in determining

similar events.

4.3.6 MPEG-7 vs. Sensor Sources

Given that it can take up to 30 minutes to extract the four MPEG-7 descriptors for a day’s

worth of images in the “general” dataset, it was decided to investigate the retrieval perfor-

mance using sensor sources only. 84 different combinations of approaches were investi-

gated in training over a time period of 74 minutes, and the best trained parameters using
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Figure 4.14: An examination on the retrieval performance affects on the ”general queries”
test set by increasing the emphasis on the MPEG-7 Source.

Figure 4.15: An examination on the retrieval performance affects on the ”general queries”
test set by increasing the emphasis on the accelerometer source.
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Figure 4.16: An examination on the retrieval performance affects on the ”general queries”
test set by increasing the emphasis on the light source.

Figure 4.17: An examination on the retrieval performance affects on the ”general queries”
test set by increasing the emphasis on the PIR source.
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Figure 4.18: An examination on the retrieval performance affects on the ”general queries”
test set by increasing the emphasis on the temperature source.

Figure 4.19: An examination on the retrieval performance affects on the ”general queries”
test set when each source is applied individually and not fused with the other sources.
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Research Variable Parameter Value
Keyframe selection event average

Vector distance Canberra
Weight middle images No

Normalisation Min Max
Fusion CombANZ

Within/cross event weight N/A
MPEG7 features colour structure, scalable colour, edge histogram
MPEG7 weight 0.000

Accelerometer weight 0.220
Light weight 0.287
PIR weight 0.243

Temperature weight 0.250

Table 4.11: A summary of the best trained parameters by using only sensor sources of
information.

sensor sources only is outlined in Table 4.11. Bolded items indicate changes from the best

trained system which includes MPEG-7 as well as sensor sources.

However on inspection of Figure 4.20 it is apparent that on only 1 of the 20 testing

topics does the use of only sensor sources outperform the use of all sources of information.

It is illustrated that the incorporation of the MPEG 7 source of information boosts retrieval

performance across all topics. The inclusion of the MPEG-7 source of information is critical

in terms of the precision @5 and precision @10 results. These metrics are very important in

terms of returning relevant results early to the user, and thus improving the user experience

of any system. For every given metric the inclusion of the MPEG-7 source of information

improves performance.

It is interesting to note that taking only a small selection of the images from around

the middle of the event can perform almost as good as considering all the images from the

given event. Figure 4.21 illustrates how considering more images around the middle of an

event (as we move right on the x-axis) leads to a performance improvement. However, in

the training set if we just extract MPEG-7 features from the middle 35 images in an event,

we will perform 89% as well as when all the images in the event are processed. However,

this is very acceptable if we consider that instead of processing each and every image in the

SenseCam collection, we can process just 34% of that collection, and still achieve 89% of
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Figure 4.20: An examination on the retrieval performance affects on the ”general queries”
test set by changing whether the MPEG-7 source of information should be included or not
in the fusion process.

the retrieval performance.

This approach of selecting the MPEG-7 features of the middle 35 images in an event,

in combination with using sensor sources, performs much better than considering only the

sensor sources, as illustrated in Figure 4.22. While we need visual features for acceptable

event retrieval performance, it is not necessary to extract features from each and every im-

age, as after event segmentation (performed on only sensor sources of information), we can

get good retrieval performance by just extracting the middle 35 images from each Sense-

Cam event. This takes only 34% of the processing time of what it would take to extract

features from all the images, or to express in another way, in our “specific queries” dataset

of 1.86 million images, 1.23 million will not have to be processed.

4.3.7 Is Intelligent Segmentation Helping Retrieval Performance?

The previous chapter detailed intelligent multimodal techniques to segment sequences of

SenseCam images into distinct events or activities. The aim was to detect semantic events
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Figure 4.21: An examination on the “general queries” test set retrieval performance in
processing only a selection of the images to represent an event.

Figure 4.22: Processing middle 35 images vs. sensor sources only.
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as close as possible to a user defined groundtruth. While this may be somewhat useful to the

user while browsing through their images, as events are mapped as close as possible to the

semantic user groundtruth, we also believe that another reason for intelligent multimodal

segmentation may be that it aids retrieval, as similar images are grouped together which

makes representing an event (as a unit for retrieval) easier.

To investigate the effects of good event segmentation on the retrieval performance two

different systems were compared to each other:

1. The optimal multimodal segmentation system on which all results in this chapter thus

far have been based on

2. A simple temporal segmentation system where no more than 95 images can exist in

an event

All the data is available to investigate the retrieval performance based on the optimal

segmentation system, in terms of images being segmented into events, in terms of the

groundtruth being gathered, etc. Given that in the groundtruth of the segmentation ex-

periments chapter, each event, on average, consists of 95 images; it was decided to divide

the images of each user into events, each of 95 images in length, within available chunks4.

Given that the events from both approaches will differ in terms of length (i.e. start

times may be slightly different, and event durations can be quite different too), a decision

was required on whether to construct a new groundtruth or to make an approximation of the

existing groundtruth. Given the intensive annotation burden the former step would require,

and also given that it is not the core focus of this chapter, it was decided to opt for the

latter approach. To achieve this, the newly created events from the simple temporal seg-

mentation application were aligned with the events from the original intelligent multimodal

segmentation application, based on how much time overlap exists between events.

391 different approaches were investigated in training, and the tuned parameters using

the simple temporal based segmentation are outlined in Table 4.12. Bolded items indicate
4A chunk is when all images are continuously captured, until a 2 hour break exists between adjacent images

e.g. indicating when the SenseCam has been turned off for the user to go to sleep, etc.
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Research Variable Parameter Value
Keyframe selection event average

Vector distance Canberra
Weight middle images No

Normalisation Min Max
Fusion CombMAX

Within/cross event weight N/A
MPEG7 features colour structure, scalable colour, edge histogram
MPEG7 weight 0.256

Accelerometer weight 0.114
Light weight 0.213
PIR weight 0.150

Temperature weight 0.267

Table 4.12: A summary of the best trained parameters using simple temporal segmentation.

changes from the best trained system using the intelligent multimodal segmentation ap-

proach (Table 4.7). As can be observed, the parameters of this best trained system on the

temporally segmented events is very close to the best trained system on the multimodal in-

telligently segmented events, with only a slight change in weights the various sources. On

the training set this system had a MAP score of 0.2533.

Of course it is of more importance on how well the temporal segmented events re-

trieval performance compares to the multimodal segmented events on the test set. In terms

of the overall MAP score, the temporal segmentation system has a retrieval performance

of 0.2700 in comparison to a MAP score of 0.3608 for the multimodal segmentation sys-

tem. Figure 4.23 illustrates that for almost all topics the multimodal approach performs

better than the simple segmentation approach, while Figure 4.24 illustrates that the average

performance for every user is much better with the multimodal segmentation approach as

opposed to the simple segmentation approach.

On close inspection of Figure 4.23 it is noticeable that the topics where there is the

greatest disparity in the performance of both approaches are those topics such as “working

on pc”, “at work”, and “driving”. By nature these events can be quite significant in terms

of time duration, and with events being segmented every 95 images (approximately every
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Figure 4.23: An examination on the retrieval performance affects on the ”general queries”
test set by changing whether multimodal or temporal segmentation should be used.

Figure 4.24: An examination on the retrieval performance affects on each user’s data in
the ”general queries” test set by changing whether multimodal or temporal segmentation
should be used.
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Segmentation Technique Multimodal Temporal
Mean Average Precision 0.3608 0.2700

precision 0.1748 0.1591
recall 0.7021 0.6839

F-Measure 0.2798 0.2581
p @ 5 0.6000 0.4100

p @ 10 0.5000 0.4150
p @ 20 0.4375 0.3500
p @ 30 0.3983 0.3367
p @ 40 0.3725 0.3075
p @ 50 0.3480 0.2850

Table 4.13: A summary of multimodal vs. temporal segmentation affects on retrieval per-
formance.

30 minutes), it is indeed possible that those events are under-segmented5. The multimodal

segmentation approach also leads to much better retrieval performance in terms of P@5 and

P@10 in particular (Table 4.13).

4.3.8 Retrieval Performance on User-Generated Specific Queries

Earlier in the chapter we introduced the datasets used in these experiments. To somehow

capture the broad variety of information needs that users will have, we constructed two

datasets. One with 16 quite “general” queries e.g. driving, eating, working, etc. The other

dataset contained 23 user generated queries containing a very “specific” information need

e.g. talking to Lynda, special dinners, on the aeroplane, etc.

While retrieval performance is quite good with respect to the “general” queries (e.g.

P@5 for event average approach = 0.69 overall), it is challenging to retrieve relevant re-

sults for queries seeking a very “specific” information need (where P@5 for event average

approach = 0.30 overall). Firstly this is most likely due to the fact that there are less rele-

vant potential results in the users’ lifelog for the “specific” queries, as the performance of

the “general” queries are 158% better for P@5 across all the approaches, but then become

207% better for P@10, and then 235% better for P@20. This may indicate that there may
5We must stress that the temporal segmentation results were taken against a groundtruth inferred from the

multimodal segmented groundtruth. Therefore these results can not be claimed to be conclusive.
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be less than 10 potentially relevant items in the lifelog, if even that, for many of the users’

“specific” queries. Another reason for the relatively poor performance of the “specific”

queries is that many of them may require an associated semantic meaning.

4.3.9 Comparison to Other Techniques

In this chapter we have investigated techniques to retrieve similar lifelog events to any given

event. Wang and his colleagues in Princeton perform event retrieval on a video lifelog but

their approach is quite computationally expensive, in that when they compare two events,

all images within the events are compared against each other [155]. Also they use audio

features, and in prior work we have found that people are concerned about the recording of

audio [50]. Therefore we compare one of our proposed techniques to two other retrieval

techniques based on extracting interest point features from images e.g. identifying the

corners of a computer monitor, so that other events can be retrieved even if the wearer

was sitting in a different position than normal. Here we investigate the performance of

retrieving events in a lifelog, of our “global” MPEG7-based image descriptor to the “local”

SIFT and SURF image descriptors, which we will now describe below.

4.3.9.1 Approaches being evaluated

We will now describe the approaches being compared, a “global” MPEG-7 based approach

that has been evaluated in earlier subsections, SIFT and SURF “local” image descriptors,

and finally a fusion of our approach with a SURF approach to evaluate how complimentary

both are.

• MPEG7Sense: This refers to the optimal system discussed in the previous subsec-

tions. The only difference is that events are represented by their middle image instead

of the average feature vector of all the images in the event, which means that in terms

of “general” queries there is a decrease of 0.364 vs. 0.188 in terms of MAP score.

Given the computational complexity of SIFT and SURF, it was decided to only pro-

cess the middle image of all the events. In order to allow a fair comparison of the
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Research Variable Parameter Value
Keyframe selection middle image

Vector distance Canberra
Normalisation Min Max

Fusion Comb MAX
MPEG7 features scalable colour, edge histogram
MPEG7 weight 0.293

Accelerometer weight 0.057
Light weight 0.203
PIR weight 0.197

Temperature weight 0.25

Table 4.14: An overview of the best trained “MPEG7Sense” parameters that will be used
in the “specific queries” dataset.

approaches, we thus make use of the middle image keyframe approach as opposed to

the event average approach. Table 4.14 outlines this best trained system after over

one thousand parameter variations were evaluated. This approach will be referred to

as “MPEG7Sense” for the remainder of this section.

• SIFT: This is a method for extracting interest point features from images [92]. It

detects interest point locations and also extracts features from around the points that

can be used to perform reliable matching between different views of an object or

scene. The SIFT features are invariant to image orientation, image scale, and provide

robust matching across a substantial range of affine distortions, changes in 3D view-

point, addition of noise, and changes in illumination. In addition to these properties,

they are distinctive, easy to extract, allow for correct object identification with low

probability of mismatch and are easy to match against a large database of local fea-

tures. They are also robust to occlusion; as few as three SIFT features from an object

are enough to compute its location and pose. In addition to object recognition, the

SIFT features can be used for matching, which is useful for tracking and 3D scene

reconstruction.

For event/keyframe matching we use the approach described by Blighe et. al. [19]

whereby SIFT features are first extracted from a set of reference keyframes and stored
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Figure 4.25: An explanation of the SIFT distance ratio test.

in a database. A new keyframe is matched by comparing each feature from the new

keyframe to this previous database and finding candidate matching features based

on Euclidean distance of their feature vectors. In order to match features between

keyframes, the distance ratio test was used [19, 18]. To examine whether a point

from the 1st keyframe has a match in the 2nd, it’s two most similar descriptors in

the 2nd keyframe are found. If the ratio of the nearest distance to the second nearest

distance is less than 0.7, a match is declared, as illustrated in Figure 4.25. The number

of matches between a keyframe and all other keyframes in the event are summed, and

then the average number of matches is calculated. Events are ranked based on the

average number of matches calculated, with the most relevant items containing the

highest number of matches.

• SURF: Introduced by Bay et. al., Speeded Up Robust Features (SURF) are inspired

by the SIFT feature approach, but speed up the extraction and description of interest

points by exploiting integral images, achieving state-of-the-art performance in feature

matching [14] .
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While the extraction of SURF features is faster than SIFT, it is still computationally

expensive to perform exhaustive matching between a query image and an image col-

lection. Targeting fast image retrieval, Nistér and Stewénius describe an approach

to image matching that scales to very large datasets, up to a million images [111].

Following their proposed scheme, we created a hierarchical visual word vocabulary

using seven million SURF descriptors extracted from a collection of web images.

These descriptors were clustered hierarchically using K-means, to generate a vocab-

ulary tree with 4096 leaf nodes (visual words). An image database was structured by

including an inverted file for each visual word, allowing efficient retrieval. Database

images were compared to the query image using the Manhattan distance measure

between their normalised histograms of visual words. This measure performed best

in the original work [111]. Unlike the SIFT approach just described, which exhaus-

tively compares every image to the query, a vocabulary tree query can be run in a few

seconds for a database of thousands of images.

To further improve performance, the top 20 results are reranked by counting bi-

directional matches between the query and each database image. In Lowe’s work

with SIFT features [92], a match between interest points was determined by using the

distance ratio test. Since this measure is asymmetrical, we also compute the matches

in the reverse direction (from the target to the query) and we count the matches that

occur in both directions (bi-directional matches) as illustrated in Figure 4.26. Such

matches were found to be very stable and strong indicators of a good match. The

value of α was optimised using a training set and found that a value of α = 0.7

worked best. This is to be expected, as SenseCam images are generally of a lower

visual quality than the images used by Lowe.

• Fused Approaches As the global colour and edge features of MPEG-7 are comple-

mentary to the local SURF features, fusing the results of both approaches has the

potential to improve the overall event matching performance. We describe here the

two main approaches to fusion we investigated.

130



Figure 4.26: An explanation of the SURF bi-directional matches approach.

1. Baseline Fusion The bi-directional SURF matches that are used for SURF re-

ranking are strong indicators of matching confidence. As a baseline fusion

scheme, we take the most confident SURF results and then append the rank-

list provided by the MPEG7Sense approach. More formally, we choose the top

events ranked by the SURF scheme that have at least T bi-directional matches

with the query image, then we insert the MPEG7Sense results that have not al-

ready occurred in our fused rank-list. We trained the parameter T on a training

set of 24 queries and found that T = 2 optimised the MAP score.

2. Score Fusion In this approach we rank results in the following order for a given

query based on: 1) events proposed by both MPEG7Sense and SURF, 2) events

proposed by SURF, and 3) events proposed by MPEG7Sense. Parts 2 & 3 have

already been ranked, so they are straightforward to order. However, for part

1 the scores from both sources must be normalised and fused. After training

we selected the Min-Max normalisation technique and the CombSUM fusion

method. A weighting/confidence of 80% was placed on the SURF source, and

20% on the MPEG7Sense source.
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4.3.9.2 Comments on Individual Performance of MPEG7Sense, SIFT, & SURF

In this chapter we have proposed a technique to retrieve relevant SenseCam events to a

given query event. We are interested in comparing this technique to adaptations of tech-

niques proposed by others in domains quite close to lifelogging. We compare against SIFT

and also against SURF based retrieval algorithms to now evaluate the effectiveness of our

MPEG7Sense technique.6

The MPEG7Sense approach worked slightly better overall on both the set of 16 general

queries and on the set of 23 specific queries than either SIFT/SURF. On the set of general

queries it was the best performing individual approach on 9 of the 16 queries (0.188 MAP

vs. 0.177 for SURF vs. 0.133 for SIFT), and on the set of specific queries it was the best

performing individual approach on 16 of the 23 queries (0.126 P@20 vs. 0.089 for SURF

vs. 0.033 for SIFT).

Examining results on the set of “general” queries, all methods perform well on finding

driving events, with a P@10 of 0.7 or greater. These events are common in the data, and

the reliable detection of such events would allow these commonplace events to be removed

from view, facilitating more efficient user browsing. SURF performs best overall with

a MAP of 0.417 (SIFT: 0.4137, MPEG7Sense: 0.1121). For an eating event query, the

retrieval was quite poor, with a maximum MAP score was 0.061 (MPEG7Sense). The

query keyframe was an image of the wearer’s living room (while the SenseCam wearer

is eating), and many returned results are of the same location, though often not involving

eating. The low performance can be attributed to the difficulty in determining the semantic

meaning of a query. Reasonably good results are obtained on querying shopping events.

While the relevant events are visually quite different, they are usually cluttered scenes with

many colours and edges. The MPEG7Sense colour and edge descriptors generalise well,

and so do the SURF visual words, probably because some visual words capture properties

common to shopping events. MAP scores for this query are SURF: 0.2835, MPEG7Sense:
6It should be noted that our MPEG7Sense technique is not the optimal found previously in this chapter, but

to allow a fair comparison events are represented by the middle image in an event, instead of the best technique
which represents events via an average feature vector of all the values.
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0.2059 and SIFT: 0.0335.

On the 23 “specific” topics it is interesting to consider Figure 4.27 which plots the

P@20 score of the 3 approaches. Selecting 3 sample events where each approach works

better than the other two, it is somewhat unsurprising that the MPEG7Sense approach works

best on the “beaches” query, as returning back other events full of predominantly blue and

yellow/orange are quite likely to be relevant, while there were not many features present

in the given images explaining the relatively lower performance for SIFT and SURF. The

SIFT approach works well on the “Lynda” query, where one user wished to compile all

times he was talking to his colleague Lynda. These images were all taken in the same

building where objects within the office would all have a similar look and feel. SIFT worked

well in this case because the objects, and their spatial arrangement, within the images are

visually similar to the query event. The SURF approach works well on the special dinners

query. The SURF encoded feature points may detect items such as elegant glasses or salt

cellars, and then by reranking the top results based on bi-directional matches, there may be

a number of other dinner events excluded as they are not visually similar to the query event

“special dinner”.

4.3.9.3 Benefits of fusing MPEG7Sense & SURF

As we are evaluating the effectiveness of an adaptation of our approach (MPEG7Sense)

against two other techniques (SIFT, SURF), we now investigate the benefits to retrieval of

fusing these approaches. Given that the SIFT approach is computationally very expensive,

we only evaluate fusions between the MPEG7Sense and SURF approaches. We now detail

the benefits of fusing the results of both techniques together to provide the user with a

greater number of relevant events in higher ranked positions.

Both the baseline fusion and the score fusion approaches offer improvements over indi-

vidual runs in terms of MAP on the “general” set of queries. The best performing individual

source on the set of general queries had a MAP score of 0.188 (MPEG7Sense). The base-

line fusion approach had a MAP score of 0.203 and was at least as good as the best result
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Figure 4.27: A summary of the P@20 performance of the MPEG7Sense, SIFT, and SURF
approaches on the “specific queries” dataset.

offered by either the individual MPEG7Sense or SURF approaches on 7 out of 16 “gen-

eral” topics. Meanwhile the score fusion approach had a MAP score of 0.201 and was also

at least as good as the best results offered by either the individual MPEG7Sense or SURF

approaches on 5 out of the 16 “general” topics.

The performance of both fusion techniques is perhaps even more effective when deal-

ing with the difficult queries that have a very “specific” information need. The best per-

forming individual source on the set of “specific” queries had a P@20 score of 0.126

(MPEG7Sense). The baseline fusion approach had a P@20 score of 0.130 and was at least

as good as the best of the MPEG7Sense and SURF approaches on 16 of the 23 queries.

Meanwhile the score fusion approach marginally outperforms the baseline fusion approach

with a P@20 score of 0.135 and improves on the performance of any individual SURF or

MPEG7Sense approach on 15 of the 23 “specific” queries.

It is interesting to note that the score fusion approach returns a greater number of rele-

vant documents earlier than the baseline fusion approach on the “specific” queries as illus-

trated in Figure 4.28. This effect is also present on the set of “general” queries also. An
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Figure 4.28: Comparing fusions at different “precision at” levels (x-axis) on the “specific
queries” dataset.

explanation for the phenomenon is that the score fusion approach ranks candidates that are

returned by both SURF and MPEG7Sense, and ranks those firstly. This may explain why

for P@1, P@2 . . . P@8 scores are all better for the score fusion approach than the baseline

fusion approach. However, for candidates returned at ranks 10 and above the baseline fu-

sion is the best performing approach. The likely explanation for this is that the score fusion

strategy takes a more integrated approach to combine the retrieval scores, instead of the

baseline fusion strategy of using SURF then switching to MPEG7Sense when the number

of bi-directional matches drops below a threshold.

4.4 Summary

Considering that the human memory stores items associatively, in our hypothesis we have

stated that we aim to “. . . usefully provide the ability to link similar events together . . . ”.

The focus of this chapter was to identify the optimum technique to automatically compare

lifelog events against each other. This is helpful for two reasons, to enable users to search
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for similar events to a given event (e.g. “show me other times where I was walking in the

park”), and to help identify those events that frequently occur (e.g. a user may be in front

of their PC constantly, which may indicate this is a routine/mundane event). This chapter is

presented with significant research challenges owing firstly to the “semantic gap” [143], and

secondly to the poor quality of SenseCam images which accentuates the challenge7. Lifelog

events consist of many images, so the first challenge is in representing an event, and only

thereafter can event representative values be compared against each other to indicate other

events that may be similar to a given event. A number of techniques are investigated in this

chapter: the optimal event representative selection technique; whether images towards the

middle of the event should be weighted more strongly; the optimal vector distance technique

to compare two images (or event representative vectors) against each other for the challenge

of retrieval; and finally selection of the best normalisation and fusion techniques given the

use of both content and contextual sources.

As described earlier we used two datasets, one of approximately 270,000 images with

associated “general” queries (e.g. driving, at work, shopping, etc.), and another of approxi-

mately 1.8 million images with associated queries containing a very “specific” information

need (e.g. special dinners, other times talking to Joe/Lynda, etc.). While performance is

quite good with respect to the “general” queries (e.g. P@5 of event average approach =

0.69 overall), it is challenging to retrieve relevant results for queries seeking a very “spe-

cific” information need (where P@5 of event average approach = 0.30 overall). Firstly this

is most likely due to the fact that there are less potentially relevant results in the users’

lifelog for the “specific” queries, as the performance of the “general” queries are 158% bet-

ter for P@5 across all the approaches, but then become 207% better for P@10, and then

235% better for P@20. This may indicate that there are less than 10 potentially relevant

items in the lifelog, if even that, for many of the users’ “specific” queries. Another reason

for the poor performance of the “specific” queries is that many of them may require an as-

sociated semantic meaning, which is very difficult to extract given that by their nature these
7Given the prevalence of the SenseCam in the visual lifelogging domain, we have to accept that the images

being used will be of a low resolution
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queries had a very “specific” information need e.g. “show me events when I was talking to

Lynda”.

The best trained system achieved a MAP score of 0.3608 (with much deviation between

topics as illustrated in Figure 4.7). The optimal way to represent an event of images is to

construct an average value of all the MPEG-7 vector bins and contextual scalar sources of

information; in fact the Event Average approach worked best in 15 out of the 20 test set

topics.

It is very interesting to note that the approach towards modelling the event is influential

in terms of retrieval performance. Applying standard techniques from the video retrieval

domain, an obvious approach to represent an event is to select the middle image, however

our event average approach didn’t represent events by a keyframe image, instead represent-

ing events by taking the average feature vector value of all the images present in the event.

This led to a 38% increase in retrieval performance on the set of “specific” queries, and

an impressive increase of 106% on the set of “general” queries. However, as displayed in

Figure 4.21, by only processing the middle 35 images of each event (just over 30% of the

entire set of images), 90% of the retrieval performance of considering all the event’s images

is achieved. Indeed the approach of selecting the MPEG-7 features of the middle 35 images

in an event, in combination with using sensor sources, performs much better than consid-

ering only the sensor sources, as illustrated in Figure 4.22. While processing on contextual

sensor sources of information is very quick, we have illustrated the need to understand the

image-based content information in terms of effective retrieval of events in a visual lifelog.

While it appeared sound to weight images towards the middle of an event more strongly,

in practice this approach did not offer any performance gains. There was quite a variance

in the overall MAP score with changes in the vector distance approach used to compare

MPEG-7 features (ranging from 0.3606 for Canberra to 0.2133 for Squared Chord dis-

tance); the Canberra vector distance metric is recommended. The Min-Max normalisation

approach works best while the CombMAX fusion approach is optimal. The MPEG-7 source

of information is the most valuable data source in terms of retrieving similar lifelog events,
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in fact so much so that the introduction of this source in combination with the sensor sources

results in a MAP score retrieval gain of 52.6%, and gains of 62.2% for the precision of the

top 5 results, and 58.7% for the precision of the top 10 documents.

To illustrate the relationship between the current chapter and the previous chapter on

event segmentation, we have indicated that intelligent multimodal event segmentation may

lead to as much as a 33.6% boost in terms of retrieving similar events (over simple temporal

segmentation as used by Wang et. al. [155]).

We have compared our approach against two distinct content based image retrieval

methods: SIFT, & SURF. We have detailed that our approach works slightly better than

the results from these two techniques. All three approaches are also highly complementary

e.g. our approach works well on “beaches” type queries where dominant colours in the

scene are important, SIFT adds many relevant results to queries of particular office settings,

while SURF adds many relevant results on queries such as “special dinners”. After train-

ing, we investigated two fusion techniques in this work, whereby we combined the results

from our approach and the SURF approach. Baseline fusion approach performed slightly

better overall, and we recommend use of this approach if the user wants a large number

of relevant results. Score fusion approach performs optimally in returning relevant events

in highly ranked positions (as illustrated in Figure 4.28), and as such this approach is rec-

ommended for users who do not want to sift through irrelevant results returned in highly

ranked positions after querying.

4.5 Conclusions and Contributions

• While extracting image features is not necessary for event segmentation, it is vital

towards acceptable event retrieval performance.

• How events are modelled has the most significant influence on event retrieval per-

formance. The Event Average representation technique performs best. However we

have discovered that by only considering up to the middle 35 images in an event, we
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can achieve 90% of the optimal retrieval accuracy while only having to process 30%

of the content.

• While there is a variation in final system performance by changing the vector distance

method, the simple Manhattan and Euclidean approaches perform almost as well as

the optimal Canberra approach.

• The Min-Max normalisation technique is recommended while the CombMAX fusion

technique is strongly recommended.

• Currently a query event is compared to all of the events in one’s lifelog. A more

scalable method to consider in future may be that of storing an inverted list of “visual

words” as was implemented in the SURF lifelog retrieval approach in this chapter.

• We have published papers on event retrieval experiments in the 2008 MIR conference

[47].
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Chapter 5

DETERMINING MOST

IMPORTANT EVENTS AND

SELECTING KEYFRAME

IMAGES

In order for visual lifelogging technologies to effectively provide autobio-

graphical memory retrieval cues it is necessary to automatically:

. . .

• accurately determine which of those events are most unique

. . .

As the brain strongly encodes distinct memories, we wish to ease the burden on the

users in finding such events from their lifelog through suggesting more interesting events

to review. This chapter addresses the problem of trying to determine the most important

events in an individual’s day e.g. going to a rock concert is more significant than having

your usual morning breakfast. Also in this chapter we address the challenge of selecting a

given image from an event that is representative of that event, i.e. to provide the user with
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a summary image of an event (on average consisting 100 images), which one should be

chosen? We will now introduce these challenges in further detail.

On average a user will have approximately 20 distinct events in a day (i.e. around 7,000

events per year depending on the user’s lifestyle), but it is quite likely that many of these

events may be routine or repeated events that are unimportant to the user. However, there

will also be certain events that may be of great significance to the user, e.g. lunch with a

loved one, an awards ceremony, attending a big football match, etc., because they are more

unusual or novel. Thus it is desirable to automatically emphasise the events that may be

more interesting to the user than the routine or mundane events.

Attempting to determine the “importance” or “significance” of an event is a very sub-

jective exercise. Only the user can decide on the true importance of an event, e.g. your first

meeting with a partner, the first time your child walked, when you received an award that

was special to you, etc. The importance or significance of events can also change over time,

e.g. meeting a stranger on the street (mildly important), may in fact be reflected on in the fu-

ture as the first time when a couple met (very important). These very important/significant

events occur quite sporadically, but in each and every day there are always some events that

are at least more interesting to review than others. These events may be unique in that they

are very different to everything else, or at least they are somewhat distinct or interesting in

that users prefer to review these events. For simplicity of explanation throughout this thesis

we refer to finding the “importance” of such events, whereby we mean that we are trying to

highlight those events that the user is more likely to want to review (owing to the fact that

such distinct activities may have been strongly encoded in his memory).

Figure 5.1 abstracts a user interface that utilises the notion of highlighting event impor-

tance. Such an interface will display various events from a given day, but those that appear

larger in size are determined as being more important by an automated approach, whereas

events with smaller sizes have been automatically determined to be mundane/routine events.

This dissertation will now discuss various approaches taken to automatically determine the

importance of each and every event in a user’s lifelog. This is a considerable challenge but
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Figure 5.1: An overview of determining and then displaying lifelog events based on their
importance.

potentially very rewarding in terms of assisting users to find those interesting/novel/important

events that they are attempting to browse to. The various approaches taken to realise this

goal will be explained in due course.

Given an interface like the one abstracted on the right hand side of Figure 5.1, it will

be necessary to select a representative/keyframe image from each event, so as to help the

user recognise what had happened in such an event. The use of keyframes is not unique

to the domain of lifelogging as keyframes have been used in video retrieval as a means by

which an at-a-glance summary can be offered to users. Keyframes are still images, which

have been automatically extracted from video content. Digital video content is segmented

into smaller units known as “shots”, with a single keyframe used to represent each “shot” -

this concept is somewhat similar to “events” within visual lifelogs. The frame(s) of video

to be used as a keyframe is determined by attributes of the video content such as motion

or the presence of faces. Cooper and Foote [41] note that “keyframes must both accurately

represent the underlying video clip and distinguishes that clip from the remainder of the

collection”. As such, an ideal keyframe summarises the major concepts contained within a

media segment allowing a user to identify segments relevant to their information need. The

selection of keyframes for visual lifelog content is however not without challenges unique

to the domain. The keyframe selection methods, which have shown success and prevalence
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in the domain of video, may not translate directly to visual lifelogs, due to the lower rate of

capture and the fisheye lens which makes SenseCam images distorted. In this chapter we

will explore and evaluate various techniques that are traditional to the video domain, but

also introduce and evaluate a new technique which shows much promise.

5.1 Approaches to Event Importance and Keyframe Selection

This section will now describe in more detail the approaches taken to realise the automated

processing of these goals. We will firstly describe our approaches to determining the impor-

tance of each event, and thereafter we will discuss the various keyframe methods explored.

5.1.1 Event Importance Approaches

This subsection discusses a number of approaches to determine the importance of an event.

There are two main categories, namely face detection and novelty. Prior work by Tan-

charoen & Aizawa introduced the concept of detecting faces to determine event importance,

on the premise that they are a good indicator of face-to-face conversations, and hence social

interaction which is quite important to many people [145]. We have introduced the concept

of novelty detection, whereby using the visual and sensory properties of each and every

event, we can calculate how unique/novel that event is. More unusual events may indicate

that the user is doing something quite interesting. We will now discuss these approaches in

detail.

5.1.1.1 Face Detection

Conversation detection is based on the presence of faces in SenseCam images, on the

premise that when talking to someone we are facing them, thus this can be determined

via the automatic detection of faces from SenseCam images. The current state of the art

in this area of lifelogging is to detect the presence of faces to determine the importance

of lifelog events [145]. We used the Intel OpenCV [23] face detection implementation. A
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number of face detection trained classifier models are provided with this library and other

parameters can also be tuned such as the image scaling factor and the window size that a

face should be present in. As SenseCam images are of low quality (generally 25kB each)

and taken using a fisheye lens, we investigate which of these models is most suitable for

lifelog images. The importance value for each event is determined by the number of images

with faces in the given event (relative to the total number of images in that actual event).

Higher scores indicate longer face-to-face conversations, and thus more importance should

be attached to such events.

5.1.1.2 Novelty

Generally those events that humans cherish most are those that occur infrequently, e.g.

going to a rock concert, talking to an old friend at the weekend, going to a restaurant for

a meal in mid-week, etc. On the other hand routine or frequently occurring events do not

give a user as much satisfaction while reviewing their day, e.g. being at work, driving into

work, having breakfast, etc.

Based on this, within a day we determine those events that are more novel/unusual as

opposed to those events that are routine/mundane. The approaches proposed in the lifelog-

ging domain by this thesis is based on the concept of novelty, which has been used quite

successfully in the text and video domains before [33, 58].

Finding the most novel event within a dataset is relatively straightforward, in that the

event that is most different to all the other events in the set is selected. However, there are

three main research questions: 1) What events to determine the novelty of? 2) What dataset

to utilise in determining the novelty of those events? And 3) How to compare events against

each other to determine a novelty score?

1. What events to determine the novelty of? Many multimedia and lifelogging sys-

tems digest large amounts of data into distinct days to then allow users select relevant

days from a calendar [115, 81]. A day is a distinct and natural unit of information for

a user to review. Therefore we will determine the novelty of each and every event in
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a given day.

2. What dataset to utilise in determining the novelty of those events? To determine

the novelty of an event within a day, what other events should it be compared against?

Should just all the events of today be considered, or should events from previous

days/months be considered too? If a large number of comparison events are chosen,

the processing load may be quite high. However, if too few comparison events are

chosen, the system may not be able to accurately model the user’s typical behaviour.

3. How to compare events against each other to determine the novelty score? How

do we compare two events against each other to somehow determine their similarity?

This requires the comparison of pairs of events against each other, which was the

focus of the previous chapter. To recap on the previous chapter’s findings, this is

realised through representing each event by the average value of all1 the SenseCam

images composing that event. These event representative features are then compared

against each other using a combination of MPEG-7 visual features, accelerometer,

light, passive infrared, and temperature sources.

Therefore given that it is aimed to determine the event that is most novel in a given day

(1), and also given that events will be compared to each other using the optimal approach

in the previous chapter (3), the primary research question is what dataset should be used

to determine the novelty of the given events in a day (2)? Five separate novelty detection

approaches which vary the “window” for novelty detection are proposed as follows:

Previous 7 Days To determine the importance of a given event in a day, we investigate how

dissimilar each event is to all the other events of that day and of the previous 7 days.

The premise of this approach is to take into account the range of activities occurring

during the week, which should contain a number of routine/mundane events (break-
1It would also be fine to represent the event by the middle 35 images which performed very well in Chapter

4, but for this work we decided to go with the optimal technique in Chapter 4 of considering all images in the
event.
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fast, being at work, etc.) as well as identifying the outlier events such as a barbecue

the wearer may have had on a Saturday afternoon.

Previous 3 Days This approach has half of the processing load of the Previous 7 Days ap-

proach and may highlight more strongly an important social event that occurred at

home during the weekend, as it would be different to the previous 3 days of work.

By considering the previous 7 days such an event may have not looked as impor-

tant/unique as it would be quite similar to the events from the previous weekend.

Previous 14 Days Computationally this approach is more expensive, but a possible ad-

vantage will be to decrease the novelty of regular events after a brief break from an

individual’s routine. Consider an employee who works one week, then goes on holi-

day for a week, and then back to work the following Monday with a social gathering

that evening. By considering the previous 14 days it can be seen that in the week

prior to being on holiday, the employee spent a considerable amount of time in work,

thus the social event of that Monday evening would then score as being more highly

novel than the day at work (which may appear novel if only the previous 3 or 7 days

are considered).

Events within ±2 Hours from Previous 7 Days This is a more sophisticated approach that

considers only events from the previous 7 days that are within ±2 hours, on the 24

hour clock, of the event we are trying to compute the novelty of. The premise for this

is to highlight, for instance, a family meal out in a nice restaurant at the evening time

rather than the normal evening meal at home.

Previous 21 Days Constrained to Same Week Day In this approach only events occur-

ring on the same day of the week over the past 3 weeks are considered e.g. A doctor

may attend a meeting every Thursday, and when data from only the previous week is

considered this may appear unique, however when data is taken from the previous 3

Thursdays, this may rightly appear as a routine event.
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5.1.1.3 Combining Face Detection and Novelty

Considering the face/conversation detection approach, it is likely that there will still be

many events which will have a face count score of zero yet which are novel! Therefore

it is important to take these into consideration and rate the uniqueness of these events to

determine which are least interesting. A result of this rationale is that another approach will

be investigated whereby the importance of an event is ranked firstly by the concentration of

images with faces present, and secondly ranked by the novelty score of that event, using the

best performing novelty approach from the previous sub-section.

5.1.1.4 Post-Processing Step

After initial observations the relevant novelty approaches were returning too many events

consisting of a large number of dark images as the most novel events of the particular days

e.g. when the device is behind one’s coat/jacket or in a very dark environment. The ap-

proaches appeared to detect the more frequently occurring events and mark them as mun-

dane, however they selected too many toilet/under shirt/black events as being important.

Technically these events are very dissimilar visually to all the other events which is made

more acute given the strong weighting on the MPEG-7 source when comparing any two

events against each other.

Therefore a post-processing step was introduced to remove the events that consist al-

most entirely of uniform, dark images. These can occur when the SenseCam is occluded

behind the wearer’s coat, is tucked under their shirt, or taken in a very dark environment

where the images can not be recognised. The colour layout descriptor captures the spatial

distribution of colour in an image. Therefore if the variance between the bins, taking into

consideration all the images in a given event, of this descriptor is very low then it is most

likely the event consists of many images of uniform colour (with the SenseCam this cor-

responds mainly to events of many very dark images). As a result of this an importance

score of zero (the minimum score possible) is assigned to such events (using an empirically

defined threshold).
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This post-processing step of calculating the standard deviation of the colour layout bins

provided a better user experience. A small test was carried out to investigate the usefulness

of this post-processing set. Beforehand while using the “Previous 3 Days” approach an

average Likert daily rating of 2.486 was obtained. However, after this post-processing step

the Likert score for the “Previous 3 Days” approach was 3.108). There were fewer irritating

events of “SenseCam behind my shirt” scoring highly.

5.1.2 Keyframe Selection for Visual Display

So far we have described techniques to calculate the importance of events. Now the focus

is shifted towards discussing methods to select a representative image from each event. We

now discuss traditional methods used in the video domain to select a keyframe image, but

also discuss our image “quality” approach towards addressing this task.

While there are several sophisticated approaches to keyframe selection within video

retrieval, Smeaton and Browne [137] note that the simple approach of taking the middle

frame is often favoured as the keyframe image [118, 51] due to both its computational

efficiency and good performance. As such, we use this approach as the baseline against

which to compare our other approaches. Cooper & Foote [41] have investigated two other

keyframe selection methods. The first selects the individual image that is visually closest to

all the other images in the event, while the second selects the image closest to all the other

images in its event, but which is most distinct from all of the images in other events (these

approaches as called “within” and “cross”-event for the remainder of this chapter). These

approaches can be computationally expensive though Kehoe & Smeaton [77] have explored

taking advantage of graphic processor units (GPUs) to quickly select keyframes using the

first method of Cooper & Foote [41].

To determine the optimal keyframe selection method a quality metric is also investi-

gated, as proposed by co-authors in work during our studies [46]. Given that a visual lifelog

can contain images of variable quality, it is likely that image quality may play an important

role in the selection of an appropriate keyframe. In this work we calculated the quality of
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each image by combining a contrast measure and a saliency measure (see [46] for further

details). Image contrast is a measure of the ratio of the intensity of the brightest colour

(white) to that of the darkest colour within an image. A very low or very high contrast

value indicates poor image quality, a median contrast measure is preferred. The saliency

measure is intended to correlate with “busyness” within an image, and although not exactly

an image quality measure, it can be helpful in determining which images have very few

salient regions within them which would not be desired for the selection of a keyframe.

In all to select a visual keyframe for all the events, the following six approaches were

investigated:

• Middle Image (Baseline) - Select middle image;

• Within Event - Select the image within the event that is closest to the average value

of all images in the event;

• Cross Event - Select the image within the event that is closest to the average value of

all the images in this event, but most different to the average value of all the images

in the other events of that same day;

• Image Quality - Select the image with the highest quality;

• Within Event and Image Quality Fusion - Select image that is most representative

of the event, but which also has a good quality score;

• Cross Event and Image Quality Fusion - Select the image that is most representa-

tive of the event, which has a good image quality, and is also most distinguishable

from the keyframes in the other events;

5.2 Experimental setup

Two distinct sets of experiments were carried out in work relating to this chapter. The

first set of experiments investigated the optimal approach to rank events in a day by how
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User Total Num Num Num Daily
Images Events Days Duration

1 79,595 1071 35 14h 54m
2 54,823 661 28 12h 29m
3 42,557 405 20 12h 02m

Table 5.1: A summary of the data gathered to be used in event importance experiments.

important they are. The second set of experiments investigated the various approaches to

selecting a keyframe image from an event. The composition of these experiments will now

be explained in this section.

5.2.1 Event Importance Experiments

We now describe the setup of our experiments where six users (information retrieval scien-

tists in their early twenties to mid thirties) each wore a SenseCam over a one month period,

collecting 288,479 images, representing 3,445 events in total. However, as novelty calcula-

tion is dependent on considering data from previous days to a given day, the experimental

dataset was limited to periods of time when a user was wearing the camera for a number of

consecutive days. After initial observations, it was decided to only consider periods where

a user had been collecting data for at least 14 consecutive days without break. This resulted

in a dataset of 176,975 images collected from 3 users, which still represents a large dataset

of lifelog images. Table 5.1 provides a detailed breakdown of the 176,975 images captured

by the 3 users.

To detect conversational activities (which may indicate important events), we use au-

tomatic face detection on SenseCam images. To determine the optimal face detection pa-

rameters, the performance of various models was measured against a groundtruth of 1,758

SenseCam images from a day of data belonging to user number 2 in Table 5.1. This data

was collected on the 5th September 2006 when the user was attending a conference, so in-

cluded 289 positive sample images of the user talking to someone else. An average day of

SenseCam images can be processed for the presence of faces in approximately 5 minutes

on a Dual-Core 2.4GHz machine with 2GB RAM.
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Given the unique and personal nature of lifelogging images, the owners of the various

SenseCam data collections were the sole judges of the various experiments on their own

datasets.

As there is a subjective nature of rating how important an event is in relation to other

events, it is very difficult to rank the importance of all events within a day, and to do this for

each and every day would present a large annotation burden on users. Therefore given that

it is of much interest to determine the most interesting events in a given day, in addition to

determining the most mundane/routine events from a day, a decision was made to present

the two most important and two least important (as determined by the approach under in-

vestigation) events to the user. Users were then asked to give a Likert judgement on how

much they agree with the proposed events as a summarisation of that day.

Figure 5.2: A screenshot of the application we used to judge the performance of the various
event importance techniques.

Figure 5.2 illustrates the application built for users to judge the results from the various
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User Days Images Events Judgements Duplicates
Made Removed

1 35 25,243 360 1,323 837
2 44 67,829 791 2,761 1,985
3 21 42,700 409 1,409 1,045
4 25 40,687 492 1,681 1,271
5 9 18,485 183 639 459

Total 134 194,857 2,232 7,813 5,597

Table 5.2: An overview of the data gathered for our keyframe selection experiments.

novelty detection approaches on their own data. The top two boxes display a selection of

images from the two most important events, while the two blue boxes at the bottom of the

screen display a selection of the images from the two least important events in the day (as

rated by our proposed system). All the images in the middle are “middle keyframe” images

from each event in that day. The two most and least important events are colour-coded

among all those event keyframes, and thus their temporal position relative to all the other

events in the day is made obvious.

In total 664 judgments on event importance were made by our 3 users and the results

will be analysed in the next section.

5.2.2 Keyframe Selection Experiments

Now the focus is shifted from the event importance experiments towards discussing how we

set up experiments to judge various approaches to select a representative image from each

event.

After selecting six possible approaches to the selection of representative keyframes for

events within visual lifelogs, a determination of the effectiveness of each method was re-

quired. In order to ascertain this, keyframes were selected for lifelog events using the six

approaches and judged by a number of participants. The details of the experimental evalu-

ation are outlined below.

Five individuals (in their early twenties to mid thirties) participated in our keyframe

selection experiments and a subset of each participant’s collection was extracted for use
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within this experiment. The subset represents a continuous lifelog recording of a time

period ranging from over one week to a month and a half of the owner’s life. 134 days worth

of visual lifelog data were used within the experiments, equating to almost two hundred

thousand images (see Table 5.2).

For each image within the experimental collection, image quality measures were ex-

tracted automatically by combining contrast and saliency as described earlier. The col-

lection was then segmented into 2,232 discrete events using our segmentation method de-

scribed earlier in Chapter 3 [48]. Potential keyframes for each event were then selected.

The middle image from the event was selected as a baseline for comparison within the ex-

periment and a single frame was then selected for each of the following approaches: Middle

Image, Within Event; Cross Event; Image Quality; Within Event and Image Quality Fusion;

and Cross Event and Image Quality Fusion. This provided up to six potential keyframes

per event.

The owners of the original collections were then asked to judge the resulting poten-

tial keyframes, rating their suitability as representative frames for the event on a five-point

Likert scale. Each collection owner only judged the events and frames they had originally

generated. As the same frame will offer the same overview of the concepts contained within

an event it was possible to significantly reduce the number of judgments required by each

participant. In the case of the same frame selected by more than one approach, the partic-

ipants only judged that frame once. This resulted in a reduction by 5,597 judgments (see

Table 5.2) and ensured consistency in the judgments i.e. the same frame could not be rated

differently as the single judgment applies to all approaches.

In order to facilitate the keyframe judgment process, a custom tool was developed (see

Figure 5.3). The tool was installed on each participant’s desktop computer. Each user com-

pleted the judgments on their computer at their leisure. The application provided feedback

to the user as to their current progress through the task. At launch or when a judgment is

completed, the application selected at random a keyframe to annotate from the pool of re-

maining un-judged frames. Between judgments a “loading” message was displayed for 2.5
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seconds. The random selection and presentation delay were introduced to mitigate against

priming and interaction effects.

While making a judgment, the keyframe under scrutiny is presented on the left hand

side of the screen while on the right a set of images from the entire event were presented in

order to aid the users’ judgment. Every 8th image in the event was presented to provide an

adequate summary of the event and as a comparative set by which to judge the keyframe.

Users were provided with a set of radio buttons below the keyframe and event images.

Users rated the keyframe by clicking on one of these buttons with the mouse or by pressing

the corresponding numeric key (1-5) on the keyboard. Once satisfied with the judgment the

user pressed the “Next Image” button. This button was only enabled once a judgment had

been provided. Users were not allowed to return to a previous judgment.

Figure 5.3: The annotation tool we used in our keyframe selection experiments.
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5.3 Results

To recap, two distinct sets of experiments were carried out in this chapter. The results from

the first set of experiments investigate the optimal approach to ranking events in a day by

how important they are. The results from the second set of experiments investigate the

optimal approach to select a keyframe image from an event. These results will now be

detailed in this section.

5.3.1 Importance Results

The optimal face detection approach and thereafter the best novelty detection approach will

be determined. Finally three systems are compared: 1) The best face/conversation detection

approach, 2) The best novelty approach, and 3) Face detection and novelty combined.

5.3.1.1 Best Face Detection Method

The prior state of the art determines the importance of events through detecting events that

contain much social interaction, through face-to-face conversations. This is automatically

realised by detecting the concentration of faces in an event. In terms of selecting the op-

timum face detection model, as is illustrated in Figure 5.4, there is a trade-off between

precision (dashed line) and recall (dotted line), with approaches sorted in descending order

in terms of precision.

In terms of calculating the importance of events through determining the number of

images with faces present (relative to the duration of that event), many events are likely to

have a score of zero, therefore it is not so important to distinguish between less important

events (all the zero-scoring events), but to identify those few events that are important.

As a result, a greater emphasis should be placed on the accuracy/precision of actual faces

detected by the face detection system. While it may be natural to select the approach with

the largest F score (continuous thick black line), it was then decided to use an approach that

has a very high precision score (by which the values in Figure 5.4 are sorted). The approach
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Figure 5.4: A summary of the performance of the various face detection models in the Intel
OpenCV library [23].

with the second highest precision score (haarcascade-frontalface-alt, scaling factor of 1.1,

3 neighbours, and window size of 30 pixels) is selected as its precision value is very close

to the best precision score (0.6336 vs. 0.6577, 3.8% worse), while its recall value is much

better than the recall value of the approach with the best precision score (0.2872 vs. 0.2526,

12.0% better).

As discovered in the previous paragraph there are indeed many SenseCam events that

have not had the presence of faces detected (763 out of 2137), thus providing further moti-

vation to combine this approach with novelty methods to identify the more mundane events

in a given day.

Based on these results it appears that face detection accuracy is reasonable with respect

to lifelogging, and in particular SenseCam events. As a matter of interest, the in-built

passive infrared sensor on the SenseCam device was then investigated to see how accurate

it was in detecting faces on this subset. In total 10,528 images were detected as having

the presence of faces, using the Intel OpenCV face detection application. Of those images,

8746 also were detected by the passive infrared sensor (83%). Initially this appears very
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promising however for the 166,447 other processed images the passive infrared sensor was

trigged for 135,241 of them (81%). Much of the time the passive infrared sensor can be

triggered by the hands of the users in front of the SenseCam device, therefore it can not be

considered reliable for face detection.

5.3.1.2 Best Novelty Approach

In the work towards this dissertation a new method of determining the importance of

events has been proposed, namely trying to determine how novel each event is. More rou-

tine/mundane events (e.g. having breakfast, working on the PC, etc.) have low novelty

score, while more visually unique events (e.g. a rock concert) have high novelty scores. To

determine the novelty of an event, we compare it to other events that have taken place in

the past (so as to build up a model of the individual’s routine). Five different “windows”

of past events against which the novelty of a given event was calculated, were investigated.

Figure 5.5 summarises the performance of these, illustrating the variation in performance

for different users for each approach2. The middle dots joined up by the thin line indicates

the average value across users for each approach. Figure 5.5 addresses 3 questions:

• What is the optimal number of previous days data to consider in the window of nov-

elty detection ?

• Is it beneficial to look only at events that occur at a similar time of day ?

• Is it advantageous to only consider events from the same day of the week ?

Optimal number of previous days to consider ? Taking the overall average of each

approach, considering the previous 7 days of data is most beneficial with an overall

average Likert score of 3.05 (7 days) vs. 2.94 (14 days) vs. 2.89 (3 days). However,

on close examination of Figure 5.5 we recommend that the optimal approach is to

consider the previous 14 days of data. The extra processing load to compute this
2It is assumed that the users treated the Likert scale as interval variables
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Figure 5.5: A summary of the differences of the novelty approaches in determining event
importance.

approach is not a significant drawback (processing for all approaches being practi-

cally instant). By considering events from a greater number of previous days (i.e. the

previous two weeks) a more accurate model of a user’s lifestyle can be considered,

while allowing for changes in a user’s routine too.

Considering event novelty with respect to time of day ? A comparison is made here

between the 7-days-prev-2h-time-constrain approach which works marginally better

than theprev-7-days approach in Figure 5.5. An advantage of the time-constrained

approach is that it considers the novelty of an event not only based on how different

it is to all the other events, but also by considering the time of day when that event

took place, e.g. a meeting late in the evening may be very important and unique to the

individual, whereas it may not be so important or unique if it occurred during regular

working hours. In conclusion it is considered marginally advantageous to calculate

the novelty of a given event by only considering comparisons to events from previous

days that occur within ±2 hours of the event in question.
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Only considering data from same day of the week ? Inspecting Figure 5.5 it is evident

that the approach 21-day-prev-same-day-constrain is the least effective approach. A

possible explanation for this is that only 3 days of previous data (e.g. the previous

3 Wednesdays/Mondays/etc.) are considered, and this may mean that an insufficient

body of data is accumulated to accurately calculate the novelty of an event. In con-

clusion it is not advantageous to calculate the novelty of an event against events oc-

curring on the same given week-day only.

In summary, based on the evidence presented above, to consider the novelty of a given

event, it should be calculated how dissimilar this event is to all other events that have oc-

curred within ±2 hours of this event over the previous 14 days. Events are ranked by dissim-

ilarity value, with the most dissimilar being regarded as the most novel/important/unique

event of that day.

5.3.1.3 Comparing 3 Proposed Systems

We have introduced a new approach to determining the importance of lifelog events, namely

through detecting the visual and sensory novelty of all given events. The prior state of the

art addresses this challenge by detecting the concentration of faces present in an event, to

indicate conversational events. In this subsection we investigate the benefits of combining

both of these approaches together.

As evidenced in Figure 5.6 the face detection approach works considerably better on

average than the best proposed novelty approach. However, even more interesting is the fact

that when these approaches are combined together there is an improvement on the current

state of the art (face/conversation detection) in this task. The advantage of this approach

over the face detection only approach is that the novelty approach is very good at detecting

the routine/mundane events, while the face detection is very good at detecting the most

interesting events of a given day. When these approaches are combined they complement

each other positively. In fact the face detection + novelty approach performs at least as well
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Figure 5.6: A summary of the differences of the 3 proposed final approaches in determining
event importance.

as all the other approaches on 66 of the 83 days from all three users, which is almost 80%

of the time. Overall, on average, this approach has a Likert score 4% higher (3.89 vs. 3.75)

than the state of the art (face detection only).

It is interesting to note that the introduction of the face detection did not have as pro-

nounced a positive impact on user 3 as it had on users 1 and 2. There are 2 factors to explain

this. Firstly user 3 was very busy at work abroad during the month he was capturing data,

so he did not have as many conversational events during this hectic time. Additionally due

to the nature of the light level in certain areas of this user’s office, many images were falsely

detected as having the presence of a face, as shown in Figure 5.7.

5.3.2 Keyframe Selection Analysis

After determining the importance of an event, which contains an average of almost 100

images, it would not only be useful to emphasise this event to the user, but also to select

only one representative/keyframe image from this event so as not to overload the user with

visual information. The traditional techniques of selecting a keyframe images include: 1)
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Figure 5.7: An example of an error by the face detection technique on user 3 from table 5.1.

selecting the middle image from the event, 2) selecting the “within event” image that is

visually most similar to all the images in the event, and 3) selecting the “cross event” image

that is visually most similar to all the images in the event, but also most distinguishable

from all the other images in the other events. In this dissertation we investigate the benefits

of selecting the keyframe image through the user of an “image quality” metric. The results

of these experiments will now be detailed.

Judgements for 13,410 keyframes were provided by 5 users. Ratings provided for each

approach were analysed and are presented in Table 5.33. The combination of image quality

measures with either “Within Event” or “Cross Event” selection approaches, prove to be

the most effective methods of keyframe selection for visual lifelog collections. Both offer

an improvement of 8.4% over the baseline approach. Both approaches offer similar perfor-

mance but “Within Event and Image Quality Fusion” is computationally more efficient and

is thus favoured, as it just considers all image in the event rather than all the images from

all the events in a given day.

The impact of quality measures within keyframe selection approaches is noteworthy.

Selecting keyframes based on the quality features alone outperforms standalone “within

event” selection and in combination both fused together offer a marked improvement in

effectiveness. Quality has a similar effect on the “Cross Event” approaches. In combination

quality more than doubles the performance gain of “Within Event” and “Cross Event” over

the baseline. This highlights the significance of quality features within visual lifelogs given
3It is assumed that the users treated the Likert scale as interval variables
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Approach Avg. Likert Score
Middle Image (baseline) 3.68

Within Event 3.82
Cross Event 3.82

Image Quality 3.91
Within Event and

Image Quality Fusion 3.99
Cross Event and

Image Quality Fusion 3.99

Table 5.3: A summary of the overall performance of all the keyframe selection techniques.

that they are known to be composed of many poor quality images with high variance in

quality over short periods of capture [67]. This variation present in events explains the

effectiveness of the quality measures to keyframe selection.

We then further evaluated the approaches taking into account a range of factors includ-

ing: performance across users’ collections, and across the days within the test collections.

Figure 5.8 illustrates the performance of each approach across the users’ collections.

It is observed that there is a mild variation in the levels to which users have assessed the

performance of each approach however they are consistent with the overall findings. In

all cases a combination of image quality and either “Within Event” or “Cross Event” will

outperform the baseline. We see that quality was not as effective in the collection of users 2

and 3 but was very effective for users 1 and 5. This would indicate that the quality feature

performance is variable when used independently, and is contingent on the user. However,

this user effect appears to be tempered by fusing it with other measures.

Figure 5.9 demonstrates that again combination of image quality with either “Within

Event” or “Cross Event” significantly outperforms other approaches for most events. Both

approaches prove to be at least as good as the baseline 80% of the time with both offering

better performance over 69% of the time. Additionally most approaches perform better

than the baseline. It is noteworthy that on initial impressions the quality measure alone

as a keyframe selection approach, while performing well, does not appear to provide as

consistently good keyframes.
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Figure 5.8: A summary of the overall performance of all the keyframe selection techniques
for each user.

Lifelog images are typically downloaded and processed on a daily basis. Additionally,

a review of lifelog data involves providing a browsable daily summary to the user [29]. As

such, consistent effective keyframe selection at the daily level is of importance. To ascertain

this, the results were analysed to provide the overall average performance of each approach

for each day’s worth of events. Detailed exploration of the “Within Event and Image Quality

Fusion” approach’s performance for each day’s worth of events is provided in Figure 5.10,

which contrasts this approach with the baseline for each and every day across all users. As

can be seen this keyframe approach (by which the graph in Figure 5.10 is sorted) almost

always outperforms the baseline middle image.

5.3.2.1 Difficulty in Selecting Correct Keyframe

While the proposed approaches show only a modest improvement over the baseline they

are still encouraging. Selecting a representative keyframe for an event can be a difficult

task given the challenges presented by a visual lifelog. These include: limitations of event

segmentation; events with a high proportion of visual change; or events with high visual
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Figure 5.9: An insight into the daily performance improvement offered by each keyframe
selection approach over the baseline of selecting the middle image as a keyframe.

change as a result of the nature of the activity. Given the difficulties in selecting keyframes

we then decided to explore the performance of the various approaches in events containing

a high quantity of visual change.

Issues relating to Event Segmentation

As detailed in Chapter 3, segmenting sequences of lifelog images into distinct events

or activities is a considerable challenge. Reasons for this include the fact that wear-

able devices capture images at a low quality and use a fisheye lens, images are taken

at a rate of just 3 images per minute, etc. As a result of these challenges there may be

occasions where more than one “activity” is contained within the event, thus making

it difficult to reliably select a representative keyframe. Participants of the judgment

effort indicated as much in anecdotal feedback following the annotation.

Issues relating to Large Amounts of Visual Change

Depending on the nature of the event a large amount of visual change may be present

within the event’s frames. As images are captured every 22 seconds (on average) ma-
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Figure 5.10: A comparison of the daily performances of the “quality+within” vs. “baseline”
keyframe selection approaches.

jor changes in the visual landscape can appear from frame to frame within an event.

This is true of events which contain motion. For example, an event which represents

a wearer walking from their home to the local shop may contain images of walking

down the stairs, opening the door, walking down the street, approaching the shop, and

arriving at it. With so much change and activity it is much more difficult to select a

frame which represents and summarises the salient concepts of the event. Conversely,

with some events containing little change and/or motion, e.g. working in front of the

computer, it is relatively easy for most approaches to select a representative frame. As

such, specific investigation of the performance of selection approaches within these

more challenging events should highlight more effective approaches.

5.3.2.2 Selection of Keyframes in Events with High Visual Change

In order to determine the effect of visual change across frames within an event on keyframe

selection, the events with large amounts of visual change were automatically extracted for

further analysis (based on MPEG-7 features of the images within each event). The colour
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Figure 5.11: An example of an event with a high amount of visual change.

layout descriptor captures the spatial distribution of colour in an image, therefore we calcu-

lated the variance of the first bin of this feature for all the images in each event in the test

collection. After training on a set of 369 events from two users, a threshold value was em-

pirically defined. Within this training set, it should be noted that the first user only achieved

a precision score of 0.48 (66/113) for identifying events with a high degree of variability,

whereas the second user’s performance yields a much better score of 0.78 (18/23). While

not without its limitations, this method does provide a reasonable indication of those events

containing a greater amount of visual variation within their images.

The six keyframe selection approaches were then investigated for only those events

above the visual change threshold (Table 5.4). It is observed that the scores for events

with a high degree of visual variability are lower than the reported performance for all

events (see Table 5.3). This confirms that there is indeed a significant challenge in selecting

keyframes for such events. The quality measures perform well here as these events are likely
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Approach Avg. Score
Middle Image (baseline) 3.31

Within Event 3.43
Cross Event 3.43

Image Quality 3.92
Within Event & Image Quality Fusion 3.73
Cross Event & Image Quality Fusion 3.82

Table 5.4: A summary of the performance of each keyframe selection approach on those
events with a large amount of visual changes.

to contain a lot of motion resulting in low quality, blurred or noisy image capture. Again, a

combination of quality features and either “Within Event” or “Cross Event” performs above

the baseline and non-fused results.

Performance comparison across collections provided by each user is illustrated in Fig-

ure 5.12. While performance of the baseline, “Within Event” and “Cross Event” operate

with reasonable consistency across users, the remaining approaches are subject to a much

larger degree of variation in performance. For example, in the case of user 2 all approaches

work almost equally well while in the case of user 5 there is a significant difference between

image quality and all other approaches. Quality alone appears to be the most effective mea-

sure, although, quality in combination with “Within Event” or “Cross Event” work well

when compared against the baseline.

Comparison of the approaches (against the baseline) within each day’s worth of (high

image variability) events (shown in Figure 5.13) highlights the consistent performance of

approaches which incorporate the notion of image quality. Across all the days only taking

the events with high inter-image variability into consideration, the approach that improves

most on the baseline is the “Image Quality” approach. This approach performs better on

60.71% of days, and in fact works at least as well as the baseline on 82.14% of days.

It is of much interest to compare the results of Figure 5.13 (only events with high inter-

image variability) to those of Figure 5.9 (all events). The most significant deduction to

make is that of all the proposed approaches only the “Image Quality” approach performs

better (relative to the baseline) on the events with high inter-image variability, than is does
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Figure 5.12: A summary of the performance, on each user’s dataset, of each keyframe
selection approach on those events with a large amount of visual changes.

across all events. All the other approaches perform less competitively in those events of

great uncertainty, even when fused with the “Image Quality” approach. The improved

performance gained by using only the “Image Quality” approach is further highlighted in

Figure 5.14 where it can be seen this keyframe approach (by which the graph in Figure 5.14

is sorted) almost always outperforms the baseline middle image.
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Figure 5.13: An insight into the daily performance improvement offered by each keyframe
selection approach, on those events with much visual change, over the baseline of selecting
the middle image as a keyframe.

Figure 5.14: A comparison of the daily performances of the “quality” vs. “baseline”
keyframe selection approaches, on those events with much visual change.
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5.4 Summary

Considering that more distinctive happenings are strongly encoded in the human memory

store, in our hypothesis we aim to “. . . accurately determine which of those events are most

unique . . . ” In this chapter we have discussed the usefulness of determining the impor-

tance/interest of lifelog events e.g. going to a rock concert is more important/interesting

than a normal working event. We have investigated a number of techniques to automati-

cally calculate an importance value for each and every event in our lifelog collection. Also

given that events consist of almost 100 images on average, it is useful to provide the user

with one representative/summary image of each event, which means they are not overbur-

dened in terms of visual information. We have investigated a number of approaches to

automatically determine a good keyframe for any given lifelog event.

A number of approaches to determine the relative importance of lifelogging events from

a visual lifelog were investigated on a dataset of 176,975 images from 3 users. The idea

of determining the novelty or visual uniqueness of lifelog events has been introduced into

this domain for the first time here. The previous state of the art was based on determining

events which have face-to-face conversations as the most important events. However, by

integrating this with the concept of visual uniqueness or novelty we have developed an

approach that works at least as well as the previous state of the art 80% of the time and

performs 4% better than the previous state of the art overall.

The challenge of selecting a relevant keyframe from a lifelog event is also worthwhile to

investigate. Individual events in the lifelogging domain can vary in terms of visual quality,

with up to 40% of images being blurred, noisy, light-saturated, very dark, etc. [67]. As such

this presents a particular challenge that traditional keyframe techniques struggle to address.

We propose a novel technique to select keyframes based on the image within an event that

has the highest “quality”. One caveat of this approach is that the processing load is greater

than selecting the middle image, and in future it is expected to just determine the image

quality of a selection of images around the middle of an event. However, this approach does

work 6.25% better overall than the baseline approach of selecting the middle image as a
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keyframe. It was identified that there are a large number of events in the lifelogging domain

that can vary in terms of image quality, and just taking those events into consideration the

“Image Quality” approach performs at least as good as the baseline (“Middle Image”) on

82.14% of days, and 15.48% better overall.

5.5 Conclusions and Contributions

• Face detection is good at detecting conversational scenes in one’s lifelog, which are

in turn good indicators of the more interesting events for an individual to review.

• We have introduced the concept of novelty to the domain of lifelogging. This is

effective in identifying routine activities. To calculate the novelty of a given event,

the best event comparison techniques from Chapter 4 are recommended. It should be

investigated how dissimilar events are to other events around the same time of day

from the past fortnight.

• We have discovered that the Image Quality technique performs very well on events

containing a large amount of visual change. However the baseline approach of sim-

ply selecting the middle image still performs quite competitively, while being com-

putationally much less expensive. An interesting area of future work would be to

examine the effectiveness of selecting the highest quality image from a selection of

images around the middle of events.

• Papers have been published on event importance at CIT 2008 [49] and on keyframe

selection at CIVR 2008 [46].
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Chapter 6

AUGMENTING SENSECAM

EVENTS

In order for visual lifelogging technologies to effectively provide autobio-

graphical memory retrieval cues it is necessary to automatically:

. . .

• augment images from the low-resolution wearable device with higher

quality images from external data sources.

. . .

The previous chapters have dealt with scenarios of people continuously wearing Sense-

Cams for entire days and over extended periods of time. However, there will also be a

large number of people who may not be comfortable in doing this as Bannon feels that it is

important to forget certain moments [12]; and Nack also espouses similar concerns [104].

Still though, there are many people who enjoy taking photos of specific events e.g. a rock

concert, a football match, a holiday abroad, etc. Gemmell et. al. note that ‘. . . there is

a strong demand for capture of life experiences, whether in photos, videos, or written ac-

counts. However, few people want to miss the experience in order to be the camera operator

. . . ’ [61]. An advantage of a passive capture device like the SenseCam is that it requires lit-

172



tle photo capture effort on the part of users on their tourist trips, or trips to big events, thus

helping them relax and enjoy the experience of being there. Afterwards they can review

their pictures to help recreate the experience of being there.

Even if we do perfect event segmentation and browsing, we believe that it would also

be useful to augment events with images from external sources. Consider an assistive tool

for tourists visiting, for example, a certain historical famous building. After reviewing the

event later in the evening, a tourist may perhaps be interested in viewing other images of

that building taken by other people, which will provide additional memory retrieval cues.

Another potential use would be of an individual attending a music concert or a sporting

event, and having the ability to view images taken by other people of that same event.

The SenseCam images are taken at quite a low quality, however many images uploaded to

photo sharing websites by users with modern day digital cameras will be of a much higher

quality. Also they may be taken from a different perspective which the SenseCam user may

enjoy viewing (and again provides extra memory retrieval cues). These external images

augmented to the low resolution SenseCam images can translate to a more enjoyable user

experience when reviewing certain SenseCam events.

An obvious application area resulting from this would be an aid for tourists to review

their trips, e.g. Aiden wears his SenseCam on a trip to New York and while there he travels

to the Statue of Liberty, Times Square, and also to a baseball game. When he arrives back

in Dublin he downloads his SenseCam images to his PC and enjoys reviewing images of

his trip. However, he can augment his trip to the Statue of Liberty, as not only can he

see his own SenseCam images, but he can also view images taken by entire communities

of users from sources like Flickr, Panoramio, YouTube, and the MSN & Yahoo! image

search engines. Similarly Aiden also really enjoys looking at pictures taken from multiple

perspectives at Times Square, which adds to his experience of “re-living” his trip to New

York. Finally in looking for augmented images of the baseball game, it is important that the

images used are of the actual game that Aiden was at, as opposed to other events that take

place at the same venue but which were of no personal meaning to Aiden.
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As a result, this chapter is focused on realising the goal of pervasive user-generated

lifelog content, using visual content passively captured by an individual and then augment-

ing that with content collected by other individuals. There will be a number of research

challenges associated with this which we address in the next section

6.1 Image Data on the Web

Much attention has been focused on the changing dynamics of the World Wide Web, with

the term “Web 2.0” now being widely recognised and understood. In the past much of the

content on the web was generated by a small number of professional writers or content gen-

erators, with the majority of users only being able to view the generated content. However,

with the advent of “Web 2.0” technologies, content on the web can now be generated by

everyone.

An example of a “Web 2.0” multimedia web site is Flickr1, a web site allowing the

upload of images taken by users themselves. As is reflective of many “Web 2.0” sites, the

volume of users and photos on Flickr is astounding. Van Zwol reports that Flickr has 8.5

million registered users, and at peak times there are up to 12,000 images served per second;

the record number of photos uploaded per day is more than 2 million [150] ! Flickr also

provides users with the opportunity to specify the location of their uploaded photographs by

dragging them onto a map and thus automatically appending the GPS coordinates. There are

now over 65 million ‘geotagged’ images on Flickr (at time of writing) and the growth rate

has been phenomenal (approximately 500,000 new geotagged photos uploaded per week as

illustrated in Figure 6.1). Users also can easily tag their uploaded images, and given the

significant user base on Flickr this can very quickly create a vast collection of tags which

are potentially useful in retrieval.

However Flickr is not the only source of user-generated images. Google Earth also

allows users to upload images, which are then accessible on the Panoramio website2. All of
1www.flickr.com
2www.panoramio.com
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Figure 6.1: An illustration of the number of geotagged photos on the Flickr “Web 2.0”
website.

these images are geotagged. Another useful web site is YouTube3, where millions of users

upload their own videos. In recognising the shift towards user generated content on the

web, Gill et. al. report that there are 100 million video views per day on YouTube (which is

60% of the total watched videos on the entire Internet), and 65,000 new videos are uploaded

per day [62]. Like Flickr, YouTube also allows content to be tagged by users.

While a very large number of images are now uploaded on the web by many users, the

more traditional sources still publish images which are searchable by the dominant search

engines (i.e. Google, Yahoo!4, and Microsoft5). These search engines index billions of

images (e.g. in a clustering paper Liu, Rosenbery, & Rowley of Google used a set of 1.5

billion images from their image index [91]). These indices can now be queried by using

publicly available API’s, as can the “Web 2.0” image/video sites.

Prior work in augmenting tourist photographs with other material has been carried out

against small-scale databases in which much image processing is required. Blighe et. al.

intelligently identify museum images on the fly, but against a small fixed database of images
3www.youtube.com
4search.yahoo.com
5www.msnsearch.com
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[21]; Chevallet, Lim, & Leong identify 101 Singapore tourist locations, but on a dataset of

just 5,278 images [36]; while O’Hare et. al. have completed similar work and again on a

fixed dataset [115]. Since we expect lifelogging devices to become more commonplace in

future, and given the phenomenal growth of multimedia content on websites, we introduce

the idea of augmenting lifelog events with “Web 2.0” content. We investigate aggregating

these small contributions over an enormous scale of users, which can thus automatically

enrich the experience of individuals reviewing their trips or events, by providing them with

a large number of relevant items of information mined from millions of other individuals.

To realise the goal of augmenting lifelog events with images from external sources

of information there are a number of challenges to be addressed. In order to augment a

lifelog event with external images we need to know where and when it took place. Thus

it is necessary to record location (via handheld GPS device) and time information along

with the captured SenseCam images. Once this is done then the user is given the option of

whether to constrain augmented images to a certain time or to allow images taken at any

time to be used for augmentation. The time associated with images taken of an historical

building is not so important, whereas the time when images are taken at the location of a

football match will be very important as the user will want images captured by other people

at that particular match, not of other matches in the same stadium! GPS information can be

captured to record precise details of the user’s location. With the knowledge of where an

event is taking place it will then be possible to query an external data source for pictures

only within an arbitrary distance of the location of where the user was for the particular

event.

However in the case of an historical building for example, there may be many close-up

pictures taken by other people of their friends at that location. We have investigated, at

query time, carrying out a form of image similarity matching between the SenseCam event

keyframe image, and each retrieved image from the external data source. If a retrieved

image is sufficiently similar in a visual sense to the SenseCam image, based on a certain

threshold value, then it will be displayed to the user as a potentially relevant image to
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augment the lifelog event. This could result in the user being returned with a larger number

of highly ranked relevant images from external data sources.

6.2 Augmenting Lifelog Events with Web Images

In this section we will provide details of our techniques which realise the goal of automati-

cally augmenting lifelog events with images taken by many other users (and placed on the

Internet).

Figure 6.2 provides an overview of our approach. The process is broken up into 3

stages: 1) retrieve all geotagged images from the same location, with the option to also

constrain by time; 2) inspect the tags associated with those retrieved images to construct a

new text-only query; and 3) using the text query, retrieve images from several APIs on the

web. We will now provide a walkthrough example before discussing how we address each

challenge.

Figure 6.2: An overview of our lifelog event augmentation processing.
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6.2.1 Walkthrough of Processing Stages

Before detailing how we realise the processing steps of Figure 6.2 we will now walk through

a high level overview of a sample event that one of our users wanted to augment, so as to

add to his experience of reviewing his trip in Singapore.

• Step 1: Get Photos from Same Location Consider an event where one of our users

was in Sentosa Island in Singapore (see sample image in Figure 6.3). To augment

this event we firstly retrieve a sample of up to 100 images taken in the same location

which were made available on the Flickr and Panoramio websites (see 20 random

images sampled in Figure 6.4). In this instance we take 50 sample images from each

geotagged source.

Figure 6.3: A sample SenseCam image from an event at Sentosa Island, Singapore.

• Step 2: Construct Text Query Based on Tags Knowing the GPS co-ordinates where

the event took place, we can automatically extract the region and country name using

a gazetteer [115], which gives us “Pulau Palawan — Singapore (general) — SINGA-

PORE”. We then make use of WordNet [102] to expand the list of placename terms

to include “Republic of Singapore” and also “Singapore Island”. Knowing the region

and country names, we ignore such data in the user tags as this does not add any more

useful information. Therefore we only consider the tags that aren’t of any variations

of the region or country names, and count how many unique individuals used the

remaining tags (see Table 6.1).
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Figure 6.4: Sample geotagged images of Sentosa Island, Singapore from the Panoramio
and Flickr websites.
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Tag Num Users Tag Num Users
Sentosa 27 from 3
Island 10 of 3
Merlion 10 Island, 3
Beach 5 Garden 2
at 4 flowers 2
geotagged 4 Dragon 2
The 3 Butterfly 2

Table 6.1: Sample tags associated with geotagged images returned for the “Sentosa Island”
query event.

The 4 most commonly occurring tags are selected and also the region name (by know-

ing the GPS co-ordinates), and in the “Sentosa Island” example, we are left with the

terms: “Sentosa”, “Island”, “Merlion”, “Beach”, “Singapore”. Finally we spell check

each of these terms using Yahoo! spell checker, so as to allow us retrieve the maxi-

mum number of potentially relevant results when performing the text-only search.

• Step 3: Image Search Using Tags Only Finally we search the MSN, Flickr, Yahoo!,

and YouTube sites with the text query of “sentosa island merlion beach Singapore”.

For this event 39 of the geotagged images (from Flickr and Panoramio) were relevant,

but through the automatically generated textual query, we have added another 43 new

relevant items (from Flickr, MSN, Yahoo!, and YouTube) to embellish our user’s

experience of reminiscing on his time in Singapore.

Having walked through an example, we will now go through each of these processing

stages (illustrated in Figure 6.2) in more detail.

6.2.2 Download Photos from the Same Location

With the SenseCam device which our users use for lifelogging, the time of capture of images

and environmental sensor readings are automatically recorded. With mobile devices now

increasingly carrying GPS loggers (e.g. Nokia N956) it is possible to automatically record

the GPS location of our whereabouts on the device itself. Using logs from both of these
6http://www.nseries.com/products/n95/

180



devices, SenseCam and mobile phone, it is possible to query the Flickr and Panoramio (i.e.

Google Earth) websites using location information, through publicly available APIs. This

returns a set of Flickr & Panoramio photos taken at the same location as the images from

the SenseCam event in question.

For some of our lifelog events, the time of the event may be critical, e.g. attending

a sporting event or rock concert, whereas for other events, such as visiting the Statue of

Liberty, it is not. On inspection of a sample set of 12 major time-critical events, such as

sporting events, we noted that 53% of photo uploads of those events occurred within 2

days of the actual event taking place (note some examples of this on the right hand side

of Figure 6.5). We constrain images for such events to be within ±5 days of our lifelog

event. In our work we ask users to specify whether an event should be time-constrained or

not e.g. FA Cup final in Wembley is time-constrained, while photos of Big Ben generally

are not. However, in future this process can be automated as Rattenbury, Good, & Naaman

have developed an approach that can automatically identify if an event is time critical or not

[121].

In selecting the set of query tags to use in the next processing stage it is necessary

to initially gather some seed images which will have associated tags. We investigated 3

possible approaches in selecting seed images, namely:

1. T100: Forwarding tags from the top 100 geotagged returned results (as ranked by

Flickr and Panoramio7)

2. T25: Forwarding the tags from the top 25 results which may be quicker to process

3. M25: Using the tags from the top 25 geotagged results that are visually most similar

to the lifelog keyframe image (using the set of 100 top-ranked geotagged images

returned by Flickr and Panoramio). This requires us to extract image descriptors

for 100 Flickr/Panoramio images on the fly, which has a computational overhead.

We determine visual similarity between images using the scalable colour MPEG-7
7Up to 50 results from Panoramio API (when possible) and the others (50+) from Flickr API
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image descriptor. In work carried out in the previous chapters of this thesis we used

4 MPEG-7 image descriptors (colour layout, colour structure, scalable colour, and

edge histogram), but as it is intended for image descriptors to be extracted on the

fly, we select the scalable colour descriptor because it performed well in retrieval

experiments, and also because it can be computed quickly.

Figure 6.5: An insight into the differing characteristics of location driven images vs. loca-
tion+event driven images.

6.2.3 Construct Text Queries Based on Tags

In some circumstances it may be acceptable to return only the Flickr and Panoramio geo-

tagged images to augment an event. However, not all images are geo-tagged. In taking a

set of 26 sample queries of famous locations (e.g. Eiffel Tower) and events (e.g. FA Cup

Final) we discovered that only 22% of the photos of these landmarks are geotagged (see

Table 6.2). In fact, given that there are over 3 billion images in total on the Flickr site8, we

can infer that only 2% of all photos on the entire Flickr database are geotagged. Therefore

in wanting to return as many relevant images as possible for event augmentation, we must

also search other sources not only for geotagged items, but for all items which are relevant.
8http://blog.flickr.net/en/2008/11/03/3-billion/
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Query No. Unique No. Geo Non-Geo Total
Users Images Images Images

Sugar Loaf, Rio De Janeiro 841 1,032 2,961 3,993
Niagara Falls Canada 480 237 3,263 3,500
Victoria Falls Livingstone Zambia 172 388 2,080 2,468
Sistine Chapel the Vatican 790 534 1,641 2,175
Big Ben London 1,120 323 1,175 1,498
Opera House Sydney Australia 641 540 956 1,496
Eiffel Tower Paris 771 456 1,038 1,494
Ground Zero New York 613 205 1,283 1,488
Pyramid Giza Egypt 358 323 677 1,000
Golden Gate Bridge San Francisco 342 440 560 1,000
U2 Croke Park Dublin 64 41 931 972
Namdaemun Gate Seoul 230 255 619 874
Monaco Grand Prix 2007 68 173 420 593
Taj Mahal Agra India 137 171 329 500
Tower Bridge London United Kingdom 162 191 309 500
Petronas Towers Kuala Lumpur 227 159 341 500
Champions League Final 2007 Athens Milan Liverpool 55 34 340 374
Japanese Grand Prix 2006 Suzuka 9 185 173 358
Fa Cup Final Wembley 2007 36 48 307 355
Super Bowl 2007 Dolphin Stadium 34 5 305 310
Soccer World Cup Final Berlin Italy France 67 8 219 227
Real Madrid Barcelona Camp Nou 13 8 180 188
AFL Grand Final 2007 Geelong 16 0 143 143
African Nations Cup Final 2008 13 0 72 72
Heineken Cup Final 2006 Cardiff Munster 7 12 45 57
Copa America Final 2007 Venezuela Brasil Argentina 4 1 35 36
overall 7,270 5,769 20,402 26,171

(22%) (78%)

Table 6.2: This table provides an insight into the percentage of geotagged images, from
random sample of 26 queries.

183



Since we are initially able to search for geotagged photos taken at the same location

as the user’s lifelog event (as described in section 6.2.2), it is then possible to inspect the

tags associated with those images, and intelligently construct a new text query. Textual

annotations are powerful descriptors of image content, and Berendt & Hanser claim that

tags are not metadata, but are for all intents and purposes an extension of the content itself

[16]. In using tags we are not restricting the augmented image set to just those that are

geotagged. However, as Schmitz notes, user generated tags often contain bad spelling or no

spaces between words [129]. Given all the unique tags from each Flickr/Panoramio user,

we “clean up” those tags in two steps 9:

• Firstly many photo tags in Flickr and Panoramio are of the actual country name or

region name, which is not so useful, as we already have GPS information recorded.

Also as the majority of tags contain country/region names which create a lot of noise.

Therefore we want to ignore occurrences of those country and region name tags.

Knowing the GPS location where the event took place, we use a gazetteer [115]

to automatically extract the associated country and region names e.g. “New York,

United States” and then we use WordNet [102] to expand the list of possible tags that

users could have used to mark this place, e.g. “United States” expands to: “US”,

“USA”, “United States of America”, etc.

• Of the remaining tags, the 4 most commonly occurring across users are then con-

sidered as these are likely to be most relevant to a given event query. Many times

those tags may be misspelt or contain spaces, therefore we use the Yahoo! spelling

suggestion API to correct any erroneous tags e.g. “statueofliberty” becomes “statue

of liberty”.

In essence this process is a form of pseudo relevance feedback whereby an initial query

is formed through searching by location, and a new query is then constructed by looking at
9While initially it may seem that performing the step of getting initial seed geotagged images (as described

in section 6.2.2) may be misguided as only 2% of the collection of Flickr images are geotagged; it should be
remembered that this 2% represents an enormous collection of over 65 million images!
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commonly occurring tags in the initial set of geotagged images.

6.2.4 Image Search Using Tags Only

Given a set of relevant tags, we can now construct text queries, allowing us to search for

images from websites with publicly available API’s such as YouTube, MSN, and Yahoo!,

in addition to the images we get from websites with geotagged material like Flickr and

Panoramio. This provides 5 potential sources of images, from which we can augment any

lifelog event. We allow our users to alter the suggested textual query in certain instances,

and then we provide a number of candidate images from the 5 different sources to supple-

ment their experience of reviewing their lifelog events. In the remainder of this chapter we

explore how these facilities are used in practice.

6.3 Experimental Setup

To evaluate the effectiveness of our proposed event augmentation approach, and also to

help answer a number of the research questions we posed, we now describe the setup of

our experiments where eleven users collected lifelog data over a period of 2 years. Many

wore the SenseCam device sporadically (generally at times of interest, e.g. conference trips,

holidays), and in total we collected 1,937,770 images which were segmented into 22,911

events (see Table 6.3).

Users were asked to select a number of events that they would like to have augmented

with other images from external sources of data. They were presented with an event based

browser (as illustrated in Figure 6.6) to sift through their SenseCam images. The calendar

allows the investigator to browse to a day of interest. The vertical column of images in the

centre then displays each event for a selected day, and once clicked all images from the

event are shown on the right of the screen. Users can select events for augmentation by

clicking on the relevant radio button as to whether it is “event specific” or “place specific”,

and then by clicking on the “tag event” button. A list of tagged events is displayed under
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User Num Days Total Num Total Num Place Time
Worn Images Events Tagged Tagged

1 614 1,686,424 19,995 5 4
2 60 92,837 1,182 8 2
3 21 44,173 443 9 1
4 3 3,437 39 0 1
5 23 40,715 505 5 1
6 24 38,106 465 5 0
7 8 18,485 169 7 0
8 6 8,296 57 3 1
9 1 2,046 20 6 0

10 1 667 8 6 0
11 2 2,584 28 2 1

Total 763 1,937,770 22,911 56 11

Table 6.3: A summary of the data collected by our users for the event augmentation exper-
iments.

the calendar on the left hand side of the page. In total, 67 events were selected by our 11

users to be augmented (see place and time “Tagged” columns in Table 6.3), with 11 of those

events time-specific (e.g. such as a sporting event, rock concert, etc.).

The search for augmented images was then run for each event in our dataset. Two vari-

ations of our system were explored; where text from image tags was used as the query; and

where the user had the opportunity to amend the suggested query text. Users were presented

with a screen full of candidate images, 10 from each data source, presented in random or-

der, for event augmentation (see Figure 6.7) in which they had the option to select images

relevant to their lifelog event, which were in turn highlighted with a green background. By

moving the cursor over a candidate image the user was provided with a text description

taken from the webpage that the image belongs to. Below each augmented image there is

a “Link” button which opens the original source of that image in a new browser window.

4,963 candidate augmentation images/videos were retrieved for presentation to users for

their judgement.

After the judgements were complete, users were questioned on: the usefulness of the

suggested query text on semi-automatic runs; the general effectiveness of the system; and

their satisfaction with the augmentation process overall.
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Figure 6.6: A screenshot of the browser used to select events for annotation.

Figure 6.7: A screenshot of the application used to determine event augmentation relevance
judgements.
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6.4 Results

This section now discusses the evaluation we carried out on augmenting lifelog events with

images/videos from other sources of information. We extensively evaluate the results of

each of the three phases of our event augmentation system as illustrated back in Figure 6.2,

namely:

• Which source(s) of geo-tagged photos should we retrieve from which to extract user

tags?

• How effective is the automatically constructed text query from those tags?

• Do users prefer a fully automated augmentation process, or one where they are sug-

gested a textual query, but given the option to amend that query?

We will now explore our findings in detail.

6.4.1 Which Photos to Retrieve from the Same Location ?

Given that the user will have the time and GPS information of their lifelog event auto-

matically recorded, we retrieve relevant geotagged images from Flickr based on a location

search. In describing our approach in a prior section, we posed the question as to whether

it is better to retrieve the tags from the top 100 (T100) or the top 25 (T25) most relevant

(in terms of location) geotagged images, or the top 25 geotagged images that are visually

similar to the keyframe image from the lifelog event (M25).

In practice we found that none of these approaches performed consistently better than

any other, although selecting the top 100 geotagged images provided marginally superior

results (overall precision of 0.308 vs. 0.190 for top 25 geotagged vs. 0.276 for top 25

visually similar). 34 of all the tagged events had their results generated automatically, and

here it was possible to compare the performance of these 3 approaches as displayed in

Figure 6.8. Again using the tags from the top 100 geotagged images performs best (0.260
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Figure 6.8: An illustration of the event augmentation performance effects in changing the
initial seed geotagged photos from which tags can be extracted.

precision)10. Selecting the top 25 most visually similar performs worst (0.217), and to

compound matters there is a large processing overload associated with this approach by

having to extract the MPEG-7 descriptors of the top 100 images returned by Flickr and

Panoramio for each event (in practice we have found it takes 10 × the processing time).

We investigated whether the number of seed geotagged images initially retrieved had

any impact on the final system performance and in practice we found no such relation-

ship/correlation existed (correlation of -0.09 between number of seed geotagged images

and precision of retrieved results).

We discussed earlier that lifelog events, which we would like to augment, can be placed

into two broad categories, i.e. whether the lifelog event in question is of an actual place

(“place-specific”), or an event or happening such as a big sporting event or rock concert

(“event-specific”). So the “place-specific” category can include images taken at any time,

whereas the ”event-specific” category can only include images taken at a certain time pe-
10As no suggested text was presented to the user in automatic runs, users were presented with results from

the T100, T25, & M25 approaches, thus allowing us to compare the retrieval results of these approaches on a
like-for-like basis.
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Figure 6.9: The event augmentation differences in the “Place Specific” vs. “Event Specific”
results by user.

riod. Overall the “place-specific” event augmentation performed better than the “event-

specific”, with an average precision score of 0.305 vs. 0.186. Also out of the 6 users who

had both place- and event-specific events, the place specific results were better for 4 of them

(see Figure 6.9). The “place-specific” also performs better on both the automatic (0.249 vs.

0.123) and semi-automatic systems (0.448 vs. 0.378). Comments made on this aspect of

the augmentation process in our post evaluation questionnaire were concentrated on crit-

icising the “event-specific” results, with one user (User 5 in Figure 6.9) commenting that

“. . . for location-specific events, most of them were good. For event-specific events it was

all incorrect . . . ”. No comments were made when the event-specific system worked better,

perhaps indicating an expectation that it should just work anyway.

Given that it is possible to automatically search for geotagged images, we posed the

question as to how many images should be retrieved, so as to construct a new text query

afterwards. We have found that taking the 100 most spatially relevant images performs best.
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6.4.2 Benefits Offered in Using Relevance Feedback to Construct Text Query

After automatically retrieving relevant geotagged images, we proposed earlier that intelli-

gently constructing a new textual query from the tags associated with those retrieved im-

ages would be beneficial, and provide the user with many more relevant augmented im-

ages/videos. This is due to the fact that while there are now tens of millions of geotagged

images available, it is still a small percentage of the total amount of potentially relevant

images/video available. Thus by being able to construct a textual query, it is then possible

to access those other relevant images/videos.

It is indeed the case that constructing a new textual query is beneficial, as 55.15% of

the total number of relevant images/videos across all the users on the automatic runs came

from the sources of information that depend on the automatically constructed query. This

immediately offered users 123% more relevant augmented images.

Considering that users were given the ability to amend the textual queries on the semi-

automatic system runs we can use another method to evaluate how closely the suggested

text matches the user query. Heavy editing would negate the advantages of automatically

suggesting any keywords. To do this we can calculate the number of overlapping words

between the suggested text and the actual query input by the user which was taken as the

gold standard. This enables us to calculate precision (the total number of system suggested

words divided by the number of overlapping words), recall (the total number of actual words

input by the user divided by the number of overlapping words), and the F1-Measure 11.

Again using the top 100 geotagged images as a source of tags works best with a pre-

cision of 0.489, a recall of 0.582, and an F1-Measure of 0.532. This would indicate that

the suggested tags were helpful to the users. However, given that each query is different,

and some are much more difficult than others, there is naturally a large variation of scores

between users on how accurate the suggested text was (ranging from an F1-Measure of 0.76

to 0.31) as illustrated in Figure 6.10. It is also interesting to notice the trend between the

F1-Measure (thick continuous line) and the normalised user Likert rating for the tag sug-
11F1-Measure = 2∗precision∗recall

precision+recall
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Figure 6.10: An insight into the effectiveness of the tag suggestion for each user on the
completely automated runs.

gestion usefulness in the post evaluation questionnaire (diagonally filled column). Broadly

speaking these two data series mirror each other (with a correlation of 0.55), thus indicating

that users naturally are happier when more accurate query text is suggested. User number

3 was the only person to buck this general trend, feeling that the suggested text was not

sufficiently specific, “. . . You really need a local knowledge of the area to form the query

correctly . . . ”.

Indeed, in a post-evaluation questionnaire there were some negative comments in which

the most common complaint was that the textual suggestions were not “specific” enough,

e.g. provides the city/street name, but not the name of the particular building that the user

was interested in. However, in total 7 out of the 10 users have found the tag suggestions

helpful in many instances12. The median Likert score of all 10 users was 3/5.
12User number 4 from Table 6.3 only had 1 query, which was determined to be a completely automated run

by our Latin Squares setup. Therefore only 10 users instead of all 11 could be evaluated in this section
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6.4.3 Augmented Image/Video Search Results

In this chapter we have introduced the concept of augmenting lifelog events with publicly

available multimedia content that has been generated by millions of other users. Such

content is available from a number of different data sources, and we now comment on those

sources that consistently provide a greater concentration of relevant material to users.

As has been previously mentioned, we feel that due to the relatively small percentage of

publicly available geotagged content, it will be useful to construct a new text query based

on tags associated with retrieved images, so as to search for many more potentially relevant

images/videos to a user’s lifelog events. Having automatically constructed a new text query

on which to search for other sources of information (e.g. Yahoo!, YouTube, MSN, etc.), we

proposed two systems to the user: 1) All the images are automatically returned to the users;

and 2) The suggested text is shown to the user (who can edit it) before retrieving potentially

relevant results.

The semi-automatic system’s retrieval results were better for 9 out of the 10 people who

used both systems as illustrated in Figure 6.11 and Figure 6.12. In fact the overall precision

of the semi-automatic system was almost twice that of the automatic system (0.441 vs.

0.235), thus indicating that user feedback is vital in locating relevant images. In addition

to the superior retrieval performance, 9 of those 10 users also simply preferred using the

semi-automatic system as it provided them with more security, with one user eloquently

summing up the feelings of others by stating that “. . . I missed the textbox when it was

removed . . . ”.

Considering that the top 10 results are returned to the users from 6 sources of infor-

mation13, we now report those sources that provided the highest concentration of relevant

results. Investigating all judgements made, searching Flickr by text had the highest average

precision score (0.370) followed by MSN (0.329), Yahoo! (0.290), Panoramio geotagged

images (0.280), Flickr geotagged images (0.242), and finally YouTube (0.205) as illustrated
13For geotagged images: Flickr and Panoramio; For text search images/video: Flickr, Yahoo!, MSN,

YouTube
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Figure 6.11: The effectiveness of the (semi-) automated runs on each user for event aug-
mentation.

Figure 6.12: The effectiveness of the automated runs on each user for event augmentation.
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Figure 6.13: An insight into the final number of relevant results returned by each external
source of information.

in Figure 6.13. Given that users much prefer the semi-automatic system, it is interesting to

see which sources of information provided the highest number of relevant results on semi-

automatic runs (the medium thickness dot dashed line in Figure 6.13). Flickr text search

again works best but this time with a much higher precision score of 0.590; Yahoo! is

next best (0.516), then MSN (0.510), then YouTube (0.343); and finally the two geotagged

sources of Panoramio (0.315) and Flickr (0.299). So what is really interesting to note here

is that on semi-automatic augmentation runs, which users prefer anyways, the “text only

query” sources clearly perform better.

In this section various facets of our approach have been evaluated in augmenting lifelog

events with images/videos from other sources of information. Now we investigate how ef-

fective for users the optimal combination of these approaches is. Based on these results,

the best overall system would use the top 100 retrieved geotagged images as a source from

which to construct a text query. The user would then be given the opportunity to amend

the generated text query, and the Flickr (text), MSN, and Yahoo! sources would be used

195



Figure 6.14: An illustration of the performance of the final recommended system on “place-
specific” events. The top 100 most spatially relevant images are firstly retrieved by Flickr,
our technique then automatically selects 5 tags, which the user can amend (semi-automatic),
before retrieving images/videos based on text-only search.

to present augmented image candidates to the user. Of the 9 “place-specific” runs that

had these parameter settings in our experiments, a median precision score of 0.633 was

recorded, meaning that users found two-thirds of the presented images useful for augment-

ing their lifelog events, as illustrated by the thick continuous line in Figure 6.14. It is also

possible to include the YouTube, Panoramio and Flickr (geotagged) results, but there will

be many noisy/irrelevant results included as these 3 sources had an average precision score

of just 0.350 on the 9 aforementioned runs (shown on the dashed line in Figure 6.14).

There were only 2 “event-specific” runs (with the optimal combination of facets) that

could be evaluated in our experimental dataset, therefore it is difficult to draw any meaning-

ful conclusions. However, on these two runs, only one returned any results at all (0.4). This

indicates that in future there exists a significant challenge in terms of augmenting “event-

specific” lifelog events with relevant content. On inspection of Table 6.2 from quite a few

pages back in section 6.2.3 it can be seen that “places of interest” have many more rele-

vant images (e.g. Sugar Loaf, Big Ben, etc.) than “events of interest” (e.g. soccer world
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cup final, AFL grand final, etc.). This means that there is a smaller number of potentially

relevant results available which makes the challenge more difficult than retrieving relevant

“place-specific” queries.

6.5 Summary

In trying to provide as many memory retrieval cues as possible, one of the aims in our

hypothesis is to “. . . augment images from the low-resolution wearable device with higher

quality images from external data sources . . . ” The aim of the work reported in this chapter

was to thoroughly investigate the idea of augmenting passively captured lifelog events with

relevant image/videos captured by a large number of individuals, each of whom only had

to make a small contribution. In this chapter we have also noted the phenomenal expansion

of easily-accessible multimedia content due to “Web 2.0”, whereby millions of users are

uploading billions of images and videos. We are now entering an era whereby individuals

expend little effort in capturing images and making them available, whether it is passively

captured lifelog images or a small number of manually captured photos which are uploaded

to a media sharing website. However, in aggregating these small contributions over an enor-

mous scale of users we have automatically enriched the experience of individuals reviewing

their trip or event, by providing them with a large number of relevant items of information

mined from millions of other individuals.

We have proposed techniques that make possible this goal of augmenting lifelog events.

Given that lifelogging devices can easily capture time and location information, it is pos-

sible to automatically search for “geotagged” images on the Internet. However, as we

have discovered in this chapter, very little of the total number of potentially relevant im-

ages/videos on the Internet are actually geotagged. However, all of this content can be

retrieved via textual queries. Therefore in this chapter we introduce a technique to initially

(and automatically) retrieve relevant geotagged images, and then to construct a textual query

by examining the tags associated with those retrieved geotagged images i.e. this is a form of
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pseudo relevance feedback. Using that textual query it is then possible to retrieve potentially

relevant images/videos from many sources of information on the Internet.

To investigate the effectiveness of such a system we have organised 11 users to collect

SenseCam data over a two year period. 1,937,770 images were captured in total, which

were automatically segmented into 22,911 events. The users were then asked to identify a

selection of events on which they would like to see augmented material, and in total 67 such

events were selected, 56 of interesting places and 11 of interesting events. Afterwards each

user was presented with potentially relevant results, as determined by various evaluated

approaches, and in total 4,963 judgements were made on augmented images/videos for the

67 selected events.

We evaluated a number of different techniques in the results section and the first finding

is that it is optimal to initially retrieve the 100 most spatially relevant geotagged images

to the lifelog event in question. Not only is it quite accurate to select the most spatially

relevant images, but it is also approximately 10 times quicker, in terms of processing time,

than selecting by visual similarity.

It was found that constructing a new textual query is very beneficial as 55.15% of the

total number of relevant images/videos across all the users on the automatic runs came

from the sources of information that depended on the automatically constructed query. This

immediately offers uses approximately 120% extra relevant images/video to augment their

experience of reviewing a passively captured lifelog event. In a post-evaluation question-

naire we discovered that 7 out of 10 users found the suggested text quite helpful too.

In the evaluation stage the users were presented with two system variations: 1) Where

the results were automatically generated with no user intervention, 2) Where the textual

query was automatically generated, but users were given the opportunity to amend it before

searching for relevant content (referred to as semi-automatic approach). In practice it was

found that 9 out of the 10 users who were presented with both systems preferred the semi-

automatic system. In fact the semi-automatic system returns twice as much relevant content

to the user, (0.441 P@10 vs. 0.235), thus indicating that user feedback is vital in locating
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more relevant images.

Potentially relevant content from 5 different sources of information was evaluated:

Flickr, Panoramio (Google Earth), MSN, Yahoo!, and YouTube. It was found that MSN,

Yahoo!, and searching Flickr by text were the richest sources of information in terms of

yielding relevant results, especially on the semi-automatic system runs. Overall it was

found that running a system with the optimal combination of facets on “place-specific”

runs, presents the users with approximately 18 relevant images out of 30 (from MSN, Ya-

hoo!, & Flickr with each information source providing 6/10 relevant results per query). In

our experiments only 2 ”event-specific” runs could be evaluated with the optimal combina-

tion of facets, and naturally no concrete observations can be made, however it does appear

that these present a considerable future challenge.

Even though there are research challenges involved in further improving the quality

of the lifelog augmentation process, we have now made real one of the important goals

of pervasive user-generated content, as an individual’s passively captured content in their

lifelog is augmented with user-generated content collected by millions of other individuals.

6.6 Conclusions and Contributions

• Given that only a small percentage of photos uploaded to “Web 2.0” sites are geo-

tagged, we have illustrated that it is necessary to search for relevant content through

text.

• We have introduced an approach to initially select some seed images through an auto-

mated spatial search, and thereafter to construct a text query from the tags associated

with those seed images.

• In selecting a set of seed images we have discovered that it is not worthwhile to

identify tags from those images that are visually similar to the keyframe image of the

given SenseCam event.
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• A future area of interest to explore will be that of selecting the most representative

tags from the seed geotagged images. An adaptation of the TF-IDF algorithm [79] in

particular may be worth looking at.

• Another future area of interest may be exploring the usefulness in automatically an-

notating one’s lifelog events through the tags produced in augmenting one’s event.
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Chapter 7

REVIEWING HYPOTHESIS

THROUGH ANECDOTAL

EVIDENCE

The previous chapters in this thesis have concentrated on evaluating the accuracy of indi-

vidual facets of the hypothesis of this dissertation in a very systematic format. Results have

focused on maximising the F1-Measure, precision, recall, or mean average precision scores.

However, we have still not investigated if facets such as event segmentation are really of

benefit to users in an end-system. Something as potentially fulfilling as reflecting on one’s

personal experiences can not only be reduced to precision and recall numbers. Therefore

in this chapter we carry out usability tests to explore how fun, insightful, and most impor-

tantly how useful each facet of the system is to real-world users. In previous chapters we

have alluded to the fact that there exists a body of literature that points towards the fact

that cued-based recall is better than free recall, and that images in particular provide strong

retrieval cues. In effect we are now testing the hypothesis of this dissertation to investigate

its usefulness in providing effective memory retrieval cues. To recap the hypothesis of this

dissertation is that:
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In order for visual lifelogging technologies to effectively provide autobio-

graphical memory retrieval cues it is necessary to automatically:

• effectively segment a large collection of personal images into distinct

events

• accurately determine which of those events are most unusual

• usefully provide the ability to link similar events together

• augment images from the low-resolution wearable device with higher

quality images from external data sources.

It is beyond the scope of this thesis to carry out large scale user tests, as this would

require many users gathering large amounts of data over a long period of time. An ethno-

graphic study of this nature would require a very significant body of work. Instead in this

chapter we will investigate, in an anecdotal manner, the performance of each individual

aspect e.g. event segmentation, retrieving similar events, keyframe selection, determin-

ing event importance, and event augmentation. We present two distinct systems, one an

event-based browser that we distributed to international research groups, and the other that

incorporates all facets of the visual lifelog processing cycle.

Before we discuss the findings of our discussions with users, we will quickly recap

on the various aspects of the system that are being evaluated. Thereafter we will discuss

in detail two browsers that we used to conduct usability tests on those various lifelogging

facets. Finally we will detail our findings based on feedback offered by a number of users.

7.1 Aspects to Investigate

We will now provide a brief reflection on the various approaches discussed throughout the

duration of this thesis which relate to individual facets of the hypothesis in this disserta-

tion. The following approaches (illustrated in Figure 7.1) have already been quantitatively

investigated already, but will now be looked at in an anecdotal manner in this chapter:
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Figure 7.1: An overview of the challenges that this thesis has addressed thus far. Images
are segmented into distinct events, which then allow those events to be compared against
each other. By comparing events against each other we can then determine an importance
score for each and every event. A keyframe must be selected for each event, which can also
be augmented with material from external sources of information. In this chapter we will
review a system incorporating the outputs of the prior chapters.
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• Event Segmentation: Chapter 3 details many quantitative experiments on the op-

timal approaches towards segmenting sequences of SenseCam images into distinct

events or activities. Examples of events/activities include: having a meal, being on

a bus/train, talking to a friend, going for a walk in the park, etc. In essence event

segmentation algorithms attempt to identify the boundary between each event, which

occurs at times of high visual or sensory changes. The recommended approach from

Chapter 3 is performed on only the sensor sources of information recorded by the

SenseCam. This results in very quick segmentation processing.

• Event Searching: Chapter 4 provides details on many quantitative experiments on

approaches towards the retrieval of similar/relevant SenseCam events to a given lifelog

event. This may be very useful when a user is trying to find other times that they went

to the park, or other times they had a meal in a restaurant, or other times that they

were driving, etc. Event retrieval algorithms must first correctly represent each event

(as events consist of almost 100 images on average), and then identify other events

that are close both visually and in terms of sensor readings.

• Keyframe Image: Chapter 5 provides details on experiments towards selecting an

appropriate keyframe image from an event. As lifelog events consist of almost 100

images on average, a significant challenge exists in selecting an image that represents

the semantic meaning of an event. This image can then be used in an end system

browser to allow users to recognise events based on just 1 image rather than 100

images! In Chapter 5 we recommend selecting the image within the event that has

the highest “quality” score.

• Event Importance: Chapter 5 also details extensive experiments towards calculat-

ing an importance value for every event in a lifelog collection. On average users will

have over 20 events per day, thus we feel it will be useful for any real-world applica-

tion to place more emphasis on those events that are more interesting/important. We

determine importance based on 2 aspects: 1) the concentration of detected faces in
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the event (thus indicating social interaction) and 2) the uniqueness of the event with

respect to all other events in the past fortnight.

• Event Augmentation: Chapter 6 provides details on augmenting SenseCam events

with images from other sources of information. Given the prevalence of “Web 2.0”

sites on the Internet nowadays, and the massive number of publicly available geo-

tagged images, it is now possible to automatically query such sites for potentially

relevant content to augment a user’s experience of reviewing a particularly event, e.g.

a trip to the Eiffel tower in Paris, the Colosseum in Rome, or to a big rock concert. In

this chapter we will investigate if this aspect is of real benefit and enjoyment to users

in an actual system.

7.2 Experimental setup

To evaluate the hypothesis of this dissertation we presented 9 users with two different sys-

tems to review their own data. One of these systems is an event based browser which was

distributed to four collaborating universities: the University of Tampere, Finland; Duke

University, USA; University of Toronto, Canada; and Utrecht University, in the Nether-

lands. The other system is one used in-house in the Centre for Digital Video Processing in

Dublin City University, and this system incorporates all the features listed in the previous

subsection: event segmentation, event searching, keyframe image selection, determining

event importance, and finally augmenting events with images from external sources of in-

formation. We will now detail both of these systems and the users they served.

7.2.1 Event-Based Browser

We have worked with four universities (Tampere (Finland), Duke (USA), Toronto (Canada),

and Utrecht in the Netherlands) and provided them with SenseCams and also an event-based

browser. We have plans to work with other research institutions who have expressed an in-

terest in using this browser in the future too. This browser first of all automatically segments
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sequences of collected images into distinct events or activities, based on the sensor values

alone. These events are then visualised as displayed in Figure 7.2. The top left corner of

the screen is a daily calendar which allows a user to browse to a desired day, exploiting

the fact that humans can remember the approximate time that events take place, as noted

in Chapter 2. The currently selected day in the calendar is highlighted by a different back-

ground colour (the 19th of October 2006 in Figure 7.2). The middle column of the browser

displays a single keyframe image of every event present in the selected day. The middle

image in each event is selected as the keyframe image, meaning processing is very quick.

The events for the morning, afternoon, and evening have different background colours, so

as to allow the user navigate to the section of the day in question that they are most inter-

ested in reviewing. Events that are selected to be browsed in detail are highlighted with a

red border and arrow as illustrated with the first “Afternoon” event in Figure 7.2. The right

hand side of the browser then displays all the individual images present in a selected event.

Above the event’s images, other details are given about the event, e.g. the start/end times,

the duration of the event, and also any associated comment. Users can add any comments

to an event. Finally if the user is interested in any particular image within the event they

can click on it to display it in full size as illustrated in Figure 7.3.

The event-based browser was used by one user in Utrecht to review his own personal

lifelog images. This user collected 102,113 images over a period of 55 days which were

segmented into 1,290 events. The evaluation section will focus on how effectively the user’s

images were segmented into distinct events/activities.

In Tampere, the event-based browser was used for a different purpose, whereby one

user was reviewing images received from 6 individuals who wore the SenseCam over a

period of 10 days each. The purpose here was to use the SenseCam as a data collection

tool in an empirical study on information access in molecular medicine [29]. In total the 6

individuals collected approximately 72,000 images over a period of 52 days1 which were

segmented into approximately 800 events. The evaluation section though will focus on
1One of the 6 individuals only captured 2 days of data
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Figure 7.2: A screenshot of the “event-based” browser.
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Figure 7.3: Displaying a single image on the event-based browser.
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feedback from just one person (the information researcher), and how useful she found the

event-based browser to determine the information needs of the molecular medical workers,

with a particular focus on how effective the event segmentation is.

In Toronto, the event-based browser is used as part of a project to enhance the quality

of life of people with Alzheimer’s through using SenseCam images. 2 people have used

this browser to investigate its suitability towards providing memory retrieval cues. One of

the users collected 5,524 SenseCam images over a period of 5 days which were segmented

into approximately 67 events, with the other user collecting a much larger dataset. The

evaluation section will focus on how effectively their images were segmented into events.

Meanwhile in Duke University, the event-based browser is used as part of a project to

investigate why and how SenseCam images provide such powerful memory cues. 1 person

has used this browser to review images captured by subjects, so as to step through their days

in a collaborative fashion. Our evaluation section will focus on how effective this user feels

that our event-based browser is.

7.2.2 Advanced Browser

We now present a SenseCam browser that incorporates all of the facets detailed in our

hypothesis: event segmentation, event searching, keyframe image selection, determining

event importance, and finally augmenting events with images from external sources of in-

formation. We will detail how these aspects are visualised on our browser.

Figure 7.4 provides an overview of our browser. The top left region of the browser

provides the user with calendar functionality where the user can select any desired day to

show. Again, as with the event-based browser this exploits the fact that people remember

the approximate time that events take place. Days available for selection are highlighted in

bright white text, with the current day on view highlighted via yellow font. The predominant

focus of the browser is on the middle of the screen where numerous images of the day are

displayed. These images were segmented into distinct events/activities, and on the browser

each image is an event keyframe image, i.e. the image with the highest quality score.
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Figure 7.4: A screenshot of the “advanced” browser.

As can be seen, some images are larger than others, whereby those images that are larger

correspond to events with a high importance score, suggesting more interesting events to

review which exploits the human memory characteristic whereby distinct events are more

strongly encoded. On the top left corner of each image, its starting time is displayed. The

information at the top centre of the browser details the day being displayed and also the

number of events being displayed. The slider bar can adjust the number of events being

displayed, and in the case of Figure 7.4 the 19 most important events, as determined by the

system, are displayed to the user. Below the slider bar there is a timeline visualising when

events started, and also their duration. The panel to the left of the browser titled “Weekly

Summary”, just below the calendar section, provides a timeline of other events in the days

surrounding the day being displayed. Only those events that are similar to any of the events

in the displayed day, are visualised in the weekly timeline, taking advantage of the fact that

the human mind stores items associatively, and thus is curious to see other related events.

Figure 7.5 illustrates what happens when the user puts the mouse cursor over any event

in the centre of the screen, whereby the images are displayed at full size and played back

at a rate of 10 frames per second. The playback is stopped when the user exits the mouse
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Figure 7.5: The event playback feature on the advanced browser - notice event images are
enlarged and played at 10 frames/second.

cursor from the event. The other events are still visible and transparent in the background.

Also the event in question is highlighted in red in the daily timeline above, and the weekly

timeline to the left too. Any events that are similar to the event in question are highlighted

in amber on the daily and weekly timelines.

Thus far we have displayed aspects of the application that highlight the usefulness of:

event segmentation in terms of detecting the different events; automated event importance

calculations to emphasise more interesting events; and of selecting a good keyframe for

visual display. However, there are other capabilities that are useful to provide to the user.

As such, we provide the user with a menu of options anytime that they click on any event

being displayed, as illustrated in Figure 7.6. This then empowers the user with much extra

functionality.

The user can add/amend a textual comment to any event via selecting the “Add Caption”

option on the menu, as illustrated on the bottom centre of the browser in Figure 7.7.

The user can also add an event to their list of favourite events via selecting the “Add
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Figure 7.6: Event menu options on advanced browser - note the floating menu over event.

Figure 7.7: Event commenting tool on advanced browser - note the user can enter text in
floating text box to comment on event.
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Figure 7.8: Note the list of “favourite” events on the right hand panel.

To Fave” option on the menu, as illustrated in Figure 7.8 where the most important event

(i.e. the largest one displayed on the browser) has been added to the “My Favourite Events”

panel on the right hand side, and also a small “F” caption has been added to the bottom

right of the keyframe image of that most important event. Events can also be removed as

favourite events too.

Given that the human memory stores items associatively, the user is also provided with

the important capability of searching for other potentially relevant events in their lifelog to

a given event, by selecting the “Find Similar” option on the menu. A list of other potentially

relevant events to the event in question are displayed on the “Similar Events” panel to the

right hand side of the browser as illustrated in Figure 7.9, where keyframe images from

the list of potentially relevant events to a given event are displayed. Other information

regarding the date, time, and duration of the potentially relevant events is displayed too.

The top of the panel also gives the user feedback on how many potentially relevant results

were returned (22 in the case of Figure 7.9).

As the event playback rate is at 10 frames per second, it is excellent at giving the user
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Figure 7.9: Searching for relevant events on advanced browser - note the list of potentially
relevant events on the right hand panel.

the opportunity to “gist” as to what the event is all about. However, if the user is interested

in viewing a certain image in any given event, we provide them with the opportunity to

view such images in a new tab of the browser as illustrated in Figure 7.10. This new tab

is opened when the user selects the “Event Images” option from the floating event menu

bar. Once the tab is open, the user is presented with thumbnails of all the images in a given

event, and they can then select any image to view it in full size.

Finally given that a user may have attended a certain number of interesting locations,

we present them with the opportunity to augment events with images/videos from other

sources of information on the Internet to provide them with additional memory retrieval

cues e.g. Flickr, YouTube, MSN, Yahoo, or Panoramio (Google Earth). These events must

have latitude and longitude information recorded along with them. An event can then be

augmented with other images by selecting the “Augment Event” option from the menu, and

then the augmented images will be displayed in a new tab on the browser as illustrated in

Figure 7.11. Below each result image/video is a “Link” that they can click on to go to the

web page where the result originated from, so that they can view the image/video of interest
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Figure 7.10: Displaying all event’s images in new tab on the advanced browser.

in its original size. If the user is dissatisfied with the retrieved results, they are provided with

the option of amending the intelligently constructed query in the text box at the top of the

screen and then clicking on the “Refine Augmented Results” button, after which a new set

of augmented image/video results are displayed.

The advanced browser was used by 4 users within the Centre for Digital Video Process-

ing in Dublin City University. These individuals used the system to review their own Sense-

Cam images to relive past days/events. In total the users collected 1,849,220 images over a

period of 22 months which were segmented into 21,967 events. The evaluation section will

focus on how effectively users’ images were segmented into distinct events/activities, how

effective the event importance determination was, the usefulness of the selected keyframe,

the relevance of other retrieved events to a queried event, and whether augmented im-

ages/videos provide additional retrieval cues to users.

7.3 Evaluation

In this section we will now anecdotally review the hypothesis of this dissertation using two

lifelog browsers. In the previous 4 chapters all results have been measured in terms of
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Figure 7.11: Displaying other images/videos to augment the SenseCam event.

precision, recall, F1-Measure, mean average precision, etc. These metrics are very precise,

but in this chapter we are interested in discovering how the various aspects work in reality

in a lifelog management system. Therefore all of the results in this section are concentrated

on feedback offered by the users of the various systems. We will now discuss our findings

on the usefulness of each major facet after discussions with the users.

7.3.1 Event Segmentation

We feel that it is useful to segment sequences of images into distinct events or activities.

The premise of this is that “. . . segmenting ongoing activity into events is important for

later memory of those activities . . . ” [158]. In Chapter 3 of this thesis we have detailed

that in terms of the F1-Measure our optimal event segmentation technique is over 60%

accurate against a semantic groundtruth. However, in this section we now investigate how

useful event segmentation is to end users in two experimental setups, one the “event-based”

browser and the other being the “advanced” browser.

Users found the “event based” browser to be very easy to use, given that it segmented

images into events, and had no additional functionality that may have confused any potential

users. Our user in Utrecht, the Netherlands, commented that “ . . . initially I was not sure if
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a pure time-based segmentation would have been sufficient already (e.g. new segment every

30 min). However, after using it, I think the one provided by your system is much better

. . . In Cape Town, I made a tour to the Cape of Good Hope. When browsing the pictures, I

was interested in finding the ones that actually show the Cape. I remembered which day it

was and given the segmentation, it was easy to find the related segments . . . ” Our user in

Utrecht did find a certain example where the event boundaries were undersegmented, i.e.

no boundary was identified between his activities of “sitting on a table eating a sandwich

in the hotel’s restaurant” and “walking around in the lobby checking out some flyers with

tourist attractions”. However, on the whole our user in Utrecht concluded that “Overall

my bottom line is that the segmentation is very useful, even if it is not perfect all the time. It

helps you in browsing and finding information.”

The users in Tampere were not so concerned regarding the precision of the event seg-

mentation, instead they were very focused on the event segmentation having a high recall

i.e. they don’t mind if many events are incorrectly segmented by the system, however they

do want to make sure that all semantic boundaries are detected though. In their work they

used the SenseCam as a tool to find out more about the normal working practices of molecu-

lar medical researchers. As a result they wanted to find out about every small event/activity

that the medical researcher was involved in. Therefore the information specialists did not

mind quickly sifting through the keyframe images of many events, being comfortable in

the knowledge that they would identify every activity the user was involved in. To accom-

modate the wishes of these users, we were able to lower a thresholding parameter so as to

present more segmented events.

The memory scientists in Toronto found the event segmentation aspect of the “event

based” browser to be “. . . very useful and is capable of identifying events with a high degree

of accuracy . . . ” One of the researchers commented that “. . . There was rarely a time

when an event was not identified . . . ”, and indeed the other researcher commented that

“. . . the calendar feature allows for easy recall of the events experienced in different days

and gives an overall theme for each day. On certain events, I felt like the computer actually
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understood the photos and their sequence, segmenting them into appropriate events with

sharp boundaries separating them. . . . ”. While pointing out some examples where the

events were over-segmented, in general the researchers in Toronto found our process of

segmenting images into events to be highly effective.

While only receiving the “event based” browser recently, the memory scientist in Duke

University commented that “. . . it seems the software is effective . . . ”. He noticed that

“. . . the segmentation was particularly good during times when the person went from an

inside location to an outside location . . . ”, while acknowledging that the segmentation

process sometimes wrongly “. . . created several “events” while that person was driving in

her car . . . ”. However, in general the memory scientist in Duke University was happy with

the effectiveness and usefulness of the event segmentation facet in the hypothesis of this

dissertation.

Users of the “advanced” browser found that the event segmentation was overall very

useful. User number 2 notes that the segmentation is “. . . very good as it give me an in-

stant summary of my day . . . ”. Meanwhile user number 3 commented that segmentation is

“. . . helpful in general as it breaks all of my images up into easier to understand segments

. . . ”. User number 4 commented that “. . . overall the segmentation is good as it helps me

see the sequence of my day from breakfast, to giving a presentation, to visiting people in a

studio . . . ”.

While the event segmentation is an important and useful facet, users were able to iden-

tify certain instances where the segmentation algorithm incorrectly identified event bound-

aries e.g. user 4 noted that “. . . my presentation is incorrectly over-segmented into 3 events

. . . . The reason for this particular over-segmentation is that the user made two very sudden

movements during his presentation, and these movements were sufficiently high so as to be

above the event segmentation threshold value. User 3 noted that “. . . the boundaries don’t

always match my semantic interpretation of what an event is . . . ” however this user didn’t

identify any specific circumstances with which he was unhappy. User 2 meanwhile was

very happy with one particular boundary noting that “. . . it has correctly identified half time
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when I was at a football match! . . . ”.

7.3.2 Event Importance

Given that a user will still have over 20 events in an average day we argue that it is useful

to emphasize more interesting events. The premise is that users aren’t overburdened in

terms of having to sift through a number of routine/mundane events before finding a more

interesting event which is quite likely to be strongly encoded in memory. Instead more

interesting events will appear larger to the user on screen, as described in the experimental

setup of the “advanced” browser. In Chapter 5 of this thesis we have detailed that our

users rated the event importance algorithm as good. Now we investigate how this works in

practice, and also how useful our subjects found this feature to be.

Overall users found that emphasising more important/interesting events was very help-

ful. User 2 noted that the event importance was either “excellent”, “very good” or “su-

perb” for various randomly browsed days. In fact overall user 2 noted that “. . . I like events

being highlighted as they gave me a focus or trail to start browsing with . . . ” User 4 noted

that he was “. . . happy that the mundane events of working on my computer are either very

small or hidden. I find the top 2 most important events proposed by the system pleasurable

to review, and all the other events aren’t interesting to look at, so the system is correct . . . ”.

However, user 3 felt there was little benefit to the event importance as he commented on be-

ing unable to trust the system to consistently identify the most important events; but against

this he still felt it is a useful feature and noted that “. . . I like the fact that events I manually

marked as ‘favourites’ are then highlighted as important events . . . ”

While all users were agreed on the usefulness of highlighting important events, given

these comments by user 3, it is evident that not everyone was completely satisfied with

the actual performance of the algorithm. However, the majority of users found the events

suggested as important/interesting/unique/distinct to be very effective. User 2 noted for a

particular day that “. . . the event importance is excellent as it had the Times Square and

Ground Zero events as big, and also the event of talking to the interesting lady from Co.
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Down in Battery Park too. My only complaint is that in the evening I was chatting to an

old lady in the diner but it was not recognised as important. . . . ”. An explanation for

why this particular event of chatting to the old lady was not automatically determined as

important, is that the user took off his SenseCam while eating and then focused it on his

meal rather than the person he was talking to. As the images were of the wearer’s meal

and thus by not being able to detect faces, the algorithm could not determine the event as

being very important. User 4 was also happy with the automatic determination of event

importance too, but had one specific complaint, namely “. . . the presentation I gave on the

2nd of May should have been identified as my most important event . . . ” An explanation

for why this event was not determined as the most important may be due to the fact that

people attending the conference were too far away from the speaker to have their faces

automatically detected, and hence the algorithm could not determine the event as being

very important.

Interestingly User 1 noted that while the most important events presented by the system

were “quite good”, he noted that some of his events of social interaction reoccurred quite

regularly, e.g. having coffee with a work colleague. User 1 felt that these events, even

though they contain a high element of social interaction, should not be weighted as strongly

due to the fact that they are not highly novel.

7.3.3 Keyframe Selection

It has been established that people feel that it is useful for a lifelog of images to be seg-

mented into events, and also that it is quite useful to emphasise those events that are more

important or interesting to review. However, events consist of almost 100 images on av-

erage, therefore we feel that it is quite challenging to select a single representative image

from each event for visual display. In Chapter 5 of this thesis we have shown that our users

generally rated the keyframe selection algorithm as good, and we now explore how this

works in practice.

Overall users made very few remarks on this facet of the system. When prompted for a
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comment, users made very general comments such as the keyframes selected are “good”.

In fact when user 3 was asked to make a more detailed comment, he responded that “. . . the

performance overall is good, when I see each keyframe I know what the event is about,

however given the fact that they’re my events I have a good knowledge what the event is

about regardless of the image given . . . ”. However, for one particular event user 2 didn’t

recognise what the event was about by looking at the keyframe image only, “. . . I had to play

through some of the images of my event of leaving the football stadium before I recognised

what the event was. The keyframe was badly chosen as it showed the exit stairway which I

did not recognise at all . . . ”.

Overall users did not seem very enthusiastic about this aspect of the system, only com-

menting on the few cases where it incorrectly selected a representative keyframe image.

This perhaps suggests that this facet of the system, while not having a “wow” factor, is quite

important in terms of not being wrong, as otherwise users will be left frustrated. Therefore

a good keyframe selection technique is important for users, and our algorithm works quite

effectively.

7.3.4 Retrieving Similar Events

On average each user will log approximately 7,000 events per year. Given that the human

mind stores items associatively, we feel it will be vital to provide facilities to users to browse

through their lifelog collection to find other potentially similar events to an event of interest.

Otherwise users will be overwhelmed with an excessive amount of data to sift through. As

described in the experimental setup section of this chapter, the “advanced” browser provides

users with the option to “find similar” events to any given event. In Chapter 4 of this

dissertation we have carried out extensive experimentation investigating the effectiveness

in terms of precision, recall, MAP, etc. However, we now seek to identify the potential

usefulness of such a facet in a lifelogging system.

All users found the retrieval facility very useful in the “advanced browser”. User 2

noted that “. . . sifting through the query results I am reminded of many other interesting
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events and days that I want to review . . . ”. User 4 also found the retrieval facet of the

system “very useful”.

However while this feature is very useful, all users also highlighted the need for better

accuracy. This mirrors the findings of Chapter 4 where we found that the retrieval perfor-

mance of some topics was excellent, but for other topics the performance was quite poor

indeed. User 2 had a query where he was walking along a footpath beside a shorefront, and

wished to see other times he was at a waterfront, however the user commented that “. . . the

system brings back more ‘footpath’ events, however this does remind me of other interesting

events that I’d like to look at . . . ”. User 3 was satisfied with his results for query of walking

in the centre of the city he was living in, commenting that “. . . the first rank was wrong, but

all the other results returned on the first page were relevant and also interesting . . . ”. User

4 commented that “. . . when trying to find other presentations I gave, I could only find one

other relevant event. The search facility is useful, but needs better accuracy . . . ”.

User 1 had a desire to search for events by time and location, in a fashion quite similar

to that carried out in the domain of organising traditional photographs e.g. O’Hare et. al.

[114]. These features were not integrated into the application presented to the users in this

experiment, but could be integrated into future lifelogging systems. User 1 commented that

“ . . . I don’t want to search only by giving an event as an example, I also want the ability to

search by time and/or location . . . ”. However, this user was satisfied with the actual results

returned for each query he requested, as the results were amusing and set the user off on

different browsing trails which he enjoyed very much.

7.3.5 Event Augmentation

Knowing that lifelogging devices such as the SenseCam capture low-quality images, we be-

lieve that it will be useful in the case of very interesting events to provide additional memory

cues through augmenting those low-quality images from the wearable camera with higher

quality images from external data sources. An example of this would be after attending a

football match in Wembley where the user will have the option to augment those images
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with location-tagged images from an external source like the Flickr database (currently over

65 million geotagged images and owing to its content being driven by a very large commu-

nity of users, this is expanding by approximately 1 million images every fortnight). Another

example may be of a user wearing their SenseCam on holidays to Paris, and wishing to see

pictures taken by others of the Eiffel Tower for example. In Chapter 6 we investigated the

effectiveness of augmenting lifelog events in terms of precision, recall, etc. but now we seek

to address how beneficial this actually is in providing additional memory retrieval cues to

users.

There was a disparity in opinion on the usefulness of augmenting lifelog events. User

4 was quite negative about this aspect of the system stating that “. . . I don’t like that the

results come up in a new window, this confuses me as it doesn’t feel sufficiently integrated

. . . ”. It must be stressed however that this comment is more focused on an interface and

software development issue as to how the feature should be integrated into the system,

rather than being focused on the dissertation facet of event augmentation itself. User 2 was

very positive about the benefits offered by event augmentation stating that “. . . I like it as it

reminded me of recent news of a crane crash in New York that I’d forgotten about, and I’d

also forgotten that it happened near where I was staying. It is fun seeing these augmented

images as they make me think about other things related to my time there as a tourist . . . ”.

User 1 was also very supportive of the event augmentation usefulness and commented that

“. . . all the pictures of my trip to the Cliffs of Moher in Ireland are relevant and add to my

enjoyment of reviewing this event! . . . ”. Due to the superior retrieval performance when

allowing users refine query text, as detailed in Chapter 7, we decided to allow users refine

their augmented results in our system. User 4 did not like this feature at all, stating that

“. . . the text box is a killer, seeing other people’s photos feels like a diversion to me, so at

most I only want to see one level of iteration, refining the search terms just confuses me

. . . ”. However, user 2 stated that “. . . even though the original automatic query was quite

a good approximation, I like refining the search and the fact that results from numerous

sources are available in one screen . . . ”
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A possible explanation on why user 4 didn’t find this facet of the system so useful was

due to the fact that he struggled to recognise many of the proposed augmented images. This

user went on 2 work related trips, and thus didn’t have much time to soak in the various

tourist sites of the locations he visited. He didn’t recognise any of the images returned

of his time in Amsterdam city centre, or of the main area in the University of Limerick;

an explanation for not recognising these is that his own lifelog events in these locations are

short events. While on the other hand user 2 augmented events of free weekends abroad and

thus recognised many of the images, commenting that “. . . the results for the trip to ground

zero in New York are excellent as I recognise many of the images, plus it was also good to

see pictures of the world trade towers before they collapsed . . . the augmented images for

my trip to the ACM Multimedia conference in Santa Barbara are brilliant, as the system

automatically determined the name of the conference, and also returned relevant results

. . . ” Likewise User 1 recognised the augmented images and videos presented to him, but

appeared to most enjoy the fun and novelty of new material being presented to him. Indeed

user 1 pointed towards future research that could be carried out on the interface challenges in

displaying the augmented images in a fun manner to help better visualise cues for memory

recall.

7.4 Summary

In previous chapters we have carried out extensive evaluation on various facets of man-

aging a lifelog: segmenting sequences of images into distinct events/activities, determin-

ing the importance of events, selecting a keyframe image that is representative of a given

event, searching for those events that are similar to given events, and finally augmenting

the low-quality images of lifelog events with images from external sources of information.

However, the evaluation of those aspects has been carried out in terms of how effective they

are in terms of precision, recall, mean average precision, etc. The focus of this particular

chapter is to evaluate the hypothesis through carrying out an experiment to investigate how
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useful each of these functions are in exploiting aspects of the human memory system in

providing effective retrieval cues to a small group of real users of a SenseCam browsing

system.

We built two systems, the “event-based browser” and the “advanced browser” to evalu-

ate the usefulness of various facets of the system. The “event-based browser” was used by

5 users in total including one user in Utrecht (the Netherlands) to browse his own images,

2 memory scientists in Toronto (Canada), 1 memory scientist in Duke University (USA),

while it was also used by information researchers in Tampere (Finland) to observe the daily

activities of 6 medical researchers. The “event-based browser” was only used to investi-

gate the performance of segmenting sequences of images into distinct events/activities. The

“advanced browser” was used to investigate the usefulness of all our proposed facets, and

this browser was used by 4 people within DCU to review their own personal SenseCam

images. Many of our users had good fun in browsing through their lifelog collection on

the “advanced browser”. User 1, who had a SenseCam collection in excess of 2 years in

duration, enjoyed the system particularly well, commenting that “ . . . I loved looking back

at pictures of Christmas of 2 years ago, this really brought back many great memories . . . ”.

In our evaluation carried out in this chapter we have identified that all users found event

segmentation to be highly useful. This aspect works quite well, but there were certain cases

identified where the algorithm performed incorrectly.

Many of a user’s daily events are quite routine/mundane, and thus not very interesting to

review. Knowing that the human mind strongly encodes distinctive memories we feel that

it is useful to automatically emphasise those events that are more interesting, important,

or unique. In this chapter we have identified that most users found it useful to have more

important events highlighted to them. Users like the fact that manually marked events are

also displayed as being very important too, thus giving them a sense of control.

Given that it is useful to segment sequences of images into events to help a user review a

day, we feel that it is important to accurately select a keyframe image from each event to be

displayed on the lifelog browser. In this chapter we have found that users don’t especially
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notice the keyframe images, often stating that they have a semantic knowledge of what the

event is about anyways. In fact the only comments made on the keyframe images were

at times when they were poorly selected, thus indicating that users just expect it to work.

Overall users were happy with the selected keyframes.

Even by segmenting sequences of images into distinct events or activities, there will

still be 7,000 events recorded each year on average per user. As a result we believe that

it will be helpful to provide users with efficient retrieval functionality to identify relevant

events to any given event of interest. All users recognised that retrieval is extremely useful,

however they also recognised that it is quite difficult to have good performance across all

types of queries.

Finally given that users sporadically attend special events (e.g. a tourist trip to the

pyramids of Egypt, or to the soccer world cup final, etc.) we feel that a useful and fun feature

to include is the ability to augment lifelog events with images/videos captured by many

other users. This augmented material is captured from the Internet. In our experiments on

the “advanced browser” we have found quite polarised opinion on the usefulness of this

facet of the system. One user almost detested this aspect of the system, while two others

found it positively amusing. This feature will have to be better integrated into the lifelog

browser in future.

Using SenseCam images we are now able to automatically provide effective memory

retrieval cues while also offering users an enjoyable browsing experience. Considering

these findings we believe that the hypothesis of this dissertation has been proven.

7.5 Conclusions and Contributions

• Our “event-based” browser has now been distributed to approximately 10 research

institutions across the world. This browser is available on request. At the time of

writing, our “advanced” browser is being prepared to be made available to other

research institutions too.
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• Event segmentation, event importance, and event retrieval were all anecdotally found

to be very helpful. Our users gave mixed feedback on the usefulness of event augmen-

tation, and in future it must be explored how this functionality should be presented to

users. Finally users didn’t pass significant comments on the accuracy of the keyframe

selection process.

• While event retrieval is a very useful function, we feel that in future it will be inter-

esting to provide “free text” or multi-faceted retrieval functionality, where users can

easily search not only via “query-by-example” but also for events in a certain loca-

tion, or for events of a certain temperature condition, or for events taken on a certain

day of the week, etc. It would be a worthwhile future area of research to work with

many users to determine how this functionality should be most effectively offered.
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Chapter 8

CONCLUSIONS AND FUTURE

WORK

In the introduction to this thesis we have pointed towards literature stating that the signif-

icant events in our lives define our being, and it is important to remember these events. In

fact autobiographical memory affects us to the very core and defines who we are. In the past

exaggeration and repeated storytelling were used to remember, and in fact shared memories

are a part of our social self, and define who we are as groups of people. Given that popula-

tions are getting older and that those developing memory impairments are ever increasing

[9], scientists have begun exploring the use of technology to aid memory, through providing

strong cues to help individuals recall episodes from their autobiographical memories.

Lifelogging is the term used to describe recording different aspects of your daily life, in

digital form, for your own exclusive personal use. It is a form of reverse surveillance, some-

times termed sousveillance, referring to us, the subjects, doing the watching of ourselves.

Lifelogging can take many forms, such as the application which runs on your mobile phone

to ‘log’ all your phone activities and then present all those activities in a calendar format.

The goal of lifelogging is to move individuals towards total memory/experience recall.

The lifelogging community attempt to achieve this goal by automatically capturing elec-

tronic data from numerous sources of information, e.g. web pages visited, e-mails sent and
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received, audio recordings of conversations, etc. As image information is strongly encoded

in the brain an interesting area in this field of research is visual lifelogging, i.e. an individ-

ual capturing their activities through the medium of images or video. It is important to do

so through passive capture, meaning the use of devices that automatically take images or

shoot video, thus requiring no conscious effort by the user to take images which leads to

him or her acting in a more natural manner.

In Chapter 1 we introduced the SenseCam which is a small, wearable camera devel-

oped by Microsoft Research in Cambridge, UK that creates a visual record of the wearer’s

day [71]. The SenseCam is worn on the front of the body, suspended from around the neck

with a lanyard1. In fact as noted in Chapter 2 the SenseCam has become the prevalent

lifelogging device to be used in studies on the benefits of personal visual diaries to people

with neurodegenerative conditions such as Alzheimer’s. Therefore it is important to work

within the constraints of this device (e.g. low quality of images captured) to give the work

of this thesis a greater impact.

In Chapter 2 we provided an overview on the human memory system and how tech-

nology may be of assistance to it on occasion, followed by providing a history of the field

of lifelogging. The human memory system is composed of 3 main memory stores: sensory

memory, short-term memory, and long-term memory. We have learned that the short-term

memory store has a limited capacity, although this capacity can be somewhat increased

through the process of “chunking”. We detailed that long-term memory can be subdivided

into procedural memory (e.g. remembering skills) and declarative (which is further sub-

divided into semantic and episodic memories). Semantic memory refers to knowing facts

(e.g. Paris is capital of France), whereas episodic or autobiographical memories refer to

remembering specific events about ourselves. We have learned that people can better re-

member autobiographical memories when provided with good cues, and we have detailed

that visual images are strongly encoded in the brain. However, human memory is far from

perfect and throughout history we have devised many techniques to help us remember what
1http://research.microsoft.com/sendev/projects/sensecam/
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we did. Traditionally the written diary has been a very popular means for people to record

autobiographical events that have happened in their lives. Vannevar Bush recognised the

potential benefits of automatically managing the overwhelming amount of information and

events that we encounter [28]. In 1945 he envisioned a “MeMex” device which would ex-

tend the human memory, and which would be a ‘. . . device in which an individual stores

all his books, records, and communications, and which is mechanized so that it may be

consulted with exceeding speed and flexibility . . . ’. We also noted that in the past the visual

lifelogging community have concentrated on the challenges of miniaturising the hardware

devices, and of how to store the vast quantities of data. Only recently has the focus been

placed on how to manage these large quantities of data so as to provide effective memory

retrieval cues.

In Chapter 1 we provided sample motivation scenarios on how an organised and search-

able lifelog of images could be beneficial. One such scenario was of benefit to people who

have memory impairments, whereby each day of their lives is recorded using a SenseCam,

and thereafter the images are organised into events, with more important/interesting events

emphasised to the user, thus offering more effective cues to trigger memory recall. Another

scenario was of benefit to tourists where images were organised into events, and thereafter

certain events could be augmented with images taken by other tourists of a particular land-

mark, thus improving the overall experience of their visit.

As concluded in Chapter 1, a SenseCam will capture hundreds of thousands of images

per year. The SenseCam has become a widely used device not only in the lifelogging

domain, but also in the domain of memory studies. However, there exists a substantial

challenge in managing the large collection of personal information collected by this device,

which is needed to provide strong memory retrieval cues. To realise this, images will have

to be segmented into distinct events e.g. having breakfast, being in work, at lunch, etc. The

next challenge will be to automatically determine which of those events are most important

or unusual e.g. going to a football match will be more memorable than working in front of

a computer. Thereafter it will be necessary to have the ability to search for similar events
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to an example event e.g. ‘find me other times when I was talking to my friend John’. The

final challenge will be that of augmenting the low-quality images from the wearable camera

with higher quality images from external data sources, e.g. after attending a football match

in Wembley the user will have the option to augment those images with location-tagged

images from an external source like the Flickr database.

Therefore the hypothesis of this dissertation is that:

In order for visual lifelogging technologies to effectively provide autobio-

graphical memory retrieval cues it is necessary to automatically:

• effectively segment a large collection of personal images into distinct

events

• accurately determine which of those events are most unusual

• usefully provide the ability to link similar events together

• augment images from the low-resolution wearable device with higher

quality images from external data sources.

8.1 Conclusions

In this section we now provide conclusions on our findings in relation to each point of the

stated hypothesis in this dissertation, before reviewing the hypothesis as a whole.

8.1.1 Event Segmentation

. . . effectively segment a large collection of personal images into distinct

events . . .

Given that SenseCam users typically capture approximately 2,000 images each day, we

have argued that it is necessary to segment sequences of these images into distinct activities

or events. Therefore rather than showing the user so many images, it is better to chunk the
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images semantically together and display 20 events/items. In Chapter 3 of this disserta-

tion we investigated a number of techniques to effectively realise this goal of segmenting

sequences of images into events.

We have proposed the introduction of TextTiling, peak scoring, and mean thresholding

to the challenge of segmenting sequences of lifelog images into distinct events or activities.

Instead of comparing adjacent sensor readings to get a “difference” score, our TextTiling

technique compares blocks/groups of values thus nullifying the effect of outlier values. Our

peak scoring technique is a method that automatically emphasises time instances where

potential event boundaries may occur. Finally the mean thresholding technique is a method

that allows training to determine the optimum threshold value on whether a “difference”

score is sufficiently high to indicate a potential event boundary or not. In experiments

to evaluate the effectiveness of our proposed techniques, 5 users each wore a SenseCam

for one month, collecting a total of 271,163 images. These users then created a manual

groundtruth of 2,986 boundaries between all the activities.

Through the introduction of our proposed techniques, and also through the fusion of

content and contextual sources of information, a significant improvement is achieved over

previous state of the art work in this young area of research (29.2% better than Yeung &

Yeo [157], 41.4% better than an earlier publication of our own [50], and 90% better than

Wang et. al. [155]). Using sensor sources only, event segmentation processing is instant

and performs with an overall F1-Measure of 0.6072.

8.1.2 Finding Similar Events

. . . usefully provide the ability to link similar events together . . .

Even by segmenting SenseCam images into distinct events or activities, SenseCam

users will still typically capture approximately 7,000 events per year. This would present

quite an intensive browsing experience, thus in Chapter 4 we have determined that it is nec-

essary to investigate methods to automatically find other similar events to a given SenseCam

event. Indeed as motivated earlier, the human mind stores episodes in an associative man-
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ner, thus when a user looks at a certain semantic event, it is quite likely that their mind

drifts to memories of other semantically similar or associated events. Therefore we aim to

provide this facility to search for other associated events to any given event in a lifelog.

This thesis notes that content and contextual sources should be combined in attempting

to retrieve similar events to a given lifelog event. Past work in the lifelogging domain has

concentrated on either content alone [89, 53, 155] or context alone [146, 31]. We show that

the combination of image content and contextual on-board sensor values is 52.6% better

than the use of context only sources, illustrating the importance of using content derived

from the images. The use of intelligent segmentation techniques can also lead to a 33.6%

retrieval improvement in terms of MAP score, thus indicating the importance of the event

segmentation work carried out in Chapter 2.

To retrieve other events similar to a given SenseCam event in a lifelog it is necessary to

firstly determine how to represent SenseCam events, and then how to compare those event

representations against each other. We investigated a number of techniques in the very

important representation stage. We set up two datasets to consider a broad range of user in-

formation needs, one containing 40 (24 for training, 16 for testing) “general” queries/topics

(e.g. driving, eating, etc.), and another containing 23 more “specific” queries/topics (e.g.

events of talking to Joe, visits to the museum, etc.).

We found that the approach towards modelling the event is highly influential in terms

of retrieval performance. Instead or representing an event by a single keyframe image, if

we represent an event by taking the average feature vector value of all the images present

in the event, this leads to a 38% increase in retrieval performance on the set of “specific”

queries, and an impressive increase of 106% on the set of “general” queries. However, as

discovered in Chapter 4, by only processing the middle 35 images of each event (just over

30% of the entire set of images), 90% of the retrieval performance of considering all the

event’s images is achieved.

While performance is quite good with respect to the “general” queries (e.g. P@5 for

event average approach = 0.69 overall), it is challenging to retrieve relevant results for
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queries seeking a very “specific” information need (where P@5 for event average approach

= 0.30 overall). Firstly this is most likely due to the fact that there are less relevant potential

results in the users’ lifelog for the “specific” queries. This may mean in instances there

could be less than 10 potentially relevant items in the lifelog, if even that, for many of

the users’ “specific” queries. Another reason for the relatively poor performance of the

“specific” queries is that many of them may require an associated semantic meaning, which

is very difficult to extract given that by their nature these queries had a very “specific”

information need e.g. “show me events when I was talking to Lynda”.

Finally we have compared our approach against two distinct content based image re-

trieval methods: SIFT, & SURF. We have detailed that our approach works slightly better

than the results from these two techniques e.g. our approach works particularly well on

“beaches” type queries where dominant colours in the scene are important.

8.1.3 Determining the Most Important Events and Their Optimum Keyframes

. . . accurately determine which of those events are most unusual . . .

When a day’s worth of SenseCam images is segmented into distinct events or activities,

we have argued in Chapter 5 that it is useful to automatically indicate how interesting each

of those events may be. This allows us emphasise more important or interesting events to

a user when reviewing their personal visual diary, thus potentially exploiting the fact that

the human memory more strongly remembers distinctive events, which may provide even

stronger retrieval cues.

The previous state of the art was based on determining conversational events, which

contain detected faces, as the most important events. However, we propose integrating face

detection with the concept of visual uniqueness or novelty, whereby those events that occur

sporadically are more interesting to review than those routine/mundane events.

We evaluated our proposed approach on a dataset of 176,975 SenseCam images col-

lected by 3 users. We discovered that our proposed approach performs at least as well as

the previous state of the art 80% of the time and performs 4% better overall.
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It must be remembered that each lifelog event consists of almost 100 images on average,

therefore the selection of a representative, or keyframe, image to provide a user with an

instant visual summary of an event will be important in a browsing interface, as argued in

Chapter 5. Given that up to 40% of lifelog images may be of a relatively low image quality,

we proposed a novel technique to select keyframes based on the image within an event that

has the best image “quality”. After extensive evaluation in Chapter 5 we have found that

our “Image Quality” approach performs at least as good as the baseline (“Middle Image”)

on 81.25% of days, and 15.71% better on average overall. One caveat of this approach is

that the processing load is greater than simply selecting the middle image.

8.1.4 Augmenting Lifelog Events

. . . augment images from the low-resolution wearable device with higher

quality images from external data sources . . .

In Chapter 6 we have argued that even if we do perfect management of an individual’s

SenseCam images, it is useful to additionally augment events with images/videos from

external sources of information, which could provide additional memory retrieval cues.

We also noted the phenomenal expansion of easily-accessible multimedia content due to

“Web 2.0”, whereby millions of users are uploading billions of images and videos. This

dissertation has explored the idea of augmenting one’s lifelog experience with images and

videos which have been uploaded by hundreds of millions of users on the internet.

Noting that perhaps as little as 2% of the images on the Internet are geotagged, we

have developed a technique to use those geotagged images as “seed” images from which

we can extract textual information to then have the ability to find all potentially relevant

images/videos that the user may enjoy reviewing. In our experiments to investigate the

effectiveness of this technique, 11 users rated 67 of their augmented SenseCam events.

We have found that our technique in constructing a new textual query provided users with

approximately 120% extra relevant augmented items. 70% of users found the suggested

text quite helpful, and also enjoyed being empowered when allowed to slightly alter the
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suggested query text.

We believe our approach realises the goal of augmenting passively captured lifelog

events with relevant image/videos captured by a large number of individuals, each of whom

only had to make a small contribution. We are now entering an era whereby individuals

expend little effort in capturing images and making them available, whether it is passively

captured lifelog images or a small number of manually captured photos which are uploaded

to a media sharing website. However, in aggregating these small contributions over an enor-

mous scale of users we have automatically enriched the experience of individuals reviewing

their trip or event, by providing them with a large number of relevant items of information

mined from millions of other individuals.

Even though there are research challenges involved in further improving the quality

of the lifelog augmentation process, we have now made real one of the important goals

of pervasive user-generated content, as an individual’s passively captured content in their

lifelog is augmented with user-generated content collected by millions of other individuals.

8.1.5 Hypothesis Review

In order for visual lifelogging technologies to effectively provide autobio-

graphical memory retrieval cues it is necessary to automatically:

• effectively segment a large collection of personal images into distinct

events

• accurately determine which of those events are most unusual

• usefully provide the ability to link similar events together

• augment images from the low-resolution wearable device with higher

quality images from external data sources.

In Chapters 3-6 we carried out extensive investigations on optimising individual stages

of the stated hypothesis in this dissertation. Finally in Chapter 7 we recognised that work

in the previous chapters of this thesis were focused on evaluating the accuracy (in terms
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of precision, recall, etc.) of individual facets of the hypothesis in a very systematic man-

ner. However, something as potentially fulfilling as reflecting on one’s personal experiences

should not only be reduced to precision and recall numbers, therefore we carried out usabil-

ity tests to explore how fun, insightful, and useful each facet of our work is to end users.

This chapter evaluates in an overall manner whether those individual stages actually do

exploit lifelogging technologies and provide effective memory retrieval cues.

All 9 of our users commented that the segmentation of sequences of lifelog images into

distinct events is a very helpful step in gisting what one did for each day. The feedback

from the memory studies researchers is particularly positive regarding this stage towards

providing relevant cues so as to more easily retrieve autobiographical memories.

We also evaluated in-house the other 3 strands of the hypothesis. Feedback from 4 users

has indicated a strong endorsement for the processes of automatically determining those

events that are more important or interesting to review, as well as providing the ability to

search for other events. Both of these techniques exploit the fact that the human memory can

more easily remember autobiographical events through cued recall than through free recall.

Feedback was more mixed on the augmentation strand of the hypothesis, but still we believe

that this information does indeed provide the user with additional cues so as to help them

retrieve the experiences in the brain of being there with one stating that “. . . the augmented

images for my trip to the ACM Multimedia conference in Santa Barbara are brilliant, as

the system automatically determined the name of the conference, and also returned relevant

results . . . ”.

In conclusion we feel that our hypothesis has been verified based on the feedback in

Chapter 7. The various facets such as event segmentation, determining important events,

selecting good keyframe images for the various events, allowing users to browse through

associated events, and augmenting events all were very helpful in providing effective mem-

ory cues to the users. What is particularly interesting is that memory studies researchers

from Duke University and Toronto found our work of particular help, thus providing fur-

ther evidence that we have manipulated our source of SenseCam images in a productive
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manner towards providing effective memory retrieval cues.

8.2 Future Work

Given that we have introduced a relatively young area of research in this dissertation, there

are naturally a number of different directions of future research that should be undertaken

in our opinion.

• Exploring Effects of Manual Editing of Event Segmentation Output: As noted

in Chapter 3, any application used to segment sequences of SenseCam images into

distinct events or activities should be quick (and hence carried out on sensor sources

of information rather than on images). We feel that even though the maximum F1-

Measure is at just above 60%, this is perhaps the best segmentation performance

achievable using only the SenseCam sensor sources of information, particularly given

that the performances are matched against a semantic groundtruth. We feel that

in future it will be worthwhile to investigate the benefits of providing levels of in-

teraction that allow users to manually edit the event segmentation solutions pro-

vided by the system. The challenges associated with this include intelligently mod-

elling/representing the newly formed event so that it can be retrieved in search tasks

and also so that it’s importance score can be calculated. This challenge is quite con-

siderable as the users will want their newly defined events to be instantly searchable,

hence it will not be possible to extract image features from a selection of the middle

images in the event; hence motivating the task of introducing intelligent inference

techniques. Also a new keyframe must be determined, and again it would take too

long (from the user’s perspective) to simply select the highest quality keyframe from

the middle 35 images of the newly formed event, and as such intelligent inference

techniques again must be developed.

• Investigating Machine Learning Techniques to Recognise Activities: The work

in this dissertation has been focused on detecting activities, while also attempting to
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determine how important those activities are. However, this dissertation has focused

on offering memory cues, and thus has not considered recognising what these activ-

ities mean in semantic terms. By using SVM2 facilities, it will then be possible to

offer users the ability to search for events through text, i.e. through free recall. Al-

though we have pointed out in Chapter 2 that the human mind responds much better

to cued recall (i.e. browsing) than free recall (i.e. searching), O’Hare et. al. have

detailed how both of these facilities combined together in the image retrieval domain

offer an improved experience to the user [114]. In collaboration with colleagues from

the University of Amsterdam, we have began exploration work in extracting the se-

mantics of SenseCam events [30], and we believe this area of research in the visual

lifelogging domain merits much current and future attention.

• Exploiting Augmented Images to Construct a Narrative of One’s Tourist Trip:

While there remains a significant challenge in augmenting “time-specific” events (e.g.

football match, rock concert, etc.), we believe that at least for “place-specific” events

(e.g. Eiffel Tower, Big Ben, etc.) it would be interesting to do some form of post-

processing on the augmented material so as to construct a narrative of one’s tourist

trip. Indeed Nack and Hardman have detailed how people like to review multime-

dia content in a story-like format [105]. Given that augmented images are taken of

places where the user has been, we believe that conducting research into generat-

ing an amusing/interesting story of these augmented images will add to the overall

experience of users, and perhaps make the retrieval cues more effective.

• Investigating Challenges Posed by Browsing Lifelogs on Mobile Devices: Given

the popularity of mobile/cell phones in the world today, and the prevailing culture

of constantly being connected with the world while on the move, we believe that in

future people will want to review their lifelogs on handheld mobile devices. Such

technology will be helpful to provide memory retrieval cues when one is trying to

remember a recent event from their autobiographical memory, while talking to their
2Support Vector Machine learning: a commonly used machine learning and pattern recognition algorithm

239



friend. Not only will a mobile device provide a retrieval cue to the event in memory,

it also will allow them to display the images of that event to their friend on the move,

thus helping the friend visualise what was happening, and perhaps better understand

the emotions involved, based on the visual evidence provided. The typical challenges

of mobile devices include dealing with low-bandwidth, a small screen, and as the

person is on the move, content must be accessed quickly. In future devices like the

SenseCam may allow images to be transferred wirelessly (e.g. via Bluetooth [71]) to

mobile devices for instant review of events that have occurred recently e.g. reviewing

a morning meeting in the afternoon. As a result we believe that a productive area

of research will be investigating power efficient algorithms on hardware circuitry

so as to organise lifelog images into events and then determine the importance of

those events (based on social interaction i.e. detecting faces) on mobile devices. It is

interesting to note that such work on mobile devices is already being investigated for

other multimedia processing algorithms [85].

• Investigating Challenges in Creating Automated Blogs: While we feel that the

primary focus of the SenseCam is as a potential memory aid to those who need it

most (those with neurodegenerative conditions), we do believe that others may be in-

terested quite in the fun aspects of maintain a visual lifelog. Indeed O’Hara, Tuffield

& Shadbolt believe that it is quite likely that lifelogging and social networking ac-

tivities will intersect, “. . . some social networkers will use lifelogging techniques to

generate large quantities of information for their own use, and who will not be shy

about sharing it with friends or like-minded people . . . ” [113]. We believe that in

the future it will be interesting to investigate the challenges in automatically creating

a visual blog or social network entry for each day that an individual wears a Sense-

Cam or other lifelogging device. It is quite likely that challenges would still remain

in trying to identify the distinct events/activities, and then in determining which of

those are most interesting to review. There exists a challenge in optimally presenting

a selection of a person’s most important events for any given day.
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• Using Visual Lifelogging as an Ethnography Aid: Ethnography, task-observation

and field studies are often carried out in order to better understand the social perspec-

tive of task operation in order to design systems, which more appropriately support

them. Through observation, systems can incorporate an understanding of the user’s

work setting, social context and pattern of activities [43]. We believe that the Sense-

Cam may be of great benefit in ethnographic studies due to its passive capture nature

[29] and as such believe that more in-depth studies as to the strengths and weakness

of this device should be carried out by researchers in this domain. If the SenseCam is

found to be promising in this regard (as is the case in [29, 83]), then using the work of

this dissertation to find more interesting events, possible applications could include:

diet monitoring aids; automated logging of work activities thus reducing paperwork

(e.g. police officers); pattern analysis of behavioural activities [30]; etc.

• Leveraging Other Sources of Information: There are on-going ambitious lifelog-

ging projects incorporating numerous sources of information, particularly data cap-

tured on one’s personal computer e.g. e-mail, web pages visited, applications open,

etc. [60, 54, 97]. Meanwhile other projects are beginning to explore not only col-

lecting images on the move like the SenseCam, but also GPS (for one’s location),

Bluetooth (for people possibly in the surrounding area), and biometric information

(to detect events that are potentially emotionally significant) information [78]. In-

deed we have noted that GPS and Bluetooth information can be useful in retrieving

information from one’s lifelog [31]. While such technologies are somewhat cumber-

some to use at the minute, either in terms of how easy they are to wear, how much

battery power they consume, or how much CPU time they take up, it is quite possible

that such technologies may be improved and become more acceptable to use in the

future. Already in the field of biometrics, sensors embedded in clothing have been

developed [138]. Indeed, Anderson & Lee note that convenience of mobile/pervasive

devices is more important than any perceived social status benefits [5]. In a study

on an iPod jacket they noted that “. . . the results indicate that consumers find con-
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venience and compatibility of the product most important . . . ”. In addition to the

aforementioned sources of information we also recognise that many people have a

diverse range of online websites to log various activities, e.g. runners log their train-

ing performance using their Nike + Apple technology3, various people use the Twitter

website to make small comments on the activities they are doing throughout the day4,

the phenomenon of social networking sites has been well established (e.g. MySpace5

has approximately 245 million users), people are now recording their medical health

records as well (e.g. Microsoft Health Vault6 and Google Health7), and there are

even specialist sites such as ones to record things from womens’ menstrual cycles8

to sites for couples to log their sexual activities9! We believe that in future it will be

imperative for these sources of information to be aggregated together and leveraged

by lifelogging applications to be of greater benefit to individuals.

While there is a risk of being swamped by too much data, we believe that more diverse

data enables us to make better decisions on the lifestyles that people are leading. This

argument is made by Marissa Mayer, Google’s vice president of Search Products &

User Experience, who comments that sometimes it’s not about the quality of the

algorithm, but more so about the quantity, quality, and diversity of the available data

which can at least help us identify macro trends [117].

• Increased Collaboration Across Diverse Backgrounds: The focus of this disserta-

tion has been on investigating the necessary computational techniques to be carried

out so as to utilise visual lifelogs to provide users with relevant cues so as to aid mem-

ory retrieval. We believe that this is a very important area of consideration and that

the hypothesis of this dissertation has been validated. However, in moving forward it

will be necessary to determine the information need of users with neurodegenerative
3www.nikeplus.com
4www.twitter.com
5www.myspace.com
6www.healthvault.com
7www.google.com/health
8www.mymonthlycycles.com
9www.bedposted.com
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conditions, and indeed it will be necessary to determine if the cues provided by tech-

niques such as those in this dissertation are of real benefit in studies on these subjects.

As our background is in information processing and management, it will be necessary

to forge stronger collaborations with research groups specialising in memory studies.

As noted in Chapter 7, we have begun forging such collaborations through releasing

software to various institutions in Europe and North America. Such collaborations

will be made much stronger in the future, which should result in a more rounded and

enlightened approach towards creating the right technology to be of most potential

benefit to those who have memory impairments.

However, as has become evident in this section, the field of lifelogging will have a

large number of other potential applications. It is our firm belief that personalised

health applications are an important area of research currently and especially in the

future. We have mentioned that there are many sources of data that can be leveraged,

and particularly SenseCam data, as it will help build up an overview of one’s lifestyle

[30]. While we, as information processing scientists, have the expertise to address

the significant research challenges of automatically leveraging streams of lifelogging

data so as to make inferences on one’s lifestyle, it will be necessary to have strong

collaboration with medical, health, fitness, and human performance scientists. Again

we feel that it will only be through actively pursuing such collaborations that it will

be possible for the scientific community as a whole to exploit the vast potential of

lifelogging technologies for everyone. O’Hara comments that “. . . To that extent,

lifelogging tools are tools for everyone to exert more control over their personal

data, their public presence online and their digital identity . . . ”, and through proper

collaboration with experts in other domains with an intimate understanding of the

actual human requirements for such technologies, the gains for the human race as a

whole will be much greater.
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8.3 Summary

At the start of this thesis we stated that the capability to retrieve autobiographical memories

from our brain defines our very self. We have shown that there are a number of memory

systems in the brain: sensory memory, short-term memory, and long-term memory. We are

interested in the autobiographical aspect of the long-term memory system, however we have

also exploited aspects of the short-term memory system too. Given that there are a large

number of people with conditions that affect autobiographical memory, scientists have re-

cently begun to investigate the benefits of using technology to somewhat help alleviate this

problem. The field of lifelogging has been attempting to provide thorough answers to this

difficult problem, and we have given an overview of the work carried out thus far. How-

ever, given that visual images provide strong cues to help people retrieve autobiographical

memories, the visual lifelogging field has received most attention. Most efforts in this do-

main have been concentrated on hardware miniaturisation, and on storage problems, but

these problems are almost solved with the SenseCam now being the prevalent device in

this domain. Given that human memory responds much better to cued recall than free re-

call, and also that images taken from the viewpoint of where an autobiographical memory

was encoded provide strong retrieval cues, the SenseCam has displayed much promise as

a memory aid. However, given the volume of data generated by this device, we have hy-

pothesised that a number of steps have to be taken for the SenseCam to truly become an

effective memory aid.

In this thesis we have made contributions in techniques to segment sequences of images

into distinct events thus making it easier for users to digest large volumes of SenseCam

images. The selection of a representative image from an event, so as to provide a good

memory cue to a user as to what the event is about, is an important challenge and we

have introduced a new technique to incorporate the notion of image quality. Thirdly we

have proposed investigating the novelty of given events to determine how interesting they

may be to review, exploiting the fact that distinctive memories are strongly encoded in the

mind. Also given the fact that the brain stores memories in an associative manner, we
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have proposed techniques to effectively allow users to search for potentially similar events

to a given SenseCam event. Finally we have introduced the novel idea of augmenting

one’s lifelog collection with material from other peoples’ images/video which are publicly

available on the Internet. In utilising this augmented material we provide further retrieval

cues to help people remember their given events.

Based on feedback from our users in Dublin City University and elsewhere, including

researchers in Duke University and in Toronto who are investigating the benefits of the

SenseCam to human memory, we believe that this dissertation is of benefit to the research

community. We have now introduced a variety of automated techniques that effectively ex-

ploit characteristics of the human memory system so as to provide strong memory retrieval

cues from SenseCam images.
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