109 research outputs found

    Evaluation of a Combined MHE-NMPC Approach to Handle Plant-Model Mismatch in a Rotary Tablet Press

    Get PDF
    The transition from batch to continuous processes in the pharmaceutical industry has been driven by the potential improvement in process controllability, product quality homogeneity, and reduction of material inventory. A quality-by-control (QbC) approach has been implemented in a variety of pharmaceutical product manufacturing modalities to increase product quality through a three-level hierarchical control structure. In the implementation of the QbC approach it is common practice to simplify control algorithms by utilizing linearized models with constant model parameters. Nonlinear model predictive control (NMPC) can effectively deliver control functionality for highly sensitive variations and nonlinear multiple-input-multiple-output (MIMO) systems, which is essential for the highly regulated pharmaceutical manufacturing industry. This work focuses on developing and implementing NMPC in continuous manufacturing of solid dosage forms. To mitigate control degradation caused by plant-model mismatch, careful monitoring and continuous improvement strategies are studied. When moving horizon estimation (MHE) is integrated with NMPC, historical data in the past time window together with real-time data from the sensor network enable state estimation and accurate tracking of the highly sensitive model parameters. The adaptive model used in the NMPC strategy can compensate for process uncertainties, further reducing plant-model mismatch effects. The nonlinear mechanistic model used in both MHE and NMPC can predict the essential but complex powder properties and provide physical interpretation of abnormal events. The adaptive NMPC implementation and its real-time control performance analysis and practical applicability are demonstrated through a series of illustrative examples that highlight the effectiveness of the proposed approach for different scenarios of plant-model mismatch, while also incorporating glidant effects

    State Estimation, Covariance Estimation, and Economic Optimization of Semi-Batch Bioprocesses

    Get PDF
    One of the most critical aspects of any chemical process engineer is the ability to gather, analyze, and trust incoming process data as it is often required in control and process monitoring applications. In real processes, online data can be unreliable due to factors such as poor tuning, calibration drift, or mechanical drift. Outside of these sources of noise, it may not be economically viable to directly measure all process states of interest (e.g., component concentrations). While process models can help validate incoming process data, models are often subject to plant-model mismatches, unmodeled disturbances, or lack enough detail to track all process states (e.g., dissolved oxygen in a bioprocess). As a result, directly utilizing the process data or the process model exclusively in these applications is often not possible or simply results in suboptimal performance. To address these challenges and achieve a higher level of confidence in the process states, estimation theory is used to blend online measurements and process models together to derive a series of state estimates. By utilizing both sources, it is possible to filter out the noise and derive a state estimate close to the true process conditions. This work deviates from the traditional state estimation field that mostly addresses continuous processes and examines how techniques such as extended Kalman Filter (EKF) and moving horizon estimation (MHE) can be applied to semi-batch processes. Additionally, this work considers how plant-model mismatches can be overcome through parameter-based estimation algorithms such as Dual EKF and a novel parameter-MHE (P-MHE) algorithm. A galacto-oligosaccharide (GOS) process is selected as the motivating example as some process states are unable to be independently measured online and require state estimation to be implemented. Moreover, this process is representative of the broader bioprocess field as it is subject to high amounts of noise, less rigorous models, and is traditionally operated using batch/semi-batch reactors. In conjunction with employing estimation approaches, this work also explores how to effectively tune these algorithms. The estimation algorithms selected in this work require careful tuning of the model and measurement covariance matrices to balance the uncertainties between the process models and the incoming measurements. Traditionally, this is done via ad-hoc manual tuning from process control engineers. This work modifies and employs techniques such as direct optimization (DO) and autocovariance least-squares (ALS) to accurately estimate the covariance values. Poor approximation of the covariances often results in poor estimation of the states or drives the estimation algorithm to failure. Finally, this work develops a semi-batch specific dynamic real-time optimization (DRTO) algorithm and poses a novel costing methodology for this specific type of problem. As part of this costing methodology, an enzyme specific cost scaling correlation is proposed to provide a realistic approximation of these costs in industrial contexts. This semi-batch DRTO is combined with the GOS process to provide an economic analysis using Kluyveromyces lactis (K. lactis) β-galactosidase enzyme. An extensive literature review is carried out to support the conclusions of the economic analysis and motivate application to other bioprocesses

    Data reconciliation for mineral and metallurgical processes : Contributions to uncertainty tuning and dynamic balancing : Application to control and optimization

    Get PDF
    Pour avoir un fonctionnement de l'usine sûr et bénéfique, des données précises et fiables sont nécessaires. D'une manière générale, une information précise mène à de meilleures décisions et, par conséquent, de meilleures actions pour aboutir aux objectifs visés. Dans un environnement industriel, les données souffrent de nombreux problèmes comme les erreurs de mesures (autant aléatoires que systématiques), l'absence de mesure de variables clés du procédé, ainsi que le manque de consistance entre les données et le modèle du procédé. Pour améliorer la performance de l'usine et maximiser les profits, des données et des informations de qualité doivent être appliquées à l'ensemble du contrôle de l'usine, ainsi qu'aux stratégies de gestion et d'affaires. Comme solution, la réconciliation de données est une technique de filtrage qui réduit l'impact des erreurs aléatoires, produit des estimations cohérentes avec un modèle de procédé, et donne également la possibilité d'estimer les variables non mesurées. Le but de ce projet de recherche est de traiter des questions liées au développement, la mise en œuvre et l'application des observateurs de réconciliation de données pour les industries minéralurgiques et métallurgiques. Cette thèse explique d’abord l'importance de régler correctement les propriétés statistiques des incertitudes de modélisation et de mesure pour la réconciliation en régime permanent des données d’usine. Ensuite, elle illustre la façon dont les logiciels commerciaux de réconciliation de données à l'état statique peuvent être adaptés pour faire face à la dynamique des procédés. La thèse propose aussi un nouvel observateur de réconciliation dynamique de données basé sur un sous-modèle de conservation de la masse impliquant la fonction d'autocovariance des défauts d’équilibrage aux nœuds du graphe de l’usine. Pour permettre la mise en œuvre d’un filtre de Kalman pour la réconciliation de données dynamiques, ce travail propose une procédure pour obtenir un modèle causal simple pour un circuit de flottation. Un simulateur dynamique basé sur le bilan de masse du circuit de flottation est développé pour tester des observateurs de réconciliation de données et des stratégies de contrôle automatique. La dernière partie de la thèse évalue la valeur économique des outils de réconciliation de données pour deux applications spécifiques: une d'optimisation en temps réel et l’autre de commande automatique, couplées avec la réconciliation de données. En résumé, cette recherche révèle que les observateurs de réconciliation de données, avec des modèles de procédé appropriés et des matrices d'incertitude correctement réglées, peuvent améliorer la performance de l'usine en boucle ouverte et en boucle fermée par l'estimation des variables mesurées et non mesurées, en atténuant les variations des variables de sortie et des variables manipulées, et par conséquent, en augmentant la rentabilité de l'usine.To have a beneficial and safe plant operation, accurate and reliable plant data is needed. In a general sense, accurate information leads to better decisions and consequently better actions to achieve the planned objectives. In an industrial environment, data suffers from numerous problems like measurement errors (either random or systematic), unmeasured key process variables, and inconsistency between data and process model. To improve the plant performance and maximize profits, high-quality data must be applied to the plant-wide control, management and business strategies. As a solution, data reconciliation is a filtering technique that reduces impacts of random errors, produces estimates coherent with a process model, and also gives the possibility to estimate unmeasured variables. The aim of this research project is to deal with issues related to development, implementation, and application of data reconciliation observers for the mineral and metallurgical industries. Therefore, the thesis first presents how much it is important to correctly tune the statistical properties of the model and measurement uncertainties for steady-state data reconciliation. Then, it illustrates how steady-state data reconciliation commercial software packages can be used to deal with process dynamics. Afterward, it proposes a new dynamic data reconciliation observer based on a mass conservation sub-model involving a node imbalance autocovariance function. To support the implementation of Kalman filter for dynamic data reconciliation, a procedure to obtain a simple causal model for a flotation circuit is also proposed. Then a mass balance based dynamic simulator of froth flotation circuit is presented for designing and testing data reconciliation observers and process control schemes. As the last part of the thesis, to show the economic value of data reconciliation, two advanced process control and real-time optimization schemes are developed and coupled with data reconciliation. In summary, the study reveals that data reconciliation observers with appropriate process models and correctly tuned uncertainty matrices can improve the open and closed loop performance of the plant by estimating the measured and unmeasured process variables, increasing data and model coherency, attenuating the variations in the output and manipulated variables, and consequently increasing the plant profitability

    Economic Model Predictive Control for Spray Drying Plants

    Get PDF

    Disturbance models for offset-free nonlinear predictive control

    Get PDF
    Offset-free model predictive control refers to a class of control algorithms able to track asymptotically constant reference signals despite the presence of unmeasured, nonzero mean disturbances acting on the process and/or plant model mismatch. Generally, in these formulations the nominal model of the plant is augmented with integrating disturbances, i.e. with a properly designed disturbance model, and state and disturbance are estimated from output measurements. To date the vast majority of offset-free MPC applications are based on linear models, however, since process dynamics are generally inherently nonlinear, these may perform poorly or even fail in some situations. Better results can be achieved by making use of nonlinear formulations and hence of nonlinear model predictive control (NMPC) technology. However, the obstacles associated with implementing NMPC frameworks are nontrivial. In this work the offset-free tracking problem with nonlinear models is addressed. Firstly some basic concepts related to the observability of nonlinear systems and state estimation are reviewed, focusing on the digital filtering and putting a strong accent on the role of the disturbance model. Thus, a class of disturbance models in which the integrated term is added to model parameters is presented together with an efficient and practical strategy for its design and subsequent implementation in offset-free NMPC frameworks

    An optimal control model approach to the design of compensators for simulator delay

    Get PDF
    The effects of display delay on pilot performance and workload and of the design of the filters to ameliorate these effects were investigated. The optimal control model for pilot/vehicle analysis was used both to determine the potential delay effects and to design the compensators. The model was applied to a simple roll tracking task and to a complex hover task. The results confirm that even small delays can degrade performance and impose a workload penalty. A time-domain compensator designed by using the optimal control model directly appears capable of providing extensive compensation for these effects even in multi-input, multi-output problems

    Development of Biomimetic-Based Controller Design Methods for Advanced Energy Systems

    Get PDF
    A biologically inspired optimal control strategy, denoted as BIO-CS, is proposed for advanced energy systems applications. This strategy combines the ant\u27s rule of pursuit idea with multi-agent and optimal control concepts. The BIO-CS algorithm employs gradient-based optimal control solvers for the intermediate problems associated with the leader-follower agents\u27 local interactions. The developed BIO-CS is integrated with an Artificial Neural Network (ANN)-based adaptive component for further improvement of the overall framework. In particular, the ANN component captures the mismatch between the controller and the plant models by using a single-hidden-layer technique with online learning capabilities to augment the baseline BIO-CS control laws. The resulting approach is a unique combination of biomimetic control and data-driven methods that provides optimal solutions for dynamic systems.;The applicability of the proposed framework is illustrated via an Integrated Gasification Combined Cycle (IGCC) process with carbon capture as an advanced energy system example. Specifically, a multivariable control structure associated with a subsystem of the IGCC plant simulation in DYNSIMRTM software platform is addressed. The proposed control laws are derived in MATLAB RTM environment, while the plant models are built in DYNSIM RTM, and a previously developed MATLABRTM-DYNSIM RTM link is employed for implementation purposes. The proposed integrated approach improves the overall performance of the process up to 85% in terms of reducing the output tracking error when compared to stand-alone BIO-CS and Proportional-Integral (PI) controller implementations, resulting in faster setpoint tracking.;Other applications of BIO-CS addressed include: i) a nonlinear fermentation process to produce ethanol; and ii) a transfer function model derived from the cyber-physical fuel cell-gas turbine hybrid power system that is part of the Hybrid Performance (HYPER) project at the National Energy Technology Laboratory (NETL). Other theoretical developments in this work correspond to the integration of the BIO-CS approach with Multi-Agent Optimization (MAO) techniques and casting BIO-CS as a Model Predictive Controller (MPC). These developments are demonstrated by revisiting the fermentation process example. The proposed biologically-inspired approaches provide a promising alternative for advanced control of energy systems of the future
    • …
    corecore