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15 Snow Cover Monitoring 
from Remote-Sensing 
Satellites
Possibilities for Drought 
Assessment

Cezar Kongoli, Peter Romanov, and Ralph Ferraro

15.1  INTRODUCTION

Snow cover is an important earth surface characteristic because it influences par-
titioning of the surface radiation, energy, and hydrologic budgets. Snow is also an 
important source of moisture for agricultural crops and water supply in many higher 
latitude or mountainous areas. For instance, snowmelt provides approximately 
50%–80% of the annual runoff in the western United States (Pagano and Garen, 
2006) and Canadian Prairies (Gray et al., 1989; Fang and Pomeroy, 2007), which 
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substantially impacts warm season hydrology. Limited soil moisture reserves from 
the winter period can result in agricultural drought (i.e., severe early growing season 
vegetation stress if rainfall deficits occur during that period), which can be prolonged 
or intensified well into the growing season if relatively dry conditions persist. Snow 
cover deficits can also result in hydrological drought (i.e., severe deficits in surface 
and subsurface water reserves including soil moisture, streamflow, reservoir and lake 
levels, and groundwater) since snowmelt runoff is the primary source of moisture 
to recharge these reserves for a wide range of agricultural, commercial, ecologi-
cal, and municipal purposes. Semiarid regions that rely on snowmelt are especially 
vulnerable to winter moisture shortfalls since these areas are more likely to experi-
ence frequent droughts. In the Canadian Prairies, more than half the years of three 
decades (1910–1920, 1930–1939, and 1980–1989) were in drought. Wheaton et al. 
(2005) reported exceptionally low precipitation and low snow cover in the winter 
of 2000–2001, with the greatest anomalies of precipitation in Alberta and western 
Saskatchewan along with near-normal temperature in most of southern Canada. The 
reduced snowfall led to lower snow accumulation. A loss in agricultural produc-
tion over Canada by an estimated $3.6 billion in 2001–2002 was attributed to this 
drought. Fang and Pomeroy (2008) analyzed the impacts of the most recent and 
severe drought of 1999/2004–2005 for part of the Canadian Prairies on the water 
supply of a wetland basin by using a physically based cold region hydrologic model-
ing system. Simulation results showed that much lower winter precipitation, less snow 
accumulation, and shorter snow cover duration were associated with much lower dis-
charge from snowmelt runoff to the wetland area during much of the drought period 
of 1999/2004–2005 than during the nondrought period of 2005/2006.

Given the importance of snowmelt and its potential impact on water resources of 
snow-covered regions, the monitoring of snow is an integral part of water manage-
ment in these regions. Hydrologically important snowpack measurements are the 
snow water equivalent (SWE), snow depth (SD), and snow-covered area (SCA). SWE 
refers to the amount of water (frozen and liquid) contained in the snowpack (calcu-
lated from SD multiplied by effective snow cover density). It is the most important 
snow parameter for snowmelt runoff forecasting before the onset of snowmelt sea-
son. For example, in the western United States and Alaska, the U.S. Department 
of Agriculture (USDA) Natural Resources Conservation Service (NRCS) maintains 
an automated SWE monitoring system called SNOwpack TELemetry (SNOTEL) 
and a network of manual snow courses that complement SNOTEL, which are used 
in combination with other climatological and streamflow data to create water sup-
ply forecasts (Pagano and Garren, 2006). SD is physically related to SWE and is 
routinely measured from ground-based meteorological stations. Daily observa-
tions of SD have been made dating from the late 1800s in a few of these countries 
(e.g., Switzerland, United States, former Soviet Union, and Finland). SCA indicates 
the spatial extent or fraction of land surface covered by snow. SCA monitoring can 
be used to estimate the snow duration, which has a stronger physical relationship 
with both SD and SWE. For example, in areas where the average winter temperature 
is below or close to the freezing point, moisture in the snowpack gradually accu-
mulates throughout the winter season, and longer snow duration typically results 
in larger SWE by the beginning of spring snowmelt. Abnormally short duration of 
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snow cover may be indicative of the lack of winter precipitation and therefore may 
be considered an early indicator of potential early spring drought.

The spatial distribution of ground-based stations measuring SD and SWE is gen-
erally skewed to low elevation regions of the Northern Hemisphere midlatitudes and 
to snow courses in mountainous regions. Also, most stations are located in relatively 
close proximity to urban areas for access purposes, and thus large geographic expanses 
may go unmonitored. In addition, the current tendency to reduce the number of man-
ual stations and to replace manual stations with automated ones results in a continu-
ous reduction in the amount of available ground-based information on snow, because 
some automated stations are not equipped with SD sensors. Satellite observations, on 
the other hand, can complement surface observations by providing information on the 
snow cover distribution and seasonal change with much-improved spatial coverage 
and temporal frequency that cannot be matched by in situ measurements.

In this chapter, the main satellite remote-sensing methods and applications for 
snow cover monitoring are reviewed, with an emphasis on the monitoring of SCA, 
SWE, and SD parameters. First, an overview of snow cover monitoring using optical 
imagery is provided, including a discussion of the main physical principles and sen-
sor characteristics, operational products, and validation studies. Snow cover moni-
toring using passive microwave (MW) imagery is then summarized in a similar 
fashion, with additional discussion of data assimilation techniques used for improved 
monitoring of SWE and SD, which cannot be accomplished solely by optical or MW 
remote-sensing methods with sufficient accuracy. Multisensor blending techniques 
that utilize information from visible, infrared (IR), and MW observations are then 
described. Lastly, an example of applying remote sensing for SCA monitoring and 
early drought prediction is presented over the Ukraine.

15.2  �SNOW MAPPING WITH OPTICAL 
SATELLITE OBSERVATIONS

15.2.1  Physical Principles and Sensor Characteristics

Snow is among the most “colorful” natural materials (Dozier et al., 2009) in that it 
possesses a strong spectral gradient in reflectance ranging from a high reflectance 
(albedo) in the visible wavelengths to low reflectance in the middle IR wavelengths 
(Wiscombe and Warren, 1980). Figure 15.1 shows plots of modeled spectral distribu-
tion of snow reflectance in the visible (0.4–0.7 μm) and near (0.7–1.3 μm) and middle 
(1.3–2 μm) IR wavelengths for a range of snow grain sizes. As shown, snow reflec-
tance is high and relatively insensitive to grain size in the visible range, whereas 
reflectance decreases and its sensitivity to grain size increases dramatically in the 
near and middle IR ranges. This characteristic spectral response in the optical wave-
lengths distinguishes snow from most other natural surfaces (e.g., soil, water, and 
vegetation), as shown in Figure 15.2. In the far IR wavelengths (not shown), snow 
emits thermal radiation close to that of a blackbody, and, thus, its brightness temper-
ature as observed by the satellite sensor depends mainly on the physical temperature 
of the top thin layer of the snowpack. In these wavelengths, the snow brightness tem-
perature is relatively low, which is also useful information for snow identification.
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Most current meteorological satellite instruments collect observations in spec-
tral regions centered in the visible at around 0.6 μm, the middle IR at 1.6 μm and 
3.7–3.9 μm, and the thermal IR at 10–12 μm. Therefore, data collected from these 
instruments can generally be used to identify snow and map snow cover distribution. 
Snow retrievals from satellite optical measurements require clear sky conditions and 
sufficient daylight.

The purpose of satellite-based snow identification and mapping algorithms is to 
distinguish snow-covered land surface from snow-free land and clouds. Automated 

1.0

0.8

0.6

0.4

0.2

0.0
0.4 0.6 0.8 1.0 1.2 1.4

Wavelength (µm)

r= 0.05 mm
r= 0.20 mm

r= 0.50 mm
r= 1.00 mm

Sn
ow

 re
fle

ct
an

ce

1.6 1.8 2.0 2.2 2.4

FIGURE 15.1  Snow reflectance spanning the visible, near-IR, and mid-IR wavelengths for 
a range of snow grain sizes (r). (From Dozier, J. and T.H. Painter, Annu. Rev. Earth Planet. 
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algorithms to identify snow usually incorporate a set of threshold tests that utilize 
satellite-observed reflectance and brightness temperature values in the spectral bands 
mentioned earlier, along with specific spectral indices. The Snow Index (SI), defined 
as a simple ratio of the reflectance in the visible (Rvis) and middle IR (Rmir), has 
been applied to identify snow in the algorithm described in Romanov et al. (2000). 
The snow detection algorithm of Hall et al. (2002) uses the normalized difference 
between reflectance in the visible and middle IR called the Normalized Difference 
Snow Index (NDSI):

	 NDSI
R R
R R

vis mir

vis mir

= −
+

	 (15.1)

Clouds and snow-free land surfaces typically exhibit lower values of SI and NDSI 
than snow-covered land. In the snow-mapping algorithm of Hall et al. (2002), cloud-
free pixels having an NDSI value >0.4, a visible reflectance >11%, and IR brightness 
temperature below 283 K are classified as snow covered.

The accuracy of snow cover maps can be affected by clouds that exhibit spectral 
features similar to snow, because such clouds may be misidentified as snow by the 
automated algorithm. Masking of snow cover by forest canopy changes the spectral 
reflectance of the scene by decreasing reflectance in the visible band and increasing 
it in the middle IR. Very dense boreal forests may mask the snow cover on the forest 
floor almost completely and therefore prevent proper snow detection and mapping 
with satellite data. The SD and SWE parameters are not typically retrieved from opti-
cal imagery since the snow reflectance is influenced by only a shallow layer of snow.

15.2.2  Primary Optical-Based Products

Optical measurements from earth-observing satellites present an important tool for 
monitoring SCA. The large number of satellite sensors providing measurements in 
the visible and IR spectral range, the relatively high spatial resolution of observations 
(1–4 km), and the relatively simple physical background of snow remote-sensing 
techniques are among the primary factors that explain widespread interest in using 
satellite optical data to develop snow products.

Identification of snow in satellite imagery by visual analysis and interpretation 
is the oldest snow-mapping technique. Since 1972, this approach has been routinely 
used by the National Oceanic and Atmospheric Administration (NOAA) to gener-
ate weekly maps of snow and ice distribution in the Northern Hemisphere. In 1999, 
the computer-based Interactive Multisensor Snow and Ice Mapping System (IMS) 
was implemented to facilitate image analysis by human analysts (Ramsay, 1998). 
This improved the nominal spatial resolution of the maps from 180 to 24 km and 
the temporal resolution from weekly to daily snow-mapping updates. In 2004, the 
spatial resolution of the IMS snow products was further increased to 4 km (Helfrich 
et al., 2007).

When mapping snow cover with IMS, analysts rely primarily on the visible imag-
ery from polar-orbiting and geostationary satellites. The imagery from geostationary 
satellites is utilized in the form of animations, which help to distinguish moving clouds 
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from snow. Quite often, analysts visually observe and map the distribution of snow 
cover through semitransparent clouds. This is an obvious advantage compared to auto-
mated techniques based on optical measurements (discussed later in this section) where 
practically any cloud prevents a reliable characterization of the state of the land sur-
face. Since 2006, the upgraded IMS has had access to several automated snow and ice 
products generated at NOAA and the National Aeronautics and Space Administration 
(NASA), as well as surface in situ SD reports. Recently analysts also started using 
images from live-streaming web cameras throughout the world. Availability of these 
additional sources of information has substantially enhanced the potential of analysts 
to accurately reproduce the snow cover distribution, especially in the case of persistent 
cloud cover when application of satellite visible imagery is ineffective.

Owing to a simple and straightforward satellite image analysis technique and to 
the use of several additional sources of information on snow, interactive snow cover 
maps present a consistent, robust, and highly accurate product. IMS maps of snow and 
ice cover are considered the primary NOAA snow cover product and are incorporated 
in all global and mesoscale operational numerical weather prediction models run 
by NOAA’s National Centers for Environmental Prediction (NCEP). High-spatial-
resolution 4 km IMS maps are updated daily, making them potentially useful for vari-
ous environmental and practical applications at regional and local scales, including 
drought monitoring. With more than 35 years of continuous snow cover monitoring, 
NOAA snow charts also present a unique source of information for global climate 
change studies (Frei and Robinson, 1999). It is important to note, however, that the 
changes in both frequency of map generation and spatial resolution have introduced 
inhomogeneity in the time series and thus substantially reduced the climatological 
value of the IMS-derived data set (Frei, 2009). Since 2007, NOAA interactive snow 
cover maps are produced at the National Ice Center (NIC). Daily IMS products are 
archived and are available from the National Snow and Ice Data Center (NSIDC).

In contrast to interactive snow-mapping techniques (similar to IMS), automated 
algorithms can better utilize the advantages of satellite observations, including high 
spatial resolution, multispectral sampling, and a frequent-repeat observation cycle. 
In the last two decades, data from polar-orbiting satellites have been most frequently 
used for monitoring global snow cover. Since 2000, NASA has produced snow cover 
maps from observations of the Moderate Resolution Imaging Spectroradiometer 
(MODIS) onboard the Terra and Aqua satellites (Hall et al., 2002). A suite of MODIS 
snow products includes global maps of snow cover distribution generated at daily, 
16 day, and monthly time steps at a spatial resolution ranging from 500 m to 20 km 
(http://modis-250 m.nascom.nasa.gov/cgi-bin/browse/browse.cgi). Several algorithms 
have been developed and applied to identify and map snow cover using the Advanced 
Very High Resolution Radiometer (AVHRR) sensor onboard NOAA polar-orbiting 
satellites (e.g., Simpson et al., 1998; Baum and Trepte, 1999). In 2006, an automated 
algorithm to identify snow cover in NOAA AVHRR imagery was implemented at 
NOAA/NESDIS and used to produce daily global snow cover maps at a 4 km spatial 
resolution (http://www.star.nesdis.noaa.gov/smcd/emb/snow/HTML/snow.htm).

Continuous observations from AVHRR onboard different NOAA satellites have 
been available since the late 1970s. This extended time series of AVHRR data repre-
sents a valuable source of information for snow climatology and climate change studies. 
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The Canadian Center for Remote Sensing (CCRS) has consistently reprocessed his-
torical AVHRR data for the time period from 1982 to 2005 to establish snow cover 
climatology over Canada at 1 km resolution (Khlopenkov and Trishchenko, 2007), but 
no attempts to expand these efforts globally have been reported to date.

Most current imaging instruments onboard geostationary satellites provide obser-
vations in the visible, middle IR, and thermal IR spectral bands and thus also allow 
for automated snow cover identification and mapping. The area coverage of geosta-
tionary satellites is generally limited to the area between 65° North and 65° South 
latitude, and thus they can only be used for snow monitoring in the midlatitudes. 
A particular advantage of geostationary satellites is their frequent views, available 
typically at 15 or 30 min intervals. Frequent observations provide more cloud-free 
views during the day and thus help to improve the effective area coverage of the daily 
snow product. A practical way to utilize multiple views from geostationary satellites 
and to reduce cloud contamination in the snow map is to apply a maximum tempera-
ture image compositing technique (e.g., Romanov et al., 2000). For every pixel of an 
image, the observation with the highest IR brightness temperature acquired during 
the day is identified and retained. Since cloudy areas are typically associated with 
lower IR brightness temperatures, the maximum temperature tends to be associated 
with the most cloud-free observations available during the day. Since 1999, this tech-
nique has been routinely used by NOAA/NESDIS for generating automated 4 km 
snow cover maps over North America. Observations from the Spinning Enhanced 
Visible and IR Imager (SEVIRI) onboard another geostationary satellite, Meteosat 
Second Generation (MSG), have also been applied to routinely generate snow maps 
over Europe and Northern Africa (Romanov and Tarpley, 2006; de Wildt et al., 2007).

15.2.3  Validation of Optical Products

A traditional technique for estimating the accuracy of satellite-based snow maps con-
sists of direct comparison with in situ, synchronous surface SD measurements. Daily SD 
reports from first-order stations across the globe and additional stations within regional 
networks (e.g., U.S. Cooperative Network stations) provide the means for year-round 
evaluation of the accuracy of snow cover products in different physiogeographic regions.

Hall and Riggs (2007) analyzed the validation results of the MODIS snow cover 
products from studies over several locations around the world and concluded that the 
accuracy of the 0.5 km resolution snow maps generally exceeds 94%. This estimate 
closely corresponds to the results of Simic et al. (2004), where MODIS maps were 
compared to SD reports from Canadian first-order and climate monitoring network 
stations. However, the latter work demonstrated that the accuracy of MODIS maps, 
as well as the accuracy of other satellite snow remote-sensing products, substan-
tially decreased to 80%–85% over densely forested areas. Masking and shadowing 
of snow cover by the tree canopy along with littering of the snow by tree debris sub-
stantially reduce the visible reflectance of the snow-covered land surface and thus 
complicate proper identification of snow in heavily forested areas. The accuracy of 
snow identification also degrades over shallow or patchy snow cover since portions 
of the snow-free land along with vegetation protrusions through the snowpack make 
the scene look “darker” in the visible spectral bands. Ault et al. (2006) reported only 



366 Remote Sensing of Drought: Innovative Monitoring Approaches

41% correspondence of MODIS snow maps to surface observations when only a 
trace amount of snow cover (<10 mm) was reported on the ground. Snow maps gener-
ated from geostationary satellite data provide a similar level of accuracy as the polar 
satellite data-based products. Romanov et al. (2000) compared GOES-based snow 
maps with observations from U.S. Cooperative Network stations over the continental 
United States and found the two data sets to have an average agreement of 88%.

The estimated accuracy of interactive snow cover maps is similar or slightly 
less than the accuracy of automated products based on optical data (e.g., Romanov 
et al., 2000). It is important, however, for the comparison of reported accuracy of 
automated and interactive snow maps to be performed with care. The accuracy 
of automated optical products characterizes snow retrievals only over limited cloud-
clear areas, whereas interactive snow maps provide continuous (gap-free) coverage of 
the area and thus are typically validated over the whole domain. Although a consider-
able number of snow map validation studies were conducted in the last decade, they 
do not provide comprehensive information on the accuracy of satellite-derived snow 
maps. The principal problem is the very sparse network of meteorological stations and 
in situ measurements at high latitudes where snow cover is most prevalent. Therefore, 
reported validation results characterize the accuracy of snow cover mapping primar-
ily in the midlatitudes. In addition, practically all validation studies have focused on 
North America or Eurasia. Thus, there is considerable uncertainty with respect to the 
accuracy of snow cover mapping in the Southern Hemisphere. It is also important to 
note that results of comparisons with surface observations are not sufficient to make a 
justified conclusion on the comparative accuracy of different automated snow products 
derived from satellite optical measurements. The problem is that this approach does not 
provide any information on the accuracy of cloud identification. Algorithms utilizing 
a more conservative approach for the identification of clear-sky scenes tend to overes-
timate the cloud cover and are more likely to provide a higher accuracy in the mapped 
snow cover distribution. However, this approach also results in larger cloud gaps and 
thus provides information on the snow cover distribution over a smaller area than snow 
products derived with a less conservative clear-scene identification approach.

15.3  �SNOW MAPPING WITH MICROWAVE 
SATELLITE OBSERVATIONS

15.3.1  Physical Principles and Instrument Characteristics

The fundamental reason for using radiation in the MW portion of the electromag-
netic (EM) spectrum for mapping snow cover is that these wavebands provide 
unique information (Woodhouse, 2006) that complements visible remote-sensing 
methods. MW radiation can penetrate clouds, allowing time-continuous monitoring 
of snow cover distribution. MWs can also penetrate a deeper layer of snow cover 
and interact with snow grains in a characteristic fashion, allowing estimation of SD 
and SWE parameters (in addition to SCA), which is not possible with visible imag-
ery. Since natural MW radiation can be observed by passive sensors and artificial 
MW radiation can be generated and sensed by active sensors, the measurements can 
be made during the day or night. However, there are some disadvantages to MW 
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snow imaging. The longer MW wavelengths mean that large antennas (about a meter 
or longer) are required to achieve the spatial resolution appropriate for regional-
scale studies (on the order of several kilometers). Active sensor systems such as the 
Synthetic Aperture Radar (SAR) instruments tend to be the heaviest, most power-
consuming, and data-prolific space-borne instruments. MW sensors are also cur-
rently flown only aboard polar-orbiting satellites, which offer a much lower temporal 
resolution than optical sensors onboard geostationary satellites. In addition, as will 
be explained later, interpretation of MW imagery is often not as easy and straight-
forward as visible imagery.

MW radiation at wavelengths between 0.2 and 1.5 cm, or at frequencies between 
160 and 20 GHz, has been shown to respond to snow cover ice grains in a charac-
teristic fashion where the spectral emissivity and hence the brightness temperature 
as observed by a remote-sensing instrument decreases with increasing frequency. 
This characteristic spectral response is the result of the Rayleigh scattering behavior 
associated with snow grain sizes substantially smaller than the wavelength and its 
transition to Mie scattering behavior at larger grain sizes (for grain sizes comparable 
to the wavelength). Typical snow grains range between 0.2 and 0.5 mm in diameter 
for fine snow cover and 1 and 5 mm for coarse and very coarse grains. Figure 15.3 
shows spectral MW measurements of snow and nonsnow materials made with a 
MW radiometer at 6, 10, 22, 37, and 94 GHz with a vertical polarization. All the 
listed snow types display a monotonic decrease in surface emissivity with increas-
ing frequency, except for snow type 17 (bottom crust) at 94 and 37 GHz frequencies. 
The anomalous spectral response of snow type 17 (higher emissivity at 94 GHz than 
at 37 GHz) is explained by increased absorption (due to the presence of an ice layer) 
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or reduced scattering (due to the geometric optics limit for very large grain sizes) at 
higher frequencies. In contrast, water surfaces show an increase in emissivity with 
increasing frequency, which is typical of absorbing surfaces, whereas bare soils and 
vegetation show relatively small variations in emissivity with frequency.

Of particular importance for the retrieval of snow parameters is the observation 
that the MW spectral response shows dependence on a larger set of snow parameters 
than optical imagery (Table 15.1), which complicates the interpretation of MW imag-
ery for snow identification and mapping. Among the snow parameters affecting the 
MW response, the most important are grain size, SD, SWE, and liquid water content. 
Dense vegetation can also attenuate MW radiation, particularly at higher frequencies 
(20 GHz and above), reducing the signal of the snow underneath. All other param-
eters being equal, an increase in SD or SWE is associated with a steeper emissivity 
gradient with frequency, because of increased scattering caused by a larger number 
of snow grains. Also, coarser-grained snow cover produces a steeper emissivity gra-
dient. A small amount of liquid water in snow dramatically increases emission and 
reduces the scattering response and thus the ability to accurately map SCA, SD, and 
SWE over melting snow cover.

Table 15.2 lists the primary satellite passive MW sensors that are used for global 
mapping of snow cover properties, along with each instrument’s average spatial reso-
lution or the instantaneous field of view (IFOV). As shown, passive MW sensors 
have a coarse spatial resolution compared to optical sensors. This limits the utility 
of MW remote-sensing imagery for local-scale mapping of snow because smaller 
landscape features cannot be spatially resolved.

The earliest MW instrument used to generate snow maps is the Scanning 
Multichannel MW Radiometer (SMMR), flown on the Nimbus-7 Earth satellites and 
launched in 1978, followed by the Special Sensor MW/Imager (SSM/I) sensor on 
the U.S. Defense Meteorological Satellite Program (DMSP) satellites launched in 
1987. The SMMR was an imaging dual polarized five-frequency radiometer (6, 10, 
18, 21, and 37 GHz), while the SSM/I collects data at four frequencies (19, 22, 37, 

TABLE 15.1
Snow Parameters That Affect Visible, Near-IR, IR, 
and MW Spectral Response

Visible Solar 
Albedo

Near-IR 
Solar Albedo

Thermal IR 
Emissivity MW Emissivity

Grain size (+) Yes Yes

Zenith (or nadir) angle (+) Yes Yes Yes

Depth Yes Yes

Contaminants Yes

Liquid water content Yes

Density Yes

Temperature Yes

+ Only if snowpack is thin or impurities are present.
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and 85 GHz). On the SSM/I, both vertical and horizontal polarizations are mea-
sured except at 22 GHz, for which only the vertical polarization is measured. More 
recent instruments include the Advanced MW Scanning Radiometer on the Earth 
Observing System (AMSR-E) flown on the NASA Aqua satellite, the Advanced MW 
Sounding Unit (AMSU) flown on the NOAA-N series and on the Meteorological 
Operational Satellite Programme (METOP-A), and the SSMI/S flown on DMSP. The 
AMSR-E is an imaging dual polarized six-frequency radiometer (6, 10, 18, 22, 37, 
and 89 GHz) with improved spectral and spatial resolution compared to SMMR. The 
AMSU contains both imaging and sounding channels in the 20–180 GHz frequency 
range. The sounding channels in the oxygen and water vapor absorption bands allow 
improved retrieval of important atmospheric parameters such as frozen precipitation 
(Kongoli et al., 2003). However, the AMSU lacks polarization information at the 
imaging channels that are useful for improved snow identification and especially 
snowmelt mapping. The SSMI/S instrument is a hybrid configuration between SSM/I 
and AMSU, containing both the SSM/I imaging and AMSU sounding channels.

15.3.2  Primary Microwave-Based Products

Most SCA retrieval algorithms from passive MW sensors are based on a decision-
tree classification approach. A widely used algorithm is one developed by Grody 
(1991) and Grody and Basist (1996). Scattering surfaces (e.g., snow, deserts, rain, 
and frozen ground) and nonscattering surfaces (e.g., vegetation, bare soil, and water) 
are separated using brightness temperature-based scattering indices, followed by the 

TABLE 15.2
Main MW Sensors Used for Snow Mapping and Associated 
Data Characteristics

Overview of Passive 
MW Satellite 
Instruments Mission Availability IFOVa Comments

SMMR Nimbus 25 Oct. 1978–20 Aug. 1987 18–27 km

SSM/I DMSP July 1987–present 40–60 km

SSMI/S DMSP 18 Oct. 2003–present 31–4 km Replaces 
SSM/I

AMSR ADEOS-II 2003–present 20–30 km

AMSR-E EOS Aqua 4 May 2002–4 Oct. 2011 8–14 km Modified 
from AMSR

AMSR2 GCOM-W Planned Future JAXA 
mission

AMSU NOAA-N 
series 
METOP-A

NOAA-N series since 1998, 
METOP-A since 2004

48–72 km

a	 Sizes at the instrument window channel frequency that occurs in the 30–40 GHz range, which is 
most frequently used for the retrieval of SD or SWE.
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application of additional brightness temperature-based thresholds to remove con-
founding factors (e.g., rain, frozen ground, and cold deserts). The algorithm was first 
applied to SMMR and SSM/I observations and later adopted for application to the 
AMSU (Grody et al., 2000; Kongoli et al., 2005, 2007).

A variety of SD and SWE algorithms exist, including static empirical (Künzi 
et al., 1982; Chang et al., 1987; Goodison, 1989; Kongoli et al., 2005, 2007), dynamic 
empirical (Josberger and Mognard, 2002; Foster et al., 2005), dynamic semiempiri-
cal (Kelly et al., 2003), and dynamic radiative transfer inversion (Pulliainen and 
Hallikainen, 2001) approaches. Empirical algorithms are simple linear regression 
functions that typically relate the difference in measured brightness temperature 
at two lower-frequency atmospheric window channels (i.e., 19 and 37 GHz for the 
SMMR, SSM/I, and AMSR-E, and 23 and 31 GHz for the AMSU instrument) to 
variations in measured SD or SWE. The static algorithms apply one set of regres-
sion coefficients, whereas the dynamic ones apply seasonally and spatially adjusted 
coefficients. Dynamic semiempirical algorithms use simple analytical expressions of 
SWE as a function of satellite brightness temperature derived from radiative trans-
fer models and temporally and spatially varying snow parameters of grain size and 
snow density. The physically based algorithms use nonlinear iterative inversion tech-
niques and radiative transfer snow emission models (Mätzler and Wiesman, 1999; 
Pulliainen et al., 1999; Wiesmann and Mätzler, 1999).

The longest time series of MW observations used for deriving snow cover data 
sets is a 30 year record of combined SMMR and SSM/I daily brightness tempera-
ture data starting from 1978, and available as a 25 km Equal Area Scalable Earth 
(EASE)-grid at NSIDC. Based on these data, Armstrong et al. (2007) have devel-
oped a 30 year global SWE and SCA climatology that is available at NSIDC. The 
algorithms to derive SCA are based on the Grody and Basist (1996) methodology, 
and the algorithms to derive SWE are based on the Chang et al. (1987) static empiri-
cal approach. Kelly et al. (2004b) also applied the Chang et al. (1987) method to 
AMSR-E data to develop daily, pentad, and monthly SWE products that are also 
available at NSIDC. The Canadian National Snow Information System for Water 
(NSISW), within the framework of “State of the Canadian Cryosphere” (SOCC, see 
www.socc.ca), applied a regionally adjusted static SWE algorithm (Goodison, 1989) 
to SMMR, SSM/I, and AMSR-E observations to develop SWE climatologies for the 
Canadian Prairies region from 1978 to present.

The utility of MW observations for the analysis of seasonal and interannual 
snow cover trends and variability has been demonstrated in several studies. Tedesco 
et al. (2009) applied a snowmelt detection algorithm to SMRR and SSM/I data over 
the 1978–2008 period to study pan-arctic terrestrial snowmelt trends and possible 
correlations with the Arctic Oscillation (AO). Melting was detected using a spatially 
and temporally dynamic algorithm based on the difference between daytime and 
nighttime brightness temperature values. Results over the 20 year period indicated 
statistically significant negative trends for melt onset and end dates (0.5 and 1 days/
year earlier, respectively), as well as for the length of the melt season (0.6 day/year 
shorter). Results indicate that the AO index variability can explain up to 50% of the 
melt onset variability over Eurasia and only 10% over North America, which is con-
sistent with spatial patterns of AO-related surface temperature changes.
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Brodzik et al. (2006) investigated the extent and variability in SCA using a time 
series of visible and MW data starting from 1978 and found a decreasing trend in 
the Northern Hemisphere SCA from both methods. The strongest seasonal signal 
occurred from May to August, when both data sets indicated significant decreasing 
trends. The authors suggest that this pattern was physically related to increasing air 
temperatures during the period of maximum seasonal snowmelt over much of the 
Northern Hemisphere.

Che et al. (2008) conducted a study on the spatial and temporal distribution of 
seasonal SD derived from passive MW satellite remote-sensing data (SMMR from 
1978 to 1987 and SSM/I from 1987 to 2006) in China using Grody and Basist’s 
(1996) methodology to identify snow cover and a modified Chang et al. (1987) 
algorithm to compute SD. The algorithms were first validated with meteorological 
observations, considering the influences from vegetation, wet snow, precipitation, 
cold desert, and frozen ground. The modified SD algorithm was also dynamically 
adjusted based on the seasonal variation of grain size and snow density. The time 
series of SD estimates showed that the interannual SD variation was very significant, 
but the SCA of seasonal snow cover in the Northern Hemisphere exhibited a weak 
decrease over the same period with no clear trend in SCA change in China. However, 
SD over the Qinghai–Tibetan Plateau and northwestern China increased, while it 
weakly decreased in northeastern China. Overall, SD in China during the past three 
decades showed significant interannual variation with a weak increasing trend.

15.3.3  Validation of Microwave Products

Similar to optical imagery, the most widely used technique for validation of MW 
snow products is direct comparison with collocated SD or SWE surface observa-
tions. Accuracy assessment of SCA is also made with respect to optical imagery 
since the latter is considered more accurate and is available at higher resolution.

The mismatch of scale between point-based surface observations and the coarse 
satellite footprint of available passive MW satellite sensors is a recognized problem 
for SWE and SD algorithm calibration and validation. Validation of SWE is even 
more problematic due to the fact that the abundance and reliability of good quality 
in situ SWE data are less than those of SD (see, e.g., Kelly et al., 2004a). Studies 
suggest that the sampling density of “ground truth” in situ stations footprint-matched 
to the satellite sensor resolution has a substantial effect on algorithm error statistics. 
In a large-scale validation study, Dong et al. (2005) assessed this effect by calculat-
ing error statistics of a dynamic semiempirical algorithm as a function of the num-
ber of stations matched to the 0.5° by 0.5° SSMR footprint. The mean bias errors 
showed improvement from more than 40 mm SWE underestimation for pixels with 
only one station to <30 mm SWE underestimation for pixels with five or more sta-
tions, and the corresponding mean standard deviations decreased from 80 to 45 mm 
(Figure 15.4). It was suggested that the most likely reason for this improvement was 
that the increased number of stations yields an areal average estimate that is more 
compatible with the remote sensor. Chang et al. (2005) report that a density of 10 
ground measurements in an SSM/I or AMSR-E footprint pixel is necessary to pro-
duce a sampling error of 5 cm SD or better.
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Despite these issues, numerous validation studies have been conducted over the 
last 30 years to assess the accuracy of various MW-derived snow products, with 
the following results. SCA algorithms from passive MW sensors have demonstrated 
the ability to capture interannual and seasonal snow cover trends and variability 
(Armstrong and Brodzik, 2001), but regional and seasonal biases still exist. Negative 
biases occur for early-season shallow, melting, and forested snow covers. Positive 
biases occur for cold deserts, mainly attributed to desert soils scattering MW radia-
tion similar to snow. Figure 15.5 shows maps of MW-derived SWE blended with 
the IMS-derived SCA taken as “ground truth” reference (maps a and c) and overlays 
of MW- and IMS-derived SCA (maps b and d) (Kongoli et al., 2007). Blue areas 
on maps b and d depict coincident SCAs, green areas depict missing MW-derived 
SCA, and brown areas depict false MW-derived SCA. Note the reduced extent of 
green areas in midwinter (map d) compared to early winter (map b), which is attrib-
uted to improved MW detection of aged, deeper snow covers. The brown areas over 
the Mongolian deserts are persistent and represent false MW-detected snow cover, 
attributed mainly to the scattering behavior of desert soils (Kongoli et al., 2007).

With respect to SWE, all passive MW products substantially underestimate wet 
snow, deeper snow (40 cm or greater), and snow under heavily forested terrain. As noted 
earlier, wet snow conditions reduce the MW scattering signal, which constitutes a fun-
damental physical limitation for mapping SWE over melting snow. Underestimation 
over deeper snow cover has been attributed to signal saturation at MW frequencies 
used for retrieval (Kongoli et al., 2007; Derksen, 2008), and over forest-covered snow 
because of the masking effect of forest canopy above the snow at frequencies of 20 GHz 
and above. Derksen et al. (2003) found that under these conditions, accuracy against 
in situ data and the ability to capture interannual variability weakened appreciably.

15.3.4  �Data Assimilation Approaches for Estimating 
Snow Water Equivalent

Validation studies indicate that the MW-based SWE algorithms are not sufficiently 
accurate for operational applications. Data assimilation offers an opportunity to 
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improve the performance of these algorithms by optimally merging information 
from remotely sensed and in situ observations or hydrologic model predictions.

A Bayesian assimilation technique (Pulliainen, 2006) was developed that weighs the 
space-borne MW data and SD interpolated from synoptic, near-real-time in situ obser-
vations with their estimated statistical accuracy. MW brightness temperature values 
were simulated using the Helsinki University of Technology (HUT) MW snow emis-
sion model (Pulliainen et al., 1999). The results obtained using SSM/I and AMSR-E 
data for northern Eurasia and Finland indicated that the employment of space-borne 
data using this assimilation technique improved SD and SWE retrieval accuracy (in 
62% of the 3330 cases investigated) when compared with values interpolated from 
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in situ observations. Another large-scale study of 26,063 samples by Loujus et al. (2010) 
reported preliminary results from this assimilation approach that were superior to those 
from static empirical algorithms of Chang et al. (1987). Root mean square error (RMSE) 
in SWE was 43 mm for Eurasia, compared to 63–73 mm from the empirical algorithms. 
The RMSE was further reduced to 33.5 mm when SWE values below 150 mm were ana-
lyzed. Despite improved error statistics, the assimilation algorithm still underestimates 
SWE in snow deeper than 150 mm, with the bias increasing as SWE values increase.

An assimilation scheme based on an ensemble Kalman filter (EnKF) to assimi-
late AMSR-E brightness temperatures into the Variable Infiltration Capacity (VIC) 
macroscale hydrology model has also been used (Andreadis and Lettenmaier, 2005). 
Brightness temperature values were simulated using a Dense Media Radiative Transfer 
(DMRT) model (Tsang et al., 2000). The magnitude of improvement when assimilat-
ing the AMSR-E data was small and appeared mostly when the peak seasonal SWE 
was relatively low. For cases of increasingly deeper snowpacks, the assimilation per-
formance degraded when compared to hydrologically modeled SWE. As a result, a 
maximum SWE cutoff value was incorporated, and whenever the model-predicted 
SWE was over a snowpack saturation value of 240 mm, the AMSR-E observation was 
not assimilated. On average, the results improved using this cutoff threshold, compared 
to results from the original run when calculations were included over high snowpack.

Dong et al. (2007) assimilated SWE estimates derived from AMSR-E data 
directly into a three-layer snow hydrology model (Lynch-Stieglitz, 1994) using an 
extended Kalman filter (EKF) and compared multiyear model simulations with and 
without remotely sensed SWE assimilation with in situ SWE observations. The SWE 
estimates from assimilation were found to be superior to both the model simula-
tion and remotely sensed estimates alone, except when model SWE estimates were 
>100 mm SWE early in the snow season.

15.4  �SNOW COVER MONITORING USING 
SYNERGY OF OPTICAL AND MICROWAVE 
REMOTE-SENSING TECHNIQUES

Physical limitations inherent to automated optical and MW snow remote-sensing tech-
niques result in their inability to provide continuous and accurate snow cover infor-
mation at high spatial resolution under a variety of atmospheric, physiogeographic, 
and climatic conditions. This substantially reduces the value of snow cover products 
derived from individual satellite sensors and complicates their use in numerical model 
applications and in climate studies. In an attempt to improve satellite-based snow 
cover characterization, several techniques and algorithms have been proposed to com-
bine snow cover observations in the optical and MW spectral bands. The principal 
objective of these techniques is to maximize advantages that optical and MW obser-
vations offer in an effort to provide continuous areal coverage of snow cover maps at 
the highest possible spatial and temporal resolution with the highest possible accuracy.

Armstrong et al. (2003) combined MODIS-based 8 day composited SCA maps 
with 8 day SWE maps derived from SSM/I data to produce an 8 day blended, 
25 km resolution global SCA map. The technique integrated snow identified from 
the optical MODIS data with snow information from SSM/I to compensate for 
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possible omissions of shallow or melting snow in the MW-based snow product. 
Foster et al. (2010) used the daily 5 km MODIS SCA product and the 25 km AMSR-E 
SWE retrievals to generate a daily blended SCA map. Because optical snow retriev-
als provide better accuracy and spatial resolution than the MW-based retrievals, the 
algorithm relies on MODIS data if available. Pixels that were cloud covered or did 
not have enough daylight to perform classification with MODIS data are filled in 
with AMSR-E retrievals. As a result, the output product presents a global binary 
(snow/no snow) 25 km map with no cloud-related coverage gaps. A similar approach 
to blending of MODIS and AMSR-E products has been used by Liang et al. (2008) to 
characterize daily changes of snow cover distribution over China.

A blending technique by Romanov et al. (2000) presents a more cautious approach 
to the use of MW-based snow retrievals from satellite observations. The algorithm 
combines observations from GOES Imager instruments onboard the GOES-East 
and GOES-West satellites with observations from SSM/I. Optical retrievals from 
the GOES imagers are used as the primary data source for the blended map, and 
MW data are added if the area was identified as “cloudy” by GOES. The principal 
difference of this approach from the one of Foster et al. (2010) is that MW observa-
tions classified as “snow-free land surface” are disregarded in the blending technique 
because of frequent omission of melting snow and shallow snow in the MW product. 
MW snow retrievals over mountains are also disregarded because of their tendency 
to confuse cold rocky surfaces with snow and thus to overestimate snow cover extent 
in high-altitude areas. At the final processing stage, pixels that remain “undeter-
mined” in the current-day snow map are filled in with the data from the previous 
day’s blended snow map. In 2000, this blending algorithm was implemented opera-
tionally at NOAA/NESDIS to generate 4 km daily snow maps over North America. 
In 2006, this snow-mapping system was upgraded by adding optical observations 
from NOAA AVHRR and MSG SEVIRI. The latter allowed the snow-mapping 
domain to be expanded from North America to the whole globe.

Since the blended snow cover map comprises both optical and MW snow retriev-
als, its overall accuracy typically ranges within the accuracy of the contributing prod-
ucts. In the cloud-clear portions of the imagery, the accuracy of the blended product 
and its effective spatial resolution is identical to the accuracy and spatial resolution 
of the optical SCA map. In cloudy areas, both the effective spatial resolution and the 
accuracy of the blended product degrade to the level corresponding to MW retriev-
als. The principal benefit of the blended product over the optical-based SCA maps 
is in its continuous area coverage, while providing a higher classification accuracy 
and better spatial resolution over clear-sky areas compared to MW-based products.

15.5  �APPLICATION OF SATELLITE-BASED SNOW PRODUCTS 
FOR DROUGHT IDENTIFICATION AND MONITORING

The example provided in this section demonstrates a possible application of satel-
lite-derived SCA maps to assess the spring snowmelt water availability and hence 
to facilitate the prediction of early-spring drought conditions. Note that a better 
assessment of spring snowmelt can be made by accurate knowledge of the SWE 
distribution before the onset of spring snowmelt, which would require application 
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of satellite-derived SWE maps (not included in this section). However, as validation 
studies presented earlier have shown, the reliability of the available satellite-based 
operational SWE products for such assessments is questionable at this current time.

The case study is focused on Ukraine, which is one of the world’s largest grain 
exporters of winter crops (primarily wheat and barley) that account for most of the 
country’s total annual grain production. Snow cover plays an important role in win-
ter crop production in Ukraine. The duration of the snow season ranges from sev-
eral weeks in the southernmost part of the country to several months in the north. 
In addition to providing the source of snowmelt water for winter crop develop-
ment in early spring, the snowpack also prevents these crops from frost and freeze 
damage during the winter. In spring 2007, a severe drought occurred in Ukraine, 
which seriously affected winter grain production. According to the data of USDA’s 
Foreign Agricultural Service (FAS), in 2007, winter barley and wheat yields were 
approximately 10% and 30% less than in 2006 and 35% and 50% less than in 2008 
(Figure 15.6). In an attempt to gain better insight into the origin of the drought and 
its possible relationship to the snow cover properties, we calculated and examined 
seasonal variations of the snow cover distribution in Ukraine. NOAA’s IMS daily 
interactive snow cover maps were used to generate maps of snow cover duration 
for 10 consecutive winter seasons from 2000–2001 to 2008–2009. For every grid 
cell of the map, the duration of winter snow cover was estimated by calculating the 
number of days with snow cover within an annual snow season time period starting 
on August 1 and ending July 31 of the next year. The IMS product was applied in 
this study since NESDIS blended snow cover maps were not available before 2006.

Figure 15.7 presents IMS-derived estimates of the duration of snow cover in Ukraine 
during the 2006–2007 winter season as well as for two preceding and subsequent 
winters. As shown, the 2006–2007 winter season was characterized by substantially 
shorter duration of snow cover. Compared to the mean snow cover duration calculated 
for 10 winter seasons (2000–2009), in 2006–2007 the snow cover stayed on the ground 
40–50 days less in the northern part of the country and about 20 days less in the south. 
In Ukraine, as well as in other midlatitude regions that are characterized by a persistent 
winter snow cover, SWE tends to gradually increase throughout the winter season. 
As a result, shorter (longer) snow cover duration results in a smaller (larger) amount 
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FIGURE 15.6  Yearly yield of barley and wheat in Ukraine, 2005–2009. Data were 
obtained from the USDA FAS Production, Supply and Distribution data set (online at 
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of water accumulated in the snowpack and released during the spring snowmelt, and, 
thus, snow duration can be used as a proxy for SWE available for spring snowmelt.

Figure 15.8 presents the statistics on the snow cover duration and the maximum sea-
sonal SWE observed in Poltava (49.36°N, 34.33°E) and Donetsk (48.04°N, 37.46°E). The 
location of these stations is shown in Figure 15.7. These in situ observations were acquired 
from the Former Soviet Union Hydrological Snow Surveys data set available at NSIDC 
(Krenke, 1998) and cover the time period from 1967 to 1990. Both graphs in Figure 15.8 
clearly demonstrate a decreasing trend in SWE by the end of the winter season with 
the decreasing duration of the seasonal snow cover. The analysis of IMS-derived maps 
of snow duration revealed that in the winter of 2006–2007 the duration of snow cover 
in Poltava and Donetsk was about three times less than normal and comprised 32 and 
26 days, respectively. This anomalously short duration of the snow season gives a clear 
indication that the amount of moisture accumulated in the snowpack by the end of winter 
was also anomalously low. The shorter snow cover duration of the 2006–2007 winter 
season and the associated decline in snowmelt water may have contributed to the short-
age of soil moisture for plant development in the spring and to drought conditions that 
occurred in early summer 2007. The early spring period spans the critical vegetative and 
reproductive growth stages of both winter wheat and barley that determine the final grain 
yield. Lower amounts of available soil moisture at the beginning of the 2007 growing 
season due to less spring snowmelt compared to the adjacent years are supported by soil 
moisture data derived from AMSR-E observations (Figure 15.9). Monthly soil moisture 
maps were generated from corresponding daily AMSR-E-based maps (AE_Land3 prod-
uct) available at NSIDC (http://nsidc.org/data/ae_land3.html). As shown in Figure 15.9, 
the monthly average soil moisture values in the early spring months (March, April, and 
May) were noticeably lower in 2007 than in 2006. The largest soil moisture deficit in 
2007 occurred in the central and eastern part of the country where most winter barley 
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FIGURE 15.8  Scatter plots of snow cover duration and maximum SWE observed during a 
month-long period preceding the snowmelt for two locations in Ukraine: Poltava (49.36°N, 
34.33°E) and Donetsk (48.04°N, 37.46°E). The location of the two stations is shown in 
Figure 15.7. The results are presented for the years 1967–1990. Snow cover duration and SWE 
data at the two stations were acquired from the Former Soviet Union Hydrological Snow 
Surveys data set available at NSIDC. (From Krenke, A., Former Soviet Union Hydrological 
Snow Surveys, 1966–1996, National Snow and Ice Data Center/World Data Center for 
Glaciology, Digital media, Boulder, CO, 1998.)
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was retrieved from AMSR-E Aqua data.



380
R

em
o

te Sen
sin

g o
f D

ro
u

gh
t: In

n
o

vative M
o

n
ito

rin
g A

p
p

ro
ach

es

Lviv

Lutsk Rivne

Temopil
Khmelnitskly

Zhytomyr

Vinnytsia

1000 hecteres

(a) (b)

0–10
10–20
20–60
60–100
Over 100

Kyiv

Chernihiv

Cherkasy

Kirovohrad

Mydcolaiv
Odesa Kherson

Krym

Zaporizh

Poltava

Dnipropetnovsk

Kharkiv

Donetsk

Luhansk

Sumy

Nano-frankiosk
Uzhhorod Chernivsl

Lviv

Lutsk Rivne

Temopil
Khmelnitskly

Zhytomyr

Vinnytsia

1000 hecteres
0–150
150–250
250–350
350–450
Over 450

Kyiv

Chernihiv

Cherkasy

Kirovohrad

Mydcolaiv
Odesa Kherson

Krym

Zaporizh

Poltava

Dnipropetnovsk

Kharkiv

Donetsk

Luhansk

Sumy

Nano-frankiosk
Uzhhorod Chernivsl

FIGURE 15.10  Area of winter barley (a) and winter wheat (b) in Ukraine (USDA FAS data).
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and wheat are grown (see Figure 15.10). Lower levels of soil moisture in spring 2007 
have also been confirmed by in situ measurements. In particular, according to reports 
from Poltava and Donetsk stations, the soil moisture in the top 20 cm of soil at the end of 
March 2007 was about 20% less than normal for these locations for this time of the year.

Although spring snowmelt presents an important source of moisture for crops at 
the beginning of the growing season, snow cover is by no means the only factor that 
has to be accounted for in winter crop condition monitoring and yield forecasting. 
Short duration of seasonal snow cover should be viewed only as indirect evidence 
of reduced winter precipitation that may contribute to the development of drought 
conditions later in spring. Other factors, such as soil moisture and precipitation in 
the preceding fall season and, most notably, the amount of liquid precipitation in 
early spring, also affect availability of soil moisture for crop development at the 
beginning of the growth season. As a result, snow cover products should be used in 
combination with other data sources reflecting other environmental conditions (e.g., 
precipitation, soil moisture, and vegetation health) to develop a more complete pic-
ture of early growing season drought conditions in the spring. A more detailed anal-
ysis of precipitation in Ukraine in winter 2006–2007 and spring 2007 has shown 
that the lack of water from snowmelt was not the only factor that caused drought 
conditions in 2007. Substantially lower amounts of precipitation were observed over 
most of the country later into the growing season, in March, April, and May. Time 
series of monthly precipitation amounts for two locations in Ukraine (see Figure 15.11) 

250

200

150

100

Pr
ec

ip
ita

tio
n 

(m
m

)

50

0
Jul Aug Sep Oct Nov Dec

2006–2007

Jan Feb Mar Apr May Jun

250

200

150

100

Pr
ec

ip
ita

tio
n 

(m
m

)

50

0
Jul Aug Sep Oct Nov Dec

2006–2007

Jan Feb Mar Apr May Jun

30

20

10

0

Te
m

pe
ra

tu
re

 (°
C

)

–10

–20

30

20

10

0

Te
m

pe
ra

tu
re

 (°
C

)

–10

–20

Jul Aug Sep Oct Nov Dec

2006–2007

Jan Feb Mar Apr May Jun

Jul Aug Sep Oct Nov Dec

2006–2007

Jan Feb Mar Apr May Jun
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clearly demonstrate less than average precipitation amounts in December 2006 and 
in February–April 2007. Precipitation in January 2007 was somewhat higher than 
average, but apparently it was not sufficient to fully compensate for the precipita-
tion shortage during the rest of the months. The time series of monthly mean tem-
perature in Figure 15.11 show that the winter season of 2006–2007 was unusually 
warm. The mean temperature in December and January at both locations (Poltava 
and Donetsk) was above the freezing level, whereas in February it decreased to 
several degrees below 0°C. Relatively high wintertime temperatures give a reason 
to believe that no or very little freeze damage to winter crops occurred in the winter 
of 2006–2007.

15.6  CONCLUSIONS

In this chapter, a review of principal satellite remote-sensing methods for snow 
monitoring was provided, with an emphasis on the mapping of hydrologically 
important snow parameters of SWE, SD, and SCA. Satellite observations can 
complement in situ measurements by providing time- and space-continuous snow 
cover information, facilitating more accurate snowmelt runoff forecasting and 
drought predictions. Validation, accuracy assessment, and limitations of current 
remote sensing–based snow information received special attention. Optical remote 
sensing–based SCA products achieve a high accuracy (exceeding 94%) over areas 
not heavily forested and snowpack deeper than 1 cm. Given the relatively high spa-
tial (1–4 km) and temporal (hourly for geostationary and daily for polar-orbiting 
sensors) resolution of optical satellite-based instruments, they can be used success-
fully to derive accurate snow cover distribution information for snowmelt runoff 
forecasting and drought assessment for many SCA of the world. This capability 
was demonstrated in a case study over Ukraine. An inherent limitation of optical 
remote-sensing snow cover information is that it is available only during the day 
and over cloud-free areas. MW-based snow cover information, on the other hand, 
is available during both day and night and under cloudy conditions to monitor 
snow cover distribution. In addition, MW imagery offers the capability of mapping 
SD and SWE, which are more physically related to snowmelt than SCA. Overall, 
passive MW-derived SCA using current operational algorithms shows agreement 
with observed seasonal and interannual trends, and thus has the ability to provide 
useful complementary winter moisture information to the optical-based sources. 
However, seasonal biases still exist. SCA is underestimated over melting snow, 
early season shallow snow, and forested snow covers and overestimated in cold 
desert soils. In addition, underestimations of SWE and SD occur for snow cover 
deeper than 40 cm. In order to maximize advantages of optical and passive MW 
imagery, several SCA blending techniques and products were also discussed. The 
principal benefit of the blended satellite products over the optical-based products 
is that they provide continuous SCA coverage, while achieving a higher classifica-
tion accuracy and better spatial resolution over clear-sky areas compared to pas-
sive MW-based products. Recent blending (assimilation) approaches that combine 
MW-derived SWE and in situ or modeled SWE show encouraging results and 
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performance superior to existing passive MW-based SWE approaches. However, 
none of the assimilation approaches improved performance over melting and 
deeper snow covers.
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