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Foreword

�is thesis is the culmination of my research conducted from January 4, 2018, to

October 15, 2018, for the completion of my Master of Research and demonstrates my

suitability for the Doctor of Philosophy.

My �rst author paper ‘Radio Galaxy Zoo: Unsupervised Clustering of Convolution-
ally Encoded Radio-astronomical Images’ is featured in the Appendix as Ralph et al.

(2018), was submi�ed to the Machine Intelligence in Astronomy and Astrophysics

Special Issue of the Publications of the Astronomical Society of the Paci�c on July

24, 2018 and is currently under the process of review (distribution of work amongst

authors detailed in Appendix A). �e preliminary methodology and results of this

thesis were featured in Ralph et al. (2018), and �nal results are the results obtained

a�er submission of the paper.

�is thesis was wri�en from an engineering point of view, based on my under-

graduate studies. As a result, the methods explored in this thesis are not unique to the

radio astronomy application, but typical of any image processing and machine learn-

ing task. I wrote this thesis with a mixed audience and the new ‘machine learning

astronomer’ in mind. �is assumes a basic understanding of computation and astron-

omy and was composed in a manner not to alienate either astronomers or machine

learning readers.
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Abstract

In this thesis, I demonstrate a novel and e�cient unsupervised clustering and data ex-

ploration method with the combination of a Self-Organising Map (SOM) and a Con-

volutional Autoencoder, applied to radio-astronomical images from the Radio Galaxy

Zoo (RGZ) dataset.

�e rapidly increasing volume and complexity of radio-astronomical data have

ushered in a new era of big-data astronomy which has increased the demand for Ma-

chine Learning (ML) solutions. In this era, the sheer amount of image data produced

with modern instruments and has resulted in a signi�cant data deluge. Furthermore,

the morphologies of objects captured in these radio-astronomical images are highly

complex and challenging to classify conclusively due to their intricate and indiscrete

nature. Additionally, major radio-astronomical discoveries are unplanned and found

in the unexpected, making unsupervised ML highly desirable by operating with few

assumptions and without labelled training data.

In this thesis, I developed a novel unsupervised ML approach as a practical so-

lution to these astronomy challenges. Using this system, I demonstrated the use of

convolutional autoencoders and SOM’s as a dimensionality reduction method to de-

lineate the complexity and volume of astronomical data. My optimised system shows

that the coupling of these methods is a powerful method of data exploration and un-

supervised clustering of radio-astronomical images.

�e results of this thesis show this approach is capable of accurately separating

features by complexity on a SOM manifold and uni�ed distance matrix with neigh-

bourhood similarity and hierarchical clustering of the mapped astronomical features.

�is method provides an e�ective means to explore the high-level topological rela-

tionships of image features andmorphology in large datasets automatically with min-

imal processing time and computational resources. I achieved these capabilities with

a new and innovative method of SOM training using the autoencoder compressed

latent feature vector representations of radio-astronomical data, rather than raw im-

ages. Using this system, I successfully investigated SOM a�ne transformation in-

variance and analysed the true nature of rotational e�ects on this manifold using

autoencoder random rotation training augmentations.
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�roughout this thesis, I present my method as a powerful new approach to data

exploration technique and contribution to the �eld. �e speed and e�ectiveness of

this method indicates excellent scalability and holds implications for use on large

future surveys, large-scale instruments such as the Square Kilometre Array and in

other big-data and complexity analysis applications.
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Chapter 1

Background

Since the �rst observations, astronomers have been pursuing new technologies to

peer ever deeper into the cosmos. �is pursuit has seen the design focus of instru-

mentation aimed at pushing the boundaries of sensitivity and resolution. With these

advancements, however, the volume and complexity of observational data have also

signi�cantly increased. �is e�ect is compounded in radio astronomywith the advent

of new large-scale radio telescope arrays. Merely applying progressively greater com-

putation resources to this ‘big-data’ problem is not e�cient and in many cases, not

e�ective (Pruyt et al., 2014). Consequently, powerful Machine Learning solutions are

now becoming a key focus to combat the inundation of highly complex observational

data in this new modern era of big-data astronomy.

�is thesis aimed to use Machine Learning (ML) methods trained on the Radio

Galaxy Zoo dataset to bridge these research gaps. To achieve this aim, I developed

a novel combination of latent image feature extraction using autoencoders to train

a Self-Organising Map SOM for topological morphology analysis. Using this delin-

eated SOM space, I investigated the K-means clustering algorithm for unsupervised

clustering of radio-image morphologies. I assessed the performance of this hybrid

system by its ability to reduce the volume and complexity of radio astronomical data

for morphological exploration, complexity separation and processing time.

�is Chapter gives a brief overview of astronomy, the impact of the �eld and the

progression of radio astronomy instrumentation toward large-scale radio telescopes.

�e challenges and implications of these large-scalemachines are discussed in Section

1.1.2, and the machine learning solutions to these challenges are explained in the

subsequent Section 1.2. �is background Chapter concludes with the research gaps

found within literature, in addition to the research questions and aims of this thesis.

Methods discussed in this Chapter that are speci�c to the applications of this thesis

are explained in greater detail in my methodology, featured in Chapter 2.
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1.1 Modern Astronomy

Astronomy is the science of the celestial objects that the compose universe. �is

astronomy study is based on observing electromagnetic radiation, cosmic rays, neu-

trinos and gravitational waves emi�ed by the astrophysical processes of these objects.

It is through these observations that much of our knowledge of the universe has been

founded (Riess et al., 1998).

�e �rst astronomers began observing by the naked eye to monitor the visible

light emi�ed from stellar objects. However, the sensitivity and resolution of what

could be interpreted by eye prevented astronomers from viewing and distinguishing

faint objects or resolving their full detail. As the �eld grew, these boundaries were

gradually pushed with more sophisticated instruments such as optical telescopes.

�ese telescopes pioneered the modern paradigm of collecting as much emission as

possible from a large collection surface to maximise the resolution of detected emis-

sion.

Although the pursuit of higher sensitivity and resolution has been ceaseless, as-

tronomers sought to observe more than just the visible light. �e �eld gradually

advanced to develop emission speci�c detection methods to capture the remainder of

the electromagnetic spectrum outside visible light (Figure 1.1) with ever-improving

instrumentation.

Figure 1.1: Standard model of the electromagnetic spectrum (Credit: Andrew David-

hazy
1
).

Researchers found each part of this spectrum o�ered di�erent insights into as-

tronomy through the various processes that produce their emissions. Shown in Fig-

ure 1.2, the crab nebula uncovers startlingly di�erent features when imaged across

1
h�ps://saylordotorg.github.io/

2
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the full spectrum. So-called ‘multi-messenger’ astronomy combines these observa-

tion methods with only relatively recently discovered exotic emission such as cosmic

rays, neutrinos and gravitational waves to reveal further hidden information (Abbo�

et al., 2017).

Figure 1.2: �e crab nebula observed across the electromagentic spectrum (Credit:

Cherenkov Telescope Array
2
).

As researchers further investigated the longwavelength end of the spectrum, they

stumbled on the unique myriad of information previously trapped in long wave-

length radio emission. �ese �rst steps into radio astronomy started in 1933 with

engineer Karl G. Jansky’s observation of astronomical radio emission from the Milky

Way (Jansky, 1933). Since this discovery, radio astronomy has become a key part of

the �eld with the exclusive insight, it provides into exotic objects such as quasars,

Active Galactic Nuclei (AGN), the Inter-Stellar Medium (ISM) and the evolution of

galaxies and star formation (Norris, 2017b). Much of this insight is gained by cross-

matching radio sources with Infrared (IR) sources to di�erentiate between AGN and

star-formation-dominated emission (Seymour et al., 2008; Ban�eld et al., 2015; Alger

et al., 2018).

1.1.1 �e Progression of Radio Telescopes to Large-Scale
Instruments

Four years a�er Karl G. Jansky’s extra-planetary radio detection, the �rst parabolic

radio telescope was built by Grote Reber in 1937 (Figure 1.3). With this telescope,

Reber pioneered the �rst radio sky survey as a collection of radio objects or ‘radio

sources’ and physical properties such as position (Reber, 1940). Although the princi-

ple of these instruments has remained the same, they have expanded to larger single

�lled aperture telescopes such as the Parkes 64 m telescope in Figure 1.4, to many

other variations such as radio dipoles to radio interferometers (Ryle, 1952) and phased

array feeds (Johnston et al., 2007).

2
h�ps://www.cta-observatory.org/science/

3
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Figure 1.3: �e �rst parabolic radio telescope was built by Grote Reber in 1937 with a

parabolic dish made of sheet metal 9.56 m in diameter to focus radio waves to a point

6.1 m above the dish. �e wooden tower at the le� is used for access to the receiver

(Credit: Image courtesy of NRAO/AUI
3
).

3
h�ps://www.nrao.edu/hist-reber.shtml
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Figure 1.4: �e Parkes 64 m steerable �lled aperture radio telescope, located in Parkes,

New South Wales, Australia (Credit: John Sarkissian
4
).

Parabolic dish systems used as radio telescopes are designed to measure the ra-

dio frequency power radiated by astronomical objects. In practical radio astronomy,

these systems are known as ‘�lled aperture radio telescopes’ (Findlay, 1971). Typical

radio telescopes are analogous to re�ective optical telescopes, where arriving electro-

magnetic waves are directed from a parabolic re�ector to the receiver. In the case of

radio astronomy, high-resolution imaging requires a large collection due to the im-

plications of collecting long wavelength emission (Christiansen, 1953). As shown in

Equation 1.1, the resolution as the smallest angular separation to distinguish separate

objects is given by δ as the ratio of emission wavelength λ and the dish diameter D.

As a result, this diameter is the essential limiting factor for resolution (Rohlfs and

Wilson, 2013).

δ =
λ

D
(1.1)

To obtain a radio-brightness distribution of the whole sky or particular region,

these antennas are directed to the area of interest, mechanically (or electrically in

the case of steerable beams) or simply with the rotation of the earth (Findlay, 1971).

Since steering these telescopes is necessary to focus on speci�c regions, mechani-

cal terms limit the size of these dishes and in turn, restricts the collection area and

4
h�ps://www.skatelescope.org/news/parkes

5
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thus the angular resolution. By observing radio emission from earth, we are lim-

ited to only detecting emission in a �nite collecting area based on our perspective,

known as �ux, S , the density of which is given by the unit of Janksy, Jy where 1 Jy =

1x10
−26

Wm
−2
Hz
−1
.

Despite di�erences in instrumentation, the same barriers of resolution and sensi-

tivity that astronomers have always faced are no di�erent in radio astronomy. �ese

boundaries are very restrictive with a large collection area required to achieve reason-

able angular separation and the typical signal to noise ratio of astronomical sources

being between 1x10
−15

and 1x10
−20

.

�e typical solution to improving these factors is to build telescopes with more

sophisticated detection apparatus and a much larger emission collection area. As

an inconceivably large dish is not practical or probable, these requirements have in-

creased focus in radio interferometry techniques where observations from multiple

radio telescopes can be combined to increase the resolution drastically. Based on

Equation 1.1, the e�ective diameter D of a radio interferometer is given as the sepa-

ration or ‘baseline’ between array telescopes.

In radio astronomy this focus has seen the advent of large radio telescope arrays

such as the Karl G. Jansky Very Large Array (VLA) in Figure 1.5 and the Australian

Square Kilometre Array Path�nder (ASKAP) in Figure 1.6. Modern interferometry has

also seen the implementation of so-called Very Long Base Line Interferometry (VLBI),

where telescopes separated by great distances are used as one single large interfer-

ometer. �e advantages borne from these developments have brought massive scale

astronomical instrumentation to the foreground of modern science and engineering

with the planning of future facilities such as the Square Kilometre Array (SKA) with

arrays spanning multiple countries (Johnston et al., 2007). Similarly, the development

of other large-scale instruments is now seen across many other astronomy disciplines

with the Extremely Large Telescope (ELT), in optical astronomy and the Cherenkov

Telescope Array (CTA) in gamma-ray astronomy.

6



Figure 1.5: �e Karl G. Jansky VLA operated by the NRAO and AUI, featuring 27

parabolic antenna’s, each with a diameters of 25 m, arranged in a ‘Y’ shaped array,

located in central New Mexico. Image courtesy of NRAO/AUINRAO
5
.

Figure 1.6: �e ASKAP, featuring 36 parabolic antenna’s (not all present in image),

each with a diameter of 12 m, located in the MRO, Western Australia (Credit: Ray

Norris, supervisor).

5
h�p://images.nrao.edu/90
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Although these new immense machines provide vastly deeper observations of

the cosmos, they are not without their caveats. �e next Section will discuss the data

implications and challenges that these large-scale instruments bring to the �eld and

how astronomy is evolving to accommodate them.

1.1.2 Challenges of Data Complexity and Volume in
Astronomy

As new astronomical instruments and technologies have increased in scale and com-

plexity, so has the data that these instruments collect (VanderPlas et al., 2012). Con-

sequently, astronomy has entered the era of big data, where current surveys and ob-

servations now contain large volumes of highly complex data (Kremer et al., 2017).

�ese large radio continuum surveys have played a key role in our understanding of

the evolution of galaxies (Norris, 2017b) and without su�cient techniques to analyse

them, discoveries may not be uncovered.

Large-scale radio observing campaigns have seen the production of expansive cat-

alogues such as Faint Images of the Radio Sky at Twenty Centimetres (FIRST) (Becker

et al., 1995) with over 950,000 sources and the NRAO VLA Sky Survey (NVSS) (Con-

don et al., 1998) containing over 1.8 million sources as shown in Figure 1.8. �ese

pale in comparison to exceptionally large surveys such as the Evolutionary Map of

the Universe (Norris et al., 2011, EMU) of ASKAP, which is expected to detect over

70 million radio sources. Illustrated in Figure 1.7, these surveys are not only con-

tained an increased number of sources but also greatly increased limiting sensitivity.

Although radio surveys have great complexity and volume, even the Evolutionary

Map of the Universe (EMU) survey is dwarfed by the Sloan Digital Sky Survey (SDSS)

currently with over 1.23 billion sources with an area of 14,555 deg
2
(York et al., 2000)

and the planned Large Synoptic Survey Telescope (LSST) survey with a survey area

of greater than 20,000 deg
2
(LSST Science Collaboration et al., 2009). Survey science

with these massive catalogues further compounds the intricacy of collected data with

many observations now spanning multiple wavelengths and surveys. Consequently,

the demand for cross-matching radio sources with other observations has increased,

with greater potential for radio cross-matching to provide deeper insight into sources

and phenomenon found by observing at di�erent wavelengths (Alger et al., 2018).

�e sheer volume and complexity of these highly sensitive and expansive surveys

is a problem for astronomers (Gra� et al., 2014), particularly when traditional tech-

niques for typical tasks such as morphological classi�cation and outlier detection be-

come insu�cient for this new volume of multi-wavelength data. �ese demanding

tasks can be segmented into a number of groups:

5
h�ps://www.sdss.org/dr14/scope/
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Figure 1.7: �e survey sky area vs sensitivity of published radio surveys. Adapted

from (Norris, 2017b).

1. Classi�cation and regression;

2. Higher-Dimensional analysis with clustering and visualisation; and

3. Anomaly detection.

�e di�culty presented by these tasks in the big-data era of astronomy is pushing

researchers towards more sophisticated and automated solutions such as machine

learning. �e following Section outlines several machine learning methods and their

use in astronomy literature to solve these challenges.
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1.2 Machine Learning Solutions to Modern Astron-
omy Challenges

�eML technique is a common approach in datamining and statistics, where a system

is ‘trained’ to model the characteristics of a dataset (Mackay, 2003). Ideally, a properly

trained ML system can predict the qualities or classi�cation of a training set or new

unencountered data (Kotsiantis et al., 2007). At their core, these ML systems work

to optimise some representation of a dataset by updating its parameters based on the

evaluation of predictions made on the training set (Domingos, 2012; Boyd et al., 2011).

�e ability of ML methods to process highly complex data has a�racted the zeal

of many modern science applications from Genetics (Libbrecht and Noble, 2015),

Medicine (Kononenko, 2001), Image Processing (LeCun et al., 2015), and the modern

astronomer facing issues of big-data. Since its adoption in literature, thisML approach

has been shown as a powerful tool in overcoming the challenges of modern radio as-

tronomy and the wider �eld (Ball and Brunner, 2010). Despite these successes, there

is no perfect single ML system or combination of ML systems as a hybrid or ensemble
system (Opitz and Maclin, 1999) that balances speed and accuracy for all applications.

Due to their inherent complexity and autonomous nature, these systems are o�en

viewed as ‘black-box’ (Krause et al., 2016). As a result, ML methods require a careful

application or robust ensemble combination to achieve sound results.

�e complexity of ML systems can be found in its autonomous optimisation and

the process of re�ning the trade-o� between the sensitivity of the system to small

changes (bias) and substantial changes (variance) in the input dataset (Geman et al.,

1992). Excessive variance in training causes over-��ing, a problem of early methods

(Die�erich, 1995), where the learned model too closely resembles the input train-

ing set to characterise new data adequately. Conversely, extreme bias causes under-

��ing, where the characteristic features of the training set are overlooked.

Finding this balance is further complicated when a trained ML algorithm used

to classify images with a speci�c orientation and scale encounters the same training

image at an untrained angle or scale (Perantonis and Lisboa, 1992). A�ne transforma-

tions such as rotation, scaling and translation, are a typical issue commonly resolved

by augmenting a training set with random transformations (Polsterer et al., 2015) of-

ten at the cost of training time or a�ne invariant techniques (Memisevic and Hinton,

2007). Training for a�ne transformation and balancing the bias-variance trade-o� is

critical in producing a generalised system that can be trained to work across multiple

applications.

�e new ML subset of astronomy employs a wide range of ML methods. �ese

are typically divided by their modelling approach and their unique training meth-

ods (Schmidhuber, 2015); supervised learning and unsupervised learning. Using the
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supervised learning paradigm, systems can be trained explicitly on labelled data to

predict the labels of new unseen data (Kotsiantis et al., 2007). Conversely, unsuper-

vised learning is conducted without labelled data, instead of detecting relationships

within the training set (Langkvist et al., 2014). �e choice between these training

methods holds many implications on the performance and outcomes of the system.

Although supervised learning allows the user to specify how the dataset should be

classi�ed by training set labels, this inherently produces a human bias and requires

time-consuming manual labelling of training sets (Torralba and Efros, 2011). Conse-

quentially, unsupervised methods are signi�cantly more di�cult as the human user

has less control over how the systemmaps the training set. Nonetheless, this unsuper-

vised paradigm has been shown to detect highly abstract relationships beyond human

comprehension, without the bias and labour inherent in manual labelling (Radford

et al., 2015).

Despite their di�erences and training methods, many machine learning methods

can be used in a combinatorial sense, seen with the advent of hybrid and ensem-

ble machine learning methods aiming to combine the advantages posed by multiple

algorithms (Die�erich, 2000). As with these ensemble systems, training method com-

binations have been implemented with semi-supervised learning to combine the ad-

vantages of both training methods by functioning without a full set of training data

labels (Zhu, 2006).

�e following sections analyse the literature of machine learning and astronomy

applied to the challenges detailed in Section 1.1.2. �is ML literature is not exclusive

to radio astronomy, as many appropriate ML solutions can be found from other �elds

and astronomy sub-�elds. �e various applications of these methods and their ability

to solve the current challenges of data scale and complexity in astronomy are also

discussed.

1.2.1 Astronomical Classi�cation and Inference

Classi�cation in ML is the mapping of data to a discrete class variable (Dougherty

et al., 1995) to infer the class of new unknown data based on the learned relationships

between training variables. ML related tasks such as regression map the continuous

variables of a training set to some continuous output. �ese classi�cation, inference

and regression tasks are highly valuable for applications such as astronomy with the

ability to automatically analyse and organise data. As a result, these ML techniques

are commonly applied to Astronomy.

In Astronomy, ML classi�cation is commonly applied to mapping an object to a

class based on observed physical di�erences. Literature sees prevalent use of these

ML systems in the galaxy morphology classi�cation (Huertas-Company et al., 2008;
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VanderPlas et al., 2012; Gra� et al., 2014; Lukic et al., 2018). Additionally, ML classi�-

cation has been used to discern between compact point sources or extended sources

in star-galaxy separation (Kovcs and Szapudi, 2015). Many applications are focussed

on the simple separation of sources into logical bins such as simple-complex classi�-

cation employed in radio astronomy (Lukic et al., 2018), illustrated in Figure 1.9, as an

extension of morphology classi�cation. Although e�ective, many of these methods

rely on supervised training, requiring large labelled training sets such as those pro-

vided by the RGZ datasets (Wong, 2018). �e RGZ dataset is a citizen science project

(Ban�eld et al., 2015) which produces a large image dataset with hand labelled an-

notations of the number of components and peaks for every resolved source in each

image (Ban�eld et al., 2015). �emajority of the radio image data in this dataset comes

from the 1.4 GHz FIRST survey (Becker et al., 1995) version 14 March 2004 and the

3.4 µm mid-IR data from the WISE survey all-sky data release in March 2012 (Cutri

and et al., 2012).

Figure 1.9: Examples of ‘simple’ compact (top row) and ‘complex’ multiple component

extended source images (bo�om row) from the RGZ dataset as the target of a ML

classi�er to distinguish (Lukic et al., 2018).

ML tasks such as these are di�cult as astronomical data is not entirely discrete

with features such as di�use or extended structure and evolutionary stages that lack

distinct characteristics or require cross-matching across multiple wavelengths. In

many cases, radio sources contain several unresolved components and peaks, which

requires sophisticated ML solutions to distinguish cross-matching classes in large

data volumes as sources acrosswavelengthsmay represent vastly di�erent phenomenon

(Lukic et al., 2018). Originally conducted through visual inspection, this cross-matching
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process is commonly achieved with simple probabilistic and algorithmic approaches

(Downes et al., 1986; Sutherland and Saunders, 1992; Fan et al., 2015), and has become

a focus of ML astronomy in light of the new data deluge (Ban�eld et al., 2015; Alger

et al., 2018).

Outside of the image domain, photometric ‘redshi�’ estimation has been gaining

a�ention inML classi�cation (Salvato et al., 2018), particularly in light of the increased

size and sensitivity of new radio surveys. Inferring these redshi�s allow astronomers

to estimate the distance of extra-galactic sources. �is is a relatively simple task with

complete spectroscopic data, as an operation of detecting the shi� in features of an

observed Spectral Energy Distribution (SED) due to the expansion of the universe.

With sparse and incomplete photometric data, this becomes a strong case for ML use,

where redshi� can be automatically estimated by ��ing sparse data of a source SED

to a known model (Bentez, 2000).

In the following sub-sections, the foundation methods of machine learning ap-

plied to these classi�cation and inference tasks are demonstrated, and their e�ective-

ness in astronomy discussed.

1.2.1.1 K-Nearest Neighbours Algorithm

�e k-Nearest Neighbour (KNN) algorithm (Cover and Hart, 1967), is a simple machine

learning technique that classi�es data based on the ‘voting’ of K neighbour classes

surrounding given data points or vector elements xi and yi , separated by a distance

function d , such as Euclidean Distance D (Equation 1.2). �is algorithm has seen suc-

cessful use in astronomy in galaxy evolution classi�cation using spectral data (Bundy

et al., 2006), redshi� estimation (Ball et al., 2007) and outlier classi�cation (Marengo

and Sanchez, 2009). �e main advantage of the KNN algorithm is the relative simplic-

ity of its operation and how it intuitively separates data. However, this algorithm is

computationally intensive with every combination of dataset element within a given

neighbourhood analysed for training and analysis.

D(x,y) =

√√
n∑
i=1

(yi − xi)2 (1.2)

1.2.1.2 Support Vector Machines

Literature has shown success withmore complex approaches such as a Support Vector

Machine (Cortes and Vapnik, 1995, SVM), for binary class separation. Support Vector

Machines (SVMs) achieve this separation with a hyperplane decision surface shown

in Figure 1.10, learned by raising the dimensionality of input data using the kernel

method. Using this method, data instances in this space are de�ned by support vec-

tors (maximum margins) that specify their position relative to this decision surface.
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SVMs have demonstrated excellent performance in multi-wavelength object classi�-

cation (Zhang and Zhao, 2004; Malek et al., 2013), stellar spectra classi�cation (Liu

et al., 2018) and star-galaxy separation (Fadely et al., 2012). Additionally, recent work

with SVMs has shown successful implementation of fuzzy SVMs to take measure-

ment error into account in object classi�cation (Poliszczuk et al., 2018). Combining

fuzzy operations in this way was shown as a robust learning method in classifying

astronomical data despite the indiscrete nature of astronomical data. Much like the

KNN approach, SVMs tend to produce an intuitive output; however, the underlying

kernel trick operation is highly abstract.

Separating
Hyper-Plane

Maximum Margin

Seperated Class 1

Seperated Class 2

Y

X

Figure 1.10: Demonstration of SVM separation of two classes using the calculated

hyper-plane and surrounding support vectors as the maximum margins. Adapted

from (Cortes and Vapnik, 1995).

1.2.1.3 Decision Tree Systems

Decision Tree (DT) systems (Morgan and Sonquist, 1963) operate on a similar paradigm

as SVMs by classifying through separation, but with the ability to separate data into

multiple topological classes. �e structure of a DT system is shown Figure 1.11, as

an acyclic graph containing a root node, which splits into child branches and nodes.

�ese systems separate data from the root into child nodes by the a�ributes of a

dataset iteratively, whileminimising a given error criterion. �e�nal nodes or ‘leaves’

represent the learned DT classes. Astronomers have used this intuitive approach with

great success much like the KNN and SVM algorithms in redshi� estimation (Suchkov
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et al., 2005), star-galaxy separation (Weir et al., 1995), (Ball et al., 2006), but also in

e�orts of Search of Extraterrestrial Intelligence (SETI) (Tarter, 2001). �is method of-

fers a unique advantage over other black-box machine learning methods by clearly

showing the decision conditions that dictate the tree structure of the dataset. �is

interpretable nature is a quality well recognised by astronomers in literature (Morice-

Atkinson et al., 2017). �ese systems bear a resemblance to similar tree systems em-

ployed with genetic algorithms (Mitchell, 1998), which also function to optimise to-

ward some solution in an evolutionary manner, where successive ‘generations’ of

solutions are iterated and the best chosen until convergence.

Figure 1.11: An DT system applied to astronomy (le�) used to separate sources into

classes C1, C2, and C3 based on observed variables x1 and x2. Displayed on the

right are the tree partitions as decision surfaces in the 2 dimensional a�ribute space

(Salzberg et al., 1995).

Multiple DT systems are o�en combined into an ensemble as a ‘bagging’ oper-

ation to create a Random Tree Forest (RTF) (Ho, 1995; Breiman, 1996, 2001). In a

RTF, each DT is trained on a subset of the data, the output of which is combined

by mean and variance to create the �nal classi�cation. As in the original DT ap-

proach, great success in classi�cation has been achieved, but at the cost of increased

computational time and reduced human-readability. Despite this trade o�, RTFs have

gained popularity in the astronomy community with use spanning from classi�cation

of periodic variable stars into importance, periodicity and amplitude classes (Dubath

et al., 2011), photometric redshi� estimation (Carliles et al., 2010; Carrasco Kind and

Brunner, 2013), in addition to typical image classi�cation approaches with supernova

remnant (Bailey et al., 2007), multi-wavelength object (Gao et al., 2009) and active

object classi�cation (Zhao and Zhang, 2008; Richards et al., 2011)

1.2.1.4 Neural Networks

Inspired by biological neurology, Neural Network (NN) learning systems (McCulloch

and Pi�s, 1943) are widely considered the current state of the art in machine learning

with resounding success in a wide range of applications (LeCun et al., 2015). NNs
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are networks of parametrised functions termed ‘neurons’, that operate as function

approximators. In a standard forward feed NN, neurons accept data as a single ele-

ment, whole dataset or a small dataset batch from the input layer, which is forwarded

through successive hidden layers and �nally an output layer as in Figure 1.12.

Input Layer

Hidden Layer

Output Layer

Figure 1.12: �e network architecture of a simple fully connected NN with three lay-

ers; an input layer, a single hidden layer in the centre and an output layer.

Neuron outputs are determined by their speci�c activation function (Equation

1.3). A basic activation function as in Equation 1.3 will produce an output y from the

input x by a weight productW , and summed with a bias b (Harvey, 1994).

y = f (wix + bi) (1.3)

�is �nal layer output, if expressed as a single neuron, is the sumof all constitution

neuron outputs as in Equation 1.4 and illustrated in Figure 1.12.

ykj =
k∑
i=0

f (Wkx + bk) (1.4)

NN output layers can also possessmany di�erent structures to produce the desired

trained output, ranging from a single value or continuous value so�max regression

(normalised exponential, Equation 1.5) as an array of weighted neuron outputs. �ese

regression layers are a common feature in NNs used to reduce neuron outputs or whole

layers down to a single variable.

P(y = j | x) = ex
TWj∑K

k=1 e
xTWk

(1.5)

�e output of these �nal layers e�ectively constitutes the prediction of the net-
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work. Commonly, network prediction is ‘learned’ by iteratively turning neuronweight

and bias parameters via mechanisms such as back-propagation (Harvey, 1994). In this

process, weights and bias’ are updated using stochastic gradient descent (Robbins and

Monro, 1951), scaled by a learning rate and a given loss function as the di�erence

measure between the input and output prediction to minimise a general objective

function. Typical examples of these include MSE (Equation 1.6 or Euclidean Distance

(Equation 1.2) where xi andyi denote the i
th
network output andy the ith observation.

MSE =
1

n

k∑
i=1

(yi − xi)2 (1.6)

Recent literature has seen the development of the Adaptive Moment (Adam) op-

timiser (Kingma and Ba, 2014), as an algorithm to optimise objective functions with

adaptive estimates of lower-order moments. �is algorithm has seen considerable

use and success as a simple, computationally e�cient and e�ective method in large

parameter networks (Ruder, 2016).

yi =max(wT
i x , 0) =


wT
i x ifwT

i x > 0

0 else

(1.7)

Non-linear neuron activation functions such as tanh, sigmoid and Recti�ed Linear
Unit (ReLU) (Equation 1.7) functions have greatly contributed to the success of NNs

by allowing the networks to recognise the underlying non-linear characteristics of

the input set (LeCun et al., 2015). Additionally, these functions provide a measure

of normalisation, where a network can generalise even outliers which may possess

data which resides in extreme ranges. �is generalisation approach has also seen

the implementation of techniques such as ‘drop-out’ (Srivastava et al., 2014) used to

prevent over-��ing by randomly dropping neuronweights based on some given prior.

NNs have shown great success in multiple �elds with a vast amount of tunable

parameters and the ability to interpret complex non-linear and higher dimensional

data (Krizhevsky et al., 2012). �is success has been further improved with the advent

of so-called ‘deep learning’ with deep NNs containing a large number of hidden layers

to allow higher levels of abstraction (LeCun et al., 2015). �roughout the development

of NNs, several augmentations to the structure, layers, connection types and neuron

composition have been created to extend network capabilities further.

�e addition of Convolutional Layers in NN as a CNNs (Szegedy et al., 2015) is

heralded as a major turning point in NNswith a signi�cant increase in a wide range

of successful applications. Using a convolutional layer, a series of feature maps or

kernels are spatially mapped to sections of the input data with shared weights. Addi-

tion of these layers provides NNs with the ability to create a series of receptive �elds
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Figure 1.13: A common CNN architecture, processing an multi-channel input image

using a series of convolution, max-pooling and fully connected layers to detect objects

by a variety edge and shape features (Ma et al., 2018).

across input data. By learning with these �elds and linking all previous layer neurons

to a successive layer with fully connected layers, a CNN is capable of reasoning by in-

terpreting high-level connectivity and spatial arrangements of input data (Girshick

et al., 2014). Pooling Layers are o�en used in combination with these convolutions and

fully connected layers to merge similar input features together by applying a pooling

kernel, usually as a maximum pooling operation to cluster the speci�ed kernel mask

to a single output as the maximum value neuron of the mask. �e e�ect of this is

essentially equivalent to analyse the image from a di�erent scale to focus on global

features while still associating similar specially located features together.

�e success of NNs with these architectures has seen signi�cant use in common

astronomy tasks, namely, galaxy colour (Ball et al., 2008), morphology classi�cation

(Lukic et al., 2018; Lukic and Brggen, 2017; Gra� et al., 2014; Xie et al., 2012; Ball et al.,

2008; Odewahn, 1995) and photometric redshi� classi�cation (Tagliaferri et al., 2003).
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Figure 1.14: Demonstration of the down-sampling e�ect of an image using a max-

pooling layer (Credit Andrej Karpathy
6
).

1.2.2 Higher-Dimensional Analysis with Clustering and
Visualisation as Data Exploration Techniques

Current ML research applied to astronomy is focussed on the development of new

classi�cation and inference methods or optimisation of old approaches, despite the

newly increased scale and complexity of astronomical data. While these methods are

sound solutions to the current big-data challenges of the �eld, ML literature also con-

tains alternate solutions that compliment classi�cation and inference with a focus on

reducing data complexity and volume (Al-Jarrah et al., 2015). Research on scalabil-

ity, improved e�ciency and lowered complexity alleviates the strain of big-data and

maintains the applicability of techniques that cannot be trained with reasonable time

or computational resources (Zhou et al., 2017). �is research direction has been met

with the application of dimensionality reduction methods (demonstrated in Figure

1.15, ML deep learning and information bo�leneck methods to reduce data complex-

ity and volume for more e�cient information extraction.

6
h�p://cs231n.github.io/convolutional-networks/
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Figure 1.15: Classical dimensionality reduction of the ‘Swiss roll’ toy dataset, where

complex three dimensional data with an additional colour channel can be reduced to

two dimensions with minimal data loss and increased human readability as a visual-

isation technique (Roweis and Saul, 2000).

Astronomical data contains many extra dimensions, including not just intensity

or morphology, but SED, redshi�, polarisation, features across multiple wavelengths,

and possible a�ributes that may be unnecessary to an experiment. Dimensionality re-

duction has been utilised across multiple �elds to delineate data and reduce problem

spaces (Roweis and Saul, 2000) by reducing the number of observational a�ributes

while retaining as much relevant information as possible. By reducing this prob-

lem space, analysis may be streamlined, and vital latent relationships buried in these

higher dimensions can be analysed (Tenenbaum et al., 2000). �is reduction approach

is commonly conducted by projecting data to a learning manifold in a two or three-

dimensional feature space. In many cases, a reduction to a human-readable spacemay

also provide a means to visualise the reduced data and reveal high-level relationships

as a data exploration tool. Additional layers of abstraction are o�en provided with

clustering techniques to associate points in these feature spaces to a class or group

(Bezdek, 1981).

�is Section will detail the fundamental dimensionality reduction and clustering

techniques used in astronomy for analysis, unsupervised classi�cation and visualisa-

tion.

1.2.2.1 Fundamental Dimensionality Reduction Methods

Algorithmic dimensionality reduction methods fundamentally aim to locate the most

salient points within a dataset and project and project them to lower dimensional

space. In image processing, these techniques are used to display abstract relationships

and topology onto learning manifolds. Simple methods such as Principle Component

Analysis (PCA) (Hotelling, 1933) are commonly employed to reduce these parame-

ter spaces and reveal underlying structure. �is mathematically robust method �nds
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these latent relationships by locating linear combinations called principle components
that successively have themaximum variance for a given data subject while still being

uncorrelated with previous observations (Jolli�e, 2011). In this maximisation prob-

lem, PCA functions by solving for the eigenvectors of the input data’s covariance

matrix that correspond to the largest eigenvalues. �ese eigenvalues give the vari-

ances of their respective principal components and the ratio of the sum of the �rst

principle components.

PCA has been applied to several astronomy tasks, namely reducing spectroscopic

imaging of the ISM (Heyer and Schloerb, 1997), reducing stellar spectra (Ronen et al.,

1999), clustering for compositional taxonomy of comets (Schleicher and Bair, 2010)

and spectral line inversion (Rees et al., 2000), in addition to preprocessing for NN

classi�cation (Singh et al., 1998; Storrie-Lombardi et al., 1994).

Additionally, methods such as t-Distributed Stochastic Neighbour Embedding (t-SNE)
(Maaten and Hinton, 2008) have also been shown to perform e�ective dimensionality

reduction by converting high-dimensional Euclidean distances between data points xj

and xi into conditional probabilities pj |i with a Gaussian ‘perplexity’ kernel (Equation

1.8).

pj |i =
exp(−‖xi − xj ‖2/2σ 2

i )∑
k,i exp(−‖xi − xk ‖2/2σ 2

i )
(1.8)

In this conditional probability space, similarity qj |i between data points projected

into this lower space yj and qi , is given as Equation 1.9.

qij =
(1 + ‖yi − yj ‖2)−1∑
k,l (1 + ‖yk − yl ‖2)−1

(1.9)

Conditional probability manifolds calculated with t-SNE has been shown to re-

veal well-separated groupings (Sedlmair et al., 2012). However, this method is used

with caution with a tendency to producing unreliable projection features (Maaten

and Hinton, 2008). Despite this caveat, t-SNE has been implemented in a number

of astronomy applications from spectral classi�cation and diagnostics of the Galah

Survey (Traven et al., 2017), spectra dimensionality reduction for metalicity anal-

ysis (Matijevi� et al., 2017) and projection of stellar abundance-space distribution

(Anders et al., 2018), similar to typical Modi�ed National Institute of Standards and

Technology (MNIST) manifold analysis, shown in Figure 1.16.

Although these relatively simplemethods are successful, competitive learning and

dimensionality reduction NN variants such as self-organising maps, have gained con-
siderable interest in recent years.
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Figure 1.16: t-SNE projection of observed stellar chemical element abundance, high-

lighting several high level relationships in a human readable space (Anders et al.,

2018).)

1.2.2.2 Self-Organising Maps

�e SOM (Kohonen, 1997) is a NN variant that o�ers a more complex alternative to

unsupervised clustering and data exploration. Shown in Figure 1.17, SOMs create

learning manifolds as similarity maps of input data where distinct groups of neurons

re�ect latent relationships in the training data. As in Equation 1.10, grid neurons, i , are

trained to iteratively update their weight vectorsmi by moving toward similar data

points x(t) on the manifold by optimising a neighbourhood distance hci by a learning

rate α . A well-trained SOM a�er t epochs, will visualise the dynamic distribution of

input data and display various high-level topological relationships and morphology

distributions.

mi(t + 1) =mi(t) + α(t) · hci(t)[x(t) −mi(t)] (1.10)

�esemaps have been recognised as powerful unsupervised data exploration tools

in astronomy with quasar detection in the SDSS (Meusinger et al., 2012), cluster anal-

ysis of Gigahertz-peaked spectrum and high frequency peaking AGN (Torniainen

et al., 2008), redshi� estimation (Carrasco Kind and Brunner, 2014; Geach, 2012),

star galaxy separation (Tagliaferri et al., 2003), galaxy classi�cation (Molinari and

7
h�p://matias-ck.com/mlz/somz.html
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Figure 1.17: A schematic representation of a self-organised map, trained to produces

a non-linear mapping from a m-dimensional space of a�ributes to a two-dimensional

neuron grid with neuron colour encoding object grouping by similarity (Credit: Ma-

tias Carrasco Kind
7
).

Smareglia, 1998; Naim et al., 1997) and general celestial object classi�cation (Geach,

2012) . Notably, applications of SOMs have seen great success in radio morphology

projection and manifold analysis (Polsterer et al., 2015) with maps of the so�ly clus-

tered features relationships within a dataset, as shown in Figure 1.18. Variants such

as topological SOMs with stacked multi-layer architecture (Zhao et al., 2015) have

also shown successful implementation with speci�c subsets or regions of a trained

SOM used to train successive SOMs for redshi� estimation (Zitlau et al., 2016). De-

spite these successes, SOMs o�en require signi�cant processing time to model large

datasets (Kohonen, 1997).

Similar to SOM dynamic map size variants such as Growing Self-OrganisingMaps

(GSOM) (Marsland et al., 2002), methods such as Growing Neural Gas (GNG) (Fritzke,

1995) have seen successful use in feature space modelling of early and late type galax-

ies to discriminate complexity and morphology (Hocking et al., 2018).

1.2.2.3 Feature Extraction in Constrained Networks

Recent advances in machine learning have seen the advent of ML systems for infor-

mation extraction using constrained networks with deep learning (LeCun et al., 2015)

concepts and informational bo�leneck theory (Tishby et al., 2000). �ese unique ML

systems e�ectively began with the Restricted BoltzmannMachine (RBM) (Smolensky,

1986) as a stochastically trained generative NN variant, and the successive Deep Be-

lief Machine (DBM) (Hinton et al., 2006), trained for feature extraction by restricting

connectivity between visible and hidden layers to form a bipartite graph. Asmore sys-

tems were developed with this constrained deep learning paradigm, more focus was
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Figure 1.18: Self Organising Map projection of radio morphologies on a hexagonal

grid con�guration (Polsterer et al., 2015).

placed on networks such as the autoencoder NN variant (Ballard, 1987) designed with

increased a�ention to information encoding (Srivastava and Salakhutdinov, 2012).

Autoencoder networks perform feature extraction through dimensionality reduc-

tion by compressing input data into a latent feature vector (Sanger, 1989). O�en using

a neural network structure, as shown in Figure 1.19, these networks restrict the di-

mensions of a central hidden layer to force the network to learn this feature vector

as the most e�cient representation of the input, required for restoration to its origi-

nal dimensions (Schmidhuber, 2015). Ideally, an autoencoder is trained to �awlessly

compress and restore this input data with no loss in �delity. To achieve this com-

pression, the layer con�guration of an autoencoder reduces input data to a compact

feature representation on the encoding side before returning it to its original form

on the decoding side (Guo et al., 2016). As autoencoder loss is derived from the dif-

ference between input data and the decoded output, a label set is not required, and

the network can be trained unsupervised. �is loss is naturally an indicator of the

performance of the network but can also be used as an outlier detection due to its

sensitivity to di�erences between an input image and the training set (Salvato et al.,

2018). More detail on the characteristic equations of the autoencoder are featured in

Section 2.4.
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Figure 1.19: �e network con�guration of a simple fully-connected Neural Network

autoencoder, featuring an the encoder input layer, the down-sampled latent feature

vector layer and the reconstructed decoder output layer.

Autoencoders have seen further success with the addition of convolution, max-

pooling for high-level abstraction and noise injection in denoising autoencoders for
increased robustness in training (Xie et al., 2012). �e inclusion of regression lay-

ers into these networks have additionally been shown to extend them to supervised

learning methods. Numerous other variations have been developed since �rst imple-

mentationswith, stacked autoencoders formultiple layers of abstraction, autoencoders

robust to noise as denoising autoencoders, networks that encourage sparsity in sparse
autoencoders, mean and variance latent layers,variational autoencoders.

Although the training goal of an autoencoder is regeneration a�er compression,

interpretations of the latent feature vector are shown to reveal useful information

(Hinton and Salakhutdinov, 2006; Hu et al., 2017) and are particularly useful in pre-

processing data for more complexML techniques (Larochelle et al., 2007). Using these

latent vectors, other dimensionality reduction methods, namely PCA and t-SNE have

been used to further reduce latent vector dimensions for visualisation of highly ab-

stract relationships and topology in large datasets, as demonstrated in Figure 1.20.

In astronomy applications, several autoencoder variations have been applied to the

highly complex tasks of abstract representation extraction and cosmological mod-

elling with weak lensing convergence maps (Singh and Bard, 2017), galaxy evolution

exploration through latent vector manipulation (Schawinski et al., 2018), stellar atmo-

spheric and spectra parametrisation (Pan and Li, 2017; Li et al., 2017), gravitational

wave denoising (Shen et al., 2017) and star-galaxy separation (Hao-ran et al., 2017;

Knollmller et al., 2018)
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Figure 1.20: Demonstration and comparison of PCA and autoencoder dimensionality

reduction on images of hand-wri�en numbers from the MNIST dataset to reveal the

underlying relationships between each class (Hinton and Salakhutdinov, 2006). �e

autoencoder used here reduced the dimensions of the 64×64 images down to only two

dimensions for plo�ing and appears to produce more distance and complete clusters.

Similar architectures are exploited by other adversarialy trained NN variations

such as theGenerative Adversarial Network (Goodfellow et al., 2014, GAN). Generative

Adversarial Network (GAN) applications have seen tremendous success in generative

machine learning and image processing literature (Radford et al., 2015), although only

a few cases of recent use in astronomy with separation of quasar point sources and

host galaxy light (Stark et al., 2018), galaxy feature recovery and generation (Ravan-

bakhsh et al., 2016; Mustafa et al., 2017; Schawinski et al., 2017b,a), pulsar candidate

identi�cation (Guo et al., 2017), cosmic web simulation (Rodriguez et al., 2018) and

extraction of exoplanet atmospheric features (Zingales and Waldmann, 2018).

Although the learning manifolds produced by these methods provide a new ele-

ment of visual interpretation, these do not produce quantitative conclusions without

techniques such as clustering.

1.2.2.4 Hierarchical Clustering

�e HC approach aims to quantify features within learning manifolds by grouping

data into hierarchical classes. One of the most commonly used HC algorithms, K-
Means (Mac�een, 1967) seeks to group objects by assigning each input data instance

to a discrete cluster based on a given distance metric (Lloyd, 1982). An example of

this clustering is shown in Figure 1.21, where distinct groups are split based on these

distances around a cluster centre point.
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Figure 1.21: Demonstration of HC using the K-means algorithm, where the manifold

is split into groups (colours, purple, green and blue) as a function of a given distance

measure. Cluster centre points are shown as with a black plus and a basic decision

surface shown as the red vectors.

HC methods such as K-means address the issues faced by many astronomers at-

tempting to analyse incomplete or higher dimensional data and highlight the poten-

tial for unsupervisedmethods to operate outside the reaches of human understanding.

Consequently, K-means has seen widespread use in astronomy with notable exam-

ples ranging from clustering and prediction of partially complete astronomical data

(Wagsta� and Laidler, 2005), delineation and partitioning of stellar seismic source

zones (Weatherill and Burton, 2009), detection of metal-poor galaxies (Morales-Luis

et al., 2011; Snchez Almeida et al., 2016), stellar chemical abundance classi�cation

(Hogg et al., 2016) and general unsupervised classi�cation of variable stellar objects,

(Ng and Huang, 1999), gamma-ray bursts (Cha�opadhyay et al., 2007) and optical

spectra from the SDSS (Snchez Almeida et al., 2010). As K-means is capable of cluster-

ing learning manifolds, it has been successfully combined with other dimensionality

reduction methods, such as the discussed SOM (MacDonald and Fyfe, 2000) and GNG

methods (Hocking et al., 2018) to quantise projected groupings, as shown in Figure

1.22 with unsupervised galaxy morphology clustering.

1.2.3 Astronomical Anomaly Detection and Complexity Sepa-
ration

Anomaly detection is a subset of ML classi�cation focussed on identifying unchar-

acteristic behaviour compared to a learned model (Chandola et al., 2009). �is is a

subset of the more general operation of complexity separation, where varying de-
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Figure 1.22: K-means clustering of Hubble Space Telescope Cosmic Assembly Near-

IR Deep Extragalactic Legacy Survey (CANDELS) into distinct groupings (row-wise),

ordered le� to right by their similarity to the ‘average’ classi�cation in the parameter

space of the group (Hocking et al., 2018) (cropped from image rows 4 and 3 respec-

tively from the bo�om in Figure 12 for size constraints).

grees of ‘anomalousness’ is established to distinguish observations based on their rel-

ative complexity. Uncharacteristic behaviour and these varying degrees of complex-

ity in observations, be it an object or process, may indicate interesting phenomena,

inconstancies in astronomical understanding and possibly mark a discovery. Current

e�orts rely on researchers to make these discoveries while exploring a hypothesis.

It has been shown, however, that most of the major discoveries in astronomy have

been serendipitous (Ekers, 2009) as in Figure 1.23. �ese discoveries tend to be un-

planned and found instead while pursuing an unrelated hypothesis (Norris, 2017a).

Consequently, anomaly detection in astronomy has become a task of searching for

discoveries. �is paradox of anticipating serendipitous discovery seen has lead as-

tronomers to ML methods to process the true depths of high volume observational

and circumvent the human bias’ and assumptions that prevent discovery.

Despite interchangeable terminology of ‘anomaly’, ‘outlier’ and novelties as in-

teresting outliers, anomalies are generally organised by three categories (Chandola

et al., 2009):

• Point Anomalies are single instances of uncharacteristic behaviours, such as

unexpected spikes seen in time series data,

• Contextual Anomalies are a series of single or continuous events that under a

di�erent context would be normal,

• Mixed Anomalies mixed anomalies are a subtle combination of both point and

contextual anomalies as a superset.

Several previously discussed supervised ML methods have been successfully ap-

plied to detecting point, contextual and mixed anomalies in astronomy using a train-

ing set containing known anomalies. �ese ML methods, along with basic statistical
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Figure 1.23: Comparison of the number of planned and serendipitous key discoveries

made in modern astronomy (Ekers, 2009).

inference through regression (Kuo et al., 2018), have seen successful use in astronomi-

cal anomaly detection with many of the previously discussed methods demonstrating

success, namely automatic anomaly detection and classi�cation of time variable x-ray

sources with a RTF (Lo et al., 2014), CNN transient source detection (Wright et al.,

2010), and simple outlier detection through PCA dimensionality reduction (Du�a

et al., 2007).

Although these methods are successful, they require pre-labelled training sets,

e�ectively allowing these systems only to classify that which has already been dis-

covered. �is pursuit found unsupervised methods ideal in many cases where the

ML system can be le� to determine outlier classes while making few assumptions

about input data and reducing the human bias inherent in training sets (Torralba

and Efros, 2011). �is has been demonstrated through the use of an unsupervised

RTF system to quantify anomalous sources with a “weirdness score” (Baron and Poz-

nanski, 2017), isolating counterparts of un-associated Fermi gamma-ray sources with

K-means clustering (Mirabal et al., 2010) and notably, the previously discussed SOM

data exploration tool (Polsterer et al., 2015) with a complexity separation method

based on SOM umat neuron Euclidean distance and GNG-K-means hybrid (Hocking

et al., 2018) morphology clustering methods.

Additionally, previously discussed multi-wavelength cross matching has also pro-

vided an excellent basis for outlier detection. �is can be seen with observations of

a source across multiple frequencies not necessarily displaying anomalous features,

but when analysed collectively, unusual relationships and asymmetry can be found

(Ban�eld et al., 2015).
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1.3 Summary

Modern astronomy is pursing new instrumentation aimed at pushing the boundaries

of sensitivity and resolution. �e typical solution to improving these factors is to build

telescopes with more sophisticated detection apparatus and a much larger emission

collection area. In radio astronomy, these requirements have increased focus in radio

interferometry techniques where observations from multiple radio telescopes can be

combined to drastically increase the resolution. �ese advancements are not with-

out caveats however, as these new astronomical instruments and technologies have

increased in scale and complexity, so has the data that these instruments collect.

�e sheer volume and complexity of current highly sensitive and expansive sur-

veys is a problem for astronomers, particularlywhen traditional techniques for typical

tasks such as classi�cation and outlier detection become insu�cient for this new vol-

ume of multi-wavelength data. �is e�ect is compounded in radio astronomy with

the advent of new large-scale radio telescope arrays. In this new modern era of ‘big-

data’ astronomy, machine learning is becoming a key focus in an e�ort to combat the

inundation of highly complex observational data.

�e Machine Learning (ML) technique is now a common approach, where a sys-

tem is ‘trained’ to model the characteristics of a dataset and predict the qualities or

classi�cation of a training set or new unencountered data. �e ability of ML methods

to process highly complex data has a�racted the zeal of many �elds and the modern

astronomer confronted by the challenges of big-data. ML astronomy currently fo-

cuses on three main tasks of classi�cation and regression, higher-dimensional analy-

sis with clustering and visualisation, and anomaly detection.

As a salient task in astronomy, ML classi�cation is commonly applied to mapping

objects to a class based on observed physical di�erences such as morphology, with

inference used to map continuous training variables to some continuous output. Us-

ing labelled data with supervised training and raw datasets with the unsupervised

training paradigm, these tasks have seen successful implementation with several ML

methods ranging from, the k-nearest neighbour algorithm, support vector machines,

decision tree learning and most notably neural networks and the addition of convo-

lutional receptive �elds.

Although current ML solutions in astronomy have been hugely successful, these

methods are still focussed on the development of new methods or optimisation of

old approaches, despite the newly increased scale and complexity of astronomical

data. Developing new techniques to process this data in its current volume or simple

brute forcing of computation power is not directly targeting the problem of scale. In-

formation extraction, dimensionality reduction and resulting visualisation have been

utilised e�ectively to delineate data and reduce problem spaces while retaining rele-
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vant information. Additional layers of abstraction are o�en provided with clustering

techniques such as the K-means algorithm as a hierarchical clustering method to as-

sociate points in these delineated feature spaces to a class.

Although these methods are capable of analysing existing data, they may not be

suitable for discovery. Anomaly detection and complexity separation is a subset of

classi�cation that aims to bridge this gap by focussed on identifying uncharacteristic

behaviour compared to a learned model. Uncharacteristic behaviour in an observa-

tion, whether it be an object or process, may indicate inconsistencies in astronomical

understanding and possibly mark a discovery. Current e�orts rely on researchers to

make these discoveries while exploring a hypothesis, although most major discover-

ies in radio astronomy have been serendipitous and found instead while pursuing an

unrelated hypothesis. �is pursuit has seen the implementation of several techniques

to locate unexpected, most notable of which utilise unsupervised training to locate

discoveries not included in current training sets.

Astronomy requires the automatic classi�cation, outlier detection and speed that

machine learning can o�er. �e ideal ML solution to astronomy tasks is a combi-

nation of methods with robust classi�cation, enhanced e�ciency through informa-

tion extraction, powerful higher dimensional analysis and anomaly detectionwith the

unsupervised training paradigm. By operating strictly in this unsupervised manner,

these methods require signi�cantly less human intervention and mitigate the time

usually required to label datasets manually. By leaving the analysis in the hands of

the networks, the element of human bias is all but removed.

Unsupervised learning methods such as SOMs have demonstrated great success

in unsupervised morphology analysis but at the cost of computing time. A sophisti-

cated but e�cient method such as the autoencoder NN method would be ideal as a

SOM training preprocessor reduce the complexity and scale of training data. �e ad-

dition of hierarchical clustering of the SOM as seen in literature will provide the �nal

means to classify morphological groups and anomalies projected into the autoen-

coder trained SOM space. Sizeable ML astronomy datasets such as the RGZ provide

an excellent testing ground for these methods.
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1.4 Research�estions

I pose several questions in this thesis, based on the literature discussed within this

Chapter:

i. Is unsupervised machine learning a practical solution to clustering, data explo-

ration and complexity separation to large datasets typical of big-data astronomy?

ii. Can dimensionality reduction methods be used to delineate the complexity and

volume of astronomical data for exploration and information extraction?

iii. Will an autoencoder produce e�cient information extraction and dimensionality

reduction of radio-astronomical images?

iv. Can an a�ne invariant SOM be trained on compressed information extracted

from an image dataset instead of the raw images? Moreover, what is the e�ect

of this training? And how can the relationships of encoded image representation

be visualised?

v. Is visualisation in ML an e�ective method of data exploration and information

extraction?

1.5 �esis Aims

I aim to use a novel unsupervised clustering and classi�cation system that combines

HC with a SOM and convolutional autoencoder to investigate and answer the posed

research questions.

i. Determine whether an autoencoder-SOM hybrid system can provide a deep un-

derstanding of the morphological relationships of radio-astronomical images and

be used as a tool for complexity separation, visualisation and data exploration.

ii. Investigate latent feature vector extraction with convolutional autoencoders as a

method to reduce the volume and complexity of radio-astronomical data.

iii. Determine the e�ects and e�ciency of training a SOM on compressed latent fea-

ture vectors of images extracted using a convolutional autoencoder and develop

an approach to visualise the SOM learned relationships of these latent feature

vectors.

iv. Employ HC of SOM learned weights to cluster and segment radio-astronomical

images using autoencoder trained SOMs.

v. Analyse the e�ect of autoencoder random rotation training augmentations on

SOM a�ne transformation invariance.
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Chapter 2

Methodology

�is Chapter outlines the methods I used to investigate unsupervised clustering and

classi�cation as a ML solution to the challenges of big-data astronomy. In my ap-

proach, I implemented a K-means clustered SOM trained on autoencoder latent vec-

tors. �is method is based on my research questions of Section 1.4 and subsequent

aims of Section 1.5.

My paper Radio Galaxy Zoo: Unsupervised Clustering of Convolutionally Encoded
Radio-astronomical Images, (Ralph et al., 2018) featured in Appendix , formed the pre-

liminary stage of this method. �is paper is referred to as Ralph et al. (2018) through-

out the remainder of this thesis.

�is Chapter explains and justi�es the methods I used in this thesis. Initially

the hardware and so�ware are outlined (Section 2.1), followed by the data used in

this investigation (Section 2.2), the preprocessing method (Section 2.3), autoencoder

implementation and tuning (Section 2.4), SOM implementation and tuning (Section

2.5) and the �nal system evaluation (Section 2.6). �e results of these methods are

demonstrated and discussed in Chapter 3.

2.1 Hardware and So�ware

�e system outlined in this methodology was entirely implemented with the Python

programming language. I chose this language for fast development at the cost of

computation e�ciency that may be gained from C. I used several Python libraries in

this system:

• OpenCV (Bradski, 2000), Pillow, and Matplotlib (Hunter, 2007) for image

processing and display.

• Google TensorFlow (Abadi et al., 2016) to construct the NN autoencoder. Ten-

sorFlow features the TensorBoard browser-based control panel to display plots
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of the weights, bias and cost. �is feature is only used for basic testing; all

�gures are produced using Matplotlib.

• SciPy (Jones et al., 2001), NumPy (Oliphant, 2006) and Scikit-Learn (Pedregosa

et al., 2011) for high-level implementations of various algorithms.

• SomoClu (Wi�ek et al., 2013) to implement the SOM. I built an extensive visu-

alisation package to work with SomoClu, given the original package included

limited visualisation features.

I developed and tested the overall system using the ‘big-data client’ of West-

ern Sydney University Kingswood big-data laboratory, featuring an Intel(R) Xeon(R)

CPU E5-2650 v4 at 2.20GHz, with 32GB of Random Access Memory (RAM). All tests

were conducted using Central Processing Unit (CPU) resources. Although Graphics

Processing Units (GPUs) were available and implemented in the system, I aimed to

demonstrate the ability of this system using minimal computational resources and

ideally be implementable by most institutions and researchers.

2.2 Radio Galaxy Zoo Dataset

In this investigation, I use the �rst DR1 (Wong, 2018) of the RGZ project (Ban�eld

et al., 2015) (outlined in Section 1.2.1) for training and validation of the ML systems

I developed in this thesis. �is was selected as one of the largest classi�ed radio-

astronomical image sets currently available.

�e majority of radio image data in the RGZ dataset comes from the 1.4 GHz

FIRST survey (Becker et al., 1995) version 14 March 2004. �is is combined with mid-

IR images at 3.4 µm from the Wide-�eld Infrared Survey Explorer (WISE) survey.

FIRST covers over 9000 square degrees of the northern sky down to a 1 σ noise level

of 150 µJy beam
−1

at 5
′′
resolution. WISE is an all-sky survey at wavelengths 3.4, 4.6,

12, and 22 µmwith 5 point source sensitivity in unconfused regions of no worse than

0.08, 0.11, 1.0, and 6.0 µJy (Wright et al., 2010). Only the 3.4 µm WISE data is used in

RGZ.

My focus in this thesis is the radio-astronomical data of the DR1. �e RGZ DR1

dataset contains 75,641 classi�ed radio images and associated a�ributes. �e images

included in the dataset are Flexible Image Transport System (FITS) images. �ese are

a standard astronomy application image type that represent images with a �oating-

point representation and are rich with meta-data. �e main a�ribute I focus on in

this thesis is the hand labelled component and peak counts for every resolved source.

�e catalogue also contains the number of participants who labelled each image and

the consensus agreement between those participants (Ban�eld et al., 2015). I encoded
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these labels as components-peaks, e.g. an image with a single component and two

peaks are labelled with a class ‘12’.

Table 2.1 and Figure 2.1 summarises the distribution of these classi�cations within

the dataset. �is Figure shows the dataset is largely unbalanced toward simple sources.

�e largest fraction of the dataset contains images labelled ‘11’ (single component

single peak source) at 61%, with the remaining data set comprised of ‘12’ (single com-

ponent double peak) at 12%, complex ‘22’ sources at 14% and the remainder as rarer

sources. For this investigation, I consider all ‘11’ point sources as considered, while

all other images as ‘complex’. Additionally, I consider classes that make up less than

2% of the dataset as outliers.

RGZ Label Population Division Category

11 0.6110 Simple

12 0.1533 Complex

13 0.0153 Complex

14 0.0020 Anomalous

15 0.0003 Anomalous

16 0.0001 Anomalous

22 0.1438 Complex

23 0.0195 Complex

24 0.0028 Anomalous

33 0.0340 Complex

34 0.0053 Anomalous

35 0.0008 Anomalous

36 0.0003 Anomalous

44 0.0068 Anomalous

45 0.0014 Anomalous

46 0.0004 Anomalous

55 0.0020 Anomalous

56 0.0005 Anomalous

57 0.0002 Anomalous

67 0.0002 Anomalous

Table 2.1: RGZ DR1 classes by population

Illustrated in Figure 2.2, classi�ed samples range from the simple 11 class ‘point

sources’, extended multiple peak and component sources such as the 33 class, in ad-

dition to highly anomalous sources such as the 67 class that comprise only 0.0096%

of the dataset. �ese samples demonstrate the variety of morphologies in the dataset

and the o�en subtle di�erences to distinguish o�en confused sources such as ‘11’ and

‘12’ sources.

�e consensus distribution across the dominant classes of the RGZ DR1 is de-

scribed in Figure 2.3 by a 10,744 subset of the DR1 with sources above 0.6. As ex-

pected, increased complexity with higher peak and component counts results in a
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Figure 2.1: Radio Galaxy Zoo Data Release 1 class distribution.

(a) (b) (c)

(d) (e) (f)

Figure 2.2: Six representative samples of the RGZ dataset. (a) simple point source

as class 11, (b) class 12, (c) 11 source with considerable noise, (d) class 13 source as

a classic triple radio AGN, (e) class 12 with an additional component in the bo�om

right and (f), a highly anomalous 55 source. I use these representatives throughout

this thesis to demonstrate and compare the e�ects that each step of the system has

on a variety of RGZ images

higher consensus than single peak and component sources. �is trend indicates that

the human classi�ers have a greater tendency to disagree on the classi�cation of com-

plex sources. �ese possibly disputed labels highlight the potential inaccuracy inher-

ent in the manually classi�ed image labels of the RGZ DR1. Papers such as (Wu et al.,

2018), use a subset of the RGZ data containing only sources with a consensus ≥ 0.6.
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However, I perform my testing using the full dataset without this consensus �lter-

ing to retain as many ‘di�cult’ to classify images as possible, which may represent

anomalous sources. Consequently, validation in the �nal stages of this thesis will

likely be a�ected by low consensus scores which potentially indicate images with

false or disputed labels.

Figure 2.3: �e distribution of the consensus level across six morphology classes in

the data set that consists of 10,744 RGZ subjects selected from the DR1, where the

authors encode 11 as 1C-1P, where C is the component count and P is the peak count.

�e whiskers above and below the box represent the maximum and minimum CL

(�xed at 0.6 by the �rst criterion). �e box itself spans the third and the �rst quartile

consensus level. Note that since 80% of 1C-3P sources have a consensus level of 1.0,

its box is reduced to a single horizontal line when its inter-quarter range becomes 0.

�e horizontal (orange) line inside each box is the median (Wu et al., 2018).

Despite the quality of images in the RGZ dataset, many images contain di�erent

background noise properties, instrumental noise and artefacts. I use the methods

outlined in the following preprocessing Section to �lter these features for improved

ML training.

2.3 Preprocessing

�eperformance of ML trainingmethods is contingent on the quality of training data.

For a learning method to e�ectively map data to a class, it is best to remove features

not used to distinguish classes. Particularly in the case of unsupervised methods,

dominant features are typically recognised as the distinguishing characteristics in

the dataset. If these features are not unique to the desired classes, the system may

classify the dataset only according to these features.
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Common solutions involve normalising images with the same pixel histogram

(intensity distribution) or Root Mean Squared (RMS) noise, as changes in these im-

age statistics may be recognised as a distinct feature and lead to classi�cation based

only on these measures. Radio images are also o�en contaminated by remnants of

the telescope Point Spread Function (PSF). Termed ‘side-lobes’, this contamination

commonly forms a signi�cant component of the feature space of the RGZ training

set.

To ensure proper ML training, I implemented two preprocessing methods to �lter

the RGZ images. �ese preprocessing methods were evaluated by their processing

time and ability to �lter noise while preserving critical astronomical features such as

morphology and peak-component counts.

2.3.1 Mask �ltering with Adaptive Otsu �resholding

�e�rst preprocessingmethod I developed in this thesis followed a typical image pro-

cessing methodology. In this method, radio images are converted to an 8-bit Portable

Network Graphic (PNG) image, �ltered with an adaptive threshold mask and com-

ponent count checking. �is technique is used to remain agnostic to input images

types, given many image processing and ML image sets are also 8-bit .PNG images.

�is generalisation of this method is at the cost of sacri�cing the dynamic range of

pixel intensity available in .FITS radio images. I implemented this system using the

OpenCV and Numpy libraries. �is preprocessing cleans images using the following

procedure:

1. Input FITS RGZ images are converted to 8-bit grey-scale .PNG images. Image

colour in the original �le is a false colour representation. No colour channels

are removed here, as .FITS images do not contain such channels, but a �oating-

point broadband intensity value.

2. Grey-scaled images are cropped to 120x120 for reduced data size to improve

storage and processing times, in addition to ensuring consistent dimensions

across the whole dataset. �is cropping size was chosen carefully to avoid crop-

ping out features.

3. Gaussian �ltering is used to spread the intensity distribution of prominent fea-

tures. �e input image resolution is lowered using a 3 × 3 blurring kernel to

preserve the local neighbourhood of bright regions in the next binary thresh-

olding step.

4. Otsu adaptive thresholding of blurred image. Otsu Binarization (Maaten and

Hinton, 2008) is used to segment background noise from the desired astronom-

ical features. �is method separates pixels p(i), of an image into an object and a
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(a) (b) (c) (d)

Figure 2.4: Demonstration of the adaptive �ltering preprocessing method, where the

input image (a), is blurred using the Gaussian �lter (b). An adaptive threshold mask is

created from this image using the Otsu algorithm (c). �is image is then used as a seg-

mentation mask to create the �nal image (d), which retains only the key astronomical

features of the original image.

background class by a threshold t . �e grey level histogram is normalised and

regarded as a probability distribution:

σ 2

w (t) = ω0(t)σ02 + ω1(t)σ12(t) (2.1)

Where σ0
2
and σ1

2
are the variance of the foreground and background classes

with probability weight ω0 and ω1 computed from L histogram bins:

ω0(t) =
t−1∑
i=0

p(i) (2.2)

ω1(t) =
L∑
i=t

p(i) (2.3)

5. Images with an Otsu threshold mask containing more than �ve binary regions

are discarded. Image with more than �ve components is too noisy or corrupted

as the RGZ dataset does not include any objects with this many components.

6. Masking of the original image using Otsu binary Gaussian blur map to segment

the most dominant features and surrounding regions.

7. Save images to disk as a .PNG

2.3.2 Sigma Clipping and Noise Injection Preprocessing

I tested an additional method in this system as a more traditional astronomy based

method. �is method is the preprocessing method of (Galvin et al., 2018) with results

shown in Figure 2.5. �is approach corrects blank pixels in images at the edge of the

FIRST image mosaic, sigma clips noise and normalises pixel intensity.

40



1. Blank pixel regions found in images close to the edge of the FIRST mosaic are

corrected. �is correction replaces these masked values with a random sam-

ple of the mean and standard deviation of valid pixels around the outer edge

region of the image (assuming a normal distribution). �ese samples are ex-

tracted from the outer 85% region of the image with few astronomical features

to sample the background noise adequately (Figure 2.5, b1).

2. Noise is removed, and background �ux is corrected with sigma clipping (Figure

2.5, c1). �is operation subtracts the mean background pixel value and scales

all pixel intensities below 1 σ to zero.

3. Intensity scaling is applied to normalise the global intensity of each image (Fig-

ure 2.5, d1).

4. All images are additionally cropped for this thesis to 120x120 from the centre

to reduce the dataset size while preserving salient features.

(a1)

FIRST Data

(b1)

Background Region

−0.0005 0.0000 0.0005
0

500

1000

1500

2000

2500
(c1)

Background Properties

Model

1σ-Limit

(d1)

Pre-processed Image

0.000 0.003 0.006 −0.0005 0.0000 0.0005 0.0 0.4 0.8

Figure 2.5: Demonstration of each step of the sigma clipping and noise injection pre-

processing method from (Galvin et al., 2018), where the inner 15% of the input image

(a1), is taken segmented (b1), to determine the background noise distribution (c1)

which is used to calculate the 1 σ pixel cut-o� for cleaning. �is sigma clipped im-

age is then cropped, and contrast corrected using global histogram normalisation, as

shown in the �nal pre-processed image (d1).

2.4 Convolutional Autoencoders

�e challenges of astronomy in the modern big-data era have resulted in signi�-

cant research into Machine Learning solutions to classi�cation, anomaly detection

and higher dimensional analysis through data reduction (discussed within Section

1.2). In this thesis, I aim to investigate data reduction of radio-astronomical images

using unsupervised feature extraction (outlined in Section 1.5). �is methodology

demonstrates my approach to analysing the data scale and complexity reduction of

radio-astronomical images when reduced to a compressed latent feature vector using
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a convolutional autoencoder. �is Section provides a detailed explanation of this au-

toencoder, how I chose a speci�c architecture and its use in delineating RGZ images.

Using the �nal optimised autoencoder, I determine the e�cacy and processing time

reduction of a K-means clustered SOM trained on autoencoder extracted latent vec-

tors of the RGZ dataset. With this method, I demonstrate this system as a solution to

unsupervised classi�cation and anomaly detection.

2.4.1 General Autoencoder Architecture

Introduced in Section 1.2.2.3, an autoencoder is a network (o�en a NN variant) that

compresses input data to lower dimensions for later reconstruction. A typical autoen-

coder contains three main elements, the input encoder side, the hidden latent vector

layer and the output decoder side, as shown in Figure 1.19.

�e general framework for an autoencoder can be summarised as minimising an

overall distortion or prediction error measure, E(A,B) by �nding anA ∈ A and B ∈ B
when transforming an input vector x ∈ Fn into an output vectorA◦B(x) ∈ Fn, (Baldi,
2012) as in Equation 2.4:

min E(A,B) =minA,B

m∑
t=1

E(xt ) =minA,B

m∑
t=1

∆(A ◦ B(xt ),xt ) (2.4)

Where A is a transformation class of encoding functions from original input to

latent vector Gp , to Fn and B is the transformation class of decoding functions from

the latent vector Fn to the original dimensions Fn. Given X = {x1, ...,xm} is a set of
m training vectors in F as both network input and training target (in the case of this

thesis implementing an auto-associative autoencoder, target yt = xt ). F and G are

sets of positive integers n and p, as the original and latent space dimensions. �ese

integers are bound by 0 < p < n for a constrained autoencoder with fewer dimensions

in the hidden latent feature layer than the input dimensions.

In this thesis, I de�ne the Mean Square Error introduced in Section 1.2.1.4 as the

distortion function ∆ (o�en interchangeably referred to as cost, error or loss), given

by Equation 2.5.

∆ =
1

n

m∑
t=1

(A ◦ B(xt ) − xt )2 (2.5)

Using these concepts, I implemented a compact convolutional autoencoder, out-

lined in the following Section 2.4.2.
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2.4.2 General Network Architecture

�e initial autoencoder architecture and training conditions I used in this thesis and

my paper Ralph et al. (2018), were selected to ensure the network was both compact

and produced a single channel latent vector with su�cient data compression. Ad-

ditionally, I implemented convolutional and pooling layers to allow the network to

analyse high-level features with a degree of scale invariance (based on a�ne invariant

training concepts introduced in Section 1.2 and NNs of Section 1.2.1.4).

�e general architecture of this �rst autoencoder as shown in Figure 2.6 contained

four hidden layers, with three convolutional layers and a pooling layer in the encoder

and mirrored in the decoder. In this con�guration, I implemented a single deep con-

volutional layer to extract high-level features for the latent vector. I also included

a convolutional layer with a single �lter either side of the deep convolutional layer.

�is allows the deep convolutional layer to analyse these features in multi-channel

fashion while accepting single channel data and producing a su�ciently compressed

single channel vector for the max-pooling layer.

In my approach, the autoencoder latent vector resides between the encoder and

decoder network as the output of the encoder max-pooling operation. As a mirrored

architecture of the encoder, the decoder network input layer is a de-pooling opera-

tion. �e output of this layer is fed to the successive convolutional layers and fully

connected to the output layer as the network reconstruction. My system implements

this pooling to allow the autoencoder to be relatively invariant to scaling e�ects. I

kept this overall network con�guration constant throughout the training and testing

of this thesis.
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Figure 2.6: �e initial architecture of the autoencoder used in this thesis, accepting

120 × 120 RGZ images into three convolutional layers and a max-pooling layer in

the encoder, reduced to a central hidden latent feature vector layer with dimensions

900×1 and up-sampled through a mirrored architecture in the decoder to the original

input images dimensions.

2.4.3 Autoencoder Training and Validation Dataset Division

In my method, the autoencoder training set is a randomly sampled 10,000 image sub-

set of the full 100,000 imagesRGZ DR1 dataset division. �e validation set is the re-

maining 90,000 images exclusive to the training set. �is division ensures the autoen-

coder is evaluated only with images not previously used for training. Ideally, this

validation set indicates the generalised modelling quality of the autoencoder. For this

reason, all images encoded into the output SOM training and validation latent vector

set are also from this validation set. As outlined in Section 2.2, processing images

regardless of consensus also allow the autoencoder to be trained on images that are

di�cult to manually classify, which are likely to be highly complex or anomalous.

2.4.4 Network Optimisation and Hyper-Parameter Tuning

Outlined in Sections 1.2.1.4 and 1.2.2.3, the performance of a NN autoencoder in

training and testing is dependent on the layer con�gurations and training hyper-

parameters. I chose these intuitive options experimentally as a proof of concept. As a

result, I developed a compact convolutional autoencoder architecture. �is was fea-

tured in my paper Ralph et al. (2018). As my investigation progressed past the paper,

more in-depth testing and result re�nement were required to prove the actual e�cacy

of this method with RGZ data. To achieve this end, I used the datasets speci�ed in
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Section 2.4.3 to test the parameters of following Sections 2.4.2 - 2.4.5 to locate the best

performing combination of hyper-parameters and architectures.

2.4.4.1 Convolutional Layers

Convolutional �lters in a NN form receptive �elds that take into account the spatial

structure of input image features (Section 1.2.1.4. �ese �lters operate as a discrete

convolution operation, formalised in Equation 2.6 as the convolution function f and

kernel function д with support on {−M, ...,M} over image (x ,y)

(f ∗ д)(x ,y) =
M∑

m=−M

N∑
n=−N

f (x − n,y −m)д(n,m) (2.6)

�e dimensions, stride and amount of convolutional kernels bear consequences

for the scale and amount of features extracted from input data. Features signi�cantly

smaller than the coverage of the �lter size and its stride will likely produce a meagre

response and be overlooked. Conversely, a kernel coverage signi�cantly smaller than

salient image features may not map large-scale features. Ideally, the number of ker-

nels, their size and stride are selected to mitigate under-��ing and capture enough

features to create a latent space representation �t for regeneration. By adjusting these

kernel dimensions, the sensitivity of convolutional layers to particular features can

be tuned. Additionally, the amount and depth of high-level features that are analysed

by these layers can be tuned by adjusting the number of �lters in each layer, as how

many convolutions the layers e�ectively perform.

I experimentally chose the initial �lter dimensions, and hyper-parameters for the

paper Ralph et al. (2018). In these tests, I implemented a convolutional �lter size of

3 × 3, given most features are roughly 3 × 3 pixels in the original image. Similarly, I

applied a �lter stride [Sbatch, Sx , Sy, Schannel ], of 1×2×2×1. In this notation, all batches
Sbatch and channels Schannel are taken into account (therefore value of 1 for all batches,

where every batch is processed and only a single channel input is processed) and a

stride of 2 pixels for directions x and y are taken to su�ciently sample the relatively

small image space of the RGZ images and to reduce the original input dimensions.

�ese stride concepts are illustrated in Figure 2.7.

Equal value for stride in each direction was chosen for simplicity in interpretation

and to preserve feature structure. A stride smaller or greater than this may under-�t

the training data and would likely considerably lower the latent vector dimensions,

potentially increasing training time and lowering accuracy. My tuning method kept

this stride constant due to these reasons and given the sheer number of additional

testing combinations it may introduce. Additionally, I implemented zero or ‘same’

padding (also shown in Figure 2.7) to ensure consistent output dimensions with any

changes in �lter kernel dimensions. �is padding replaces pixels not covered by a full
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kernel stride with a value of zero. I use this measure given it is unlikely to produce

image artefacts as image preprocessing (Section 2.3) ideally reduces background noise

to zero.

Figure 2.7: Demonstration of a 2 × 2 kernel �ltering operation output as a product

of a [1,2,2,1] stride and zero or ‘same’ padding (Credit: Allan Handan
1
, cropped for

conciseness).

In addition to kernel size, my approach takes into account the number of con-

volutions performed in each layer. Similar to the number of convolutional layers

and kernel size, the �lter counts dictate how many dimensions and representations

are analysed. If too many �lters are used, the network training may a�empt to �t

too many parameters each batch and cause instability. Too few �lters may result in

under-��ing and longer training time to map image features.

�e preliminary network I developed used 64 �lters for the deepest convolutional

layer and one �lter per hidden layer surrounding the deep layer. I chose these exper-

imentally to su�ciently model the feature space while being able to accept a single

channel image and produce a single channel latent vector. While testing this network,

I trialled an iteratively increasing number of layers following the base two systems.

A �lter count that produced an error minimum was used as a median for successive

tests to �nd the next lowest minimum.

In my approach, I tested a number of convolutional parameters to determine the

best performing combination of �lter size and convolution operations. I performed

these tests using intuitive increments of convolutional kernel sizes of 2 × 2, 3 × 3,

5 × 5 and 7 × 7 from the smallest image features to the largest. As discussed in this

Section, the preliminary stride of [1, 2, 2, 1] is kept constant throughout testing. I

trialled the number of convolutional �lters per layer only for the deepest layer, as the

layer conducting most of the feature analysis. I test the number of these convolutions

1
h�ps://labs.bawi.io/
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incrementally based on a logarithmic scale.

2.4.4.2 Pooling Layers

As detailed in Section 1.2.1.4, the pooling operation is similar to a convolution, where

a receptive �eld will perform an operation such as locating a maximum, and return a

spatially ordered output re�ecting these values, as shown in Figure 2.8. �e autoen-

coder used in this thesis features a max-pooling layer in the encoder and de-pooling

in the decoder for a degree of translation invariance. �e de-pooling layer in the

decoder is a linear interpolation to resize the latent vector to the image dimensions

before the encoder max-pooling. �e position of these layers is shown in Figure 2.6.

More care with kernel sizes and stride must be taken with pooling, as it is anal-

ogous to blurring. An excessively large kernel size may average too many features

much smaller than the �lter size. Given many RGZ images, features are comprised of

3 or more pixels (derived by visual inspection), the �lter size and stride are initially

set to the smallest reasonable size. Although scale invariance is ideal, resolution loss

from pooling will become problematic if components and peaks are blurred together.

Similar to the parameter selection used for convolutional layers, a max-pooling �lter

size of 2 × 2 with a stride of 1 × 1 was chosen for these reasons.

�e �nal method of this thesis re�nes the �lter size for best performance. �is

testing is conducted using �lter sizes 1 × 1, 2 × 2, 3 × 3, 5 × 5, 7 × 7 to determine the

dimensions most suitable for the convolutional layer outputs of input RGZ data. �e

stride is not changed as explained in the convolutional �lter testing of Section 2.4.4.1.

�e number of these tests are kept low by only testing on a network con�gured with

the optimal number of convolutional layers and �lter sizes outlined in the tests of

Section 2.4.4.1.

Figure 2.8: Demonstration of max-pooling layer output with a 2 × 2 �lter, stride of

2 and no padding, where the response of the each �lter element is the maximum

element value of the corresponding quadrant on the single depth slice (Credit: CS231n

Convolutional Neural Networks for Visual Recognition
2
).
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2.4.4.3 Latent Feature Layer

Explained in Section 1.2.2.3 and 2.4.1, the latent feature vector is a hidden layer located

between the encoder and decoder, at the centre of an autoencoder. In the compressive

autoencoder architecture, I developed in this thesis, the dimensions of this layer are

smaller than the input layer as a consequence of the preceding convolutional and

max-pooling layers. �e dimensionality reduction between the input p layer, and the

latent vector n, are given by the reduction factor ϕp,n:

ϕp,n =
|p |
|n | = k(sx ,y)

2
(2.7)

Where k is the number of transformation class functions as layers, from input

to latent vector Gp , to Fn (with notation de�ned in Section 2.4.1). While sx ,y is the

number of elements along the principal diagonal in all pooling and convolutional

�lters, given they are equal.

Given k = 4, with four layers in the encoder (three convolutional and a max-

pooling), and sx ,y = 2, with all �lters possessing a kernel size of 2 × 2, the reduction
factor of this network is de�ned as:

ϕp,n =
n

16

(2.8)

�is factor indicates a signi�cant reduction in dimensions, with the latent vector

containing 16 times fewer data, or only 6.25% of the elements from the network input.

Consequently, the original dimensions of RGZ input images as 14400x1 (120x120), are

compressed to 900 × 1 (30 × 30). For simple processing, I express this latent vector as

this 1D array throughout the remainder of the system.

2.4.4.4 Activation Functions

Introduced in Section 1.2.1.4, the ReLU activation function (Equation 1.7) has demon-

strated great success in NNs. Formalised in Equation 2.9 and demonstrated in Figure

2.9, this function is can augmented with a ‘leaky’ parameter to allow for a small,

non-zero gradient when the neuron is saturated and not active.

yi =max(wT
i x , 0) =


wT
i x ifwT

i x > 0

awT
i x else

(2.9)

Termed LReLU, this activation function with a leakage parameter a, has been

shown to further improve the convergence of the ReLU activation function (Maas

et al., 2013). �is improvement is found by the leaky parameter mitigating the prob-

lem of ‘vanishing gradients’, where neuron gradients may return to 0 if a neuron is

2
h�p://cs231n.github.io/convolutional-networks/
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not activated over successive batches (Pascanu et al., 2013). Given these successes,

I developed the autoencoder of this investigation to include LReLU activation func-

tions with a default leakage parameter a, of 0.2 in all layers. It is beyond the scope of

this thesis to test other activation functions or leakage parameters given the number

of tests already required for optimisation.

Figure 2.9: Demonstration and comparison of ReLU and LReLU, where the leaky pa-

rameter produces a small, non-zero gradient when the neuron is saturated and not

active. Cropped from (Xu et al., 2015) ‘Figure 1’ for conciseness.

2.4.4.5 Cost Function

Autoencoder error is calculated by a distortion or di�erence metric between the net-

work input and prediction output, as de�ned in Section 1.2.2.3 and 2.4.1. In this in-

vestigation I apply a simple and intuitive MSE metric (Equation 1.6, stated in Section

2.4.1) to quantify reconstruction �delity. Given a low di�erence metric indicates a

high regeneration accuracy, the di�erence metric indicates whether the latent vector

contains su�cient features for accurate reconstruction. Consequently, this de�nes

the accuracy of the latent vector as a lower dimensional feature space representa-

tion of the input images. Under the assumption the network can produce accurate

reconstructions from this latent vector, this MSE measure can also be used to identify

outlier images as reconstructions with an uncharacteristically high error.

During validation, I compliment the MSE metric with regenerated samples of the

RGZ class representative images used throughout this thesis (�rst shown in Figure

2.2). �is output features the input image, the autoencoder regeneration and a di�er-

ence image to indicate region �delity. �ese samples allow the operator to determine

whether the autoencoder can retain the original component and peak features a�er

compression. Retention of di�use astronomical features are desirable; however, peak

and component counts are the characteristics that de�ne each image. �is step is nec-

essary in the case of an uncharacteristically low error that may have been reached

without proper image reconstruction such as the autoencoder merely zeroing all fea-
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tures. To train the autoencoder, the MSE error metric is minimised to optimise the

performance of the autoencoder.

2.4.4.6 Loss Optimisation In Training

Training in ML is a process of re�ning network weights and biases to reduce an ob-

jective function such as an error, loss or cost metric to a global minima (outlined with

greater detail in Section 1.2.1.4). �e autoencoder I developed in this thesis is trained

to minimise a MSE cost function (outlined in Section 2.4.4.5) to convergence by opti-

mising network parameters with the AdamOptimiser. I chose this optimiser due to its

simplicity, computational e�ciency and ability to handle the number of parameters

within the convolutional autoencoder of this thesis. �e convergence criteria I used

is based on the average loss or error of the network in the last 10% of batches in each

epoch. Alternatively, I could use a criterion that locates when neuron weights are no

longer undergoing drastic changes. I chose the error rate convergence metric to bet-

ter communicate convergence as a measure of an ideally global minima in network

accuracy, which can be visually interpreted on in the reconstruction outputs.

�e key parameter in this optimiser is the learning rate. Given there is no precise

science in selecting this rate, a nominal rate of 0.01 was implemented. Additionally,

the exponential decay rates for the 1
st
and 2

nd
moment estimates are the Tensor-

Flow default values, 0.9 and 0.999 respectively. Due to the scope of this thesis, the

learning rate and these decay rates are not optimised for improved accuracy or faster

convergence. Instead, I tuned the number of samples trained simultaneously before

optimisation as training batch size, given both of these tests achieve similar ends.

I optimise this batch size by testing iteratively increasing batch sizes on a loga-

rithmic scale. �is is similar to the convolutional parameter tests of Section 2.4.4.1. It

should be noted that learning rate testing would also be required if the network could

not be adequately trained with a learning rate of 0.01.

Autoencoder training in this thesis is halted when a set number of epochs have

been training. Additionally, I developed an error convergence criteria to indicate

when training has reached a minimum, before over-��ing. I implemented a criterion

given as the average error in the last 10% of batches at the end of each epoch.

2.4.4.7 Rotational A�ne Transformations

I investigated rotational invariance in the autoencoder and SOM by randomly rotat-

ing input images during autoencoder training in this thesis. As a typical ML problem,

rotational variance prevents clustering methods from recognising rotation as a fea-

ture distinguished enough to separate it from its class. Using my method, I seek to

determine whether rotational features will be encoded into the latent vector as a re-
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(a) (b)

Figure 2.10: Demonstration of random rotation dataset augmentation, where the orig-

inal image (a), is randomly rotated (b), with all NaN corner pixel values set to 0 as a

zero padding operation.

sult of rotational dataset augmentations. Additionally, I take the size of the dataset

into account, as this determines the number of random rotations each training image

will receive to generalise over all potential rotations.

In my implementation, all Not a Number (NaN) pixels in the corners of input

images are padded to zero, as the natural consequence of rotating a square image, as

shown in 2.10 (b). Similar to the zero padding used in the convolutional layers (Section

2.4.4.1), this is the least harmful to image quality, given background noise is ideally

zero. An alternate solution beyond project scope would be to inject characteristic

noise into these values, as described in the sigma clipping preprocessing of Section

2.3.

I analysed the e�ects of rotation augmentations by comparing the autoencoder

and SOM validation error and training time produced by regular training and with

the augmented training images.

2.4.4.8 Noise Injection

Corrupted inputs ideally allow the autoencoder to extract more robust and useful fea-

tures since higher level representations have more stability than the injected random

noise (Vincent et al., 2010). In this investigation, I test autoencoder denoising with

image impulse noise injection as demonstrated in Figure 2.11. I perform this test to

determine whether impulse noise corruption in preprocessed RGZ images can reduce

training time and improve robustness. Accuracy is also ideally improved with ran-

dom noise-introducing enough variance to avoid over-��ing a training set. Training

time will be marginally increased to generalise the noise and the operation of noise

injection itself.

I conduct this analysis in the same manner as the rotation augmentations of Sec-
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(a) (b)

Figure 2.11: Demonstration of impulse noise injection augmentations, where the orig-

inal image (a) is purposefully corrupted with random zero and full intensity pixels (b).

tion 2.4.4.7. I achieved this by comparing the autoencoder validation error and train-

ing time produced by regular training and with noise injected training images. Ad-

ditionally, I combined this noise injection with the rotation augmentation to asses

whether the techniques are complementary.

2.4.5 Overview of Autoencoder Testing and Tuning

In this investigation, I test for the optimal combination of training hyper-parameters

and network architecture for training time and accuracy. In Ralph et al. (2018), these

parameters were initially selected experimentally. As the investigation progressed

past the paper, deeper testing and result re�nement was required to prove the true

e�cacy of this method with RGZ data. As a result, my �nal method used the datasets

speci�ed in Section 2.4.3 to test the parameters of Sections 2.4.2 - 2.4.5 to locate this

best performing combination of hyper-parameters and architectures. �ese tests are

summarised into four steps:

• Convolution and max-pooling �lter dimensions testing

• Convolution layer �lter count testing

• Training batch size testing

• Training set augmentations with random rotation and noise injection testing

Several initial conditions are set for the autoencoder based on practices observed

in literature:

• Convolutional �lter size of 3 × 3 with a stride of [1,2,2,1]

• Max-pooling �lter size of 2 × 2 with a stride of [1,2,2,1]
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• Initial batch size of 128

• All tests conducted without training set augmentations

Using these initial conditions, I conducted the tests summarised above, by evalu-

ating for autoencoder regeneration accuracy and training time. Results are displayed

as the training and validation reconstruction error of the network per batch. �is

is accompanied by the time taken for these operations and sample reconstructions

(Section 2.4.4.5). �e tests I conducted to locate these optimal combinations are sum-

marised as follows:

1. Determine the ideal convolutional and pooling kernel dimensions by testing

square 2×2, 3×3, 5×5, 7×7 convolutional �lter dimensions, with square, 1×1,
2 × 2, 3 × 3 and 4 × 4 max-pooling kernels.

2. Testing for an optimal number of convolutional �lters for the convolutional

layer with sizes increasing logarithmically. �is testing is conducted on the

network with the optimal combination of convolutional and max-pooling ker-

nel sizes.

3. Determining an optimal training batch size using a network derived from the

results of the previous two tests. �is testing is also done on a logarithmic scale.

4. Analyse the e�ects on accuracy and training time of random rotations and noise

injection dataset augmentations. As in previous tests, I conduct this analysis on

the network con�guration found as the results of the previous three tests.

In my system, I used the latent vectors calculated by encoding RGZ images pro-

duced by the re�ned autoencoders to train a SOM for clustering analysis with reduced

processing time.

2.5 Hierarchically Clustered Self-Organising Map

In this Section, I outline how I use my approach to investigate the ability of an au-

toencoder latent vector trained SOM as an e�cient unsupervised ML alternative to

solve the problems of big-data scale and complexity in modern radio astronomical

data.

Detailed in Section 1.2.2.2, SOMs are data analysis methods used in unsupervised

clustering and data exploration. SOMs create similarity maps or learning manifolds

of input data where distinct groups of neurons re�ect latent clusters in the data. As

discussed in Section 1.5, I aimed to investigate whether a SOM trained on the reduced
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space of autoencoder latent feature vectors can adequately visualise the dynamic dis-

tribution and high-level topological relationships of radio-astronomical images from

the RGZ. Using this system I perform unsupervised anomaly detection, complexity

separation and HC of RGZ images on the trained SOM umat to achieve my aims and

answer the research questions of Section 1.5.

�e SOM I developed in this thesis was implemented using the Somoclu pack-

age. I trained and validated this system using the latent vector representations of the

RGZ dataset divisions outlined in the following sections. Using these input datasets,

I trained the SOM with the procedure outlined in Section 2.5.1. �e outputs of this

training are discussed in Section 2.5.3 and 2.5.3. Following this, the HC clustering

of SOM weights and their use in evaluating SOM modelling and overall system per-

formance is outlined. Similar to the hyper-parameter and architecture optimisation

of Section 2.4.4, I conduct several tests to locate an optimal combination of initial

conditions to maximise SOM modelling performance.

2.5.1 Self-Organising Map Training

Introduced in Section 1.2.2.2, a SOM models datasets by iteratively updating a grid of

neuron weight vectorsmt . �is is achieved by moving toward similar data points x(t)
on the SOM manifold by re�ning neurons weights with a neighbourhood distance

function hci of each neuron i , by a decaying learning rate α which is balanced to let

all neurons stabilise in optimal time. A well-trained SOM a�er m epochs will visu-

alise the distribution of the input RGZ training data as various high-level topological

relationships and morphology distributions.

mi(t + 1) =mi(t) + α(t) · hci(t)[x(t) −mi(t)] (2.10)

Using this concept, I implemented a SOMby trainingwith the following procedure

as a variation of the training summary summarised by (Geach, 2012):

1. Initialise SOM grid neurons with a PCA learning manifold (outlined in Section

1.2.2.1) of the latent feature vector set. �is approach allows the SOM to model

an already delineated PCA space.

2. Select a random latent feature vector from the training set.

3. Locate BestMatching Unit (BMU) neurons as the ‘closest’ neuron to the selected

data point. A common and reliable distance metric used to calculate this is

Euclidean distance (Equation 1.2).

4. Move all BMU neurons within the neighbourhood learning radius R, toward the

data point by updating neuronweightsmi(t) as a function of the distancemetric
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hci(t) and learning rate α(t), as shown in Equation 2.10. �is neighbourhood

learning function or ‘learning radius’ can be represented with a several shapes

by their radius, namely linear (‘bubble’) or Gaussian, de�ned by decay functions

σ :

hci = hc0σ (2.11)

Where exponential decay is given by:

σexp = e−
t
τ (2.12)

And linear decay:

σlinear = −
t

τ
(2.13)

Where τ is a decay constant, usually given as the number of epochs.

5. Update learning rate and radius based on respective input decay rates. Similar

to learning rate decay, this neighbourhood decay function can be expressed

with an exponentially or linearly decaying σ :

α(t) = α(0)σ (2.14)

6. Iterate until a stop condition is met or learning and neighbourhood rates have

decayed to a limit or zero. In this thesis, each iteration is considered an epoch

as the entire dataset is taken into account with no mini-batch training.

Many options and parameters are available for SOM testing. �e SOM grid can

be projected to numerous spaces, namely rectangular and toroidal and neurons can

be expressed as square or hexagonal. For simplicity in plo�ing and analysis, I used

a square neuron shape at the cost of the additional two degrees of freedom o�ered

by a hexagonal neuron. Furthermore, I implemented a toroidal map-projected to a

2D rectangular space as shown in Figure 2.12, due to edging e�ects observed when

projecting to a rectangular SOM grid (Andreu et al., 1997). �ese edging e�ects could

likely be avoided with a spherical space. However, this space is not as easily inter-

preted, as unlike the toroidal geometry, it cannot be as easily transformed to a square

space without a degree of distortion.

Concerning learning rates, I used the nominal initial rate of 0.01 and converged

to 0.001. However, some tests may manipulate the neighbourhood and learning rate

3
h�p://pi.math.cornell.edu/ mec/Winter2009/Victor/part1.htm
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Figure 2.12: Demonstration of the transformation between a square and toroidal man-

ifold. In this thesis, I train the SOM in a toroidal space with outputs displayed on a

square space for readability. Adapted and modi�ed for clarity from Cornell ‘Flat Life’

Winter 2009
3
.

using the decay constant τ , to �nish iterating on zero scale which may prevent some

late-stage weight re�nement.

All tests initialise the SOM space using a PCA projection of the training latent

vector set rather than random projection. �e PCA initialisation provides the SOM

with a reasonable initial state and helps to maintain similar cluster locations and

distributions across multiple tests for robust comparison (regarding the latent vector

training set is the same).

�e number of training epochs throughout these tests is kept constant at ten

epochs. Ideally, tests will be stopped when neurons have converged, and the map

is stable. �is stability point is di�cult to locate, and there are few conclusive metrics

used to describe convergence. �e absence of a de�nitive metric to describe a con-

vergent SOM weight steady state has to lead to some authors such as (Geach, 2012)

iterate for an intuitive amount, in this case, ten epochs, with the knowledge that each

element of the dataset will be visited ten times during training. �is thesis aimed to

use ten training epochs for this reason and to reduce the number of potential opti-

misation tests. However, a subtle internal error in Somoclu prevents single epoch

iterations, as its C back-end can only perform two epochs at a time. As I analyse the

SOM outputs on a per epoch basis in addition to the �nal epoch, I se�led on examin-

ing every second epoch, resulting in either a total of 8 or 12 epochs due to this error. I
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chose 12 total epochs for training in each test, given performance is vital to the aims

of this thesis.

Although this thesis follows this typical training procedure step, SOM training

is implemented using Somoclu which follows a common technique in In modern

parallel computing where SOMs weights can be updated using a batch formulation

toward �nal epoch f , where I use a full dataset batch size, (Wi�ek et al., 2013):

wj(t f ) =
∑tf

t ′=t0
hci(t ′)x(t ′)∑tf

t ′=t0
hci(t ′)

(2.15)

2.5.2 Uni�ed Distance Matrix and Activation Map Output

In this investigation, I developed a SOM system to produce several outputs (using the

packages outlined in Section 2.1). �e most useful output to this investigation is the

umat. �e umat is visualised as a heat map of the Euclidean distance between each

neuron and its immediate neighbouring neurons.

Umat distance is given asU (j), for neuron j with immediate neighbourhood N (j)

U (j) = 1

|N (j)|
∑
i∈N (j)

hci(mi ,mj) (2.16)

In this thesis, I implemented a visualisation package to show the umat superim-

posed with the �rst closest matching RGZ image candidate on each neuron. �is �rst

matching candidate is the image with the ‘closest’ latent vector in the dataset to the

neuron weight (where the distance is based on the Euclidean distance metric used in

the SOM, in Section 2.5.1). I use this map to show the morphology distribution of RGZ

images where the Euclidean distance between the learned weight of each neuron and

their neighbouring neurons displayed as a heat map. As shown in Figure 2.13, larger

SOM sizes produce a umat with a comparably more re�ned structure, where discrete

clusters are formed with high distance regions acting as decision surfaces between

learned clusters.

Additionally, the activation map can be displayed when examining sources case

by case, to highlight a probability distribution of where the candidate source should

reside on the map. In this thesis, the activation map is not used to interpret the full

test set.
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(a) (b)

Figure 2.13: Comparison of the umat output between a small SOM (a) (Wang et al.,

2014) and large SOM (b) (Credit: Miguel Barreto
4
). �e larger SOM produces a more

re�ned structure with discrete clusters segmented by high distance regions.

2.5.3 Self-Organising Map Weight Image Reconstruction

As outlined in Section 2.5.2, the umat SOM output displays neurons with the closest

matching image from the dataset instead of the actual weights. While this gives the

operator with an idea as to how the SOM clusters real dataset images, it provides an

incomplete insight into what individual SOM weights have modelled. In the case of

other SOMs trained on image morphology, such as (Polsterer et al., 2015), neurons are

displayed with their weights as images which explicitly shows what each neuron has

modelled. �is common practice is trivial when trained on images, however, in the

case of this investigation, I trained a SOM on a latent vector, which cannot be viewed

as an image.

�e later stages of this investigation, I enhanced the systemwith a novel feature to

display the learned weights of each neuron as a close approximation by reconstruct-

ing all neuron weight vectors with the already trained convolutional autoencoder

(outlined in Section 2.4.1). Given the decoder side of the network is trained to restore

images from a latent vector, adequately trained SOM neuron weights would ideally be

restored to the image it represents. Using this approach, all learned neuron weights

are parsed to the autoencoder for decoding. �e decoded weights as images are then

superimposed over the original neurons. �is allowed the viewer to understand bet-

ter how the SOM has been trained. �ese weights are also superimposed over the

4
h�ps://www.slideshare.net/askroll/classi�cation
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umat to create a new map similar to the function of the umat �rst closest matching

candidate superimposed map (Section 2.5.2)

2.5.4 Complexity Separation and Anomaly Detection

Investigation and development of anomaly detection and complexity separation frame-

work using the latent vector trained SOM is key to my aims and research questions

in this thesis (Sections 1.4 and 1.5 respectively). I achieved this end by investigating

the correlation between the positions of complex and anomalous sources on high Eu-

clidean distances in the trained SOM umat. In this thesis, I consider point sources

with a RGZ label 11 as simple, while all other sources are complex. Additionally, I

classify any source neither 11 or 12 labelled (single component radio source with a

secondary peak) as anomalous.

As outlined in Section 2.5.2, the umat illustrates the Euclidean distance of neuron

weights and their immediate neighbours. Given complex and anomalous sources are

highly dissimilar to each other, and simple RGZ labelled 11 point sources, a properly

trained map will place complex sources in a high distance region, as suggested with

the umat distance distribution produced in (Polsterer et al., 2015). Using this concept,

I implemented a complex and anomaly source �ag that segments the matching can-

didates of each neuron based on the umat Euclidean distance of the neuron weight. I

establish these �ags with a decision surface at standard deviations 2-5 of the neuron

Euclidean distance distribution across the umat.

�e metrics I used to analyse the performance of this separation and detection

feature are detailed further in Section 2.5.6.

2.5.5 Hierarchical Clustering of Self-Organising Maps

�e �nal output of the SOM is the HC SOM. �is map is divided into associated

groups using the K-means algorithm (Detailed in Section 1.2.2.4). K-means segments

neurons on the SOM into a ‘K’ number of clusters based on the learned weight of each

neuron and a distance metric, such as Euclidean distance. �is is an iterative process

where the distance between each cluster is calculated as the average distance of its

consistent objects. Input clusters are continually re�ned based on this distance until

the changes in each cluster reach a stop condition. �ese clusters are discrete, where

an object is assigned to only one cluster.

In my system, I use this clustering method to segment the learned SOM space and

the matching RGZ images by their high-level topology and morphological relation-

ships. Given this is an unsupervised method, these clusters will not be identical to

the labels of the RGZ dataset. Instead, the clustering will be based on the relation-

ships and features the system has learned from the within the training data. I analyse
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this clustering by the correlations formed between these groups and the relationships

between the RGZ labels. I expect my system to classify based on deep morphologi-

cal relationships, such as the extended nature of a source and the distance between

central components and companion sources. Concerning evaluation, I am limited by

the simplicity of the RGZ labels given they only describe very simple features peaks

and components counts in each image. As a result, I can only assess the clustering by

the correlations between the RGZ labels and how well the clustering resembles RGZ

relationships.

�e output of the K-means clustering is an arbitrary K cluster number. �is thesis

uses this number to produce a labelled umat and coloured visualisation of the clusters

over the SOMmanifold. Given K-means clustering is unsupervised, these clusters are

arbitrarily identi�ed and coloured. �ese colours and K-means identi�cation num-

bers will change each time clusters are calculated. �e K-means coloured clusters are

blended with the umat �rst closest matching candidate superimposed map (Section

2.5.2) and the umat-decoded weight superimposed map (Section 2.5.3) to demonstrate

how the clusters segment images by Euclidean distance and morphology.

Clustering output is also shown by two colour coded umats blended with the �rst

candidate match and the reconstructed neuron weights. It is advised that these maps

are viewed electronically, as displayed in print is di�cult due to how many features

need to be ��ed to such a large grid. Finally, these clusters are detailed with several

tables and �gures detailing the RGZ label population of each cluster.

2.5.6 Evaluation of the Self-Organising Map and
Overall System

I quantify the overall performance of the system by several metrics based on the SOM

outputs and comparisons to similar systems in the literature. In all SOM con�guration

tests, I assess modelling quality by the performance of the SOM in anomaly detection

and complexity separation. For HC testing, I analyse clustering quality by the corre-

lation between the labels of neuron matching candidate images with discrete entropy

and the purity of sources contained within each cluster.

2.5.6.1 Evaluation using Complexity Separation

I evaluate the anomaly detection using the following measures, as outlined by (Flach

and Kull, 2015):

• Accuracy, used as a basic metric to describe the ratio of correct predicted values
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over the size of the dataset, as:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.17)

Where TP is the number of true positive cases, TN false negatives, FP false

positives and FN as false negatives.

• Precision, as the proportion of true positives among the positive predictions.

�is metric describes the proportion of anomalous sources that are classi�ed

correctly as true positives with as few as possible false positives. I use this

measure to provide insight into how many anomalies within the classi�cation

that have been correctly classi�ed. �is metric is given by:

Precision =
TP

TP + FP
(2.18)

• Recall, as the true positive rate, measures how well my detection method lo-

cates true positive anomalies within minimal false negatives. Also known as

sensitivity, I use this measure to understand how many of the overall anoma-

lies have been detected. �is measure is highly important as it describes how

many anomalies that may have been overlooked. Recall is given by:

Recall =
TP

TP + FN
(2.19)

• F1 score is my �nal de�nitive means of quantifying performance. �is score is

the harmonic average of the precision and recall as a robust combination of the

two metrics, given by:

F1 =
2TP

2TP + FP + FN
(2.20)

A value of 1 in all these measures describes the best case, while 0 describes the

worst.

2.5.6.2 Dataset Label Correlation Using Discrete Entropy

I determine the performance of the HC based on the purity and completeness of

source classi�cations in each cluster and by discrete entropy. �is purity and com-

pleteness refer to how well each cluster represents RGZ labels. A cluster containing a

high level of 11 simple point sources with few other sources is considered pure. If this

cluster contains a majority of the overall population of 11 sources in the dataset, it is

then complete. �e actual discrete de�nition of purity and completeness cannot be
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used appropriately in the case of my system as the SOM is not clustering by the RGZ

labels that would be used to calculate these metrics. Given that unsupervised meth-

ods will determine their own relationships within the dataset, basic observations on

the correlation between SOM detected morphological relationships is a fair approach.

�is is seen in literature with other radio-astronomical SOMmorphology analysis pa-

pers such as (Polsterer et al., 2015) where clustering quality is inherently qualitative.

�antitative measures in this thesis are found with the anomaly detection of Section

2.5.6.1.

I use the discrete entropymeasure as a tensor for the homogeneity of labelsmatch-

ing each neuron. A low entropy describes a neuron with li�le variation in matching

source labels, while a high entropy describes a neuron that contains a wide variety

of source labels. �is is an appropriate measure given the SOM as an unsupervised

method is not learning the labels of the dataset, but deep relationships within the

data itself. Consequently, I use this metric for evaluating the correlation between

classi�cations of the RGZ dataset and those found by the SOM and HC. �is entropy

measure is given as Ê:

P̂i =
ni
N

(2.21)

Ê = −
∑
i

P̂iloд2P̂i (2.22)

Whereni is the number of class occurrences i andN the total number of occurring

classes. A low entropy indicates good consensus where most neuron image matches

have the same label. Conversely, a high entropy indicates the matching images of

a neuron has a wide range of di�erent labels. I normalise this value into discrete

entropy, with a range from 0 to 1.

2.5.7 Training and Validation Dataset Divisions

In this thesis, SOM training and validation use the encoded images of the RGZ DR1

outlined in Section 2.5.7. All tests are conducted using the RGZ DR1 with no consen-

sus �ltering. �ese tests demonstrate the SOM behaviour in the typical case, where

the dataset is unbalanced, with a vast majority of point sources (class 11). Addition-

ally, no consensus �ltering is used, RGZ labels may be inaccurate. �e training and

validation sets each contain 30,000 labelled latent vectors. Similar to the autoencoder,

the SOM is trained in an unsupervised manner. As a result, only the validation is af-

fected by RGZ image consensus.
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2.5.8 Hyper-Parameter Optimisation and Testing

�e training hyper-parameters and network architecture of the SOMare re�ned through

a series of tests to locate the optimal combination for best accuracy and low training

time. �ese tests are conducted similarly to the autoencoder of Section 2.4.4, where

each parameter is tested with a set of initial intuitive conditions for several di�erent

parameters. �ese tests are as follows:

1. Map size as grid dimensions: square 5,7,10,15,20,50. An initial grid of 10×10
square neurons with a toroidal projection is used as a basic initial condition,

with 18 RGZ classes represented by a 100 neurons. It is not e�cient or viable

to test all combinations of these, simply testing the best possible generalised

architecture for a medium-small map is most e�cient, which will then be used

as the initial conditions for larger map sizes.

2. Exponential and linear learning rate decay, with an initial learning rate of 0.01,

decaying to 0.001. �ese decay rates bear more consequences on the perfor-

mance of the SOM than learning rates (Chaudhary et al., 2015). As a result,

I keep these initial and �nal learning rates constant at these nominal default

somoclu learning rates, but test for the optimal decay rate.

3. Gaussian and linear (‘bubble’) learning neighbourhoods, where the initial neigh-

bourhood radius is half the overall map height and width (where given a square

map, these quantities are congruent), so initially, most neurons have a chance

to converge on the �nal solution. it is highly unlikely that there will be inactive

neurons in corners not reached by a circular neighbourhood with a diameter

equal to the width and height of the map given PCA initialisation will do an

elementary grouping of the latent vectors, and a toroidal map is used.

4. Neighbourhood decay function: exponential or linear. �is is closely related to

the learning neighbourhood kernel and therefore should be tested with di�er-

ent combinations of linear and exponential with combinations of Gaussian and

linear decay.

5. ‘k’ number of K-means clusters: 4, 8 and 16.

6. Analysis of a�ne invariance in the SOM trained on latent vectors. �is test

is done last on the optimal SOM by testing for the e�ects of training the SOM

on latent vectors, where the autoencoder has been trained using rotation and

noise injection augmentations.

Tuning training Hyper-parameters and architecture is not an exact science. Too

many variables and too few constants or initial conditions can lead to testing a recur-

sively increasing number of tests. Such a sheer number of trials is beyond the scope
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of this thesis and would likely provide only minor accuracy and time improvements

that may not be generalisable to other data, images or otherwise. As a result, a num-

ber of initial conditions were selected based on educated intuition and benchmarked

performance found in the literature. �ese formed the early methodology and results

as featured in Ralph et al. (2018).

Training on larger and smallermaps to determine the ideal training hyper-parameters

network con�guration by analysing the e�ects of learning rate decay and neighbour-

hood types and decay in a largemanifold is unnecessary until the �nal best map size is

chosen, given I scale the parameters with the map size and I am training on a toroidal

SOM space, meaning only a few cases will see neurons not adequately in�uenced

by the training. If I was to train for signi�cantly larger maps (such as an emergent
SOM, where there are more neurons than data points), then this may become more

necessary. As a result, I use only the most ideal map size in the �rst test for all sub-

sequent tests, except where larger map sizes may be required to show more detailed

morphologies or to deeper investigate the rotation invariance tests.

2.6 System Overview

In this Section, I outline the novel system I developed to extract features of RGZ

images with a convolutional autoencoder to a compact feature vector for e�cient

clustering, visualisation and anomaly detection using a SOM. I developed this system

using the Python Language on CPU only with an Intel(R) Xeon(R) CPU E5-2650 v4

at 2.20GHz. As outlined in Section 2.1 the Google TensorFlow Library was used to

create the autoencoder, and Somoclu was used to implement the SOM.

�e system is comprised of three distinct components; preprocessing, convolu-

tional autoencoder and SOM, as shown in Figure 2.14.
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Figure 2.14: Overall system con�guration with the preprocessing component, convo-

lutional autoencoder, SOM and learned outputs with weight decoding, and HC with

RGZ label validation.

In my system, all RGZ training and validation images are preprocessed for bet-

ter accuracy in ML training by �ltering noise while preserving critical astronomical

features such as morphology and peak-component counts. In this system, I trail two

preprocessing methods, as outlined in Section 2.3.

�e second component of my system is the convolutional autoencoder. �is net-

work uses the preprocessed images for training and validation to analyse the data

scale and complexity reduction of radio-astronomical images when reduced to a com-

pressed latent feature vector. As shown in Figure 2.14, this network compresses the

120x120 input images with 14400 elements to the latent feature vector with 900 ele-

ments for clustering. Encoder and decoder architecture is identical with three con-

volutional layers. In Section 2.4.5 I outlined the training hyper-parameters and con-

�gurations of this autoencoder and how I optimised it for accuracy and training time

on the RGZ DR1.

�e SOM is the �nal component of the system. �is is trained using the compact

latent feature vector representations of the RGZ images produced by the optimised

autoencoder. Using this component of the system, I determined whether training

on autoencoder latent vectors can adequately visualise the dynamic distribution and

high-level topological relationships of radio-astronomical images from the RGZ. �e

learned neuron weights on the SOM are parsed back into the decoder side of the

network for reconstruction into their approximate image representation. Finally, I use

the umat output of the latent vector trained SOM for anomaly detection, complexity

separation and in HC of the RGZ dataset morphologies.

I evaluate the overall e�ectiveness of the system by several accuracy metrics de-

65



scribing the performance of the anomaly detection and the relationships between the

umat and HC SOM outputs RGZ labels, as detailed in 2.5.6. I selected the �nal SOM

network con�guration and training hyper-parameters similar to the autoencoder op-

timisation of Section 2.4.4, as a result of several tests to maximise SOM modelling

performance.

�e following Results Chapter 3 details the optimisation and �nal results of my

system. �ese implications and outcome of this thesis based on these results are

outlined in the Discussion Chapter 4.
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Chapter 3

Results

In this thesis, I developed a novel unsupervised ML system for the clustering and data

exploration of radio-astronomical images in the RGZ dataset. In this section, I tested

the combination of a convolutional autoencoder, SOM and HC as a practical, e�cient

and unsupervised solution to the problems of scale and complexity in the modern era

of big-data astronomy. Outlined in Chapter 2, I conducted several tests to optimise

this system and determine its success. �is results Chapter summarises the outcome

of these experiments. My paper Ralph et al. (2018), presented the preliminary results

of this thesis, which were further expanded using the tests of my �nal methodology.

�e results of each part of the overall system are presented hierarchically from the

preprocessing, autoencoder and SOM, and is evaluated using the performance mea-

sures of Sections 2.4.4.5 and 2.5.6.

3.1 Preprocessing Results

Two preprocessing methods were trialled in this investigation. I tested each method

on the same image set and evaluated visually by their ability to �lter out noise while

preserving distinguishing astronomical features. �e time taken to pre-process these

images is also recorded; however, the quality of the preprocessing takes precedence

in analysing performance as it has a more signi�cant impact on ML training.

3.1.1 Adaptive Masking with Otsu �resholding

�e adaptive masking method using .PNG images, detailed in Section 2.3.1 performed

well to �lter out background noise and preserve most of the desired astronomical

features at the cost of sacri�cing the dynamic range of pixel intensity available in

.FITS radio images, as shown in Figure 3.1.

It was found that this method produced several undesirable e�ects:
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1. Tendency to �lter out critical distinguishing astronomical features such as faint

sources, extended emission and companion sources. �is erroneous �ltering

is particularly noticeable in the �ltering results of image (l) compared to the

original image (i) in Figure 3.1

2. Rejection of too many images as ‘noisy’, with some cases seeing up to 25% of

the dataset rejected as too noisy. �is case is demonstrated with Figure 3.1 (c),

wherein this case, the image is rejected, and instrument noise is ampli�ed.

3. In rare cases, there is the production of erroneous components and features in

cases where the adaptive threshold mask creates oddly shaped ‘island’ image

regions out of noise, or by breaking single components into multiple compo-

nents based on their peaks.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.1: Otsu adaptive �ltering results of the six representative samples of the RGZ

dataset

3.1.2 Sigma Clipping and Noise Injection Correcting
Preprocessing

Outlined in Section 2.3.2, the sigma clipping and noise injection correcting prepro-

cessing method used an approach closer to typical astronomical image processing.

�is approach takes advantage of the dynamic range of radio-astronomical FITS im-

ages by segmenting by pixel intensity. Shown in Figure 3.2, the sigma clipping and

noise injection correcting preprocessing method produced excellent noise �ltering

and equalisation while retaining critical distinguishing astronomical features.
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Comparisons of the two preprocessingmethods in Figure 3.3, con�rm that this ap-

proach is less prone to producing artefacts or masking out faint sources and extended

emission than the adaptive thresholding method.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.2: Sigma clipping and noise injection �ltering of the six representative sam-

ples of the RGZ dataset
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.3: Preprocessingmethod comparison between the Otsu adaptive �ltering and

the sigma clipping on six representative samples of the RGZ dataset

Consequently, I implemented the robust cleaning produced by the sigma clipping

method as the preprocessing method throughout my paper Ralph et al. (2018) and

thesis.

3.2 Autoencoder Results

3.2.1 Preliminary Autoencoder Image Reconstructions

�is Section demonstrates the results of the autoencoder I implemented using the

method outlined in Section 2.4. �ese were featured as the results of Ralph et al.

(2018). As discussed in Section 2.4.4.5, I evaluate these by the MSE and �delity of the
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image reconstruction produced by the autoencoder. �e format of these results is not

altered from their original appearance in the paper to highlight the di�erences in �nal

results with the re�nement outlined in Section 2.4.4. �is is unlike the preprocessing

results of Section 3.1, which have been changed.

�e autoencoder I implemented in Ralph et al. (2018) was trained on RGZ im-

ages and demonstrates successful compression and decompression across the dataset

using the hardware outlined in Section 2.1. �is is shown in Figure 3.4, where the re-

constructed image strongly approximates the input image of the network. From this

Figure, I determined that the autoencoder is capable of recognising and preserving

enough key image features in the 900 × 1 compressed latent vector to successfully

predict the original image. �e di�erence images in the Figure show the autoencoder

loses most �delity around the edges of regions and reasonably reconstructs back-

ground noise. Images 1 and 3 of this Figure demonstrate the most error, with Image

1 merging a faint component into the central peak and Image 3 imposing a faint ad-

ditional peak.

Input Image 0 Input Image 1 Input Image 2 Input Image 3

Reconstructed Image 0 Reconstructed Image 1 Reconstructed Image 2 Reconstructed Image 3

Target-Input Difference 0 Target-Input Difference 1 Target-Input Difference 2 Target-Input Difference 3

Figure 3.4: Convolutional Autoencoder prediction of Radio Galaxy Zoo input images

a�er 20 training epochs. Top row: Original preprocessed input, Middle row: trained

autoencoder prediction, Bo�om row: Di�erence image between predicted and origi-

nal image. .
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Figure 3.5: Autoencoder error per batch as mean squared di�erence between input

target image and reconstructed image. Training error converges a�er 70 epochs,

where the total training time for a full epoch is 2.2 minutes.

�e average training time of this autoencoder is 1.2 seconds per batch of 128 im-

ages. �e training time for a full epoch is 2.2 minutes. Figure 3.5 demonstrates train-

ing convergence a�er 70 epochs. Convergence here is de�ned as the earliest point in

which error has less than a 10% change over 5 batches.

�ese results re�ect the method only as a proof of concept and lack deep re�ne-

ment. As discussed in Section 2.4.4, I augmented these results using a more re�ned

method that included a be�er convergence metric and comparison of the autoen-

coder training and validation error to check model �t quality. Additionally, I show

all image reconstruction comparisons with the same representative sample images

used throughout this thesis for be�er comparison between methods (�rst shown in

Section 2.2)

3.2.2 Final Results with Training Hyper-Parameter
and Network Optimisation

As outlined in Section 2.4.4, my approach a�er the submission of my paper Ralph

et al. (2018) was to re�ne the performance and hyper-parameters of the autoencoder. I

achieved this end by optimising the autoencoder architecture and training conditions
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to determine the best con�guration for the lowest network error and processing time.

My aim in optimisation is to reduce the training time while achieving the lowest

possible autoencoder error to ensure the latent feature vector has captured su�cient

information for later analysis.

�is Section evaluates the following hyper-parameters and network con�gura-

tions (Section 2.4.5):

• Convolution and max-pooling �lter dimensions testing

• Convolution layer �lter count testing

• Training batch size testing

• Training set augmentations with random rotation and noise injection testing

With initial conditions:

• Convolutional �lter size of 3 × 3 with a stride of [1,2,2,1]

• Max-pooling �lter size of 2 × 2 with a stride of [1,2,2,1]

• Initial batch size of 128

• All tests conducted without training set augmentations

�e following results are compared using several �gures and tables. I demonstrate

the optimal network and training con�guration with a Figure showing the validation

time per epoch and a second Figure illustrating a polynomial curve �t on a sca�er

plot of the average error at the end of each epoch. As outlined in Section 2.4.4.6, this

convergence measure is the lowest of the average validation error in the last 10% of

batches for each epoch. Using these �gures, I determine the optimal variable by com-

paring the error and time taken to arrive at the convergent epoch. �e con�guration

with the lowest error is deemed ideal unless indicated otherwise or if training time

is of particular concern in the test. �ese results are also summarised in a series of

tables and complimented where appropriate with comparisons of the autoencoder in-

put images and corresponding reconstructions. �roughout these tests, I also show a

series of reconstructions using the sample images used throughout the thesis. �ese

images are shown with the original image and a di�erence image between the two.

All of these �gures contain only the reconstructions produced by the network in its

trained state at the convergent epoch.

As discussed in Section 2.4.5, subsequent tests use the best con�guration from

previous tests to converge on the ideal overall solution. �e �nal chosen parameter

for each test is evaluated for training quality by comparing the validation and training

74



error. In this comparison, a signi�cant and consistently greater or smaller training

error than the validation error indicates over-��ing and under-��ing respectively.

Section 4.2 provides an in-depth discussion of these results, their implications and

relation to the research questions and aims of this thesis (outlined in Sections 1.4 and

1.5 respectively).

3.2.2.1 Convolutional Filter Dimensions

�e results of the convolutional �lter size tests outlined in Section 2.4.4.1 are illus-

trated in Figures 3.6 - 3.11. �e ideal convolution �lter size in terms of accuracy for all

layers is shown to be a 5× 5, with the constant stride of [1,2,2,1] (discussed in Section

2.4.4.1) a�er 9 epochs.

As shown in Figure 3.7 and summarised in Table 3.1, this 5× 5 receptive �eld size
allows the autoencoder to reach convergence a�er 8 epochs in 1310.96 seconds with

the lowest MSE validation error of all tests at 295.80. Although 2 × 2 �lter it requires
less training time and the 3 × 3 �lter converges an epoch early, the error between

these �lers is signi�cantly greater than the 5 × 5. Figures 3.9 - 3.11 also con�rm the

5 × 5 �lter as most suitable with comparably poor �delity in networks trained with

a 2 × 2 and a 7 × 7 �lter. It is clear that across these �gures that the resolution of

the reconstruction is dependent on the �lter size, with a small kernel producing the

lowest resolution and the 7 × 7 with the greatest but requiring a great amount of

training to re�ne. Figure 3.8 demonstrates the 5 × 5 �lter is modelling correctly with

no consistent variations between the two error metrics, indicating no obvious signs

of under-��ing or over-��ing.
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Figure 3.6: Comparisons of the validation MSE of the autoencoder with 2× 2,3x3,5x5
and 7×7 sized convolutional �lters, demonstrating the 5×5 as the best con�guration
with fast convergence and the lowest error.
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Figure 3.7: Sca�er plot and polynomial �t of the average validation error in the �nal

10% of batches per epoch for all �lter sizes. �is Figure indicates the 5× 5 �lter is the
most accurate.

500 1000 1500 2000
Batch (125 Images)

400

200

0

200

400

Tr
ai

ni
ng

-V
al

id
at

io
n 

Er
ro

r D
iff

er
en

ce
 (M

SE
) Training Error

Figure 3.8: Per batch di�erence in training error and validation for 5×5 convolutional
�lter showing no obvious signs of over-��ing or under-��ing.
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Table 3.1: Summary of convolutional �lter size convergence statistics, indicating the

2×2 �lter requires the least training time, while the 5×5 achieves the least error with
an increase in training time

Convolutional Convergent Epoch Convergent Epoch Training Time to

Filter Size Test Error (MSE) Convergence (s)

2 × 2 9.0 858.57 825.79
3 × 3 8.0 488.55 954.67

5 × 5 9.0 295.80 1310.96

7 × 7 9.0 1471.42 1994.71
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.9: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a 2 × 2 convolutional �lter sizes. Evidently, a
low receptive �eld will produce a correspondingly low resolution output.
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.10: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a 5×5 convolutional �lter sizes. �e lower error

has a clear e�ect on the �delity compared to the 2 × 2 �lter, with clear preservation

of components and peaks.
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.11: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a 7 × 7 convolutional �lter sizes. �e recon-

structions here poor �delity and darkened regions from excessive zero padding, how-

ever the larger size of 7 × 7 �lter is clearly a�empting to �t high resolution detail to

di�use features.
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3.2.2.2 Max-pooling Filter Dimensions

�e results of the max-pooling �lter size tests in the encoder side of the autoencoder

are outlined in Section 2.4.4.2 are illustrated in Figures 3.12 - 3.18. �e ideal max-

pooling �lter size here is more nuanced than simply selecting the most accurate in

terms of low validation MSE. As outlined in Section 1.2.1, my purpose in including

the max-pooling layers is to add a degree of translation invariance. As shown in Fig-

ures 3.15 - 3.18 and due to the principles pooling operates in, the ‘blurring’ e�ect is

proportional to the size of the pooling �lter. A �lter of 1 × 1 is simply a perception

layer and produces none of the blurring, but consequently produces no translation

invariance. As a result, the 2×2 max-pooling �lter was chosen as a trade-o� between

the most accurate with good �delity in maintaining the number of peaks and compo-

nents across all samples while still providing some essence of translation invariance.

�is �lter is used with the constant stride of [1,2,2,1] (discussed in Section 2.4.4.2) and

converges a�er 9 epochs.

As shown in Figure 3.12 and summarised in Table 3.2, this 2 × 2 �lter allows the
autoencoder to reach convergence a�er 9 epochs in 1473.98 seconds with the low-

est MSE validation error greater than the 1 × 1 �lter at 299.23. �e training times,

stability and convergence points across these networks do not di�er enough to draw

reasonable conclusions that would be observed in additional tests with di�erent batch

training samples. As in the previous convolutional �lter size tests of Section 3.2.2.1,

no obvious signs of under-��ing or over-��ing can be observed in the validation-

training error of Figure 3.14.
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Figure 3.12: Comparisons of the validation MSE of the autoencoder with 2×2,3x3,5x5
and 7×7 sized convolutional �lters, demonstrating the 5×5 as the best con�guration
with fast convergence and the lowest error.
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Figure 3.13: Sca�er plot and polynomial �t of the average validation error in the �nal

10% of batches per epoch for all �lter sizes. �is Figure indicates the 2 × 2 �lter is

the most accurate �lter that still carries the bene�ts of translation invariance found

in �lters greater than 1 × 1.
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Figure 3.14: Per batch di�erence in training error and validation for 2×2 max-pooling

�lter, showing no obvious signs of over-��ing or under-��ing a�er the expected

under-��ing in early batches that converges around the 1000 batch point.

Table 3.2: Summary of max-pooling �lter size convergence statistics, indicating the

2 × 2 �lter achieves the least error, discounting the 1 × 1 �lter as inappropriate for

true pooling. Training time across the tests have li�le variance

Max-Pooling Convergent Epoch Convergent Epoch Training Time to

Filter Size Test Error (MSE) Convergence (s)

1 × 1 9.0 169.27 1475.75

2 × 2 9.0 292.23 1473.98

3 × 3 9.0 332.72 1485.18

4 × 4 8.0 674.04 1328.20
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.15: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a 1× 1 max-pooling �lter size. �e reconstruc-

tions have great �delity and no blurring as the 1 × 1 �lter acts as a perception layer.
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.16: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a 2 × 2 max-pooling �lter size. �ese images

show a slight drop in reconstruction compared to the 1 × 1 �lter (Figure 3.15), but

with the added element of minor translation invariance with the pooling.
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.17: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a 3 × 3 max-pooling �lter size. �ese images

show a continued blurring and degradation in reconstruction compared to the 2 × 2
�lter (Figure 3.16).
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.18: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a 4 × 4 max-pooling �lter size. �ese images

show very poor �delity and with components and peaks severely blurred compared

to the 2 × 2 �lter (Figure 3.16)
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3.2.2.3 Convolutional Filter Counts

�e results of the convolutional �lter count tests as outlined in Section 2.4.4.1 are il-

lustrated in Figures 3.19 - 3.28 and Tables 3.3 - 3.4. �e ideal number of convolutional

�lters in the central hidden layer of both the encoder and decoder is shown to be 32

�lters in terms of both accuracy and training time. As in previous tests, the network

con�gurations and hyper-parameters I used in this test are the optimal parameters

found in previous tests as 5×5 and 2×2 convolutional and max-pooling �lters respec-

tively (Sections 3.2.2.1 - 3.2.2.2). As shown in Figure 3.7 and summarised in Table 3.3,

32 convolutional �lters allow the autoencoder to reach convergence a�er 8 epochs

in 896.85 seconds with the lowest MSE validation error of all tests at 245.36. �is is

con�rmed in Table 3.4 and Figures 3.21 - 3.22 where I re�ned the tests to examine

values closer to the low error 64 and 32 con�guration.

�e training time observed in each test increases proportionally to the number of

�lters. �is is similar to the trends seen while testing convolutional and max-pooling

�lter sizes (Sections 3.2.2.1 - 3.2.2.2). Shown in Figure 3.19 - 3.28, and summarised

in Table 3.3, accuracy with few convolutional �lters is acceptable and requires li�le

training time. However, accuracy remains similar in tests with greater than 16 �l-

ters where changes in error are minimal but at the cost of increasing training time. In

Table 3.4, the 24 layer con�guration is an outlier, requiring more training time to con-

verge as the consequence of requiring more overall time to reach a global minimum,

not the training time per batch.

Figures 3.26 and 3.28 shows 32 and 128 layers respectively maintain the most com-

ponents and peaks, although the 128 �lter test illustrated in Figure 3.19 appears unsta-

ble with great �uctuations in error and appearing to converge the earliest as a result

of these swings. Most tests show very similar convergence times and error. Tests

with 64 layers are a close contender with very similar error, but with a substantial

increase in training time. �e fastest con�guration with 32 �lters is a clear choice

with no accuracy increase o�se�ing the increased convergence time. Although the

128 �lter con�guration does converge a�er only 4 epochs, it requires comparatively

more time to reach this point and with higher error than the 32 �lter test.

As in previous tests, Figure 3.8 demonstrates the 32 �lter con�guration is mod-

elling correctly with no consistent variations between the two error metrics, indicat-

ing no obvious signs of under-��ing or over-��ing. As the autoencoder is becoming

more re�ned with the optimal convolutional and max-pooling �lter sizes determined,

this Figure is displaying less di�erences than previous tests in Figure 3.14 and Figure

3.8.
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Figure 3.19: Comparisons of the validation MSE of the autoencoder with

8,16,32,64,128 convolutional �lters in the hidden middle layer of the encoder and de-

coder. �is Figure demonstrates 32 �lters as the best con�guration with the fastest

convergence and the lowest error.

1 2 3 4 5 6 7 8 9
Epoch

200

400

600

800

1000

1200

1400

Va
lid

at
io

n 
Er

ro
r (

M
SE

)

8
16
32
64
128

Figure 3.20: Sca�er plot and polynomial �t of the average validation error in the

�nal 10% of batches per epoch for all �lter counts. �is Figure indicates the 32 �lter

con�guration is the most accurate.
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Table 3.3: Summary of convolutional �lter count statistics, indicating that the 32 �lter

con�guration is the most accurate and fastest to converge in terms of time. �e 128

�lter con�guration does converge a�er only 4 epochs but requires signi�cant more

time to reach this point, and with higher error than the 32 �lter test.

Convolutional Convergent Epoch Convergent Epoch Training Time to

Filter Count Test Error (MSE) Convergence (s)

8 9.0 416.03 543.05
16 9.0 653.90 734.30

32 8.0 245.36 896.85

64 8.0 271.13 1321.78

128 4.0 273.99 1246.60
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Figure 3.21: Comparisons of the validation MSE of the autoencoder using a more

re�ned testing condition than earlier tests, with 24,32,48,64,72 convolutional �lters in

the hidden middle layer of the encoder and decoder. �is con�rms the 32 �lter count

as the best con�guration with fast convergence and the lowest error.
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Figure 3.22: Sca�er plot and polynomial �t of the average validation error in the �nal

10% of batches per epoch for the re�ned �lter count tests. �is Figure con�rms the

32 �lter con�guration is the most accurate.

Table 3.4: Summary of the re�ned convolutional �lter count statistics, con�rming

that the 32 �lter con�guration is the most accurate and fastest to converge.

Convolutional Convergent Epoch Convergent Epoch Training Time to

Filter Count Test Error (MSE) Convergence (s)

24 9.0 462.36 938.28

32 8.0 245.36 896.85
48 9.0 307.00 1249.08

64 8.0 271.13 1321.78

72 8.0 319.90 1535.96
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Figure 3.23: Per batch di�erence in training error and validation for the 32 convolu-

tional �lter con�guration, showing no obvious signs of over-��ing or under-��ing.

Clear improvement in modelling compared to Figure 3.14, where there are no major

signs of under-��ing a�er 100 epochs.
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.24: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a 8 convolutional �lter con�guration. �e

reconstructions contain reasonable �delity with moderate blurring and merging of

separate components.
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.25: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a 16 convolutional �lter con�guration. �e

reconstructions show improved quality with reduced component merging compared

to the 8 �lter con�guration (Figure 3.24), but with poor reconstruction of the back-

ground noise.
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.26: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a 32 convolutional �lter con�guration. �e

reconstructions are highly accurate, with all components and peaks preserved and

sound regeneration of the background noise. Most notable is the preservation of the

central component of the AGN in Reconstructed Image 4, which has not been seen in

previous tests.
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Input 5 Reconstructed 5 Difference 5

Figure 3.27: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a 64 convolutional �lter con�guration. �e

reconstructions here are acceptable, but with lower quality than the previous 32 �lter

test (Figure 3.26) and loss of the central component in Reconstruction Image 4.
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Figure 3.28: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a 128 convolutional �lter con�guration. �e

reconstructions here are also highly accurate, with the least amount of blurring across

all tests, but with lower quality than the previous 32 �lter test (Figure 3.26) due to

slightly fainter peaks.
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3.2.2.4 Batch Size

�e results of the training batch size tests outlined in Section 2.4.4.6 are illustrated in

Figures 3.29-3.37 and Table 3.5. �ese tests show the ideal training batch size is 4 im-

ages per batch in terms of the trade o� between accuracy, training time and stability

for the autoencoder in my system. As in previous tests, the network con�gurations

and hyper-parameters I used in this trial are the optimal parameters found in previous

tests as 5 × 5 and 2 × 2 convolutional and max-pooling �lters respectively (Sections

3.2.2.1 - 3.2.2.2) with 32 convolutional �lters in the middle hidden layer of the encoder

and decoder (Section 3.2.2.3). As shown in Figures 3.29-3.30 and summarised in Ta-

ble 3.5, 4 RGZ images per batch allow the autoencoder to reach convergence a�er 3

epochs in 528.34 seconds with a MSE validation error at 7.48.

�ese �gures indicate that batch sizes below 64 images are the most accurate and

converge the fastest, but at the cost of error stability during training. �is trend con-

tinues from the original batch size of previous tests at 128 images to larger batches

of 256 images, where accuracy is more stable but gradually reduced with signi�cant

blurring in the reconstructions. �ese �ndings are con�rmed with the gradually de-

grading reconstruction quality of autoencoder reconstructions in Figures 3.34-3.37

and Figure 3.26 as the batch size of 128 used in previous. In these �gures, training

batch sizes of 16 and below (Figure 3.35) appear to be the most accurate, which is rein-

forced in Figure 3.31. Although the batch sizes of 1 and 2 images are the most accurate

and the fastest to converge, these are also the least stable, as shown in Figure 3.31. As

a result, I chose a batch size of 4 as a trade-o� between stability, accuracy and train-

ing time. �is results in a marginally higher error and a slight increase in training

time but allows the autoencoder to be more robust and generalisable to large varia-

tions in the images within training batches. Reconstructions using these batch sizes

in Figure 3.34 compared to the batch size of 4 in Figure 3.26 justify this choice with

comparatively li�le �delity loss for a great stability increase. Although the overall

validation accuracy here is higher, this is at the cost of not fully reconstructing some

faint features such as the central peak at the centre of Reconstruction Image 4 of the

4 batch size test reconstructions.

As in previous tests, Figure 3.32 demonstrates training with a batch size of 4 al-

lows the autoencoder to correctly model the training set with no consistent variations

between the two error metrics, indicating no obvious signs of under-��ing or over-

��ing. �e autoencoder is continuing to be re�ned with the optimal convolutional

and max-pooling �lter sizes and counts determined. �is is demonstrated where this

Figure displays less di�erences than previous tests in Figures 3.14,3.8 and 3.23. Figure

3.33 illustrates the inherent instability of training with such a small batch size of 4

images. �is shows where a di�cult or complex training batch sample can lead to
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great �uctuations in error, an e�ect that can be observed in higher batch sizes, but to

a lesser extent with the generalisation provided by a greater number of samples.
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Figure 3.29: Comparisons of the validation MSE of the autoencoder with

2,4,8,16,64,128 batch sizes during training. �is Figure demonstrates a batch size of

4 as the best con�guration with the fast convergence and the lowest error. Full 10

epochs of data here is di�cult to show meaningfully, only the �rst 1200 batches as in

previous tests are shown. Error up to 50000 batches is shown in Figure 3.33.
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Figure 3.30: Sca�er plot and polynomial �t of the average validation error in the �nal

10% of batches per epoch for all batch sizes. �is Figure indicates a batch size of 4 is

the most accurate, closely followed by a batch size of 8. A large increase in error is

observed at epoch 9 for the 4 batch size test. �is spike coincides with the peaks seen

in Figure 3.33.
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Figure 3.31: Comparisons of the validation MSE of the autoencoder with 1,2 and 4

batch sizes during training. �is Figure demonstrates a batch size of 4 as the best

con�guration as a trade-o� between low error and stability. Full 10 epochs of data

here is di�cult to show meaningfully, only the �rst 1200 batches as in previous tests

are shown. Error up to 50000 batches is shown in Figure 3.33.

Table 3.5: Summary of batch size test statistics, indicating that the training batch size

of 4 is the most accurate and fastest to converge in terms of time.

Batch Size Convergent Epoch Convergent Epoch Training Time to

Test Error (MSE) Convergence (s)

1 3.0 1.90 465.69
2 2.0 2.42 485.20

4 3.0 7.48 528.34

8 6.0 19.75 1205.27

16 3.0 34.78 589.98

64 7.0 137.28 640.24

128 9.0 251.53 983.02

512 9.0 1128.21 937.50
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Figure 3.32: Per batch di�erence in training error and validation for a training batch

size of 4, showing no obvious signs of over-��ing or under-��ing. Clear improvement

in modelling compared to Figure 3.14, where there are no major signs of under-��ing

a�er 100 epochs.
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Figure 3.33: Per batch di�erence in training error and validation for a training batch

size of 4 extended to 50000 batches. �is Figure demonstrates the inherent instability

of training with such a small batch size, where a complex or erroneous training batch

sample can lead to great �uctuations in error if a signi�cantly large gradient is back

propagated, an e�ect observed in higher batch sizes, but to a lesser extent with the

generalisation provided by a greater number of samples.
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.34: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a training batch size of 2. �e reconstructions

show sound quality with preservation of all peaks and most components.
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.35: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a training batch size of 4. �e reconstructions

are highly accurate with slight improvement in resolution compared to training with

the batch size of 2 (Figure 3.34), where all components and peaks are preserved with

sound regeneration of the background noise.
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.36: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a a training batch size of 64. �e reconstruc-

tions here are again highly accurate, but with lower quality than the previous 2 and 4

�lter test (Figure 3.34 and 3.35) with lower resolution, minor blurring and loss of the

central component in Reconstruction Image 4.
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.37: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoderwith a training batch size of 256. �e reconstructions

here are low resolution and with moderate blurring compared to all previous batch

size tests (Figure 3.34 - 3.36).
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3.2.2.5 A�ne and Noise Training Set Augmentations

�e results of the a�ne and noise injection augmentation testing outlined in Sections

2.4.4.7 are illustrated in Figures 3.38-3.46 and Table 3.6. �ese tests indicate that ran-

dom rotations and corruption with impulse noise injection in training images provide

a slight increase in accuracy and stability with a minor trade-o� in training time. As

in previous tests, the network con�gurations and hyper-parameters I used in this trial

are the optimal parameters found in previous tests as 5 × 5 and 2 × 2 convolutional

and max-pooling �lters respectively (Sections 3.2.2.1 - 3.2.2.2) with 32 convolutional

�lters in the middle hidden layer of the encoder and decoder (Section 3.2.2.3) and a

training batch size of 4 RGZ images 3.2.2.4.

Summarised in Table 3.6, the tests indicate that the addition of corruption us-

ing noise injection to provides a minor improvement in accuracy and stability but

requires more time to converge. Random rotations in the training set provide the

greatest stability and the least error at 5.62 a�er 634.95 seconds. It is noted that the

corruption test does reach a minimum quickly at epoch three but the lowest at the

end of epoch 9, which increases this convergence time, but still with greater error

than the random rotation tests. It is clear in these Figures that the rotation and cor-

ruption augmentation methods are not complementary, as combining noise injection

with the rotations degrades the accuracy and stability of the rotation augmentations.

Figures 3.40 and 3.40 demonstrates the slight accuracy improvement provided by the

noise injection and the rotation augmentations.

Figure 3.45 indicates that autoencoder reconstructions of RGZ images with the ro-

tation training augmentations are the most accurate with nearly all peaks and compo-

nents restored. �e central component of the AGN in Reconstructed Image 4 is very

faint, with low-intensity emission produced in its wake. Although the error between

previous and subsequent reconstruction images (Figures 3.46 and 3.44) is low, this

image clearly contains the most �delity and the greatest resolution. Reconstructions

with noise injection are acceptable, but with clearly lower quality than the previous

augmentation tests (Figures 3.46-3.45). Many of these reconstructed images show the

merging of multiple radio peaks and components. Additionally, there is a degree of

granularity added to Reconstructed Image 4, which is also missing the central com-

ponent of the AGN. Finally, the combination of corruption and rotation in Figure 3.44

show reconstructions are also reasonable, most peaks and components reconstructed

but with distortion of Reconstructed Image 4 and the creation of an additional peak in

Reconstructed Image 5. Reconstruction of the background noise in these images ap-

pears to be highly accurate. Although this combination produces a higher error than

both the corruption and rotation augmentations, many of the artefacts produced by

the corruption augmentation are not present.
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As in previous tests, Figures 3.42-3.43 demonstrates training with either rotations

or noise injection does not have an adverse e�ect on ��ing quality, with no consis-

tent variations between the two error metrics, indicating no apparent signs of under-

��ing or over-��ing. Compared to no augmentations (Figure 3.32), however, the

di�erences between training and validation error are marginally more erratic with

the dataset augmentations.
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Figure 3.38: Comparisons of the validationMSE of the autoencoder across the training

set augmentation tests. �is Figure shows li�le di�erence in error and convergence

without augmentations and between di�erent dataset augmentations.
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Figure 3.39: Sca�er plot and polynomial �t of the average validation error in the �nal

10% of batches per epoch for all augmentation tests. �is Figure con�rms there is

li�le error change across the dataset augmentations, but the rotation augmentations

provide the most accuracy and improved stability.
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Figure 3.40: Comparisons of the validation MSE of the autoencoder between rotation

augmentations and unaugmented training set tests. �is Figure demonstrates shows

the slight accuracy improvement provided by the rotation augmentations.
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Figure 3.41: Comparisons of the validation MSE of the autoencoder between noise in-

jection augmentations and unaugmented training set tests. �is Figure demonstrates

the slight accuracy improvement provided by the noise injection, similar to that of

the rotation augmentations of Figure 3.40.
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Table 3.6: Summary of the training set augmentation statistics, indicating that the

inclusion of random rotations is the most accurate approach to training with a slight

increase in training time.

Dataset Convergent Epoch Convergent Epoch Training Time to

Augmentations Error (MSE) Convergence (s)

No Augmentation 3.0 7.48 528.34
Rotation 4.0 5.62 634.95

Corruption 9.0 7.67 1773.74

Rotation and Corruption 5.0 9.58 1193.08

200 400 600 800 1000 1200 1400 1600 1800
Batch (4 Images)

400

200

0

200

400

Tr
ai

ni
ng

-V
al

id
at

io
n 

Er
ro

r D
iff

er
en

ce
 (M

SE
) Training Error

Figure 3.42: Per batch di�erence in training error and validation for the noise injection

training set augmentation tests, showing no obvious signs of over-��ing or under-

��ing. A slightly higher variation can be seen here compared to no augmentations

3.32.
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Figure 3.43: Per batch di�erence in training error and validation for the random ro-

tation training set augmentation tests, showing no obvious signs of over-��ing or

under-��ing. A slightly higher variation can be seen here compared to no augmenta-

tions 3.32, still not of consequence. Nomajor change can be observed when compared

to training with noise injection (Figure 3.42).
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.44: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with corruption training set augmentation. �e

reconstructions here are accurate with most peaks and components reconstructed

but with distortion of Reconstructed Image 4 and the creation of an additional peak

in Reconstructed Image 5. Reconstruction of the background noise in these images

appears to be highly accurate.
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.45: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with rotation training set augmentation. �e re-

constructions are highly accurate with nearly all peaks and components restored.

�e central component of the AGN in Reconstructed Image 4 is very faint, with only

low intensity emission. Although the error between previous and subsequent recon-

struction images (Figures 3.46 and 3.44) is low, this image clearly contains the most

�delity and the greatest resolution.
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Input 0 Reconstructed 0 Difference 0

Input 1 Reconstructed 1 Difference 1

Input 2 Reconstructed 2 Difference 2

Input 3 Reconstructed 3 Difference 3

Input 4 Reconstructed 4 Difference 4

Input 5 Reconstructed 5 Difference 5

Figure 3.46: Sample input images and corresponding reconstruction and di�erence

image outputs of an autoencoder with a combination of corruption and random ro-

tation training set augmentation. �e reconstructions here are acceptable, but with

clearly lower quality than the previous augmentation tests (Figures 3.46-3.45), with

the merging of multiple peaks and components across the reconstructed images and

a degree of granularity added to Reconstructed Image 4 with no central component.
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3.2.3 OverviewandFinalAutoencoderTrainingHyper-Parameters
and Con�gurations

�e �nal autoencoder training hyper-parameters and architecture con�guration is

summarised in Table 3.7 and illustrated in Figure 3.47. �ese parameters are the result

of the tests outlined in Section 2.4.5, shown in Sections 3.2.1 - 3.2.2.5.

Table 3.8 shows the gradual performance improvement and training time im-

provement in each optimisation step, with the �nal test error of the best-chosen

con�guration. In this Table, the �nal ideal set of training hyper-parameters and net-

work con�gurations with no training augmentations, produces a MSE of 7.48, com-

pared to the preliminary proof of concept network MSE ∼ 700. �ese results show

the optimised autoencoder produces signi�cantly be�er reconstructions of radio-

astronomical image features with a MSE approximately 25 times lower than the pre-

liminary network error. However, the �nal network does require additional training

time, where the original con�guration was trained in 2.2 minutes, and the optimised

con�guration was trained in 8.81 minutes. No apparent signs of under-��ing or over-

��ing are observed in training a�er the �rst epoch throughout all trials. Changes in

validation time (e�ectively encoding time) are negligible, with only the combined ro-

tation and noise injection providing a slightly more noticeable time increase given

the network is performing two augmentations processes on input images.

Testing autoencoder training augmentations con�rmed that autoencoder denois-

ingwith image corruption and random rotations could improve autoencoder accuracy

at the cost of training time. Tests showed random rotation augmentations provide the

best performance out of the augmentations, with a MSE of 5.62 a�er 634.95 seconds.

�ese tests also demonstrated that methods are not complimentary, where the com-

bination of these two augmentations methods produce no reduction in error over the

individual augmentation methods.

�e �nal un-augmented autoencoder network can encode an image on average, in

0.008425 of a second, as shown in Table 3.8 with the results of the batch size tests. �is

encoding time indicates that on average, the time to encode 30,000 RGZ images for

SOM training or validation is 252.75 seconds or 4.2125 minutes. While the random

rotation augmentation results in a total encoding time of 440.25 seconds or 7.3375

minutes at an average of 0.014675 seconds per image.
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Figure 3.47: �e �nal convolutional autoencoder architecture based on the results of

the network con�guration and hyper-parameter optimisation testing as summarised

in Table 3.7. �is schematic demonstrates the role of each layer in gradually com-

pressing the input 120 × 120 image from the encoder network to the single channel

per batch 900 × 1 latent vector, which is restored to the original dimensions by the

decoder to interpret the latent vector and calculate network performance. �e �lter

size and count notation is given as Sbatch, Sx , Sy, Schannel , as described in Section 2.4.4.1.

Table 3.7: Outline of �nal optimised autoencoder architecture and layer con�guration,

where all convolutional layers use LReLU activation functions.

Network Layer Function Input Filter Size Stride

Section

Encoder 0 Input 120 × 120 × 1 - -

1 Convolution 1 120 × 120 × 1 5 × 5 × 1 1 × 2 × 2 × 1
2 Convolution 2 60 × 60 × 1 5 × 5 × 32 1 × 2 × 2 × 1
3 Convolution 3 30 × 30 × 1 5 × 5 × 1 1 × 2 × 2 × 1
4 Max-Pool 1 30 × 30 × 1 3 × 3 × 1 1 × 1 × 1 × 1

Centre 5 Latent Vector 30 × 30 × 1 - -

Decoder 6 De-Pool 1 30 × 30 × 1 3 × 3 × 1 1 × 1 × 1 × 1
7 Convolution 4 30 × 30 × 1 5 × 5 × 1 1 × 2 × 2 × 1
8 Convolution 5 60 × 60 × 1 5 × 5 × 32 1 × 2 × 2 × 1
9 Convolution 6 120 × 120 × 1 5 × 5 × 1 1 × 2 × 2 × 1
10 Output 120 × 120 × 1 - -
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Table 3.8: Outline of �nal optimised autoencoder architecture and layer con�guration

test results with the �nal test MSE for the optimised con�guration, total training time

and validation or encoding time per image.

Optimised Test Final Test Training Average Validation

Error (MSE) Time (s) and Encoding

Time per Image (s)

Convolutional Filter Size (5 × 5) 488.55 954.67 0.0082

Max-Pooling Filter Size (2 × 2) 292.23 1473.98 0.0094

Convolutional Filter Count (32) 245.36 896.85 0.0077

Batch Size (4) 7.48 528.34 0.0084

Random Rotation Training 5.62 634.95 0.0147

Noise Injection Training 7.67 1773.74 0.0093

Noise and Rotation Training 9.58 1193.08 0.0155
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3.3 Self-Organising Map Results

3.3.1 Preliminary Results

�e SOM I implemented for this thesis and featured in Ralph et al. (2018) was devel-

oped using the method outlined in Section 1.2.2.2. �e results of this Section form the

preliminary results of my novel approach to training a SOM on latent vectors. Similar

to the autoencoder results of Section 3.2.1, these tests were preliminary and obtained

using a method presented only as a proof of concept in Ralph et al. (2018) with only

basic optimisation. �e �nal results using the optimised architecture are presented in

the remainder of Section 3.2.

A 20× 20 neuron toroidal umat is displayed in Figure 3.48. Using my system, this

map was created in 40 seconds a�er 100 training epochs on the 10,000 encoded RGZ

images for an average of 0.36 seconds per epoch. In this image, I superimpose the

�rst closest matching RGZ image of each neuron to visualise the dataset topology,

and latent relationships learned from the latent vectors (detailed in Section 2.5.2 ).

�is closest matching image represents the best matching image in the dataset to the

learned weights with subsequent candidates decreasing in similarity (as Euclidean

distance).

�is umat clearly shows the morphology distribution of RGZ images where the

Euclidean distance between the learnedweight of each neuron and that of their imme-

diate neighbouring neurons displayed as a heat map. Images placed in high distance

regions have a latent feature vector with a high Euclidean distance to surrounding

neighbours. �is is con�rmed with high distance regions highlighting outliers within

the RGZ image set, particularly in the case of the upper le� regions of the umat with

sources showing complex morphology.

�e morphological clusters in this map are continuous, with neurons essentially

representing a probability distribution of latent feature vectors. �ese clustered re-

gions are sub-clustered by orientation, with similarly oriented objects clustered to-

gether with gradual transitions between classes. I expect to see this gradual transition

between classes of images given these objects do not have discrete features, but in-

stead have a continuous unresolved morphology. �e central low distance region

of the umat contains closest matching images as single compact sources. Matching

sources in this central compact region gradually progress in complexity to compact

multi-point sources toward outer edges. Matching sources on the edges of the map in

high distance regions show the highest complexity. �ese observations are con�rmed

by examining the RGZ labels and entropy of each matching source.
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Figure 3.48: Toroidal umat as SOM output with transparent greyscale closest match-

ing images over the heat map of the Euclidean distance between neuron weights.

�is map was created in an average of 0.4 seconds per epoch for 40 seconds a�er 100

epochs. Sources are so�ly clustered with a smooth transition between classes. �e

central low distance regions contain mostly compact single sources. Progressing to

the outer high distance edges are sources with gradually increasing complexity. Out-

liers and complex sources reside in high distance regions while more common point

sources remain in low distance areas.

3.3.2 Hierarchical Clustered Self Organised Map

Outlined in Section 2.5.5, I clustered the SOM weights to cluster neurons for com-

plexity separation. In Ralph et al. (2018), I used three the K-means algorithm with

three K clusters, 0, 1 and 2. In Figure 3.49, these are labelled in the centre of each

neuron. �ese labels are colour coded cyan for cluster 0, red for cluster 1 and white

for cluster 2. Table 3.10 details the proportion of neurons classi�ed into each cluster

with the minimum (min), maximum (max) and mean entropy (discussed in Section

2.5.6.1). Tables 3.11 and 3.12 list the proportion of �rst best matching units for each

label across the clusters. �ese tables detail the overall class population of the cluster

and the overall proportion of each class’s dataset population in the cluster. Addi-

tionally, the min, max and mean entropy for each clustered label set is listed. From
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Figure 3.49: �e same SOM as shown in Figure 3.48 with labels for class (0,1,2) colour

coded, cyan, red and white respectively. Each neuron is labelled with three numbers,

giving the properties of the best matching unit for that neurons. �e �rst (0,1,2) shows

the cluster number, the next is a two-digit number representing the labels, and the

third is a �oating-point number giving the entropy..

these tables and �gures, it is clear these classes segment the SOM into three groups

of simple, compact multi-feature and highly complex images.

Cluster 1 is located in the low distance centre of the umat, dominated by simple

point sources with 79.13% of all neurons as single peak point sources. �is cluster

contains 78.37% of all class 11 in the dataset with very low entropy. As detailed in

Section 2.2, my label encoding is components-peaks, where 11 is a source with a

RGZ label of 1 peak and 1 component. �e remaining 15.05% of neurons are highly

compact 12 point sources with two peaks. Two 33 and 22 sources are likely caught in

this cluster due to highly compact morphology. �e high proportion of these 11 class

sources and highly compact sources indicate that cluster 1 is e�ective in clustering

simple objects.

Cluster 2, however, contains a mix of sparse and highly complex sources located

mostly in the high distance regions of the umat. �is cluster is highly interesting and

contains 70.18% of all class 22 sources, making up 31.75% of the whole cluster (Table
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Table 3.9: Proportion of labels expressed as the matching image candidate across the

map with min, max and mean entropy.

Categories Population Match Population Mean Max Min

Over Map Entropy Entropy Entropy

11 63.78% 52.0% 0.44 0.07 1.52

12 13.86% 18.75% 0.97 0.21 2.27

22 14.3% 14.25% 1.30 0.10 2.57

33 3.28% 5.25% 1.36 0.29 2.29

23 1.94% 4.25% 1.39 0.12 2.25

13 0.78% 0.75% 1.67 1.12 2.40

44 0.76% 0.75% 1.02 0.68 1.60

45 0.2% 0.5% 2.60 2.19 3.00

34 0.42% 0.5% 1.92 1.92 1.92

14 0.08% 0.5% 4.32 3.04 5.61

16 0.02% 0.25% 1.66 1.66 1.66

46 0.08% 0.25% 3.32 3.32 3.32

55 0.14% 0.25% 1.28 1.28 1.28

24 0.16% 0.0% - - -

35 0.08% 0.0% - - -

36 0.02% 0.0% - - -

15 0.02% 0.0% - - -

56 0.04% 0.0% - - -

57 0.02% 0.0% - - -

67 0.02% 0.0% - - -

3.13. �e other dominant class in this cluster are sparse and complex class 11 sources

in the upper le� region with faint companions and noise. �e remaining sources in

this cluster include all of the low population outlier 14, 16, 44, 45, 46 and 55 classes in

addition to 52.94% of the 23 sources and a majority of the 33 sources at 71.43%. �ese

populations indicate that cluster 2 e�ectively segments outliers and sources of high

interest.

It is clear that cluster 0 resides between these two clusters on the umat in medium

distance regionswithmatching images containing classes that are not too complex for

cluster 1 but not compact or simple enough for cluster 2. �is is con�rmed by Table

3.12, with highly compact multi-peak and multi-component sources in this cluster.

�is cluster is comprised 50.0% 12 class sources, 20.59% of 22 sources and a series

of 11, 23, 33 and 13 sources. Many of the less dominant sources here are complex

enough to remain out of cluster 1 but contain a compact enough morphology to keep

them from the sparse and complex cluster 2. �ese observations indicate that cluster

0 segments medium complexity sources in a manner that allows cluster 1 and 2 to

remain dominated by simple and complex sources respectively.
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Table 3.10: Proportion of K-means clusters across the map with min, max and mean

entropy.

K-means Match Population Mean Max Min

Cluster Over Map Entropy Entropy Entropy

0 17.0% 0.21 2.27 1.15

1 51.5% 0.07 2.18 0.48

2 31.5% 0.10 5.61 1.19

Table 3.11: K-means Cluster 0: Proportion of image matches across the cluster, the

overall dataset population of each class contained in the cluster with min, max and

mean entropy.

Label Overall Overall Mean Min Max

Proportion of Proportion of Entropy Entropy Entropy

Cluster Label in

Population Cluster

12 50.0% 45.33% 1.14 0.36 2.27

22 20.59% 24.56% 1.32 0.72 1.94

11 11.76% 3.85% 0.60 0.21 1.05

23 11.76% 47.06% 1.33 0.24 2.25

33 2.94% 9.52% 1.68 1.30 2.06

13 1.47% 33.33% 1.12 1.12 1.12

Table 3.12: K-means Cluster 1: Proportion of image matches across the cluster, the

overall dataset population of each class contained in the cluster with min, max and

mean entropy.

Label Overall Overall Mean Min Max

Proportion of Proportion of Entropy Entropy Entropy

Cluster Label in

Population Cluster

11 79.13% 78.37% 0.41 0.07 0.75

12 15.05% 41.33% 0.80 0.21 2.18

33 1.94% 19.05% 0.64 0.29 1.28

22 1.46% 5.26% 0.81 0.22 1.27
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Table 3.13: K-means Cluster 2: Proportion of image matches across the cluster with

min, max and mean entropy.

Label Overall Overall Mean Min Max

Proportion of Proportion of Entropy Entropy Entropy

Cluster Label in

Population Cluster

22 31.75% 70.18% 1.33 0.10 2.57

11 29.37% 17.79% 0.55 0.10 1.52

33 11.9% 71.43% 1.52 0.78 2.29

12 7.94% 13.33% 0.94 0.31 1.31

23 7.14% 52.94% 1.44 0.12 2.01

44 2.38% 100.0% 1.02 0.68 1.60

45 1.59% 100.0% 2.60 2.19 3.00

34 1.59% 100.0% 1.92 1.92 1.92

14 1.59% 100.0% 4.32 3.04 5.61

13 1.59% 66.67% 1.94 1.48 2.40

16 0.79% 100.0% 1.66 1.66 1.66

46 0.79% 100.0% 3.32 3.32 3.32

55 0.79% 100.0% 1.28 1.28 1.28
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3.3.3 Final Results with Hyper-Parameter and Network
Architecture Optimisation

I conducted several tests to locate an optimal combination of initial conditions tomax-

imise SOMmodelling performance of the SOM used in Ralph et al. (2018). �ese tests

are outlined in Section 2.5.8 and are similar to the hyper-parameter and architecture

optimisation of Section 2.4.4, which include:

1. SOM map size: 5 × 5, 10 × 10, 20 × 20 and 40 × 40 neurons square.

2. Exponential and linear learning rate decay functions.

3. Gaussian and linear learning neighbourhoods functions with exponential and

linear neighbourhood decay functions.

4. Analysis of a�ne invariance in the SOM trained on latent vectors.

5. ‘K’ number of K-means clusters: 4,8 and 16 clusters.

�roughout these tests I use a set of initial conditions (detailed in Sections 2.5.1

and 2.5.8), some of which are gradually tuned based on the results of the relevant trial:

1. Toroidal map

2. Training for 12 epochs

3. Neuron weight initialisation using PCA

4. Initial neuron learning rate of 0.01 and a �nal weight of 0.001

5. Linear learning rate decay function

6. Linear neighbourhood function

7. Linear neighbourhood radius decay function

8. Analysis of a�ne invariance in the SOM trained on autoencoder latent vectors

learned using random rotation augmentations.

In the following Section, I outline the results of these tests to demonstrate the

best performing conditions and the overall results of this system. Detailed in Section

2.5.6.1, these results are evaluated by accuracy metrics concerning complexity sepa-

ration, with the best scoring test in boldface. All tests have a set of initial conditions

which are gradually re�ned, where subsequent tests use the optimal combinations of

the previous tests. �e �nal optimised network is used to evaluate the a�ne invari-

ance of the autoencoder and the HC.
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As outlined in Section 2.5.2, I display the SOM umat with neurons showing the

closest matching RGZ image latent vector to each learned neuron weight. Using this

map, I also display the distribution of Euclidean distances across all neurons for the

complexity separation. In these �gures, I also show the proportion of each neuron

distance bin with colour coding of the four dominant RGZ source labels, 11, 12, 22,

and 33, in addition to simple (11’s), complex (not 11) and anomalous (peak and or

component count greater than 3) labelled sources, as outlined in Section 2.2. As a

development over Ralph et al. (2018), I also a�empted to decode the neuron weights

using the decoder side of the autoencoder network to visualise the relationships each

neuron has learned. Additionally, I display these decoded neuron images over the

umat to visualise the neighbourhood Euclidean distance of each neuron. In tests with

HC, I colour code neurons with the closest matching image and decoded weights

based on their K cluster Identi�cation Number (ID).

It should be noted that some SOM large map sizes in the following sections are not

easily displayed or interpreted in paper format due to limitations on page and margin

size and should be viewed electronically for full resolution. Moreover, decoded neu-

ron weights tended to become quite faint with highly complex morphologies. As a

result, all decoded neurons weights have their image intensities ‘min-maxed’, where I

scale the peak pixel intensity to the highest intensity (255 in this case, where I convert

them to 8-bit intensities). �is results in some decoded neuron images with excep-

tionally high background noise. Using this process, visualisation is improved without

a negative impact on system performance given this is a straightforward operation

andmatching is applied only to the latent vectors and neuronweight, not the decoded

images.

3.3.3.1 Map Size

�e results of this Section indicate that the 10 × 10 map is the ideal SOM map size

for the visualisation, clustering and anomaly detection of radio-astronomical images

using my approach and the RGZ dataset.

I trialled four toroidal square SOM sizes; 5×5, 10×10, 20×20 and 40×40. �ese

maps were trained for 12 epochs using 30,000 RGZ images for training and 30,000

RGZ images for validation, as outlined in Section 2.5.7. �e trained maps illustrated

in Figures 3.50 - 3.69 show that across all map sizes, the SOM successfully visualises

a wide array of latent relationships and features from within the RGZ data. �ese

maps detail the various morphologies found within the radio-astronomical images of

the dataset and arrange them on the manifold by their similarity. In these continuous

clusters, radio sources can be seen to gradually develop an impressive array of fea-

tures and structures that evolve over the surface from simple point sources to highly

complex multi-peak, multi-components sources.
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Starting from the smallest SOM, the 5 × 5 map in Figures 3.50 - 3.52, contain

only very basic morphologies. On the decoded neuron image and decoded neuron

umat, point sources are positioned in low Euclidean distance areas from neurons in

the lower le�. �e decoded neurons weights and matching images that gradually

progress to higher Euclidean distance regions toward the upper and lower extremes

of the right side of the map with more complex morphology. As the SOM map sizes

increase, the transition in neuron morphology and distance source types becomes

more gradual. As in the preliminary results, clustering of the radio source morphol-

ogy in this map is continuous. �e radio source morphology in these SOMs appears

to be sub-clustered by orientation, with similarly oriented objects clustered together

with gradual transitions between classes.

�e decoded neuron images demonstrate an interesting phenomenon not observed

in the preliminary results. In these decoded neuron weight maps, the learned latent

vectors of the RGZ dataset display a gradually expanding morphology from a circu-

larly distributed set of neuron features, where the centre is a neuron that appears as

a rotated average of a central source radio image and extended emission.

SOM umat images with matching RGZ images on each neuron show similar but

more ordered matches than the preliminary tests, where the morphology distribution

of the radio-astronomical images where the Euclidean distance between the learned

weight of each neuron and their immediate neighbouring neurons displayed as a

heat map. Images placed in high distance regions have a latent feature vector with a

high Euclidean distance to surrounding neighbours, which indicates relative anoma-

lousness and complexity. Simple point sources are gathered in low distance regions,

which gradually develop additional peaks and components as neurons progress to-

wards higher distance regions. As in the preliminary tests, these high distance regions

highlight the highly complex structure and outliers within the RGZ image set.

Seen in many �gures such as Figure 3.62, the matching RGZ images on the umat

show the high Euclidean distance areas that are matched to complex sources such

as large radio triple sources, AGN and novel bent-tail galaxies (neuron 1,13). More

speci�cally, these objects match to neurons which show high intensity and globular

type structure. �is is most pronounced in larger maps, where high distance regions

show many of these interesting sources. In all tests, I show the distribution of all

RGZ validation images matching neuron Euclidean distance. I label these by the RGZ

labels and by a simple-complex classi�cation. �ese �gures show a clear correlation

between the high distance areas and complexity. As sources increase in complexity,

so do does the mean neuron Euclidean distance. I used this correlation to create the

complexity separation accuracy, which �ags images by standard deviations 1-5, which

I term SD. �ese accuracy metrics accompany all SOM tests.

As the map size increases the number of neurons, more neuron Euclidean dis-
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tances are displayed. With these larger map sizes more gradual transitions between

radio-image morphologies and neuron Euclidean distances show point sources and

less complex morphologies accumulating in lower Euclidean distance areas. In these

cases, point sources reside in a broad peak with low Euclidean distance and anoma-

lous sources spreading further into the higher distance range, as shown in Figures

and for the 40×40 test. Across all of these distributions, there is a distinct drop in the

number of complex sources that varies across each map size. �is e�ect can be seen

even without labelling, with a slight second peak forms a�er the initial main peak

rapidly decreases.

Concerning accuracy in complexity separation, the most accurate map using the

initial conditions is the 40 × 40 map with 81.4% and the highest F1 score of 0.779.

High F1 score in the 40×40 map size appears to be at the cost of recall at 0.873, which

is lower than previous map sizes but a higher precision. �ese metrics indicate the

40×40 map size complexity separation produces more true positives but slightly more

false negatives. �e best performing SD complexity separation point on the Euclidean

distance distribution map appears to be inversely proportional to the map size, where

the most accurate SD, draws closer to the point of zero variance.

�e training time for all SOM increase proportionally to the map size. In these

tests, the fastest performing SOM is the 5 × 5 with a total time of 3.475 seconds and

the slowest as the 40 × 40 with a total time of 22.424 seconds. �ese times are very

fast, with less than a minute even for the largest SOM size.

Based on these test I chose the 10× 10 SOM for all subsequent tests, as it shows a

wide range of RGZ morphologies for a relatively small map size while still producing

reasonable accuracy and F1 scores. �e 5×5map is not featured in any of the following

tests due to the few relationships it displays.
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Figure 3.50: 5×5 toroidal SOM trained using linear learning rate decay, radius function

and radius decay with each neuron displaying false colour decoded neuron weight

images. Complex neurons weights here are unresolved and appear largely as large

high intensity regions, usually with single peaks.
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Figure 3.51: 5 × 5 toroidal SOM umat trained using linear learning rate decay, radius

function and radius decay with each neuron displaying false colour decoded neuron

weight images. �e highest intensity sources here reside in high Euclidean distance

regions.
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Figure 3.52: 5 × 5 toroidal SOM umat trained using linear learning rate decay, linear

radius function and linear radius decay with each neuron displaying the RGZ image

with the closest matching (Euclidean distance) latent vector transformation to the

learned neuron weight. �is small sized map fails to show the gradually developing

morphology usually seen in larger maps such as the 10 × 10 in Figure 3.55.
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Figure 3.53: Distribution of neuron Euclidean distance from a 5×5 toroidal SOM umat

trained using linear learning rate decay, radius function and radius decay. Colour

blending indicates RGZ label derived complexity and anomalousness of all RGZ val-

idation images matching each neuron. In these histograms, In these �gures, I also

display the proportion of each neuron distance bin with colour coding of RGZ la-

belled simple (11’s), complex (not 11) and anomalous (peak and or component count

greater than 3) sources, as outlined in Section 2.2.
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Figure 3.54: Distribution of neuron Euclidean distance from a 5×5 toroidal SOM umat

trained using linear learning rate decay, radius function and radius decay. Colour

blending indicates the RGZ label of the four most dominant labelled RGZ validation

images matching each neuron. In these histograms, In these �gures, I display the pro-

portion of each neuron distance bin with colour coding of the four dominant source

labels, 11, 12, 22, and 33, as outlined in Section 2.2.
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Table 3.14: Accuracy and performance metrics of anomaly detection by separating

neuron matches sources based on the Euclidean distance of neurons a 5 × 5 toroidal
SOM umat at each SD 1-5, trained with a linear learning rate decay, radius function

and radius decay

5 × 5 Map Size Euclidean Distance Accuracy Precision Recall F1 Score

Neuron Euclidean at SD

Distance SD

SD1 0.106 0.377 0.377 1.000 0.547

SD2 0.212 0.377 0.377 1.000 0.547

SD3 0.318 0.746 0.603 0.953 0.739
SD4 0.424 0.823 0.855 0.639 0.731

SD5 0.531 0.711 0.908 0.259 0.403
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Figure 3.55: 10 × 10 toroidal SOM trained using linear learning rate decay, radius

function and radius decay with each neuron displaying false colour decoded neuron

weight images
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Figure 3.56: 10×10 toroidal SOM umat trained using linear learning rate decay, radius

function and radius decay with each neuron displaying false colour decoded neuron

weight images.
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Figure 3.57: 10×10 toroidal SOM umat trained using linear learning rate decay, linear

radius function and linear radius decay with each neuron displaying the RGZ image

with the closest matching (Euclidean distance) latent vector transformation to the

learned neuron weight.

133



0.1 0.2 0.3 0.4 0.5 0.6 0.7
Neuron Euclidean Distance

0

500

1000

1500

2000

2500

3000

3500

Ne
ur

on
 M

at
ch

in
g 

RG
Z 

Im
ag

es

Simple
Complex
Anomalous

Figure 3.58: Distribution of neuron Euclidean distance from a 10 × 10 toroidal SOM

umat trained using linear learning rate decay, radius function and radius decay.

Colour blending indicates RGZ label derived complexity and anomalousness of all

RGZ validation images matching each neuron.
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Figure 3.59: Distribution of neuron Euclidean distance from a 10 × 10 toroidal SOM

umat trained using linear learning rate decay, radius function and radius decay.

Colour blending indicates the RGZ label of the four most dominant labelled RGZ

validation images matching each neuron.
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Table 3.15: Accuracy and performance metrics of anomaly detection by separating

neuron matches sources based on the Euclidean distance of neurons a 10×10 toroidal
SOM umat at each SD 1-5, trained with a linear learning rate decay, radius function

and radius decay

10 × 10 Map Size Euclidean Distance Accuracy Precision Recall F1 Score

Neuron Euclidean at SD

Distance SD

SD1 0.131 0.439 0.402 0.999 0.573

SD2 0.262 0.734 0.590 0.961 0.731
SD3 0.393 0.799 0.839 0.576 0.683

SD4 0.524 0.677 0.881 0.165 0.278

SD5 0.655 0.633 0.917 0.029 0.057
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Figure 3.60: 20 × 20 toroidal SOM trained using linear learning rate decay, radius

function and radius decay with each neuron displaying false colour decoded neuron

weight images
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Figure 3.61: 20×20 toroidal SOM umat trained using linear learning rate decay, radius

function and radius decay with each neuron displaying false colour decoded neuron

weight images.
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Figure 3.62: 20x20toroidal SOM umat trained using linear learning rate decay, linear

radius function and linear radius decay with each neuron displaying the RGZ image

with the closest matching (Euclidean distance) latent vector transformation to the

learned neuron weight.
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Figure 3.63: Distribution of neuron Euclidean distance from a 20 × 20 toroidal SOM

umat trained using linear learning rate decay, radius function and radius decay.

Colour blending indicates RGZ label derived complexity and anomalousness of all

RGZ validation images matching each neuron.
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Figure 3.64: Distribution of neuron Euclidean distance from a 20 × 20 toroidal SOM

umat trained using linear learning rate decay, radius function and radius decay.

Colour blending indicates the RGZ label of the four most dominant labelled RGZ

validation images matching each neuron.
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Table 3.16: Accuracy and performance metrics of anomaly detection by separating

neuron matches sources based on the Euclidean distance of neurons a 20×20 toroidal
SOM umat at each SD 1-5, trained with a linear learning rate decay, radius function

and radius decay

20 × 20 Map Size Euclidean Distance Accuracy Precision Recall F1 Score

Neuron Euclidean at SD

Distance SD

SD1 0.163 0.732 0.589 0.958 0.729
SD2 0.326 0.820 0.864 0.619 0.721

SD3 0.489 0.691 0.882 0.207 0.335

SD4 0.652 0.648 0.917 0.071 0.132

SD5 0.815 0.630 0.961 0.020 0.039
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Figure 3.65: 40 × 40 toroidal SOM trained using linear learning rate decay, radius

function and radius decay with each neuron displaying false colour decoded neuron

weight images
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Figure 3.66: 40×40 toroidal SOM umat trained using linear learning rate decay, radius

function and radius decay with each neuron displaying false colour decoded neuron

weight images.
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Figure 3.67: 40×40 toroidal SOM umat trained using linear learning rate decay, linear

radius function and linear radius decay with each neuron displaying the RGZ image

with the closest matching (Euclidean distance) latent vector transformation to the

learned neuron weight.
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Figure 3.68: Distribution of neuron Euclidean distance from a 40 × 40 toroidal SOM

umat trained using linear learning rate decay, radius function and radius decay.

Colour blending indicates RGZ label derived complexity and anomalousness of all

RGZ validation images matching each neuron.
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Figure 3.69: Distribution of neuron Euclidean distance from a 40 × 40 toroidal SOM

umat trained using linear learning rate decay, radius function and radius decay.

Colour blending indicates the RGZ label of the four most dominant labelled RGZ

validation images matching each neuron.
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Table 3.17: Accuracy and performance metrics of anomaly detection by separating

neuron matches sources based on the Euclidean distance of neurons a 40×40 toroidal
SOM umat at each SD 1-5, trained with a linear learning rate decay, radius function

and radius decay

40 × 40 Map Size Euclidean Distance Accuracy Precision Recall F1 Score

Neuron Euclidean at SD

Distance SD

SD1 0.163 0.814 0.704 0.873 0.779
SD2 0.325 0.755 0.851 0.425 0.567

SD3 0.488 0.671 0.870 0.149 0.255

SD4 0.650 0.636 0.866 0.042 0.080

SD5 0.813 0.628 0.850 0.016 0.031

Table 3.18: Processing time metrics of each toroidal SOM with square 5,10,20 and 40

sizes maps trained with a linear learning rate decay, radius function and radius decay

Map Size Total Training Time (s) Average Training Time

Per Epoch (s)

5 × 5 3.475 0.290

10 × 10 8.272 0.689

20 × 20 25.528 2.127

40 × 40 83.623 6.969

Table 3.19: Accuracy and performance metrics of anomaly detection of the best SD

in each toroidal SOM with square 5,10,20 and 40 sizes maps trained with a linear

learning rate decay, radius function and radius decay

Map Size SD Euclidean Distance Accuracy Precision Recall F1 Score

at SD

5 × 5 SD3 0.318 0.746 0.603 0.953 0.739

10 × 10 SD2 0.262 0.734 0.590 0.961 0.731

20 × 20 SD1 0.163 0.732 0.589 0.958 0.729

40 × 40 SD1 0.163 0.814 0.704 0.873 0.779

3.3.3.2 Learning Rate Decay

Outlined in Section 2.5.1, the learning rate decay is the gradual minimisation of the

learning rate constant of neuron weights during training. �is test shows that the

exponential alternative to linear learning rate decay has a minimal e�ect on SOM

training and is robust to changes in learning rates.

In this test, I compared the linear learning rate decay function from Section 3.3.3.1

to the exponential learning rate decay function. I tested the e�ects of these decay

functions on the SOM accuracy for the most accurate SOMmap sizes. �ese sizes are

the 10× 10, as justi�ed in Section 3.3.3.1. �e accuracy using each decay function has
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very li�le change, with a slight increase in training time. As a result, I use the linear

learning rate decay function in all subsequent tests.
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Figure 3.70: 10 × 10 toroidal SOM trained using linear learning rate decay, radius

function and radius decay with each neuron displaying false colour decoded neuron

weight images
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Figure 3.71: 10×10 toroidal SOM umat trained using linear learning rate decay, radius

function and radius decay with each neuron displaying false colour decoded neuron

weight images.
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Figure 3.72: 10×10 toroidal SOM umat trained using linear learning rate decay, linear

radius function and linear radius decay with each neuron displaying the RGZ image

with the closest matching (Euclidean distance) latent vector transformation to the

learned neuron weight.
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Figure 3.73: Distribution of neuron Euclidean distance from a 10 × 10 toroidal SOM

umat trained using linear learning rate decay, radius function and radius decay.

Colour blending indicates RGZ label derived complexity and anomalousness of all

RGZ validation images matching each neuron.
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Figure 3.74: Distribution of neuron Euclidean distance from a 10 × 10 toroidal SOM

umat trained using exponential learning rate decay, linear radius function and radius

decay. Colour blending indicates the RGZ label of the four most dominant labelled

RGZ validation images matching each neuron.
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Table 3.20: Accuracy and performance metrics of anomaly detection by separating

neuron matches sources based on the Euclidean distance of neurons a 10×10 toroidal
SOM umat at each SD 1-5, trained with an exponential learning rate decay, linear

radius function and radius decay

10 × 10 Map Size Euclidean Distance Accuracy Precision Recall F1 Score

Neuron Euclidean at SD

Distance SD

SD1 0.131 0.437 0.401 0.999 0.572

SD2 0.262 0.732 0.589 0.956 0.729
SD3 0.393 0.798 0.838 0.575 0.682

SD4 0.525 0.677 0.881 0.166 0.279

SD5 0.656 0.633 0.911 0.028 0.055

Table 3.21: Accuracy and performance metrics of anomaly detection of the best SD in

each toroidal SOMwith square 10×10 map size trained with a exponential and linear

learning rate decay with a linear radius function and radius decay

Map Size and SD Euclidean Accuracy Precision Recall F1

Learning Rate Distance Score

Decay at SD

10x10 Linear SD2 0.262 0.734 0.590 0.961 0.731
10 × 10 Exponential SD2 0.262 0.732 0.589 0.956 0.729

Table 3.22: Processing time metrics of each toroidal SOM in each toroidal SOM with

square 10×10 map size trained with a exponential and linear learning rate decay with

a linear radius function and radius decay

Map Size and Total Training Time (s) Average Training Time

Learning Rate Per Epoch (s)

Decay

10 × 10 Linear 8.272 0.689

10 × 10 Exponential 8.571 0.714

3.3.3.3 Learning Neighbourhood Type and Radius Decay

In Section 2.5.1, I outline the SOM learning neighbourhood types and radius decay

functions. �ese tests show the initial method with linear neighbourhood and radius

decay function is the most accurate with the least amount of training time when

trained on radio-astronomical latent features vectors. I tested the combined e�ects

of these con�gurations in four tests, linear neighbourhood with each decay rate and

the Gaussian type with each radius decay function. �ese tests are evaluated by the

training time and the accuracy of each SOM.

�ese tests show a minor increase in accuracy with the Gaussian neighbourhood
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type. Compared to the linear neighbourhood type, the Gaussian neighbourhood ap-

pears to learn fewer but more resolved ‘average rotation neurons’ and higher reso-

lution morphologies. �ese di�erences are illustrated in Figure 3.75, compared the

results of training with the linear neighbourhood function in Figure 3.55. In addi-

tion to the di�erences in morphology, this radius type produces a broader range of

Euclidean distances between 0.1 and 1.2, where the linear radius type is restricted to

0.1 and 0.8. �is greater range provides more a de�ned neuron distance distribution

as shown in Figures 3.79 and 3.78, where point sources mostly reside in a broad low

distance peak, and more complex morphologies showmore de�ned, and higher mean

distances compared to Figures 3.59 and 3.58. �is improvement in the neuron distance

range and a slight change in neuron morphology has a moderate impact on the per-

formance of the complexity separation, as shown in Table 3.27, and is consequently

retained for subsequent tests.

Although the Gaussian neighbourhood type and linear radius decay show a mod-

erate performance increase, I show the exponential radius decay function in both

the Gaussian and linear neighbourhood types results in very poor modelling with no

complete morphologies or clustered matching RGZ images. �ese poor results are

also re�ected in their accompanying neuron Euclidean distance distributions, com-

plexity separation metrics and �nal comparisons across all tests in Table 3.27.
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Figure 3.75: 10 × 10 toroidal SOM trained using linear learning rate decay and radius

decay andGaussian radius function, with each neuron displaying false colour decoded

neuron weight images
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Figure 3.76: 10 × 10 toroidal SOM umat trained using linear learning rate decay and

radius decay and Gaussian radius function, with each neuron displaying false colour

decoded neuron weight images.
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Figure 3.77: 10×10 toroidal SOM umat trained using linear learning rate decay, linear

learning rate decay and radius decay and Gaussian radius function, with each neuron

displaying the RGZ imagewith the closestmatching (Euclidean distance) latent vector

transformation to the learned neuron weight.
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Figure 3.78: Distribution of neuron Euclidean distance from a 10 × 10 toroidal SOM

umat trained using linear learning rate decay and radius decay and Gaussian radius

function. Colour blending indicates RGZ label derived complexity and anomalous-

ness of all RGZ validation images matching each neuron.
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Figure 3.79: Distribution of neuron Euclidean distance from a 10 × 10 toroidal SOM

umat trained using linear learning rate decay and radius decay and Gaussian radius

function. Colour blending indicates the RGZ label of the four most dominant labelled

RGZ validation images matching each neuron.
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Table 3.23: Accuracy and performance metrics of anomaly detection by separating

neuron matches sources based on the Euclidean distance of neurons a 10×10 toroidal
SOM umat at each SD 1-5, trained with a linear learning rate decay and radius decay

and Gaussian radius function

10 × 10 Map Size Euclidean Distance Accuracy Precision Recall F1 Score

Neuron Euclidean at SD

Distance SD

SD1 0.187 0.578 0.471 0.997 0.640

SD2 0.375 0.833 0.758 0.818 0.787
SD3 0.562 0.758 0.897 0.404 0.557

SD4 0.750 0.664 0.909 0.121 0.213

SD5 0.937 0.630 0.932 0.018 0.036
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Figure 3.80: 10 × 10 toroidal SOM trained using linear learning rate decay, radius

function and radius decay with each neuron displaying false colour decoded neuron

weight images
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Figure 3.81: 10×10 toroidal SOM umat trained using linear learning rate decay, Gaus-

sian radius function and linear radius decay with each neuron displaying false colour

decoded neuron weight images.
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Figure 3.82: 10×10 toroidal SOM umat trained using linear learning rate decay, Gaus-

sian radius function and linear radius decay with each neuron displaying the RGZ

image with the closest matching (Euclidean distance) latent vector transformation to

the learned neuron weight.
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Figure 3.83: Distribution of neuron Euclidean distance from a 10 × 10 toroidal SOM

umat trained using linear learning rate decay, Gaussian radius function and linear

radius decay. Colour blending indicates RGZ label derived complexity and anoma-

lousness of all RGZ validation images matching each neuron.
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Figure 3.84: Distribution of neuron Euclidean distance from a 10 × 10 toroidal SOM

umat trained using linear learning rate decay, Gaussian radius function and linear

radius decay. Colour blending indicates the RGZ label of the four most dominant

labelled RGZ validation images matching each neuron.
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Table 3.24: Accuracy and performance metrics of anomaly detection by separating

neuron matches sources based on the Euclidean distance of neurons a 10×10 toroidal
SOM umat at each SD 1-5, trained with a linear learning rate decay, Gaussian radius

function and linear radius decay

10 × 10 Map Size Euclidean Distance Accuracy Precision Recall F1 Score

Neuron Euclidean at SD

Distance SD

SD1 0.073 0.474 0.409 0.895 0.562
SD2 0.146 0.601 0.472 0.513 0.492

SD3 0.219 0.579 0.394 0.220 0.282

SD4 0.292 0.638 0.726 0.064 0.118

SD5 0.365 0.623 0.000 0.000 0.000
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Figure 3.85: 10×10 toroidal SOM trained using linear learning rate decay, radius func-

tion and exponential radius decay with each neuron displaying false colour decoded

neuron weight images
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Figure 3.86: 10 × 10 toroidal SOM umat trained using linear learning rate decay, ra-

dius function and exponential radius decay with each neuron displaying false colour

decoded neuron weight images.
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Figure 3.87: 10×10 toroidal SOM umat trained using linear learning rate decay, linear

radius function and exponential radius decay with each neuron displaying the RGZ

image with the closest matching (Euclidean distance) latent vector transformation to

the learned neuron weight.
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Figure 3.88: Distribution of neuron Euclidean distance from a 10 × 10 toroidal SOM

umat trained using linear learning rate decay, radius function and exponential radius

decay. Colour blending indicates RGZ label derived complexity and anomalousness

of all RGZ validation images matching each neuron.
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Figure 3.89: Distribution of neuron Euclidean distance from a 10 × 10 toroidal SOM

umat trained using linear learning rate decay, radius function and exponential radius

decay. Colour blending indicates the RGZ label of the four most dominant labelled

RGZ validation images matching each neuron.
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Table 3.25: Accuracy and performance metrics of anomaly detection by separating

neuron matches sources based on the Euclidean distance of neurons a 10×10 toroidal
SOM umat at each SD 1-5, trained with a linear learning rate decay, radius function

and exponential radius decay

10 × 10 Map Size Euclidean Distance Accuracy Precision Recall F1 Score

Neuron Euclidean at SD

Distance SD

SD1 0.0 0.571 0.449 0.581 0.507
SD2 0.0 0.571 0.449 0.581 0.506

SD3 0.0 0.621 0.000 0.000 0.000

SD4 0.0 0.621 0.000 0.000 0.000

SD5 0.0 0.621 0.000 0.000 0.000

Table 3.26: Processing time metrics of each toroidal SOM with square 10 × 10 sized

maps trained with combinations of neighbourhood and radius decay functions

Neighbourhood Radius Decay Total Training Time (s) Average Training

Type Function Time Per Epoch (s)

Gaussian Linear 8.571 0.714

Gaussian Exponential 8.399 0.7

Linear Exponential 8.058 0.671

Linear Linear 8.272 0.689

Table 3.27: Accuracy metrics and comparisons of each toroidal SOM with square

10 × 10 sized maps trained with combinations of neighbourhood and radius decay

functions

Neighbourhood SD and Accuracy Precision Recall F1 Score

and Radius Euclidean

Decay Function Distance

Gaussian and Linear SD2: 0.375 0.833 0.758 0.818 0.787
Gaussian and Exponential SD1: 0.073 0.474 0.409 0.895 0.562

Linear and Exponential SD1: 0.0 0.571 0.449 0.581 0.507

Linear and Linear SD2: 0.262 0.734 0.590 0.961 0.731

3.3.3.4 E�ects of Rotation Dataset Augmentations in
Autoencoder Training

In this Section, I tested the e�ects of training a SOM on the latent vectors of radio

astronomical images produced from an autoencoder trained with random rotation

dataset augmentations. I conducted these tests using the ideal con�gurations for the

SOM with linear learning rate and radius decay functions and a Gaussian neighbour-

hood. �e results were evaluated similarly to previous tests by morphology and the

accuracy of the complexity separation. I also compared these results to the previous
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SOM results without augmentations.

�e results show that the Gaussian neighbourhood type SOM trained with latent

vectors from an autoencoder trained with random rotations produces in larger map

sizes produces greater accuracy and F1 scores compared regular trained latent vec-

tor training, as summarised in Table 3.31. However, the un-augmented latent vector

training produces a consistently higher and consistent F1 score. Additionally, the

training time required in both test are almost identical, as shown in Table 3.32. �ese

tests suggest that these di�erent latent vector encodings do not signi�cantly a�ect

the performance of the complexity separation and anomaly detection. �e e�ects of

this training are signi�cantly more pronounced when examining the learned mor-

phologies of the map, however.

Despite training only on four di�erent random rotation angles (the rotation aug-

mentation trained autoencoder converged at 4 epochs, detailed in Section 3.2.2.5), the

SOM produces maps with weights that appear to have learned su�cient rotational

features to remove most of the learned ‘rotated average’ neuron weights, as seen in

all previous decoded neuron test outputs. In these tests however, the SOM trained on

rotation trained autoencoder latent vectors displays neuron weights removes most of

these rotated features, where only some neurons in larger 20 × 20 and 40 × 40 maps

such as Figures 3.95 and 3.100, may show an extra rotation in the neuron weight near

the location of typical rotated average weights as shown in Figures 3.60 and 3.65.

�ese extra rotations appear as radio-doubles showing additional symmetrically ro-

tated peaks or AGN with extra symmetrically rotated jets. Despite these di�erences,

the same absence of rotated average neuron weights is seen regardless of map size.

Training with these latent vectors appears to produce be�er de�ned rotated neu-

ron weights which can be seen in the RGZ image matched umat, where the rotation

angle of neuron radio sources is clearly be�er de�ned and arranged. As a result, the

distribution of neuron Euclidean distance appears more de�ned in these tests com-

pared to regular latent vector training. As in previous map size tests, increased SOM

map sizes result in a smoother evolution of morphologies and a more de�ned neuron

Euclidean distance distribution.
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Figure 3.90: 10×10 toroidal SOMwith linear learning rate decay and radius decay and

Gaussian radius function using RGZ latent vectors produced using an autoencoder

with random rotation augmentation training, with decoded neuron weights
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Figure 3.91: 10 × 10 toroidal SOM umat trained with linear learning rate decay and

radius decay and Gaussian radius function using RGZ latent vectors produced using

an autoencoder with random rotation augmentation training, with decoded neuron

weights.
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Figure 3.92: 10×10 toroidal SOM umat trained using linear learning rate decay, linear

learning rate decay and radius decay and Gaussian radius function using RGZ latent

vectors produced using an autoencoder with random rotation augmentation training,

with each neuron displaying the RGZ image with the closest matching (Euclidean

distance) latent vector transformation to the learned neuron weight.
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Figure 3.93: Distribution of neuron Euclidean distance from a 10 × 10 toroidal SOM

umat trained using linear learning rate decay and radius decay and Gaussian radius

function using RGZ latent vectors produced using an autoencoder with random rota-

tion augmentation training. Colour blending indicates RGZ label derived complexity

and anomalousness of all RGZ validation images matching each neuron.
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Figure 3.94: Distribution of neuron Euclidean distance from a 10 × 10 toroidal SOM

umat trained using linear learning rate decay and radius decay and Gaussian radius

function using RGZ latent vectors produced using an autoencoder with random rota-

tion augmentation training. Colour blending indicates the RGZ label of the four most

dominant labelled RGZ validation images matching each neuron.
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Table 3.28: Accuracy and performance metrics of anomaly detection by separating

neuron matches sources based on the Euclidean distance of neurons a 10×10 toroidal
SOM umat at each SD 1-5, trained with a linear learning rate decay and radius decay

and Gaussian radius function using RGZ latent vectors produced using an autoen-

coder with random rotation augmentation training

10 × 10 Map Size Euclidean Distance Accuracy Precision Recall F1 Score

Neuron Euclidean at SD

Distance SD

SD1 0.169 0.416 0.392 0.999 0.563

SD2 0.337 0.733 0.597 0.893 0.715

SD3 0.506 0.812 0.816 0.648 0.722
SD4 0.674 0.693 0.931 0.200 0.329

SD5 0.843 0.635 0.901 0.035 0.068
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Figure 3.95: 20×20 toroidal SOMwith linear learning rate decay and radius decay and

Gaussian radius function using RGZ latent vectors produced using an autoencoder

with random rotation augmentation training, with decoded neuron weights
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Figure 3.96: 20 × 20 toroidal SOM umat trained with linear learning rate decay and

radius decay and Gaussian radius function using RGZ latent vectors produced using

an autoencoder with random rotation augmentation training, with decoded neuron

weights.
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Figure 3.97: 20×20 toroidal SOM umat trained using linear learning rate decay, linear

learning rate decay and radius decay and Gaussian radius function using RGZ latent

vectors produced using an autoencoder with random rotation augmentation training,

with each neuron displaying the RGZ image with the closest matching (Euclidean

distance) latent vector transformation to the learned neuron weight.
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Figure 3.98: Distribution of neuron Euclidean distance from a 20 × 20 toroidal SOM

umat trained using linear learning rate decay and radius decay and Gaussian radius

function using RGZ latent vectors produced using an autoencoder with random rota-

tion augmentation training. Colour blending indicates RGZ label derived complexity

and anomalousness of all RGZ validation images matching each neuron.
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Figure 3.99: Distribution of neuron Euclidean distance from a 20 × 20 toroidal SOM

umat trained using linear learning rate decay and radius decay and Gaussian radius

function using RGZ latent vectors produced using an autoencoder with random rota-

tion augmentation training. Colour blending indicates the RGZ label of the four most

dominant labelled RGZ validation images matching each neuron.
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Table 3.29: Accuracy and performance metrics of anomaly detection by separating

neuron matches sources based on the Euclidean distance of neurons a 20×20 toroidal
SOM umat at each SD 1-5, trained with a linear learning rate decay and radius decay

and Gaussian radius function using RGZ latent vectors produced using an autoen-

coder with random rotation augmentation training

10 × 10 Map Size Euclidean Distance Accuracy Precision Recall F1 Score

Neuron Euclidean at SD

Distance SD

SD1 0.134 0.513 0.435 0.980 0.603

SD2 0.268 0.823 0.721 0.865 0.787
SD3 0.402 0.762 0.872 0.430 0.576

SD4 0.536 0.658 0.911 0.102 0.183

SD5 0.671 0.625 0.917 0.004 0.008
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Figure 3.100: 40×40 toroidal SOMwith linear learning rate decay and radius decay and

Gaussian radius function using RGZ latent vectors produced using an autoencoder

with random rotation augmentation training, with decoded neuron weights
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Figure 3.101: 40 × 40 toroidal SOM umat trained with linear learning rate decay and

radius decay and Gaussian radius function using RGZ latent vectors produced using

an autoencoder with random rotation augmentation training, with decoded neuron

weights.
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Figure 3.102: 40×40 toroidal SOMumat trained using linear learning rate decay, linear

learning rate decay and radius decay and Gaussian radius function using RGZ latent

vectors produced using an autoencoder with random rotation augmentation training,

with each neuron displaying the RGZ image with the closest matching (Euclidean

distance) latent vector transformation to the learned neuron weight.
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Figure 3.103: Distribution of neuron Euclidean distance from a 40 × 40 toroidal SOM
umat trained using linear learning rate decay and radius decay and Gaussian radius

function using RGZ latent vectors produced using an autoencoder with random rota-

tion augmentation training. Colour blending indicates RGZ label derived complexity

and anomalousness of all RGZ validation images matching each neuron.
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Figure 3.104: Distribution of neuron Euclidean distance from a 40 × 40 toroidal SOM
umat trained using linear learning rate decay and radius decay and Gaussian radius

function using RGZ latent vectors produced using an autoencoder with random rota-

tion augmentation training. Colour blending indicates the RGZ label of the four most

dominant labelled RGZ validation images matching each neuron.

175



Table 3.30: Accuracy and performance metrics of anomaly detection by separating

neuron matches sources based on the Euclidean distance of neurons a 40×40 toroidal
SOM umat at each SD 1-5, trained with a linear learning rate decay and radius decay

and Gaussian radius function using RGZ latent vectors produced using an autoen-

coder with random rotation augmentation training

10 × 10 Map Size Euclidean Distance Accuracy Precision Recall F1 Score

Neuron Euclidean at SD

Distance SD

SD1 0.148 0.613 0.493 0.965 0.653

SD2 0.297 0.804 0.781 0.666 0.719
SD3 0.445 0.707 0.851 0.271 0.411

SD4 0.594 0.645 0.878 0.068 0.127

SD5 0.742 0.631 0.893 0.024 0.048

Table 3.31: Accuracy and performance metrics of anomaly detection by separating

neuron matches sources based on the Euclidean distance of neurons on square 10, 20

and 40 toroidal SOM umat at each SD 1-5, trained with a linear learning rate decay

and radius decay and Gaussian radius function using RGZ latent vectors produced

using an autoencoder with random rotation augmentation training compared to no

rotation augmentations

Map Size Neighbourhood Accuracy Precision Recall F1 Score

and Augmentations Type

Augmented 10 × 10 Gaussian 0.812 0.816 0.648 0.722

Augmented 20 × 20 Gaussian 0.823 0.721 0.865 0.787
Augmented 40 × 40 Gaussian 0.804 0.781 0.666 0.719

Un-Augmented 10 × 10 Gaussian 0.833 0.758 0.818 0.787

Un-Augmented 20 × 20 Gaussian 0.824 0.841 0.659 0.739

Un-Augmented 40 × 40 Gaussian 0.752 0.611 0.943 0.741

Table 3.32: Processing time metrics of each toroidal SOM with square 5,10,20 and 40

sizes maps trained with a linear learning rate decay and radius decay and Gaussian

radius function using RGZ latent vectors produced using an autoencoderwith random

rotation augmentation training compared to no rotation augmentations

Map Size Augmentations Total Training Time (s) Average Training Time (s)

10 × 10 Augmented 9.457 0.788

20 × 20 Augmented 25.208 2.101

40 × 40 Augmented 91.88 7.657

10 × 10 Un-Augmented 8.571 0.714

20 × 20 Un-Augmented 25.528 2.127

40 × 40 Un-Augmented 92.089 7.674
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3.3.3.5 Hierarchical Clustering of Optimised Self-Organised Map Neuron
Weights

In this Section I detail the HC of 10×10, 20×20 and 40×40 square toroidal SOMs with

the most accurate training con�gurations from the previous tests in Sections 3.3.3.1

- 3.3.3.3. �is con�guration is the linear learning rate and radius decay rate function

with a Gaussian neighbourhood function. I tested 4,8,16 ‘K’ clusters using the Scikit-

Learn K-means HC algorithm. Additionally, I applied the HC to maps trained with

latent vectors produced from the autoencoder trained with random rotation augmen-

tations and the optimal training hyper-parameters, as presented in Section 3.3.3.4.

Table 3.73 details the time taken for each test to perform the K-means HC. Pro-

cessing time across all maps is less than a second in most cases, where all K clusters

on 10 × 10 and 20 × 20 map sizes require less than half a second to complete and the

highest processing time for the K 16 clusters in the 40× 40 map is just over 1 second.

�ese �gures suggest K-means clustering time increases proportionally with both the

allocated number of clusters and the map size. �ere are no clear di�erences in the

clustering time required for the latent vectors with or without rotation augmentation

training.

Test results for themap segmentation using HC are shown for eachmap size using

an image of the SOM grid with decoded neurons weights (described in Section 2.5.3)

and map displaying the closest matching RGZ image, with a K-means HC colour cod-

ing on each neuron for the assigned K-means cluster ID number (Section 2.5.5). All

K-means cluster ID numbers are arbitrary as they are assigned in an unsupervised

sense. All associated ID colours are assigned as discrete intervals on the Matplotlib

‘jet’ colour map to visually di�erentiate individual clusters IDs. Two tables are in-

cluded for each test. �e �rst Table describes the division of the map assigned to

each cluster and associated entropy statistics. �e second Table describes for every

cluster, the division of neurons with the label of the closest matching RGZ image to

each neuron, the total division of the RGZ images with that label in the cluster and

the associated entropy statistics.

�e results of the HC are similar to the preliminary HC results of Section 3.3.2, and

show that across all map sizes that clustering is closely related to morphology and to

a lesser extent, the rotation angle of the source features. Clusters also appear to seg-

mentmorphologies by their relative complexity. Regarding general clustering quality,

all tests show reasonable connectedness with few neuron clusters inter-mixing were

only minor issues are present in larger maps such as the 40×40 map, where 16 K clus-

ters are used with some stray neurons caught in the middle of neighbouring clusters

(Figures 3.139 and 3.121).

Starting in the 10× 10 map without random rotation augmentation latent vectors
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in Figures 3.105 and 3.106 and Tables 3.33-3.34, the four K clusters appear to produce

the following groupings:

• Point sources in K-means cluster 0.

• Compact doubles such as RGZ labelled 22 and 12 sources with K cluster 1.

• K-means cluster 2 separating bright and dense multi-component and anoma-

lous sources with bent-tail morphologies and possible artefacts.

• K-means cluster 3 groups multi-component single peak sources with compan-

ions.

As in the preliminary results, there are clear complex, simple and intermediate

classes. �ese simple classes can be seen in Figure 3.106 and Table 3.34 in cluster

0, which contains 73.5% of point sources labels, where 81.8% of the cluster contains

closest matching RGZ images with this RGZ 11 label. Intermediate classes such as

cluster 1, contain mostly a mix of ‘medium’ complex sources such as RGZ label 12.

Whilemore complex classes such as cluster 2which contain a 72.9% of all RGZ labelled

22 sources and the most complex with cluster 3 containing 100% of all 13 sources and

a mix of other classes with the highest mean entropy.

Similar relationships are shown across all the 20 × 20 and 40 × 40 map sizes, but

naturally with di�erent assigned ID numbers. Tables 3.40 and 3.46 reinforce these

observations with four clusters representing each of these morphologies. As in the

map size testing of Section 3.3.3.1, tests demonstrate that with larger maps and neu-

ron counts, more morphologies can be represented and more meaningful clusters

extracted with the HC, shown with the presence of more clustered complex 33 RGZ

labelled images. Greater representation in these larger maps where the 20 × 20 and

40 × 40 map contains classes dominated by point sources, mid complexity and high

complexity sources that correlated to the mean entropy.

�ese �ndings continue in higher K numbers of 8 and 16, where clusters become

increasingly more pure in terms of how homogeneous their associated morphologies

appear to be, with minimal mixing and leakage. Detailed in Tables 3.41-3.51 and

Figures 3.113-3.122, these relationships become most apparent with many clusters

being comprised of high divisions of the closest matching neuron image labels that

correlate with the di�erent complexity levels observed in the preliminary results and

K 4 cluster tests. �e higher 20 × 20 and 40 × 40 map sizes with the 8 and 16 clusters

once again produce the most e�ective separations. An example of this can be shown

in Figures 3.113 and 3.114, and Table 3.42, where many clusters contain such as the

20×20 map cluster 0 containing the entire population 13 and 33 RGZ labelled sources.

�is clustering quality is further reinforced by reduced mean entropy in clusters of

these sizes and with these large maps.
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Only larger maps show greater complexity with more triple classes, and none of

the highly anomalous labels appears as �rst matching images but are clustered none

the less. �ese classes are only shownwith the largest 40×40 mapwhere the K-means

cluster 14 of the 16 K contains great anomalousness and the rare 44 RGZ label at a

population division of only 0.0002 (Section 2.2). �e 10×10 map size does not perform

as well here with the 8 and 16 K cluster numbers, where some clear morphological

clusters are broken into separate K clusters.

Overall, clusters across all 20 × 20 and 40 × 40 tests with 8 and 16 K values, e�ec-

tively separate the following morphologies and image types:

• Point sources (RGZ label 11)

• Compact, multi-peak single component sources (RGZ label 12)

• Highly separated sources or sources with companions or possibly unrelated

multiple source images.

• Source with greater than normal noise or PSF side-lobes with point sources and

the occasional compact single component multi-peak source.

• Bright and di�use extended structure with globular and bent tail morphology.

• Highly compact multi-peak and component sources.

• Source with extended emission with large jets and AGN-like morphology.

It is evident in these population division tables the SOM, and the HC are segment-

ing morphologies and associating relationships not based entirely on the RGZ labels.

�is is indicated by relatively low populations of RGZ labels in many clusters across

all tests, despite the clustered maps showing reasonably clear and logically assigned

clusters based on morphology and complexity.

In the HC of maps trained with random rotation trained autoencoder latent vec-

tors (Figures 3.90 - 3.140 and Tables 3.28 - 3.72), there are primarily similar cluster

assignments. However, in the HC of the 10 × 10 map trained with random rotation

augmentation latent vectors (Figures 3.123 and 3.124), clusters appear to not group

sources as well, with Table 3.53 detailing the point source dominated cluster ID 1

containing 76.2% of the cluster being RGZ label 11, only containing a 56.1% of the 11

labelled sources in dataset, compared to the 81.8% from similar simple clusters with-

out rotation, shown in Table 3.34. Similar results are seen across the 20 × 20 and

40 × 40 map sizes and even in higher cluster numbers 8 and 16, wherein Tables 3.58

to 3.72 show that most classes have comparatively lower closest matching neuron la-

bel divisions and overall label population divisions. In these tests, rotation changes
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appear to be taken into account where many clusters are separated more by the rota-

tion angle of the components and peaks within the image rather than morphological

di�erences. Rotated map tests tend to show a more continuous nature that is clus-

tered in a manner more depended on image rotation angle. However, both clustering

maps show similar relationships where there are many distinct reconstructions and

morphologies separated and associated.

�e mean entropy measures across clusters increase with the presence of more

complex and anomalous sources, as also observed in the preliminary results. En-

tropy here describes how ‘mixed’ the neurons and clusters are where a low entropy

indicates a homogeneous neuron or cluster matching label set (detailed further in Sec-

tion 2.5.6.1). �ese relationships between entropy and complexity are demonstrated

across all test tables where clusters dominated by RGZ labelled point sources 11 have

the lowest entropy, while RGZ 12 labelled single component double peak sources

show increased entropy and more complex sources such as radio triple RGZ 33 labels

with greater still entropy. In the largest, 40 × 40 map sizes where even anomalous

sources are neuron closest matching images with highly anomalous RGZ labelled 44,

posses entropy in the highest order. �ese groupings are seen across all test results

in Tables 3.33 - 3.72, which show these entropy distributions, where point sources

have the greatest neuron population across the map and the lowest mean entropy.

Higher complexity sources, which represent a smaller part of the training set appear

to have consistently smaller cluster populations. �ese relationships are illustrated

by the results of all map sizes and latent vector training augmentation tests.

�ese results demonstrate successfully HC of the complex SOM space. It is clear

from these results that the best radio-astronomical image feature and morphology

separations can be found in larger map sizes 20 × 20 and 40 × 40 with K of 8 and 16

clusters.
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Figure 3.105: 10×10 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, displaying decoded neuronweights with 4 colour

coded K-means clusters.
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Figure 3.106: 10×10 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, displaying neuron closest matching RGZ images

with 4 colour coded K-means clusters.

Table 3.33: Cluster population and entropy statistics for the HC 10× 10 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian radius

decay with 4 K clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.44 0.03 0.52 0.28

1 0.19 0.00 0.73 0.39

2 0.26 0.01 0.91 0.58

3 0.11 0.40 1.00 0.79
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Table 3.34: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 4 K clusters in

the HC 10× 10 toroidal SOM umat trained with linear learning rate decay and radius

decay with a Gaussian radius decay

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 11 0.818 0.735 0.25 0.03 0.35

12 0.159 0.280 0.38 0.24 0.52

22 0.023 0.040 0.41 0.41 0.41

1 12 0.684 0.520 0.47 0.15 0.70

11 0.263 0.102 0.12 0.00 0.31

22 0.053 0.040 0.73 0.73 0.73

2 22 0.692 0.720 0.73 0.38 0.91

11 0.308 0.163 0.24 0.01 0.64

3 22 0.455 0.200 0.86 0.76 1.00

12 0.455 0.200 0.69 0.40 0.81

13 0.091 1.000 0.90 0.90 0.90
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Figure 3.107: 10×10 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, displaying decoded neuronweights with 8 colour

coded K-means clusters.
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Figure 3.108: 10×10 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, displaying neuron closest matching RGZ images

with 8 colour coded K-means clusters.

Table 3.35: Cluster population and entropy statistics for the HC 10× 10 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian radius

decay with 8 K clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.19 0.01 0.89 0.51

1 0.18 0.00 0.62 0.26

2 0.11 0.34 0.84 0.58

3 0.06 0.70 0.89 0.78

4 0.07 0.15 0.73 0.41

5 0.03 0.40 1.00 0.77

6 0.06 0.43 0.91 0.73

7 0.30 0.03 0.35 0.28
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Table 3.36: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 8 K clusters in

the HC 10× 10 toroidal SOM umat trained with linear learning rate decay and radius

decay with a Gaussian radius decay

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 11 0.556 0.204 0.12 0.00 0.22

12 0.444 0.320 0.44 0.30 0.62

1 11 0.967 0.592 0.28 0.03 0.35

12 0.033 0.040 0.24 0.24 0.24

2 12 0.571 0.160 0.42 0.15 0.62

11 0.286 0.041 0.23 0.15 0.31

22 0.143 0.040 0.73 0.73 0.73

3 22 0.833 0.200 0.77 0.43 0.91

12 0.167 0.040 0.51 0.51 0.51

4 22 0.579 0.440 0.71 0.38 0.89

11 0.421 0.163 0.24 0.01 0.64

5 22 0.500 0.120 0.81 0.76 0.89

12 0.500 0.120 0.76 0.70 0.81

6 12 0.636 0.280 0.51 0.34 0.81

22 0.364 0.160 0.71 0.41 0.84

7 13 0.333 1.000 0.90 0.90 0.90

22 0.333 0.040 1.00 1.00 1.00

12 0.333 0.040 0.40 0.40 0.40
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Figure 3.109: 10 × 10 toroidal SOM trained using linear learning rate decay and ra-

dius decay, with a Gaussian radius decay, displaying decoded neuron weights with 16

colour coded K-means clusters.
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Figure 3.110: 10×10 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, displaying neuron closest matching RGZ images

with 16 colour coded K-means clusters.
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Table 3.37: Cluster population and entropy statistics for the HC 10× 10 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian radius

decay with 16 K clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.04 0.43 0.83 0.64

1 0.25 0.03 0.41 0.27

2 0.06 0.00 0.62 0.27

3 0.02 0.31 0.73 0.52

4 0.04 0.74 0.84 0.80

5 0.05 0.52 0.81 0.71

6 0.17 0.01 0.89 0.48

7 0.01 0.90 0.90 0.90

8 0.09 0.04 0.62 0.30

9 0.01 1.00 1.00 1.00

10 0.04 0.33 0.81 0.59

11 0.08 0.10 0.35 0.26

12 0.04 0.79 0.91 0.86

13 0.01 0.89 0.89 0.89

14 0.02 0.15 0.40 0.28

15 0.07 0.12 0.42 0.35
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Table 3.38: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 16 K clusters

in the HC 10 × 10 toroidal SOM umat trained with linear learning rate decay and

radius decay with a Gaussian radius decay

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 11 1.000 0.163 0.26 0.10 0.35

1 11 0.960 0.490 0.27 0.03 0.35

22 0.040 0.040 0.41 0.41 0.41

2 12 0.857 0.240 0.39 0.34 0.42

11 0.143 0.020 0.12 0.12 0.12

3 11 0.500 0.061 0.06 0.00 0.15

12 0.500 0.120 0.48 0.30 0.62

4 12 0.556 0.200 0.45 0.24 0.62

11 0.444 0.082 0.12 0.04 0.20

5 22 0.750 0.120 0.68 0.43 0.83

12 0.250 0.040 0.51 0.51 0.51

6 22 0.529 0.360 0.69 0.38 0.89

11 0.471 0.163 0.24 0.01 0.64

7 12 1.000 0.160 0.59 0.33 0.81

8 12 0.800 0.160 0.70 0.52 0.81

22 0.200 0.040 0.76 0.76 0.76

9 22 1.000 0.160 0.80 0.74 0.84

10 22 1.000 0.040 0.89 0.89 0.89

11 22 1.000 0.160 0.86 0.79 0.91

12 12 1.000 0.080 0.28 0.15 0.40

13 13 1.000 1.000 0.90 0.90 0.90

14 22 1.000 0.040 1.00 1.00 1.00

15 11 0.500 0.020 0.31 0.31 0.31

22 0.500 0.040 0.73 0.73 0.73
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Figure 3.111: 20×20 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, displaying decoded neuronweights with 4 colour

coded K-means clusters.
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Figure 3.112: 20×20 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, displaying neuron closest matching RGZ images

with 4 colour coded K-means clusters.

Table 3.39: Cluster population and entropy statistics for the HC 20× 20 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian radius

decay with 4 K clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.1525 0.01 0.69 0.32

1 0.2750 0.00 1.00 0.36

2 0.1175 0.00 0.93 0.39

3 0.4550 0.00 0.66 0.17
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Table 3.40: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 4 K clusters in

the HC 20× 20 toroidal SOM umat trained with linear learning rate decay and radius

decay with a Gaussian radius decay

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 12 0.590 0.404 0.35 0.14 0.69

22 0.213 0.137 0.44 0.13 0.69

11 0.197 0.056 0.08 0.01 0.20

1 11 0.857 0.729 0.14 0.00 0.21

12 0.137 0.281 0.34 0.10 0.66

22 0.005 0.011 0.30 0.30 0.30

2 12 0.596 0.315 0.40 0.12 0.74

22 0.213 0.105 0.49 0.34 0.59

11 0.149 0.033 0.10 0.00 0.27

13 0.021 1.000 0.93 0.93 0.93

33 0.021 1.000 0.81 0.81 0.81

3 22 0.645 0.747 0.49 0.17 1.00

11 0.355 0.182 0.14 0.00 0.39

193



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

1

2

3

4

5

6

7

K-
m

ea
ns

 C
lu

st
er

 ID

Figure 3.113: 20×20 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, displaying decoded neuronweights with 8 colour

coded K-means clusters.
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Figure 3.114: 20×20 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, displaying neuron closest matching RGZ images

with 8 colour coded K-means clusters.

Table 3.41: Cluster population and entropy statistics for the HC 20× 20 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian radius

decay with 8 K clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.3575 0.00 0.41 0.16

1 0.0425 0.38 0.93 0.54

2 0.2100 0.00 1.00 0.33

3 0.1450 0.00 0.69 0.19

4 0.0500 0.34 0.60 0.46

5 0.1075 0.03 0.66 0.32

6 0.0500 0.27 0.73 0.51

7 0.0375 0.03 0.74 0.38
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Table 3.42: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 8 K clusters in

the HC 20× 20 toroidal SOM umat trained with linear learning rate decay and radius

decay with a Gaussian radius decay

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 22 0.647 0.116 0.50 0.39 0.62

12 0.235 0.045 0.50 0.38 0.57

13 0.059 1.000 0.93 0.93 0.93

33 0.059 1.000 0.81 0.81 0.81

1 12 0.628 0.303 0.39 0.16 0.66

11 0.256 0.051 0.10 0.03 0.21

22 0.116 0.053 0.40 0.30 0.59

2 11 0.930 0.621 0.15 0.00 0.19

12 0.070 0.112 0.23 0.10 0.41

3 11 0.517 0.140 0.09 0.00 0.20

12 0.448 0.292 0.31 0.14 0.69

22 0.034 0.021 0.15 0.13 0.16

4 22 0.750 0.158 0.52 0.27 0.73

12 0.250 0.056 0.47 0.38 0.57

5 22 0.560 0.495 0.49 0.17 1.00

11 0.440 0.173 0.13 0.00 0.39

6 22 0.650 0.137 0.47 0.35 0.60

12 0.350 0.079 0.44 0.34 0.51

7 12 0.667 0.112 0.40 0.12 0.74

11 0.200 0.014 0.16 0.03 0.27

22 0.133 0.021 0.57 0.57 0.58
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Figure 3.115: 20 × 20 toroidal SOM trained using linear learning rate decay and ra-

dius decay, with a Gaussian radius decay, displaying decoded neuron weights with 16

colour coded K-means clusters.
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Figure 3.116: 20×20 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, displaying neuron closest matching RGZ images

with 16 colour coded K-means clusters.
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Table 3.43: Cluster population and entropy statistics for the HC 20× 20 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian radius

decay with 16 K clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.0400 0.35 1.00 0.56

1 0.0925 0.00 0.20 0.12

2 0.1425 0.00 0.65 0.24

3 0.0500 0.01 0.69 0.24

4 0.2425 0.00 0.28 0.16

5 0.0200 0.25 0.74 0.46

6 0.0375 0.12 0.63 0.46

7 0.0425 0.16 0.66 0.41

8 0.0275 0.35 0.58 0.47

9 0.0325 0.39 0.81 0.53

10 0.0225 0.01 0.93 0.29

11 0.0625 0.03 0.65 0.23

12 0.0250 0.33 0.73 0.54

13 0.0250 0.39 0.60 0.48

14 0.0600 0.00 0.65 0.32

15 0.0775 0.02 0.41 0.17
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Table 3.44: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 16 K clusters

in the HC 20 × 20 toroidal SOM umat trained with linear learning rate decay and

radius decay with a Gaussian radius decay

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 12 0.700 0.157 0.30 0.14 0.69

11 0.250 0.023 0.09 0.01 0.14

22 0.050 0.011 0.13 0.13 0.13

1 11 0.520 0.061 0.10 0.03 0.21

12 0.320 0.090 0.40 0.25 0.65

22 0.160 0.042 0.34 0.30 0.44

2 11 0.948 0.430 0.16 0.00 0.19

12 0.052 0.056 0.18 0.10 0.28

3 11 0.645 0.093 0.11 0.02 0.19

12 0.355 0.124 0.28 0.19 0.41

4 11 1.000 0.173 0.12 0.00 0.20

5 11 0.444 0.019 0.12 0.01 0.27

12 0.444 0.045 0.30 0.12 0.56

13 0.111 1.000 0.93 0.93 0.93

6 22 0.467 0.074 0.50 0.27 0.63

12 0.467 0.079 0.48 0.38 0.61

11 0.067 0.005 0.12 0.12 0.12

7 22 1.000 0.105 0.54 0.33 0.73

8 11 0.649 0.173 0.13 0.00 0.39

22 0.351 0.211 0.43 0.17 0.65

9 12 0.882 0.169 0.43 0.16 0.66

22 0.118 0.021 0.32 0.16 0.49

10 22 1.000 0.105 0.48 0.39 0.60

11 12 1.000 0.116 0.47 0.35 0.58

12 12 0.708 0.191 0.36 0.16 0.65

11 0.208 0.023 0.10 0.00 0.15

22 0.083 0.021 0.46 0.34 0.59

13 22 1.000 0.168 0.56 0.35 1.00

14 12 0.750 0.067 0.45 0.25 0.74

22 0.250 0.021 0.48 0.40 0.57

15 22 0.769 0.105 0.51 0.39 0.62

12 0.154 0.022 0.53 0.49 0.57

33 0.077 1.000 0.81 0.81 0.81

200



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0

1

2

3

K-
m

ea
ns

 C
lu

st
er

 ID

Figure 3.117: 40×40 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, displaying decoded neuronweights with 4 colour

coded K-means clusters.
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Figure 3.118: 40×40 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, displaying neuron closest matching RGZ images

with 4 colour coded K-means clusters.

Table 3.45: Cluster population and entropy statistics for the HC 40× 40 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian radius

decay with 4 K clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.08000 0.02 0.78 0.29

1 0.46625 0.00 0.44 0.10

2 0.27625 0.00 0.77 0.22

3 0.17750 0.00 1.00 0.20
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Table 3.46: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 4 K clusters in

the HC 40× 40 toroidal SOM umat trained with linear learning rate decay and radius

decay with a Gaussian radius decay

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 12 0.469 0.190 0.26 0.09 0.53

22 0.375 0.144 0.30 0.14 0.59

11 0.078 0.011 0.13 0.02 0.42

13 0.047 0.462 0.58 0.39 0.78

1 11 0.840 0.691 0.08 0.00 0.15

12 0.145 0.343 0.20 0.06 0.44

2 12 0.454 0.410 0.25 0.09 0.46

11 0.359 0.112 0.08 0.00 0.55

22 0.151 0.129 0.28 0.07 0.50

13 0.021 0.462 0.52 0.32 1.00

3 22 0.525 0.695 0.29 0.08 0.77

11 0.380 0.185 0.09 0.00 0.29

12 0.041 0.057 0.26 0.07 0.59

33 0.038 0.895 0.35 0.21 0.56
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Figure 3.119: 40×40 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, displaying decoded neuronweights with 8 colour

coded K-means clusters.
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Figure 3.120: 40×40 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, displaying neuron closest matching RGZ images

with 8 colour coded K-means clusters.

Table 3.47: Cluster population and entropy statistics for the HC 40× 40 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian radius

decay with 8 K clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.204 0.00 0.77 0.18

1 0.032 0.00 0.78 0.26

2 0.386 0.00 0.34 0.08

3 0.052 0.09 0.74 0.33

4 0.056 0.00 0.61 0.30

5 0.121 0.00 0.53 0.15

6 0.037 0.09 1.00 0.36

7 0.112 0.00 0.50 0.19

205



Table 3.48: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 8 K clusters in

the HC 40× 40 toroidal SOM umat trained with linear learning rate decay and radius

decay with a Gaussian radius decay

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 12 0.471 0.076 0.25 0.09 0.53

11 0.275 0.015 0.15 0.00 0.42

22 0.118 0.018 0.22 0.07 0.32

13 0.098 0.385 0.56 0.32 0.78

1 11 0.479 0.103 0.06 0.00 0.22

12 0.443 0.273 0.24 0.08 0.53

22 0.077 0.045 0.24 0.14 0.31

2 12 0.648 0.368 0.23 0.06 0.44

11 0.257 0.051 0.06 0.00 0.10

22 0.089 0.048 0.28 0.17 0.50

3 11 0.940 0.639 0.08 0.00 0.15

12 0.049 0.095 0.15 0.06 0.34

4 22 0.542 0.096 0.34 0.21 0.47

12 0.186 0.035 0.31 0.19 0.46

11 0.102 0.007 0.28 0.09 0.55

13 0.068 0.308 0.58 0.33 1.00

33 0.051 0.158 0.50 0.36 0.58

23 0.034 0.250 0.52 0.50 0.53

5 11 0.508 0.183 0.09 0.00 0.29

22 0.410 0.401 0.27 0.08 0.77

33 0.037 0.632 0.33 0.21 0.45

12 0.037 0.038 0.23 0.07 0.55

6 22 0.674 0.180 0.30 0.11 0.48

12 0.270 0.076 0.28 0.13 0.59

7 22 0.762 0.192 0.33 0.14 0.59

12 0.143 0.038 0.29 0.24 0.34

34 0.024 1.000 0.62 0.51 0.74

13 0.024 0.154 0.49 0.48 0.50

33 0.024 0.105 0.34 0.33 0.36

206



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

K-
m

ea
ns

 C
lu

st
er

 ID

Figure 3.121: 40 × 40 toroidal SOM trained using linear learning rate decay and ra-

dius decay, with a Gaussian radius decay, displaying decoded neuron weights with 16

colour coded K-means clusters.
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Figure 3.122: 40×40 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, displaying neuron closest matching RGZ images

with 16 colour coded K-means clusters.
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Table 3.49: Cluster population and entropy statistics for the HC 40× 40 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian radius

decay with 16 K clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.250 0.00 0.21 0.08

1 0.020 0.03 0.78 0.31

2 0.024 0.06 0.61 0.29

3 0.071 0.00 0.50 0.20

4 0.058 0.01 0.45 0.17

5 0.028 0.14 0.59 0.31

6 0.014 0.28 1.00 0.44

7 0.172 0.00 0.77 0.16

8 0.024 0.12 0.44 0.30

9 0.022 0.18 0.59 0.35

10 0.043 0.01 0.53 0.23

11 0.031 0.11 0.56 0.31

12 0.091 0.00 0.44 0.08

13 0.083 0.00 0.37 0.09

14 0.040 0.00 0.43 0.14

15 0.029 0.14 0.74 0.33
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Table 3.50: Divisions of clusters 0-8 based on the label of the closest matching RGZ

image, matching clustered label divisions and entropy statistics for each of the 16 K

clusters in the HC 40× 40 toroidal SOM umat trained with linear learning rate decay

and radius decay with a Gaussian radius decay

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 12 0.598 0.175 0.21 0.06 0.45

11 0.250 0.025 0.05 0.01 0.10

22 0.152 0.042 0.25 0.15 0.44

1 11 0.965 0.426 0.08 0.00 0.15

12 0.028 0.035 0.15 0.09 0.21

2 11 0.812 0.119 0.07 0.00 0.15

12 0.180 0.076 0.18 0.08 0.37

3 11 0.516 0.036 0.06 0.00 0.34

12 0.375 0.076 0.22 0.09 0.43

22 0.109 0.021 0.24 0.07 0.41

4 12 0.500 0.051 0.26 0.10 0.53

11 0.219 0.008 0.22 0.03 0.42

13 0.156 0.385 0.56 0.32 0.78

22 0.062 0.006 0.25 0.21 0.29

23 0.031 0.125 0.61 0.61 0.61

33 0.031 0.053 0.37 0.37 0.37

5 12 0.739 0.162 0.26 0.11 0.53

11 0.145 0.011 0.06 0.01 0.10

22 0.116 0.024 0.22 0.14 0.30

6 11 0.986 0.159 0.08 0.00 0.31

7 22 0.895 0.102 0.30 0.12 0.44

12 0.079 0.010 0.23 0.19 0.30

33 0.026 0.053 0.36 0.36 0.36

8 11 0.604 0.183 0.09 0.00 0.29

22 0.313 0.257 0.25 0.08 0.77

12 0.040 0.035 0.22 0.07 0.55

33 0.033 0.474 0.32 0.21 0.41
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Table 3.51: Divisions of clusters 9-15 based on the label of the closest matching RGZ

image, matching clustered label divisions and entropy statistics for each of the 16 K

clusters in the HC 40× 40 toroidal SOM umat trained with linear learning rate decay

and radius decay with a Gaussian radius decay

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

9 22 0.273 0.018 0.37 0.29 0.47

12 0.227 0.016 0.35 0.29 0.46

11 0.136 0.003 0.39 0.28 0.55

13 0.136 0.231 0.59 0.33 1.00

23 0.091 0.250 0.52 0.50 0.53

33 0.091 0.105 0.57 0.56 0.58

14 0.045 0.500 0.54 0.54 0.54

10 22 0.920 0.138 0.30 0.11 0.48

12 0.060 0.010 0.24 0.13 0.30

13 0.020 0.077 0.56 0.56 0.56

11 12 0.637 0.229 0.24 0.09 0.44

11 0.230 0.029 0.06 0.00 0.15

22 0.124 0.042 0.25 0.17 0.50

12 22 0.795 0.105 0.31 0.14 0.49

12 0.136 0.019 0.32 0.14 0.59

33 0.045 0.105 0.38 0.32 0.45

23 0.023 0.125 0.38 0.38 0.38

13 12 0.564 0.070 0.27 0.15 0.39

22 0.359 0.042 0.29 0.19 0.39

11 0.026 0.001 0.06 0.06 0.06

14 0.026 0.500 0.48 0.48 0.48

23 0.026 0.125 0.61 0.61 0.61

14 22 0.889 0.096 0.35 0.18 0.59

33 0.111 0.211 0.32 0.25 0.36

15 22 0.638 0.090 0.31 0.14 0.54

12 0.255 0.038 0.31 0.25 0.51

34 0.043 1.000 0.62 0.51 0.74

13 0.043 0.154 0.49 0.48 0.50

23 0.021 0.125 0.39 0.39 0.39
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Figure 3.123: 10×10 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rota-

tion augmentations. Neurons here display the decoded neuron weights with 4 colour

coded K-means clusters.
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Figure 3.124: 10×10 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rotation

augmentations. Neurons here display the closest matching RGZ images with 4 colour

coded K-means clusters.

Table 3.52: Cluster population and entropy statistics for the HC 10× 10 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian ra-

dius decay, on latent vectors trained with random rotation augmentations with 4 K

clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.12 0.31 0.63 0.47

1 0.42 0.00 0.53 0.24

2 0.19 0.00 0.58 0.18

3 0.27 0.03 1.00 0.46
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Table 3.53: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 4 K clusters in

the HC 10× 10 toroidal SOM umat trained with linear learning rate decay and radius

decay with a Gaussian radius decay, on latent vectors trained with random rotation

augmentations

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 12 0.667 0.471 0.44 0.31 0.57

22 0.250 0.115 0.61 0.59 0.63

11 0.083 0.018 0.33 0.33 0.33

1 11 0.762 0.561 0.19 0.00 0.27

12 0.214 0.529 0.40 0.31 0.53

22 0.024 0.038 0.38 0.38 0.38

2 22 0.741 0.769 0.58 0.18 1.00

11 0.259 0.123 0.11 0.03 0.16

3 11 0.895 0.298 0.16 0.00 0.26

22 0.105 0.077 0.42 0.27 0.58
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Figure 3.125: 10×10 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rota-

tion augmentations. Neurons here display the decoded neuron weights with 8 colour

coded K-means clusters.
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Figure 3.126: 10×10 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rotation

augmentations. Neurons here display the closest matching RGZ images with 8 colour

coded K-means clusters.
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Table 3.54: Cluster population and entropy statistics for the HC 10× 10 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian ra-

dius decay, on latent vectors trained with random rotation augmentations with 8 K

clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.05 0.62 1.00 0.73

1 0.09 0.14 0.57 0.30

2 0.19 0.00 0.63 0.19

3 0.09 0.11 0.59 0.38

4 0.21 0.03 0.79 0.38

5 0.08 0.32 0.61 0.46

6 0.25 0.00 0.27 0.19

7 0.04 0.33 0.61 0.45

Table 3.55: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 8 K clusters in

the HC 10× 10 toroidal SOM umat trained with linear learning rate decay and radius

decay with a Gaussian radius decay, on latent vectors trained with random rotation

augmentations

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 12 0.556 0.294 0.39 0.31 0.54

11 0.222 0.035 0.14 0.11 0.16

22 0.222 0.077 0.57 0.55 0.59

1 11 1.000 0.439 0.19 0.00 0.27

2 11 0.556 0.088 0.18 0.14 0.21

12 0.444 0.235 0.45 0.33 0.57

3 12 0.625 0.294 0.43 0.32 0.53

22 0.375 0.115 0.52 0.38 0.61

4 22 0.619 0.500 0.52 0.18 0.79

11 0.333 0.123 0.11 0.03 0.16

12 0.048 0.059 0.32 0.32 0.32

5 22 1.000 0.192 0.73 0.62 1.00

6 11 0.895 0.298 0.16 0.00 0.26

22 0.105 0.077 0.45 0.27 0.63

7 12 0.500 0.118 0.44 0.36 0.51

11 0.250 0.018 0.33 0.33 0.33

22 0.250 0.038 0.61 0.61 0.61
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Figure 3.127: 10×10 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rotation

augmentations. Neurons here display the decoded neuron weights with 16 colour

coded K-means clusters.
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Figure 3.128: 10×10 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rota-

tion augmentations. Neurons here display the closest matching RGZ images with 16

colour coded K-means clusters.
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Table 3.56: Cluster population and entropy statistics for the HC 10× 10 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian ra-

dius decay, on latent vectors trained with random rotation augmentations with 8 K

clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.03 0.38 0.55 0.49

1 0.11 0.09 0.27 0.20

2 0.13 0.03 0.79 0.36

3 0.04 0.00 0.36 0.24

4 0.07 0.14 0.57 0.30

5 0.02 0.63 0.71 0.67

6 0.03 0.55 0.62 0.60

7 0.04 0.31 0.59 0.44

8 0.19 0.00 0.27 0.19

9 0.03 0.18 0.59 0.36

10 0.04 0.58 0.68 0.62

11 0.02 0.51 0.61 0.56

12 0.02 0.63 1.00 0.82

13 0.07 0.06 0.52 0.30

14 0.05 0.11 0.47 0.26

15 0.11 0.05 0.26 0.17
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Table 3.57: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 16 K clusters

in the HC 10 × 10 toroidal SOM umat trained with linear learning rate decay and

radius decay with a Gaussian radius decay, on latent vectors trained with random

rotation augmentations

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 12 0.750 0.176 0.40 0.31 0.54

22 0.250 0.038 0.59 0.59 0.59

1 11 1.000 0.333 0.19 0.00 0.27

2 11 0.571 0.070 0.18 0.14 0.21

12 0.429 0.176 0.47 0.33 0.57

3 11 0.600 0.053 0.15 0.11 0.19

12 0.400 0.118 0.42 0.38 0.47

4 12 0.714 0.294 0.38 0.31 0.52

11 0.286 0.035 0.08 0.06 0.09

5 22 0.667 0.077 0.46 0.38 0.55

12 0.333 0.059 0.53 0.53 0.53

6 22 0.615 0.308 0.53 0.19 0.79

11 0.385 0.088 0.09 0.03 0.13

7 22 1.000 0.154 0.62 0.58 0.68

8 11 1.000 0.193 0.20 0.09 0.27

9 22 1.000 0.077 0.82 0.63 1.00

10 11 1.000 0.193 0.17 0.05 0.26

11 22 1.000 0.077 0.67 0.63 0.71

12 22 1.000 0.115 0.60 0.55 0.62

13 22 0.500 0.038 0.61 0.61 0.61

12 0.500 0.059 0.51 0.51 0.51

14 22 0.667 0.077 0.38 0.18 0.59

12 0.333 0.059 0.32 0.32 0.32

15 11 0.500 0.035 0.16 0.00 0.33

22 0.250 0.038 0.27 0.27 0.27

12 0.250 0.059 0.36 0.36 0.36
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Figure 3.129: 20×20 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rota-

tion augmentations. Neurons here display the decoded neuron weights with 4 colour

coded K-means clusters.
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Figure 3.130: 20×20 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rotation

augmentations. Neurons here display the closest matching RGZ images with 4 colour

coded K-means clusters.

Table 3.58: Cluster population and entropy statistics for the HC 20× 20 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian ra-

dius decay, on latent vectors trained with random rotation augmentations with 4 K

clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.188 0.00 0.93 0.21

1 0.128 0.06 0.73 0.39

2 0.265 0.00 1.00 0.42

3 0.420 0.00 0.76 0.21

223



Table 3.59: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 4 K clusters in

the HC 20× 20 toroidal SOM umat trained with linear learning rate decay and radius

decay with a Gaussian radius decay, on latent vectors trained with random rotation

augmentations

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 12 0.667 0.459 0.40 0.16 0.73

22 0.176 0.098 0.48 0.30 0.55

11 0.157 0.035 0.21 0.06 0.50

1 11 0.768 0.561 0.16 0.00 0.22

12 0.208 0.473 0.35 0.10 0.76

22 0.024 0.043 0.46 0.26 0.56

2 22 0.642 0.739 0.55 0.22 1.00

11 0.311 0.143 0.14 0.00 0.41

33 0.028 0.750 0.72 0.57 0.81

3 11 0.800 0.261 0.14 0.00 0.22

22 0.147 0.120 0.48 0.28 0.84

12 0.040 0.041 0.34 0.16 0.51
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Figure 3.131: 20×20 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rota-

tion augmentations. Neurons here display the decoded neuron weights with 8 colour

coded K-means clusters.
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Figure 3.132: 20×20 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rotation

augmentations. Neurons here display the closest matching RGZ images with 8 colour

coded K-means clusters.
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Table 3.60: Cluster population and entropy statistics for the HC 20× 20 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian ra-

dius decay, on latent vectors trained with random rotation augmentations with 8 K

clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.085 0.07 0.76 0.31

1 0.202 0.00 0.99 0.37

2 0.292 0.00 0.27 0.17

3 0.075 0.06 0.73 0.39

4 0.085 0.01 0.61 0.31

5 0.168 0.00 0.58 0.16

6 0.048 0.40 1.00 0.60

7 0.045 0.39 0.83 0.60
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Table 3.61: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 8 K clusters in

the HC 20× 20 toroidal SOM umat trained with linear learning rate decay and radius

decay with a Gaussian radius decay, on latent vectors trained with random rotation

augmentations

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 12 0.633 0.257 0.40 0.16 0.73

22 0.200 0.065 0.48 0.30 0.55

11 0.167 0.022 0.24 0.06 0.50

1 12 0.735 0.338 0.37 0.18 0.61

11 0.206 0.030 0.10 0.01 0.20

22 0.059 0.022 0.37 0.32 0.42

2 11 0.966 0.491 0.17 0.00 0.22

12 0.034 0.054 0.18 0.10 0.27

3 12 0.559 0.257 0.39 0.17 0.76

11 0.324 0.048 0.13 0.07 0.22

22 0.118 0.043 0.42 0.26 0.51

4 22 0.543 0.478 0.53 0.22 0.99

11 0.407 0.143 0.14 0.00 0.41

33 0.025 0.500 0.68 0.57 0.78

12 0.025 0.027 0.24 0.17 0.30

5 22 0.842 0.174 0.59 0.40 1.00

12 0.105 0.027 0.48 0.47 0.49

33 0.053 0.250 0.93 0.93 0.93

6 11 0.910 0.265 0.14 0.00 0.22

22 0.075 0.054 0.38 0.28 0.58

7 22 0.833 0.163 0.59 0.39 0.83

12 0.111 0.027 0.56 0.51 0.61

33 0.056 0.250 0.81 0.81 0.81
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Figure 3.133: 20×20 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rotation

augmentations. Neurons here display the decoded neuron weights with 16 colour

coded K-means clusters.
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Figure 3.134: 20×20 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rota-

tion augmentations. Neurons here display the closest matching RGZ images with 16

colour coded K-means clusters.
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Table 3.62: Cluster population and entropy statistics for the HC 20× 20 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian ra-

dius decay, on latent vectors trained with random rotation augmentations with 16 K

clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.030 0.02 0.50 0.28

1 0.122 0.00 0.22 0.17

2 0.205 0.02 0.22 0.17

3 0.065 0.01 0.59 0.24

4 0.125 0.00 0.70 0.28

5 0.065 0.06 0.73 0.34

6 0.020 0.10 0.99 0.44

7 0.025 0.41 0.68 0.50

8 0.038 0.18 0.64 0.47

9 0.022 0.48 1.00 0.71

10 0.060 0.07 0.76 0.25

11 0.030 0.38 0.88 0.64

12 0.042 0.14 0.67 0.52

13 0.035 0.10 0.73 0.42

14 0.022 0.40 0.68 0.53

15 0.092 0.00 0.36 0.14
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Table 3.63: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 16 K clusters

in the HC 20 × 20 toroidal SOM umat trained with linear learning rate decay and

radius decay with a Gaussian radius decay, on latent vectors trained with random

rotation augmentations

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 12 0.692 0.243 0.43 0.21 0.73

11 0.269 0.030 0.12 0.06 0.20

22 0.038 0.011 0.30 0.30 0.30

1 12 0.615 0.216 0.33 0.15 0.59

11 0.385 0.043 0.09 0.01 0.20

2 11 0.976 0.348 0.17 0.02 0.22

12 0.024 0.027 0.16 0.10 0.22

3 11 0.500 0.026 0.20 0.02 0.50

12 0.417 0.068 0.33 0.16 0.45

22 0.083 0.011 0.49 0.49 0.49

4 12 0.542 0.176 0.35 0.17 0.76

11 0.417 0.043 0.12 0.07 0.22

22 0.042 0.011 0.26 0.26 0.26

5 22 0.941 0.174 0.54 0.22 0.67

11 0.059 0.004 0.14 0.14 0.14

6 22 0.600 0.065 0.54 0.43 0.68

12 0.400 0.054 0.45 0.41 0.49

7 11 0.580 0.126 0.15 0.00 0.41

22 0.360 0.196 0.49 0.33 0.70

12 0.040 0.027 0.24 0.17 0.30

33 0.020 0.250 0.57 0.57 0.57
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Table 3.64: Accuracy and performance metrics of anomaly detection by separating

neuron matches sources based on the Euclidean distance of neurons a 10×10 toroidal
SOM umat at each SD 1-5, trained with a linear learning rate decay, radius function

and radius decay

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

8 22 1.000 0.098 0.53 0.40 0.68

9 12 0.571 0.108 0.38 0.16 0.61

22 0.357 0.054 0.54 0.47 0.73

11 0.071 0.004 0.10 0.10 0.10

10 22 0.778 0.076 0.67 0.48 1.00

33 0.222 0.500 0.86 0.78 0.93

11 11 1.000 0.213 0.17 0.00 0.22

12 11 0.973 0.157 0.13 0.00 0.22

22 0.027 0.011 0.36 0.36 0.36

13 22 0.917 0.120 0.62 0.38 0.88

33 0.083 0.250 0.81 0.81 0.81

14 22 0.875 0.076 0.49 0.28 0.99

11 0.125 0.004 0.10 0.10 0.10

15 22 0.600 0.098 0.48 0.32 0.64

12 0.400 0.081 0.46 0.18 0.61
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Figure 3.135: 40×40 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rota-

tion augmentations. Neurons here display the decoded neuron weights with 4 colour

coded K-means clusters.
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Figure 3.136: 40×40 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rotation

augmentations. Neurons here display the closest matching RGZ images with 4 colour

coded K-means clusters.

Table 3.65: Cluster population and entropy statistics for the HC 40× 40 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian ra-

dius decay, on latent vectors trained with random rotation augmentations with 4 K

clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.446 0.00 0.60 0.13

1 0.085 0.01 0.75 0.23

2 0.192 0.00 0.54 0.10

3 0.277 0.00 1.00 0.24
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Table 3.66: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 4 K clusters in

the HC 40× 40 toroidal SOM umat trained with linear learning rate decay and radius

decay with a Gaussian radius decay, on latent vectors trained with random rotation

augmentations

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 12 0.529 0.263 0.24 0.08 0.54

11 0.243 0.034 0.11 0.01 0.37

22 0.176 0.077 0.29 0.13 0.66

13 0.044 0.600 0.46 0.24 0.75

1 11 0.710 0.518 0.09 0.00 0.36

12 0.234 0.609 0.24 0.06 0.48

22 0.052 0.118 0.27 0.07 0.46

2 11 0.883 0.277 0.08 0.00 0.22

22 0.091 0.089 0.28 0.09 0.54

12 0.023 0.026 0.10 0.09 0.11

3 22 0.506 0.716 0.31 0.07 0.89

11 0.377 0.171 0.11 0.00 1.00

12 0.063 0.102 0.25 0.10 0.45

33 0.036 0.941 0.43 0.27 0.82
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Figure 3.137: 40×40 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rota-

tion augmentations. Neurons here display the decoded neuron weights with 8 colour

coded K-means clusters.
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Figure 3.138: 40×40 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rotation

augmentations. Neurons here display the closest matching RGZ images with 8 colour

coded K-means clusters.
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Table 3.67: Cluster population and entropy statistics for the HC 40× 40 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian ra-

dius decay, on latent vectors trained with random rotation augmentations with 8 K

clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.298 0.00 0.28 0.09

1 0.169 0.00 0.43 0.09

2 0.084 0.01 0.46 0.19

3 0.206 0.00 1.00 0.22

4 0.045 0.01 0.75 0.28

5 0.049 0.05 0.88 0.33

6 0.066 0.06 0.46 0.26

7 0.085 0.00 0.54 0.18
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Table 3.68: Divisions of clusters based on the label of the closest matching RGZ image,

matching clustered label divisions and entropy statistics for each of the 8 K clusters in

the HC 40× 40 toroidal SOM umat trained with linear learning rate decay and radius

decay with a Gaussian radius decay, on latent vectors trained with random rotation

augmentations

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 12 0.638 0.245 0.27 0.08 0.46

22 0.314 0.105 0.29 0.11 0.46

11 0.048 0.005 0.08 0.06 0.12

1 12 0.619 0.303 0.22 0.06 0.46

11 0.239 0.033 0.07 0.01 0.19

22 0.142 0.061 0.25 0.13 0.46

2 11 0.960 0.467 0.09 0.00 0.24

12 0.038 0.066 0.14 0.06 0.28

3 12 0.478 0.237 0.25 0.08 0.54

11 0.397 0.055 0.07 0.00 0.36

22 0.118 0.051 0.25 0.07 0.35

4 11 0.930 0.257 0.08 0.00 0.22

22 0.056 0.048 0.24 0.09 0.43

5 12 0.361 0.095 0.27 0.09 0.47

11 0.278 0.020 0.12 0.01 0.37

22 0.236 0.054 0.34 0.13 0.66

13 0.083 0.600 0.46 0.24 0.75

23 0.028 0.500 0.50 0.49 0.52

6 11 0.474 0.160 0.11 0.00 1.00

22 0.444 0.466 0.31 0.07 0.89

33 0.046 0.882 0.41 0.27 0.82

12 0.024 0.029 0.19 0.12 0.28

7 22 0.846 0.211 0.33 0.15 0.54

12 0.051 0.015 0.30 0.20 0.39

11 0.038 0.003 0.12 0.05 0.19

13 0.038 0.300 0.49 0.35 0.60
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Figure 3.139: 40×40 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rotation

augmentations. Neurons here display the decoded neuron weights with 16 colour

coded K-means clusters.
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Figure 3.140: 40×40 toroidal SOM trained using linear learning rate decay and radius

decay, with a Gaussian radius decay, on latent vectors trained with random rota-

tion augmentations. Neurons here display the closest matching RGZ images with 16

colour coded K-means clusters.
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Table 3.69: Cluster population and entropy statistics for the HC 40× 40 toroidal SOM
umat trained with linear learning rate decay and radius decay with a Gaussian ra-

dius decay, on latent vectors trained with random rotation augmentations with 16 K

clusters.

K-Means Cluster Population Minimum Maximum Mean

Cluster Over Map Entropy Entropy Entropy

0 0.214 0.00 0.24 0.09

1 0.026 0.11 0.46 0.30

2 0.069 0.00 0.50 0.15

3 0.052 0.00 0.46 0.14

4 0.018 0.03 0.49 0.24

5 0.026 0.00 1.00 0.37

6 0.164 0.00 0.89 0.18

7 0.027 0.04 0.56 0.27

8 0.022 0.00 0.54 0.16

9 0.016 0.19 0.75 0.41

10 0.031 0.16 0.51 0.31

11 0.046 0.03 0.46 0.23

12 0.024 0.05 0.88 0.35

13 0.047 0.01 0.60 0.24

14 0.081 0.01 0.43 0.09

15 0.138 0.00 0.17 0.09

243



Table 3.70: Divisions of clusters 0-5 based on the label of the closest matching RGZ

image, matching clustered label divisions and entropy statistics for each of the 16 K

clusters in the HC 40× 40 toroidal SOM umat trained with linear learning rate decay

and radius decay with a Gaussian radius decay, on latent vectors trained with random

rotation augmentations

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

0 12 0.571 0.058 0.23 0.12 0.35

11 0.179 0.005 0.12 0.03 0.29

22 0.143 0.013 0.33 0.28 0.40

13 0.107 0.300 0.41 0.29 0.49

1 12 0.512 0.157 0.19 0.07 0.46

11 0.429 0.037 0.07 0.00 0.19

22 0.060 0.016 0.17 0.13 0.22

2 11 0.974 0.342 0.09 0.00 0.24

12 0.023 0.029 0.14 0.06 0.21

3 12 0.699 0.186 0.27 0.08 0.46

11 0.205 0.015 0.08 0.03 0.12

22 0.096 0.022 0.24 0.17 0.34

4 11 0.473 0.053 0.06 0.00 0.36

12 0.473 0.190 0.23 0.08 0.48

22 0.045 0.016 0.21 0.07 0.35

5 11 0.500 0.018 0.10 0.00 0.32

22 0.250 0.029 0.21 0.09 0.31

12 0.222 0.029 0.23 0.09 0.54

13 0.028 0.100 0.24 0.24 0.24
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Table 3.71: Divisions of clusters 6-10 based on the label of the closest matching RGZ

image, matching clustered label divisions and entropy statistics for each of the 16 K

clusters in the HC 40× 40 toroidal SOM umat trained with linear learning rate decay

and radius decay with a Gaussian radius decay, on latent vectors trained with random

rotation augmentations

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

6 22 0.683 0.089 0.30 0.11 0.46

12 0.317 0.047 0.29 0.18 0.45

7 11 0.573 0.153 0.10 0.00 0.35

22 0.370 0.310 0.29 0.07 0.89

33 0.027 0.412 0.32 0.27 0.39

12 0.027 0.026 0.19 0.12 0.29

8 22 0.837 0.131 0.32 0.16 0.46

12 0.122 0.022 0.26 0.20 0.31

13 0.020 0.100 0.51 0.51 0.51

33 0.020 0.059 0.39 0.39 0.39

9 12 0.560 0.153 0.23 0.06 0.46

22 0.320 0.077 0.27 0.13 0.39

11 0.093 0.007 0.07 0.01 0.14

13 0.027 0.200 0.48 0.35 0.60

10 22 0.846 0.105 0.35 0.15 0.54

11 0.077 0.003 0.12 0.05 0.19

44 0.026 0.500 0.88 0.88 0.88

33 0.026 0.059 0.66 0.66 0.66

12 0.026 0.004 0.39 0.39 0.39
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Table 3.72: Divisions of clusters 11-15 based on the label of the closest matching RGZ

image, matching clustered label divisions and entropy statistics for each of the 16 K

clusters in the HC 40× 40 toroidal SOM umat trained with linear learning rate decay

and radius decay with a Gaussian radius decay, on latent vectors trained with random

rotation augmentations

Cluster RGZ Division of Division of Mean Minimum Maximum

ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In

Cluster

11 11 0.991 0.223 0.09 0.00 0.11

12 11 0.961 0.127 0.08 0.01 0.22

22 0.039 0.016 0.24 0.09 0.43

13 22 0.571 0.077 0.40 0.17 0.67

11 0.214 0.009 0.18 0.00 1.00

33 0.167 0.412 0.51 0.33 0.82

23 0.024 0.250 0.39 0.39 0.39

24 0.024 1.000 0.62 0.62 0.62

14 22 0.615 0.051 0.37 0.27 0.66

11 0.115 0.003 0.29 0.19 0.37

23 0.115 0.750 0.49 0.47 0.52

44 0.038 0.500 0.70 0.70 0.70

13 0.038 0.100 0.75 0.75 0.75

33 0.038 0.059 0.38 0.38 0.38

12 0.038 0.004 0.47 0.47 0.47

15 12 0.581 0.091 0.27 0.12 0.46

22 0.302 0.042 0.29 0.13 0.46

11 0.093 0.004 0.10 0.04 0.17

13 0.023 0.100 0.56 0.56 0.56

246



Table 3.73: HC processing time metrics of the toroidal 10, 20 and 40 square SOM

with a linear learning rate decay and radius decay and a Gaussian neighbourhood

function compared to SOMs training on latent vectors produced by an autoencoder

with rotation augmentation training.

Map Size Latent Vector K-Means Clustering Time (s)

Training Augmentations Clusters

10x10 None 4 0.042

8 0.061

16 0.090

20x20 None 4 0.136

8 0.192

16 0.241

40 × 40 None 4 0.781

8 0.626

16 1.180

10 × 10 Rotation 4 0.050

8 0.048

16 0.098

20 × 20 Rotation 4 0.137

8 0.186

16 0.224

40 × 40 Rotation 4 0.609

8 0.884

16 1.136
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3.3.4 Overview of Optimised Clustered Self-Organised Map

In the optimised network testing, I trialled four square toroidal SOM sizes; 5×5, 10×10,
20×20 and 40×40. �esemapswere trained for 12 epochs using 30,000 RGZ images for

training and 30,000 RGZ images for validation. Results of this Chapter demonstrate

that the maps can successfully visualise similarity arranged latent relationships, fea-

tures and morphologies of the radio-astronomical images captured in encoded RGZ

data, with clear improvement over the preliminary tests. Neuron weight decoding

performed well, with the learned weights as latent vectors converted back into the

learned RGZ dataset image and showing the true learned features of each neuron’s

weight vector. �e decoded neuron images showed several rotated averagemorpholo-

gies which are mostly removed by training the SOM training on latent vectors pro-

duced with an autoencoder trained on random rotations.

Test results indicate that with the initial conditions outlined in Section 3.3.3, a

SOM with the following con�guration is the most accurate in terms of complexity

separation:

• Linear learning rate decay function

• Gaussian learning neighbourhood

• Linear neighbourhood radius decay function

• Trained on latent vector representations without random rotation

augmentations

�ese results suggested that complexity separation accuracy was reasonably ro-

bust to changes in map size; however the best radio-astronomical image feature and

morphology separations can be found in larger map sizes than the 5×5 with 10×10,
20×20 and 40×40 map sizes. �e training time for these maps is negligible, with at

most 92 seconds for the largest 40×40 map tests on the hardware speci�ed in Section

2.1. �ese con�gurations were used in the subsequent HC tests and demonstrate im-

provement over the preliminary results and successful clustering of the complex SOM

space across all map sizes with less than a second of clustering time in most cases.

�ese tests suggest that HC across all map sizes is closely related to morphology, rel-

ative complexity and to a lesser extent, the rotation angle of the source features. �e

optimal number of clusters appear to be 8 and 16 K clusters. Tests on SOMs trained

by latent vectors with autoencoder random rotation training tend to show a more

continuous nature evolution of morphologies that are clustered in a manner more

depended on image rotation angle. It is evident in these population division tables

that the SOM and the HC are segmenting deeper and more complex relationships

and morphologies that are not captured by the RGZ labels.
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Chapter 4

Discussion

In this thesis, I developed a novel unsupervised clustering and classi�cation system

that combines a convolutional autoencoder, Self-Organising Map and Hierarchical

Clustering with to investigate and answer the research questions I posed in Section

1.4. Each stage of this developed system is distinct and was evaluated separately

across multiple results sections. �ese results from previous Chapter 3 are discussed

in the following sections hierarchically from:

1. �e preprocessing methods outlined in Section 2.3 used to clean the radio-

astronomical images from the RGZ dataset and allow the system to focus on

relevant astronomical features.

2. �e convolutional autoencoder of Section 2.4, to compress the RGZ images to

a compact 900 × 1 latent feature vector representation in 0.008425 of a second

per image with a training time of 8.81 minutes (un-augmented, full detailed in

3.2.3).

3. �e HC SOM of Section 2.5, for accurate complexity separation, clustering and

visualisation of the latent relationships and features from within the encoded

RGZ data for a 10× 10 map a�er 8.571 seconds of training and an upper-bound

of 0.090 seconds of clustering time with 16 K clusters.

Finally, I outline the potential applications of this system to astronomy based on

the results and discussion of each system component.
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4.1 Preprocessing Discussion

�e preprocessing methods I implemented in this ML system were intended to im-

prove the training accuracy of the autoencoder and SOM by focusing on only relevant

astronomical features and ease visual interpretation. In this case, I considered �ltering

successful with the removal of severe noise or side-lobes while retaining astronomical

features such as peaks, components and bright di�use structure. �e two methods I

trialled were the adaptive thresholding and sigma clipping methods.

I evaluated both preprocessing methods qualitatively by visual inspection. In

these tests, I found that the aggressive adaptive thresholdingmethod could cleanmore

background noise than the sigma clipping method. However, I observed that this ap-

proach had a negative impact on astronomical features with a tendency to �lter out

components or create new once by segmenting existing regions. More favourable

results were obtained by adopting the traditional sigma clipping techniques used in

(Galvin et al., 2018) due to the robust and straightforward nature of segmenting via

pixel intensity distribution bins and by taking advantage of the dynamic range found

in radio astronomical .FITS images. While the performance of the adaptive mask-

ing method would likely be improved if conducted on .FITS images instead of .PNG

images, I adopted the simpler, more e�cient and commonly applied sigma clipping

approach.

�is choice is reinforced when considering my aims to keep this system unsuper-

vised and automated with as few manually tunable parameters as possible. Manually

tuning preprocessing parameters for new datasets reduces the overall autonomous

nature of the system. Manual tuning is reduced in the sigma clipping approach which

operates on robust statistically derived intensity thresholds.

Although the �nal preprocessing solution performed well in radio images, this

may not be the case in other wavelengths. Be�er performing preprocessing solutions

may be required in studies with di�erent wavelengths and image features. In situa-

tions such as processing the IR wavelength RGZ images, background noise cannot be

so easily determined by segmenting the inner 15%, given there are many peaks and

di�use emission outside of this region which would invariably raise the calculated

RMS noise, causing the whole image to have a higher overall pixel intensity distri-

bution (histogram). Alternately, I may be able to be�er measure the RMS by ��ing a

Gaussian to the distribution of the pixel intensity values, ignoring the outliers. Since

the vast majority of pixels are just noise, the real noise is Gaussian, and the peaks and

troughs are the outliers.

My results highlight the importance of understanding the characteristics of im-

age data when approaching a problem as I did from a generalist image processing

perspective. �is is especially the case in this investigation where the best prepro-

250



cessing solution was a technique already well established in the �eld. Approaching

system development as I did by directly converting all images to .PNG is not a consis-

tently e�ective solution across all applications, even with image format invariance in

mind. �is appears to be the case with the radio astronomy where the common .FITS

image found in the RGZ DR1 contain a greater range of pixel intensities that may be

used for deeper processing than what is found an 8-bit .PNG.

4.2 Autoencoder Discussion

�eresults ofmy autoencoder trials addressedmy original research question ofwhether

ML dimensionality reduction methods can be used as an information extraction tech-

nique and to delineate the complexity and volume of radio-astronomical data in the

big-data era (Section 1.4. �ese results also demonstrated the success of my aim to

investigate a convolutional autoencoder in this radio image delineation and feature

extraction.

�e preliminary results of the autoencoder presented in Section 3.2.1, were a

promising �rst outcome of Ralph et al. (2018) and this thesis. �rough these prelimi-

nary tests, I demonstrated the convolutional autoencoder as a fast training dimension-

ality reduction method where the autoencoder produced accurate reconstructions of

RGZ images from only a 900× 1 array a�er a considerably short training time of only

2.2 minutes with an average MSE ∼ 700.

Although the preliminary autoencoder produced accurate reconstructions, there

are some expected minor artefacts. �e most noticeable artefact is the blurring found

in many of the reconstructed images. �is blurring is also o�en seen as zero value

pixel features surrounding image peaks and components. �e blurring shape is no-

ticeably square, re�ecting the shape and stride of the max-pooling �lters and con-

volutional receptive �elds. As discussed in Section 2.4.4.1, I expected this e�ect due

to the coarseness of the �ltering (�lter size combined with stride) and with the use

of zero-padding used in all �ltering layers to maintain consistent dimensions. Addi-

tional training and optimisation may allow the autoencoder to generalise the dataset

image features be�er to remove this blurring and preserve the exact number of peaks

and components.

�ese results re�ected the method only as a proof of concept and to some degree,

a lack of re�nement. �e preliminary results were achieved with training hyper-

parameters and autoencoder architecture optimised by simple trial and error. As dis-

cussed in Section 2.4.4, this was the overall aim; to prioritise the development time

over accuracy as a proof of concept for the method.

As discussed in Section 2.4.4, I augmented these results in the later stages of this

investigation using a more re�ned method that included a be�er convergence metric
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and comparison of the autoencoder training and validation error to check model �t

quality. Additionally, I show all image reconstruction comparisons with the same rep-

resentative sample images used throughout this thesis for be�er comparison between

methods (�rst shown in Section 2.2)

In testing a�er the submission of Ralph et al. (2018), I optimised all main compo-

nents of the convolutional autoencoder to improve accuracy and training time. I used

a set of initial intuitive conditions and gradually tuned the convolutional and max-

pooling receptive �eld size, the number of convolutions in the encoder and decoder

hidden middle layer, and the batch size.

During the �rst optimisation tests, I found that a �lter size of 5 × 5 with the con-

stant stride of [1x2x2x1] with the initial conditions of Section 2.4.5, was the most ideal

to model the radio-astronomical features in the RGZ images. �is receptive �eld size

was a trade-o� between the prediction accuracy and the time to training and conver-

gence. �e 5 × 5 �lter requires ∼ 500 seconds more training time than the smallest

2×2 �lter, but with a signi�cantly lower error. �ese di�erences likely lie in the com-

plexity of the radio-astronomical features in the dataset and the number of trainable

parameters required to map them. �e test results show the 2×2 �lter can reasonably
approximate the RGZ images by examining only peak and component features, which

requires much less training time by producing highly pixelated reconstructions. �e

larger 5× 5 �lter has a greater receptive �eld size and su�cient trainable parameters

to map higher-level relationships that span multiple image features. Consequently,

this �lter produces less error at the cost of training time. Larger �eld sizes such as

the 7 × 7 �lter operate similarly but are shown to require much greater training time

to fully converge on a large set of trainable parameters that incorporates all of the

captured features with high �delity reconstructions.

Minor �uctuations in validation error seen �rst in this test, across other tests and

even between di�erent parameters in the same trial are likely the result of the random

sampling during training and validation and do not necessarily indicate instability in

the network con�guration during the test.

During max-pooling �lter size tests, I determined the 2 × 2 �lter was an ideal

trade-o� between the most accurate con�guration with good �delity in maintaining

the number of peaks and components across all samples while still providing some

essence of translation and scale invariance. Detailed in Section 2.4.4.2, I aimed to

provide scale invariance and boost the inherent translation invariance of the convo-

lutional layers by blurring features with this �lter and allow the network tomap fewer

low scale details and approximate feature positions. �is a�ne invariance cannot be

easily seen during autoencoder reconstructions, but in the analysis of the latent vec-

tor transformations of the RGZ images in the later SOM training stages. Although

these �lter size tests showed that a �lter of 1 × 1 has the most accuracy, this �lter is
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merely a perception layer and produces none of the blurring or this accompanying

translation invariance. As expected, the blurring e�ect is proportional to the size of

the pooling �lter as it is receptive to larger areas of the image. Despite the di�erence

in the �lter sizes, I found the training time to convergence between each test had li�le

variation, likely due to the simplicity of the max-pooling operation.

While testing the number of convolutional �lters in the central layer of the en-

coder and decoder, I found most con�gurations show very similar convergence times

and error with greater than 24 �lters. �e number of �lters used in these central hid-

den layers e�ectively determine the amount and complexity of the radio-astronomical

features mapped by the network. �ese tests show that at least 24 �lters are required

to allow the autoencoder to map su�cient radio-astronomical features and high-level

relationships to produce accurate reconstructions. �e fastest and most accurate con-

�guration was found to be the 32 �lters, with the lowest error and reduced conver-

gence time over the original 64 �lter con�guration. Although the 128 �lter con�gu-

ration does converge a�er only four epochs, it requires comparatively more time to

reach this point and with higher error than the 32 �lter test. Despite the higher er-

ror, this greater �lter count allowed the autoencoder to reconstruct even the central

source of the AGN but at a moderate cost of convergence time.

My batch size optimisation tests show that four radio-astronomical images per

training batch was ideal regarding training time, accuracy and stability for the cur-

rent re�ned architecture. �is small batch size provides the autoencoder with a de-

gree of generalisation, where the network can model a wide variety of astronomical

features across the dataset. �rough my testing, I found that although this size is a

signi�cant improvement over the original batch size of 125, it is also prone to insta-

bilities during training. �ese instabilities are likely the consequence of particularly

di�cult to map astronomical features in single or recurring batches causing drastic

swings in the network trainable parameters and therefore the validation error. �is

e�ect is particularly notable in tests in lower batch size tests and to a lesser extent in

larger batch sizes. Higher performance with low batch sizes in these tests indicates

that additional trials may be required with a lower network learning rate to model

the astronomical features. �is lower rate would also allow training of larger batch

sizes to balance the accuracy and generalisation with increased stability and training

time by examining larger sets of astronomical images before weight re�nement.

Testing with corruption and random rotations training augmentations produced

several interesting results that impacted SOM training deeper in the system. �rough

these tests, I a�empted to investigate the rotational invariance that the autoencoder

and SOM may achieve by randomly rotating input images during autoencoder train-

ing. As a typical ML problem, rotational variance prevents clustering methods from

recognising rotation as a feature distinguished enough to separate it from its class. I
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sought to determine whether rotational features will be encoded into the latent vector

as a result of rotational dataset augmentations. Additionally, I also tested autoencoder

denoising to determine whether impulse noise corruption in RGZ images can reduce

training time and improve robustness. Corrupted inputs ideally allow the autoen-

coder to extract more robust and useful features since higher level representations

have more stability than the injected random noise (Vincent et al., 2010). In principle,

accuracy may be improved by the injection of random noise that introduces enough

variance to avoid over-��ing a training set with a slight training time trade-o� re-

quired to generalise this noise and perform the noise injection.

�e results of my testing indicated that the a�ne and noise injection augmen-

tation training using random rotations and corruption with impulse noise injection

in training images provide a slight increase in accuracy and stability with a minor

trade-o� in training time. Random rotations in the training set provide the greatest

stability and the least error a�er just over 10 minutes for 10,000 images. Findings in

these tests suggest that the rotation and corruption augmentation methods are not

complementary, where the combination of noise injection and the rotations degrades

the accuracy and stability achieved with the rotation augmentations. Performance

tests indicate autoencoder reconstructions of RGZ images with the rotation training

augmentations are the most accurate with nearly all peaks and components restored.

Despite the accuracy increase, the di�erences between training and validation er-

ror are marginally more erratic with the dataset augmentations compared to normal

training conditions. Includingmore training epochsmay reveal di�erent or more pro-

nounced e�ects caused by the rotations by analysing the e�ect of training on much

more overall orientation. Large selections of rotation angle can be seen in systems

such as Parallelized rotation and �ipping Invariant Kohonen maps (PINK) from (Pol-

sterer et al., 2015), where the SOM is trained on images from the FIRST survey rotated

every 2
◦
.

Improvements can be made to these rotation augmentations by injecting image

characteristic noise into all NaN pixels in the corners of input images, as described

in the sigma clipping preprocessing of Section 2.3. Additionally, sampling a larger

window of the original survey image would provide this information. NaN corner

regions were not a signi�cant concern, however, given background noise is ideally

zero a�er preprocessing.

Across all tests, there are no signi�cant indications of over-��ing or under-��ing

past the �rst epoch. Seen by the di�erence between the training and validation error,

no signi�cant deviations are observed, except where low training batch sizes result in

training instability. �ese observations indicate that this particular autoencoder con-

�guration and set of training hyper-parameters results in a system that appears robust

in nature by its tendency to perform similarly in training and validation. �is may
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indicate that this network can function accurately for di�erent radio-astronomical

data with di�erent PSF and instrument properties, or even astronomical images in

other wavelengths. �e robust nature of this system may be related to how many

output parameters the network can regress to in the latent vector. Poor ��ing in a

supervised CNN, for example, can be seen more clearly given the network is trained

to regress neuron outputs to an only a few neurons in the output. While the autoen-

coder I implemented in this system is regressing images down to 900 neurons and

back to the original dimensions. �e larger mappable space in the autoencoder may

be the cause of such robust modelling.

�roughout this optimisation process, I may have lost a degree of data general-

isation. A�empting to process new data using this con�guration may not produce

the same ideal results if through the optimisation process I con�gured the autoen-

coder architecture mostly to model RGZ data speci�cally. Additionally, changes in

input image size will alter the latent vector size and a�ect network performance and

the performance of any subsequent analysis. More testing is required to determine

an optimal latent vector size and how the input image may be shaped to produce a

more dynamic network for application to other radio-astronomical image data. Ad-

ditionally, my network may be limited by a potentially oversimpli�ed and imprecise

convergence metric. Given I was searching for a compromise between accuracy and

training time, I adopted a convergence measure that examines a reasonably short

window, since running for a large number of epochs does not align with my aim of

a fast training system. Ideally, I would also take into account the convergence of

the weights and bias’ rather than convergence primarily concerned with accuracy,

although it is easier to visually communicate the results of this approach in the re-

construction image output.

Overall, there is signi�cant performance and training time improvement in each

optimisation step, with the optimised autoencoder producing accurate reconstruc-

tions of radio-astronomical image features with a MSE approximately 25 times lower

than the preliminary network error. Improved accuracy in the �nal network is at

the cost of additional training time, however, where the original con�guration was

trained in 2.2 minutes, and the optimised con�guration was trained in 8.8 without

random rotation augmentation training and 10.6 minutes with the augmentations.

No signi�cant indications of under-��ing or over-��ing were observed in training

a�er the �rst epoch throughout all trials.

�e �nal un-augmented autoencoder network can encode an image on average,

in 0.0084 of a second. �is encoding time indicates that on average, the time the

average time to encode 30,000 RGZ images for SOM training or validation is 252.75

seconds or 4.21 minutes. �e random rotation augmentation results in a total en-

coding time of 440.25 seconds or 7.34 minutes at an average of 0.0147 of a second
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per image. �e successful implementation of a convolutional autoencoder directly

addresses the growing big-data challenges of radio-astronomy, by substantially re-

ducing large volumes of complex radio-astronomical images to a compressed latent

feature vector representation with minor computational overheads.

4.3 Self-Organising Map Discussion

�e SOM results in Ralph et al. (2018) demonstrate successful implementation of an

autoencoder latent vector trained SOM. �ese results indicate thatmy novel approach

is an e�cient unsupervised ML alternative to solving the problems of big-data scale

and complexity in modern radio-astronomical data.

�rough these results, I was able to determine whether such a SOM can per-

form practical data exploration by extracting and visualising the dynamic distribution

and high-level topological relationships of radio-astronomical images from the RGZ

dataset. I show that SOM neurons trained on latent feature vectors can be visualised

by reconstruction using the autoencoder that produced the original training latent

vectors. I demonstrate that within a single minute, my approach can train a SOM

to perform unsupervised complexity separation and HC of RGZ images on a SOM

umat for in-depth data exploration. Using this system, I also successfully investigate

the nature of rotational invariance in SOM training and the e�ects of training using

latent feature vectors produced from an autoencoder trained with random rotation

augmentation.

In the preliminary results of Ralph et al. (2018), the trained SOM produced a umats

that clearly shows the morphology distribution of RGZ images. On this map, the Eu-

clidean distance between the learned weight of each neuron and their neighbouring

neurons shows images clustered by relative complexity. In high distance regions,

anomalous matching images have a latent feature vector with a high to surrounding

neighbours which highlights outliers within the RGZ image set. �e morphological

clusters in this map are continuous and not highly discrete. �ese clustered regions

are sub-clustered by orientation, with similarly oriented objects clustered together

with gradual transitions between classes. I expected to see this gradual transition

between classes of images given these objects do not have entirely discrete classi�-

cations. �e central low distance region of the umat contains matching images as

single compact sources, which gradually progress in complexity to compact multi-

point sources. In these preliminary results, I also demonstrated HC, where I used

three the K-means algorithm with three K clusters, 0, 1 and 2, which segment the

SOM into three groups of simple, compact multi-feature and highly complex images.

In the �nal tests a�er the submission of Ralph et al. (2018), I optimised the �nal

SOM training hyper-parameters and network con�guration similar to the autoen-
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coder. In this approach, I used a set of initial conditions used in literature to itera-

tively determine the ideal map size, learning rate decay function, learning radius and

decay function. I evaluated these SOMs by their performance in anomaly detection

and tested the e�ect of training the SOM on RGZ images latent vectors that had been

produced by an autoencoder trained with randomly rotated RGZ images. Finally, us-

ing the most accurate combination of these, I tested HC of the SOMwith the K-means

algorithm.

�roughoutmap size testing, I trialled four toroidal square SOM sizes; 5×5, 10×10,
20 × 20 and 40 × 40 for 12 epochs using 30,000 RGZ images for training and 30,000

RGZ images for validation. Across all map sizes, the SOM successfully visualises a

wide array of latent radio-astronomical relationships and features of the RGZ data,

distributed by their mutual similarity. In these continuous clusters, radio sources

gradually develop an impressive array of features and structures that evolve over the

surface from simple point sources to highly complex multi-peak, multi-components

sources. As in the preliminary tests, high distance regions on the umat highlight

the highly complex structure and outliers within the RGZ image set. �ese results

show a gradual transition between image classes given radio-astronomical objects

do not have discrete features, but instead continuous unresolved morphology. �ese

learned gradual transitions are ideal as they re�ect the true continuous and indiscrete

characteristics of radio astronomical image features.

In the �nal system, I implemented neuron weight decoding using the decoder

side of A trained autoencoder. A SOM trained on images alone will produce neurons

with weights learned and displayed as images, as seen in cases such as (Polsterer et al.,

2015). My neuron weight decoding approach bridged a serious gap found when train-

ing a SOM on latent vector representations, where latent vectors are not themselves

images and cannot be visually interpreted. �is weight decoding method functioned

successfully to solve this problem and illustrated the true learned features of each

neuron as a reconstructed image representation. �is approach satis�ed my research

aims of displaying the SOM learned relationships contained in the latent vector image

representations (Section 1.5).

Decoded neuron images demonstrated an interesting phenomenon not observed

in the preliminary results. In these decoded neuron weight maps, the learned latent

vectors of the RGZ dataset display a gradually expanding morphology from a circu-

larly distributed set of neuron features, where the centre is a neuron that appears

as a rotated average of a radio image morphologies. �ese ‘rotated’ neuron weights

are examples of rotationally invariant neurons, where matching image morpholo-

gies would be consistently placed here regardless of the source rotation angle. �e

rotationally invariant matches are seen in all of the umat matching source overlay

images, where the matching images appear somewhat randomly rotated but placed
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appropriately by morphology. Naturally, no source in the dataset exhibit this strange

halo morphology, but their presence suggests that SOM training on autoencoder la-

tent vectors may have some degree of inherent rotational invariance given a small

subset of neurons have a matching criterion that ignores source rotation angle.

Overall, results across di�erent map sizes greater than the 5 × 5 SOM di�er only

very slightly, indicating the SOM complexity separation performance is reasonably

robust to most map size changes. �e most accurate map using the initial conditions

is the 20× 20 map, However, the 10× 10 map here with a slightly lower accuracy but

the highest F1 score as a more certain performance metric of the classi�er. �e best

performing SD anomaly detection point on the Euclidean distance distribution map

is inversely proportional to the map size, where the most accurate SD, draws closer

to the point of zero variance given the map size increases the number of distance

bins. �ese trends highlight ideal complexity separation, where simple point sources

reside in a broad peak near the lowest distance bins and increasingly complex sources

distributed over higher distance regions. Improved results in larger maps are shown

across all tests likely due to a larger neuron sample size but at the cost of reduced

human-readability and negligible processing time.

Training times for these maps are very low, with less than a minute even for

the largest 40 × 40 SOM size. As expected, the training time for all tests increases

proportionally to the map size, given a larger network. Based on these tests I chose

the 10 × 10 SOM for all subsequent trials, as it produces the best F1 score and shows

a wide range of RGZ morphologies in a relatively small map that is easy to interpret

visually.

Although the system performs well even in this stage, a typical SOM umat with

much larger grid sizes will usually show high Euclidean distance regions separating

neurons into distinct clusters. In my system, SOM sizes of 10×10-40x40 are not capa-
ble of displaying these relationships given their relatively small map size. I sacri�ce

this functionality much like (Polsterer et al., 2015), for a visually interpretable map

that requires li�le processing time. Distinct umat regions may be possible with larger

maps or an emergent SOM, where the grid space contains more neurons than training

samples. Despite this slight lack of re�nement, optimisation tests on larger maps are

unnecessary given I scale the parameters with the map size and I am training on a

toroidal SOM space, meaning few cases will see neurons not adequately in�uenced

by di�erent learning rates, neighbourhood functions and decay rates during training.

If I was to train for signi�cantly larger maps, then this may become more necessary.

As a result, I use only used the ideal map size in the �rst test for all subsequent tests,

except where larger map sizes were required to show more detailed morphologies or

to deeper investigate the rotation invariance tests.

Subsequent learning rate tests indicated that the exponential alternative to linear
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learning rate decay has a minimal e�ect on SOM training. �is �nding may be spe-

ci�c to only the latent vector data, as other astronomy-related SOM implementations

such as (Geach, 2012) using spectral data, achieved optimal performance using this

exponential learning rate decay function. �ese results suggest that SOM learning is

not highly dependent on weight learning scales or decay. �is is further reinforced

by how robust SOM learning is in experiments with changes made to the map size

and the constant learning rate bounds I employ.

Tests conducted neuron learning neighbourhood, and radius decay functions in-

dicated the Gaussian neighbourhood with a linear radius decay function is the most

accurate concerning complexity separation and with the lowest training time when

trained on radio-astronomical latent features vectors. �is Gaussian neighbourhood

appears to learn fewer ‘rotations’ with higher resolution morphologies compared to

the linear neighbourhood. In addition to the di�erences in morphology, this radius

type produces a broader range of Euclidean distances with a more de�ned neuron

distance distribution. Output maps show that point sources are mostly residing in a

broad low distance region, and more complex morphologies in more de�ned higher

Euclidean distance regions. �is broader distribution appears to have had a slight

impact on the observed complexity separation performance as a result of the Gaus-

sian neighbourhood function providing a be�er mapping of the SOM space distance

between di�erent radio-morphologies in the latent vector training set.

Tests show the linear neighbourhood results in under-��ed neurons, with all

sources as single component sources and halo-like extended structure toward the

centre. Correspondingly, the distribution of the umat vary signi�cantly across RGZ

labels with matching sources showing with no consistent relationships. Similar re-

sults can be seen with the exponential learning rate decay functions, except where

the umat shows only modelling around the edge of the learning radius in the initial

epoch. Given I use a toroidal map, the �rst epoch in�uences neurons with an ini-

tial radius of 5 neurons, leading to the higher Euclidean distance regions forming as

quarter circles around the corners, which is a circular region centred in the middle of

the map with this initial diameter. �is poor mapping results in a sca�ered Euclidean

distance distribution. It is clear by these results and poor RGZ image matching on the

umat that regardless of the neighbour type the exponential radius decay does not al-

low the map neurons to completely model the radio source morphologies in the RGZ

training and validation sets.

Using the tested ideal training hyper-parameters and system architecture, I tested

the e�ects of training a SOM on the latent vectors of radio astronomical images using

an autoencoder trained using random rotation dataset augmentations. �ese tests

show that a Gaussian neighbourhood type SOM trained with latent vectors from

an autoencoder trained with random rotations produces the highest accuracy and
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F1 score. Despite training only on four di�erent random rotation angles (the rota-

tion augmentation trained autoencoder converged at 4 epochs as outlined in Section

3.2.2.5). �e SOM produces maps with weights that appear to have learned su�cient

rotational features to remove most of the learned ‘rotated average’ neuron weights,

where only some high distance neurons may show an extra rotation in the neu-

ron weight. Training in this manner results in more discrete neuron weights with

a greater emphasis on source rotation angle.

I interpret this reduction in multiple rotation angles as the SOM and autoencoder

learning the rotation angle as a dominant feature along with the spatial morphol-

ogy. By removing the rotated average weight neurons, these maps are fundamentally

less rotationally invariant given neurons weights, and matching radio images are ar-

ranged and de�ned more by their rotation angle than in previous tests. Despite be-

coming more sensitive to the rotation angle, complexity separation performance does

not appear to be signi�cantly a�ected. Additionally, these maps are more natural to

visually interpret, with matching RGZ images on the umats exhibiting a smoother

distribution of source rotation angles across the SOM surface and with decoded neu-

ron weights resembling more speci�c radio-astronomical features with less rotated

average morphologies.

In the �nal stages of this thesis, I tested the HC of 10 × 10, 20 × 20 and 40 × 40

square toroidal SOMmaps using a linear learning rate and radius decay rate function

with a Gaussian neighbourhood function as themost accurate training con�gurations

from earlier sections. I tested 4, 8 and 16 ‘K’ clusters using the Scikit-Learn K-means

HC algorithm and maps trained with latent vectors produced from the autoencoder

trained with and without random rotation augmentations. �e results of the HCwere

similar to the preliminary results and showed across all map sizes that clustering is

closely related to morphology, complexity and a lesser extent, the rotation angle of

the source features depending on the autoencoder training.

Concerning general clustering quality, all tests show reasonable connectedness

with few neuron clusters inter-mixing. Mixing appears to be only a minor problem

present in larger maps. In higher K numbers of 8 and 16, clusters become increasingly

purer. Purity here concerns how homogeneous clustered morphologies appear to be,

with minimal mixing and leakage. Compared to preliminary results, there is a de�-

nite improvement with higher cluster numbers and more distinct separation between

di�erent morphological groups. �is improvement is shown with the way I display

HC, the addition of neuron weight decoding images and in increased completeness

across all clustering tests, where many clusters contain large portions of closely re-

lated labelled RGZ images. Minimal processing time is seen in the time required to

process the K-means HC across all maps. Clustering time here is less than a second in

most cases, which increases proportionally with both the allocated number of clus-
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ters and the map size and no conclusive di�erences in the clustering time required

for the latent vectors with or without rotation augmentation training.

Similar to previousmap size tests, themostmeaningful morphological separations

appear to be found with the highest map sizes of 20 × 20 and 40 × 40 maps and with

8 and 16 K cluster values. Results show the algorithm e�ectively separates many

interesting morphologies where relatively simple clusters are comprised of mostly

point sources (RGZ label 11), compact multi-peak single component sources (RGZ la-

bel 12), complex sources with highly separated sources or sparse sources with distant

companions and sources with higher than average noise or PSF side-lobes features.

In these maps, there are also clusters separating the most complex sources, such as

bright and di�use extended structure with globular and bent tail morphology, sources

with extended emission with large jets and AGN-like morphology. �ese classes ap-

pear more evident with the largest 40 × 40 maps where some clusters in the 16 K

HC tests contain highly anomalous sources such as the 44 RGZ labelled sources. �e

10 × 10 map size does not perform as well here with the 8 and 16 K cluster, where

some clear morphological groups are broken erroneously into separate K clusters.

As in the preliminary results, there are de�nitive simple, complex and intermediate

groups divided by the HC.

A balance must be reached with the number of clusters and neurons available in

the map. Using too many clusters may cause groupings to split logical classes to sat-

isfy the K value, as seen in the 10 × 10 tests. Using too few clusters, however, may

result in true divisions and relationships on the map being under-represented or not

revealed. �emain �aw in clustering continuous data such as radio-astronomical fea-

tures is that SOMswill produce a corresponding continuous output, withmorphology

clusters gradually evolving over the map. By a�empting to �nd discrete divisions in

a continuous manifold is di�cult and primarily resides in the realm of regression.

�is di�culty does highlight success in the SOM given it accurately represents the

characteristics of the data as in-discrete, where complex extended radio features are

continuous.

Across all tests, there are several evident entropy and map population e�ects.

Most notably, mean cluster entropy values increase with the presence of more com-

plex and anomalous sources. �ese e�ects are also observed in the preliminary re-

sults, where entropy describes the neuron and cluster label distributions, where a

low entropy indicates a homogeneous neuron or cluster matching label set (Section

2.5.6.1). As expected, point sources have the lowest mean entropy due to their sim-

plicity and the greatest neuron population across the map due to the point source

bias in the RGZ dataset. Higher complexity sources, represent a smaller part of the

training set and appear to have consistently smaller cluster populations, but signi�-

cantly greater mean entropy due to their complexity. �ese population and entropy
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statistics e�ectively reveal not only the types and complexity of morphologies in the

dataset but also e�ectively describe the original label distributions and biases.

In HC testing of maps trained with random rotation trained autoencoder latent

vectors, there are mostly similar cluster assignments. However, in the HC of the

10 × 10 map trained with random rotation augmentation latent vectors, these clus-

ters appear not to separate source morphology as well as the regular autoencoder

training. Similar results are seen across the 20×20 and 40×40 map sizes, where label

divisions are not as complete as in the previous tests. In these trials, the issue seems to

originate from rotation changes being taken more into account, where many clusters

are separated by the rotation angle of the components and peaks within the image.

As discussed, e�ects such as these are an expected downfall of a discrete clustering

algorithm such as K-means but is especially di�cult in the rotated maps which tend

to show a more continuous nature that is also clustered in a manner more depended

on image rotation angle. Although rotation angle is not a meaningful property in ra-

dio astronomy, this clustering with an increased focus on the rotation angle appears

to create a more naturally interpretable SOM. Regardless, clustered maps trained

with and without latent vectors trained with autoencoder rotation augmentations

successfully show similar relationships where there are many distinct morphological

clusters.

�e increased rotational dependency observed in these tests raise many questions

regarding the true nature of rotational invariance in a SOM. For a neuron to be rota-

tional invariant, morphological features must be the only feature that is clustered by

the system. For this to be the case, genuine rotational invariance would result in all

neurons on the SOM being mapped with the same position angle, or for each neuron

to contain all possible position angles, as the observed rotated average morphology

seen in decoded neuron images. �ese concepts suggest that greater rotational in-

variance can be found on maps with more of the observed averaged rotation neurons.

Moreover, this invariance is diminished when the SOM is trained on latent vectors

produced with random rotation augmentation trained latent vectors. To combat these

e�ects, true rotational invariance may be achieved by aligning all images to a com-

mon major axis, and greater scale invariance may also be achieved by cropping and

enlarging all central components to the same size.

�ese tests demonstrate the SOM behaviour when applied to a relatively practical

radio-astronomical case, where the dataset is unbalanced, with training data contain-

ing mostly point sources (RGZ label 11). I tested using the full dataset without any

consensus �ltering to retain as many ‘di�cult’ to classify images as possible. Con-

sequently, validation in the �nal stages was likely a�ected by low consensus scores

which potentially indicate images with false or disputed labels. My results still show

that the SOM manifold contains regions representing even the most unique and low

262



population source morphologies, despite training with a dataset containing a sub-

stantial point source bias. �is robust dataset representation further reinforces the

practicality of my method as a tool for future surveys.

�e di�culty I encountered when trying to use clusters as classi�cations on a con-

tinuous manifold can be seen by both the label cross-overs found between many HC

classes and the point made by (Kohonen, 1997); SOMs are not explicitly designed for

hard classi�cation. �e original principles of SOM learning will not produce highly

distinct clusters, but will instead produce what I see in my results; a semantic map

of outliers, regions, and morphologies rather than highly distinct groups. �ese re-

sults are not unlike those of PINK in (Galvin et al., 2018) where SOM outputs show

a continuous indiscrete range of morphologies. As previously mentioned, it is pos-

sible that in exceptionally large SOM these relationships may have enough space to

become su�ciently separated for discrete classi�cation.

It is evident in the population division tables of the SOM HC tests that the K-

means algorithm is segmenting morphologies and associating relationships not en-

tirely based on the RGZ labels. �ese segmentations are evident due to the relatively

low populations of RGZ labels in many clusters across all tests, despite the clustered

maps showing reasonably clear and logically assigned clusters based on morphology

and complexity. �ese results are far from negative, however, as this indicates that the

relationships learned by the system are deeper and more true to the genuine nature

of the radio-astronomical images rather than the simple peak and component counts

of the RGZ label set. Moreover, detection of di�erent labels than the training set is

also wholly expected given the system is trained unsupervised.

Unsupervised learning is a highly challenging task where the relationships of an

image are automatically extracted without a label set. Whether these features are

useful or represent meaning in the image is the essential performance and success

of the method. Establishing performance measures in these unsupervised systems

is challenging given the relationships, and ‘labels’ learned by unsupervised methods

will usually only correlate with those of the training set. As a result, one of the sim-

plest ways to evaluate the accuracy is by visually examining howwell neuron clusters

resemble the label set or produce distinct and useful morphological groups. Standard

clustering performancemeasures are also di�cult to apply here, given theHC appears

to separate neurons not only based on the umat Euclidean distance, but also on the

radio-astronomical features. Ideally, I would use a statistical means of evaluating the

separation of each cluster by quantifying how ‘distant’ cluster members are, or by a

purity measure of the features. However, these statistical measures are also not easily

applied, given the HC is based on both the umat distance and morphology modelled

from the latent vectors. �e nature of this clustering means the de�nition of ‘ideal

separations’ across these two spaces is statistically challenging to locate, especially
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when considering the relationships my method detected are not directly based on the

RGZ labels.

As previously mentioned, a signi�cantly larger and more re�ned umat would

likely provide enough information across a higher number of neurons to produce

a meaningful statistical measure for assessing the performance of the SOM and HC.

Di�culty in producing discrete classi�cation and de�nitive performance measures is

not unique to my system, but a challenge seen in other astronomical image trained

SOMs in literature. �ese obstacles can be seen with the previous example of (Pol-

sterer et al., 2015) and even (Naim et al., 1997), which is in fact titled ‘Galaxy mor-

phology without classi�cation…’.

�e results of my system highlight the need for more complex labels that be�er

describe the features and morphology of the dataset images. �is need is evident by

my system extracting morphologies signi�cantly more complex than simple peak and

component counts. More useful labels than peak and component counts are required

to describe image morphologies that are actually interesting to researchers with such

as di�use, double-lobed, bend-tail and AGN-like. �e label set shortcomings can also

be seen especially in cases where the RGZ labels do not fully capture the meaning of

radio-astronomical images. For example, a RGZ label 33 could describe both a stan-

dard radio triple as three simple point sources or an AGN, which are vastly di�erent

objects. Additionally, sources with so-called bent-tail morphologies are highly inter-

esting as galaxy cluster tracers but can be given the same label as basic radio double

with a 22 annotation. By only learning on human classi�ed labels, these classi�ca-

tion methods will only be as good or worse than human classi�cations. �ese points

suggest that my unsupervised approach may have use in comparing images and as-

sociated labels across labelled datasets to determine how well labels truly describe

the nature of their associated images. Additionally, the extracted images features and

relationships found using my approach may bear insight into more intuitive radio

astronomical image categories without the in�uence of human bias.

�e results of this thesis indicate that my system is a robust and practical solution

to the current issues of scale and complexity in the big-data era of Radio Astronomy.

�ese results also con�rm my research aims and questions (Sections 1.4 and 1.5).

Using my approach, I successfully demonstrated delineation of the scale and com-

plexity of radio-astronomical data by mapping image feature morphologies from the

RGZ dataset onto a learning manifold. My results show that this SOM space can ef-

�ciently and successfully map these radio-astronomical morphologies to a relatively

small space comprised of square maps between 10× 10 and 40× 40 neurons. �is e�-

ciency is the result of successfully training the SOM on image data reduced by 1600%,

where the SOM processes only 900 elements per image in the autoencoder latent vec-

tors as opposed to the full 14,400 elements of a preprocessed RGZ image. �ese results
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suggest that my system may be used as a powerful preprocessor to improve analy-

sis e�ciency of a supervised classi�cation or regression method by training on the

delineated spaces provided by my method.

�e e�ciency, e�ectiveness, and scalability of this unsupervised method presents

itself as a useful addition to many survey and observational pipelines while requir-

ing only basic and easily accessible CPU requirements. �e speed of this system also

challenges the notion of brute forcing big-data problems with increased computa-

tional power and GPUs power, rather than searching for a more e�cient solution.

�rough these capabilities, my approach demonstrates itself as a potentially vital in-

strument in the modern astronomer’s tool-kit. �e �nal un-augmented autoencoder

network can on average, encode an image, in 0.008425 of a second with the results of

the batch size tests, where a training time of 8.81 minutes for 10,000 RGZ images is re-

quired. �is encoding time indicates that on average, the time to encode 30,000 RGZ

images for SOM training or validation is 4.21 minutes. While the random rotation

augmentation results in a total encoding time of 7.34 minutes at an average of 0.015

seconds per image. With the most accurate SOM (Table3.31) requiring a training time

of only 1.53 minutes with the highest clustering time of 1.136 seconds for 16 classes,

the upper-bound on the overall processing time of my system is only 14.55 minutes.

�e total training time of this system is competitive with other methods from lit-

erature such as (Polsterer et al., 2016). My system produces similar SOM morpholo-

gies with square neurons and signi�cantly reduced processing time as python code

using a 24 core CPU (Detailed in Section 2.1) requiring 14.55 minutes for 30,000 im-

ages, compared to 17 days with 200,000 images using python with an 8 core CPU.

�e di�erence in data volume is the likely cause, where even with random rotation

autoencoder training, my training latent vectors are only 900 elements per image, op-

posed to a total of 1,331,280 elements per image including rotations used in (Polsterer

et al., 2016). �ese results also con�rm my research aims and questions (Sections 1.4

and 1.5) of developing a system that can solve the current challenges of scale and

volume faced by researchers in the big-data era of Astronomy.
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4.4 Applications To�e Field

Given the results of this thesis, the system I developed has the potential to be imple-

mented in a wide range of big-data radio-astronomical applications where the com-

plexity and scale of collected data render analysis too time-consuming or complicated.

Survey science is a particularly relevant used case, where my system can be run on

minimal computational resources a�er a source �nder to separate complexity, locate

objects of interest and extract a visual summary of a large set of observations that

could not be gained through manual analysis.

My approach bears potential for use in sizeable future radio surveys such as EMU

which is expected to contain over 70 million radio sources (Norris et al., 2011). �e

ASKAP processing pipeline (calibration, imaging, source extraction) is expected to

produce a data volume in the order of 22 TB per day. �e scale and complexity of

this data are made all the more di�cult when considering the tasks planned for this

data, namely, removing artefacts, extracting complex and di�use sources, merging

components into sources, source classi�cation and cross-identi�cation across multi-

wavelength observations. An observing campaign the size of EMU requires a sys-

tem such as this new autoencoder and SOM hybrid which can perform fast automatic

complexity separation and data exploration that addressmany of these problems. Fur-

thermore, anomalous sources and objects of interest that may be located on the SOM

surface such as bent-tail galaxy radio morphologies are of particular importance and

tracers of galaxy clusters. �e presence of SOM regions with neurons clusters show-

ing higher than normal traces of the instrument PSF compared to other clusters also

suggests that this method may be used to locate noisy images and possibly artefacts.

Additionally, by developing multi-wavelength capabilities into my system, I may be

able to address the task of multi-wavelength cross-matching and objectives such as

radio-IR host identi�cation.

Potential applications to novelty analysis and complexity separation tie into both

SETI and Wide�eld Outlier Finder (WTF) studies. In these applications, discovering

the uncharacteristic in an observation, whether it be an object or process, may in-

dicate inconstancies in astronomical understanding and possibly mark a discovery.

Current e�orts rely on researchers to make these discoveries while exploring a hy-

pothesis, although most of the signi�cant discoveries in radio-astronomy have been

serendipitous (Ekers, 2009), to be unplanned and found instead while pursuing an

unrelated hypothesis (Norris, 2017a). Given the unsupervised nature of my system, it

has particular use in these applications, where pre-labelled training sets are not avail-

able. Instead, these applications require a system such as mine to detect complex and

anomalous behaviour or outlier classes not captured in labelled datasets but instead

found on their own as an unsupervised ML technique, while making few assumptions
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about input data and reducing the human bias inherent in training sets (Torralba and

Efros, 2011).

�e speed of this method holds implications for use on large future surveys, large-

scale instruments such as the Square Kilometre Array and in other big data and

anomaly detection applications. Additionally, by combining clustering with citizen

science projects such as RGZ, greater e�ciencies can be achieved with volunteers in-

specting only a small sample of objects from each cluster on the SOM surface or being

guided by possible morphologies in each cluster. �e successful implementation of

this system additionally raises questions of the possible application of this approach

to other data such as the compression of images obtained in other wavelengths or

even spectra and other time-series data. �e e�ciency obtained by reducing these

data volumes could signi�cantly reduce processing time and computation require-

ments while boosting research output with faster analysis times.

Used cases for this systemmay also extend to studying pre-labelled data to analyse

the existing relationships with labels as a general guide, given my system is unsuper-

vised and can use labels for veri�cation. Moreover, this technique can be used in this

capacity as an additional analysis step and an unbiased checksumming method. �is

extra veri�cation step could be used to display dataset morphologies with their as-

sociated labels to see any shortcomings in the way the labels represent the data set,

much in the way shown with the results of this thesis.
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Chapter 5

Conclusion and Future Work

5.1 Future Work

I plan to improve each of the major and distinct components of this system from

the autoencoder, SOM and HC algorithms. Starting with the autoencoder, I aim to

conduct additional tests in varying the latent vector sizes and network structure to

improve optimisation by locating a be�er balance of training time to accuracy. I aim

to implement multi-wavelength analysis across radio, IR by developing a stacked au-

toencoder architecture (Vincent et al., 2010) to train latent vectors to encode multi-

channel data. �e autoencoder also provides many interesting data compression and

information extraction methods that I will apply to time-series and spectral data.

As previously discussed, the SOM is continuous. Consequently, the challenge

of more de�nitive and in-depth source classi�cation can be viewed as a regression

problem. I aim to continue working in this direction to create a ML regression frame-

work auxiliary to the SOM to regress the continuous SOMmorphologies into discrete

classes. A system such as a RTF would be particularly useful in this case where it may

be trained to map existing RGZ labels to the SOM activation map location probabili-

ties of a target image.

Given the ability of the HC algorithm to segment the SOM surface, I seek to de-

velop a more expansive SOM manifold using a topological SOM, where I will train

additional SOMs on the matching neurons contained in each cluster. In this method,

individual SOMs may be explicitly trained on the pre-clustered latent vectors to anal-

yse deeper relationships between similar morphologies. Additional variables such as

map size can be eliminated and more dynamic relationships examined using a grow-

ing SOM, as proposed by (Rauber et al., 2002). �is SOM variation dynamically scales

the SOM grid based solely on the relationships detected within the dataset. I �nd this

approach very interesting where a signi�cantly larger and more re�ned umat may

contain enough information to bridge the problem faced by current e�orts in SOM
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astronomical morphological analysis, where it is di�cult to produce a meaningful

statistical measure for assessing the performance of the SOM and HC with current

map sizes and shapes. I will also investigate other HC algorithms on the SOM surface

and in di�erent learning manifolds to explore other avenues of complexity separation

and clustering.

Based on the results of the a�ne invariance testing, I may be able to achieve true

rotation invariance by aligning all images by their features to a common major axis.

Additionally, I aim to achieve be�er scale invariance by cropping and equally enlarg-

ing all central components to the bounds of the image. �is scaling is a complicated

operation as separating related, and unrelated features are di�cult especially if no

IR morphological information is used for host cross-matching. If these a�ne trans-

formation methods are successful, however, they would likely provide a signi�cant

increase in the overall system performance and signi�cantly contribute to current

e�orts in a�ne invariant SOM analysis. Finally, further work must also be done to

create a more de�nitive statistical means of evaluating the SOM and HC clustering

performance to more robustly demonstrate the overall performance of the system.

5.2 Conclusion

In this thesis, I developed a novel ML method that takes a new approach to unsuper-

vised clustering and data exploration. �rough my investigation, I demonstrated the

coupling of SOMs with convolutional autoencoders as a powerful means of cluster-

ing and automatic unsupervised data exploration of large radio-astronomical datasets.

�esis directly addresses the challenge of rapidly increasing data scale and complexity

in modern big-data radio-astronomy.

In this investigation, I implemented a convolutional autoencoderwhich performed

successful delineation of high volume, complex radio-astronomical data. My sys-

tem provided rapid feature extraction with dimensionality reduction of these im-

ages to a compressed latent feature vector representation. Based on this success, I

demonstrated SOM feature extraction and visualisation of the high-level topological

relationships found in radio-astronomical latent vector representations of the RGZ

dataset.

�e results of my investigation demonstrated the capabilities of my method as an

accurate and fast analysis method. Within this short processing time, my approach

analyses radio-astronomical images by displaying the high-level morphology rela-

tionships of RGZ dataset images using Euclidean distance on a SOM umat and in HC

with distinct classes of varying complexity. �is operation is shown to accurately

perform the vital task of complexity separation, whereby astronomers can focus on

potential discoveries and the unexplained currently hidden in the modern data del-
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uge. Using this SOM and HC technique, I successfully investigated the nature of rota-

tional invariance in SOM training and the e�ects of SOM training using latent feature

vectors produced from an autoencoder trained with random rotation augmentation.

�e speed of this method indicates excellent scalability and holds implications

for use on large future surveys, large-scale instruments such as the Square Kilometre

Array and in other big-data and complexity analysis applications. Given major as-

tronomical discoveries are unplanned and found in the unexpected, my unsupervised

approach is highly desirable, by operating without assumptions and only requiring

labelled training data for veri�cation. �rough this thesis and Ralph et al. (2018), I

contributed to the �eld by addressing a wide range of modern challenges and limi-

tations using my new approach. Using this powerful new tool, I show the potential

of research that can be found in cross-over studies between engineering and astron-

omy with the generalisable nature of machine learning and image processing in data

analysis.
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ABSTRACT

This paper demonstrates a novel and efficient unsupervised clustering method with the combina-
tion of a self-organising map (SOM) and a convolutional autoencoder (CAe). The rapidly increasing
volume of radio-astronomical data has increased demand for machine learning methods as solutions

to classification and outlier detection. Major astronomical discoveries are unplanned and found in
the unexpected (Norris 2017a), making unsupervised machine learning highly desirable by operating
without assumptions and labeled training data. Our approach shows SOM training time is drastically

reduced and high level features can be clustered by training on autoencoded feature vectors instead of
raw images. Our results demonstrate this method is capable of accurately locating outliers on a SOM
with neighborhood similarity and k-means clustering of feature complexity. We show this method as a
powerful new approach to data exploration by providing a detailed understanding of the morphology

and relationships of RGZ dataset image features which can be applied to new radio survey data.

Keywords: Machine Learning, Astronomy, Autoencoder, Self-Organising Map, Unsupervised Cluster-
ing

1. INTRODUCTION

Large radio continuum surveys have played a key role
in our understanding of the evolution of galaxies (Norris

2017b). Exceptionally large surveys such as the Evolu-
tionary Map of the Universe (Norris et al. 2011, EMU)

are expected to detect over 70 million radio sources.
The sheer scale and complexity of this data is push-
ing researchers towards automated techniques such as

machine learning with Neural Networks (NN).
NN’s are networks of non-linear parameterised func-

tions termed ”neurons” that operate as function approx-
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imators. Neuron parameters are learned via backprop-
agation, where weights are updated using gradient de-

scent of a given loss function as a difference measure
between input and output prediction.
A NN trained to classify images with a specific orienta-
tion and scale will however encounter difficulties when

classifying the same training image at an untrained an-
gle or scale (Perantonis & Lisboa 1992). Affine trans-
formations such as rotation, scaling and translation, are

a common cause of machine learning prediction errors.
A classical solution involves augmenting a training set
with random rotations and scaling at the cost of training
time. Alternatively, a network can be made invariant to

scaling by adding convolutional and max pooling lay-
ers. Rotational invariance is more easily solved with the
addition of rotated training images.

NN’s such as SkyNet (Graff et al. 2014) have ac-
curately classified astronomical data using supervised
learning of pre-classified examples. Efforts to use these

supervised neural networks have been supported with
citizen science projects such as the Radio Galaxy Zoo
(RGZ) (Banfield et al. 2015) which has created large
labeled datasets of radio sources. This RGZ dataset

has been used to successfully train classifiers for source
classification (Wu et al. 2018; Lukic et al. 2018) and ra-
dio source host galaxy cross identification (Alger et al.

2018). However, this supervised training is not always
suitable in outlier detection as it requires a more com-
plete knowledge of all potential classes of new unseen

data. Given that most of the major discoveries in as-
tronomy have been unplanned (Norris 2017a), this is a
major shortcoming.

Unsupervised learning techniques such as autoen-

coders (Ae) bridge this gap by working with no assump-
tions about input data. An autoencoder is an NN vari-
ant designed for unsupervised dimensionality reduction.

Autoencoders work by extracting and compressing the
features of input images into a feature vector (Sanger
1989). The ideal autoencoder is trained to perfectly
compress and restore input data with no loss. The layer

configuration of an autoencoder (Figure 2) reduces input
data to a compact feature representation on the encod-
ing side before returning it to its original form on the

decoding side. The layer configuration of the encoder
and decoder are usually very similar. Autoencoder loss
as the difference between the ground truth and the

prediction is derived from the difference between input
data and the decoded output. This loss is naturally
an indicator of the performance of the network but is
also sensitive to differences between an input image and

the training set. Since loss is calculated from the input
data, a label set is not required and the network can be

trained unsupervised. Autoencoders have seen success
in many image processing applications with the addition
of convolution, max pooling and denoising architecture

(Xie et al. 2012).
Abstract relationships and topology in large datasets

can easily be interpreted by visualising Ae encoded
feature vectors with dimensionality reduction methods

such as Principle Component Analysis (PCA) (Hotelling
1933) and T-distributed Stochastic Neighbor Embed-
ding (T-SNE) (Maaten & Hinton 2008) onto a learn-

ing manifold. More complex approaches such as Self-
Organising maps (SOM) (Kohonen 1997) have also been
recognised as powerful unsupervised data exploration

tools in astronomy (Polsterer et al. 2015). By adapt-
ing to the shape of encoded latent vectors, these SOM’s
can display various topological relationships and mor-
phology distributions. Moreover, these algorithms have

been augmented to produce labeled classification with
K-Means clustering (Lloyd 1982).

This paper demonstrates a novel and efficient unsuper-

vised clustering by combining a self-organising map with
a convolutional autoencoder. SOM training time is dras-
tically reduced by training on the compressed autoen-
coder feature vectors of the RGZ image. This method

is demonstrated as a powerful data exploration and vi-
sualisation tool. This approach shows k-means cluster-
ing of trained SOM weights as a method of grouping

complexity with accurate outlier detection. We demon-
strate our method as a solution to understanding the
morphology and relationships of RGZ images that can

be applied to unexplored fields for discovery purposes.
The use of abstracted image representations as autoen-
coded feature vectors are a significant novel aspect of our
method and offer great advantages compared to prior

work analysing complete images alone. As the use of an
abstracted representation of the data such as that pro-
vided by the auto encoder offer significant advantages,

we adopt them here; this is a significant novel aspect of
our method compared to prior work.

2. DATA

Radio Galaxy Zoo is a citizen science project for ra-
dio image classification by volunteers via web interface

(Banfield et al. 2015). The majority of the radio image
data in Radio Galaxy Zoo comes from the 1.4 GHz Faint
Images of the Radio Sky at Twenty-cm (FIRST) survey
catalogue (Becker et al. 1995) version 14 March 2004.

FIRST covers over 9000 square degrees of the northern
sky down to a 1 σ noise level of 150 µJy beam−1 at 5′′

resolution.



Unsupervised Clustering of Convolutionally Encoded Radio-astronomical Images 3

Table 1. Dataset labels by population

Class Label Class Population

11 63.78%

22 14.3%

12 13.86%

33 3.28%

23 1.94%

13 0.78%

44 0.76%

34 0.42%

45 0.2%

24 0.16%

55 0.14%

35 0.08%

14 0.08%

46 0.08%

56 0.04%

16 0.02%

15 0.02%

36 0.02%

57 0.02%

67 0.02%

A random sample of 10,000 FIRST images from the
RGZ Data Release 1 catalog is used in this paper (Wong
2018).

Hand labelled RGZ annotations of the dataset contain
the number of components for every resolved source in
the image (Banfield et al. 2015). These annotations also

include the number of peaks above a set threshold within
an image. We have encoded these labels as components-
peaks, e.g single component with a single peak is 11, two

components with two peaks is 22. Table 1 shows that the
largest fraction of the dataset contains single component
single peak sources.

3. IMAGE PREPROCESSING

Radio images are contaminated by remnants of the in-
strument’s Point Spread Function (PSF). Termed ”side-

lobes”, this contamination is often a major component
of the feature space of the RGZ training set. These
elements must be removed, as unsupervised clustering

methods are initialised with the most dominant features.
We found that without proper preprocessing, clustering
resulted in two classes: ”noisy” and ”not noisy”, dis-

tinguished only by intensity distribution. Early prepro-
cessing methods used in this investigation were effective
at removing noise but had a tendency to remove faint
sources and produce artifacts. As a result, we adopted

the preprocessing method of Galvin et al. (2018) with

results shown in Figure 1. This approach corrects blank
pixels in images at the edge of the FIRST image mosaic,
sigma clips noise and normalises pixel intensity.

1. Blank pixel regions found in images close to the

edge of the FIRST mosaic are corrected. This cor-
rection replaces these masked values with a ran-
dom sample of the mean and standard deviation

of valid pixels around the outer edge region of the
image (assuming a normal distribution). These
samples are extracted from the outer regions of

the image with few astronomical features to prop-
erly sample the background noise.

2. Noise is removed and background flux is corrected
with sigma clipping. This operation subtracts the

mean background pixel value and scales all pixel
intensities below 1 σ to zero.

3. Intensity scaling is applied to normalise the global

intensity of each image.

4. All images are additionally cropped for the pur-
poses of this paper to 120x120 from the center to
reduce the dataset size while preserving salient fea-

tures.

4. METHOD

In this section we outline our method of reducing RGZ
images with convolutional autoencoding to a compact
feature vector for clustering and visualisation using a

self-organising map and the T-SNE algorithm. These
methods were developed using the Python Language on
CPU only with a Intel(R) Xeon(R) CPU E5-2650 v4 at

2.20GHz. The Google Tensorflow Library (Abadi et al.
2016) was used to create the Ae, and Somoclu (Wittek
et al. 2013) was used to implement the SOM.

4.1. Affine Invariant Convolutional Autoencoders

In our method we extract the latent relationships of
RGZ image features using a convolutional autoencoder.

We use a convolutional autoencoder with three convo-

lutional layers. Figure 2 shows the autoencoder architec-
ture with each convolutional layer contained 1, 64 and
1 filters both on the encoder and decoder sides for scale
and translation invariance. All convolution layers use a

kernel size of 3x3, with a stride of 2x2. The encoder out-
put layer is a max-pooling operation with a kernel size of
3x3 and a stride of 1x1. The decoder input layer restores

the latent vector to its dimensions before max pooling
with a linear interpolator. A latent vector with a 900x1
shape is the consequence of the number and dimensions
of kernels used in the decoder. These dimensions can
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(a) (b) (c)

(d) (e) (f)

Figure 1. RGZ image preprocessing, (a),(b) and (c) as unprocessed FIRST images. Images (d), (e) and (f) shown as the
preprocessing output with noticeable improvement to noise.

be modified by scaling the input image, however it was
found that training converged quickly with this 900x1
latent vector. The dimensions of this vector represent

a significant reduction to the original image dimensions
(120x120, 14400x1) while still containing sufficient free
parameters to preserve information for decompression

with minimum error.
Rotational invariance is achieved by randomly rotat-

ing input images during training. Loss is calculated as
the pixel square difference between the autoencoder pre-

diction image and the original rotated input image. This
rotational invariance prevents clustering methods from
recognising rotation as a feature distinguished enough

to separate it from its class. As the autoencoder is still
being trained on rotation, these features will still be en-
coded into the latent vectors but with less weight.

4.2. Self Organising Maps

Self-Organising Maps (SOM) are data analysis meth-
ods used in unsupervised clustering and data explo-

ration. SOMs create similarity maps or learning mani-
folds of input data where distinct groups of neurons re-
flect latent clusters in the data. Neurons on this grid are
trained to move toward similar data points on the grid

while moving dissimilar neurons apart. A well trained

SOM will visualise the dynamic distribution of input
data and high-level topological relationships.

The key input parameters for a SOM are the num-

ber of neurons expressed as map size, the rate in which
neurons move as learning rate and update distance as
learning radius. The learning rate and radius is reduced

after each iteration (epoch) by decay rates balanced to
let all neurons stabilise in optimal time. Our SOM was
trained using the following procedure:

1. Initialise grid neurons in the input data feature
space by PCA clustering with the SOM as the

manifold.

2. Select a unit of data (feature vector in our case)
randomly.

3. Locate the Best Matching Unit (BMU) as the
’closest’ neuron to the selected data point.

A common and reliable distance metric used to
calculate this is Euclidean distance (Eq 1).

d(~x, ~y) =

√√√√
n∑

i=1

(yi − xi)2 (1)

4. Move the BMU neuron toward the data point as a
function of the distance metric and learning rate.
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Figure 2. Overall pipeline configuration with the convolutional autoencoder architecture and self-organising map used in this
paper. This network compresses input images with 14400 elements to the latent feature vector with 900 elements for clustering.
Encoder and decoder architecture is identical with three convolutional layers at 1, 64 and 1 layers deep selected experimentally.
The SOM weights are initialised using PCA and trained on the encoded latent vectors. K-means clustering is applied to SOM
weights and labeled for verification to compare the map clusters against ground truth.

5. Move all BMU neurons within the learning radius
toward the data point as a function of the learning
rate and grid distance.

6. Update learning rate and radius based on respec-

tive input decay rates.

7. Iterate until neurons have converged and map is
stable

8. Classify neuron distance with k-means clustering.
K-means segments neurons on the SOM into k

clusters (2 in our case) by its Euclidean distance
(Lloyd 1982). This algorithm groups objects by
assigning inputs a clusters based on a metric such
as Euclidean distance. This is an iterative process

where the distance between each cluster is calcu-
lated as the average distance of its consistent ob-
jects. Input clusters are continually refined based

on this distance until the changes in each cluster
reach a stop condition. These clusters are discrete,
where an object is assigned to only one cluster.
We use these two clusters as proxies for complex

and simple feature vectors on the SOM. K-means

clustering was implemented using the Scikit learn
package (Pedregosa et al. 2011).

The SOM output is a unified distance matrix (umat).

This umat is visualised as a heat map of the euclidean
distance between each neuron and its neighborhood. La-
bels indicating the annotation of the first BMU, K-

means cluster and entropy are also displayed for each
neuron. Entropy, Ê is used here as a metric to describe
the distribution labels in the BMU’s of each neuron.

P̂i =
ni
N

(2)

Ê =
∑

i

P̂ilog2P̂i (3)

where ni is the number of class occurrences i and N

the total number of occurring classes. A low entropy
indicates good consensus where most BMU’s have the
same label. Conversely, a high entropy indicates the

BMU’s of a neuron has a wide range of different labels.

5. RESULTS

This section outlines the results and performance of
our approach at each stage of the method.
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5.1. Autoencoder Training and Image Reconstruction

The autoencoder trained on RGZ images demon-

strates successful compression and decompression across
the dataset. This is demonstrated in Figure 4 where the
reconstructed image strongly approximates the input
image. From this figure we determine the autoencoder

is capable of recognising and preserving enough key
image features to successfully predict the original im-
age from the compressed latent vector. The difference

images in the figure show the autoencoder loses most
fidelity around the edges of regions and reconstructs
background noise with low error. Blurring in the recon-

structed image has a square kernel shape and is expected
due to the shape of the max pooling and convolutional
layers. Ae difference images also show the background
noise of each image. Additional layers and training may

allow the autoencoder to better generalise the dataset
image features to remove this blurring and background
noise. The average training time of this autoencoder

is 1.2 seconds per batch of 128 images. The training
time for a full epoch is 2.2 minutes. Figure 3 shows that
training converges shortly after 70 epochs.

0 20 40 60 80 100
Training Batch

1000

2000

3000

4000

5000

Tr
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ni
ng

 E
rro

r

Autoencoder Error per Batch

Figure 3. Autoencoder error per batch as mean squared
difference between input target image and reconstructed im-
age. Training error converges after 70 epochs. Total training
time for a full epoch is 2.2 minutes.

5.2. Self Organising Map of Image Latent Vectors

The Self-Organising Map in our method was trained

on autoencoder latent vectors. A 20x20 neuron toroidal
umat is displayed in Figure 5. In this image we su-
perimpose the first RGZ image BMU of each neuron
to visualise the dataset topology and latent relation-

ships learned from the latent vectors. This first BMU of

each neuron represents the best matching image in the
dataset to the learned weights with subsequent BMU’s

decreasing in similarity. This map was created in 40
seconds after 100 epochs for an average of 0.36 seconds
each. This umat clearly shows the morphology distribu-
tion of RGZ images where Euclidean distance between

the learned weight of each neuron and their neighbor-
ing neurons displayed as a heat map. Images placed in
high distance regions have a latent feature vector with a

high euclidean distance to surrounding neighbors. This
is confirmed with high distance regions highlighting out-
liers within the RGZ image set, particularly in the case
of the upper left regions of the umat with sources show-

ing complex morphology.
The morphological clusters in this map are not highly

discrete with neurons essentially representing a proba-

bility distribution of latent feature vectors. These clus-
tered regions are sub-clustered by orientation, with sim-
ilarly oriented objects clustered together with gradual

transitions between classes. We expect to see this grad-
ual transition between classes of images given these ob-
jects do not have entirely discrete classifications. The
central low distance region of the umat contains BMU’s

as compact single sources. BMU’s in this central com-
pact region gradually progress in complexity to com-
pact multi point sources toward outer edges. BMU’s on

the edges of the map in high distance regions show the
greatest complexity. These observations are confirmed
by examining the RGZ labels and entropy of each BMU.

5.3. Verification with RGZ labels

Figure 6 shows a labeled umat of Figure 5 with RGZ

labels of the highest matching BMU, entropy of all neu-
ron BMU’s and a k-means cluster number with color
coding based on the neuron cluster number. Table 2 de-
tails the proportions of RGZ labels expressed as the first

BMU across the map with min, max and mean entropy.
As expected, the population of labels in the dataset is
correlated with the proportion of labels matching the

first BMU. Entropy follows a similar trend, however
more complex objects such as 14, 45 and 46 showing
higher entropies due to their intricacy. This is reinforced
by their position on the umat, with these complex high

entropy sources residing mostly in neurons with a high
distance. Complex objects such as 57 and 67 that make
up a small portion of the dataset have no neurons on

this map as first BMU’s due to their complexity. Larger
map sizes can be used to better represent more images
as first BMU’s by providing neurons with enough space

to cluster them.
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5.4. K-Means Clustering of Self Organised Map
Neuron Weights

Three k-means clusters, 0, 1 and 2 are labeled in the
center of each neuron in Figure 6. These labels are color
coded cyan for cluster 0, red for cluster 1 and white
for cluster 2. Table 3 details the proportion of neurons

classified into each cluster with the min, max and mean
entropy. Tables 4 and 5 list the proportion of first best
matching units for each label across the clusters. These

tables detail the overall class population of the cluster
and the overall proportion of each class’s dataset pop-
ulation in the cluster. Additionally, the min, max and

mean entropy for each clustered label set is listed.
We observe these classes segment the SOM into three

groups of simple, compact multi-feature and highly com-
plex images. Cluster 1 is located in the low distance cen-

ter of the umat, dominated by simple point sources with
79.13% of all neurons as single peak point sources. This
cluster contains 78.37% of all class 11 in the dataset with

a very low entropy. The remaining 15.05% of neurons
are highly compact 12 point sources with two peaks.
Two 33 and 22 sources are likely caught in this clus-

ter due to highly compact morphology. The high pro-
portion of these 11 class sources and highly compact
sources indicate that cluster 1 is effective in clustering
simple objects. Cluster 2 however contains a mix of

sparse and highly complex sources located mostly in the
high distance regions of the umat. This cluster is highly
interesting and contains 70.18% of all class 22 sources,

making up 31.75% of the whole cluster (Table 6. The
other dominant class in this cluster are sparse and com-
plex class 11 sources in the upper left region with faint
companions and noise. The remaining sources in this

cluster include all of the low population outlier 14, 16,
44, 45, 46 and 55 classes in addition to 52.94% of the
23 sources and a majority of the 33 sources at 71.43%.

These populations indicate that cluster 2 effectively seg-
ments outliers and sources of high interest.

We observe that cluster 0 resides between these two

clusters on the umat in medium distance regions with
BMU’s containing classes that are not too complex for
cluster 1 but not compact or simple enough for cluster 2.
This is confirmed by Table 5, with highly compact multi-

peak and multi-component sources in this cluster. This
cluster is comprised 50.0% 12 class sources, 20.59% of 22
sources and a series of 11, 23, 33 and 13 sources. Many

of the less dominant sources here are complex enough to
remain out of cluster 1 but contain a compact enough
morphology to keep them from the sparse and complex
cluster 2. These observations indicate that cluster 0

segments medium complexity sources in a manner that

allows cluster 1 and 2 to remain dominated by simple
and complex sources respectively.

The label cross-over between these classes reinforces

the point made by Kohonen (1997); SOM’s are not de-
signed specifically for hard classification, as SOMs are
trained to produce a probability density function of the
input vectors. As a result, k-means clustering of SOM

weights will instead produce what we see in our results;
a semantic map of outliers, regions, and morphologies,
distributed by encoded relationships. These results are

not unlike those of PINK in (Galvin et al. 2018) where
SOM outputs shows a range of morphologies and RGZ
label clustering. However this method also took into ac-

count additional channels. Most notably, our method
operates significantly faster by processing only 900 ele-
ments per image as opposed to full FIRST images.



8 Ralph et al.

Input Image 0 Input Image 1 Input Image 2 Input Image 3

Reconstructed Image 0 Reconstructed Image 1 Reconstructed Image 2 Reconstructed Image 3

Target-Input Difference 0 Target-Input Difference 1 Target-Input Difference 2 Target-Input Difference 3

Figure 4. Convolutional Autoencoder prediction of RGZ input images after 20 training epochs. Top row: Original preprocessed
input, Middle row: trained autoencoder prediction, Bottom row: Difference image between predicted and original image. .
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Figure 5. Toroidal umat as SOM output with transparent greyscale BMU FIRST images over a the heat map of the Euclidean
distance between neuron weights. This map was created in an average of 0.4 seconds per epoch for 40 seconds after 100 epochs.
Sources are softly clustered with an even transition between classes. The central low distance regions contains mostly compact
single sources. Progressing to the outer high distance edges are sources with gradually increasing complexity. Outliers and
complex sources reside on high distance regions while more common point sources remain in low distance areas.
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Figure 6. The same SOM as shown in Figure 5 with labels for class (0,1,2) color coded, cyan, red and white respectively. Each
neuron is labeled with three numbers, giving the properties of the best matching unit for that neurons. The first (0,1,2) shows
the cluster number, the next is a two-digit number representing the labels, and the third is a floating-point number giving the
entropy..
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Table 2. Proportion of labels expressed as the first BMU across the map with min, max and mean entropy.

Categories Population Match Population Over Map Mean Entropy Max Entropy Min Entropy

11 63.78% 52.0% 0.44 0.07 1.52

12 13.86% 18.75% 0.97 0.21 2.27

22 14.3% 14.25% 1.30 0.10 2.57

33 3.28% 5.25% 1.36 0.29 2.29

23 1.94% 4.25% 1.39 0.12 2.25

13 0.78% 0.75% 1.67 1.12 2.40

44 0.76% 0.75% 1.02 0.68 1.60

45 0.2% 0.5% 2.60 2.19 3.00

34 0.42% 0.5% 1.92 1.92 1.92

14 0.08% 0.5% 4.32 3.04 5.61

16 0.02% 0.25% 1.66 1.66 1.66

46 0.08% 0.25% 3.32 3.32 3.32

55 0.14% 0.25% 1.28 1.28 1.28

24 0.16% 0.0% - - -

35 0.08% 0.0% - - -

36 0.02% 0.0% - - -

15 0.02% 0.0% - - -

56 0.04% 0.0% - - -

57 0.02% 0.0% - - -

67 0.02% 0.0% - - -

Table 3. Proportion of k-means clusters across the map with min, max and mean entropy.

K-Means Cluster Match Population Over Map Min Entropy Max Entropy Mean Entropy

0 17.0% 0.21 2.27 1.15

1 51.5% 0.07 2.18 0.48

2 31.5% 0.10 5.61 1.19

Table 4. K-means Cluster 0: Proportion of BMU’s across the cluster, the overall dataset population of each class contained in
the cluster with min, max and mean entropy.

Categories Overall Proportion Proportion of Population Mean Entropy Min Entropy Max Entropy

in Cluster in Cluster

12 50.0% 45.33% 1.14 0.36 2.27

22 20.59% 24.56% 1.32 0.72 1.94

11 11.76% 3.85% 0.60 0.21 1.05

23 11.76% 47.06% 1.33 0.24 2.25

33 2.94% 9.52% 1.68 1.30 2.06

13 1.47% 33.33% 1.12 1.12 1.12
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Table 5. K-means Cluster 1: Proportion of BMU’s across the cluster, the overall dataset population of each class contained in
the cluster with min, max and entropy.

Categories Overall Proportion Proportion of Population Mean Entropy Min Entropy Max Entropy

in Cluster in Cluster

11 79.13% 78.37% 0.41 0.07 0.75

12 15.05% 41.33% 0.80 0.21 2.18

33 1.94% 19.05% 0.64 0.29 1.28

22 1.46% 5.26% 0.81 0.22 1.27

Table 6. K-means Cluster 2: Proportion of BMU’s across the cluster with min, max and mean entropy.

Categories Overall Proportion Proportion of Population Mean Entropy Min Entropy Max Entropy

in Cluster in Cluster

22 31.75% 70.18% 1.33 0.10 2.57

11 29.37% 17.79% 0.55 0.10 1.52

33 11.9% 71.43% 1.52 0.78 2.29

12 7.94% 13.33% 0.94 0.31 1.31

23 7.14% 52.94% 1.44 0.12 2.01

44 2.38% 100.0% 1.02 0.68 1.60

45 1.59% 100.0% 2.60 2.19 3.00

34 1.59% 100.0% 1.92 1.92 1.92

14 1.59% 100.0% 4.32 3.04 5.61

13 1.59% 66.67% 1.94 1.48 2.40

16 0.79% 100.0% 1.66 1.66 1.66

46 0.79% 100.0% 3.32 3.32 3.32

55 0.79% 100.0% 1.28 1.28 1.28
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6. FUTURE WORK

Our plans are to improve each of the three distinct

components, the autoencoder, self-organising map and
clustering algorithms. By varying the latent vector sizes
and structure of the autoencoder we will achieve a better
balance of training time to accuracy. Additionally, we

will be using a stacked architecture to train latent vec-
tors for multi-channel data. The SOM will be further
improved with heat map display of entropy in addition

to gathering more performance metrics such as precision
and reliability. We will also investigate other clustering
algorithms trained in different learning manifolds. We

will work to better display the learned weights of each
neuron as images similar to other approaches such as
PINK (Polsterer et al. 2015) by decoding the learned
weights with the Ae.

7. CONCLUSION

We conclude that the coupling of self-organising maps
with convolutional autoencoders is an effective method
of data exploration and unsupervised clustering of radio-

astronomical images. Our approach directly addresses
the growing survey processing time and provides a bet-
ter means to explore large datasets automatically with

a total processing time less than 4 minutes for 10,000
images. Our results demonstrate an accurate visual-
isation of morphology distributions found within the

RGZ dataset. Our results show the capabilities of this
method in locating outliers as high euclidean distance
umat points and in k-means clustering with a distinct

class of highly complex sources with low dataset pop-
ulation. By combining clustering with citizen science
projects such as Radio Galaxy Zoo, greater efficiencies

can be achieved with volunteers inspecting only a small
sample of objects from each cluster or being guided by
likely morphologies in each cluster. The speed of this

method holds implications for use on large future sur-
veys, large-scale instruments such as the Square Kilome-
tre Array and in other big data and anomaly detection
applications.
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