937 research outputs found

    A systematic literature review

    Get PDF
    Barriguinha, A., Neto, M. D. C., & Gil, A. (2021). Vineyard yield estimation, prediction, and forecasting: A systematic literature review. Agronomy, 11(9), 1-27. [1789]. https://doi.org/10.3390/agronomy11091789Purpose—knowing in advance vineyard yield is a critical success factor so growers and winemakers can achieve the best balance between vegetative and reproductive growth. It is also essential for planning and regulatory purposes at the regional level. Estimation errors are mainly due to the high inter-annual and spatial variability and inadequate or poor performance sampling methods; therefore, improved applied methodologies are needed at different spatial scales. This paper aims to identify the alternatives to traditional estimation methods. Design/methodology/approach—this study consists of a systematic literature review of academic articles indexed on four databases collected based on multiple query strings conducted on title, abstract, and keywords. The articles were reviewed based on the research topic, methodology, data requirements, practical application, and scale using PRISMA as a guideline. Findings—the methodological approaches for yield estimation based on indirect methods are primarily applicable at a small scale and can provide better estimates than the traditional manual sampling. Nevertheless, most of these approaches are still in the research domain and lack practical applicability in real vineyards by the actual farmers. They mainly depend on computer vision and image processing algorithms, data-driven models based on vegetation indices and pollen data, and on relating climate, soil, vegetation, and crop management variables that can support dynamic crop simulation models. Research limitations—this work is based on academic articles published before June 2021. Therefore, scientific outputs published after this date are not included. Originality/value—this study contributes to perceiving the approaches for estimating vineyard yield and identifying research gaps for future developments, and supporting a future research agenda on this topic. To the best of the authors’ knowledge, it is the first systematic literature review fully dedicated to vineyard yield estimation, prediction, and forecasting methods.publishersversionpublishe

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    A Mixed Data-Based Deep Neural Network to Estimate Leaf Area Index in Wheat Breeding Trials

    Get PDF
    Remote and non-destructive estimation of leaf area index (LAI) has been a challenge in the last few decades as the direct and indirect methods available are laborious and time-consuming. The recent emergence of high-throughput plant phenotyping platforms has increased the need to develop new phenotyping tools for better decision-making by breeders. In this paper, a novel model based on artificial intelligence algorithms and nadir-view red green blue (RGB) images taken from a terrestrial high throughput phenotyping platform is presented. The model mixes numerical data collected in a wheat breeding field and visual features extracted from the images to make rapid and accurate LAI estimations. Model-based LAI estimations were validated against LAI measurements determined non-destructively using an allometric relationship obtained in this study. The model performance was also compared with LAI estimates obtained by other classical indirect methods based on bottom-up hemispherical images and gaps fraction theory. Model-based LAI estimations were highly correlated with ground-truth LAI. The model performance was slightly better than that of the hemispherical image-based method, which tended to underestimate LAI. These results show the great potential of the developed model for near real-time LAI estimation, which can be further improved in the future by increasing the dataset used to train the model

    Drones and Digital Photogrammetry: From Classifications to Continuums for Monitoring River Habitat and Hydromorphology

    Get PDF
    Recently, we have gained the opportunity to obtain very high-resolution imagery and topographic data of rivers using drones and novel digital photogrammetric processing techniques. The high-resolution outputs from this method are unprecedented, and provide the opportunity to move beyond river habitat classification systems, and work directly with spatially explicit continuums of data. Traditionally, classification systems have formed the backbone of physical river habitat monitoring for their ease of use, rapidity, cost efficiency, and direct comparability. Yet such classifications fail to characterize the detailed heterogeneity of habitat, especially those features which are small or marginal. Drones and digital photogrammetry now provide an alternative approach for monitoring river habitat and hydromorphology, which we review here using two case studies. First, we demonstrate the classification of river habitat using drone imagery acquired in 2012 of a 120 m section of the San Pedro River in Chile, which was at the technological limits of what could be achieved at that time. Second, we review how continuums of data can be acquired, using drone imagery acquired in 2016 from the River Teme in Herefordshire, England. We investigate the precision and accuracy of these data continuums, highlight key current challenges, and review current best practices of data collection, processing, and management. We encourage further quantitative testing and field applications. If current difficulties can be overcome, these continuums of geomorphic and hydraulic information hold great potential for providing new opportunities for understanding river systems to the benefit of both river science and management

    GeoAI approach to Vineyard Yield Estimation

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Geographic Information SystemsKnowing in advance vineyard yield is a key issue for growers, winemakers, policy makers, and regulators being fundamental to achieve the best balance between vegetative and reproductive growth, and to allow more informed decisions like thinning, irrigation and nutrient management, schedule harvest, optimize winemaking operations, program crop insurance, fraud detection and grape picking workforce demand. In a long-term scenario of perceived climate change, it is also essential for planning and regulatory purposes at the regional level. Estimating yield is complex and requires knowing driving factors related to climate, plant, and crop management that directly influence the number of clusters per vine, berries per cluster, and berry weight. These three yield components explain 60%, 30%, and 10% of the yield. The traditional methods are destructive, labor-demanding, and time-consuming, with low accuracy primarily due to operator errors and sparse sampling (compared to the inherent spatial variability in a production vineyard). Those are supported by manual sampling, where yield is estimated by sampling clusters weight and the number of clusters per vine, historical data, and extrapolation considering the number of vines in a plot. As the extensive research in the area clearly shows, improved applied methodologies are needed at different spatial scales. The methodological approaches for yield estimation based on indirect methods are primarily applicable at small scale and can provide better estimates than the traditional manual sampling. They mainly depend on computer vision and image processing algorithms, data-driven models based on vegetation indices and pollen data, and on relating climate, soil, vegetation, and crop management variables that can support dynamic crop simulation models. Despite surpassing the limitations assigned to traditional manual sampling methods with the same or better results on accuracy, they still lack a fundamental key aspect: the real application in commercial vineyards. Another gap is the lack of solutions for estimating yield at broader scales (e.g., regional level). The perception is that decisions are more likely to take place on a smaller scale, which in some cases is inaccurate. It might be the case in regulated areas and areas where support for small viticulturists is needed and made by institutions with proper resources and a large area of influence. This is corroborated by the fact that data-driven models based on Trellis Tension and Pollen traps are being used for yield estimation at regional scales in real environments in different regions of the world. The current dissertation consists of the first study to identify through a systematic literature review the research approaches for predicting yield in vineyards for wine production that can serve as an alternative to traditional estimation methods, to characterize the different new approaches identifying and comparing their applicability under field conditions, scalability concerning the objective, accuracy, advantages, and shortcomings. In the second study following the identified research gap, a yield estimation model based on Geospatial Artificial Intelligence (GeoAI) with remote sensing and climate data and a machine-learning approach was developed. Using a satellite-based time-series of Normalized Difference Vegetation Index (NDVI) calculated from Sentinel 2 images and climate data acquired by local automatic weather stations, a system for yield prediction based on a Long Short-Term Memory (LSTM) neural network was implemented. The results show that this approach makes it possible to estimate wine grape yield accurately in advance at different scales

    Drones and digital photogrammetry: from classifications to continuums for monitoring river habitat and hydromorphology

    Get PDF
    Recently, we have gained the opportunity to obtain very high-resolution imagery and topographic data of rivers using drones and novel digital photogrammetric processing techniques. The high-resolution outputs from this method are unprecedented, and provide the opportunity to move beyond river habitat classification systems, and work directly with spatially explicit continuums of data. Traditionally, classification systems have formed the backbone of physical river habitat monitoring for their ease of use, rapidity, cost efficiency, and direct comparability. Yet such classifications fail to characterize the detailed heterogeneity of habitat, especially those features which are small or marginal. Drones and digital photogrammetry now provide an alternative approach for monitoring river habitat and hydromorphology, which we review here using two case studies. First, we demonstrate the classification of river habitat using drone imagery acquired in 2012 of a 120 m section of the San Pedro River in Chile, which was at the technological limits of what could be achieved at that time. Second, we review how continuums of data can be acquired, using drone imagery acquired in 2016 from the River Teme in Herefordshire, England. We investigate the precision and accuracy of these data continuums, highlight key current challenges, and review current best practices of data collection, processing, and management. We encourage further quantitative testing and field applications. If current difficulties can be overcome, these continuums of geomorphic and hydraulic information hold great potential for providing new opportunities for understanding river systems to the benefit of both river science and management

    Determination of munsell soil colour using smartphones

    Get PDF
    Soil colour is one of the most important factors in agriculture for monitoring soil health and determining its properties. For this purpose, Munsell soil colour charts are widely used by archaeologists, scientists, and farmers. The process of determining soil colour from the chart is subjective and error-prone. In this study, we used popular smartphones to capture soil colours from images in the Munsell Soil Colour Book (MSCB) to determine the colour digitally. These captured soil colours are then compared with the true colour determined using a commonly used sensor (Nix Pro-2). We have observed that there are colour reading discrepancies between smartphone and Nix Pro-provided readings. To address this issue, we investigated different colour models and finally introduced a colour-intensity relationship between the images captured by Nix Pro and smartphones by exploring different distance functions. Thus, the aim of this study is to determine the Munsell soil colour accurately from the MSCB by adjusting the pixel intensity of the smartphone-captured images. Without any adjustment when the accuracy of individual Munsell soil colour determination is only (Formula presented.) for the top 5 predictions, the accuracy of the proposed method is (Formula presented.), which is significant. © 2023 by the authors

    Landslide monitoring using mobile device and cloud-based photogrammetry

    Get PDF
    PhD ThesisLandslides are one of the most commonly occurring natural disasters that can cause a serious threat to human life and society, in addition to significant economic loss. Investigation and monitoring of landslides are important tasks in geotechnical engineering in order to mitigate the hazards created by such phenomena. However, current geomatics approaches used for precise landslide monitoring are largely inappropriate for initial assessment by an engineer over small areas due to the labourintensive and costly methods often adopted. Therefore, the development of a costeffective landslide monitoring system for real-time on-site investigation is essential to aid initial geotechnical interpretation and assessment. In this research, close-range photogrammetric techniques using imagery from a mobile device camera (e.g. a modern smartphone) were investigated as a low-cost, non-contact monitoring approach to on-site landslide investigation. The developed system was implemented on a mobile platform with cloud computing technology to enable the potential for real-time processing. The system comprised the front-end service of a mobile application controlled by the operator and a back-end service employed for photogrammetric measurement and landslide monitoring analysis. In terms of the backend service, Structure-from-Motion (SfM) photogrammetry was implemented to provide fully-automated processing to offer user-friendliness to non-experts. This was integrated with developed functions that were used to enhance the processing performance and deliver appropriate photogrammetric results for assessing landslide deformations. In order to implement this system with a real-time response, the cloud-based system required data transfer using Internet services via a modern 4G/5G network. Furthermore, the relationship between the number of images and image size was investigated to optimize data processing. The potential of the developed system for monitoring landslides was investigated at two different real-world UK sites, comprising a natural earth-flow landslide and coastal cliff erosion. These investigations demonstrated that the cloud-based photogrammetric measurement system was capable of providing three-dimensional results to subdecimeter-level accuracy. The results of the initial assessments for on-site investigation could be effectively presented on the mobile device through visualisation and/or statistical quantification of the landslide changes at a local-scale.Royal Thai Government and Naresuan University for the scholarship and financial suppor

    Development of inventory datasets through remote sensing and direct observation data for earthquake loss estimation

    Get PDF
    This report summarizes the lessons learnt in extracting exposure information for the three study sites, Thessaloniki, Vienna and Messina that were addressed in SYNER-G. Fine scale information on exposed elements that for SYNER-G include buildings, civil engineering works and population, is one of the variables used to quantify risk. Collecting data and creating exposure inventories is a very time-demanding job and all possible data-gathering techniques should be used to address the data shortcoming problem. This report focuses on combining direct observation and remote sensing data for the development of exposure models for seismic risk assessment. In this report a summary of the methods for collecting, processing and archiving inventory datasets is provided in Chapter 2. Chapter 3 deals with the integration of different data sources for optimum inventory datasets, whilst Chapters 4, 5 and 6 provide some case studies where combinations between direct observation and remote sensing have been used. The cities of Vienna (Austria), Thessaloniki (Greece) and Messina (Italy) have been chosen to test the proposed approaches.JRC.G.5-European laboratory for structural assessmen
    • …
    corecore