905 research outputs found

    Passive temperature tomography experiments to characterize transmissivity and connectivity of preferential flow paths in fractured media

    No full text
    International audienceThe detection of preferential flow paths and the characterization of their hydraulic properties are major challenges in fractured rock hydrology. In this study, we propose to use temperature as a passive tracer to characterize fracture connectivity and hydraulic properties. In particular, we propose a new temperature tomography field method in which borehole temperature profiles are measured under different pumping conditions by changing successively the pumping and observation boreholes. To interpret these temperature- depth profiles, we propose a three step inversion-based framework. We consider first an inverse model that allows for automatic permeable fracture detection from borehole temperature profiles under pumping conditions. Then we apply a borehole-scale flow and temperature model to produce flowmeter profiles by inversion of temperature profiles. This second step uses inversion to characterize the relationship between temperature variations with depth and borehole flow velocities (Klepikova et al., 2011). The third inverse step, which exploits cross-borehole flowmeter tests, is aimed at inferring inter-borehole fracture connectivity and transmissivities. This multi-step inverse framework provides a means of including temperature profiles to image fracture hydraulic properties and connectivity. We test the proposed approach with field data obtained from the Ploemeur (N.W. France) fractured rock aquifer, where the full temperature tomography experiment was carried out between three 100 m depth boreholes 10 m apart. We identified several transmissive fractures and their connectivity which correspond to known fractures and corroborate well with independent information, including available borehole flowmeter tests and geophysical data. Hence, although indirect, temperature tomography appears to be a promising approach for characterizing connectivity patterns and transmissivities of the main flow paths in fractured rock

    Research Opportunities in Interdisciplinary Ground-Water Science

    Get PDF
    The U.S. Geological Survey (USGS) has a long-standing reputation for providing unbiased scientific leadership and excellence in the field of ground-water hydrology and geological research. This report provides a framework for continuing this scientific leadership by describing six interdisciplinary topics for research opportunities in ground-water science in the USGS. These topics build on recommendations of the National Research Council (2000) contained in the report, “Investigating Groundwater Systems on Regional and National Scales,” and emphasize research topics that would benefit from the integrated capabilities of all parts of the USGS. Understanding the relations between ground water and the geological characteristics of aquifers within which ground water resides, and the relation of ground water to surface-water resources and terrestrial and aquatic biota is increasingly important and presents a considerable opportunity to draw on expertise throughout the USGS, including the science disciplines of biology, geography, geology, and hydrology. The National Research Council (2000) also emphasizes that USGS regional and national assessments of ground-water resources should focus on aspects that foster the sustainability of the resource. The need for a comprehensive program addressing the sustainability of ground-water resources can be stated very concisely—we need enough ground water of good quality to sustain our lives, our economy, and our aquatic ecosystems. Although societal needs for high-quality, objective ground-water science are increasing, current funding for USGS regional ground-water programs is about 40 percent of the funding available 20–25 years ago. Given the current challenges of budgetary constraints, however, this report provides a flexible set of interrelated research topics that enhance the ability of the USGS to focus limited fiscal resources on developing ground-water science tools and methods that provide high-quality, objective scientific information

    Measuring Groundwater Flow Velocities near Drinking Water Extraction Wells in Unconsolidated Sediments

    Get PDF
    Groundwater is an important source of drinking water in coastal regions with predominantly unconsolidated sediments. To protect and manage drinking water extraction wells in these regions, reliable estimates of groundwater flow velocities around well fields are of paramount importance. Such measurements help to identify the dynamics of the groundwater flow and its response to stresses, to optimize water resources management, and to calibrate groundwater flow models. In this article, we review approaches for measuring the relatively high groundwater flow velocity measurements near these wells. We discuss and review their potential and limitations for use in this environment. Environmental tracer measurements are found to be useful for regional scale estimates of groundwater flow velocities and directions, but their use is limited near drinking water extraction wells. Surface-based hydrogeophysical measurements can potentially provide insight into groundwater flow velocity patterns, although the depth is limited in large-scale measurement setups. Active-heating distributed temperature sensing (AH-DTS) provides direct measurements of in situ groundwater flow velocities and can monitor fluctuations in the high groundwater flow velocities near drinking water extraction wells. Combining geoelectrical measurements with AH-DTS shows the potential to estimate a 3D groundwater flow velocity distribution to fully identify groundwater flow towards drinking water extraction wells

    Hydrogeophysical model calibration and uncertainty analysis via full integration of PEST/PEST++ and COMSOL

    Get PDF
    Acknowledgments AndrĂ©s GonzĂĄlez QuirĂłs is the recipient of a Royal Society – Newton International Fellowship (NIF\R1\182210), hosted at the University of Aberdeen. We thank the Scottish Funding Council/Scottish Alliance for Geoscience, Environment and Society for seed funding the development of the project. We would also like to thank the Associate Editor Tim Green, Thomas Hermans, Landon Halloran and one anonymous reviewers for their comments and suggestions in the revision process.Peer reviewedPostprin

    Characterizing hydrogeologic heterogeneity using lithologic data

    Full text link

    A framework for parameter estimation using sharp-interface seawater intrusion models

    Get PDF
    Funding : This work was supported by Quebec’s MinistĂšre de l'Environnement et de la Lutte contre les changements climatiques (MELCC) [project « Acquisition de connaissances sur les eaux souterraines dans la rĂ©gion des Îles-de-la-Madeleine » (Groundwater characterization project in the Magdalen Islands region)]; and the Fonds quĂ©bĂ©cois de la recherche sur la nature et les technologies (FRQNT) [International internship program accessed through CentrEau, the Quebec Water Research Center]. The authors would like to thank the Municipality of Les Îles-de-la-Madeleine for providing pumping datasets and information on current and historical groundwater management. They would also like to thank the team at UniversitĂ© Laval working on the Magdalen Islands project, for their help acquiring datasets and for field logistics, John Molson, for proofreading, and finally the two anonymous reviewers for their valuable comments. The authors would also like to thank Vincent Post for discussions on deep open boreholes, and Francesca Lotti and John Doherty for discussions on seawater intrusion modeling and data assimilation. J-C Comte and O Banton acknowledge the financial support from the Fonds d'Action QuĂ©bĂ©cois pour le DĂ©veloppement Durable for the ERT data collection, undertaken as part of the Madelin'Eau consortium (Ageos-Enviro'Puits-Hydriad), and further thank the Municipality of Les Îles-de-la-Madeleine for fieldwork logistical and technical support.Peer reviewedproo

    Investigation of modern leakage based on numerical and geochemical modeling near a municipal well field in Memphis, Tennessee.

    Get PDF
    Local leakage processes and potential migration pathways of modern water (\u3c60 \u3eyears) from the shallow aquifer, into the underlying semiconfined Memphis aquifer, were evaluated to assess the vulnerability of groundwater in Memphis Light, Gas and Water’s (MLGW) Sheahan well field. To identify the source(s) and pathways of modern water, integrated hydrostratigraphic analysis, numerical modeling, hydrologic tracers, and geochemical modeling were utilized. The percentage of modern water present in Memphis aquifer production wells is estimated using inverse geochemical modeling, lumped parameter modeling, and solute transport modeling with Modular Transport, 3-Dimensional, Multi-Species model (MT3DMS). The mixing percentages determined from lumped parameter modeling and MT3DMS are generally in agreement except well 87A, estimating up to 14.3% and 15.3%, respectively. The significant mixing fraction difference at 87A might account for the missing hydrogeologic connection in the groundwater model on the eastern part of the well field. Estimates for the apparent age of the modern water derived from MT3DMS fall within the age range obtained from environmental tracer data (3H/3He). However, the age distributions from the MT3DMS model are limited to 60 years or less, resulting in a younger mean age than the tracer-based apparent ages. Thus, the MT3DMS model, calibrated with long-term tracer data could simulate the mean age and mixing percentage of modern water while emphasizing the importance of accurate hydrogeologic conceptualizations at the Sheahan well field. As a result, tracer data and solute transport modeling can identify vulnerabilities and ensure the long-term sustainability of the Sheahan well field

    Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities

    Get PDF
    Sandstone aquifers are commonly assumed to represent porous media characterized by a permeable matrix. However, such aquifers may be heavy fractured when rock properties and timing of deformation favour brittle failure and crack opening. In many aquifer types, fractures associated with faults, bedding planes and stratabound joints represent preferential pathways for fluids and contaminants. In this paper, well test and outcrop-scale studies reveal how strongly lithified siliciclastic rocks may be entirely dominated by fracture flow at shallow depths (≀ 180 m), similar to limestone and crystalline aquifers. However, sedimentary heterogeneities can primarily control fluid flow where fracture apertures are reduced by overburden pressures or mineral infills at greater depths. The Triassic St Bees Sandstone Formation (UK) of the East Irish Sea Basin represents an optimum example for study of the influence of both sedimentary and tectonic aquifer heterogeneities in a strongly lithified sandstone aquifer-type. This fluvial sedimentary succession accumulated in rapidly subsiding basins, which typically favours preservation of complete depositional cycles including fine grained layers (mudstone and silty sandstone) interbedded in sandstone fluvial channels. Additionally, vertical joints in the St Bees Sandstone Formation form a pervasive stratabound system whereby joints terminate at bedding discontinuities. Additionally, normal faults are present through the succession showing particular development of open-fractures. Here, the shallow aquifer (depth ≀ 180 m) was characterized using hydro-geophysics. Fluid temperature, conductivity and flow-velocity logs record inflows and outflows from normal faults, as well as from pervasive bed-parallel fractures. Quantitative flow logging analyses in boreholes that cut fault planes indicates that zones of fault-related open fractures characterize ~ 50% of water flow. The remaining flow component is dominated by bed-parallel fractures. However, such sub-horizontal fissures become the principal flow conduits in wells that penetrate the exterior parts of fault damage zones, as well as in non-faulted areas. The findings of this study have been compared with those of an earlier investigation of the deeper St Bees Sandstone aquifer (180 to 400 m subsurface depth) undertaken as part of an investigation for a proposed nuclear waste repository. The deeper aquifer is characterized by significantly lower transmissivities. High overburden pressure and the presence of mineral infillings, have reduced the relative impact of tectonic heterogeneities on transmissivity here, thereby allowing matrix flow in the deeper part of the aquifer. The St Bees Sandstone aquifer contrasts the hydraulic behaviour of low-mechanically resistant sandstone rock-types. In fact, the UK Triassic Sandstone of the Cheshire Basin is low-mechanically resistant and flow is supported both by matrix and fracture. Additionally, faults in such weak-rocks are dominated by granulation seams representing flow-barriers which strongly compartmentalize the UK Triassic Sandstone in the Cheshire Basin
    • 

    corecore