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Abstract 

In Vitro Fertilisation (IVF) is quickly becoming an extremely important medical intervention as the prevalence 

of infertility increases. Therefore, it is vital to ensure that IVF procedures are as safe and successful as 

possible. There are still many challenges to be addressed, including the embryo assessment process used to 

select an embryo for transfer. This is a difficult task, as knowledge of pre-implantation development is 

incomplete and there is still a high degree of subjectivity involved in assessing embryos for viability. 

In this thesis, we work towards more accurate, objective and versatile embryo selection by employing 

machine learning (ML) techniques and investigating a range of potential morphological quality markers, 

including currently neglected sub-cellular features. We first present CNN models trained to predict live birth 

from a variety of developmental stages. These include the first DL models predicting live birth using solely 

pre-blastocyst stages, which could allow for earlier embryo transfer, mitigating the harmful effects of 

prolonged culture. We also showed that information from earlier stages can assist selection at blastocyst 

stage, allowing for the previously unachievable ranking of high-quality blastocysts. In developing these 

models, we explored the time period of pre-implantation development to identify the best developmental 

moments for predicting live birth, therefore providing crucial information for embryo assessment 

procedures.  

In order to achieve the best possible assessment of embryo quality at pre-blastocyst stage, we next 

identified morphological features correlated with transfer outcome and combined these with the CNN 

model outputs to get an improved overall prediction of live birth. We experimented with different 

supervised learning techniques and found that linear regression gave the best performance. We also 

investigated the structure of our dataset via dimensionality reduction techniques and unsupervised 

clustering, gaining a deeper insight into the challenge of embryo selection. 

Finally, we investigated changes in nuclear size and appearance during preimplantation development, a sub-

cellular feature not currently used to assess embryo viability past the first two embryonic cycles. For this we 

used the mouse embryo, which mirrors key developmental stages in human embryos. We discovered trends 

in size and shape both over development, and across different lineages at the same developmental stage. 

This research could pave the way for better understanding of standard nuclei appearance during pre-

implantation development, allowing for the existing embryo selection criteria to be extended. 

In this thesis we have demonstrated the potential of ML techniques to increase knowledge of the pre-

implantation development period, and ultimately lead to improved embryo selection procedures in IVF. 
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Chapter 1: 

Introduction 

 

In Vitro Fertilisation (IVF) has now been used for over 40 years, beginning with the birth of Louise Brown in 

19781, and has become an established practice used to treat infertility with 69,000 treatment cycles in the 

UK in 20192. The selection of an embryo suitable for transfer is currently carried out by visual assessment of 

time-lapse videos. This is subjective and can lead to different results between embryologists3. Techniques 

from pattern recognition and machine learning may provide suitable tools to help support this task, leading 

to more reliable and consistent predictions and the ultimate selection of embryos with a higher chance of a 

successful pregnancy and healthy birth4. For this PhD project I have used both supervised and unsupervised 

learning methods to examine Bright Field and fluorescence images of pre-implantation mammalian embryos 

to attempt to make predictions about viability and to gain a greater understanding of pre-implantation 

development. 

Here, I will review the areas of biology, IVF, and machine learning relevant to the research I have carried out 

whilst studying for my PhD. This will be split into several sections; section 1 will cover current knowledge of 

pre-implantation embryo development in mammals with a focus in the human and the mouse, section 2 will 

look at IVF techniques and procedures and go into detail of current practices and limitations, section 3 will 

look at machine learning techniques, focusing on those that may be useful for embryo selection, and finally 

section 4 will put all this knowledge into context with the aims of my research.  

1. Pre-implantation development 

Mammalian pre-implantation development is the transformation of a fertilised egg into an organised 

structure referred to as the blastocyst. During this development three distinct and separated cell lineages 

emerge; the trophectoderm (TE), the epiblast (EPI) and the primitive endoderm (PrE)5. Each lineage is 

essential for the continued development of the embryo and a successful pregnancy, the TE gives rise to the 

foetal part of the placenta, the EPI is the precursor of somatic cells and germ cells of the body and the PrE 

gives rise to the yolk sac endoderm5. A greater understanding of the ability of the embryo to organise itself 

into these 3 lineages could have important implications for assisted reproductive technology6.  
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1.1 Developmental stages in human embryos 

The pre-implantation development period begins with fertilization in the oviduct and the resulting single cell 

embryo, referred to as the zygote, passes through several stages before implanting in the endometrium 

about a week later6, as illustrated in figure 1. In the first day after fertilisation the embryo remains at zygote 

stage and should contain two pronuclei (PN)6 - transformed sperm and egg chromatin forming two, 

separate, nucleus like structures (See figure 1A). Both male (delivered by sperm) and female (from the 

oocyte) chromatin have to undergo substantial chromatin architectural remodelling to form the PN. The two 

PN move towards each other, meet near the centre of the cell, and then undergo nuclear envelope 

breakdown shortly before the first division7. Within each PN several smaller round bodies can be found, 

these are referred to as nucleolus precursor bodies8 (NPB) and are visible in human zygotes (as can be seen 

in figure 1A).  

 

Figure 1: Human Pre-implantation development. A) Zygote stage – the egg has recently been fertilised and the two 

pronuclei can be observed (NPB indicated by green arrow), B) 2 cell stage, C) Cleavage stage- the cells get progressively 

smaller as they divide, D) Morula – the embryos compacts and the cells become indistinguishable from each other, E) 

Blastocyst – A hollow structure forms with the TE cells around the outside and the ICM cells (indicated by purple arrow) 

located inside the TE, on one side of the cavity. The figure was produced using time-lapse images from St Marys IVF 

clinic, Manchester 

After around 24 hours the zygote begins to undergo cleavages, a special type of cell division where there is 

no growth stage and the cells get progressively smaller with each cycle6. The cells in the embryo are easily 

distinguishable from each other (figure 1C) until the 8-16 cell stage, occurring at about day 46, when the 

embryo forms a compacted morula9 (figure 1D). The compacted morula cells are tightly packed together and 

connected by intercellular junctions that can be detected from the 8 cell stage onwards, but become more 

elaborate by the 26 cell stage10. This compaction stage and formation of the morula is preceded by 

embryonic genome activation (EGA), the process in which transcription of the embryonic genome begins. 

Although the first major wave of EGA is usually observed at the 4-8 cell stage in humans, it has been shown 

that it is independent of cell number, normally occurring at day 311.  

On day 5 a cavity appears and starts to grow as the blastocyst (a hollow fluid filled structure) is formed. By 

now the inner cell mass (ICM) and TE lineages have been established and separated; the TE cells form the 
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outer layer of the blastocyst while the ICM cells (precursors or the PrE and EPI) cluster together as a ball 

inside the cavity (figure 1E). On day 66 the embryo hatches from the zona pellucida (ZP), a glycoprotein coat 

surrounding the embryo, and then is ready to implant in the endometrium on day 7, just after the ICM 

further differentiates into the EPI and PrE6 (the latter is often referred to as the hypoblast in human 

embryos). 

1.2 Mouse development 

Research into human embryo development is restricted both due to limited supply of good quality embryos 

available for observation and the restrictions on experimentation for ethical reasons. Therefore, a lot of 

knowledge about mammalian pre-implantation embryos has come from studying other mammals. So far, 

this has predominately been the mouse due to relatively low neurosensitivity (lower cognitive abilities and 

reactivity to stimulus), low costs, and a well developed in vitro culture system12.  

One of the most important questions that research into pre-implantation development attempts to answer 

is how the first three separate lineages form; there have been many studies looking into the properties of 

the cells in early mice embryos in an attempt to identify causes or markers of differentiation into a certain 

lineage. It is known that the early cells (2-8 cell stage) are totipotent, meaning that they can give rise to any 

of the embryonic and extra-embryonic lineages, but this totopotiency is gradually lost as each lineage 

specifies13. This loss of totopotiency and initiation of cell specification involves two cell fate decisions; TE 

versus ICM and then EPI versus PrE within the ICM.  

TE versus ICM cell fate decision 

The first cell fate decision involves the allocation of blastomeres to either the ICM or TE and occurs during 

the 8-32 cell stage, prior to cavitation13. However, it is thought that the full developmental potential of the 

inside cells is not lost until the early blastocyst stage as it is possible for isolated ICM cells to form structures 

resembling the blastocyst14. At the 8 cell stage the cells of the mouse embryo develop an apical – basal 

polarity. The subsequent divisions then can produce two different types of cells; symmetrical division leads 

to two polar daughter cells as both inherit the apical domain, while asymmetrical division results in one 

outer polar cell and one inner apolar cell. This creates an inner group of apolar cells surrounded by an outer 

layer of polar cells13. 

The TE and ICM express different levels of lineage-specific transcription factors; this difference is now widely 

accepted to be a result of the cell polarity status13. Lineage specific transcription factor dynamics include the 

expression of Cdx2 and Gata3 in the TE precursor cells15,16, and elevated expression of Nanog and Oct4 and 

Sox2 in the ICM cells.17-20 
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Cdx2 expression is regulated by the transcription factor TEAD4 via the Hippo pathway (illustrated in figure 2), 

which if active indirectly prevents TEAD4 from causing Cdx2 to be expressed21-25. The hippo pathway is 

inactive in the outer cells, leading to greater expression of Cdx2 and therefore the formation of TE precursor 

cells, and active in the inner cells leading to a down-regulation of Cdx2 expression and formation of ICM 

precursor cells23-29.  

 

Figure 2: An illustration of Hippo signalling in the early mouse embryo. The inner cells are unpolarised so Hippo 

signalling is active and causes phosphorylation of YAP. This means that YAP cannot travel into the nucleus where it co-

activates TEAD4. In the outer cells Hippo signalling is deactivated due to the presence of polarised apical domain 

therefore YAP is able to travel into the nucleus and activate TEAD4, leading to the expression of Cdx213 [11]. Image from 

Schrode et al. (2013)13. 

EPI versus PrE cell fate decision 

The 2nd cell fate decision occurs in the ICM of a developing blastocyst after the 32 cell stage. It results in the 

PrE emerging as a layer of epithelial cells on the surface of the ICM next to the blastocyst cavity and the rest 

of the ICM cells forming the EPI30,31. The EPI cells are marked by transcription factors associated with 

pluriopotency; NANOG, SOX2 and OCT4, while the PrE is marked by the transcription factors such as GATA4 

and GATA617-20,32,33. There are thought to be three stages in the 2nd cell fate decision34: 

1. Co-expression of lineage specific transcription factors at and before the 32 cell stage 

2. Mutually exclusively expression of transcription factors appearing at around the 64 cell stage with a 

salt and pepper distribution of the EPI and PrE precursor cells 

3. Sorting and segregation of the 2 cell separate lineages. 
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Live imaging has revealed that there are multiples mechanisms leading to the segregation of the PrE and the 

EPI once the salt and pepper distribution is established34. These include selective apoptosis, downregulation 

of PrE genes in cells that remain inside ICM and migration of PrE cells from the centre of the ICM to the 

surface23 . 

1.3 Comparison of Mouse and Human 

The pre-implantation mouse embryo passes through the same main stages as the human embryo and is 

morphologically similar, however there are some key differences. A major difference is in timing and scale; 

the human embryo reaches compaction and initiates blastocyst formation at a later time than the mouse 

embryo, and also usually undergoes extra rounds of cell division before implantation6 (see figure 3). 

Differences have also been observed in the timing and localisation of the lineage-specific transcription 

factors throughout the pre-implantation period12.  

 

Figure 3: Comparison of pre-implantation development for mouse and human embryos. From Cockburn et al. (2010)35  

One such difference is in the timing of the localization of CDX2; in human embryos CDX2 does not appear 

until the blastocyst stage36, suggesting that it is not involved in the first cell fate decision for human 

embryos. Conversely, WNT3 and B-CATENIN have been suggested to play a role in the formation of the TE in 

human embryos37, despite not having been found to have the same impact at this stage in mouse embryos. 

The key transcription factors involved in the second cell fate decision in the mouse embryo are also found in 

the human embryo but the timings of expression may differ. In human embryos localized SOX2 has been 

observed as early as the compacted morula, whilst localized NANOG has not been observed until later on in 

the blastocyst development38. GATA6 has also been found to remain present in the TE at a later stage in 
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human embryos than in mice12. Despite these differences, by the end of the pre-implantation period the 

localization of all key lineage- specific transcription factors is the same in human and mice embryos. 

 

2. Assisted reproduction 

2.1 Overview 

Due to growing problems with infertility, IVF has become an important medical intervention. The number of 

fertility treatments is increasing (see figure 4), which may be partly due to the general population delaying 

parenthood as fertility declines with age39. As shown in figure 4, there has also been an increase in the 

number of patients undergoing IVF treatments for non-fertility reasons, such as those in same-sex couples or 

without a partner, although these cases still make up less than 10% of IVF patients39. 

 

Figure 4: IVF statistics. On the left is the number of various types of IVF procedures in the UK from 1991 to 2017 (ICSI, 

fresh eggs, frozen eggs and total number), and on the right is the partner status of IVF patients from 2007-2017. Both 

taken from HFEA39. 

IVF involves collecting the oocytes from the woman’s ovaries to be artificially fertilised. Any resulting 

embryos are cultured for up to 5 days, then one or more embryos are selected to be transferred back to the 

woman’s uterus. The eggs can be fertilized either by mixing the oocytes and sperm in a culture dish 

(traditional IVF) or by using a technique called intracytoplasmic sperm injection (ICSI) where the sperm head 

is injected directly into the oocyte40.  

Embryo culture is usually extended to blastocyst stage to aid the embryo selection process, as blastocyst 

culture is correlated with higher live birth rate per embryo41. However, the cumulative live birth rate once all 

embryos in a cycle are transferred is not increased by blastocyst culture41. There are also various health risks 



21 
 

associated with blastocyst culture; mono-zygotic twinning, reduced birth weight, pre-term birth, and 

shortened telomeres41-44. The recent accumulation of evidence of the risks of prolonged culture may require 

a re-evaluation of the risk–benefit profile of blastocyst culture45 

Although there has been significant progress in IVF techniques over the last few decades, success rates still 

remain low. Chances of a successful pregnancy vary both with age46 and the number of embryos 

transferred47. In the 1980s, published records of pregnancy rates showed that a pregnancy was significantly 

more likely when two of more embryos were transferred47, and the transfer of multiple embryos became 

common in IVF procedures to maximise success rates48. However, multiple gestations have been shown to 

have a number of risks such as preterm births, congenital abnormalities48, and increased short term and long 

term health risks to the mother49. This also has an effect on the delivery related expenses for hospitals; the 

delivery of twins has been shown to cost over twice the amount of the delivery of a singleton per baby50. 

Therefore, in recent years there has been a move towards single embryo transfer (SET; see figure 5), helped 

in part by educating patients on the risks of multiple gestation48. 

This move towards SET means that it is even more important to select the embryo with the best chance of 

developing into a healthy baby. This has proved to be challenging, although there is a set of morphological 

criteria that are used in most IVF clinics there is currently no marker fully predictive of a healthy 

development51. Progress in this area is currently limited by our lack of understanding of pre-implantation 

development and what constitutes a healthy embryo12. 

 

Figure 5: Proportion of IVF cycles with a single embryo in the USA from 2005-2013. Figure taken from Lee et al. 

(2016)48, data from the Society for Assisted Reproductive Technology (SART) Clinic Outcomes Reporting System (CORS) 

database. 
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2.2 Embryo selection 

There are a range of both invasive and non-invasive techniques available to assess the viability of embryos 

for transfer. Invasive techniques tend to have difficulties associated with them, for example pre-

implantation genetic diagnosis and screening may have a negative impact on embryo viability52. Another 

potential embryo assessment technique is metabolomics, which involves examining the embryo culture 

media to detect the level of substances such as glucose, lactate or amino acids53. Moreover, these 

approaches are complex and time consuming so not practical for IVF clinics54. Therefore, the preferred 

procedure in IVF clinics is currently the non-invasive technique of time-lapse monitoring (TLM). 

Time lapse Monitoring 

There are two main benefits to TLM; 1) the embryos are less disturbed and 2) more information is available 

as they are recorded continuously. Daily embryo evaluations of morphology involve periodically removing 

the embryos from the optimal gas and temperature conditions, this is not necessary during TLM, and 

therefore embryos are under less environmental stress54. The increased temporal resolution gained by 

continually monitoring the embryos could in theory also be useful; for example the exact timings of the cell 

divisions can be assessed using TLM as the embryos are observed at every stage of their development so the 

key moments are not missed as they might be in standard procedure. We will first describe example TLM 

procedures and next discuss the experimental evidence forming the basis for these procedures. 

Currently, there are three time-lapsing imaging systems available that are used in IVF clinics; EmbryoScope, 

Primo Vision and Eeva55. All three use a digital inverted microscope to record the development of the 

embryos, with photographs taken in intervals combined to create videos55. The EmbryoScope has a built in 

camera while Primo Vision and Eeva have a camera placed in the incubator.  

The time-lapse videos produced are then used to assess the viability of the embryos. Many different grading 

systems have been devised to assign a score to each embryo, all of which use either or both the rate of 

development and the appearance of the embryos at specific stages to calculate the score56. One example 

proposed by Gardner et al. (2013)56 that is based mainly on timing and the early morphology is shown in 

figure 656. The embryos are sorted into classes A-E, or discarded immediately if the morphology is very bad. 

First, embryos that satisfied morphological exclusion criteria including first cleavage asymmetry, abrupt first 

division to more than two cells and multi-nucleation on day 2 of development were assigned to group E56.  

Any embryos not fulfilling the exclusion criteria were then sorted into classes A+-D depending on 3 timing 

variables; T3 - time taken for embryo to divide into 3 cells, T5 – time taken for the embryo to divide into 5 

cells, and CC2- the duration of the second cell cycle. 
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Figure 6: An embryos grading system based on timing and early morphology. T5 is time to 5 cell stage, T3 is time to 3 

cell stage and CC2 is the duration of the second cell cycle. Taken from Gardner et al. (2013)56 

Another example is the grading system devised by Gardner et al. (2000)57 which is based solely on the 

appearance of the blastocyst. Each embryo is given 3 scores, a score from 1-6 depending on the degree of 

expansion of the blastocyst, a score from A-C for the ICM; A: tightly packed, many cells, B: loosely grouped, 

several cells or C: very few cells, and a score from A-C for the TE; A: many cells forming a cohesive 

epithelium, B: few cells forming a loose epithelium, or C: very few large cells. 

A recent review, Armstrong et al. (2019)58, of randomised controlled trials found that there is currently no 

evidence that the use of TLM gives a higher chance of a live birth than standard embryo incubation and 

selection procedures. However, this was mainly due to “high risk of bias in the included studies, imprecision, 

indirectness, and inconsistency”58, as opposed to good-quality evidence disproving the benefit of TLM. Also, 

the potential detrimental effects of routinely removing the embryo from the incubator for imaging were not 

considered. There is a growing body of evidence to support the developmental origins of health and disease 

(DOHaD) hypothesis, which theorises that the environmental conditions during embryo/fetus development 

can have an impact on susceptibility to diseases as an adult59. Therefore, it is possible that the daily 

evaluations required without TLM, which place extra stress on the embryo, could have an adverse effect on 

the health of the child later in life. 

Although there is no conclusive evidence supporting the use of TLM, many studies have been carried out 

using TLM to assess the impact of various morphokinetic parameters on different outcomes including 

blastocyst quality, implantation rates and live birth rates. As mentioned above, some of these have been 
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incorporated into grading systems, although these tend to mainly focus on the appearance of the blastocyst. 

However, potential morphological indicators of viability have been reported at all stages of pre-implantation 

development; some of these will now be discussed in order of occurrence. 

Zygote stage 

Various studies have investigated links between morphological features at zygote stage and subsequent 

successful development of the embryo. One of the main points of focus at this stage has been the 

appearance and position of the PN60. Several studies have undertaken measurements to study the size of the 

PN and concluded that the overall size does not appear to have an impact on outcome61, however the 

difference in size between PN has been shown to be important62-65.  

The appearance of the cytoplasm has also been studied; the cytoplasmic halo60,66 and the presence of 

vacuoles67 have been linked to embryo viability. Also of interest is the ZP, several studies have carried out 

measurements to evaluate the ZP thickness. The average thickness has not been reported to correlate to 

viability at this stage61,68, however reports vary on the impact of thickness variation; greater variation in ZP 

thickness has been linked to higher chances of implantation69 and clinical pregnancy70. However a study by 

Lewis et al71. found no correlation with ZP thickness variation and implantation.  

Cleavage stage embryos  

The timing of the first few divisions has been shown to be important in determining whether the embryo is 

able to properly form a blastocyst72. The symmetry of the divisions is also important9, as if a cell splits 

unevenly one of the two cells produced by the division will have received less than half the cytoplasm, which 

can lead to a defective lineage in the embryo. It has been shown that 4- and 8-cell embryos with equal cell 

sizes have lower rates of chromosomal abnormalities and increased implantation rates73-75.  

Morula 

The morula stage of pre-implantation development is understudied and often does not feature in embryo 

grading assessment procedures76. The presence of compaction at day three has been shown to be linked to 

embryo quality by a few studies77-79, and the proportion of the embryonic matter included in the compacted 

morula and not lost to fragmentation has also been studied, with a higher proportion included linked to 

improved embryo viability80,81. The degree of compaction has not yet been linked to embryo quality, 

however this feature has been quantified by measuring the contact angles between blastomeres, with the 

contact angles shown to increase as the embryo undergoes compaction82 

Another feature studied at this stage is the presence of vacuoles. A study by Ebner et al (2005)67 found that 

vacuoles at morula stage were negatively correlated with blastocyst formation, and vacuoles had a bigger 



25 
 

impact if they appeared in the morula than if they appeared earlier. Desai et al. (2000)78 also included 

vacuoles at this stage as one of a few variables used to predict clinical pregnancy and implantation. 

Blastocyst 

As previously mentioned, the appearance of a single image of a blastocyst on day 5 is frequently used in IVF 

clinics, other features such as contraction rates may also be useful in assessing the viability of the embryo. 

The collapse of a blastocyst is caused by an efflux of blastocoel fluid due to loose cell bindings in the TE83. 

Marcos et al. (2015)83 investigated whether such a collapse was related to viability, here a collapse was 

defined as a blastocyst contracting to such an extent that less than 50% of the surface of the TE was in 

contact with the ZP. They found that the implantation rates for embryos without collapse versus with 

collapse were 48.5% and 35% respectively. Vinals Gonzalez et al. (2018)84 used the same definition of 

contraction to investigate the correlation between collapses and euploid embryos (healthy) vs aneuploid 

embryos (containing chromosome abnormalities). It was found that the total number of collapses was 

smaller in euploid embryos than aneuploid embryos (0.6 vs 1.57; p < 0.001).  

In summary, there are many morphological features throughout pre-implantation development that may be 

useful in predicting transfer outcome. In table 1 we summarise all the markers we have discussed that have 

been shown to have a correlation with embryo viability. 

Morphological feature Prediction Reference 

Difference in PN size Live birth Otsuki, J. et al (2019)62 

Aneuploidy Manor, D. et al (1999)63 

Sadowy, S. et al. (1998)65  

Implantation Nagy, Z. P. et al. (2003)64 

Presence of cytoplasmic halo Blastocyst quality Ebner, T. et al. (2003)66 

Presence of vacuoles at zygote 

stage. 

Blastocyst formation Ebner, T. et al. (2005)67 

ZP thickness variation at zygote 

stage 

Implantation Cohen, J. et al. (1988)69 

Implantation – no 

correlation found 

Lewis, E. I. et al. (2017)71 

Clinical pregnancy Sun, Y. P. et al. (2005)70 

Timings of first few cell divisions Blastocyst formation Pera, R. A. R. et al. (2010)72 

Evenness of blastomeres Implantation Van Royen et al. (2001)74 

Hardarson, T. et al (2001)73 

Compaction at day 3 Implantation Le Cruguel, S. et al. (2013)77 

Skiadas, C. C et al. (2006)79 

Pregnancy Desai, N. N. et al. (2000)78 

Degree of fragmentation at 

morula stage 

Blastocyst formation Ebner, T. et al. (2009)80 

Ivec, M. B. S et al. (2007)81 

Blastocyst formation Ebner, T. et al. (2005)67 
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Presence of vacuoles at morula 

stage 

Clinical pregnancy Desai et al. (2000)78  

Blastocyst collapse Implantation Marcos et al. (2015)83 

Aneuploidy Vinals Gonzalez et al. 

(2018)84 

Table 1: Summary of morphological markers that have been linked to embryo viability  

2.3 Embryo abnormalities that can cause developmental failure 

There are a wide range of developmental abnormalities that can cause either failure to implant or inability to 

continue to successfully develop post implantation. Two major cause of developmental failure are mutations 

of specific genes vital for development and whole chromosome abnormalities (aneuploidy). 

Genetic mutations 

As described in section 2.2, there are several transcription factors involved in the allocation of cells to each 

of the three separate lineages. Therefore, any genetic mutation that causes one of these transcription 

factors to be expressed differently or not at all could lead to developmental failure. One example that has 

recently been studied by Le Bin et al. (2014)85 is the development of OCT4 knockout mice embryos. They 

showed that embryos where OCT4 had been deleted were still capable of forming an initial ICM, however 

the cells in the ICM were not able to further differentiate into either the PrE or EPI lineages, leading to 

eventual failure to develop. 

Aneuploidy 

Aneuploidy is the term used to describe an abnormal number or structure of chromosomes in a cell. A 

healthy cell should be euploid, which means the total number of chromosomes is an exact multiple of the 

number in a set86 – for example 23 types of chromosomes in humans87. Aneuploidy occurs due to errors in 

the precise mechanisms involved in chromosome segregation during meiosis and mitosis. There are two 

main types; “whole chromosomal” aneuploidy, which is either a higher or lower than normal number of 

whole chromosomes, and “structural “ aneuploidy – an abnormal structure of one or more chromosomes 

due to errors such as deletions or translocations of large regions of the genome86.    

Errors in chromosome segregation during meiosis are particularly high, especially in the production of 

oocytes. Around 10% of Oocytes are aneuploid and will therefore result in completely aneuploid embryos, 

most of which will fail to develop properly or result in an early miscarriage87. Whole chromosome aneuploidy 

of chromosomes 13,18 and 21 can result in live birth, however these will all carry birth defects – an 

abnormal number of chromosome 13 or 18 leads to severe developmental abnormalities and a life 

expectancy of less than a year and an abnormal number of chromosome 21 results in Down syndrome86. 
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Aneuploidy in human embryos can also occur during the mitoses after fertilisation. This is thought to be the 

most common cause of aneuploidy88 and may also directly causes early pregnancy failure89. It can lead to 

embryos with some aneuploid and some euploid cells, referred to as “euploid–aneuploid mosaicism”89. The 

proportion of aneuploidy cell has been observed to reduce throughout development, although it is not clear 

whether this is due to aneuploid cells selectively undergoing apoptosis, or embryos with a high proportion of 

aneuploid cells being more prone to developmental failure89. It has been shown that it is possible for mosaic 

embryos to result in a healthy live birth90, however this has only been seen in a small number of cases as 

embryos known to be mosaic would not usually be transferred. 

2.4 Other factors affecting success rate 

The success rate of an infertile couple becoming pregnant varies widely between different clinics91. This is 

partly due to the different mix of patients between clinics, however this has been shown to not be the sole 

reason for the difference in success rates91, suggesting that the chances of success pregnancy do depend on 

the methods and procedures of the clinics. There are also geographical differences, with higher success rates 

recorded in the USA than in Europe92. It has been suggested that this may be due to differences in the dosing 

of Gonadotropins92, fertility medications given by injection to IVF patients. 

The success of IVF also depends heavily on the age of the patient, pregnancy rates have been shown to go 

down steeply with maternal age while miscarriage rates rise93 (figure 7). Paternal age has also been shown to 

have an effect on implantation and pregnancy rates, but is independent of miscarriage rate94. 

 

Figure 7: Effect of age on IVF outcome based on a retrospective study of 10268 women. The key shows age range of 

each age group From Yan et al. (2012)93  
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In addition to selecting the right embryo, gamete selection is also important. The quality of the selected 

oocyte has an impact on both successful fertilization and subsequent embryo development95. Sperm quality 

is also important, advanced sperm selection techniques have been shown to increase both fertilization and 

pregnancy rates96. 

3. Machine Learning 

3.1 Overview 

Machine learning is the science of computers being able to perform tasks without being explicitly 

programmed, a frequently used formal definition is "A computer program is said to learn from experience E 

with respect to some class of tasks T and performance measure P if its performance at tasks in T, as 

measured by P, improves with experience E."97. Machine learning algorithms can be broadly categorised into 

supervised, semi-supervised or unsupervised learning. In supervised learning, the training data consists of 

input – output pairs and the goal is to be able to predict the output for a given input98. In unsupervised 

learning, the data is unlabelled so rather than predicting an output the goal is to find patterns or structure in 

the data, often in the form of clusters98. Semi-supervised learning involves training an algorithm to make a 

prediction using both labelled and unlabelled data, usually used in cases where the amount of unlabelled 

data is much greater than the amount of labelled data99.  

Supervised Learning 

There is a variety of supervised learning algorithms and the choice of algorithm will depend on the problem 

to be solved. The output can either be a number – known as a regression problem, or a class – known as a 

classification problem100. Regression problems can sometimes be solved with a linear function, where each 

input value is multiplied by a weight and a straight line is fitted to the data by iteratively finding the optimum 

value of the weights. If this model is too restrictive, a higher order polynomial or another non-linear function 

can be used100. However, as is shown in figure 8C, care must be taken not to over-fit the model to the data.  

A popular classification algorithm is support vector machines (SVM)101. These work by drawing boundaries or 

“hyperplanes” between the classes that maximise the distance between the hyperplane and the datapoints 

in the class closest to the hyperplane, therefore minimizing classification error101, as seen in figure 8A. 

Another popular classification algorithm is the decision tree, an example is shown in figure 8B. This sorts 

input data into classes depending on the value of the features of the data point. It consists of nodes, which 

represent the features to be classified, and branches which represent the different values that the node may 

take101. 
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Figure 8: Illustration of machine learning techniques. A) shows support vector machine – an algorithm that maximises 

the difference between data-points and class boundaries, B) is a decision tree which finds the class of the data-point via 

a series of decision making “branches and C) is an example of regression using a linear, 2nd order and 6th order 

polynomial model. In this case the linear model is too simple and the 6th order polynomial over-fits the data, so a 2nd 

order polynomial is the best to use.  A) and B) are taken from Dey (2016)101, C) is taken from Alpaydin, Ethem. (2014)100. 

K-means 

K-means is one of the simplest and most popular unsupervised learning algorithms that sorts data into a pre-

determined number (k) of clusters102. The algorithm defines k centroids, one for each cluster, by using the 

following steps102:  

1. Randomly assign k initial centroid positions. 

 2. Assign each data point to the group that has the closest centroid. 

 3. When all data points have been assigned, re-calculate the positions of each of the k centroids. 

 4. Repeat Step 2 and 3 until all centroids no longer move. 

 The goodness of the clusters can be evaluated by finding the average distance of each point to its assigned 

cluster centroid. The clustering algorithm will often be run many times from different initial centroids and 

the best attempt will be chosen as the algorithm can be prone to converging to local minimums. 

3.2 Neural Networks 

The neural network is a machine learning algorithm inspired by the biological concept of neurons101. A 

standard supervised neural network takes a list of input variables, runs these numbers through a series of 

functions, or “hidden layers” (see figure 9 for illustration), and produces one or more numbers as outputs103. 

Before entering each function, all inputs to the function will be multiplied by an individual ‘weight’. These 

weights define how the inputs are combined and recombined103, engineering new features which are fed 

into the final function to calculate the predicted output. The weights are initially set to random values, then 

are adjusted over many iterations using training data to minimise the difference between the output values 

Linear 

2nd order 

6th order 
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and the predicted outputs. When the optimum weights are achieved the model can be tested on a validation 

training set to assess its accuracy before being used in real world applications. 

 

Figure 9: Two examples of neural networks. The nodes in the hidden layers all represent activation functions that take 

in inputs from every node of the previous layer and then deliver an output to every node in the next layer. Each input is 

multiplied by an individual weight before going into the activation function, the value of these weights are learned over 

many training iterations. A) is an example of a deep neural network (DNN), whilst B) is an example of a shallow neural 

network as it has just one hidden layer.  Taken from Lee et al. (2017)104 

There is a large amount of variety in the structure or architecture of a neural network, with different model 

architectures serving different needs. A neural network with many hidden layers is referred to as a deep 

neural network (DNN). These can be useful for extracting higher level abstractions from the data such as 

shapes or edges103, which can be useful in complicated data sets that would have otherwise needed a 

feature engineering pre-processing step.    

A convolutional neural network (CNN) is a specialised type of DNN that performs well for image recognition 

tasks103. CNNs are made up of a series of convolutional and pooling layers (see figure 10 for illustration) 

before reaching the final fully connected layer (those found in typical neural networks). In a convolutional 

layer one or more filters scan over the image and the weights in the filter are iteratively refined in the 

training process so that the filters can identify features in the input data. The pooling layers are used to 

reduce the dimensions of the outputs produced by a convolutional layer, either by taking the maximum or 

the average of a group of pixels. 

Transfer learning 

Transfer learning is a technique that allows information gained by training one CNN to be used in another 

one105. The process can typically be broken down into two106:  

1) Train a model using a very large labelled (and usually pre-existing) dataset (referred to as a “base 

dataset”) to obtain a “base network” that can recognise a variety of images. 
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2) Train a new model using a smaller “target dataset” which contains only images of the objects that 

are required to be recognised. This model will inherit the first few layers of the base network so only 

the last few layers and any added layers will need to be retrained. The proportion of inherited, 

retrained and added layers will vary depending on the model and datasets. 

The idea is that the first few layers of the base network will have been trained to recognise basic features 

that will be in all the target dataset images and the later layers will be able to use these features to detect 

more complex features specific to the objects in the target dataset and be able to then use these advanced 

features to distinguish between the different classes. As training the base network will often require a large 

number of images and can be very time consuming it is common to use pre-existing datasets and/or model 

architectures to train it. Keras, an open-source neural-network library, has at least 20 available models all of 

which have been trained on very large datasets106. This includes the VGG16 network which is very successful 

at image classification and has been trained on ImageNet, a visual dataset with over 14 million labelled 

images107.  

 

Figure 10: Illustrations of a CNN. The bottom picture shows an example structure of a CNN model, there are multiple 

convolutional layers interspersed with pooling layers to reduce the number of parameters. The top left picture 

illustrates a convolutional layer and the top right illustrates a pooling layer, showing examples of both max and average 

pooling. Taken from Lee et al. (2017)104. 

Transfer learning can be useful for various reasons108. One application is where the total data available for 

the target dataset is small, so the network is unlikely to be able to train itself correctly using just the target 

dataset. Another reason could be that it will be very time-consuming to label all the data-points in the target 

dataset, and a labelled base dataset is already available. Some researchers will also not have the 
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computational resources or time to train a network from scratch, so using a pre-trained network such as the 

VGG16 network trained on ImageNet may be necessary even if a large labelled target dataset exists106. 

Interpreting Machine learning algorithms 

It is very important that any machine learning model used to make decisions, especially important decisions 

such as medical diagnosis’s, can be trusted to make correct predictions. All machine learning algorithms are 

tested on validation data sets; however it cannot always be assumed that a high accuracy on the validation 

set will translate to high accuracy in real life applications as there may be biases present. For example, there 

may have been information accidently included in the training and validation of the model that would not 

normally be available, known as “data-leakage”109. An example of this is the KDD-Cup 2008 breast cancer 

prediction competition, where the patient ID was shown to strongly correlate with both the training and 

validation data109. As the accuracy of validation sets cannot be completely trusted it is necessary to have 

some understanding of how the model makes predictions, which requires techniques for interpreting the 

model.  

One such interpretation technique is LIME110. This technique approximates the machine learning algorithm 

locally with an interpretable model to explain a specific prediction. The interpretable model is found by 

minimizing the difference between the output of the original model and the output of the interpretable 

model, whilst still keeping the interpretable model sufficiently simple. A collection of sample points in the 

feature space are used, with those closer to the point in question being given a higher weight, this is 

illustrated in figure 11.  

By looking at the interpretable model it is possible to see what input variables have the biggest effect on the 

predicted output, and the user can then use their own prior knowledge to decide whether this is sensible. An 

example is shown in figure 12, specific information about a patient is shown to be important for the model 

to diagnose the patient with flu, and the variables picked are all those that might be expected to be 

important. 

Sometimes the original features are not used in the interpretable model; instead a different representation 

that is interpretable for humans is used. For images this may be the presence or absence of patches of 

similar pixels (super-pixels)110. A visual explanation of the model can then be given by showing an image that 

only contains the super-pixels that were important for a certain classification, with the rest of the image 

greyed out. An example of this is shown in figure 13, an image classified as “dog”, “electric guitar and 

acoustic guitar shows the super-pixels you might expect for each classification. 
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Figure 11: Illustration of an easily interpretable model found by LIME to approximate the original model. The blue 

and pink areas show the classification boundary of the original model while the dotted line is an interpretable model 

that approximates the original model in the local area shown by the red cross in bold. This interpretable model was 

calculated by sampling a selection of data points shown by the other crosses and dots. The sizes of each dot and cross 

represent how much weight they had in building the interpretable model, with bigger symbols having a greater weight 

due to being closer to the local area being modelled. Taken from Ribeiro et al. (2016)110. 

 

Figure 12: A conceptual understanding of how LIME gives an interpretation. The input variables that had the greatest 

effect on the “flu” classification are given in the explanation and suggest that the model is working properly as the 

variables highlighted seem to be sensible indicators of flu. Taken from Ribeiro et al. (2016)110 
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Figure 13: An example of LIME explaining the predictions of a CNN. Images b)-d) show the parts of the image a) that 

were used to find their respective classifications. Taken from Ribeiro et al. (2016)110 

3.3 Representations of image for machine learning – feature engineering 

In order to minimise the processing time and computational costs of training a machine learning algorithm it 

is often necessary to first find a new representation of the data that contains the same information but using 

less features. This is especially important for deep learning algorithms which have a large number of 

parameters to train.  

Principle component analysis 

PCA is a linear technique that transforms the input data so that the many original variables can be 

represented by a smaller number of features111 . This new representation with have the largest variances 

whilst still capturing most of the original information112. A very simple example is shown in figure 14; PCA is 

applied to 2D data so that instead of taking up two axes it can be described by just the x axis. 

 

Figure 14: Visualisation of PCA applied to 2D data. Taken from Dey (2016)101 

Autoencoders 

An autoencoder is similar to PCA in that it produces a new representation of data that will be easier for a 

machine learning algorithm to process, however this transformation is done using an unsupervised form of 

neural network113. The inputs and the targets of an autoencoder are the same, so the job of the autoencoder 

is to reconstruct its own inputs113. To do this two parts are used; an encoder and a decoder114, see figure 15 

for illustration. The encoder finds the new representation and the decoder transforms the new 

representation back into the original inputs. The network is optimised by minimising the difference between 

the original inputs and the values returned by the decoder114, referred to as the autoencoder loss. 
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Figure 15: Visualisation of the structure of an autoencoder. The new representation is extracted from the middle layer 
(labelled z). Taken from Nasraoui et al. (2018)115 

t-SNE 

t-SNE is a dimensionality reduction technique that aims to preserve both the local and global structure of the 

data when reduced to 2 or 3 dimensions, mainly for visualisation purposes116. t-SNE is a variation of 

stochastic neighbour embedding (SNE)117 that is easier to optimise and has less of a tendency to crowd 

points into the same space. SNE defines a probability distribution over all potential neighbours of an object 

by centring a Gaussian on each object. The aim is then to create a low dimensional space with a probability 

distribution as similar as possible to the probability distribution of the original high dimensional space by 

minimising the Kullback-Leibler divergence (A type of statistical distance measuring the difference between 

two probability distributions). t-SNE uses a symmetrized version of the SNE cost function with simpler 

gradients and uses a student t-distribution instead of a Gaussian for the lower dimensional space probability 

distribution116. t-SNE has a tuneable hyper-parameter, perplexity, which has a recommended value between 

5 and 50 and is a rough estimate of the number of close neighbours each point has.  

3.4 Machine learning and medical imaging 

Since the 1980s a variety of machine learning algorithms have been developed to automate classification 

tasks in medical imaging and by the early 2000s many were introduced to clinical practice104. However, the 

benefit of using these tools was not clear due to issues found by clinical studies, such as the amount of false 

positives predicted by these systems118. It is hoped that deep learning methods may be able to overcome 

these issues and reliably predict diseases; deep learning tools have already been shown to have good 

potential to detect lung cancer119, breast cancer120,121 and Alzheimer’s disease122,123.  
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Although deep learning is not yet used in practice for embryo selection as part of IVF, there have been a few 

studies attempting to do this. The first attempt was made by Khosravi et al. (2019)124, who trained a CNN to 

classify blastocyst-stage human embryos by quality. Time-lapse images of 10,148 embryos were used to train 

and validate the model and embryos were classed by embryologist assessment. They achieved an accuracy 

of 97.53% in differentiating between good quality and poor quality embryos. They also found that fair-

quality embryos classified by the algorithm as high-quality had higher chance of live birth than fair-quality 

embryos classified as low quality (61.4% vs. 50.9%). However, attempts to directly predict the outcome using 

embryos labelled “positive live birth” or “negative live birth” were unsuccessful. 

Since then many more studies have used deep learning to assess embryo viability, however most use 

intermediate outcomes such as embryologist assessment, aneuploidy, clinical pregnancy, foetal heartbeat, 

or implantation3,125-135. Only a few directly predict live birth136-138. Currently most deep learning studies also 

focus on the blastocyst stage, only a few use earlier developmental stages128,131,136,139 and none predict live 

birth using only pre-blastocyst stage images. 

4. Conclusions and Aims 

In this chapter we have described current IVF practices and it is clear that the field is still developing, with 

one of the main limitations being the difficulty in selecting a healthy embryo for transfer. As mentioned in 

section 2.1, the preferred procedure now is to transfer just one embryo, making a robust selection 

procedure even more vital. Section 2.2 describes TLM, the current preferred method of assessing viability 

which has allowed many morphological features to be analysed as predictors of success rates. Although 

many possible links have been found and grading systems have been developed to assess embryo viability, 

there is still no consensus on embryo assessment and there is still much subjectivity involved. Therefore, 

machine learning may be the way forward; as described in section 3.4, machine learning algorithms have 

had success in a variety of medical imaging areas including some progress in embryo selection.  

Our review of current knowledge of pre-implantation development shows that the mechanisms 

underpinning the formation of the first three lineages are still not properly understood. Further investigation 

into this period of development is needed to gain a greater insight into the events occurring. An improved 

understanding of these first few moments of development could help us in assessing embryo viability, and 

possibly lead to better diagnoses of the causes of infertility. 

In light of the above, this PhD followed two main approaches; developing ML algorithms that could predict 

transfer outcome of IVF embryos and furthering current knowledge of mammalian pre-implantation 

development. In chapter 2, CNN models are developed to predict live birth from a variety of embryonic 

stages from zygote to blastocyst, with the optimal moments in development for embryo assessment 
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identified. Chapter 3 builds on these results by investigating a variety of morphological features that may be 

predictive of embryo viability and combining these with the CNN predictions to obtain a further improved 

prediction of live birth at early embryonic stages. Chapter 4 then investigates variations in the appearance of 

the nucleus, a currently neglected morphological feature that might also be incorporated in live birth 

prediction in the future. For chapters 2 and 3 time-lapse videos were provided by St Marys IVF clinic, 

Manchester, and for chapter 4 we produced new images of mouse embryos. Finally, we reflect on the 

research carried out in this thesis in chapter 7, discussing the relevance of our findings and potential avenues 

for further work. 

The overall hypothesis of this thesis is that machine learning techniques can lead to improvements in the 

embryo selection process. The specific aims are; 1) Develop a machine learning model that can predict live 

birth from time-lapse images, 2) Assess the possibility and potential benefits of predicting live birth at pre-

blastocyst developmental stages, 3) Investigate additional morphological features that can be combined via 

machine learning to give better assessments of embryo viability, and 4) Establish typical nuclei appearance 

over development and cell lineage in mouse embryos to pave the way for possible future inclusion of nuclei 

appearance in embryo viability assessments.  
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Chapter 2: 

 

Deep learning pipeline reveals key moments in human embryonic development 

predictive of live birth in IVF 

 

Camilla Mapstone, Helen Hunter, Daniel Brison, Julia Handl, Berenika Plusa 

 

Rationale of paper 

To address the issue of subjectivity in embryo selection for IVF we developed CNN models to predict 

whether embryos would lead to live birth after transfer based on images extracted from time-lapse videos. 

As earlier stages have so far been neglected in ML studies for embryo selection, we developed models at 

various stages in development, both to provide the option of earlier selection and to ascertain whether 

better quality assessments could be made at blastocyst stage when information from earlier stages is taken 

into account.  

Another motivation of this paper was to show that it is possible to develop DL models for embryo selection 

from a relatively small single-clinic dataset. This would allow models to be re-trained to become tailored to 

specific patient populations. Our blastocyst model achieved a similar performance to highly trained 

embryologists, demonstrating that it is indeed possible to successfully train a CNN for live birth prediction on 

a dataset of this size. 

This manuscript has recently been submitted to npj Digital Medicine and has been sent to reviewers. All 

supplementary figures and tables are included at the end of the manuscript. 

Aims 

-Develop CNN models that can predict live birth from a variety of individual stages from zygote to blastocyst 

-Investigate whether models trained at pre-blastocyst stage offer any potential improvements to blastocyst 

stage selection 

-Demonstrate that a CNN can be trained to predict live birth at a high standard from a single-clinic dataset 
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Abstract 

Demand for IVF treatment is growing, however success rates remain low partly due to the difficulty in 

selecting the best embryo to be transferred. Current manual assessments are subjective and can lead to 

significant inter-operator variability. Deep learning techniques could lead to improved embryo assessment 

and live birth prediction, however previous attempts neglect early developmental stages and often require 

vast amounts of data. Here, we demonstrate that even with limited data it is possible to train convolutional 

neural networks to classify developmental stage at high accuracies and predict live birth from various time-

points throughout development. We identify key windows that are optimal for assessing embryo viability 

and demonstrate the importance of incorporating information from earlier stages. Our outcome predictor 

models are competitive with, and potentially outperform, human expert selection. The pipeline produced 

here could lead to an improved, standardised approach to embryo selection compatible with multiple 

transfer strategies. 

Main Text 

Infertility is a growing health crisis impacting both individuals and society. As a result, there is a rising 

demand for in vitro fertilisation (IVF) treatments. However, due to low success rates multiple attempts are 

often required, leading to additional cost and distress for the patients. One of the main challenges in IVF is 

the difficulty in selecting the best embryo to be transferred, as at the moment there is no general consensus 

on exactly what healthy pre-implantation embryo development looks like.1-3 The selection process routine in 

most clinics involves visual assessment of embryos in real time or via time-lapse videos. Embryos are 

assessed based on morphological features such as the number and size of cells at cleavage stage and in the 

trophectoderm (TE) and inner cell mass (ICM) in the blastocyst (Fig. 1A), the expansion of the cavity, 

developmental timings, cellular fragmentation, and multi-nucleation. This manual assessment is subjective, 

with up to 83% variation between embryologists4, and uses only a fraction of the information potentially 

available. A machine learning (ML) approach that automatically assesses embryos using more extensive 

information from across the time-lapse videos could potentially provide a consistent and reproducible 
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method for embryo selection5. ML has already demonstrated great promise in other areas of medical 

imaging6-8 and has the potential to revolutionise the field of medical diagnostics. However, existing ML 

approaches for embryo selection5 still fall short in successful prediction of live birth, the lack of attention to 

pre-blastocyst stages, and the need for reproducible models trained on single clinic data.   

Most previous attempts to train ML models to assess embryos from raw time-lapse data aim to classify 

embryos based on intermediate outcomes such as manual grading by embryologists or embryo aneuploidy, 

or early pregnancy outcomes after embryo transfer such as foetal heartbeat4,9-21. Only a few have been 

designed with the outcome of live birth22-24. Predicting live birth directly is a difficult task as there are a large 

variety of factors that contribute to treatment success, some related much more strongly to maternal factors 

than the embryo itself25. However, it is important to predict live birth as it is the overall aim of IVF and 

intermediate outcomes do not guarantee success. For example, it possible for embryos with good 

morphology to be aneuploid26,27, the presence of some aneuploid cells in an otherwise diploid embryo 

(termed mosaicism) does not guarantee embryo failure28, and even if the transferred embryos progress to 

foetal heartbeat, they may be miscarried later in pregnancy.  

Currently most ML studies solely focus on the blastocyst stage, with very few using earlier embryonic 

stages11,14,17,24  and none making a live birth prediction on embryos before the blastocyst stage, mirroring the 

most widely used process of embryo selection by the trained embryologists. Extending the culture until 

blastocyst stage is associated with a significantly higher live birth rate, per transfer and per embryo29, and 

yet blastocyst transfer has a number of disadvantages.  The first is that the cumulative live birth rate, 

including transfer of all fresh and frozen embryos from a single egg collection event, have not increased 

using this policy, due to the loss of embryos during extended embryo culture29,30.  The second and more 

problematic issue is that blastocyst culture is associated with a number of adverse outcomes from pregnancy 

and early childhood, including pre-term birth, altered birthweight, and mono-zygotic twinning30-33. It is also 

possible that blastocyst culture may have negative implications on healthy aging, as recently it has been 

linked to shortened telomeres34. Adopting ML-assisted protocols that would allow for embryo selection at 

the earlier stages could be a step forward to reduce the risks that accompany extended embryo culture in 

IVF procedures.  

A significant barrier to the widespread adoption of ML methods in ART is the depth and breadth of data 

required to develop an algorithm sufficiently predictive to be of use clinically. Many previous attempts have 

used large aggregated datasets derived from a number of clinics over a number of years in order to generate 

sufficient data to train ML models11,19,20.  This in turn is a major limitation to widespread adoption of ML in 

the sector, as most clinics have distinct treatment policies and patient populations35 . There is a need for a 
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versatile and robust ML algorithm for embryo selection that can be successfully tailored to the needs of each 

individual clinic.   

Here, we present eMLife, a novel pipeline for creating a versatile live birth predictor tool. Firstly, through the 

development of a stage classification algorithm we demonstrated the high efficiency of our chosen model at 

correctly classifying stages of pre-implantation embryos. Next, we used this ML algorithm to identify pivotal 

time-points for live birth prediction in the pre-blastocyst embryo, paving the way for earlier embryo 

assessment and transfer. We then showed that our ML based pipeline can assess blastocyst viability at a 

similar level to highly trained embryologists. Finally, we showed that combining information from our 

identified time-points of embryo development with blastocyst stage predictions allows for a quantitative 

ranking of high-quality blastocysts which could not have been achieved by any of the existing assessment 

methods.  Critical to widespread clinical application, our findings also demonstrate that it is possible to train 

a ML model to a high standard using very limited data from a single clinic, paving the way for clinic specific, 

ML-assisted assessment of embryo quality.  

Results 

All model training and testing was performed on a dataset of time-lapse videos of embryos with known 

transfer outcomes from the IVF clinic at the Department of Reproductive Medicine, St Marys’ hospital, 

Manchester, UK. This is an NHS-funded clinic with stable patient population demographics and standardised 

treatment policies, and therefore highly suitable for single centre treatment outcome studies36.  Embryos 

were cultured in either Embryoscope TM or Embryoscope+ TM time-lapse incubator system (Vitrolife, 

Sweden). 

Developmental stage classification 

Currently, ML algorithms predicting live birth from routinely collected time-lapse videos have had limited 

success, however it is unclear whether this is because the models are not well suited to the data, or if it is 

due to the inherent difficulty of live birth prediction after IVF procedures. Therefore, we first investigated 

how well our chosen model worked on our dataset for the relatively straightforward task of developmental 

stage classification, before attempting to train the model for the more challenging problem of live birth 

prediction.  

To develop stage classification models, all time-lapse videos had one frame extracted for each 

developmental stage, resulting in equal class sizes. To reduce the amount of training data needed, we 

adopted a transfer learning approach, using the MobileNetV2 model37 (chosen following a preliminary 

analysis into the performances of several different models on our dataset) with layers pre-trained on 

ImageNet, the overall workflow is illustrated in Fig. 1B.  
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Figure 1: Performance of developmental stage classification models with increasing amount of training data A) The 

typical development of human embryo and an overview of embryologist assessments carried out at each stage. B) The 

methodology of training developmental stage classification models from time-lapse data. C) The accuracy of the test set 

on models trained to classify an image as zygote or 2 cell with varying amounts of training data. D) The accuracy of the 
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test set on models trained to classify an image as before NEBD or after NEBD with varying amounts of training data. E) 

The accuracy of the test set on multi-class models trained to classify an image into one out of 5 developmental stage 

classes with varying amounts of training data. C-E) all show the average scores over 50 training attempts with 25 

embryos in each class for the test and validation set.  

First, we trained a binary model to classify embryos as zygote (one cell stage embryo that is a product of 

fertilisation) or 2-cell stage (an embryo after the first embryonic division). Subsequently, we trained a second 

binary model to recognise subtler differences on the subcellular level. To this end, we used images of 

embryos taken before or after nuclear envelope breakdown (NEBD), a process that marks the transition from 

interphase to the first embryonic division. The two investigated models were trained with varying amounts 

of training data by randomly excluding a portion of our data set. The training set size ranged from 10 to 1200 

(all data used) with and without data augmentation. The validation and test sets were kept constant at 100 

images each. The average test set scores (Fig. 1C-D) showed that when all the data was used we reached an 

accuracy of 97.1% for the zygote vs 2-cell model and 94.6% for the before NEBD vs. after NEBD model.  

For both models the accuracy increased with the amount of training data, as expected, and appeared to be 

reaching a plateau in performance once the number of images in the training set rose to around 200-400. 

This plateau may suggest that the model performed close to its optimal level and we are not likely to gain 

much better performance by adding more training data. Visual inspection of the images (Fig. s1A) also 

suggested that there is an upper limit to the accuracy that could be obtained as vacuoles and cells dividing in 

a plane that does not allow subsequent blastomeres to be immediately identified can cause an embryo to 

appear to be at a different stage when viewed without the context of the time-lapse video. 

Our results also showed that when using pre-trained layers, relatively high performances can be achieved 

even with very little data, over 85% accuracy was obtained for both models with a training set size of 10 (5 

images from each stage). Fig. 1C-D also show that augmentation (see methods for details) seemed to have a 

small but positive effect, especially with limited training data, so we chose to continue using augmentation 

going forward. 

We then trained multi-class models to classify images into five output classes corresponding to the 

consecutive stages of human pre-implantation development (Fig. 1E). We saw that an accuracy of 87.7% was 

achieved, which is much higher than the by-chance score of 20%. The results in Fig. 1E show a similar trend 

to the one observed in the binary models; increases in accuracy became small once the training set reached 

about 200-400 images, and a high accuracy (69.4%) was achieved with a training set of just 10. These results 

further demonstrate that MobileNetV2 with pre-trained layers can achieve a high performance, even with a 

small amount of the training data, when analysing routinely collected images of preimplantation human 

embryos. 



45 
 

 

Live birth prediction  

Following the successful development of our stage classification models, we trained models to predict live 

birth outcome (Fig. 2A). Models were trained on a variety of both blastocyst and pre-blastocyst (zygote, 

cleavage and morula) stages as this could allow for information from across development to be included in 

embryo assessment and also could potentially assist earlier selection and transfer in the future.  

We extracted frames at five precisely defined stages; one hour before NEBD completion, first appearance of 

2 cells, first appearance of 4 cells, initiation of 8-16 cell division round, and the last frame before the embryo 

was removed for transfer, and we referred to these stages as PN, 2-cell, 4-cell, 8-16 cell, and blastocyst 

respectively. Live birth prediction models were trained using each stage. As predicting live birth from embryo 

morphology alone is a difficult task, we decided to use our multi-class stage classification model as an extra 

transfer learning step (see methods section for full details). We experimented with various 

hyperparameters, the results are shown in Fig. S2A. Our results suggest that this extra transfer learning step 

generally improved model performance, particularly for the PN and 4-cell models. 

We assessed our models using ROC AUC values; the area under a curve (called the ROC curve) that is created 

by plotting true positive rate vs. false positive rate at various thresholds. A ROC AUC of 0.5 is no better than 

chance and 1 is a perfect model. The ROC AUC values reported in Fig. S2A were the average of 50 training 

iterations each with a different randomly selected test set. We chose to use varying test sets to increase 

statistical power as we found that separate test sets had a higher than desirable variability in performance, 

reflecting the heterogeneity of the data in this ML task (Fig. S2b). However, the transfer model was trained 

on the same dataset, so to check this was not resulting in an unfair bias it was necessary to also develop all 

models from scratch with a true ‘hold out test set’ – a test set separated out at the very start, prior to 

training the transfer model. As shown in table 1, our results continue to hold up in this control experiment, 

so going forward we use transfer learning (with our optimised hyper-parameters) for the PN and 4-cell 

models and the original MobilenetV2 model for all other stages.  

Stage ROC AUC when standard 
MobileNetv2 model used 

ROC AUC when extra 
transfer learning used 

PN 0.547 0.557 

2 cell 0.555 0.520 

4 cell 0.533 0.578 

8-16 cell 0.578 N/A 

Blastocyst 0.714 0.703 
Table 1: Effect of extra transfer learning on hold-out test set. Performance of a hold out test set using either the 

original MobileNetv2 model with fixed features up to the last layer or the MobileNetv2 model with fixed features and 
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extra transfer learning; an extra hidden layer before the last layer has been pre-trained as a stage classifier. The number 

of hidden units in the last layer is the amount we found to be optimal for that developmental stage. 
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Figure 2: Predicting Live birth from a transferred embryo using specific time-points across development. A) The 

methodology for developing the live birth prediction models B) the ROC AUC score of the test set for models trained to 

predict transfer outcome using images from precisely defined moments of development. ‘PN ‘is one hour before 

completion of NEBD, ‘2 cell’ is first frame with 2 cells, ‘4 cell’ is first frame with 4 cells, ‘8-16’ cell is the first 4th cleavage 

event, and ‘blastocyst’ is the last frame of the video. C) the ROC AUC score of the test set for models trained to predict 

transfer outcome using images at various time intervals before and after NEBD. D) the ROC AUC score of the test set for 

models trained to predict transfer outcome using images at various time intervals after FD. E) The ROC AUC score of the 

test set for models trained to predict transfer outcome using images at various time intervals after the first frame with 

4 cells. F) the ROC AUC score of the test set for models trained to predict transfer outcome using images at various time 

intervals after the first 4th cleavage event. G) the ROC AUC score of the test set for models trained to predict transfer 

outcome using images at various time intervals before the last frame of the time lapse video. B) – G) all show the 

average scores over 50 training attempts with 25 embryos in the successful class and 48 embryos in the unsuccessful 

class for both the test and validation set.  

The average test set ROC AUC over 50 training attempts with random train/validation/test split is shown in 

Fig. 2B for each stage. The blastocyst stage has the most obvious visual difference between classes, with 

unsuccessful embryos less likely to form expanded blastocysts, and as expected this model had the best 

performance. However, the pre-blastocyst models still gave above chance predictions. From our model 

performance it was clear that different developmental stages carry different predictive power. To identify 

specific moments in development for which life birth predictions are the most successful we tested multiple 

frames at regular intervals using each of the previous developmental stages as reference points (Fig. 2C-G).  

We found that the model performance varied at different time-points and appeared to peak at certain 

moments in development as shown in graphs 2C-G. For the PN stage (Fig. 2C), a performance peak was 

observed just before PNBD. Performance across the 2-cell stage (Fig. 2D) was variable with no peak seen. A 

performance peak was observed 14 hours after 4-cell (Fig. 2E), this generally is within the 4-8 cell transition 

however no potential explanation for this peak was found from visually examining the time-lapse videos. 

Another performance peak was observed 21 hours after initiation of 8-16 cell cycle (Fig. 2F), when embryos 

tend to be in the morula stage.  As an initial examination of the time-lapse videos suggested that this was 

generally just before cavitation, we then quantified this by counting the number of cavitating embryos at 

this time-point and at time-points just before and after. The results, shown in table 2, confirmed that this 

performance peak corresponds to the moment just before cavitation. Lastly, the blastocyst stage showed a 

gradual improvement in model performance towards the end of the time-lapse video (Fig. 2G), appearing to 

reach a plateau 6 hours before the last frame, by which point the successful embryos have usually formed an 

expanded blastocyst. We found that the peaks at PN, 4-cell +14hrs and 8-16 cell +21hrs were all statistically 

significant when compared to a time-point 6 hours earlier (p values of 0.0001, 0.0005, and 0.0011 

respectively).  
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Table 2: Percent of embryos that have begun cavitating. Shown for each outcome group at various time-points after 

first 4th cleavage event 

Finally, to test the potential benefit of averaging over repeat training attempts and also obtain a single 

prediction for each embryo in our dataset (to be used in further investigations reported below), we 

calculated an average score for each embryo using each model. The PN, 2-cell and blastocyst stage models 

were trained using the original time-point and the 4-cell and 8-16 cell stage models were trained using the 

peak performance time-point (4-cell +14hr and 8-16 cell +21hr). To do this we retrained each model five 

times (with 50 repeat training runs) using five mutually exclusive test sets that spanned the whole dataset 

when combined. For each embryo, the 50 resulting model confidence scores from the 50 training iterations 

were averaged to produce a final ‘average test set score’ for that embryo.  ROC AUC values were then 

calculated for each model using these average test set scores. This showed (table 3) that slightly better 

predictions can be made when the confidence score assigned to an embryo is averaged over many 

separately trained models, which is consistent with the existing literature on ensemble learning38.   

Stage Average Individual ROC AUC ROC AUC using average 

confidence score 

PN 0.591 0.603 

2 cell 0.555 0.575 

4 cell 0.567 0.581 

8-16 cell 0.585 0.585 

Blastocyst 0.686 0.680 

Table 3: Effect of averaging score from many models 

Comparison of ML performance to Embryologist selection 

To compare our results against embryologist selection performance we used a subset of embryos for which 

Gardner grades39 were available (141 in total) to produce ROC curves using blastocyst model average test set 

scores and embryologist grades. In order to produce the ROC curve from embryologist grades we first 

converted the Gardner score letter grades assigned to the ICM and TE into numbers, as proposed by Alpha 

Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology40. Then an overall score 

was obtained by calculating an average of TE, ICM and expansion scores.  

The ROC curves for both blastocyst assessment methods are shown in Fig. 3. The ROC AUC was similar for 

embryologist and model assessment, 0.720 and 0,726 respectively. This suggests our model had a very  

Hour Percent of embryos cavitating 

Successful Unsuccessful  

21 7.3% 4.8% 

24 27.4% 21.9% 

27 50.9% 40.0% 

30 81.2% 50.8% 
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Figure 3: The live birth prediction ROC curves and AUC values obtained using the clinical grading system and the 

blastocyst model. Only embryos for which clinical grades were available were included, a total of 141. Clinical grades 

were originally based on the Gardner scoring system39, these were then converted to numerical grades to allow a ROC 

curve to be generated. The blastocyst model predicts live birth using the last frame of the time-lapse video on day 5, 

the predictions produced by this model are a number between 0 and 1, 0 corresponding to an unsuccessful transfer (no 

pregnancy) and 1 corresponding to a successful transfer (resulting in live birth). 

similar performance to highly trained embryologist grading, as St Marys’ clinic host the UK NEQAS (a 

charitable consortium of external quality assessment laboratories) in reproductive biology.  However, the 

blastocyst ML model was at a disadvantage due to the use of limited information; only a single focal plane 

from just the final frame was used to train the ML model. Whereas the assessment of the embryologist was 

done using multiple focal points from the final frame, with possible adjustment of the score according to the 

time-kinetic data. 

To investigate the effect of using just one focal frame for each embryo, we examined the confidence scores 

given to embryos where the ICM was not visible but the TE appeared to be good quality (Fig.   S3A). We 

found that these embryos tended to receive very high confidence scores, suggesting that the ML model may 

not have used the ICM to make predictions. We then tested this further using the LIME software41, which 

illustrates which parts of an image most strongly influenced a model classifying that image. The 

explanation images produced (Fig. S3A) appeared to focus on the TE, possibly using the size of the cavity 

to determine blastocyst quality. The ICM was often not included in the areas highlighted as useful to the 

model at all, providing further evidence that the model may not have been using ICM data.  
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Combined model outputs allow refined ranking of high grade blastocysts  

In clinical practice, a numerical scoring system of embryo viability is more useful than a binary ‘successful’ or 

‘unsuccessful’ prediction, as it allows the embryos in a cohort to be ranked in order of likelihood of live birth. 

Although our models were trained as binary classifiers, the confidence score is continuous so potentially 

could be used to rank embryos. We investigated this for our best performing model, the blastocyst, by 

sorting all the embryos in our dataset into buckets by blastocyst model average test set score, bucket 1 

being the lowest score and bucket 10 being the highest score. The success rate (number of successful 

embryos in bucket/total number of embryos in bucket) for each bucket is shown in Fig. 4A. There was a 

general increase in success rate from bucket 1 to 10, suggesting that the confidence score was correlated to 

chance of successful transfer and therefore could be useful as a method to rank embryos in a cohort. 

Despite a positive correlation, Fig. 4A showed that the blastocyst score was still not a perfect indicator of 

success, particularly when the score was high. Therefore, we then investigated whether the confidence 

scores from models trained on the earlier stages could add extra information to help chose between 

embryos with a similar blastocyst score. As increase in success rate with bucket number appeared to plateau 

from bucket 7-10 we hypothesised that pre-blastocyst ML model scores might be more useful than the 

blastocyst model to choose between embryos falling in this window (corresponding to a blastocyst model 

score of >0.83). To test this, we calculated the ROC AUC using models at each stage on this subset of ‘high 

quality’ embryos. The results (also shown in Fig. 4A) show that the blastocyst model performed almost no 

better than chance and worse than all the earlier stage models, and the PN model performed the best. This 

suggests that if multiple embryos in a cohort fall into this high quality blastocyst sub-group (blastocyst model 

score>0.83), then pre-blastocyst stage models should be used to choose which one of these high quality 

blastocysts to transfer, rather than simply choosing the one with the highest blastocyst score.  

To further investigate the benefit of using earlier stage models in conjunction with the blastocyst model we 

plotted the pre-blastocyst score vs. blastocyst score for each embryo, as shown in Fig. 4B. These graphs 

provide a visualisation of the spread of scores assigned by each model and the correlation between earlier 

stage scores and blastocyst score. We noticed that the model confidence scores had a tendency to be close 

to the extreme values; 0 or 1. To further demonstrate the added value of the pre-blastocyst stage models we 

calculated the success rate of our ‘high quality’ blastocysts when the pre-blastocyst model score was >0.9 vs 

<0.1. The results, displayed on Fig. 4B, showed that within the ‘high quality blastocyst’ group, embryos with 

a very high (>0.9) early (PN and 2-cell stage) model score were substantially more likely (54 v 34% and 47 v 

21%, respectively) to be successful than the embryos with a very low (<0.1) early model score. This adds 

further evidence that pre-blastocyst model predictions should be taken into account when selecting from 

high quality blastocysts. 



51 
 

 

Figure 4: Ranking Embryos by blastocyst model score and combining model outputs. A) The association between live 

birth success rate and blastocyst model prediction (a model trained to predict live birth from images taken at blastocyst 

stage). The embryos have been sorted into buckets by blastocyst model confidence score, bucket 1 is lowest and bucket 

10 is highest. The graph (left) shows the success rate of each bucket, defined as the fraction of embryos in each bucket 

that resulted in a live birth. The table on the right shows the ROC AUC for embryos in buckets 7-10 (“high quality 

blastocysts”) obtained using each of the models trained in this study. B1-4) Blastocyst model score vs. PN, 2 cell, 4 cell 

+14hr, and 8-16 cell+ 21hr model score respectively. The probability of live birth for high quality blastocysts (see A 

above) with a very high pre-blastocyst model score (>0.9) or very low pre-blastocyst model score (<0.1) is also shown 

for each graph 
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Discussion 

IVF success rates are currently restricted by the difficulty in selecting the best embryo for transfer, and 

developing ML algorithms to assist with this task is an active area of research5. The ML pipeline presented 

here, eMLife, is the first to use early stages of pre-implantation human development prior to the blastocyst 

to predict live birth outcome following transfer, and is also the first to demonstrate these pre-blastocyst 

predictions can be used to refine the selection for transfer of high quality blastocysts. eMLife is reproducible 

and can inform multiple transfer strategies, therefore could lead to a universally applied standard protocol 

for embryo selection (Fig. 5). Our work has made contributions to three important areas; predicting live birth 

directly, assessing the predictive potential of pre-blastocyst embryonic stages, and developing a ML 

algorithm with a small routinely collected dataset from a single clinic over a restricted period of time. 

It is important to note that all embryos included in the dataset used for this study were created by ICSI. To 

ascertain whether the models trained in this study can give a similar performance for embryos created from 

traditional IVF it would be necessary to validate the models on a dataset including IVF embryos. 

Prior to predicting live birth, we tested the model on classifying developmental stage. Developmental stage 

classification is relatively straightforward, while live birth prediction is much more difficult as some embryos 

fail due to maternal factors rather than the embryo itself. This essentially adds ‘noise’ to the data; some 

‘unsuccessful’ embryos will actually be of a high quality and likely developmentally competent.  The high 

performances achieved in stage classification demonstrates the high capability of our chosen model, even 

for quite subtle subcellular differences such as classifying embryos as before NEBD vs. after NEBD. This 

provides evidence that difficulties encountered when predicting live birth are not just due to deficiencies in 

the modelling system or the model being unsuited to the dataset, as it performed very well when there was 

no overlap between classes.  

There have been many ML studies assessing embryo quality in recent years, however only a few have 

attempted to directly predict live birth (using a dataset exclusively containing transferred embryos)22-24. Two 

studies have attempted to predict live birth using images extracted from timelapse at various time-points; 

Ueno et al.23 and Sawada et al.24. Ueno et al. used the deep learning model IVY, which had been developed 

by Tran et al.11 to predict fetal heartbeat using 10638 embryos. Using IDAscore, an algorithm based on IVY, 

Ueno et al. attempted to predict live birth and reported a ROC AUC varying from 0.66 for age 41-42 to 0.76 

for age>42. No average score for all ages was given so it is not possible to give a direct comparison, however 

our highest performing model; - the blastocyst model, achieved within this range (0.69).  Sawada et al. 

achieved a ROC AUC of 0.64, lower than our blastocyst model, however it should be noted they had a very 

limited amount of data available (only 91 successful embryos). Miyagi et al.22 predict live birth from just 

blastocyst images, so is the most directly comparable to our blastocyst model. However, they also only 
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report ROC AUC by age, with the value ranging from 0.634 for under 35 to 0.866 for over 42. No overall 

result is given, but again our blastocyst model falls within this range.  

 

Figure 5: Training and deployment of the eMLife pipeline Top: eMLife workflow for training live birth prediction 

models for various developmental stages. Bottom: Proposed new approach to embryo selection using the eMLife 

models. 

We found that the model performed at least as well as embryologist grades at predicting live birth and it 

could be possible that performance may improve further if more temporal and spatial information were to 

be included. Our ML blastocyst model did not appear to be using the ICM to make predictions, possibly due 

to the fact that the ICM would have been out of focus in some of the training data. It is possible that 

including frames where the ICM is seen more clearly or incorporating a model specialised to the ICM 

could lead to a higher performance for the blastocyst model, allowing it to significantly outperform 

embryologist assessment.  
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Currently, most embryo assessment approaches are focused on the blastocyst stage, especially when using 

ML algorithms. Here, we have shown it is possible to predict live birth from stages earlier than the 

blastocyst, with ROC AUC values of 0.578-0.603. These pre-blastocyst predictions could be useful for various 

transfer strategies; they could either be used to improve selection at blastocyst stage (as was successfully 

demonstrated in this work), or they could assist selection at an earlier stage, allowing for an earlier transfer. 

Earlier transfers may be preferable as selection at blastocyst stage can lead to loss of embryos during 

extended culture and can be a source of adverse health effects during and after pregnancy. As an example, a 

UK study using data from the HFEA register reported that while blastocyst transfer showed an increased 

odds ratio of 1.4 for live birth, it also showed an increased risk of the same magnitude for pre-term birth31 .  

These disadvantages are not unexpected, since blastocyst culture acts to expose embryos to selection stress 

in a suboptimal in vitro environment, at the precise time in development when the embryonic genome and 

epigenome are being reset as part of the formation of a new individual1,34,42.  Thus, there are strong clinical 

reasons for developing methods to select embryos for transfer and freezing at an earlier stage of 

development such as day 343.  In addition, embryo selection at even earlier stages (e.g. pronuclei on day 1) 

would have advantages in terms of rationing resources and space in clinical laboratories, and in specific 

clinical scenarios such as elective freeze-all of embryos in cases of ovarian hyperstimulation syndrome44 .   

Embryo assessment, both manual and ML, typically has an emphasis on specific chosen timepoints, however 

these may not necessarily be the optimal moments of embryo development for assessing viability. Here we 

applied eMLife to select the key developmental time-points that produced the best live birth predictions. We 

noticed that the peaks in model performance found at PN stage and 8-16 cell +21hrs are both just before 

certain well described developmental events; NEBD and blastocyst cavitation respectively. There are two 

possible explanations for this; at these pre-event time-points there is less natural variation in the 

appearance of viable embryos (compared to time-points where the embryo is undergoing processes such as 

PN growth or compaction) so it is easier to distinguish important developmental abnormalities, or these may 

be biologically important moments where any deviation from normal development can prevent the embryo 

from developing properly. For example, the ability of embryos to correctly prepare and execute the first 

mitosis is one of the defining moments of development and any anomalies around this time, such as 

problems with the NEBD process, can result in the developmental failure. The peak during the transition 

from the 4 to 8 cell stage coincides with embryonic genome activation in human embryos45,46, raising the 

possibility that there are some morphological manifestations that can indicate the successful activation of 

the genome.    

Additionally, we have provided evidence that predictions from early development may be used in 

conjunction with predictions from the blastocyst stage to give a better assessment of embryo quality than 
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the blastocyst model alone. Further investigation into combining multiple model outputs and optimising 

decision thresholds would be an exciting avenue for future studies.  

One of the biggest common limitations to ML is large data requirements. However, the models trained here 

demonstrate the diagnostic power of ML in IVF procedures without needing large amounts of training data. 

Our stage classification models showed that increases in performance became small when training set size 

was increased beyond around 200-400. This could suggest that although our outcome models might 

marginally benefit from more data (our smaller training set class had less than 200 embryos), the data 

amount was not likely to be the main limiting factor in performance. Our live birth prediction models were 

trained on relatively small number of embryos compared to many other studies, suggesting that our 

algorithms could easily be re-trained on an individual clinics’ patient population to become specifically 

tailored to that clinic. 

Our stage classification models also showed that MobileNetV2 pre-trained on ImageNet can give high 

accuracies on our dataset even with very small amounts of training data for simple classification tasks. Other 

studies have also used ImageNet for classifying human embryos4,9,10,12,13,17-19,21,24, however our work is the 

first to investigate the performance that can be achieved with very little embryo data. Our data is quite 

different from the typical images included in ImageNet, which is mainly composed of photographs of 

everyday objects and animals rather than medical images. Therefore, it is useful to see that the fixed high 

level features obtained from ImageNet can be used successfully in this context. This finding may be relevant 

to IVF clinics wishing to use a small number of embryos to develop ML algorithms for purposes such as 

automating frame selection or detecting specific but rare abnormalities. Additionally, the ability of our stage 

classification models to obtain high accuracies even with very limited amounts of data could also be of 

interest for a wide range of biological and medical applications as it demonstrates that machine learning, 

and deep learning in particular, does not always require huge datasets.   

Conclusion 

In summary, we have trained an ML model to both classify the developmental stage of an embryo and 

predict live birth using single-clinic data. We have also identified specific windows of early development that 

are most predictive of transfer outcome. The findings presented here are the first to predict live birth before 

the blastocyst stage, which potentially could lead to earlier transfers. Additionally, we have provided 

evidence that our pre-blastocyst predictions could be combined with blastocyst stage predictions to give 

better overall embryo assessment than selecting based on just blastocyst morphology. 

Material and methods 

1. Patients and time-lapse videos 
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Time-lapse videos of developing embryos were supplied by the IVF clinic in the Department of Reproductive 

Medicine at Old Saint Mary’s hospital, Manchester University NHS Foundation Trust, Manchester, UK. 

Embryos were cultured in either Embryoscope TM or Embryoscope+ TM time-lapse incubator system (Vitrolife, 

Sweden) at 37°C, 6% CO₂ and 5% O₂.  Throughout the study period there were no changes to the culture 

media or other culture conditions.  Embryos were cultured in GTL overlaid with Ovoil (Vitrolife, Sweden) 

from post-injection (after ICSI, approximately 40 hours post-hCG trigger) to day 5 of development. 

Embryoscope TM slides hold up to 12 embryos in individual wells holding 25µL of media, overlaid with 1.2ml 

oil. Embryoscope+ TM slides hold up to 16 embryos, in 2 rows of 8 wells, each row of 8 wells is overlaid with 

180uL of media. Embryos were not removed from the incubators during the observation periods, and media 

was not changed. Each time-lapse video exported had a framerate of 5-10 frames an hour. All images were 

irreversibly anonymised by clinic staff before being given to us.  

The dataset comprised of fresh ICSI transfers from 2016-2019 that resulted in either live birth or no 

pregnancy. Both single embryo transfers (SET) and double embryo transfers (DET) resulting in either no 

pregnancy or male/female twins (to exclude the possibility of monozygotic twinning) were included. In total 

we used time-lapse videos for 443 successful embryos and 257 unsuccessful embryos.  

2. Preparation of input image data 

The frame number of specific stages in development were recorded by viewing each video in ImageJ. The 

frames at various time intervals before and after this moment were then automatically extracted by training 

a CNN to read the timestamp. Measuring time in hours rather than frames was neccessary as the time 

between frames was inconsistent between videos. 

Where the image quality was too low or the specific moment could not be determined (due to out of focus 

cell divisions or excessive fragmentation) the embryo was not included for that stage. We ensured the 

Embryoscope/Embryoscope plus ratio was equal across the two groups by randomly removing some of the 

successful Embryoscope embryos (this group initially had more embryos recorded by the EmbryoScope). 

All images before the blastocyst stage were cropped to 300x300 pixels as this was the smallest size that 

captured the whole embryo including the zona. As embryos at the blastocyst stage expand a variable 

amount, occasionally almost filling the image, this stage was left uncropped. All images were then resized to 

224x224 as this is the input size required by the pre-trained model. 

3. Model 

The model we have used is the MobilenetV2 model37 with weights pre-trained on the ImageNet database47. 

We used fixed convolutional features, only training the final layer of the model. All developmental stage and 

initial transfer outcome training attempts used a base learning rate (BLR) of 0.0001, a drop out of 0.5 and the 
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cross entropy loss function. For the transfer outcome models we applied a class weight of 2 to the live birth 

class to account for this class having about half the amount of data as the no pregnancy class.  

For the transfer outcome models we also experimented with using multi-class stage classification for extra 

transfer learning. The first step was to add an extra hidden layer to the MobileNetV2 model and train it to 

predict developmental stage with both the hidden layer and last layer trainable (the rest of the network was 

fixed as before). In the 2nd step of training we then took this model as a starting point for our outcome 

prediction models, for this step the only trainable layer was the last layer, so all the convolutional layers and 

the hidden layer were fixed. We repeated these two steps with various numbers of hidden units 

(100,320,640, or 960) in the hidden layer to find the optimal model structure. For stages earlier than the 

blastocyst we used the classes as in Fig. 4E for step 1. For the blastocyst stage we trained a separate model 

with the before NEBD class replaced with a blastocyst class and all images uncropped so that the resolution 

was the same at all stages. 

4. Model training 

For the training attempts where we had a hold out test set we had 50 successful embryos and 96 

unsuccessful embryos in the test set and validation set (the same proportion as in the dataset as a whole). 

For all other training attempts we had 25 successful embryos in the test set and validation set and 48 

unsuccessful embryos. For all training attempts we ran 50 iterations, we randomly assigned embryos to the 

training, validation and test sets at the start of each iteration (where a hold out test set was used just the 

validation and training sets were randomly assigned). When assigning embryos to the test and validation 

sets we kept embryos from the same cycle together for the transfer outcome models as they had the same 

camera settings so could give an unfair bias if split between the training and test set. To do this we had lists 

of all double transfers and single transfers in each class (successful/unsuccessful) and randomly picked 

embryos from these lists, keeping the ratio of double to single transfers the same as in the original dataset. 

We then performed augmentation on the training set by rotating each image by 90,180 and 270 degrees and 

getting the mirror image. 

Each training attempt was repeated twice, the first time we ran each model for 10,000 epochs and recorded 

at what epoch the validation set peaked in performance on average across all iterations. The second time we 

trained the model for this optimal number of epochs every iteration. We did this because our models were 

prone to overfitting so finding the optimal number of epochs was important, however the small size of our 

validation set made it unreliable for stopping the model at the place that would also be optimal for the test 

set. We found that generally we got slightly better performance on the 2nd training attempt when we were 

using the optimal number of epochs.  
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5. Model performance evaluation 

For each model setup we ran 50 training iterations and for each iteration the area under the curve (AUC) of 

the receiver operator characteristic (ROC) was calculated. The ROC is a graphical plot of true positive rate vs. 

false positive rate at various thresholds. The AUC of this curve is therefore a measure of how well the model 

performs, 1 corresponding to a perfect classifier. We calculated the ROC AUC using Scikit-learn python 

library. The standard error in ROC AUC values all iterations was then used to calculate error bar values.  

The blastocyst model was compared to the embryologist scoring system using grades assigned by the 

embryologists at St Marys. An overall ‘embryologist score’ was calculated from averaging TE, ICM and 

expansion scores, we acknowledge this scoring system is imperfect as in reality the embryologist selecting 

the embryo may be able to select the better embryo out of embryos given the same grade and may place a 

different level of importance on the individual expansion/TE/ICM scores. However, due to the lack of an 

evidence base for selecting amongst embryos of similar grades we decided a simple average would be best 

for calculating an overall score, allowing for a comparison with our blastocyst model. 

For the blastocyst model, we used the LIME software41 so investigate how the model was choosing to classify 

blastocyst images. LIME (short for Local Interpretable Model-agnostic Explanations) uses perturbed images 

to understand how a model is making predictions. Taking in a model and a single image as an input, LIME 

produces output images that show the parts (known as super-pixels) of the original image that were used to 

classify it. 
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Supplementary materials 

 
Figure S1A: Examples of images incorrectly classified by stage selection models. Left: images before NEBD 

where the PN are hard to see. Middle: images without PN with vacuoles that resemble PN. Right: 2 cell 

embryos that look like 1 cell embryos.  

 

 

Figure S2A: Hyper-parameter tuning for each stage. 

The models with 1280 hidden units use the standard 

MobileNetv2 model with no extra hidden layers. All 

other amounts of hidden units use an extra hidden 

layer that had been pre-trained on the stage 

classification dataset.  The red star marks the best 

model set up overall for the validation set and the 

purple star marks the best model set up overall for 

the validation set when the standard model is used 
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Figure S2B: Comparison of the ROC AUC obtained by 3 different hold out test sets at each stage.  A BLR of 

0.0001 and the original transfer learning model with no extra transfer learning was used. 
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Figure S3A: Investigating the Blastocyst model. Left: LIME explanations of the blastocyst model. The 

pictures show the areas of the image that suggested to the model that the image was in the positive (live 

birth) class. Right: Examples of blastocyst images that were given a very high blastocyst model score (>0.98) 

despite the ICM not being in focus, or in some cases not visible at all. 

 

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.5 5.5

R
O

C
 A

U
C

Comparing different test sets using original model (no extra TL)

Test set 1 test set 2 test set 3

8-16 cellPN 2 cell 4 cell Blastocyst 



64 
 

 

 

 

 

Chapter 3: 

 

Combined deep learning and human annotation approach allows cleavage stage 

assessment of human embryos 

 

Camilla Mapstone, Helen Hunter, Isobel Green, Riannah Hayes, Blessing Oderinde, 

Daniel Brison, Julia Handl, Berenika Plusa 

 

Rationale of paper 

Following the successful development of CNN models predicting live birth in chapter 2, we next wanted to 

investigate whether the predictions from these models could be combined to further improve live birth 

prediction at pre-blastocyst stage.  We also wanted to investigate whether manually annotated features 

might be able to contribute to live birth prediction. This paper is a draft manuscript that we intend to submit 

later this year. All supplementary material is included at the end of the manuscript. 

Aims 

-Identify morphological features useful for embryo viability assessment 

-Use machine learning algorithms to predict live birth using only CNN predictions and morphological features 

from cleavage stage and earlier. 

Author contributions 

Dr Berenika Plusa, Dr Julia Handl and myself contributed to the concept of the study. Helen Hunter collected 

the time-lapse videos from the IVF clinic. Dr Berenika Plusa and myself designed the methodology for 

assessing the morphological features included in the screening stage, with measurements and qualitative 

assessments carried out by myself and Masters students (Isobel green, Riannah Hayes, and Blessing 

Oderinde) supervised by me. I carried out subsequent data analysis and produced graphs. I performed all 
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dimensionality reduction and unsupervised and supervised modelling and analysed the results. The 

manuscript was drafted by myself and then critically reviewed by Dr Berenika Plusa and Dr Julia Handl.  
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Brison3,4, Julia Handl2, Berenika Plusa1  

1Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, Michael Smith Building, University of Manchester, 
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2Alliance Manchester Business School, University of Manchester, Manchester M15 6PB, UK 
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Abstract 

Embryo assessment is one of the main challenges faced by IVF and is currently prone to high levels of 

subjectivity. An automated algorithm combining deep learning with manually assessed morphological 

features may be able to improve the accuracy and objectivity of the embryo selection process. We have 

investigated various potential morphological markers of embryo viability and identified a few that are 

predictive of live birth. These markers were then combined with deep learning predictions to give an 

improved overall prediction of live birth at pre-blastocyst stage. Additionally, we analysed the dataset using 

dimensionality reduction techniques and unsupervised learning, giving a deeper insight into the relationship 

between embryo morphology and transfer outcome. 

Introduction 

Infertility has become a highly prevalent medical issue, affecting 8-12% of couples worldwide1. In vitro 

fertilisation (IVF) is a common treatment for infertility and has been rapidly rising in popularity since the first 

IVF birth in 19782. In recent years single embryo transfer (SET) has been favoured to mitigate the potential 

risks associated with multiple pregnancies3-5, therefore it is very important that the viability of the embryos 

can be assessed accurately to increase the chance of selecting an embryo that will led to a healthy live birth. 

However, the task of selecting an embryo to transfer is challenging as it is still not fully understood what 

constitutes healthy embryo development6-8. 

The introduction of time-lapse monitoring has resulted in an increase in the amount of information available 

on embryo development as the embryos are recorded continuously9. As a result, various morphological and 

kinetic features have been studied throughout development, such as PN dimensions10-14, cytoplasm 

appearance15-17, and cell divisions18-22, and these have been linked to outcomes such as blastocyst formation, 

clinical pregnancy, implantation, or live birth16,23-29 with various degrees of success. Moreover, there are still 
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some morphological features for which the link to embryo viability is unclear due to conflicting reports, such 

as zona pellucida (ZP) thickness variation30-32 and the presence of vacuoles at zygote stage10,16. 

It is thought that machine learning (ML) may be particularly well suited to the task of combining various 

features together to produce algorithms that can support assessment of embryo quality33, and various ML 

approaches have been attempted to address embryo selection33,34. Previous efforts with ML either use 

manually extracted features, employ deep learning (DL) algorithms on image data or combine both 

approaches. It is possible that a combined DL/manual annotation approach would offer the best solution as 

it could capture a broad range of features that might otherwise be missed.  

Many existing studies are based on assessment at the blastocyst stage as culturing until blastocyst has 

become common practice due to higher live birth rate per transfer35. It is easier to assess embryo quality at 

the blastocyst stage as the less viable embryos may fail to form the expected structure. However, blastocyst 

culture does not improve overall live birth success rate per cycle if all embryos are eventually transferred35 

and it is associated with some adverse health effects; mono-zygotic twinning, altered birthweight, pre-term 

birth, and shortened telomeres35-39. Therefore, an improvement in our ability to assess the quality of pre-

blastocyst embryos could help to move towards earlier, and therefore safer, embryo transfers. 

Here, we aimed to combine pre-blastocyst stage predictions from DL models trained in an earlier study 

(Mapstone et al., manuscript under submission to npj Digital Medicine)40 with manual annotations to get an 

improved assessment of early stage embryos, allowing for earlier transfer and more diversification in 

treatment regimes . First, we used a dataset of time-lapse videos of embryos with various clinical outcomes 

to investigate a number of morphological features and identify those that may be predictive of live birth. 

Next, we used both dimensionality reduction and K-means clustering to gain a deeper understanding of our 

dataset. Finally, we experimented with a range of supervised learning models to predict live birth, and found 

that combing manual features with predictions from DL models gave improved performance. 

Results 

In this study we aimed to combine predictions from previously developed DL models40 with manually 

extracted features to get an improved early stage prediction of live birth following embryo transfer. The data 

used in this study were time-lapse videos of ICSI embryos from 2016-2019 provided by Saint Marys hospital, 

Manchester. Embryos with three different outcomes were included; transferred and resulted in live birth 

(LB), transferred and did not result in pregnancy (NP), and discarded due to poor quality. For our final model 

we used only the NP and LB groups as we wanted to be able to differentiate between embryos that are 

chosen to be transferred to stretch the boundaries of human decision making.   
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Investigation into potential quality markers 

We started with a screening stage in which we used all three outcome groups to identify potential viability 

markers. This involved investigating the link between many different morphological features and embryo 

outcome in a subset of the data; all embryos from 2016 (157 in total). A subset was used due to time 

constraints and embryos from 2016 were chosen as our dataset included the complete set of ICSI embryos 

for this year so could ensure all transfer outcome groups were from the exact same time period. Features 

were chosen either due to having previously been linked to embryo quality in the literature, or because a 

preliminary examination of the time-lapse videos suggested to us that the feature might be useful. We 

concentrated mainly on the pre-blastocyst stage to support early viability assessment. The features 

investigated were divided into two groups: quantitatively measured features and qualitative features. 

The results of the quantitative features are shown in Fig 1a along with a timeline of embryo development 

illustrating the developmental stage at which the measurements were taken. The quantitative features 

measured were: 

∙PN area:   𝜋(
𝑃𝑁𝐿1+𝑃𝑁𝐿2

4
)2 

∙PN area difference:   𝜋(
𝑃𝑁1𝐿1+𝑃𝑁1𝐿2

4
)2 − 𝜋(

𝑃𝑁2𝐿1+𝑃𝑁2𝐿2

4
)2 

∙ZP thickness:    
𝑍𝑃1+𝑍𝑃2+𝑍𝑃3+𝑍𝑃4

4
 

∙ZP thickness variation: 𝑍𝑃𝑚𝑎𝑥 − 𝑍𝑃𝑚𝑖𝑛 

∙Duration of 3 cell stage: Time of first frame with 4 cells – Time of first frame with 3 cells 

∙Average compaction angle:  (∑ CA𝑘)/𝑛
𝑛

𝑘=0
  where CA is compaction angle and n is number of angles 

measured. 

∙Perimeter difference: Perimeter of morula - Circumference of enclosing circle 

∙ZP thickness difference:  
𝑍𝑃𝑍𝑦𝑔1+𝑍𝑃𝑍𝑦𝑔2+𝑍𝑃𝑍𝑦𝑔3+𝑍𝑃𝑍𝑦𝑔4

4
−

𝑍𝑃𝑏𝑙𝑎𝑠𝑡1+𝑍𝑃𝑏𝑙𝑎𝑠𝑡2+𝑍𝑃𝑏𝑙𝑎𝑠𝑡3+𝑍𝑃𝑏𝑙𝑎𝑠𝑡4

4
  

At the zygote stage we investigated PN size as differently sized PN has previously been linked to live birth11  

and ZP thickness to address currently conflicting reports30-32. Each PN was measured twice, with 

measurements taken parallel with and perpendicular to the edge touching the other PN (see Fig. S1a). The 

area was then calculated by approximating the PN shape as a circle and taking the average of these two 

measurements as the diameter. The average PN area and the difference in area between the two PN were 

then calculated for each embryo and these values were compared between LB, NP and discarded groups 

(Fig. 1a). The results showed no statistical difference in either of these measurements. Next, we assessed the 
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thickness of the ZP by taking measurements in four fixed locations, as illustrated in Fig. S1a, with 

measurements skipped if the required part of the ZP was obscured by the side of the dish. The average 

thickness and thickness variation, defined as: (max measurement – min measurement), were calculated 

from all the measurements that could be taken, embryos with less than two measurements were not 

included. The thickness was found to be significantly higher in the discarded group than the LB group but did 

not significantly differ between NP and LB or NP and discarded. The thickness variation values were not 

found to differ significantly between any different outcomes. 

Although the features analysed at zygote stage did not allow for distinction between the LB and NP groups, 

we were interested to see whether a combination of features might be more useful. To reduce this 4-

dimensional space down to an easier to visualise 2-dimensional space we used both 2-component PCA and 

2-component t-SNE with varying levels of perplexity, results are shown in Fig. S1b-c. For both PCA and t-SNE 

there does not seem to be much difference between the NP and LB groups. For PCA, the discarded group 

also does not appear to differ, however the t-SNE plots do appear to show a region of the feature space that 

has less discarded embryos, and this is conserved throughout varying perplexity values. Neither PCA or t-SNE 

appear to produce clearly distinct clusters or groupings of the data (except low perplexity t-SNE, which is 

likely to be an artefact of the process). Overall, the zygote stage features do still not appear to show any 

clear separation between outcome groups even when combined. 

Next, we recorded the 3-cell stage duration (reflecting the asynchrony between the 2nd and 3rd mitosis) as 

longer durations have been negatively linked to blastocyst formation19. The durations were found by 

subtracting the number on the timestamp in the first frame with three cells from the number on the 

timestamp in the first frame with four cells. The results (Fig. 1a) show that there was little difference 

between the LB and NP group, however the discarded group was in the 3 cell state for a statistically 

significant longer time period than both the LB and NP groups. However, it should be noted that it was often 

difficult to observe exactly when cell divisions occurred in the discarded group as the cleavage stage 

frequently exhibited a lot of fragmentation and false divisions. Our results suggest that although the 

discarded embryos can be identified using this feature, division asynchrony is very similar between the 

embryos chosen for transfer. 
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Figure 1: Correlations between various morphological features and transfer outcome. A) Distribution of values for 

various quantitative features for the LB, NP and discarded outcome groups. The developmental stage that each feature 

was measured at is illustrated by the images in the embryo development timeline. B) Qualitative features/’markers’ in 

the LB, NP, and discarded transfer outcome groups. The number of embryos with the marker present is shown for each 

marker and each transfer outcome group. 
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At the morula stage, we attempted to measure the roundness of the embryo at the time-point where it 

appeared most compacted. This moment of development was chosen because our previous work had 

suggested it may be useful for predicting live birth40. Only the NP and LB groups were used for this analysis 

as many of the discarded embryos did not reach this stage. We first used an ‘angle method’ previously used 

by Maître et al. (2015)41 to assess degree of compaction in mouse embryos. The angle method found the 

average angle between cells on the outside of the embryo, with larger angles suggesting a more compacted 

embryo (See Fig. S1a). We did not find a significant difference in average angle between NP and LB, however 

we found this method difficult to perform on many embryos as it was often hard to judge where the angles 

should be measured, which could have influenced the accuracy of the results. Therefore, we next tried an 

approach we called the ‘perimeter method’, which calculated the magnitude difference between the length 

of the perimeter of the embryo and the circumference of the smallest enclosing circle, a smaller number 

indicates a rounder/ more compact embryo (see Fig S1a). We found this method to be less subjective than 

measuring angles. The perimeter method found a significant difference; the NP group had a larger difference 

between perimeter and circle circumference than the LB group suggesting that NP embryos were slightly less 

round/compacted on average. Although only the perimeter method produced significant results, both 

methods indicated that on average there were rounder/ more compacted embryos in the LB group (the 

average angle was slightly larger in the LB group), so the perimeter method may be a more reliable method 

for measuring compaction. 

In addition, as ZP thinning is an established component of embryo grading42,  ZP measurements were taken 

at blastocyst stage using the same method as used previously for the zygote stage and the change in 

thickness between zygote and blastocyst stage was calculated for each embryo. Again, this was only carried 

out for the NP and LB groups as many of the discarded embryos did not form blastocysts. The results (Fig. 

1a) show that a significantly bigger change was seen in the LB group, as might be expected due to this group 

being more likely to include properly developed blastocysts that would push against the ZP during expansion 

leading to ZP thinning43.   

Next, we investigated a range of qualitative features from throughout development that we thought may be 

indicative of live birth. Descriptions and illustrations of each feature are shown in table 1 along with the 

reason for inclusion. These features were all specific morphological phenomena, that we refer to here as 

‘markers’, and were assessed in a binary fashion; each marker was recorded as either present or absent for 

each embryo. Fig. 1B shows the proportion of embryos with each marker in each group. We found that the 

difference was most noticeable between the LB and discarded group, with the discarded group showing 

higher proportions of every marker except cleavage furrow from one side. The difference between the LB 

group and the NP was less strong, however the NP group still showed a greater proportion of embryos with 
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the marker present for 9 out of 12 markers (all except cleavage furrow from one side, vacuole expansion and 

full collapse of blastocyst).  

Our screening stage analysing the dataset of embryos from 2016 has highlighted a few potential differences 

in the morphology of embryos with different outcomes. As expected, this was more strongly marked when 

comparing the LB to the discarded group, however there were still noticeable differences between the LB 

and NP groups, Suggesting the potential to improve upon human decision making. 

Full dataset analysis 

Following the screening stage using the 2016 data sub-set, we selected some features to look into further 

with the full dataset.  We chose features for which there appeared to be a difference amongst the NP and LB 

groups: PN asymmetric location, rough patch (RP), zygote vacuoles, uneven FD, and large cytoplasmic 

fragment. As we were interested in early stage prediction we only used features up to the cleavage stage. 

The results for all three outcome groups for each feature are displayed in Fig. 2a. We can see that the 

discarded group has the highest frequency of all markers and the LB group has the lowest. The difference 

between the discarded group and the LB group is significant for all qualitative features apart from 

asymmetric PN position, while the difference between the discarded group and NP group is just significant 

for asymmetric FD and big cytoplasmic fragment. The differences between the LB and NP group are all of 

low-significance (<0.05, but>0.01) or not significant, however the markers were always more frequent in the 

NP group. The fact that much higher frequencies were seen for all markers in the discarded group, which all 

failed to form blastocysts, than the LB group adds evidence that these markers are correlated with lower 

developmental potential. 

Next, we combined the NP and LB qualitative features data with predictions from DL models (developed in 

an earlier study) trained to predict live birth at the PN, 2 cell and 4 cell +14 hours stage. These models were 

all CNNs that had been trained using a transfer learning approach. The combination of the CNN predictions 

and qualitative features resulted in a dataset with 8 features in total. The discarded group was not included 

as outcomes are not known for certain for this group since these embryos were not transferred, and this 

dataset was created for developing live birth prediction models. Qualitative features were all binary (1 if the 

marker was present, 0 otherwise) and model scores were originally a continuous number from 0 to 1. As 

having a combination of binary and non-binary features could possibly make further analysis difficult we also 

created a fully binary dataset by assigning a value of 1 when the model score was <0.1 (so in theory 

corresponding to poor embryo quality) and a 0 otherwise. 
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Figure 2: Final dataset features and visualisation. A) Qualitative features/’markers’ in the LB, NP, and discarded 

transfer outcome groups that have been chosen for inclusion in the final dataset. The number of embryos with the 

marker present is shown for each marker and each transfer outcome group. B) visualisations of the raw dataset using 2-

component PCA and t-SNE. C) visualisations of the raw dataset using 2-component PCA and t-SNE. 
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We then carried out 2-component PCA and 2-component t-SNE with default parameters for both the binary 

and non-binary datasets for the NP and LB groups to visualise the data, the results are shown in Fig. 2b. For 

the binary dataset there are many embryos with the exact same feature values so the data markers were 

made translucent and randomly offset by up to 0.02 using jittering on each axes so that overlapping data-

points could be seen. Explained variance ratio for all PCA components are shown in tables 2a and 2b for non-

binary and binary datasets respectively and the component loading is shown in tables 2c-d. It can be seen 

that the model scores account for more variance than the qualitative features in both datasets. 

The PCA visualisation show the same general pattern for the binary and non-binary dataset, with differences 

in the NP and LB groups clearly apparent, despite a substantial amount of overlap. A large proportion of the 

data-points formed one large cluster with a mix of outcomes, while the remaining data did not appear to 

belong to any particular cluster. The t-SNE results appear to vary more between the binary and non-binary 

datasets. The non-binary dataset produced 2 large clusters that appeared to have a mix of NP and LB 

embryos and a few smaller clusters. The binary dataset produced one cluster of mixed outcomes and 4 other 

clusters of only NP embryos. We also checked how varying perplexity would affect our results (Fig. S2a-b), 

and the trends seen appear to be fairly robust but break down for lower perplexity values. This suggests that 

lower perplexity values may not be appropriate for this dataset as repulsion between data-points is too 

strong compared to the attraction between data-points so the natural clusters are broken up. 

Component Explained variance ratio 

1 0.192 

2 0.169 

3 0.148 

4 0.124 

5 0.099 

6 0.09 

7 0.087 

8 0.086 
Table2a: PCA components for non-binary data 

 

Component Explained variance ratio 

1 0.179 

2 0.165 

3 0.152 

4 0.124 

5 0.109 

6 0.099 

7 0.089 

8 0.083 
Table2b: PCA components for binary data 
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Feature Component 1 Component 2 

PN model -0.53059 -0.04725 

2 cell model -0.54475 0.109026 

4 cell model -0.53133 0.134212 

Asymmetric FD -0.08423 0.526366 

Asymmetric PN position -0.02189 0.582906 

Large cytoplasmic fragment -0.16922 0.120141 

RP 0.191686 0.427458 

Vacuoles 0.25779 0.392267 
Table 2c: Non-binary PCA component loadings 

Feature Component 1 Component 2 

PN model 0.529957 -0.22679 

2 cell model 0.408833 -0.27054 

4 cell model 0.46248 -0.30339 

Asymmetric FD 0.153871 0.52311 

Asymmetric PN position 0.230162 0.54425 

Large cytoplasmic fragment -0.12688 0.187691 

RP 0.269969 0.359058 

Vacuoles 0.415306 0.222085 

Table 2d: Binary PCA component loadings 

 As performing both PCA and t-SNE suggested the presence of one or more clusters in our dataset, we then 

investigated further by applying K-means with varying numbers of clusters (k). We first applied K-means to 

the original binary dataset to see what clusters would appear without any pre-processing. We visualised the 

results for each iteration by plotting ‘success rate’ of cluster against k, with the size of each point 

proportional to the size of the cluster it represented (Fig. 3). Success rate was defined as the fraction of 

embryos in the cluster that belonged to the LB group. The ‘by chance’ success rate is also shown by a dotted 

line – this is the success rate of the dataset as a whole, so is the expected success rate if the clusters had no 

correlation with outcome. The results show a distinct pattern; regardless of the number of clusters, there is 

always one cluster that is larger and more successful than all other clusters, whilst most of the other clusters 

are below the by-chance line. To check how much this pattern deviated from what might be expected by 

chance we also ran a control experiment where the outcome labels were randomly shuffled (Fig. S3a). This 

produced the expected pattern of larger clusters tending to be closer to the by-chance line and smaller 

clusters (more prone to statistical noise) randomly scattered both below and above the line. This confirms  

that the pattern we saw in the original experiment is different from what we would expect if outcome was 

unrelated to the features. 



78 
 

  

Figure 3: Clusters produced by K-means algorithm. A visualisation of the clusters produced when running K-means on 

the binary dataset for k values of 2 to 15, each marker represents a cluster. The success rate, defined as the fraction of 

embryos in the cluster that resulted in a live birth after transfer, is shown on the y axis. The dotted line shows the 

success rate for the dataset as a whole. The marker size is scaled proportionally to number of embryos in the cluster 

that it represents. 

We then repeated clustering on the datasets produced by PCA and t-SNE to quantitatively investigate the 

clusters we had observed from the previous visualisations and confirm whether the same clustering pattern 

is still captured after dimensionality reduction. We used a varying numbers of components for PCA and 

varying values of perplexity for t-SNE (Fig. 3b-c) and found the results were similar to those seen with the 

unprocessed data. The trend became very exaggerated for t-SNE with a perplexity of 30 or above, with just 

one smaller cluster seen with ‘success rate’ of zero, presumably representing the clusters seen in the t-SNE 

visualisations that appeared to only have NP embryos.  

Live birth prediction modelling 

Finally, we were interested to see how well we could predict live birth using all of our features as inputs to 

supervised learning models. We kept all the qualitative features in the dataset even if they had not been 

shown to be significant as all differed between the NP and LB groups so could potentially still be useful when 

combined with other features by a model. We used both our binary and non-binary datasets on 4 different 

supervised ML models: linear regression, logistic regression, decision tree and support vector classification. 

We attempted this both with the raw feature values and after pre-processing the input data with PCA, trying 

component numbers ranging from 2 to 4. Models were trained 50 times with different train/test set random 

splits and the performance was evaluated by finding the average ROC AUC over all test sets. In Fig. 4 we 
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show the performance of each model for the dataset we found to give the best performance; 3 component 

PCA on non-binary data. The ROC AUC (on this dataset) of the best performing pre-blastocyst stage DL 

model, the PN model, is shown with a dotted line as a baseline reference. The results show that linear 

regression appears to be giving the best performance, with a ROC AUC of 0.639, and decision tree the worst, 

although there is quite a bit of variance in the performance of repeat training attempts with different 

train/test splits.  

 

Figure 4: Performance of supervised ML algorithms trained to predict live birth. The test set ROC AUC values obtained 

by each model from 50 training attempts with random train/test splits. The ROC AUC of the best performing CNN 

model contributing predictions to the dataset, the PN model, is also shown as a baseline performance.  

Full results for all input datasets and models are shown in table S1. We can see that PCA does generally 

appear to be making a small improvement to test set performance across all models. The difference 

between training set and test set performance is smaller when using PCA, and the training performance is 

slightly lower than what was achieved using raw features. This suggests that there is information loss due to 

PCA, however this has reduced overfitting and led to an overall improvement. We can also see from table S1 

that better performance is generally achieved when using the non-binary rather than binary dataset, 

suggesting that information lost when converting the ML model output data to binary format does has some 

predictive value. 

In summary, we have found that by combining our qualitative features with previously developed DL models 

we can get a better prediction of live birth than what was achieved by any of the DL models alone. We have 
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also found that the best performing ML model for this task is linear regression, and pre-processing with PCA 

appears to slightly improve performance.   

Discussion 

There are many possible morphological features that could indicate the viability of an embryo, identifying 

potential markers of embryo quality and combining this information to make reliable predictions of live birth 

could improve IVF success rates. Here we have investigated several morphological features and identified 

those that could be useful for embryo viability assessment. We then used dimensionality reduction 

techniques and unsupervised learning to better understand our dataset. Finally, we experimented with a few 

different supervised learning techniques to predict live birth using only information up to the cleavage stage. 

 Our dataset included both transferred and discarded embryos. Many of the discarded embryos are clearly 

low quality so their inclusion in model development and testing would unfairly skew the results by including 

embryos that would never have been chosen for transfer in the ‘unsuccessful’ class. We also wanted to only 

use embryos with known outcomes for the model development, as the discarded group were not 

transferred and we do not know for certain that they all would have failed. However, we decided that it 

would be useful to include the discarded group in our analysis of potential quality markers as there is likely 

to be a stronger signal between the discarded group and the LB group.  

Both measured and qualitative features had associated limitations that need to be taken into consideration. 

The ZP thickness and thickness variation values were based on sampled measurements and the area 

calculations for the PN assumed they were a circular shape. More accurate measurements via automated 

image processing techniques involving segmenting these areas is a potential avenue for further work. The 

qualitative features had the limitation that there is some level of subjectivity in deciding whether an embryo 

displayed each marker. If these qualitative features were to be used in practice it might be beneficial to train 

CNN models to detect each marker individually to get more consistent assessments.  

The locations of PN and ZP measurements were pre-specified to ensure the methodology for taking 

measurements was consistent between groups. This did result in some embryos not being included as 

measurements could not be taken in the required positions, however we decided this was necessary to 

avoid bias by making the measuring process as objective as possible. Despite this there was still some 

subjectivity in choosing the exact start and endpoints of the measurements, particularly for embryos where 

the image was less in focus or the view was compromised due to factors such as extracellular fluff, vacuoles, 

or overlapping PN.   

A couple of features that we investigated were subject to dispute; zygote ZP thickness variation and 

vacuoles. We found no significant difference in zygote ZP thickness variation between any groups. This 
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agrees with the findings of Lewis et al.31 who found ZP thickness variation was not related to implantation, 

however it contrasts the findings of Cohen et al32 who found it was linked to implantation and Sun et al30 

who found higher variation in ZP thickness was associated with higher chance of clinical pregnancy. It is 

possible that the differences in findings here are due to differing methodologies of calculating thickness 

variation. Sun et. al and Cohen et al. did not pre-specify the locations where the ZP should be measured, 

whereas we only took measurements at fixed points. It is possible that our method led to the thinnest or 

thickest part of the ZP often not being sampled, giving a less representative measure of thickness variation. 

However, our method also reduces potential introduction of bias between groups, which may also explain 

the differing findings. 

 We found a significant difference in vacuoles at zygote stage for both LB vs NP and LB vs discarded. A study 

by Ebner et al.16 agreed with these findings, reporting that the presence of vacuoles was inversely correlated 

with blastocyst formation. Conversely, a study by Barberet et al.10 reported that there was no link between 

vacuoles at zygote stage and transfer outcome. It is possible that these results differ from ours due to their 

relatively small sample size (232 embryos) and/or the fact that they only included high-grade embryos that 

had been transferred. It is possible that vacuoles at zygote stage are inversely correlated with the chance of 

forming a blastocyst but do not reduce chance of successful transfer in embryos that have successfully 

formed blastocysts. As our study included all embryos rather than just those that were highly graded our NP 

and discarded groups contain more embryos that do not form full blastocysts than our LB group, which could 

explain the difference between our results and those of Barberet et al. Another possible explanation for 

differences between our results and published literature (for both vacuolisation and ZP thickness variation) 

is that there may be differences in the patient population between clinics which are reflected in embryo 

morphology. Certain morphological markers indicating lower embryo viability could be linked to certain 

causes of infertility that may be more of less prevalent in different patient populations. 

In addition to vacuoles at zygote stage, three other features showed significant difference between the NP 

and LB groups: morula compaction (perimeter method), ZP thickness at blastocyst stage, and RP. To our 

knowledge the link between these features and transfer outcome has not been studied before, although ZP 

thinning is an established component of embryo grading which has been linked to embryo viability42. 

Although no other features were significant, many more were significant when comparing LB to discarded, 

and the average value of the NP group generally fell in between. This suggests that these features do 

indicate poor embryo quality, however occur too infrequently in the NP group to be significant.  

Investigations into our final datasets via dimensionality reduction and unsupervised clustering led to a 

greater understanding of the structure in the data. Both the PCA and t-SNE visualisations and the K-means 

clustering results suggested the presence of a large, slightly more successful than chance cluster and 
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multiple smaller, less successful clusters. The presence of the large cluster, composed of a mix of NP and LB 

embryos, but with a higher than chance proportion of LB embryos, could suggest that there is a ‘standard’ 

appearance indicating good quality embryos. The lack of any sizeable higher success rate clusters suggests 

that many of the NP embryos are indistinguishable from the LB embryos.  

Another interesting insight provided by the clustering is that as k was increased beyond 2 there appeared to 

be more ‘unsuccessful’ clusters than ‘successful’ clusters. This suggests that viable embryos are more 

morphologically uniform than unviable embryos and could mean that there are various different 

developmental issues causing embryo failure rather than a single or very few common issues. This 

hypothesis is also supported by the fact that although all our markers were more common in the NP than LB 

group, they still all occurred quite rarely. The t-SNE visualisation also suggested that there may be certain 

types of embryos that are very unlikely to lead to live birth, as clusters were seen that had no LB embryos. 

Finally, we used a variety of supervised learning models with differing pre-processing options to predict live 

birth. We chose commonly used and easy to understand models; linear regression, logistic regression, 

decision tree and support vector machine. Pre-processing with PCA appeared to slightly improve 

performance by reducing overfitting. The model that achieved the highest test set ROC AUC was linear 

regression, it is not clear why this model performed best, but it is unlikely to be due solely to reduced 

overfitting as it also performed best on the training data. We also found that we got better results using the 

non-binary dataset. This suggests that it is possible for the continuous values of the CNN model outputs to 

be useful for supervised learning prediction. However, the threshold used for converting the data to binary 

was chosen arbitrarily, and it is possible that further experimentation with possible threshold values might 

retain the necessary information whilst reducing noise. 

Other studies have investigated the ability of supervised ML algorithms to combine a variety of 

morphological and/or clinical features to predict embryo viability23,44-47, however as far as we are aware our 

study is the first to combine CNN outputs with annotated features to predict live birth using only information 

from cleavage stage and earlier. Our best model and pre-processing combination achieved a ROC AUC of up 

to 0.64 on the test dataset. This is a noticeable improvement from the highest performance achieved on our 

data by any of the previously trained DL models individually, which was a test set ROC AUC of 0.61 for the PN 

model. Our model performs considerably above chance and is approaching the limit of what is thought to be 

possible to achieve with just morphokinetic data45. This provides a strong argument that selection at earlier 

stages could be feasible, giving clinics the option of avoiding the potential adverse health outcomes of 

blastocyst culture. It is important to note that our modelling system first needs to be tested on a hold-out 

blinded test dataset and data from other clinics. Nevertheless, this study has demonstrated exciting 
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potential for earlier embryo assessment, with the possibility of even better assessment in the future if 

additional morphological quality markers were to be discovered and included. 

Conclusion 

We have investigated various potential viability markers for pre-implantation embryos and identified 

features that can be combined with deep learning predictions to give an improved prediction of live birth 

pre-blastocyst stage. 

Methods 

Data 

All timelapse videos were provided by the IVF clinic in the Department of Reproductive Medicine at Old Saint 

Mary’s hospital, Manchester University NHS Foundation Trust, Manchester, UK. The developing embryos 

were cultured in GTL overlaid with Ovoil (Vitrolife, Sweden) from post ICSI (around 40 hours after hCG 

trigger) to developmental day 5. The media was not changed during the culture period and the embryos 

were not removed for observation. There were no changes to culture conditions, including culture media 

throughout the study period. All embryos were cultured and recorded in either the Embryoscope TM or the 

Embryoscope+ TM (Vitrolife, Sweden) at 37°C, 6% CO₂ and 5% O₂. Each time-lapse video exported was 

500x500 pixels and had a framerate of 5-10 frames an hour. All videos were irreversibly anonymised by staff 

at the clinic before we received them.  

The dataset included ICSI embryos from 2016-2019 with three different outcomes; live birth, no pregnancy, 

or discarded due to being considered too low quality to transfer. We included all single embryo transfers 

(SET) and double embryo transfers (DET) that resulted in either no pregnancy or different gender twins.   

Quantitative measurements 

The time at 3 cell measurement was carried out using the timestamp and all other measurements were 

carried out using Imagej. All PN and zona measurements were carried out using the ‘straight line’ tool and 

were taken 1 hour before NEBD at zygote stage and at the last frame before embryo was taken out for 

transfer at blastocyst stage. 

The morula stage measurements were carried out at the frame where the embryo was judged to be most 

compact. Two techniques were used; angles and perimeter. The angles technique used the angle tool on 

Imagej to measure all angles between outside blastomeres (see Fig. S1a for illustration) that could be seen in 

that plane. This resulted in 1-8 angles being recorded for each embryo, all of which were used to calculate 

the ‘average angle’. The perimeter technique used the freehand selection tool to trace the perimeter of the 
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embryo (Fig. S1a) and the oval tool to draw a bounding circle round the embryo. The magnitude of the 

difference between the circle circumference and the perimeter was then calculated for each embryo.  

Qualitative feature annotation 

All qualitative features, or ‘markers’ not occurring at a specific moment (e.g ‘cleavage furrow from one side’) 

were all assessed at specific times before or after a landmark moment as this allows for quicker classification 

(so more likely to be adopted by embryologists in practice) and helps to reduce subjectivity. Cytoplasmic 

fragments were assessed 7 hours after FD as cells have stopped rolling around but not started dividing yet. 

rough patch (RP) and zygote vacuoles were assessed 0.5 hours after last sighting of the PN is this it is as close 

as possible to a landmark event and does not have the PN obscuring the view of some of the cytoplasm. 

Asymmetric PN was assessed 0.5 hours before last trace because we observed that it is common for the PN 

to move into a central position just before NEBD even in healthy embryos. 

 

Dimensionality reduction algorithms 

Dimensionality reduction was carried out using the scikit-learn PCA and t-SNE function. Features were first 

standardised by removing the mean and scaling to unit variance using the scikit-learn StandardScaler 

function. Default parameters were used for both PCA and t-SNE, with the exception of varying the number of 

components for PCA and the perplexity for t-SNE, and also using the ‘jaccard’ distance metric for t-SNE in the 

binary dataset (as it is suitable for binary data). 

Modelling 

For supervised learning four different models were used, all with sci-kit-learn functions; LinearRegression, 

LogisticRegression, tree, and SVC. Default parameters were used for all models apart from class weight 

which was always set to balance out the class size inequality (apart from in linear regression where this was 

not an option) and min-leaf in the decision tree, which was iteratively varied from 1 to 100. The maximum 

test score found over all values of min-leaf was reported, which used a value of 75. Each model was trained 

50 times with a different random train/test split, with 50 embryos from the LB group and 96 embryos from 

the NP group in the test set and the remaining embryos all in the training set. The ROC AUC was calculated 

for each model training attempt using the scikit-learn function roc_auc_score. An average ROC AUC was 

then calculated for each model over the 50 runs. For unsupervised learning we used the KMeans scikit-learn 

function with default parameters apart from cluster number which was varied from 2 to 15. 
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Graph production 

All box plots were produced using the Seaborn library in python and all clustered column plots were 

produced in Microsoft Excel. All scatter plots were produced in the using matplotlib.pyplot in python. For the 

clustering graph (Fig.3b) the size of each point was set by calculating the size of the cluster it represented as 

a fraction of the whole dataset and then multiplying by 100 so the points were easily visible. For the non-

binary features PCA and t-SNE scatter plots (Fig. 2b) an alpha value of 0.2 and a jitter value of 0.02 (in both x 

and y) were used to make the points partially transparent and randomly offset so that overlapping data-

points could be seen. 

Statistics 

All continuous data was first tested for normality using the D'Agostino & Pearson test. For cases where two 

data sets were compared and the data was normally distributed, a students t-test was used to test for 

significance. If the data was not normally distributed, a Mann Whitney test was performed. For cases where 

there were more than two datasets being compared and data was normally distributed a one-way ANOVA 

test was used, followed by a post-hoc test (HSD) if the result was significant. For cases where there were 

more than two datasets being compared and data was not normally distributed a Kruksall-Wallis test was 

used, followed by a post-hoc test (Dunns) if the result was significant. For the categorical data chi-squared 

tests were used to calculate significance. For all significance tests, results were said to be significant if 

p<0.05. Where significance is shown on graphs, * corresponds to p<0.05, ** corresponds to p<0.01, and *** 

corresponds to p<0.001 

 The errors reported for ROC AUC of the supervised learning algorithms were the standard error of the mean 

calculated from the ROC AUC values of all 50 training iterations for each model.  
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Figure S1a: Illustration of quantitative feature measurement methods. Top left: PN measurements, top right: ZP 

measurements, bottom left: morula compaction measurement using ‘angle method’, bottom right: morula compaction 

measurement using ‘perimeter method’. 

 

Figure S1b: 2 component PCA of zygote stage features. Including ZP thickness, ZP variation, PN average area, PN area 

difference. 
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Figure S1c: t-SNE visualisations of zygote stage features with varying perplexity parameters. Including ZP 

thickness, ZP variation, PN average area, and PN area difference. 

 

 

Figure S2a: t-SNE on final dataset with non-binary input features 
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Figure S2b: t-SNE on final dataset with binary input features 

 

Figure S3a: control experiment for K-means clustering 



92 
 

 

 

Figure S3b: Clustering results after PCA pre-processing 

 

 

Figure S3c: Clustering results after t-SNE pre-processing, perplexity varying 
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Tables 

No pre-processing non binary 

Modelling system Training ROC AUC ROC AUC 

Logistic regression 0.601 0.589 +/-0.005 

Linear regression 0.652 0.629 +/- 0.005 

Decision tree 0.619 0.553 +/- 0.005 

SVC 0.642 0.592 +/- 0.006 

No pre-processing binary 

Modelling system Training ROC AUC ROC AUC 

Logistic regression 0.609 0.599+/-0.005 

Linear regression 0.642 0.624+/-0.005 

Decision tree 0.591 0.589+/- 0.004 

SVC 0.622 0.582+/- 0.004 

PCA non binary 2 components 

Modelling system Training ROC AUC ROC AUC 

Logistic regression 0.607 0.603+/- 0.004 

Linear regression 0.639 0.635+/- 0.004 

Decision tree 0.624 0.590+/- 0.005 

SVC 0.597 0.611+/- 0.004 

PCA non binary 3 components 

Modelling system Training ROC AUC ROC AUC 

Logistic regression 0.604 0.586 +/- 0.004 

Linear regression 0.642 0.639 +/- 0.006 

Decision tree 0.625 0.578 +/- 0.005 

SVC 0.601 0.594 +/- 0.006 

PCA non binary 4 components 

Modelling system Training ROC AUC ROC AUC 

Logistic regression 0.602 0.594+/- 0.006 

Linear regression 0.6428 0.633+/- 0.004 

Decision tree 0.626 0.571+/- 0.005 

SVC 0.635 0.598+/- 0.005 

PCA binary 2 components 

Modelling system Training ROC AUC ROC AUC 

Logistic regression 0.601 0.597+/- 0.006 

Linear regression 0.6299 0.622+/- 0.004 

Decision tree 0.608 0.599+/- 0.004 

SVC 0.604 0.585+/- 0.005 

PCA binary 3 components 

Modelling system Training ROC AUC ROC AUC 

Logistic regression 0.600 0.597+/- 0.004 

Linear regression 0.631 0.627+/- 0.004 

Decision tree 0.609 0.601+/- 0.005 

SVC 0.604 0.578+/- 0.005 

PCA binary 4 components 
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Table S1: supervised learning results. The training and test set ROC AUC for live birth prediction is shown for a variety 

of model types and pre-processing methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modelling system Training ROC AUC ROC AUC 

Logistic regression 0.602 0.602+/- 0.004 

Linear regression 0.631 0.624+/- 0.004 

Decision tree 0.609 0.590+/- 0.005 

SVC 0.607 0.5845+/- 0.006 
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Chapter 4: 

 

Nuclei dimensions shown to correlate with developmental stage and cell lineage in 

early mouse embryos 

 

Camilla Mapstone, Katarzyna Filimonow, Jessica Forsyth, Isobel Green, Adepeju 

Adedeji, Daniel Brison, Julia Handl, Berenika Plusa 

 

Rationale of paper 

The research presented in chapter 3 demonstrated that sub-cellular features from the zygote stage could be 

useful in live birth prediction, however there is currently a lack of understanding of how sub-cellular 

features, such as the appearance of the nucleus, might be related to embryo viability from cleavage stage 

onwards. First, an understanding of the typical pattern of morphological changes is needed so any deviations 

from normal development can be detected. Therefore, the paper presented in this chapter investigates 

changes in nuclear size and shape over developmental stage and cell lineage. For this, mouse embryos were 

used due to ease of accessibility and high quality compared to human embryos. This paper is a draft 

manuscript that we intend to submit later this year. All supplementary material is included at the end of the 

manuscript. 

Aims 

-Investigate how mouse nuclei size and shape vary over development from 8 cell stage to E5.5. 

-Investigate how mouse nuclei size and shape vary across cell lineage at the same developmental stage. 

Author contributions 

The original conceptualisation of the research questions addressed in this work was developed by Dr. 

Berenika Plusa. Data collection was performed by myself, Dr. Berenika Plusa and Dr Katarzyna Filimonow. 

Data processing was carried out by myself, Dr Katarzyna Filimonow and two Masters students I helped 

supervise (Isobel green and Adepeju Adedeji). All subsequent analyses and figure creation were then 

completed by me. I designed and performed the unsupervised clustering experiments and analysed the 
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results. The manuscript was written by myself and critically evaluated by Dr. Berenika Plusa and Dr. Julia 

Handl. 
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Abstract 

Nuclear shape and size is thought to be an important factor of healthy development, however there is still 

little known about the typical development of nuclear morphology over early mammalian embryonic stages. 

Here, we have investigated changes in the shape and size of mouse embryo nuclei from 8 cell stage to E5.5. 

We found that size generally decreases until the 128 cell stage, before increasing at E5.5, and the nuclei also 

follow a general trend of increasing ellipticity over this period. We also found that there were significant 

differences between nuclei of differing lineages from the 32 cell stage onwards, opening the possibility to 

use nuclear shape and size for non- invasive assessment of lineage formation in mammalian embryos. 

Introduction 

Mammalian embryonic development is a self-organised process in which the very first cell lineages are 

established. First to appear is the trophectoderm (TE) and inner cell mass (ICM). The TE takes an outside 

position and eventually contributes to the embryonic part of the placenta1,2, while the ICM contains the 

inner group of cells that are pushed to one side of the embryo by the growing cavity3. Next, the ICM cells 

further differentiate into the epiblast (EPI) which eventually goes on to form the fetus, and the extra-

embryonic primitive endoderm (PrE)4. Following implantation, the TE further differentiates into the placenta 

progenitors; the extraembryonic ectoderm (ExE) and the ectoplacental cone, while the PrE forms the parietal 

endoderm and the visceral endoderm (VE), which gives rise to the endoderm of the visceral yolk sac5. 

Despite much progress in the last few decades, the processes that give rise to these first few lineages are still 

not fully understood6  

A greater understanding of the sub-cellular changes accompanying pre-implantation development could be 

very beneficial to the field of IVF, the progress of which is currently restricted due to the limited amount of 

knowledge available to inform embryo selection procedures6-8. Although nuclei appearance been studied at 

the zygote stage9-14, the normal morphology of nuclei at later stages has not yet been investigated, even 
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though nuclei are visible throughout development using the latest time-lapse systems. Knowledge of the 

regulation of nuclei size and shape is also limited in general. A greater understanding of the mechanisms that 

control dimensions of the nuclei could have additional important implications for broader medical research 

as deviations from normal nuclei size and shape are linked to disease15. 

Previous research into changes in nuclei over early embryonic development has revealed that the size of 

nuclei in mouse embryos decreases from zygote to early blasyocyst16, however it is not yet known whether 

this trend continues into the peri-implantation period. Forsyth et al. (2021)17 showed that the same trend 

exists in cell diameter with the diameter decreasing up to the E4.5 stage, but then the trend reverses and 

cell diameter increases from E4.5 to E5.5. It remains to be seen whether nuclei size follows the same 

pattern. The change in nuclei shape over development has also not yet been studied, however it has 

previously been shown that cells become less spherical from the 2 cell to 64 cell stage18 

Our knowledge of changing nuclei dimensions across early development is currently incomplete, in this study 

we have set out to establish a complete picture of how nuclei size and shape varies throughout this time 

period in mouse embryos. We first examined the size and shape of nuclei from the 8 cell to E5.5 stage, 

finding a general trend of decreasing size and roundness as the embryo develops. Next, we investigate how 

the nuclei dimensions vary across different lineages at the same developmental stage and discovered 

statistically significant lineage-based differences at all stages with identifiably separate lineages. Finally, we 

used unsupervised machine learning to further explore the distribution of nuclei shapes in different cell 

lineages at the 128 cell stage. Our data reveal the existence of lineage specific biases in nuclear shape at the 

time of implantation. 

Results 

In this study we have investigated the variation in nuclei size and shape using 3D confocal z-stack 

fluorescence images of live, disaggregated, and fixed mouse embryos. This involved manually measuring 

individual nuclei using the Imagej and IMARIS software packages. These measurements were carried out on 

embryos ranging from the 8 cell stage, where it is believed the lineage specification process first begins in 

the mouse, to the post-implantation E5.5 stage. 

Nuclear changes over development 

We first investigated how the size and shape of nuclei change across development. Firstly, we analysed the 

data from Forsyth et al. (2021)17 to measure the cell nuclei. We used the data set containing images of 

embryos from the H2B-GFP strain of mice, therefore measurements could be taken using the H2B-GFP 

fluorescence. The embryos in this dataset were disaggregated, using calcium-free M2 for embryos up to E3.5 

and treatment with trypsin for E4.5 and E5.5 embryos. 
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The nuclei were measured in the Z-plane with the greatest cross-sectional area. Measurements were only 

taken in the XY-plane because the resolution was much lower across the Z-plane and 2D measurements 

were considered to be sufficient as orientation of nuclei is likely to be random when disaggregated cells are 

placed randomly in a drop of medium. Two measurements were taken for each nucleus, one along the 

longest possible diameter and a second perpendicular measurement, these can be thought of as major and 

minor axes measurements if the nuclei shape is assumed to be an ellipse. For each nucleus we then 

averaged over the two measurements to get the average diameter and also calculated circularity by dividing 

the smaller diameter by the larger diameter. The results of this are shown in Fig. 1b. The nuclei appear to 

decrease in size from 8 cell to E4.5, with a possible increase (albeit non-significant) from E4.5 to E5.5. The 

circularity results showed a general decrease from the 8 and 16 cell stage to the E3.5 to E5.5 stage, however 

circularity did not appear to differ much between the 8 cell stage and 16 cell stage. 

 

We then wanted to see whether these trends in nuclei variation over development held up in intact 

embryos. For this we used live images of freshly flushed H2B-GFP mice embryos from 8 cell stage to E5.5. As 

we were able to count the number of cells in each embryo we grouped embryos by cell size, with the E3.5-

E4.5 embryos now divided into 32, 64 or 128 cell groups. We included embryos that had cell counts within 

10% of 32, 64, or 128. First, we took 2D measurements of cell nuclei following the same approach as for the 

disaggregated embryos, the results are shown in Fig. 1c. For average diameter we see the same trend as in 

disaggregated embryos, diameter decreases from 8 cell to 128 cell and then increases to E5.5, however the 

increase from 128 to E5.5 is now statistically significant. For circularity there is a similar, but smoother, trend 

as before, with circularity steadily decreasing from 16 cell stage to E5.5. Again, circularity does not appear to 

differ between 8 to 16 cell stage.  

 

Next, we repeated the measurements in the intact embryos using 3D approaches. Although this introduces 

increased subjectivity and measurement error due to lower Z resolution, the nuclei are no longer randomly 

orientated when held in the structure of the embryo so 3D measurements may be needed to fully describe 

the dimensions of the nuclei. Two methods were used for the 3D approach; manual measurements and 

semi-automated surface detection. For the former, three manual measurements were taken for each nuclei; 

the longest diameter (the 3D equivalent of the major axis of an ellipse) and the diameter along the two axes 

perpendicular to this. The volume and sphericity were then calculated as described in material and methods 

section. 
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Figure 1: Changes in Nuclei dimensions over development.  Left: Pre-implantation and peri-implantation 

development in the mouse embryo. Bright field images of freshly flushed embryos from 8 cell stage to E5.5 are shown. 

A) Average diameter and circularity of nuclei in disaggregated embryos with measurements taken in 2D. A total of 25 
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embryos were included. An overall p value of 1.21x10−58 (from Kruksall-Wallis) was found for average diameter and 

3.91x10−50 (from Kruksall-Wallis) for circularity  B) Average diameter and circularity of nuclei in intact embryos with 

measurements taken in 2D. A total of 26 embryos were included. An overall p value of 2.63x10−83 (from Kruksall-

Wallis) was found for average diameter and 2.19x10−78 (from Kruksall-Wallis) for circularity   C) Volume and sphericity 

of nuclei in intact embryos, measurements taken in 3D. A total of 26 embryos were included. An overall p value of 

3.68x10−70 (from Kruksall-Wallis)  was found for volume and 2.90x10−52 (from Kruksall-Wallis) for sphericity. All box 

plots represent all individual nuclei from all embryos of that developmental stage. Following ANOVA/ Kruksall-Wallis 

tests, post-hoc tests (HSD/Dunns) were performed to make sequential pairwise comparisons. 

 

The results for volume and sphericity across developmental stage are shown in Fig. 1d. The volume appears 

to follow the same general trend as seen for average diameter (with the exception of the 16 to 32 cell stage 

transition) where nuclear volume generally decreases from 8 cell to 128 cell before rising significantly from 

128 cell to E5.5. In general, sphericity decreases over development, as observed for circularity, with the 

exception of the 64 to 128 transition, where no statistically significant change in sphericity was observed.  

 

We also attempted an automated approach to measuring the nuclei in 3D using the IMARIS surfaces tool, 

results are shown in Fig S1. However, we found that there was a lot of subjectivity in the post-processing 

correction steps and the tool became very difficult to use at later stages due to nuclei being closer together 

and the tool not allowing for any overlap between surfaces. Nevertheless, the results still showed a general 

downwards trend when looking at both volume and sphericity over development. 

 

Overall, our results suggest that nuclei size decreases from the 8 cell to 128 cell stage, before increasing from 

128 cell stage to E5.5, while the circularity/sphericity generally decreases from the 16 cell stage onwards. 

We have observed the same trends in intact and disaggregated embryos, regardless of the method used. 

Nuclear dimension varies by lineage 

Upon discovering that nuclei size and shape changes throughout development, we next wanted to 

investigate how nuclei size and shape vary across lineages at the same developmental stage. For this we 

used embryos that had been fixed and immunostained for 8 to 128 cell stage and continued to use the live 

embryos for E5.5 as the lineages are clearly distinguishable in brightfield at this stage (see Fig. 2). We stained 

embryos with SOX2 and GATA4, SOX2 is an ICM marker at 32 cell stage and a EPI marker from 64 cell stage 

onwards, while GATA4 is a PrE marker. We found that SOX2 was present in some cells from the 32 cell stage 

onwards and GATA4 was also present in some cells from the 64 cell stage onwards. Nuclei that were 

negative for both SOX2 and GATA4 were categorised as TE for the 32-128 cell stage (due to their position in 

the embryo and lack of staining for EPI and PrE markers). Measurements were taken using the same 
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approach as before, but using the fluorescence from the nuclear Hoechst staining rather than H2B-GFP for 

the fixed embryos. 

Results for each stage are shown in Fig. 2. At the 32 cell stage the SOX2 negative TE nuclei are significantly 

less circular and spherical than the SOX2 positive nuclei. The TE nuclei also appear to be bigger than the 

SOX2 positive nuclei, although this is only significant in 2D. These results suggest that TE nuclei are more 

elliptical and slightly bigger than ICM nuclei at this stage. 
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Figure 2: Variations in nuclei dimensions across cell lineage. Average diameter and circularity (calculated from 2D 

measurements) and volume and sphericity (calculated from 3D measurements) are shown for each lineage in each 

stage from 32 cell to E5.5. Embryos up to 128 cell are fixed and stained so lineage could be inferred; SOX2 negative 

GATA4 negative (S-/G-) nuclei are likely TE, SOX2 positive GATA4 negative (S+/G-) marks ICM/EPI nuclei, SOX2 positive 

GATA4 positive (S+/G+) marks PrE precursors, and SOX2 negative, Gata4 positive (S-/G+) marks PrE nuclei. At E5.5 live 

embryos were used as lineage could be determined from position in embryo. All box plots represent all individual nuclei 

from the specified lineage in all embryos of that developmental stage. 17 embryos were used in total. Overall p values 

for average diameter were 0.114 (from Kruksall-Wallis), 1.14x10−6 (from Kruksall-Wallis), and 4.44x10−5 (from ANOVA) 

for 64 cell, 128 cell and E5.5 respectively. Overall p values for circularity were 1.39x10−9 (from Kruskall-Wallis), 0.175 

(from Kruksall-Wallis), and 0.234 (from Kruksall-Wallis) for 64 cell, 128 cell and E5.5 respectively. Overall p values for 

volume were 3.40x10−10 (from Kruksall-Wallis), 0.0245 (from Kruksall-Wallis), and 7.32x10−4 (from Kruksall-Wallis),  

for 64 cell, 128 cell and E5.5 respectively. Overall p values for sphericity were 2.26x10−15 (from Kruksall-Wallis), 

5.98x10−5 (from Kruksall-Wallis), and 0.448 (from Kruksall-Wallis) for 64 cell, 128 cell and E5.5 respectively. 

 At the 64 cell stage the GATA4, SOX2 negative TE cells are significantly less circular and spherical than the 

SOX2 positive nuclei. Within the SOX2 positive subset there is no difference in the circularity or sphericity 

between the GATA4 positive and GATA4 negative nuclei. Nuclear volume was also significantly higher in TE 

nuclei than SOX2 positive nuclei, but again there was no difference between GATA4 positive and negative 

nuclei amongst SOX2 positive nuclei. The trend seen in average diameter is the same as that seen in volume, 

however for average diameter there are no significance differences. Our results suggest that the TE nuclei 

are still more elliptical than the ICM nuclei at this stage, and possibly still larger. 

At the 128 cell stage the SOX2 positive nuclei are significantly larger than the GATA4 positive nuclei and the 

GATA4, SOX2 negative TE nuclei in 2D. The 3D measurements show the same trend, however here SOX2 

positive nuclei are only significantly bigger than the GATA4 positive nuclei, and not the TE nuclei. The GATA4 

positive nuclei are also significantly smaller than the TE nuclei in both 2D and 3D. The nuclei less vary less in 

ellipticity at this stage, the only significant difference found is that the GATA4 positive nuclei are less 

spherical than the SOX2 positive nuclei. The 2D measurements also show that GATA4 positive nuclei are less 

circular than SOX2 positive nuclei, although not significantly. Overall, these results suggest that the EPI nuclei 

are the largest and the PrE nuclei may be the smallest, with the PrE nuclei possibly being slightly less 

spherical than the EPI nuclei.   

At E5.5, our results suggest that EPI nuclei are once again the largest, with the difference being significant 

when comparing to VE nuclei in both 2D and 3D and when comparing to ExE nuclei in 2D. EPI nuclei are also 

larger than ExE nuclei in 3D, however there is no significant difference. There are no noticeable differences 

between the circularity/sphericity of nuclei from different lineages.  
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Overall, we have found that at 32-64 cell stage there are differences in the circularity and size of the TE and 

ICM nuclei, but not between EPI and PrE precursors. TE cells are more elliptical than ICM cells and probably 

also bigger. At 128 cell stage and E5.5 the strongest differences between lineage is in nuclei size, with the EPI 

nuclei appearing to be the largest. 

Early to mid-blastocyst TE nuclei have oblate shape  

Following our finding that the TE nuclei are less circular/spherical than the ICM nuclei at 32-64 cell stage, we 

were interested to investigate this difference further. Spheroids can have two main types of shape; oblate 

(pancake shaped) or prolate (rugby ball shaped). Therefore, we re-used our 3D measurements of the 32 and 

64 cell embryos (the stages that had shown the strongest differences in sphericity between lineages) to 

calculate oblateness and prolateness for each nuclei for these stages. The results, shown in Fig. 3a-b, show 

that the ICM nuclei are significantly less oblate than the TE nuclei for both stages, and there is no difference 

between GATA4 positive and negative nuclei in the ICM. This is similar to the trend seen in sphericity 

(although reversed because for sphericity a lower number indicates greater deviation from a sphere). 

Whereas for prolateness, there is no difference between TE and ICM nuclei at 32 cell stage and the TE is 

actually less prolate at 64 cell stage. These results suggest that the difference observed between TE and ICM 

nuclei is due to the TE cells becoming oblate rather than prolate.  

We hypothesised that this could be due to pressure from the expanding cavity causing the cells to flatten. To 

test this theory, we looked at the correlation between Z slice and circularity for 2D measurements of TE 

nuclei for three 64 cell stage embryos, the results are shown in Fig 3c. The results show that the TE cells 

appear more elliptical around the central planes rather than at the top or bottom planes. This is what we 

would expect to see if pressure from the cavity is causing oblateness as in the central planes we are viewing 

the TE cells perpendicular to the direction of the pressure that would be exerted on them. Therefore, these 

results support our theory that pressure from the cavity is driving oblateness in TE nuclei. 

Unsupervised clustering of nuclei shapes 

All shape measurements so far have worked under the assumption that nuclei are an elliptical (in 2D) or 

spheroid (in 3D) shape, however it is possible that there may be a broader range of cell nuclei shapes that 

cannot be described by just maximum and minimum diameters. Therefore, we decided to further investigate 

the distribution of nuclei shapes using unsupervised clustering. We chose to use the 128 cell stage for this 

analysis, as we had noticed a potential variety of irregular shapes at this stage.  

We prepared a dataset of images of 2D nuclei outlines by tracing around the outside of the nucleus in Imagej 

using the nuclear Hoechst staining and then cropping around the outline, see Fig. S2 for examples. The inside 

area was cleared and the outside area filled to give a binary image, this was to encourage the clustering 
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algorithm to focus on the shape rather than staining intensity/variation. K-means clustering was performed 

on high level convolutional neural network (CNN) features for each image. We first pre-trained the CNN 

model to predict circularity and then used the features in the 2nd to last layer of this model as inputs to the 

K-means algorithm (full details in methods). The pre-training step was used as an attempt to create high 

level features that contained information on the shape of the nuclei rather than other factors such as 

orientation. We repeated K-means clustering with k values from 2 to 10. 

Figure 3: Investigation into spheroid type A) The prolateness and oblateness of nuclei of the 32 cell stage embryo. 

Measurements were taken from four embryos in total. B) The prolateness and oblateness of nuclei of the 64 cell stage 

embryo. An overall p value of 9.73x10−5 (from Kruksall-Wallis) was found for prolateness and 1.13x10−13 (from 

Kruksall-Wallis) for oblateness. Measurements were taken from four embryos in total. C) circularity of nuclei vs z slice 

for all TE (SOX2 negative GATA4 negative) nuclei in three 64 cell stage embryos, with example illustration of top and 

middle slice. All results are for fixed and immunostained embryos. S-/G- refers to SOX2 negative GATA4 negative, S+/G- 

refers to SOX2 positive GATA4 negative, and S+/G+ refers to SOX2 positive GAT4 positive. All box plots represent all 

individual nuclei from the specified lineage in all embryos of that developmental stage.  
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First, we created plots of distortion (the average squared distance of a sample to the cluster centre) and 

inertia (the sum of squared distances of samples to their closest cluster center) against k (Fig 4a). This 

allowed us to use the elbow method, which states that the point after which distortion/inertia start  

 

Figure 4: Unsupervised clustering of 128 cell stage nuclei. The results of K-means clustering on images of cropped 

outlines of nuclei in 128 cell embryos. A) Plots of distortion versus k number and inertia vs k number produced to 

determine optimal k value using the elbow method. B) The distribution of circularity values in each cluster and lineage 
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composition of each cluster when k=2. The difference between circularity in each cluster had a p value of 5.55x10−20  

(from students’ t-test) . The overall p value for lineage composition of the clusters was 0.222 (from Chi squared) C) The 

distribution of circularity values in each cluster and lineage composition of each cluster when k=5. The difference 

between circularity in each cluster had a p value of 4.21x10−17(from ANOVA). The overall p value for lineage 

composition of the clusters was 8.26x10−4  (from Chi-squared). 

decreasing with k in a linear fashion is the optimal cluster number. Although there is not an obvious 

inflection point on these plots, it does appear that both k=2 and k=5 may be good choices. Although k=2 is 

perhaps a more marked inflection point, this is likely to just reflect the two ‘circular’ and ‘elliptical’ groups in 

the pre-training step, and the purpose of this exercise is to investigate variation in shape beyond circularity. 

Therefore, we chose to investigate the clusters produced with k=2 to check the clustering is working as we 

would expect and also k=5 to see the potential variation in shapes in more detail. 

The circularity of each nucleus for k=2 is shown in Fig. 4b. As expected, one group is significantly more 

elliptical than the other. Also shown is the composition of each group in terms of the lineages, we found no 

significant difference between the two clusters. This is what we would expect as our earlier results did not 

find a difference between circularity between the three different lineages at this stage. Together, these 

results suggest that the clustering algorithm is using shape to assign nuclei to clusters, as was desired. 

Next, we carried out the same analysis for k=5, as shown in Fig. 4c. The clusters appeared to vary in 

circularity, and an ANOVA test confirmed that there is significant variation between the clusters. This 

suggests that the algorithm is still using shape to perform the clustering. There does also appear to be some 

variation in the proportion of each lineage in the clusters. In particular, cluster 2 seems to be mainly 

composed of SOX2 positive nuclei while cluster 5 seems to have very few SOX2 positive nuclei in comparison 

to GATA4 positive and TE (double negative) nuclei, although only cluster 5 was significantly different from 

the expected distribution. Interestingly, these two clusters have very similar distributions of circularity 

values, with both being more circular than the other three clusters. This suggests that these results are not 

due to EPI nuclei simply being more or less circular than other nuclei, but may instead indicate another 

difference in shape. However, more data would be needed to draw any firm conclusions.     

Discussion 

In this study we have conducted a comprehensive analysis into the variation in nuclei size and shape in the 

early mouse embryo from the 8-cell stage to peri-implantation. Very little was previously known about the 

relation of nuclei dimensions to embryonic stage and lineage in mammalian embryos. We have found new 

correlations between nuclei size/shape and cell lineage at all stages from 32 cell to E5.5 and have also 

discovered the point in development at which nuclei size begins to increase following a decrease in line with 

early cell cleavages.   
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We have used two approaches for nuclei measurements; 2D and 3D, both of which have associated 

strengths and weaknesses. The 2D measurements have less measurement error due to higher resolution in 

the XY plane, and they are also less prone to subjectivity as the edge of the nuclei appears sharper in the 

central and most in focus Z slice. However, 2D measurements have the obvious drawback of approximating a 

3D object in two dimensions. Meanwhile, 3D measurements have more associated error due to lower Z 

resolution and are prone to subjectivity as it can sometimes be difficult to ascertain the correct edge of the 

nuclei, especially in crowded locations such as the ICM where nuclei appear to overlap. Although both 

approaches have limitations, the fact that the same trends are seen in both methods strengthens our 

findings.  

The analysis of nuclei size and shape across development suggested that nuclei diameter decreases from 8 

cell to 128 cell, then increases from 128 cell stage to E5.5, and circularity decreases from 16 cell stage. The 

same trends in circularity and diameter were seen for disaggregated and intact embryos, however the trend 

was stronger in intact embryos. This may be due to sample size, more cells were included for most stages in 

the intact embryos, especially the E4.5 stage which differed from the general trend for circularity.  

The pattern of nuclei diameter over development is the same as that found for cell size vs developmental 

stage by Forsyth et al. (2021)17. Nuclei size vs developmental stage has also been studied by Tsichlaki and 

Fitzharris (2016)16, who found that the nuclei decreased in size from zygote to blastocyst, agreeing with our 

findings. As far as we are aware we are the first to show that nuclei size begins to increase at E5.5. The 

change in shape of nuclei over development has not previously been reported, however blastomere 

sphericity has been shown to decrease from the 2 to 64 cell stage by Royer et al. (2020)18. They hypothesised 

that this was due to an increase in the variety of cell shapes as the embryo develops18. 

Our analysis into how nuclei size and shape varied across lineage found that the most strongly marked 

difference at 128 cell stage and E5.5 was in nuclei size with the EPI nuclei significantly bigger than the extra-

embryonic lineages. Our results also showed that the PrE nuclei were the smallest at 128 cell stage, and 

suggested that PrE nuclei are possibly less round that EPI nuclei, although this was only statistically 

significant in 3D. At the 32 and 64 cell stage the TE nuclei were found to be significantly less 

circular/spherical and larger than the ICM nuclei, however the latter was only significant in the 2D 

measurements at 32 cell stage and 3D measurements at the 64 cell stage. We found that the lower 

sphericity of the TE nuclei at 32 cell and 64 cell stage was due to the TE nuclei becoming oblate, and 

provided evidence that this was due to pressure from the cavity. Our clustering analysis suggested that there 

may be specific types of shapes that are more or less common in different lineages, however more data 

would be needed to confirm this. 
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As far as we are aware, we are the first to report differences between the size and shape of nuclei across cell 

lineages in the early embryo. The only other study reporting differences relating to nuclei dimensions in the 

early embryo is Aiken et al (2004)19, who found that nucleo-cytoplasmic ratio was significantly higher in the 

TE than the ICM at E3.5 and outer cells were larger than inner cells. They do not report nuclei volumes 

directly, however these results indicate agreement with our finding that TE nuclei are larger than ICM nuclei 

at E3.5. 

If a standard distribution of sizes and shapes could be established it potentially could be possible to detect 

embryos that have developed abnormally just by looking at the nuclei shape and size. In particular, if links 

between particular clusters and lineage were to be confirmed this could be used to assess whether there 

might be a deficiency or surplus of cells in a lineage without the need for immunostaining. This information 

could potentially be useful for embryo assessment in IVF procedures where embryos are selected on a 

morphological basis. 

Conclusion 

In this study we have discovered trends in mouse nuclei sizes and shapes over early development, with 

roundness generally decreasing over time and size initially decreasing before starting to increase from the 

E4.5 to E5.5 stage. We have also found links between cell lineage and nuclei size and shape, in particular the 

TE nuclei appear to be larger and more elliptical than ICM nuclei at 32-64 cell stage and the EPI nuclei have 

been found to be larger than nuclei of extra-embryonic lineages at 128 cell stage and E5.5.  

Methods 

Collection of mouse embryos 

Mice were housed in the Biological Service Facility (BSF), University of Manchester, under a 12-hour light 

cycle. Two mouse strains were used; CD-1 outbred (Jackson Laboratories) and CAG::H2B-EGFP transgenic 

mice, the latter allow visualisation of chromatin through the fluorescent histone protein20. Mating was 

detected by the presence of a vaginal plug, 12pm on the day of plug observance was estimated to be 

embryonic day 0.5 (E0.5). Mice were sacrificed on days E2.5-E5.5 to obtain embryos at a variety of 

developmental stages, and embryos were collected by flushing the oviducts (E2.5) or the uterus horns (E3.5 

onwards) using warm home-made M2 medium21.  

The mice were bred on project license P08B76E2B, protocol 4 and the license 70/08858, protocol 4, and all 

husbandry and handling methods conformed to the regulations set out by the UK Home Office’s Animals 

(Scientific Procedures) Act 1986. The mice were humanely euthanised in accordance with Schedule 1 of the 

UK Animals (Scientific Procedures) Act 1986. Ethical approval for the euthanasia of animals used in this study 
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was granted to the project submitted by Berenika Plusa by the University of Manchester Animal Welfare and 

Ethical Review Body on the 10/03/2017. 

Zona pellucida removal 

For all the immunostained and disaggregated embryos the zona pellucida was removed by moving embryos 

between several drops of warmed acid Tyrode’s solution (Sigma Aldrich). This took place under careful visual 

inspection; embryos were quickly removed as soon as the zona pellucida had fully dissolved and were then 

washed and left to recover in M2 for a minimum of 20 minutes. 

Disaggregation 

Two protocols were used to disaggregate the embryos; a calcium free treatment for developmental stages 

up to and including E4.5 and trypsin treatment for E4.5 and E5.5 embryos. Both protocols were carried out 

by Forsyth et al. (2021)17. Groups of E4.5 embryos were disaggregated using both methods to ensure the 

disaggregation method did not affect the results, no significant differences in cell diameters were observed 

across the 2 treatments17.  

Fixation and Immunostaining 

Embryos were fixed and stained so that lineages could be distinguished. The Epi was marked by SOX2 as it is 

a well known marker of pluropoteniency in embryos22,23. The PrE was marked by the first exclusive PrE 

marker; Gata424. No marker was used for TE as it could be distinguished by position and lack of other 

markers. 

All embryos intended to be immunostained were first fixed in 4% para-formaldehyde (Sigma Aldrich) in PBS 

with 0.1% Tween-20 (Sigma) and 0.01% Triton X-100 (Fluka) for 20 minutes. Following this, the embryos 

were washed in PBS and stored (also in PBS) at 4°C until removal for immunostaining. The immunostaining 

was carried out following the methodology described in Plusa et al. (2008)24. Permabilisation was performed 

by leaving embryos in 0.55% Triton-X 100 in PBS for 20 minutes. Before exposure to both primary and 

secondary antibodies the embryos were blocked in 10% donkey serum (Sigma Aldrich) in PBS for 40 minutes. 

The primary antibodies used were anti-Gata4 (Santa Cruz Biotechnology, 1:200) and anti-Sox2 

(ThermoFischer Scientific, 1:100) overnight at 4°C. Secondary Alexa Fluor (Invitrogen) conjugated antibodies 

were used (1:500) for 1 hour at 4°C. Finally, embryos were incubated in Hoechst 33342 (Sigma Aldrich) at a 

concentration of 1:1000 in PBX (PBS +0.1% Triton-X 100) for at least 30 minutes at 4°C in order to visualise 

the nuclei. 
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Image acquisition 

All imaging was performed by the Nikon A1 inverted confocal microscope. Embryos were placed on glass-

bottom dishes (MatTek) under mineral oil. Sections were imaged at micrometer intervals with Diode 405 

nm, Argon 488 nm, HeNe 546 nm, and HeNe 647 nm lasers used to excite flurorophores. 

Image analysis 

All image analysis was carried out using ImageJ and IMARIS (Bitplane). For embryos up to stage E4.5 a cell 

count was calculated using the spot detector in IMARIS to detect nuclei and accuracy of spot detection was 

inspected manually. Measurements were performed using the nuclear Hoescht 33342 staining for fixed 

embryos, H2B-GFP fluorescence for live and disaggregated embryos. All 2D and manual 3D measurements 

were taken using the ruler tool in IMARIS, with 2D measurements always taken in the z slice with maximum 

cross section. Automated 3D measurements were taken using the surfaces tool in IMARIS. 

For fixed embryos, presence of GATA4 or SOX2 staining was recorded for each nuclei. For live E5.5 embryos 

the brightfield images were used to identify cell lineage. 

The preparation of images for clustering was carried out using ImageJ. The ellipticity of nuclei was measured 

using the ruler tool and the outline of each nuclei was then traced using the polygon tool. Images of 

individual nuclei were then created by cropping around the polygon and filling the inside of the polygon and 

clearing the outside using ImageJ. All images were resized to 224x224 using the python imaging library (PIL). 

3D metric calculations 

For each nuclei measured in 3D we obtained 3 perpendicular measurements, which we refer to as a, b, and 

c, where a≤b≤c. The volume was calculated using the formula for an ellipsoid: 

𝑉 = 4𝜋abc/3 

We calculated sphericity from the formula: 

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =
𝜋
1
3(6𝑉)

2
3

𝐴
 

Where V is the volume as calculated above and A is the surface area, calculated by the approximate surface 

area of an ellipsoid: 

𝐴 = 4𝜋(
(𝑎𝑏)1.6 + (𝑎𝑐)1.6 + (𝑏𝑐)1.6

3
)
1
1.6 

Oblateness was calculated as: 

𝑂𝑏𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠 =
2𝑎2

𝑎2 + 𝑏2
∙ (1 −

𝑎2 + 𝑏2

2𝑐2
) 

And prolateness was calculated as: 
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𝑝𝑟𝑜𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠 =
2𝑏2

𝑏2 + 𝑐2
∙ (1 −

2𝑎2

𝑏2 + 𝑐2
) 

Unsupervised clustering algorithm 

k-means clustering was performed on high-level CNN features. To obtain features that would be appropriate 

for clustering based on shape a supervised model was first trained to predict nuclei circularity. For this, we 

used the MobilenetV2 model25 with weights pre-trained on the ImageNet database26. An extra hidden layer 

was added before the final layer and all previous layers were fixed. We divided our dataset into two classes; 

‘elliptical’ and circular’ based on the nuclei circularity, using a circularity of 0.66 as the threshold as this was 

the median value. We then trained the model to predict these classes using all images as training data, and 

used a base learning rate (BLR) of 0.0001, a drop out of 0.5 and the cross entropy loss function. Once the 

model had been trained we saved the values of the hidden layer features for each image, and used these as 

the features for the clustering algorithm. 

For the unsupervised clustering, we used the scikit-learn Kmeans function in python. The k value was varied 

from 2 to 10, while all other variables were set to default. 

Statistics 

Continuous data was tested for normality using the D'Agostino & Pearson test. For cases with two datasets 

being compared a students t-test was used to test for significance if the data was normally distributed and a 

Mann Whitney test was performed if the data was not normally distributed. If more than two datasets were 

being compared and they were normally distributed a one-way ANOVA test was used followed by a post-hoc 

test (HSD) if the result was significant, if the data was not normally distributed a Kruksall-Wallis test was 

used, followed by a post-hoc test (Dunns) if the result was significant. For the categorical data, significance 

was tested using chi-squared tests.  

For all significance tests, results were determined to be significanct if p<0.05. For all results shown 

graphically, * corresponds to p<0.05, ** corresponds to p<0.01, and *** corresponds to p<0.001 
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Supplementary Materials 

 

 

Figure S1: Volume and Sphericity across developmental stage measured using IMARIS surface tool 

 

 

Figure S2: Examples of cropped nuclei images used as inputs to K-means algorithm. Nuclei outlines were traced using 

the polygon tool on ImageJ and then converted to binary images.  
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Chapter 5: 

 

General Discussion 

 

Despite much progress in IVF treatment over the last few decades, challenges remain in improving success 

rates and lowering risks to the mother and baby. Currently, success rates are still far from satisfactory, 

ranging from 32% for patients under 35 to under 5% for patients over 432. One of the main challenges that 

remains to be addressed is selecting the best embryo to be transferred, as it is still not known exactly what 

healthy pre-implantation development should look like6,61. Multiple publications have explored potential 

markers of embryo viability including PN appearance61-65, cell divisions9,72-75 and cytoplasm morphology60,66,67. 

For some of the investigated features, contradictory conclusions have been reached, whereas the use of 

others has been limited. Importantly, the link between embryo viability and sub-cellular features, such as 

size and shape of nuclei, has not been explored beyond the first two embryonic cycles. Machine Learning 

(ML) approaches for medical purposes are undergoing rapid progress and potentially offer promising 

solutions to some of the problems related to IVF embryo selection process, especially if combined with 

human expert knowledge4,132. Ideally, ML models should be tailor-able to individual clinics and applicable to 

a range of transfer strategies, as earlier transfers may be beneficial to avoid the potential risks associated 

with blastocyst culture41-44,140.   

The overarching aim of this thesis was to contribute to safer and more successful IVF procedures. In 

particular, the research conducted during this PhD has tackled several current challenges in IVF including 

subjectivity in embryo selection, the lack of ML algorithms available for early stage embryo assessment, and 

the inattention to potentially important sub-cellular features when assessing embryo quality. Together, the 

three papers presented in this thesis work towards solutions to these amongst other issues. The paper 

presented in chapter 2 developed CNN models that were capable of automatically assessing the chance of 

live birth based on various stages of embryonic development. The paper in chapter 3 then combined these 

models with manually assessed features to further improve live birth prediction at early embryonic stages. 

Finally, the paper in chapter 4 aimed to deepen our understanding of the pre-implantation process by 

investigating normal development of the nucleus in mouse embryos, it is hoped that this could pave the way 
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for inclusion of sub-cellular features like nuclear shape and size (past zygote stage) in embryo assessment 

procedures.  

The paper in chapter 2, ‘Deep learning pipeline reveals key moments in human embryonic development 

predictive of live birth in IVF’, addressed several weaknesses in current approaches to DL-based assessment 

of embryo viability. Firstly, live birth was predicted directly rather using more commonly used intermediate 

outcomes. Secondly, we presented the first CNN models to predict live birth based solely on individual pre-

blastocyst stages, allowing for earlier embryo selection. Thirdly, we showed it was possible to train a CNN to 

predict live birth to the same standard as experienced embryologists using data from a single clinic.  

The study in chapter 2 took a different approach to the usual embryo assessment procedure of choosing 

frames by video time-point. Instead, we picked specific well-defined moments in development as reference 

points and used these to find the optimal developmental moments for predicting live birth. One advantage 

of our approach is that it ensured we were always comparing embryos that were actually at the same 

developmental stage, reducing unnecessary variation that would act as noise. Another advantage is that it 

allowed the pre-implantation time period to be thoroughly explored to reveal the best moments for live 

birth prediction, whereas choosing frames based on arbitrary time points such as ‘day 3’ may miss crucial 

moments of development where viability is most apparent. Our work is the first to identify specific moments 

that are optimal for live birth prediction, these findings could be useful both for future ML studies and more 

general embryologist based embryo assessment. 

The performance of the blastocyst model was found to be similar to or better than models developed in the 

few previous studies that had also predicted live birth136-138. Our work was the first to employ DL to make live 

birth predictions solely from pre-blastocyst stages, so no direct comparisons to earlier studies are possible, 

however other researchers have explored the use of early stages for other purposes. Lee et. al predicted 

ploidy by taking images from various stretches of development, including just day 1 for which they had an 

AUC of 0.58131. We achieved a slightly higher AUC for our PN model despite having the more difficult 

classification problem of transfer outcome. This suggests that our strategies of extra transfer learning and 

carefully chosen frame extraction time-point have improved model performance and are important 

approaches to consider when training an ML model to assess embryo viability at early embryonic stages.   

In the final section of the paper in chapter 2 we provided evidence that the pre-blastocyst models may add 

important information to selection at blastocyst stage, allowing for the best blastocyst to be selected even 

amongst those that may appear the same quality. Future avenues of research would be further 

combinations of the CNN models, and possibly incorporation of other manually assessed features. In order 

to identify manually assessed features that could strengthen the performance of IVF embryo assessment in 
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conjunction with our CNN models, we performed work that was included in the paper presented in chapter 

3. 

The paper in chapter 3, ‘Combined deep learning and human annotation approach allows cleavage stage 

assessment of human embryos’, first identified morphological features that were significantly different 

between successful (live birth) and unsuccessful embryos (transferred but no pregnancy) and then combined 

these with predictions from the CNN models. Here we focused on early stages (using only information up to 

cleavage stage) and got improved performance from this combination approach than what was achieved 

from any pre-blastocyst models individually, with a test set ROC AUC of up to 0.64. This strengthens our 

findings from the previous paper that early stages can be used for embryo selection, and provides the 

possibility of a more diverse treatment regimes that can allow for earlier transfers and/or cryopreservation, 

minimising the possible side effects of prolonged blastocyst culture. 

The investigation into potential morphological quality markers led to us being the first (to our knowledge) to 

show that the presence of a ‘rough patch’ at zygote stage and degree of morula compaction are both 

significantly correlated to live birth.  We also investigated two features for which the link to embryo viability 

is currently subject to dispute; zygote ZP thickness variation69-71 and vacuoles61,67, finding that only the latter 

was correlated with live birth. While we cannot know for certain why our results on vacuoles disagreed with 

the previous study by Barberet et al.61, possible reasons are that they only included high-grade embryos that 

had been transferred and that they had a relatively small sample size. 

In the paper in chapter 3 we also used unsupervised learning and dimensionality reduction techniques to 

better understand the dataset. Interestingly, we observed that while good quality embryos formed one 

bigger cluster, lower quality embryos were distributed between multiple, smaller clusters. Such a 

distribution seems to suggests that there may be a broad spectrum of developmental issues that can lead to 

embryo failure, while heathy embryos follow more similar developmental paths. This provides a greater 

insight into the challenge of embryo selection, as it suggests that there may be a range of developmental 

abnormalities to look out for when assessing embryo viability. Our findings here highlight the advantage of 

the approach taken in this thesis of examining various morphological features throughout development. 

One of the major limitations of the work described in chapter 2 and chapter 3 papers is that the time-lapse 

videos used had only one z-slice and were of varying quality with not all features possible to assess in all 

videos. These limitations mean that sub-cellular features were hard to examine. Most studies investigating 

potential morphological viability markers are based on similar datasets and as a result there is very little 

knowledge on the correlation of sub-cellular features and embryo viability. To overcome this multiple z-

slices for each time-point could be exported from the embryoscope and a CNN adapted to 3D images, such 

as a model with RNN-CNN architecture could be trained to predict viability from these more detailed images. 
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Another limitation is that all the embryos in the dataset used for chapters 2 and 3 were produced via ICSI. 

Therefore, it is possible that the models trained here may not perform as well on embryos created via 

traditional IVF. As many embryos in IVF clinics are created via traditional IVF and not all clinics offer ICSI it is  

important that the models developed here should next be tested on a dataset of embryos created by 

traditional IVF. 

Another limitation is that the models developed help us to predict whether or not an embryo is likely to 

result in live birth, however they do not inform us of the reason for embryo failure. The reason for infertility 

is not always known141, which makes it harder to advise the patients on the best next steps to take or tailor 

treatment towards specific infertility issues. In order to better diagnose the reasons for embryo failure it is 

important to first understand normal pre-implantation development. This can be difficult when using human 

embryos from an IVF clinic as the majority of embryos come from patients struggling with infertility so they 

are more likely to have various developmental abnormalities. A potential strategy to overcome this would be 

to study embryos donated to research from patients known to not have fertility related issues (e.g patients 

undergoing IVF for embryo genetic screening to prevent genetic diseases) to get a clearer understanding of 

healthy embryo development. 

Studying features important for assessment of viability in human embryos is often restricted due to 

unavailability of high-quality material and ethical constrains. At the same time, mouse embryos are a well 

established model to study pre-implantation mammalian development. Due to the ease of accessibility, 

relatively low costs, and high quality (unlike in humans, the vast majority of mouse embryos develop to 

term), mouse embryos are a particularly useful model to investigate what the healthy embryo looks like.  

Therefore, in our final paper, ‘Nuclei dimensions shown to correlate with developmental stage and cell 

lineage in the early mouse embryo’ we used mouse embryos to investigate how size and shape of nuclei 

change during preimplantation development. There is currently no knowledge of how nuclei size and shape 

(past zygote stage) might be related to embryo viability and the pattern of typical nuclei appearance across 

development and cell lineage has not yet been established. However, the size of the nucleus is known to be 

important to cellular function and development, with irregularities related to disease142. Therefore, nuclei 

size and shape may be a critical component currently missing in embryo assessment.   

The images collected for this work allowed for a much more detailed examination of the nuclei than in IVF 

time-lapse videos as we were able to take many Z slices to get a 3D view of the embryo and we also included 

stained embryos for which the cell lineages could be inferred. From this dataset, we found that nuclei 

decrease in both size and sphericity throughout the pre-implantation period and TE nuclei are both larger 

and more elliptical than ICM nuclei at early to mid-blastocyst.  
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If similar trends can also be found in human embryos, then it is possible that any deviations could be used as 

indicators of poor embryo quality. For example, if nuclei are larger than expected at a particular stage this 

could mean that not enough divisions have occurred. The proportion of nuclei with certain dimensions could 

also potentially be useful for determining whether all lineages have formed correctly. Additionally, the 

clustering approach that we explored here could be particularly useful in describing the typical distribution 

of shapes that should be expected as it can incorporate the whole nuclei outline and does not require any 

prior shape approximations.   

Another key finding from this paper was that 2D and 3D measurements produced the same general trends in 

size and shape. Therefore, we have provided evidence that 2D measurements are likely to be sufficient to 

describe the typical appearance of nuclei across developmental stage and cell lineage. This could be 

important information for any further investigation using human embryos, as obtaining 3D measurements 

from time-lapse videos recorded in IVF clinics may be challenging due to the typically small number of Z-

slices taken.  

Summary of findings 

Chapter 2: ‘Deep learning pipeline reveals key moments in human embryonic development predictive of 

live birth in IVF’ 

-Optimal moments in development to predict live birth were revealed. 

-CNN models were developed to predict live birth at various individual points of development from zygote to 

blastocyst. 

-We demonstrated it was possible to train a CNN to predict live birth to a high performance using a single-

clinic dataset. 

-Early developmental stages were shown to add value to live birth prediction even when selecting embryos 

at the blastocyst stage. 

Chapter 3: ‘Combined deep learning and human annotation approach allows cleavage stage assessment of 

human embryos’ 

-Novel morphological markers of viability were identified. 

-CNN outputs and manually assessed features were combined by a variety of supervised learning algorithms 

to predict live birth at the cleavage stage with a ROC AUC of up to 0.64. 

-Unsupervised clustering and dimensionality reduction revealed the presence of several clusters of lower 

quality embryos. 
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Chapter 4: ‘Nuclei dimensions shown to correlate with developmental stage and cell lineage in early 

mouse embryos’ 

-Mouse nuclei size was found to decrease until the E4.5 stage and then increase at E5.5, while the nuclei 

sphericity was found to generally decrease over development. 

-Significant differences in nuclei size and shape across different lineages were found at all stages from 32 cell 

to E5.5, the most strongly marked being that the TE nuclei were more elliptical than the ICM nuclei at the 32-

64 cell stage and the EPI nuclei were larger than the extra-embryonic nuclei at E4.5 and E5.5. 

-Unsupervised clustering showed possible lineage-related clusters that differ in shape in a manner unrelated 

to circularity 

 

Further work 

The CNN models developed in chapter 2 were trained on a single-clinic dataset, with the intention being that 

they could be re-trained on datasets from other clinics to become tailored to their specific patient 

population. The next step would therefore be to check that the models obtain the same performances after 

re-training on datasets from other clinics. In particular, it is important to check that the moments of 

development found to have the greatest predictive power are equally useful on these different datasets. 

Similarly, the performance of the supervised ML algorithms developed in chapter 3 should be verified on 

other datasets. 

In chapter 3 we discovered that combining manually assessed features with CNN outputs gave a better 

prediction of live birth than any of the pre-blastocyst CNN models alone. As the list of manual features 

included was by no means exhaustive, it is likely that this performance can be improved further with the 

inclusion of more features. This highlights two potential avenues of further work; identifying more features 

that can improve performance, and automating the detection of some or all of the current manual features. 

The latter is particularly important as most of the manually assessed features are prone to a high level of 

subjectivity, which could be solved by using advanced image analysis techniques and/or CNN models to 

detect whether each marker is present. 

Once models have been further developed and verified, prospective trials would be necessary to assess 

whether they improve live birth success rates in practice. Additionally, it would be very interesting to 

investigate whether embryos in the same cohort tend to get similar model scores. This would inform us how 

capable the models are at ranking embryos in a cohort, which is the real challenge of embryo selection.  
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Another potential direction for further work would be to investigate whether the early stage models could 

be used to help determine whether good quality blastocysts fail due embryonic issues not visible at the 

blastocyst stage or due to maternal factors. This would require investigating whether any particular 

developmental abnormalities are associated with low early stage model scores and examining whether there 

are any correlations in these scores within cohorts.  

Finally, in chapter 4 trends in the shape and size of nuclei in mouse embryos were discovered. The next step 

would be to check whether these trends also exist in human embryos. If the patterns are conserved in 

human embryos then possible links between deviation from normal nuclei appearance and transfer outcome 

could be investigated, the growing body of data from the recently available Embryoscope+ TM makes this 

increasingly feasible as it produces high resolution time-lapse videos. In addition, further research is required 

to understand why the changes in nuclei size and shape take place. This could involve more experimentation 

using mouse embryos, such as interventions that perturb cell lineage formation to separate the effects of 

lineage and cell position on nuclei size and shape. 

In conclusion, the research conducted as part of this thesis has contributed to our understanding of 

mammalian pre-implantation development and identified ML approaches capable of assisting with embryo 

selection. Our findings have raised many exciting further avenues of research that have the potential to led 

to advancements in IVF treatment.  
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