107 research outputs found

    Short-text semantic similarity (STSS): Techniques, challenges and future perspectives

    Get PDF
    In natural language processing, short-text semantic similarity (STSS) is a very prominent field. It has a significant impact on a broad range of applications, such as question-answering systems, information retrieval, entity recognition, text analytics, sentiment classification, and so on. Despite their widespread use, many traditional machine learning techniques are incapable of identifying the semantics of short text. Traditional methods are based on ontologies, knowledge graphs, and corpus-based methods. The performance of these methods is influenced by the manually defined rules. Applying such measures is still difficult, since it poses various semantic challenges. In the existing literature, the most recent advances in short-text semantic similarity (STSS) research are not included. This study presents the systematic literature review (SLR) with the aim to (i) explain short sentence barriers in semantic similarity, (ii) identify the most appropriate standard deep learning techniques for the semantics of a short text, (iii) classify the language models that produce high-level contextual semantic information, (iv) determine appropriate datasets that are only intended for short text, and (v) highlight research challenges and proposed future improvements. To the best of our knowledge, we have provided an in-depth, comprehensive, and systematic review of short text semantic similarity trends, which will assist the researchers to reuse and enhance the semantic information.Yayasan UTP Pre-commercialization grant (YUTP-PRG) [015PBC-005]; Computer and Information Science Department of Universiti Teknologi PETRONASYayasan UTP, YUTP: 015PBC-00

    One Small Step for Generative AI, One Giant Leap for AGI: A Complete Survey on ChatGPT in AIGC Era

    Full text link
    OpenAI has recently released GPT-4 (a.k.a. ChatGPT plus), which is demonstrated to be one small step for generative AI (GAI), but one giant leap for artificial general intelligence (AGI). Since its official release in November 2022, ChatGPT has quickly attracted numerous users with extensive media coverage. Such unprecedented attention has also motivated numerous researchers to investigate ChatGPT from various aspects. According to Google scholar, there are more than 500 articles with ChatGPT in their titles or mentioning it in their abstracts. Considering this, a review is urgently needed, and our work fills this gap. Overall, this work is the first to survey ChatGPT with a comprehensive review of its underlying technology, applications, and challenges. Moreover, we present an outlook on how ChatGPT might evolve to realize general-purpose AIGC (a.k.a. AI-generated content), which will be a significant milestone for the development of AGI.Comment: A Survey on ChatGPT and GPT-4, 29 pages. Feedback is appreciated ([email protected]

    Distributed Representations for Compositional Semantics

    Full text link
    The mathematical representation of semantics is a key issue for Natural Language Processing (NLP). A lot of research has been devoted to finding ways of representing the semantics of individual words in vector spaces. Distributional approaches --- meaning distributed representations that exploit co-occurrence statistics of large corpora --- have proved popular and successful across a number of tasks. However, natural language usually comes in structures beyond the word level, with meaning arising not only from the individual words but also the structure they are contained in at the phrasal or sentential level. Modelling the compositional process by which the meaning of an utterance arises from the meaning of its parts is an equally fundamental task of NLP. This dissertation explores methods for learning distributed semantic representations and models for composing these into representations for larger linguistic units. Our underlying hypothesis is that neural models are a suitable vehicle for learning semantically rich representations and that such representations in turn are suitable vehicles for solving important tasks in natural language processing. The contribution of this thesis is a thorough evaluation of our hypothesis, as part of which we introduce several new approaches to representation learning and compositional semantics, as well as multiple state-of-the-art models which apply distributed semantic representations to various tasks in NLP.Comment: DPhil Thesis, University of Oxford, Submitted and accepted in 201

    Measuring Short Text Semantic Similarity with Deep Learning Models

    Get PDF
    Natural language processing (NLP) is the ability of a computer program to understand human language as it is spoken, which is a subfield of artificial intelligence (AI). The development of NLP applications is challenging because computers traditionally require humans to speak" to them in a programming language that is precise, unambiguous and highly structured, or through a limited number of clearly enunciated voice commands. We study the use of deep learning models, the state-of-the-art artificial intelligence (AI) method, for the problem of measuring short text semantic similarity in NLP area. In particular, we propose a novel deep neural network architecture to identify semantic similarity for pairs of question sentence. In the proposed network, multiple channels of knowledge for pairs of question text can be utilized to improve the representation of text. Then a dense layer is used to learn a classifier for classifying duplicated question pairs. Through extensive experiments on the Quora test collection, our proposed approach has shown remarkable and significant improvement over strong baselines, which verifies the effectiveness of the deep models as well as the proposed deep multi-channel framework

    Smart and Pervasive Healthcare

    Get PDF
    Smart and pervasive healthcare aims at facilitating better healthcare access, provision, and delivery by overcoming spatial and temporal barriers. It represents a shift toward understanding what patients and clinicians really need when placed within a specific context, where traditional face-to-face encounters may not be possible or sufficient. As such, technological innovation is a necessary facilitating conduit. This book is a collection of chapters written by prominent researchers and academics worldwide that provide insights into the design and adoption of new platforms in smart and pervasive healthcare. With the COVID-19 pandemic necessitating changes to the traditional model of healthcare access and its delivery around the world, this book is a timely contribution

    Unsupervised machine learning clustering and data exploration of radio-astronomical images

    Get PDF
    In this thesis, I demonstrate a novel and efficient unsupervised clustering and data exploration method with the combination of a Self-Organising Map (SOM) and a Convolutional Autoencoder, applied to radio-astronomical images from the Radio Galaxy Zoo (RGZ) dataset. The rapidly increasing volume and complexity of radio-astronomical data have ushered in a new era of big-data astronomy which has increased the demand for Machine Learning (ML) solutions. In this era, the sheer amount of image data produced with modern instruments and has resulted in a significant data deluge. Furthermore, the morphologies of objects captured in these radio-astronomical images are highly complex and challenging to classify conclusively due to their intricate and indiscrete nature. Additionally, major radio-astronomical discoveries are unplanned and found in the unexpected, making unsupervised ML highly desirable by operating with few assumptions and without labelled training data. In this thesis, I developed a novel unsupervised ML approach as a practical solution to these astronomy challenges. Using this system, I demonstrated the use of convolutional autoencoders and SOM’s as a dimensionality reduction method to delineate the complexity and volume of astronomical data. My optimised system shows that the coupling of these methods is a powerful method of data exploration and unsupervised clustering of radio-astronomical images. The results of this thesis show this approach is capable of accurately separating features by complexity on a SOM manifold and unified distance matrix with neighbourhood similarity and hierarchical clustering of the mapped astronomical features. This method provides an effective means to explore the high-level topological relationships of image features and morphology in large datasets automatically with minimal processing time and computational resources. I achieved these capabilities with a new and innovative method of SOM training using the autoencoder compressed latent feature vector representations of radio-astronomical data, rather than raw images. Using this system, I successfully investigated SOM affine transformation invariance and analysed the true nature of rotational effects on this manifold using autoencoder random rotation training augmentations. Throughout this thesis, I present my method as a powerful new approach to data exploration technique and contribution to the field. The speed and effectiveness of this method indicates excellent scalability and holds implications for use on large future surveys, large-scale instruments such as the Square Kilometre Array and in other big-data and complexity analysis applications

    New Research in Children with Neurodevelopmental Disorders

    Get PDF
    This book collects recent research in the field of care for neurodevelopmental disorders, emphasizing transdisciplinary work in clinical, educational and family contexts. It presents an opportunity to learn about the impact of participation on children and adolescents with neurodevelopmental disorders. Mainly, new therapeutic approaches are presented in children and adolescents with autism spectrum disorder, attention-deficit/hyperactivity disorder, or motor coordination disorders
    corecore