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Abstract

Natural language processing (NLP) is the ability of a computer program to under-

stand human language as it is spoken, which is a subfield of artificial intelligence

(AI). In other words, NLP is a way for computers to analyse, understand, and

derive meaning from human language in a smart and automatic way. The devel-

opment of NLP applications is challenging because computers traditionally require

humans to “speak” to them in a programming language that is precise, unambigu-

ous and highly structured, or through a limited number of clearly enunciated voice

commands. In many NLP tasks, text semantic similarity or semantic matching,

i.e., identifying the semantic meaning and inferring the semantic relations between

two pieces of text, plays an important role in natural language processing and in

text-related applications. The most widely used approach to identify semantic

similarity is to use complex lexical, syntactic and semantic features to model text

and then compare similarity between text pairs. However, there are still problems

remaining. Traditional method bag-of-word/tf-idf model dominates in NLP, but

it relies on word overlap to find similarities, this inherent term-specificity has lim-

itation. This kind of methods are considered to efficient and easy to implement.

However, the lack of common terms does not necessarily mean that two docu-

ments/sentences are not similar. Also, the relative word position is not considered

in these models, which are important to the meaning of sentences. It requires a

lot of feature engineering, which driven by intuition, experience and domain ex-

pertise. However, handcrafted features can be time-consuming, incomplete and

over-specified. Deep neural networks, as a representation learning method, are
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able to discover from the training data the hidden structures and features at dif-

ferent levels of abstraction that are useful for the tasks. Motivated by this, in this

thesis, we study different deep learning models and propose a new deep model for

classifying semantic similarity between sentences.

In this thesis, we study the use of deep learning models, the state-of-the-art arti-

ficial intelligence (AI) method, for the problem of measuring short text semantic

similarity. In particular, we propose a novel deep neural network architecture to

identify semantic similarity for pairs of question sentence. In the proposed net-

work, multiple channels of knowledge for pairs of question text can be utilized

to improve the representation of text. We first model each sentence by two tied

weights sub-networks in parallel, which is a siamese structure. Then a dense layer

is used to learn a classifier for classifying duplicated question pairs. Through

extensive experiments on the Quora test collection, our proposed approach has

shown remarkable and significant improvement over strong baselines, which veri-

fies the effectiveness of the deep models as well as the proposed deep multi-channel

framework.
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Chapter 1

Introduction

1.1 Short Text Semantic Similarity in NLP

Natural language processing (NLP) [1, 2] is the ability of a computer program to

understand human language as it is spoken, which is a subfield of artificial intelli-

gence (AI). More specifically, NLP is a way for computers to analyze, understand,

and derive meaning from human language in a smart and automatic way. By us-

ing NLP algorithms or tools, developers can organize and structure knowledge to

perform tasks such as automatic summarization [3–6], machine translation [7–9],

named entity recognition [10, 11], relationship extraction [12], sentiment analysis

[11, 13, 14], speech recognition [15–17], and topic segmentation [18], etc.

With the development of NLP applications, it is challenging for computers to per-

form well. The main reason is that computers do not have intelligence as human
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beings. They highly depend on the precise, unambiguous and structured program-

ming language to perform various tasks, for example Java and C++; while human

language is always imprecise or ambiguous. Also, the linguistic structure for hu-

man language is complex, which depends on many variables such as morphology,

syntax, semantics, lexicon, pragmatics [19]. It is hard for program to model and

simulate natural language. In addition, understanding human language may re-

quire external knowledge or facts which is trivial for human but demanding for

computers.

Many problems in understanding natural language can be converted to comparing

two pieces of text whether they are similar/dissimilar semantically or in some

other ways, which has shown of promising in many NLP applications. In reality,

text can be similar in two ways lexically and semantically. The main idea of

lexical similarity is to determine whether two documents/sentences that contain

common terms, while text semantic similarity or semantic matching is identifying

the semantic meaning and inferring the semantic relations between two pieces of

text. And the later plays an important role in natural language processing and

in text-related applications. For example, in information retrieval area [20–33], it

has been developed as taking input a query and retrieving relevant documents.

Typically, the task is formalized as a matching problem between a query and a

candidate document in existing work, in which the similarity between two pieces of

text is computed by a ranking function derived from heuristic functions like tf-idf

or deep neural network models; in duplicated question detection application, it

converts into a classification problem which classifying whether two questions are
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similar or not; and in question answering system [34, 35], it is to identify semantic

meaning and infer the semantic relations between two pieces of text – questions and

answers, even though they have totally different lexical representations. Also other

applications such as paraphrase identification [36–38], automatic conversation [39–

41], etc. can be modeled as comparing two pieces of text.

The common challenge of these applications is that to understand the meaning

of text is now transformed by comparing text semantic similarity of two pieces of

text. The generic notation of such text comparing problem can be described as

follow: given two pieces of text T1 and T2, we compute the degree of matching by

a scoring function based on the representation of each text as follows:

match(T1, T2) = F (φ(T1), φ(T2)) (1.1)

where φ is a function to map each text from the original space of symbolic words

into some numeric space encoding various aspects of their relatedness, e.g. lexical,

syntactic and semantic. F is the scoring function based on the interactions between

them.

1.2 Traditional Methods to Text Semantic Sim-

ilarity

Modeling the underlying semantic similarity especially between sentences has gen-

erated a great deal of research interest [42], many methods are developed in the
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literature[43, 44].

Traditional method such as bag-of-word/tf-idf model dominates in NLP, which re-

lies on word overlap to find similarities. However, this method has its own inherent

limitations [45]. This simple lexical similarity method is far from sufficient to com-

pute text similarity since the lack of common terms does not necessarily mean that

two documents/sentences are not similar. Also, the relative word position is not

considered in these models, which are important to the meaning of sentences. The

easy solution to this problem is to consider both lexically and semantically, which

encode text pairs using many complex lexical, syntactic and semantic features and

then compute various similarity measures [46] between the obtained representa-

tions. But this can result in new problems [47], such as time-consuming, domain

specific, difficult to obtain and computational expensive, etc.

1.3 Deep Learning for Text Semantic Similarity

People have long dreamed whether machines might think and become intelligent.

Nowadays, artifical intelligence(AI), which was first coined by John McCarthy in

1956 for an academic conference, is a thriving field with many practical applica-

tions and active research topics, such as speech recognition and natural language

applications [16, 38], autonomous vehicles, medical diagnoses, computer vision [48],

classification and so on. In early days, the field mostly solved problems that are

difficult for human beings but relatively straight forward for computers – problems

that can be described by a list of formal, mathematical rules. However, the fact is
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that the true challenge to AI is solving tasks that are easy for people to perform

but hard for people describe formally – problems that human beings can solve

intuitively and feel automatic [49].

To solve AI problems, people tried to hard-code knowledge about the world in

formal languages, so that a computer can reason automatically by using logical

inference rules. However, it is not easy to devise formal rules with enough complex-

ity to accurately describe the world. The possible solution to this problem is that

AI systems can extract patterns from raw data and acquire their own knowledge,

which is similar to the working of human beings [49].

The capability of learning from raw data is known as machine learning. Sim-

ple machine learning algorithms, such as logistic regression, naive Bayes, SVM,

etc., have been applied in many AI tasks [50–52] for decision-making, human-like

deductive reasoning, inference and so on. However, their performance depends

heavily on the representation of the data they are given. And this phenomenon

is quite common in computer science even in daily life. Many AI tasks can be

solved by designing the right set of features to a simple machine learning algo-

rithm, even though it involves intensive labour work and time-consuming. But

for many tasks, it is difficult to know what features should be extracted. Machine

learning algorithms furthermore can be used to discover the representation of raw

data itself, which goal is to separate the factors of variation that explain the ob-

served data [49]. The quintessential example is the autoencoder algorithm. Still,

this is not an easy work in many real-world applications since that many of the

5



factors of variation influence every single piece of data, thus extracting high-level,

abstract features can be very difficult.

Deep learning solves this problem well, which enables the computer to build com-

plex concepts out of simpler concepts [49]. It is a subfield of machine learning,

which is composed of a set of algorithms, inspired by the structure and learning

approach of the human brain. A deep learning model is composed of several layers

of neural networks. The two key elements are the concept of neurons and the net-

works of neurons. A single neuron receives the signal can process it and then signal

neurons connected to it. It combines inputs with a set of weights, the input-weight

products are summed and then passed through an activation function to determine

whether and to what extent that signal progresses further through the network.

The diagram for a single neuron is shown in figure 1.1. Another advantage of

deep learning is the depth of networks enables the computer to learn a multistep

computer program. This offers great power because networks can execute more

instructions in sequence, and the representation in each layer helps to execute a

program that can make sense of the input.

Representative architectures of deep learning models such as deep belief networks

(DBN), convolutional neural network (CNN) and recurrent neural networks (RNN)

have been applied to many research fields including computer vision [48], speech

recognition [16], natural language processing [38], audio recognition, social network

filtering, machine translation, bioinformatics, the effectiveness of which has been

proven to be comparable to and in many cases superior to previous state-of-the-art

or even human experts.
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Figure 1.1: Diagram of A Neuron

Given the success of deep learning in these domains, it seems that deep learning

should have a major impact on the problem text semantic similarity. Recent re-

search shows that deep learning methods have achieved state-of-the-art results in

many NLP areas. Motivated by this, in this thesis, we will investigates the effec-

tiveness of several deep models for text semantic similarity. More specifically, we

will study different deep learning models and propose a Multi-Channel Siamese

BLSTM model for classifying semantic similarity. We then will study the perfor-

mance of these models on Quora dataset for duplicate question pair detection, in

which questions are sentences.

1.4 Research Background

Text similarity poses numerous challenges on many text related applications such

as machine translation, paraphrase identification and question answering and so
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on. The aim of this thesis is to study the fundamental requirements and effec-

tive models for text similarity classification which can be easily applied to real-life

applications. Specifically, a new architecture Multi-Channel Siamese architecture

is proposed and applied for duplicate question detection for Quora dataset. This

research work is funded by the Discovery grant from the Natural Sciences & En-

gineering Research Council (NSERC) of Canada and an NSERC CREATE award

in ADERSIM.

1.5 Thesis Organization

In this thesis, we study the problem of short text semantic similarity from the

perspective of deep learning models with word embedding. We explore the con-

nection and difference of the traditional models as well as deep learning based

models, and compare the effectiveness of them. Then, a Multi-Channel Siamese

BLSTM model for duplicate question pair detection is proposed, in which vector

representation for a question pair is learnt and used to automatically learn a deep

scoring function.

The remainder of this thesis is organized as follows.

• In Chapter 2, we briefly introduce the problem of text semantic similarity

and its application, and review the related literature including traditional

methods to this problem as well as the recent research of deep learning

methods that have achieved state-of-the-art results in this NLP area.
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• In Chapter 3, we first introduce some basic concepts of deep learning and

compare the recent state-of-the-art deep models for text semantic similarity

in details. Based on the strength and the drawbacks of these deep models, we

propose a Multi-Channel Siamese BLSTM model that is verified on duplicate

question pair detection dataset.

• In Chapter 4, we detail the experimental dataset, settings and also the eval-

uation metrics.

• In Chapter 5, we present and analyse the experimental results of different

deep models. And compare the performance of our model with some existing

the state-of-the-art approaches.

• In Chapter 6, we conclude the paper with a discussion of our findings and

future work.
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Chapter 2

Literature Review

2.1 Research Problem

In most NLP tasks, e.g. sentiment classification, machine translation, question

answer, the input of these systems is a natural language sentence. Formally,

a typical NLP machine learning task involves classifying a sequence of tokens

such as a sentence or a document, i.e. approximating a function f1(s) ∈ [0, 1]

(where f1 may determine a domain, sentiment, etc.). In addition, there is a large

class of problems that are often harder and involve classifying a pair of sentences:

f2(s1, s2) ∈ [0, 1]∗c (where s1, s2 are sequences of tokens and c is a rescaling factor

like c = 5).

Typically, the function f2 denotes some sort of semantic similarity, that is whether

(or how much) the two parameters “say the same thing”. Essentially, this is a

binary classification problem, in which 1 means s1 and s2 are similar while 0 means
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dissimilar. (However, the framework could be used to model different problems –

like classify entailment or contradiction, topic relatedness, or answer selection in

question answer system). The only difference is that we deal with different text

pairs in different task. For example, in information retrieval tasks we typically

deal with query-document pairs, while in question answering they are question-

answer pairs. Being able to do so successfully is beneficial in many settings like

in information retrieval, query suggestion, automatic summarization and image

finding.

In order to find the scoring function f to compute the text similarity, a starting

point is to find a way to represent the input (the input sentence), based on which

f can operate. In the following, we will review related work on text semantic

similarity according to the way of input representation, which includes traditional

unsupervised model (e.g. tf-idf based model), supervised models, and we will treat

the recent developed deep models separately.

2.2 Unsupervised Models

Being able to compute semantic similarity for short texts is beneficial in many

applications. A large number of approaches have been proposed that use lexical

matching and linguistic analysis. Methods for lexical matching aim to determine

whether the words in two short texts look alike, e.g., in terms of edit distance [45],

lexical overlap [53] or largest common substring [54]. These approaches tend to

work for trivial cases.

11



Tf-idf [55] based method is a traditional and very popular representation to com-

pare texts, such as query and document pair in information retrieval, with each

other [21]. Tf-idf is short for term frequency-inverse document frequency, it is a

statistical weight scheme used to assign weights to each term for a document in a

collection or corpus, the formula is as shown in equation 2.1 [56].

tf-idft,d = tft,d × idft =
tft,d

log N
dft

(2.1)

where tft,d is referred as term frequency t for a document d; N is the total number

of documents in a collection; dft is the document frequency, which defined as the

number of documents in the collection that contain a term t.

This weight increases partially to the number of times a term appears in a doc-

ument but is offset by the frequency of the term in the collection, and for terms

that do not occur in the document, its weight is zero. Thus this weight scheme

can lead to different discriminating power of a term to the document.

After assigning each term a weight, a document can be seen as a fixed dimensional

vector with one dimension corresponding to each term in the collection, together

with a weight for each dimension which is given by tf-idf. Normally, a cosine

function is then used to compute the similarity between two pieces of text. In this

kind of method, it relies on word overlap to find similarities, but in very short

texts, in which word overlap is rare, tf-idf based method often fails.

In order to enhance the basic tf-idf method, many complex lexical, syntactic and

semantic features are also used to compute various similarity measures between

12



the obtained representations. For example, in answer passage reranking [57] em-

ploys complex linguistic features, modelling syntactic and semantic information as

bags of syntactic and semantic role dependencies and builds similarity and transla-

tion models over these representations. One of the major problems for this kind of

methods is that the complex features are derived from different NLP tools/compo-

nents which pretrained for other purposes. Some approaches depending on parse

trees are restricted to syntactically well-formed texts, typically of one sentence in

length. In addition, the error from these tools could also propagate to the text

semantic similarity models that is very hard to resolve individually.

External resources like Wikipedia 1 or WordNet 2 have also been used as semantic

feature to compare texts [58, 59]. Wikipedia is a free encyclopedia, written col-

laboratively by people who use it. It is structured around entities like well-known

persons and organizations. A drawback of using dictionaries or WordNet is that

high quality resources like these are not available for all languages, and proper

names, domain-specific technical terms and slang tend to be underrepresented

[60].

Another line of research is to use word embeddings, which are vector representa-

tions of terms computed from unlabeled data. Word embeddings represent terms/-

words in a semantic space in which proximity of vectors can be interpreted as se-

mantic similarity, thus attract a surge of interest. In [61], Mikolov et al. propose an

algorithm called word2vec, in which two architectures to word2vec are developed,

namely continuous bag-of-words (CBOW) and Skip-gram. Both are a variation of

1https : //en.wikipedia.org/wiki/MainPage
2https : //wordnet.princeton.edu/
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a neural network language model [62]. GloVe is an alternative way of getting word

embeddings, which is proposed in [63]. Rather than being based on language mod-

els it is based on global matrix factorization. Some researchers are more focusing

on how to use word embeddings. Kenter and Rijke [64] studied combining insights

from methods based on external sources of semantic knowledge with word embed-

dings, in which an arbitrary number of word embedding sets can be incorporated.

An important implication of the results is that distributional semantics has come

to a level where it can be employed by itself in a generic approach for producing

features that can be used to yield state-of-the-art performance on the short text

similarity task, even if no manually tuned features are added that optimize for

a specific test set or domain. Boom and Canneyt et al. [65] investigated several

text representations as a combination of word embeddings and contributed a first

step towards a hybrid method that combines the strength of dense distributed

representations – as opposed to sparse term matching – with the strength of tf-idf

based methods to automatically reduce the impact of less informative terms. In

their toy experiment, they conclude that the hybrid approach outperforms the

existing techniques in a toy experimental set-up, leading to the conclusion that

the combination of word embeddings and tf-idf information might lead to a better

model for semantic content within very short text fragments.

2.3 Supervised Models

Sanborn and Skryzalin [66] turn semantic similarity task into classification, and

compare several machine learning methods like Nearest Neighbours, SVM, etc. as

14



well as Recurrent NN and Recursive NN. The results show that the best performing

model is a recurrent neural network with 100-dimensional word vectors.

Severyn and Moschitti [67] propose a framework for automatically engineering

features for two important tasks of question answering: answer sentence selection

and answer extraction, which applied SVM with tree kernels to shallow syntactic

representation. An important feature of this approach is that it can effectively

combine together different types of syntactic and semantic information, also gen-

erated additional automatic classifiers, e.g., focus and question classifiers.

There are some drawbacks of these supervised models. The first one is that the

amount of labeled data is not enough. The second one is that handcrafted pat-

terns and external sources of structured semantic knowledge cannot be assumed

to be available in all circumstances and for all domains, and also these features

are sometimes derived from external tools, the accuracy of which cannot be guar-

anteed.

2.4 Deep Learning Models

Recently, deep learning approaches have gained a lot of attention from the research

community and industry for their ability to automatically learn optimal feature

representation for a given task, while claiming state-of-the-art performance in

many tasks in computer vision, speech recognition and natural language process-

ing.
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For the text semantic similarity problem under deep learning framework, normally

word embedding technique is firstly used to represent each word/phrase of a input

sentence. Then a deep learning model (e.g. CNN, Recursive NN and Recurrent

NN) can be used to effectively capture the compositional process of mapping the

meaning of individual words in a sentence and derive a continuous vector represen-

tation of the input sentence. With this vector representation, the similarity score

of two input sentences can be computed. It has been shown that with large amount

of training data, deep neural network are able to efficiently map the raw input of

sentences to a low-dimensional vector representation, which preserves important

syntactic and semantic aspects of the input sentence [68–71].

Depending on how you derive the sentence representation, existing deep matching

models can be categorized into two types. The first one is siamese based neural

network, in which the sentence vector representations of the two inputs are learnt

respectively and then the sentence similarity of them is computed based on the

sentence vectors. The other one is that it first builds the local interactions be-

tween two pieces of text based on some basic representations, and then uses deep

neural networks to learn the hierarchical interaction patterns for matching. In the

following of this section, we review relate work in these two streams and analyze

their strength and drawbacks.

We first review examples of the first type of deep learning models, which include

DSSM [72], C-DSSM [73] and ARC-I [35]. In DSSM, the authors develop a series

of new latent semantic models with a feed forward neural network structure that

project queries and documents into a common low-dimensional space where the
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relevance of a document given a query is readily computed as the distance between

them. Cosine similarity function is used to compute the similarity score. In

addition, word hashing technique is used to effectively scale up the semantic models

to handle large vocabularies which are common in such tasks. Their results show

that their best model significantly outperforms other latent semantic models on

a real-world web data. In C-DSSM [73], a major difference to DSSM is that a

convolutional neural network instead of feed forward neural network is used to

learn a low-dimensional representation. ARC-I [35] also uses CNN to derive the

text representation, but a multi-layer perceptron (MLP) is employed to compute

the similarity score.

In addition, Severyn and Moschitti [47] propose a deep learning architecture for

reranking short texts, where they learn the optimal representation of text pairs

based on convolutional neural network architecture, and learn a similarity function

based on simple neural network. Their architecture learns to extract and compose

n-grams of higher degrees, thus allowing for capturing longer range dependencies.

Their experimental findings show that this deep learning model greatly improves

on the previous state-of-the-art systems, but requires no external parsers or re-

sources.

Mueller and Thyagarajan [74] propose a siamese recurrent architectures for learn-

ing sentence similarity. Their purpose is that learning a semantically structured

representation space then applying simple metrics to capture sentence similarity.

Neculoiu, Versteegh and Rotaru [75] present a siamese deep architecture for learn-

ing a similarity metric on variable-length character sequences.
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For the second type of deep learning models, DeepMatch [76], ARC-II [35] and

MatchPyramid [77] are representative. These models first build the local interac-

tions between two texts based on some basic representations, and then uses deep

neural networks to learn the hierarchical interaction patterns for matching. A

novel deep architecture is proposed for this kind of matching problem in Deep-

Match [76], which can sufficiently explore the nonlinearity and hierarchy in the

matching process. In their experiments, it has been empirically shown to be su-

perior to various inner product based matching models on real-world data sets

(Baidu Zhidao dataset and Weibo-Comments).

MatchPyramid is inspired by the success of convolutional neural network in image

recognition, where neurons can capture many complicated patterns based on the

extracted elementary visual patterns. MatchPyramid models text matching as the

problem of image recognition. In particular, a matching matrix whose entries rep-

resent the similarities between words is constructed and viewed as an image, and

then a convolutional neural network is utilized to capture rich matching patterns

in a layer-by-layer way.

One of the main problems of these existing models is that only the word informa-

tion in the original sentence is used, regardless of external knowledge or fact of

words in the sentences. However, understanding a natural sentence is hard and it

always requires syntactic information, background knowledge or fact, and so on.

Inspired by this, we propose a multi-channel siamese framework for the problem

of text semantic similarity, whose architecture is mostly similar to Neculoiu’s [75],

but we apply it on word sequences and utilize different types of information under
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a multi-channel framework. In particular, we explore the use of part-of-speech

(POS) information to enhance the problem of semantic text matching as starting

point. We present the details of our model in Chapter 3.

2.5 Challenges to Deep Models

The performance of a deep neural network models could be affected by a number

of key factors. Deep learning currently works best when there are large data sets.

This is because deep learning lacks a mechanism for learning abstractions through

explicit, verbal definition [78]. To get powerful abstraction from a deep learn-

ing model, a complex neural networks may be needed, which is usually expressed

through the number of parameters. Thus, the more parameters need to be tuned,

the more data are required which can be ranged from thousands to billions of

labeled examples. Overfiting is also a major problem for deep learning model. As

aforementioned, deep learning model usually has large number of parameters, so

when there are not enough training data or noise to some extent in training data,

it is easy for a model to generate a good fit to the current available data without

capturing any genuine insights into the underlying phenomenon. Other factors

such as how to integrate prior knowledge into a deep learning system is still not

straightforward. The dominant approach in deep learning is self-contained and

isolated from other potentially usefully knowledge [78]. The learning process is

conducted by learning the relations between inputs and outputs in which knowl-

edge represented largely opaque between potential “features”.
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In order to solve these problems, we apply some strategies and propose a new

model. Firstly, we use validation data. The total dataset is split into a train-

ing dataset, a testing dataset and a validation dataset, while we use validation

dataset to choose the learnt best model. Secondly, we apply L2 regularization

method to prevent overfitting, by which a penalty is adding for model complexity

or extreme parameter values. L2 regularization tends to yield a dense solution,

where the magnitude of the coefficients are evenly reduced. Lastly, a multi-channel

framework is proposed, which is trying to utilize prior knowledge in deep learning

model.
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Chapter 3

Deep Models for Text Semantic

Similarity

The advent of more sophisticated algorithms, computational powers from GPUs

becoming cheaper and the availability of large amount of data led to what can be

called “a renaissance for Deep Learning”. Deep Learning for NLP is relatively new

as compared to its usage in computer vision which employs it to process images

and videos.

In this chapter, we first introduce a concept called word embedding, which is

usually considered as a starting point of deep learning for NLP. Then, the basic

paradigm of using deep learning techniques and some representative deep models

are discussed for better understanding of its usage in text semantic similarity.

Lastly, we detail the proposed multi-channel siamese deep framework, in which
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prior knowledge can be incorporated as multiple type of inputs for better modelling

of text similarity.

3.1 Word Embeddings

3.1.1 Brief history of word embeddings

Vector space models have been used in distributional semantics since the 1990s.

The aim is to quantify and categorize semantic similarities between linguistic items

based on their distributional properties in large samples of language data. How-

ever, these traditional techniques treat words as atomic symbols, and represent

them as arbitrary and unique indexes for a vocabulary. These unique and discrete

indexes furthermore lead to data sparsity, which means that we may need more

data in order to successfully train a model. And since there is no notion of sim-

ilarity between words, it is very hard for a model to leverage learned knowledge

encoded implicitly.

Since then, a number of models were developed for estimating continuous repre-

sentations of word, which are usually named as word embeddings. The term word

embeddings was originally coined by Bengio et al. in 2003 who trained them in a

neural language model [62]. However, it was Mikolov et al.(2013), who really at-

tributes to the eventual popularization of word embeddings through the creation

of word2vec, a toolkit enabling the training and use of pre-trained embeddings
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Figure 3.1: An example for one-hot representation

[61, 79]. A year later, Pennington et al. introduced us to GloVe [63], a com-

petitive set of pre-trained embeddings. From then on, word embeddings used as

underlying input representation has gained tremendous success in NLP tasks such

as text classified, machine translation, syntactic parsing and sentiment analysis.

3.1.2 What is word embedding?

Before introducing word embedding, we first illustrate the one-hot representation.

In particular, one-hot representation is a representation method in which only one

dimension in a vector is set to 1 and the others are 0 in the vector. By setting 1

or 0 for each dimension, it means “that word or not”.

For example, we show the word “python” as one-hot representation. Here, the

vocabulary which is a set of words is five-words(nlp, python, word, ruby, one-hot).

Then the following vector describes the word “python” 1:

1http://ahogrammer.com/2017/03/22/why-is-word-embeddings-important-for-natural-
language-processing/
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Although one-hot representation is simple, there are several weak points: it is

impossible to obtain meaningful results with arithmetic between vectors. For

example, we take an inner product to calculate similarity between words. In one-

hot representation, different words are 1 in different places and the other elements

are 0. Thus, the result of taking the dot product between the different words is 0.

This is not a useful result.

A word embedding is a learned representation for words, which are real number

vectors whose relative similarities correlate with semantic similarity, which is usu-

ally a by-product of training a neural language model. Word embedding is also the

collective name for a set of language modeling and feature learning techniques in

natural language processing (NLP), which maps words to a relatively lower dimen-

sion vectors as W : words → Rn. Deeper linguistic theory behind this approach,

namely the “distributional hypothesis” by Zellig Harris [80], is that words that

have similar context will have similar meanings.

The learning process is either joint with the neural network model on some task, or

is an unsupervised process, using document statistics. The learned representations

can be used both as an end in itself (for computing similarities between terms),

and as a basic representation for downstream NLP tasks like text classification,

document clustering, sentiment analysis and so on.
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3.1.3 Why word embedding?

One obvious advantage of word embedding is the aforementioned real number

representation. Many state-of-the-art models are incapable of processing strings

or plain text in their raw form. They require numerical inputs to perform sort of

jobs such as classification, clustering regression etc. With the huge amount of text

data available nowadays, it is imperative to find a way to represent symbolic data

and extract knowledge out of it.

Using dense and low-dimensional vectors is computationally efficient. Word em-

bedding involves that taking words from a space with one dimension per word to

a continuous vector space with much lower dimension. Traditional sparse word

representations, such as BOW, often have thousands or millions of dimensions.

While the size of vector representation space is specified as part of the model and

usually tens or hundreds of dimensions, such as 50, 100, or 300 dimensions.

Another advantage of dense vector representation is that it achieves a level of

generalization which is not possible with classical language models such as n-gram

model which works in terms of discrete units that have no inherent relationship

to one another [81]. In addition, researchers find that the learned representa-

tions capture meaningful syntactic and semantic regularities in a very simple way.

Specifically, the regularities are observed as constant vector offsets between pairs

of words sharing a particular relationship. This allows vector math and reasoning

based on the offsets between words. For example, there seems to be a constant

male-female difference vector:
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Figure 3.2: Constant vector offsets between pairs of words

W (“woman”)−W (“man”) ' W (“aunt”)−W (“uncle”) (3.1)

W (“woman”)−W (“man”) ' W (“queen”)−W (“king”) (3.2)

3.1.4 Word embedding models

The different types of word embeddings can be broadly classified into two cate-

gories: frequency based embedding and prediction based embedding. Frequency

based embedding is more about traditional vectorization methods such as count

vector model, tf-idf vector model and co-occurrence vector model. In this section,

we primarily introduce prediction based embedding. And assumes that you have

26



knowledge of how a neural network works and mechanisms by which weights in a

neural network are updated.

Classic neural language model

The classic neural language model proposed by Bengio et al. in 2003, they are one

of the first to introduce what we now refer to as a word embedding, a real-valued

word vector in R. The architecture of their model is shown in figure 3.3. There

are three basic layers which can still be found in current neural language and word

embedding models.

• 1. Embedding layer: a layer that generates word embeddings by multiplying

an index vector with a word embedding matrix;

• 2. Intermediate Layer(s): one or more layers that produce an intermediate

representation of the input, e.g. a fully-connected layer that applies a non-

linearity to the concatenation of word embeddings of n previous words;

• 3. Softmax Layer: the final layer that produces a probability distribution

over words in V.

The training set is a sequence w1 . . . wT of words wt ∈ V , where the size of vo-

cabulary V is |V |. The objective is to learn a good model f(wt, . . . , wt−n+1) =

P (wt|wt−11 ), in the sense that it gives high out-of-sample likelihood. The objective

of their model is to maximize :

Jθ =
1

T

∑
t=1

logf(wt, wt−1, . . . , wt−n+1) (3.3)
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Figure 3.3: Classic neural language model [62]

(for simplicity, the regularization term is omitted) f(wt, wt−1, . . . , wt−n+1)is the

output of the model, i.e. the probabilityP (wt|wt−1, . . . , wt−n+1) as computed by

the softmax, where n is the number of previous words fed into the model.

Word2vec

As aforementioned, it is until Mikolov et al. introduced word2vec toolkits, word

embedding became popular to the NLP community. Word2vec is a combination

of related models that are used to produce word embeddings, namely Continuous

bag of words (CBOW) and Skip-gram model. Both of these models are shallow,

two-layer neural networks that are trained to reconstruct linguistic contexts of

words.
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Continuous bag of words (CBOW)

The CBOW model predicts the current word based on the context. Its architec-

ture is similar to classic neural network model, where the non-linear hidden layer

is removed and the projection layer is shared for all words; thus, all words get

projected into the same position and their vectors are averaged. The architecture

is shown in figure 3.4. The objective function is as follows:

Jθ =
1

T

T∑
t=1

logp(wt|wt−n, . . . wt−1, wt+1, . . . , wt+n) (3.4)

We can see that this model uses continuous distributed representation of the con-

text and the order of words does not influence the projection. That is why they

call this model a continuous bag-of-words model.

There are some major difference comparing to other models. In language model,

n previous words are fed into the model, while CBOW receives a window of n

words around the target word wt at each time step t. In classic neural network

model, it assumes a fixed dimensional input and extract a fixed number of features:

each feature is represented as a vector and the vectors are concatenated. In this

way, each region of the resulting input vector corresponds to a different feature.

However, we usually do not know the number of features in advance. CBOW

model can meet this requirement.

Skip-gram Model
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Figure 3.4: Continuous bag of words (CBOW) [61]

Skip-gram model follows the same topology as of CBOW in Figure 3.5, but in

reverse direction of CBOW, which is using the center word to predict the sur-

rounding words. Specifically, the neural network is trained to do the following job:

given a word in the middle of a sentence, look at the words nearby and pick one

at random. The network is going to tell us the probability for every word in the

vocabulary of being the “nearby word”. After training, the weights between the

input and the hidden layer are taken as the word vector representation.
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Figure 3.5: Skip-gram [61]

The objective of skip-gram is:

Jθ =
1

T

T∑
t=1

∑
−n6j6n,6=0

logp(wt+j|wt) (3.5)

GloVe

In contrast to word2vec, GloVe [63] seeks to make explicit what word2vec does
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Figure 3.6: Vector relations captured by GloVe

implicitly: encoding meaning as vector offsets in an embedding space – seemingly

only a serendipitous by-product of word2vec – is the specified goal of GloVe.

To be specific, the creators of GloVe illustrate that the ratio of the co-occurrence

probabilities of two words (rather than their co-occurrence probabilities them-

selves) is what contains information and so look to encode this information as

vector differences. GloVe is designed in order that such vector differences capture

as much as possible the meaning specified by the juxtaposition of two words as

shown in 3.6.

For this to be accomplished, they propose a weighted least squares objective J

that directly aims to reduce the difference between the dot product of the vectors

of two words and the logarithm of their number of co-occurrences:

J =
V∑

i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − logXij)

2 (3.6)

where wi and bi are the word vector and bias respectively of word i, wj and bj

are the context word vector and bias respectively of word j, Xij is the number of

32



times word i occurs in the context of word j, and f is a weighting function that

assigns relatively lower weight to rare and frequent co-occurrences.

As co-occurrence counts can be directly encoded in a word-context co-occurrence

matrix, GloVe takes such a matrix rather than the entire corpus as input.

These results are in contrast to the general consensus that word embeddings are

superior to traditional methods. Rather, they indicate that it typically makes

no difference whatsoever whether word embeddings or distributional methods are

used. What really matters is that the hyperparameters are tuned and that the

appropriate pre-processing and post-processing steps utilized. In this thesis, we

mainly use the GloVe embedding pre-trained from its official website 2.

3.2 Basic Deep Learning Concepts and Models

Deep learning has various definitions. One of the definitions is that it is a class of

machine learning techniques which exploit many layers of non-linear information

processing for supervised or unsupervised feature extraction and transformation,

and for pattern analysis and classification. There are two key aspects in this

definition: 1) models consisting of multiple layers and 2) methods for learning

features at higher, more abstract layers [82]. To understand deep learning well,

we will introduce the basic concepts of machine learning first.

2https://nlp.stanford.edu/projects/glove/
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Figure 3.7: Architecture of CNN

In neural networks, a neuron forms the basic structure. It receives an input,

processes it and generates an output which is either sent to other neurons for

further processing or it is the final output.

3.2.1 Convolutional Neural Network(CNN)

Convolutional Neural Network (CNN) is a class of deep, feed-forward artificial

neural networks which were inspired by biological processes in that individual

neurons respond to stimuli only in a restricted region. CNN is now commonly used

model on image related problem. It is also successfully applied to recommender

systems, natural language processing and more.

CNN often has a series convolutional and pooling layers and then followed by one

or more fully connected layers as in a standard multilayer neural network. The

architecture is shown in figure 3.7.

There are four core building blocks in CNN.

1. Convolutional Layer
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Figure 3.8: Convolution operation

Convolution is a mathematical operation on two functions to produce a third

function. Here in convolutional layer, it is applied on the input data using

a convolution filter to produce a feature map. The convolution operation is

performed by sliding convolution filter over the input. At each location, do

element-wise multiplication and sum the result which goes into the feature

map.

2. Non-linearity

Non-linear activation function can make any kind of neural network to be

powerful, which is achieved by passing the weighted sum of its inputs through

an activation function. So does CNN. This is because linear combination of

linear functions will create nothing qualitatively different. No matter how

many layers applied in architecture, just act like one single layer.

There are three most common activation function used, sigmoid, softmax

and rectifier (relu). However, according to research [83], relu has been found

to perform better in most situations. The formulas for these activation

functions are as follow:
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Sigmoid: takes a real-valued input and squashes it to range between 0 and

1.

σ(Z) =
1

1 + e−Z
(3.7)

Softmax: takes a real-valued input and squashes it to range between 0 and

1 that add up to 1.

aLj =
eZ

L
j∑

k e
ZL
k

(3.8)

Relu: takes a real-valued input and thresholds it at zero (replaces negative

values with zero).

f(x) = max(0, x) (3.9)

3. Pooling or sub sampling

After convolutional operation, a pooling layer ( also called sub sampling) is

performed. It can be used to reduce the dimensionality of each feature map

but still retains the most important information. There are several benefits

by pooling. The most obvious is to make the input dimension smaller. Fur-

ther, it enables to reduce the number of parameters computation in network,

which furthermore reduce and control overfitting.

Pooling can be applied separately on each feature map, reducing the size

of height and width, but keeping the depth intact. There are also different

types of pooling, Max, Average and Sum. In practice, Max pooling has been
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Figure 3.9: Example for Max Pooling in CNN

shown to work better. An example of Max pooling with 2*2 window and

stride 2 is shown in figure 3.9.

4. Fully connected layer

Traditionally, a fully connected layer is a Multi Layer Perceptron. Just as its

name implies, neurons have full connections to all activations in the previous

layer. It is worth noting the differences between a fully connected layer and

a convolutional and pooling layer. From connectivity perspective, they are

different that, in convolution layer neurons are connected only to a local

region in the input. Another difference is their purposes. Essentially, the

convolutional and pooling layers are providing a meaningful, low-dimensional

and high-level features of the input, while fully connected layer is learning a

function based on training data and then classifying unseen data.

3.2.2 Recurrent Neural Networks(RNN)

In a traditional neural network, it has no notion of order in time, and the only

input it considers is the current example it has been exposed to and all inputs
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are assumed to be independent of each other. So it is unclear that a traditional

neural network could leverage some prior knowledge about the data, for example,

predicting the next word in a sentence which would be better to know the words

before it. Recurrent Neural Networks (RNN) address this issue which makes use

of sequential information.

3.2.3 Long-Short Term Model(LSTM)

Like standard RNNs, LSTM model naturally suits for variable lengthy input like

sentences. LSTM sequentially updates a hidden-state representation by introduc-

ing memory cell units which can store information across input and three gates

which control the flow of information through time steps. A typical repeated

module in LSTM is shown in figure 3.10.

Figure 3.10: Typical LSTM Architecture
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Long-short Term Memory (LSTM) is a recurrent neural networks (RNN) archi-

tecture that has been designed to address the vanishing and exploding gradient

problems of conventional RNNs. Unlike feedforward neural networks, RNNs have

cyclic connections making them powerful for modeling sequences. They are ap-

plied for sequence labeling and sequence prediction tasks and gained promising

results [84].

All recurrent neural networks have the form of a chain of repeating modules of

neural network, but this repeating module has a simple structure. As the gap

between the relevant information and the point where it is needed to become very

large, RNNs becomes unable to learn to connect the information. However, in

a standard LSTM, the structure is more complex. Except the repeating module,

there is a special hidden units called memory blocks( in figure 3.10). Each memory

block is composed of four elements: (1) a memory cell Ct (e.g. a neuron) with

a self-connection, (2) an input gate it to control the flow of input signal into the

neuron, (3) an output gate ot to control the effect of the neuron activation on

other neurons, and (4) a forget gate ft to allow the neuron to adaptively reset its

current state through the self-connection[85]. The LSTM does have the ability

to remove or add information to the cell state, carefully regulated by structures

called gates[84].

The computations for each updates at t ∈ {1, ..., T} in an LSTM are as follows:

it = σ(Wi · [ht−1, xt] + bi) (3.10)

39



ft = σ(Wf · [ht−1, xt] + bf ) (3.11)

C̃t = tanh(Wc · [ht−1, xt] + bc) (3.12)

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.13)

ot = σ(Wo · [ht−1, xt] + bo) (3.14)

ht = ot ∗ tanh(Ct) (3.15)

Where Wi, Wf , Wc, and Wo are weight matrices, and bi, bf , bc and bo are bias-

vectors.

3.2.4 Bidirectional LSTM (BLSTM)

The disadvantage of LSTM is that it is only able to make use of previous elements.

However, the output may not only depend on previous elements in a sequence, but

also future elements. BLSTM utilize both previous and future elements by stacking

two LSTMs on top of each other.

The principle of BLSTM is to split the neurons of a regular LSTM into two di-

rections, one for positive time direction (forward states), and another for negative

time direction (backward states). Those two states’ output are not connected to

inputs of the opposite direction states. Figure 3.11 shows the basic structure of

BLSTMs. By using two time directions, input information from the past and fu-

ture of the current time frame can be used unlike standard LSTM which requires
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Figure 3.11: Structure of BLSTM

the delays for including future information. The output is then computed based

on the hidden state of both LSTMs.
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Figure 3.12: Architecture for ARC-I Model

3.3 Advanced Deep Learning Models

In this section, we will introduce some state-of-the-art deep learning models, which

have gained significant performance in NLP tasks.

3.3.1 Architecture-I(ARC-I)

ARC-I is a convolutional based deep model proposed by Baotian Hu etc. [35].

They believe that natural language sentences are complicated both sequential and

hierarchical. It is important to have an algorithm that can capture the internal

structures. ARC-I adopts a siamese convolutional based architecture, which is

shown in figure 3.12 . It takes word embeddings as input and summarizes meaning

of a sentence by the layers of convolution and pooling. With the large feature map

design, this model can adequately model the rich structures in the composition of

words. After finding the representation for each sentence, then the representations

for the sentence pair are compared by a multi-layer perceptron(MLP).
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Figure 3.13: Architecture for ARC-II Model

3.3.2 Architecture-II(ARC-II)

Baotian Hu etc. also proposed Architecture-II(ARC-II) in [35]. The architecture

is shown in figure 3.13.

The main idea is that letting the two sentences meet before their own high-level

representations mature while still retaining the space for the individual develop-

ment of abstraction of each sentence. In layer-1, the 1D convolution preserves all

possible combinations of segments in two sentences, which is forming the interac-

tion space between two sentence. After that more layers of 2D convolution and 2D

max pooling can be employed to get the higher level abstract of representation.

Finally, MLP is used to predict matching degree.

3.3.3 MatchPyramid

Inspired by the success of convolutional neural network in image recognition, Liang

Pang, etc. [77] proposed an architecture, as illustrated in figure 3.14 , which viewed

text matching as image recognition. This is an interaction based model. It takes
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Figure 3.14: Architecture for MatchPyramid Model

into account rich interaction structure in the text matching process such as inter-

actions between words, phrases or the whole sentences correspondently. The basics

of matching signal is the word level matching signal, including exact word match-

ing and semantic similar matching, while the phrase and sentence level matching

signals are obtained by composing lower level ones. This is similar to image recog-

nition, in which raw pixels provide basic units and higher abstract visual patterns

can be extracted by layer-by-layer composition [86].
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Figure 3.15: Architecture for DRMM Model

3.3.4 Deep Relevance Matching Model(DRMM)

DRMM is a state-of-the-art interaction focused deep matching model and has been

tested on ad-hoc retrieval task, as depicted in 3.15. The authors [22] argue that

the ad-hoc retrieval task which is mainly about relevance matching, is different

from most NLP matching tasks which concern semantic matching.

Compared to semantic matching, relevance matching is focused on three factors.

Firstly, exact matching of terms between documents and queries is still the most

important signals. This is due to the indexing and search paradigm in modern

search engines. Secondly, query term importance should be considered. Since

queries are mainly keywords based, and the compositional relation among query

terms is usually simple, it is important to take into account term discrimina-

tion. Lastly, relevance matching could happen in any part of a relevant document,

matching whole document or part of document. This is because of the length of

document varies and the document may not be topic concentrated.

45



According to the factors mentioned above, in DRMM model, the variable-length

local interaction between query and document terms is first transformed into a

fixed-length matching histogram. Based on this fixed-length matching histogram,

a feed forward matching network is employed to learn hierarchical matching pat-

terns Finally, generate the overall matching score for each query term.

3.4 Multi-Channel Siamese BLSTM(MC-BLSTM)

In this thesis, we propose a Multi-Channel Siamese BLSTM framework, which

could incorporate different types of knowledge or fact for text semantic similarity.

In the following of this paragraph, we first formulate the problem of text semantic

matching. Then, we present the basic of siamese network, which is the basis of

the our proposed model. Lastly, we detail our proposed Multi-Channel Siamese

BLSTM framework.

3.4.1 Problem formulation

The setup of text semantic similarity is as follows: we are given two texts: (S1, S2),

where each sentence can be represented as a word sequence, (X
(1)
1 , X

(1)
2 ,. . .X

(1)
n )

and (X
(2)
1 , X

(2)
2 ,. . .X

(2)
m ) for S1 and S2 respectively. A function F is usually needed

to compute the similarity between these two texts: (S1, S2), which indicates how

much of the two text is similar semantically to each other. More formally, this
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problem can be described as follows:

F (S1, S2) ∈ [0, 1] (3.16)

where the function F denotes some sort of semantic similarity. The output is

usually in the range of [0, 1], where 1 means S1 and S2 are similar and 0 means

dissimilar. Under the deep learning paradigm, the sentences (S1, S2) are usually

mapped to vector representations with a sub network, such that F can be used

for comparison.

F (Φ1(S1), Φ2(S2)) ∈ [0, 1] (3.17)

where Φ is a sub network.

3.4.2 Siamese networks

Siamese nearal networks [87] are dual-branch networks with tied weights, in which

the two sub-networks are constrained to have identical weight. The general untied

version of this model may be more useful for applications with asymmetric domains

such as information retrieval [74].

Siamese nearal networks are popular among tasks that involve finding similarity

or a relationship between two comparable things. Some examples are paraphrase

scoring, where the inputs are two sentences and the output is a score of how

similar they are; or signature verification, where figure out whether two signatures

are from the same person. Generally, in such tasks, two identical subnetworks are
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used to process the two inputs, and another module will take their outputs and

produce the final output. The picture below is from Bromley et al. (1993) [88].

They proposed a siamese architecture for the signature verification task 3.

Figure 3.16: Architecture of Siamese Network

Siamese architectures are good in these tasks because:

• Sharing weights across subnetworks means fewer parameters to train for,

which in turn means less data required and less tendency to overfit.

3https://www.quora.com/What-are-Siamese-neural-networks-what-applications-are-they-
good-for-and-why
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• Each subnetwork essentially produces a representation of its input. (“Sig-

nature Feature Vector” in the picture.) If your inputs are of the same kind,

like matching two sentences or matching two pictures, it makes sense to use

similar model to process similar inputs. This way you have representation

vectors with the same semantics, making them easier to compare.

3.4.3 the Proposed Framework

In text semantic similarity, some recent studies have used siamese architectures

to score relevance between two texts. Such as in question answering system, one

input is a question, the other input is another answer, and the output is how

relevant it is between them. Two sentences do not look exactly the same, but if

the goal is to extract the similarity or a connection between each other, a siamese

architecture can work well with considering the mutual influence of two sentences

[89].

In our proposed multi-channel siamese BLSTM model, we use bidirectional LSTM

layers to encode the sentence pair, and then fully connected by a dense layer to

learn a classifier. As we discussed in previous sections, we argue the only word

information for understanding a natural language sentence may be not enough.

The understanding may also require external knowledge or facts which should be

utilized by computers. We expand the basic siamese framework by adding extra

channels to incorporate external knowledge for better understanding. In partic-

ular, except words information we also take its Part-Of-Speech tagging as input,

(embedding(X
(i)
j ) + embedding(POS(X

(i)
j ))), which is viewed as multi-channel in
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this paper. Part-Of-Speech tagging (or POS tagging, for short) is one of the

main components of almost any NLP analysis. The task of POS-tagging simply

implies labeling words with their appropriate Part-Of-Speech (Noun, Verb, Adjec-

tive, Adverb, Pronoun, . . . ). We believe this will benefit our task. In our proposed

framework, other kind of knowledge could also be easily incorporated. Our model

is shown in figure 3.17.

Temporal average readout

B
LS

TM
B

LS
TM

C2C1 C1C2

...
C1C2

Dense feedforward layer

Temporal average readout
B

LS
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B
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C2C1 C1C2
...

C1C2

X(1)
1 X(1)

2 X(1)
n X(2)

1 X(2)
2 X(2)

n

Classification result

Figure 3.17: Architecture of Multi-Channel Siamese BLSTM

The difference for Multi-Channel model is that the input is word representation

concatenating its POS representation as input, while bidirectional model runs an

extra reversed LSTM model and sum the results for next layer. We use a binary

cross-entropy cost function for this classification task. The benefit of using cross-

entropy is that, unlike quadratic cost function, it avoids the problem of learning

slowing down. The training objective is to minimize the following cost function.
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L2 regularization is applied to prevent overfitting problem. Adam optimizer [90]

is used. After learning, we use validation set to choose the best model for testing.

The related formulas are as follows:

C = − 1

n

∑
x

[y ln a+ (1− y) ln(1− a)] (3.18)

a = σ(z) (3.19)

σ(z) =
1

1 + e−z
(3.20)

z =
∑
j

ωjxj + b (3.21)

51



Chapter 4

Experimental Settings

4.1 Dataset

4.1.1 Overview

Quora is a platform for sharing knowledge about anything. People ask and discuss

questions, others may provide unique insights and quality answers, which enable

people to learn from each other. However, as there are more than 100 million

people visit every month, it is not surprising that many people repeatedly ask

semantically similar questions. This may cause troubles for both seekers and

writers that it may take more time to find the best answer and increase workload

to answer questions.

In order to make it easier to find high quality answers and improve experience

for Quora writers, seekers and readers, in 2017, Quora held a competition to
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identify duplicate questions, which required to classify whether question pairs are

duplicates or not by applying advanced techniques.

4.1.2 Data description

The dataset is released and preprocessed by Quora [91]. There are three important

features about this dataset. The original sampling method returned an imbalanced

dataset with more true examples of duplicate pairs than non-duplicates. Thus

negative examples are supplemented from a source of “related questions”, in order

to pertain to similar topics but truly not semantically equivalent.

Due to the combination of sampling procedures and some sanitization measures

that have been applied to the final dataset (e.g., removal of questions with ex-

tremely long question details), the distribution of questions in the dataset should

not be taken to be representative of the distribution of questions asked on Quora.

In summary, the ground-truth labels are not guaranteed to be perfect and they

may contain some noise.

4.1.3 Statistics of dataset

The final dataset consists of 404,351 lines of potential question duplicate pairs.

A sample from the dataset is shown in Appendix E. Each line contains IDs for

each question in the pair, the full text for each question, and a binary value that

indicates whether the line truly contains a duplicate pair.
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Figure 4.1: Ratios for Classes

There are 255045 negative (non-duplicate) and 149306 positive (duplicate) pairs.

The ratio between negative and positive class is about 1.7:1. This indicates that

the dataset is slightly imbalanced as shown in figure 4.1. Since the class balance

can influence some classifiers, this fact should be considered when training machin

learning models.

The length of questions also varies greatly. The shortest question is 1 character

long (which is useless for the task) and the longest question is 1169 characters

(which is a long, complicated question). The pairs which are shorter than 10

characters are removed. Thus the average length is 59 and std is 32.

We divide the total dataset into a training set D of 323,481 pairs and a test set T

of 40,435 pairs and a validation set V of 40,435 pairs.
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4.2 Experimental Environment

All the deep learning models are trained on a server computer with NVIDIA

GeForce GTX 1080 Ti GPU with 8 GPU RAM. For the development of deep

learning models, keras is used that a high-level neural networks API, written in

Python. Keras 1 can run on top of TensorFlow, CNTK, or Theano seamlessly on

both CPU and GPU.

In our experiments, we use the backend of TensorFlow, which is an open source

software library for numerical computation using data flow graphs. TensorFlow 2

was originally developed by researchers and engineers working on the Google Brain

team within Google’s Machine Intelligence Research organization for the purposes

of conducting machine learning and deep neural networks research. The system is

general enough to be applicable in a wide variety of other domains, as well.

4.3 Data Preprocessing

Converting Questions into Vectors

We use the GloVe word embedding to convert each question into a semantic vector

then we stack a siamese network to detect if the pair is duplicate. In particular,

we embed words into a vector space with 300 dimensions in general. These vectors

capture semantics and even analogies between different words.

1https://github.com/keras-team/keras
2https://github.com/tensorflow/tensorflow
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For this particular problem, we train the GloVe model by using a tool of Gensim 3.

The implement can be found in Appendix A.

4.4 Model Training and Evaluation

4.4.1 Dataset Split

In machine learning, data used to build the final model usually come from multiple

datasets. In particular, three data sets are commonly used in different stages of

the creation of the model. The split is illustrated in Figure 4.2.

• Training Dataset: the sample of data used to fit the model

• Validation Dataset: the sample of data used to provide an unbiased eval-

uation of a model fit on the training dataset while tuning model hyperpa-

rameters. The evaluation becomes more biased as a skill on the validation

dataset is incorporated into the model configuration.

• Test Dataset: the sample of data used to provide an unbiased evaluation of

a final model fit on the training dataset.

In order to train and evaluate our models, we split the data set into 3 parts, where

80% of the dataset are used for training, 10% are used for validation and the rest

10% for test. For the parameters of the models, we do optimization based on

standard grid search.

3https://radimrehurek.com/gensim/

56



Figure 4.2: A Visualization of Dataset Split

4.4.2 Backpropagation: Adam

The backpropagation algorithm is usually used for training a deep neural network.

It was originally introduced in the 1970s, but its importance was not fully appre-

ciated until 1986 a famous paper publish by David Rumelhart, etc. [92]. Gradient

descent is one of the most popular algorithms to perform optimization and by far

the most common way to optimize the weights in neural networks.

The overall goal of the algorithm is to attempt to find weights such that, for every

input vector in the training set, the neural network yields an output vector closely

matching the prescribed target vector. The procedure can be described as follows:

• Initialize the weights and set the learning rate and the stopping criteria.

• Randomly choose an input and the corresponding target.

• Compute the input to each layer and the output of the final layer.

• Compute the sensitivity components.

• Compute the gradient components and update the weights.

• Check against the stopping criteria. Exit and return the weights or loop

back to step 2.
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In all our experiments, the Adam algorithm is used. Adaptive Moment Esti-

mation (Adam) [90] is an algorithm for first-order gradient-based optimization

of stochastic objective functions, based on adaptive estimates of lower-order mo-

ments. In this method, in addition to storing an exponentially decaying average

of past squared gradients vt like Adadelta and RMSprop, Adam also keeps an

exponentially decaying average of past gradients mt, similar to momentum:

mt = β1mt1 + (1− β1)gtls (4.1)

vt = β2vt−1 + (1− β2)g2t (4.2)

mt and vt are estimates of the first moment (the mean) and the second moment

(the uncentered variance) of the gradients respectively. As mt and vt are initialized

as vectors of 0’s, the authors of Adam observe that they are biased towards zero,

especially during the initial time steps, and when the decay rates are small (i.e.

β1 and β2 are close to 1).

4.4.3 Model Training

We implement the following learning procedure. Firstly, we randomly split the

Quora dataset into 3 parts, 80% for training, 10% for validation and 10% for test.

We ensure that each of part of the datasets contains an equal proportion of the

labels from the original dataset. For a question pair (S1, S2, y)in the training

set, each word X
(i)
j is mapped to a vector space by using 300d reference GloVe

vectors[63] as embedding(X
(i)
j ).
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Secondly, we use a binary cross-entropy cost function for this classification task.

The benefit of using cross-entropy is that, unlike quadratic cost function, it avoids

the problem of learning slowing down. L2 regularization is applied to prevent

over-fitting problem. For the training of the models, the Adam optimizer is used

to choose the best model for testing. The learning rate is set to 0.001, and the

batch size is set to 64.

For POS-tagger, there are some tools available in NLTK for building use-specified

POS-tagger, however, because this is not the focus of this thesis, we use the default

NLTK tagger 4 in our experiments.

In addition, after deleting the stop words and infrequent words, the vocabulary

size of the dataset is 90908. The max length of the input sentences is set to 20.

Longer sentences will be truncated to 20 while short ones will be padded to the

same length.

4.4.4 Evaluation Metrics: Accuracy

In our experiments, accuracy is used for evaluation. Specifically, accuracy in clas-

sification problems is the number of correct predictions made by the model over

all kinds predictions made. Figure 4.3 illustrate the computation of accuracy 5.

In the numerator, are our correct predictions (True Positives and True Nega-

tives)(Marked as red in the figure 4.3 ) and in the denominator, are the kind of all

4http://www.nltk.org/book/ch05.html
5https://medium.com/greyatom/performance-metrics-for-classification-problems-in-

machine-learning-part-i-b085d432082b
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Figure 4.3: Computation of Accuracy

predictions made by the algorithm(Right as well as Wrong ones). In particular, a

true positive is an outcome where the model correctly predicts the positive class.

Similarly, a true negative is an outcome where the model correctly predicts the

negative class. A false positive is an outcome where the model incorrectly predicts

the positive class. And a false negative is an outcome where the model incorrectly

predicts the negative class.

Accuracy is a good measure when the target variable classes in the data are nearly

balanced. Accuracy should never be used as a measure when the target variable

classes in the data are a majority of one class.
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Chapter 5

Experimental Results and

Discussion

5.1 Baselines

In our experiments, we compare our proposed model with some basic LSTM modes

(including bidirectional LSTM), as well as some recently proposed deep neural

network based models. The models are described as follows:

• LSTM: Basic siamese network with LSTM as described in Section 3.2.3

to compute the sentence representation, which is the base of our proposed

model.

• BLSTM: Bidirectional LSTM, which is similar with the above LSTM except

that two directions of LSTM described in Section 3.2.4 are used.
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• ARC-I: ARC-I [35] is a general representation-focused deep matching model

that has been tested on a set of NLP tasks including sentence completion,

response matching, and paraphrase identification.

• ARC-II: ARC-II [35] was proposed by the authors of the model ARC-I, but

focuses on learning hierarchical matching patterns from local interactions

using a CNN.

• MatchPyramid: MatchPyramid [77] is another state-of-the-art deep match-

ing model and has been tested on two NLP tasks including paraphrase iden-

tification and paper citation matching.

• DRMM: Deep relevance matching model (DRMM) is specially proposed for

ad-hoc retrieval. This model employs a joint deep architecture at the query

term level for relevance matching. By using matching histogram mapping, a

feed forward matching network, and a term gating network, it can effectively

deals with special relevance matching factors. We adapt this model for our

sentence similarity classification.

• MC-BLSTM: MC-BLSTM denotes our proposed Multi-Channel Siamese

BLSTM model.

5.2 Performance and Analysis

This section presents the performance of different baselines over the quora dataset,

the results are shown in Table 5.1. We compare our proposed model with both
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Table 5.1: Comparison of Performance for Each Model

Model Train Accuracy Validation Accuracy Test Accuracy
LSTM∗ 0.9015 0.7866 0.7754
BLSTM 0.9218 0.7906 0.7912 (2.0%)
DRMM 0.8806 0.6402 0.6278 (-19.0%)
ARCI 0.9218 0.7906 0.7616 (-1.78.0%)
ARCII 0.9116 0.7806 0.7400 (-4.44%)
MatchPyramid 0.9188 0.7896 0.7937 (2.36%)
MC-BLSTM 0.9298 0.8126 0.8120 (4.70%)

basic LSTM and the bidirectional siamese LSTM model under optimized settings.

We also present some of the state-of-the-art deep neural network based models for

reference.

As we can see, Table 5.1 demonstrates that the DRMM model performs the worst

among all models. This is maybe because that DRMM model was specifically

proposed for the adhoc information retrieval problem. It is good at capturing

the relevance between a query and a document instead of the semantic similarity

between two text, which demonstrates the significant differences between semantic

matching and relevance matching.

The ARC-I model, although trained on the corresponding corpus, was outper-

formed by basic LSTM and BLSTM models. A possible reason is that ARC-I

concatenates the two text representation for computing the matching score, which

may be less effective than the cosine function in the siamese framework. ARC-

II performed even worst than ARC-I. These models were originally evaluated on

other tasks like paraphrase other than the duplicated question detection on the

quora dataset.

The MatchPyramid model provides 2.36% better than the basic LSTM, which is
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probably due to the indirect local interactions (i.e., local interaction is based on the

weighted sum of query and document term vectors rather than cosine similarity

or dot product).

Lastly, we have shown that our proposed approach is able to significantly outper-

form other strong algorithms, including the state-of-the-art MatchPyramid model,

which verifies the effectiveness of our proposed multi-channel framework. Indeed,

additional knowledge of words are useful to model the semantic meaning of pairs

of text, which can be modeled properly under our model. This also demonstrates

the potential of our model in capturing the short text semantic similarity.

5.3 Effect of Term Embeddings

Since we leverage a priori learned term embeddings in our model, we further

study the effect of embedding dimensionality on the performance. Here we report

the performance results on the quora dataset using term embeddings trained by

the GloVe model with 50, 100, and 300 dimensions, respectively. As shown in

Table 5.2, the performance increases with the increase of dimensionality. Term

embeddings of different dimensionality provide different granularity of semantic

similarity; they may also require different amounts of training data. With lower

dimensionality, the similarity between term embeddings might be coarse and hurt

the text semantic matching performance. However, with larger dimensionality,

one may need more data to train reliable term embeddings. Our results suggest

64



Table 5.2: Effect of Embedding Dimensionality

Model Embedding Test Accuracy
MC-BLSTM GloVe-50d 0.7410
MC-BLSTM GloVe-100d 0.8080
MC-BLSTM GloVe-300d 0.8120

that 300 dimensions is sufficient for learning term embeddings effective for text

semantic similarity.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, We study the problem of text semantic similarity in natural language

processing.

• Firstly, we briefly introduce the problem of text semantic similarity and its

application, and review the related literature including traditional methods

used to solve this problem as well as the recent research of deep learning

methods that have achieved state-of-the-art results in NLP area.

• Secondly, we introduce some basic concepts of deep learning and compare

the recent state-of-the-art deep models for text semantic similarity in details.

Based on the strength and the drawbacks of these deep models, we propose a

Multi-Channel Siamese BLSTM model that is verified on duplicate question

pair detection dataset.
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• In particular, we have proposed a novel, effective and practical approach to

the text semantic similarity problem in natural language processing.

Through extensive experiments on the Quora test collection, our proposed ap-

proach has shown remarkable and significant improvement over strong algorithms,

including the basic siamese bidirectional LSTM model, which verifies the effective-

ness of our multi-channel framework.

6.2 Future Work

In the future, we plan to investigate further applications of our proposed approach.

• For example, firstly we plan to extend the knowledge sources (vertical knowl-

edge graph database) of the words to further improve the performance.

• Secondly, we may also include phrase embeddings so that phrases can be

treated as a whole rather than separate terms. In this way, we expect the

local interactions can better reflect the meaning by using the proper semantic

units in language, leading to better matching performance.

• Thirdly, our proposed framework is generic and can be applied to many

different task. So we also plan to investigate its performance in different

tasks like information retrieval, paraphrase, etc.

• Lastly, we in this thesis only use POS information to verify our framework

on a single dataset. We will explore more types of information like syntactic
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parsers and knowledge graph to further improve the performance of text

semantic similarity comparison.
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Appendix A

Training of the GloVe Word

Embedding

A.1 Instructions

Let’s load the training data first.

1

2 import sys

3 import os

4 import pandas as pd

5 import numpy as np

6 from tqdm import tqdm

7 df =

pd.read_csv("./ Quora/DuplicateQuestion/quora_duplicate_questions.tsv",delimiter=’\t’)

8

9 # convert questions into unicode.

69



10 df[’question1 ’] = df[’question1 ’]. apply(lambda x:

unicode(str(x),"utf -8"))

11 df[’question2 ’] = df[’question2 ’]. apply(lambda x:

unicode(str(x),"utf -8"))

A.2 GloVe Training with Gensim

1

2 import gensim

3

4 questions = list(df[’question1 ’]) + list(df[’question2 ’])

5

6 # tokenize the questions

7 c = 0

8 for question in tqdm(questions):

9 questions[c] = list(gensim.utils.tokenize(question ,

deacc=True , lower=True))

10 c += 1

11

12 # train a model

13 model = gensim.models.Word2Vec(questions , size =300, workers=8,

iter=15, negative =25)

14

15 # trim memory

16 model.init_sims(replace=True)

17

18 # creta a dict
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19 w2v = dict(zip(model.index2word , model.syn0))

20 print "Number of tokens in Word2Vec:", len(w2v.keys())

21

22 # save the model

23 model.save(’data/word2vec.mdl’)

24 model.save_word2vec_format(’data/word2vec.bin’, binary=True)

The above code trains a GLOVE model and saves it. It generates 300 dimensional

vectors for words. Hyper parameters would be chosen better but it is just a baseline

to see a initial performance. However, as I’ll show this model gives performance

below than my expectation. I believe, this is because our questions are short and

does not induce a semantic structure that GLOVE is able to learn a salient model.

A.3 Data Preprocessing

1

2 from __future__ import print_function

3 import numpy as np

4 import csv , datetime , time , json

5 from zipfile import ZipFile

6 from os.path import expanduser , exists

7 from keras.preprocessing.text import Tokenizer

8 from keras.preprocessing.sequence import pad_sequences

9 from keras.models import Sequential

10 from keras.layers import Embedding , Dense , Dropout , Reshape ,

Merge , BatchNormalization , TimeDistributed , Lambda

11 from keras.regularizers import l2
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12 from keras.callbacks import Callback , ModelCheckpoint

13 from keras.utils.data_utils import get_file

14 from keras.engine import Input , Merge , Model

15 from keras.layers import Embedding , Bidirectional , LSTM , Dense ,

BatchNormalization , Activation , Lambda

16 from keras.optimizers import Adam , Adadelta , Adagrad , RMSprop , SGD

17 from keras import backend as K

18 from sklearn.model_selection import train_test_split

19 import nltk

20

21

22 # KERAS_DATASETS_DIR = expanduser(’~/. keras/datasets/’)

23 KERAS_DATASETS_DIR = expanduser(’./’)

24 QUESTION_PAIRS_FILE_URL =

’http :// qim.ec.quoracdn.net/quora_duplicate_questions.tsv’

25 QUESTION_PAIRS_FILE = ’quora_duplicate_questions.tsv’

26 GLOVE_ZIP_FILE_URL =

’http :// nlp.stanford.edu/data/glove .840B.300d.zip’

27 GLOVE_ZIP_FILE = ’glove .840B.300d.zip’

28 GLOVE_FILE = ’glove .840B.300d.txt’

29 Q1_TRAINING_DATA_FILE = ’q1_train.npy’

30 Q2_TRAINING_DATA_FILE = ’q2_train.npy’

31 Q1_TAG_TRAINING_DATA_FILE = ’q1_train_tag.npy’

32 Q2_TAG_TRAINING_DATA_FILE = ’q2_train_tag.npy’

33 LABEL_TRAINING_DATA_FILE = ’label_train.npy’

34 WORD_EMBEDDING_MATRIX_FILE = ’word_embedding_matrix.npy’

35 NB_WORDS_DATA_FILE = ’nb_words.json’

36 MAX_NB_WORDS = 200000
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37 MAX_NB_WORDS_TAGS = 40

38 MAX_SEQUENCE_LENGTH = 20

39 EMBEDDING_DIM = 300

40 TAG_EMBEDDING_DIM = 30

41 MODEL_WEIGHTS_FILE = ’question_pairs_weights.h5’

42 VALIDATION_SPLIT = 0.1

43 TEST_SPLIT = 0.1

44 RNG_SEED = 13371447

45 NB_EPOCHS = 10

46

47 if exists(Q1_TRAINING_DATA_FILE) and

exists(Q2_TRAINING_DATA_FILE) and

exists(LABEL_TRAINING_DATA_FILE) and exists(

48 NB_WORDS_DATA_FILE) and

exists(WORD_EMBEDDING_MATRIX_FILE) \

49 and exists(Q1_TAG_TRAINING_DATA_FILE) and

exists(Q2_TAG_TRAINING_DATA_FILE):

50 q1_data = np.load(open(Q1_TRAINING_DATA_FILE , ’rb’))

51 q2_data = np.load(open(Q2_TRAINING_DATA_FILE , ’rb’))

52 q1_data_tag = np.load(open(Q1_TAG_TRAINING_DATA_FILE , ’rb’))

53 q2_data_tag = np.load(open(Q2_TAG_TRAINING_DATA_FILE , ’rb’))

54 labels = np.load(open(LABEL_TRAINING_DATA_FILE , ’rb’))

55 word_embedding_matrix =

np.load(open(WORD_EMBEDDING_MATRIX_FILE , ’rb’))

56 with open(NB_WORDS_DATA_FILE , ’r’) as f:

57 d = json.load(f)

58 nb_words = d[’nb_words ’]

59 nb_words_tags = d[’nb_words_tags ’]
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60 else:

61 if not exists(KERAS_DATASETS_DIR + QUESTION_PAIRS_FILE):

62 get_file(QUESTION_PAIRS_FILE , QUESTION_PAIRS_FILE_URL)

63

64 print("Processing", QUESTION_PAIRS_FILE)

65

66 question1 = []

67 question2 = []

68 is_duplicate = []

69 with open(KERAS_DATASETS_DIR + QUESTION_PAIRS_FILE) as

csvfile:

70 # with open(KERAS_DATASETS_DIR + QUESTION_PAIRS_FILE ,

encoding=’utf -8’) as csvfile:

71 reader = csv.DictReader(csvfile , delimiter=’\t’)

72 for row in reader:

73 # question1.append(row[’text1 ’])

74 # question2.append(row[’text2 ’])

75 # is_duplicate.append(row[’duplicate ’])

76 question1.append(row[’question1 ’])

77 question2.append(row[’question2 ’])

78 is_duplicate.append(row[’is_duplicate ’])

79

80 print(’Question pairs: %d’ % len(question1))

81

82 questions = question1 + question2

83 tokenizer = Tokenizer(nb_words=MAX_NB_WORDS)

84 tokenizer.fit_on_texts(questions)
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85 question1_word_sequences =

tokenizer.texts_to_sequences(question1)

86 question2_word_sequences =

tokenizer.texts_to_sequences(question2)

87 word_index = tokenizer.word_index

88 print(’word_index size: ’, len(word_index),

max(word_index.values ()))

89 print(question1 [0:2])

90 index_word = [0] * (len(word_index) + 1)

91 for word , i in word_index.items():

92 index_word[i] = word

93

94 question1_word_sequences_tags = []

95 question2_word_sequences_tags = []

96 for sentence in question1_word_sequences:

97 sentence = [index_word[i] for i in sentence]

98 tags = ’ ’.join([x[1] for x in nltk.pos_tag(sentence)])

99 question1_word_sequences_tags.append(tags)

100 for sentence in question2_word_sequences:

101 sentence = [index_word[i] for i in sentence]

102 tags = ’ ’.join([x[1] for x in nltk.pos_tag(sentence)])

103 question2_word_sequences_tags.append(tags)

104 tokenizer_tag = Tokenizer(nb_words=MAX_NB_WORDS_TAGS)

105 tokenizer_tag.fit_on_texts(question1_word_sequences_tags +

question2_word_sequences_tags)

106 question1_word_sequences_tags =

tokenizer_tag.texts_to_sequences(question1_word_sequences_tags)
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107 question2_word_sequences_tags =

tokenizer_tag.texts_to_sequences(question2_word_sequences_tags)

108

109 print("Words in index: %d" % len(word_index))

110

111 if not exists(KERAS_DATASETS_DIR + GLOVE_ZIP_FILE):

112 zipfile = ZipFile(get_file(GLOVE_ZIP_FILE ,

GLOVE_ZIP_FILE_URL))

113 zipfile.extract(GLOVE_FILE , path=KERAS_DATASETS_DIR)

114

115 print("Processing", GLOVE_FILE)

116

117 embeddings_index = {}

118 with open(KERAS_DATASETS_DIR + GLOVE_FILE) as f:

119 # with open(KERAS_DATASETS_DIR + GLOVE_FILE ,

encoding=’utf -8’) as f:

120 for line in f:

121 values = line.split(’ ’)

122 word = values [0]

123 embedding = np.asarray(values [1:], dtype=’float32 ’)

124 embeddings_index[word] = embedding

125

126 print(’Word embeddings: %d’ % len(embeddings_index))

127

128 nb_words = min(MAX_NB_WORDS , len(word_index))

129 nb_words_tags = min(MAX_NB_WORDS_TAGS ,

len(tokenizer_tag.word_index))
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130 word_embedding_matrix = np.zeros (( nb_words + 1,

EMBEDDING_DIM))

131 for word , i in word_index.items():

132 if i > MAX_NB_WORDS:

133 continue

134 embedding_vector = embeddings_index.get(word)

135 if embedding_vector is not None:

136 word_embedding_matrix[i] = embedding_vector

137

138 print(’Null word embeddings: %d’ %

np.sum(np.sum(word_embedding_matrix , axis =1) == 0))

139

140 q1_data = pad_sequences(question1_word_sequences ,

maxlen=MAX_SEQUENCE_LENGTH)

141 q2_data = pad_sequences(question2_word_sequences ,

maxlen=MAX_SEQUENCE_LENGTH)

142 q1_data_tag = pad_sequences(question1_word_sequences_tags ,

maxlen=MAX_SEQUENCE_LENGTH)

143 q2_data_tag = pad_sequences(question2_word_sequences_tags ,

maxlen=MAX_SEQUENCE_LENGTH)

144

145 labels = np.array(is_duplicate , dtype=int)

146 print(’Shape of question1 data tensor:’, q1_data.shape)

147 print(’Shape of question2 data tensor:’, q2_data.shape)

148 print(’Shape of label tensor:’, labels.shape)

149

150 np.save(open(Q1_TRAINING_DATA_FILE , ’wb’), q1_data)

151 np.save(open(Q2_TRAINING_DATA_FILE , ’wb’), q2_data)
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152 np.save(open(Q1_TAG_TRAINING_DATA_FILE , ’wb’), q1_data_tag)

153 np.save(open(Q2_TAG_TRAINING_DATA_FILE , ’wb’), q2_data_tag)

154

155 np.save(open(LABEL_TRAINING_DATA_FILE , ’wb’), labels)

156 np.save(open(WORD_EMBEDDING_MATRIX_FILE , ’wb’),

word_embedding_matrix)

157 with open(NB_WORDS_DATA_FILE , ’w’) as f:

158 json.dump({’nb_words ’: nb_words , ’nb_words_tags ’:

nb_words_tags}, f)
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Appendix B

Implementation of Basic Siamese

LSTM

1

2 from __future__ import print_function

3 import numpy as np

4 import csv , datetime , time , json

5 from zipfile import ZipFile

6 from os.path import expanduser , exists

7 from keras.preprocessing.text import Tokenizer

8 from keras.preprocessing.sequence import pad_sequences

9 from keras.models import Sequential

10 from keras.layers import Embedding , Dense , Dropout , Reshape ,

Merge , BatchNormalization , TimeDistributed , Lambda

11 from keras.regularizers import l2

12 from keras.callbacks import Callback , ModelCheckpoint

13 from keras.utils.data_utils import get_file

14 from keras.engine import Input , Merge , Model
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15 from keras.layers import Embedding , Bidirectional , LSTM , Dense ,

BatchNormalization , Activation , Lambda

16 from keras.optimizers import Adam , Adadelta , Adagrad , RMSprop , SGD

17 from keras import backend as K

18 from sklearn.model_selection import train_test_split

19 import nltk

20

21 embedding = Embedding(nb_words + 1, EMBEDDING_DIM ,

weights =[ word_embedding_matrix],

input_length=MAX_SEQUENCE_LENGTH ,

22 trainable=False)

23 tag_embedding = Embedding(nb_words_tags + 1, TAG_EMBEDDING_DIM ,

24 input_length=MAX_SEQUENCE_LENGTH ,

25 trainable=True)

26

27

28 def build_rnn ():

29 input_query_a = Input(shape =(None ,), name=’input_query_a ’,

dtype=’int32 ’)

30 input_query_b = Input(shape =(None ,), name=’input_query_b ’,

dtype=’int32 ’)

31

32 embedding_query_a = embedding(input_query_a) # output

dimension is 100

33 embedding_query_b = embedding(input_query_b) # output

dimension is 100

34
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35 lstm_query_a = LSTM(output_dim =200, init=’glorot_uniform ’,

inner_init=’orthogonal ’)(

36 embedding_query_a)

37 lstm_query_b = LSTM(output_dim =200, init=’glorot_uniform ’,

inner_init=’orthogonal ’)(

38 embedding_query_b)

39 merged = Merge(mode=’concat ’)([ lstm_query_a , lstm_query_b ])

40 output = Dense(output_dim =1, activation=’sigmoid ’,

W_regularizer=’l2’)(merged)

41

42 model = Model(input =[ input_query_a , input_query_b],

output=output)

43 return model

44

45

46 model = build_rnn ()

47

48 model.compile(loss=’binary_crossentropy ’,

49 optimizer=’adam’,

50 metrics =[’accuracy ’, ’precision ’, ’recall ’,

’fbeta_score ’])

51

52 callbacks = [ModelCheckpoint(MODEL_WEIGHTS_FILE ,

monitor=’val_acc ’, save_best_only=True)]

53

54 print("Starting training at", datetime.datetime.now())

55

56 t0 = time.time()
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57 history = model.fit([Q1_train , Q2_train , Q1_TAG_train ,

Q2_TAG_train],

58 y_train ,

59 nb_epoch=NB_EPOCHS ,

60 validation_split=VALIDATION_SPLIT ,

61 verbose=1,

62 callbacks=callbacks)

63 t1 = time.time()

64

65 print("Training ended at", datetime.datetime.now())

66

67 print("Minutes elapsed: %f" % ((t1 - t0) / 60.))

68

69 model.load_weights(MODEL_WEIGHTS_FILE)

70

71 loss , accuracy , precision , recall , fbeta_score =

model.evaluate ([Q1_test , Q2_test , Q1_tag_test , Q2_tag_test],

y_test)

72 print(’’)

73 print(’loss = {0:.4f}’.format(loss))

74 print(’accuracy = {0:.4f}’.format(accuracy))

75 print(’precision = {0:.4f}’.format(precision))

76 print(’recall = {0:.4f}’.format(recall))

77 print(’F = {0:.4f}’.format(fbeta_score))
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Appendix C

Implementation of Siamese

Bidirectionarl LSTM

1

2 from __future__ import print_function

3 import numpy as np

4 import csv , datetime , time , json

5 from zipfile import ZipFile

6 from os.path import expanduser , exists

7 from keras.preprocessing.text import Tokenizer

8 from keras.preprocessing.sequence import pad_sequences

9 from keras.models import Sequential

10 from keras.layers import Embedding , Dense , Dropout , Reshape ,

Merge , BatchNormalization , TimeDistributed , Lambda

11 from keras.regularizers import l2

12 from keras.callbacks import Callback , ModelCheckpoint

13 from keras.utils.data_utils import get_file

14 from keras.engine import Input , Merge , Model
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15 from keras.layers import Embedding , Bidirectional , LSTM , Dense ,

BatchNormalization , Activation , Lambda

16 from keras.optimizers import Adam , Adadelta , Adagrad , RMSprop , SGD

17 from keras import backend as K

18 from sklearn.model_selection import train_test_split

19 import nltk

20

21 embedding = Embedding(nb_words + 1, EMBEDDING_DIM ,

weights =[ word_embedding_matrix],

input_length=MAX_SEQUENCE_LENGTH ,

22 trainable=False)

23 tag_embedding = Embedding(nb_words_tags + 1, TAG_EMBEDDING_DIM ,

24 input_length=MAX_SEQUENCE_LENGTH ,

25 trainable=True)

26

27

28 def build_bi_rnn ():

29 input_query_a = Input(shape =(None ,), name=’input_query_a ’,

dtype=’int32 ’)

30 input_query_b = Input(shape =(None ,), name=’input_query_b ’,

dtype=’int32 ’)

31

32 embedding_query_a = embedding(input_query_a) # output

dimension is 100

33 embedding_query_b = embedding(input_query_b) # output

dimension is 100

34
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35 lstm_query_a = Bidirectional(LSTM(output_dim =50,

init=’glorot_uniform ’, inner_init=’orthogonal ’),

merge_mode=’sum’)(

36 embedding_query_a)

37 lstm_query_b = Bidirectional(LSTM(output_dim =50,

init=’glorot_uniform ’, inner_init=’orthogonal ’),

merge_mode=’sum’)(

38 embedding_query_b)

39 merged = Merge(mode=’concat ’)([ lstm_query_a , lstm_query_b ])

40 output = Dense(output_dim =1, activation=’sigmoid ’,

W_regularizer=’l2’)(merged)

41

42 model = Model(input=[ input_query_a , input_query_b],

output=output)

43 return model

44

45

46

47 model = build_bi_rnn ()

48

49 model.compile(loss=’binary_crossentropy ’,

50 optimizer=’adam’,

51 metrics =[’accuracy ’, ’precision ’, ’recall ’,

’fbeta_score ’])

52

53 callbacks = [ModelCheckpoint(MODEL_WEIGHTS_FILE ,

monitor=’val_acc ’, save_best_only=True)]

54
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55 print("Starting training at", datetime.datetime.now())

56

57 t0 = time.time()

58 history = model.fit([Q1_train , Q2_train , Q1_TAG_train ,

Q2_TAG_train],

59 y_train ,

60 nb_epoch=NB_EPOCHS ,

61 validation_split=VALIDATION_SPLIT ,

62 verbose=1,

63 callbacks=callbacks)

64 t1 = time.time()

65

66 print("Training ended at", datetime.datetime.now())

67

68 print("Minutes elapsed: %f" % ((t1 - t0) / 60.))

69

70 model.load_weights(MODEL_WEIGHTS_FILE)

71

72 loss , accuracy , precision , recall , fbeta_score =

model.evaluate ([Q1_test , Q2_test , Q1_tag_test , Q2_tag_test],

y_test)

73 print(’’)

74 print(’loss = {0:.4f}’.format(loss))

75 print(’accuracy = {0:.4f}’.format(accuracy))

76 print(’precision = {0:.4f}’.format(precision))

77 print(’recall = {0:.4f}’.format(recall))

78 print(’F = {0:.4f}’.format(fbeta_score))
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Appendix D

Implementation of Multi-Channel

Siamese BLSTM(MC-BLSTM)

1

2 from __future__ import print_function

3 import numpy as np

4 import csv , datetime , time , json

5 from zipfile import ZipFile

6 from os.path import expanduser , exists

7 from keras.preprocessing.text import Tokenizer

8 from keras.preprocessing.sequence import pad_sequences

9 from keras.models import Sequential

10 from keras.layers import Embedding , Dense , Dropout , Reshape ,

Merge , BatchNormalization , TimeDistributed , Lambda

11 from keras.regularizers import l2

12 from keras.callbacks import Callback , ModelCheckpoint

13 from keras.utils.data_utils import get_file

14 from keras.engine import Input , Merge , Model
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15 from keras.layers import Embedding , Bidirectional , LSTM , Dense ,

BatchNormalization , Activation , Lambda

16 from keras.optimizers import Adam , Adadelta , Adagrad , RMSprop , SGD

17 from keras import backend as K

18 from sklearn.model_selection import train_test_split

19 import nltk

20

21 embedding = Embedding(nb_words + 1, EMBEDDING_DIM ,

weights =[ word_embedding_matrix],

input_length=MAX_SEQUENCE_LENGTH ,

22 trainable=False)

23 tag_embedding = Embedding(nb_words_tags + 1, TAG_EMBEDDING_DIM ,

24 input_length=MAX_SEQUENCE_LENGTH ,

25 trainable=True)

26

27

28 def build_bi_rnn ():

29 input_query_a = Input(shape =(None ,), name=’input_query_a ’,

dtype=’int32 ’)

30 input_query_b = Input(shape =(None ,), name=’input_query_b ’,

dtype=’int32 ’)

31

32 input_query_tag_a = Input(shape =(None ,),

name=’input_query_tag_a ’, dtype=’int32’)

33 input_query_tag_b = Input(shape =(None ,),

name=’input_query_tag_b ’, dtype=’int32’)

34
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35 embedding_query_a = embedding(input_query_a) # output

dimension is 100

36 embedding_query_b = embedding(input_query_b) # output

dimension is 100

37

38 embedding_query_tag_a = tag_embedding(input_query_tag_a)

39 embedding_query_tag_b = tag_embedding(input_query_tag_b)

40 merged_a = Merge(mode=’concat ’)([ embedding_query_a ,

embedding_query_tag_a ])

41 merged_b = Merge(mode=’concat ’)([ embedding_query_b ,

embedding_query_tag_b ])

42

43 lstm_query_a = Bidirectional(LSTM(output_dim =100,

init=’glorot_uniform ’, inner_init=’orthogonal ’),

merge_mode=’sum’)(

44 merged_a)

45 lstm_query_b = Bidirectional(LSTM(output_dim =100,

init=’glorot_uniform ’, inner_init=’orthogonal ’),

merge_mode=’sum’)(

46 merged_b)

47 merged = Merge(mode=’concat ’)([ lstm_query_a , lstm_query_b ])

48 output = Dense(output_dim =1, activation=’sigmoid ’,

W_regularizer=’l2’)(merged)

49

50 model = Model(input =[ input_query_a , input_query_b ,

input_query_tag_a , input_query_tag_b], output=output)

51 return model

52
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53

54 model = build_bi_rnn ()

55

56 model.compile(loss=’binary_crossentropy ’,

57 optimizer=’adam’,

58 metrics =[’accuracy ’, ’precision ’, ’recall ’,

’fbeta_score ’])

59

60 callbacks = [ModelCheckpoint(MODEL_WEIGHTS_FILE ,

monitor=’val_acc ’, save_best_only=True)]

61

62 print("Starting training at", datetime.datetime.now())

63

64 t0 = time.time()

65 history = model.fit([Q1_train , Q2_train , Q1_TAG_train ,

Q2_TAG_train],

66 y_train ,

67 nb_epoch=NB_EPOCHS ,

68 validation_split=VALIDATION_SPLIT ,

69 verbose=1,

70 callbacks=callbacks)

71 t1 = time.time()

72

73 print("Training ended at", datetime.datetime.now())

74

75 print("Minutes elapsed: %f" % ((t1 - t0) / 60.))

76

77 model.load_weights(MODEL_WEIGHTS_FILE)
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78

79 loss , accuracy , precision , recall , fbeta_score =

model.evaluate ([Q1_test , Q2_test , Q1_tag_test , Q2_tag_test],

y_test)

80 print(’’)

81 print(’loss = {0:.4f}’.format(loss))

82 print(’accuracy = {0:.4f}’.format(accuracy))

83 print(’precision = {0:.4f}’.format(precision))

84 print(’recall = {0:.4f}’.format(recall))

85 print(’F = {0:.4f}’.format(fbeta_score))
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Appendix E

Sample data in Quora

id qid1 qid2 question1 question2 is duplicate

0 1 2 What is the step by step

guide to invest in share mar-

ket in india?

What is the step by step

guide to invest in share mar-

ket?

0

1 3 4 What is the story of Ko-

hinoor (Koh-i-Noor) Dia-

mond?

What would happen if the

Indian government stole the

Kohinoor (Koh-i-Noor) dia-

mond back?

0

2 5 6 How can I increase the speed

of my internet connection

while using a VPN?

How can Internet speed

be increased by hacking

through DNS?

0

3 7 8 Why am I mentally very

lonely? How can I solve it?

Find the remainder when

math 23 24 math is divided

by 24,23?

0
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4 9 10 Which one dissolve in water

quikly sugar, salt, methane

and carbon di oxide?

Which fish would survive in

salt water?

0

5 11 12 Astrology: I am a Capri-

corn Sun Cap moon and cap

rising...what does that say

about me?

I’m a triple Capricorn (Sun,

Moon and ascendant in

Capricorn) What does this

say about me?

1

6 13 14 Should I buy tiago? What keeps childern active

and far from phone and

video games?

0

7 15 16 How can I be a good geolo-

gist?

What should I do to be a

great geologist?

1

9 19 20 Motorola (company): Can I

hack my Charter Motorolla

DCX3400?

How do I hack Motorola

DCX3400 for free internet?

0

10 21 22 Method to find separation of

slits using fresnel biprism?

What are some of the things

technicians can tell about

the durability and reliability

of Laptops and its compo-

nents?

0

11 23 24 How do I read and find my

YouTube comments?

How can I see all my

Youtube comments?

1
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447 895 896 What are natural numbers? What is a least natural num-

ber?

0

1518 3037 3038 Which pizzas are the most

popularly ordered pizzas on

Domino’s menu?

How many calories does a

Dominos pizza have?

0

3272 6542 6543 How do you start a bakery? How can one start a bakery

business?

1

Table E.1: Sample data in Quora
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