14,498 research outputs found

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Doctor of Philosophy

    Get PDF
    dissertationSnow and ice cover exhibits a high degree of spatial and temporal variability. Data from multispectral optical remote sensing instruments such as Landsat are an underutilized resource that can extend our ability for mapping these phenomena. High resolution imagery is used to demonstrate that even at finer spatial resolutions (below 100 m), pixels with partial snow cover are common throughout the year and nearly ubiquitous during the meltout period. This underscores the importance of higher spatial resolution datasets for snow cover monitoring as well as the utility of fractional snow covered area (fSCA) monitoring approaches. Landsat data are used to develop a fully automated approach for mapping persistent ice and snow cover (PISC). This approach relies on the availability of numerous Landsat scenes, an improved technique for automated cloud cover mapping, and a series of automated postprocessing routines. Validation at 12 test sites suggest that the automated PISC mapping approach provides a good approximation of debris-free glacier extent across the Arctic. The PISC mapping approach is then used to produce the first single-source, temporally well-constrained (2010-2014) map of PISC across the conterminous western U.S. The Landsat-derived PISC map is more accurate than both a previously published dataset based on aerial photography acquired during the 1960s, 1970s and 1980s and the National Land Cover Database (NLCD) 2011 extent of perennial snow and ice cover. Further analysis indicates differences between the newly developed Landsat-derived PISC dataset and the previously published glacier dataset can likely be attributed to changes in the extent of PISC over time. Finally, in order to map mean annual snow cover persistence across the entire landscape, we implement a novel canopy adjustment approach designed to improve the accuracy of Landsat-derived fSCA in forested areas. In situ observations indicate canopy-adjusted snow covered area calculated from all available Landsat scenes can provide an accurate estimate of mean annual snow cover duration. The work presented here lays the groundwork for addressing scientific questions regarding the spatial and temporal variability of snow cover, snow accumulation and ablation processes, and the impact of changes in snow cover on physical and ecological systems

    Automatic retrieval of crop characteristics: an example for hyperspectral AHS data from the AgriSAR campaign.

    Get PDF
    This paper presents the results of automated extraction of crop characteristics from hyperspectral earth observation data. The data was acquired with an airborne AHS imaging spectrometer in the framework of the joint European AgriSAR 2006 campaign. The AgriSAR campaign was directed by the ESA and took place at the DEMMIN test site in northeast Germany, an agricultural area dominated by large monocultures. An important objective of this campaign was to establish to what degree novel radar and optical technologies are able to provide accurate agro-meteorological parameters for precision farming purposes. Parameter retrieval in this study was performed with the CRASh approach, a software module based on the inversion of radiative transfer models. CRASh was developed at DLR as part of an automated operative processing chain for future hyperspectral missions. Validation of the model inversion results was performed with field measurements of leaf area index and leaf chlorophyll content which were carried out for winter wheat, winter barley, winter rape, maize, and sugar beet at two time steps during the 2006 growing season. Although spatial patterns of the model results generally coincide with the trends observed in the field, absolute accuracy of the fully automatically extracted variables appeared insufficient for precision agriculture purposes. The unsatisfying results are ascribed to a combination of causes, including angular anisotropy across the swath-width of the flight lines, the configuration of the applied bands, and the large number of model inversion solutions inherent to an automated environment in which little additional information on the observed canopy is present. Employing the airborne version of CRASh and incorporating a priori information on land cover and variable distributions is expected to drastically increase the retrieval performance

    An ocean-colour time series for use in climate studies: the experience of the ocean-colour climate change initiate (OC-CCI)

    Get PDF
    Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high spatial resolution, derived from ocean-colour data, are key to studying the dynamics of phytoplankton at seasonal and inter-annual scales; their role in marine biogeochemistry; the global carbon cycle; the modulation of how phytoplankton distribute solar-induced heat in the upper layers of the ocean; and the response of the marine ecosystem to climate variability and change. However, generating a long time series of these products from ocean colour data is not a trivial task: algorithms that are best suited for climate studies have to be selected from a number that are available for atmospheric correction of the satellite signal and for retrieval of chlorophyll-a concentration; since satellites have a finite life span, data from multiple sensors have to be merged to create a single time series, and any uncorrected inter-sensor biases could introduce artefacts in the series, e.g., different sensors monitor radiances at different wavebands such that producing a consistent time series of reflectances is not straightforward. Another requirement is that the products have to be validated against in situ observations. Furthermore, the uncertainties in the products have to be quantified, ideally on a pixel-by-pixel basis, to facilitate applications and interpretations that are consistent with the quality of the data. This paper outlines an approach that was adopted for generating an ocean-colour time series for climate studies, using data from the MERIS (MEdium spectral Resolution Imaging Spectrometer) sensor of the European Space Agency; the SeaWiFS (Sea viewingWide-Field-of-view Sensor) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer-Aqua) sensors from the National Aeronautics and Space Administration (USA); and VIIRS (Visible and Infrared Imaging Radiometer Suite) from the National Oceanic and Atmospheric Administration (USA). The time series now covers the period from late 1997 to end of 2018. To ensure that the products meet, as well as possible, the requirements of the user community, marine-ecosystem modellers, and remote-sensing scientists were consulted at the outset on their immediate and longer-term requirements as well as on their expectations of ocean-colour data for use in climate research. Taking the user requirements into account, a series of objective criteria were established, against which available algorithms for processing ocean-colour data were evaluated and ranked. The algorithms that performed best with respect to the climate user requirements were selected to process data from the satellite sensors. Remote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted to match the wavebands of SeaWiFS. Overlapping data were used to correct for mean biases between sensors at every pixel. The remote-sensing reflectance data derived from the sensors were merged, and the selected in-water algorithm was applied to the merged data to generate maps of chlorophyll concentration, inherent optical properties at SeaWiFS wavelengths, and the diffuse attenuation coefficient at 490 nm. The merged products were validated against in situ observations. The uncertainties established on the basis of comparisons with in situ data were combined with an optical classification of the remote-sensing reflectance data using a fuzzy-logic approach, and were used to generate uncertainties (root mean square difference and bias) for each product at each pixel

    The value of remote sensing techniques in supporting effective extrapolation across multiple marine spatial scales

    Get PDF
    The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process

    Snow Cover Monitoring from Remote-Sensing Satellites: Possibilities for Drought Assessment

    Get PDF
    Snow cover is an important earth surface characteristic because it influences partitioning of the surface radiation, energy, and hydrologic budgets. Snow is also an important source of moisture for agricultural crops and water supply in many higher latitude or mountainous areas. For instance, snowmelt provides approximately 50%–80% of the annual runoff in the western United States (Pagano and Garen, 2006) and Canadian Prairies (Gray et al., 1989; Fang and Pomeroy, 2007), which substantially impacts warm season hydrology. Limited soil moisture reserves from the winter period can result in agricultural drought (i.e., severe early growing season vegetation stress if rainfall deficits occur during that period), which can be prolonged or intensified well into the growing season if relatively dry conditions persist. Snow cover deficits can also result in hydrological drought (i.e., severe deficits in surface and subsurface water reserves including soil moisture, streamflow, reservoir and lake levels, and groundwater) since snowmelt runoff is the primary source of moisture to recharge these reserves for a wide range of agricultural, commercial, ecological, and municipal purposes. Semiarid regions that rely on snowmelt are especially vulnerable to winter moisture shortfalls since these areas are more likely to experience frequent droughts. In the Canadian Prairies, more than half the years of three decades (1910–1920, 1930–1939, and 1980–1989) were in drought. Wheaton et al. (2005) reported exceptionally low precipitation and low snow cover in the winter of 2000–2001, with the greatest anomalies of precipitation in Alberta and western Saskatchewan along with near-normal temperature in most of southern Canada. The reduced snowfall led to lower snow accumulation. A loss in agricultural production over Canada by an estimated $3.6 billion in 2001–2002 was attributed to this drought. Fang and Pomeroy (2008) analyzed the impacts of the most recent and severe drought of 1999/2004–2005 for part of the Canadian Prairies on the water supply of a wetland basin by using a physically based cold region hydrologic modeling system. Simulation results showed that much lower winter precipitation, less snow accumulation, and shorter snow cover duration were associated with much lower discharge from snowmelt runoff to the wetland area during much of the drought period of 1999/2004–2005 than during the nondrought period of 2005/2006

    Snow Cover Monitoring from Remote-Sensing Satellites: Possibilities for Drought Assessment

    Get PDF
    Snow cover is an important earth surface characteristic because it influences partitioning of the surface radiation, energy, and hydrologic budgets. Snow is also an important source of moisture for agricultural crops and water supply in many higher latitude or mountainous areas. For instance, snowmelt provides approximately 50%–80% of the annual runoff in the western United States (Pagano and Garen, 2006) and Canadian Prairies (Gray et al., 1989; Fang and Pomeroy, 2007), which substantially impacts warm season hydrology. Limited soil moisture reserves from the winter period can result in agricultural drought (i.e., severe early growing season vegetation stress if rainfall deficits occur during that period), which can be prolonged or intensified well into the growing season if relatively dry conditions persist. Snow cover deficits can also result in hydrological drought (i.e., severe deficits in surface and subsurface water reserves including soil moisture, streamflow, reservoir and lake levels, and groundwater) since snowmelt runoff is the primary source of moisture to recharge these reserves for a wide range of agricultural, commercial, ecological, and municipal purposes. Semiarid regions that rely on snowmelt are especially vulnerable to winter moisture shortfalls since these areas are more likely to experience frequent droughts. In the Canadian Prairies, more than half the years of three decades (1910–1920, 1930–1939, and 1980–1989) were in drought. Wheaton et al. (2005) reported exceptionally low precipitation and low snow cover in the winter of 2000–2001, with the greatest anomalies of precipitation in Alberta and western Saskatchewan along with near-normal temperature in most of southern Canada. The reduced snowfall led to lower snow accumulation. A loss in agricultural production over Canada by an estimated $3.6 billion in 2001–2002 was attributed to this drought. Fang and Pomeroy (2008) analyzed the impacts of the most recent and severe drought of 1999/2004–2005 for part of the Canadian Prairies on the water supply of a wetland basin by using a physically based cold region hydrologic modeling system. Simulation results showed that much lower winter precipitation, less snow accumulation, and shorter snow cover duration were associated with much lower discharge from snowmelt runoff to the wetland area during much of the drought period of 1999/2004–2005 than during the nondrought period of 2005/2006

    The Role of Citizen Science in Earth Observation

    Get PDF
    Citizen Science (CS) and crowdsourcing are two potentially valuable sources of data for Earth Observation (EO), which have yet to be fully exploited. Research in this area has increased rapidly during the last two decades, and there are now many examples of CS projects that could provide valuable calibration and validation data for EO, yet are not integrated into operational monitoring systems. A special issue on the role of CS in EO has revealed continued trends in applications, covering a diverse set of fields from disaster response to environmental monitoring (land cover, forests, biodiversity and phenology). These papers touch upon many key challenges of CS including data quality and citizen engagement as well as the added value of CS including lower costs, higher temporal frequency and use of the data for calibration and validation of remotely-sensed imagery. Although still in the early stages of development, CS for EO clearly has a promising role to play in the future
    • …
    corecore