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Tuning of Methods for Offset Free MPC based on ARX Model

Representations

Jakob Kjøbsted Huusom, Niels Kjølstad Poulsen, Sten Bay Jørgensen and John Bagterp Jørgensen

Abstract— In this paper we investigate model predictive
control (MPC) based on ARX models. ARX models can be
identified from data using convex optimization technologies and
is linear in the system parameters. Compared to other model
parameterizations this feature is an advantage in embedded
applications for robust and automatic system identification.
Standard MPC is not able to reject a sustained, unmeasured,
non zero mean disturbance and will therefore not provide offset
free tracking. Offset free tracking can be guaranteed for this
type of disturbances if ∆ variables are used or if the state
space is extended with a disturbance model state. The relation
between the base case and the two extended methods are
illustrated which provides good understanding and a platform
for discussing tuning for good closed loop performance.

I. INTRODUCTION

Model Predictive Control is a state of the art control

technology which utilizes a model of the system in order

to predict the process output over some future horizon and

solve a quadratic optimization problem with the control

signal as decision variables. Inequality constraints can be

formulated for both manipulated variables and the process

outputs. The first of the controls are implemented. After

retrieving the next process output the problem is solved

again for the next control etc. Early achievements and in-

dustrial implementations in Model Prediction Control include

IDCOM [1] and Dynamic Matrix Control [2]. These early

algorithms were based on step or impulse response models.

More general linear input-output models structure, typical

ARMAX, ARIMAX or CARIMA, were used by [3] in

Generalized Predictive Control. ARMAX models can be

identified using standard tools from time series analysis and

systems identification. However, for MIMO systems it is

difficult to select a structure for the ARMAX model. Further-

more, identification of the parameters in ARMAX models

constitutes a non-linear non-convex optimization problem.

If the input-output model is simplified to an ARX model,

the optimization problem becomes a convex optimization

problem and the MIMO system can be handled as easily as

SISO systems. An interest in MPC implementations based on

state space models were created by the seminal paper [4].

The state space approach provide a unified framework for

discussion of the various predictive control algorithms and
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is well suited for stability analysis [5]. Direct identification

of the parameters in a state space model is a non-linear

non-convex parameter estimation problem. Therefore, model

predictive control based on state space models is most useful

as an implementation paradigm for the other linear model

classes. This paper will use the following linear, discrete

time, single input/single output ARX model

A(q−1)y(t) = B(q−1)u(t) + ε(t) (1a)

where ε(t) ∈ Niid(0, σ
2) and A and B are polynomials of

order n in the backwards shift operator q−1.

A(q−1) = 1 + a1q
−1 + a2q

−2 + · · · + anq
−n (1b)

B(q−1) = b1q
−1 + b2q

−2 + · · · + bnq
−n (1c)

This paper presents an introduction to MPC based on ARX

models and discuses closed loop performance of the con-

troller in case of unmeasured step disturbances. In order

to reject such types of disturbances the basic ARX-MPC

formulation needs to be expanded and different approaches to

achieve offset free closed loop performance are investigated

and discussed with respect to tuning parameters. The paper

is organized as follows: An introduction is given to the basic

ARX-MPC formulation and implementation in Section II. In

order to reject unmeasured, sustained, non zero mean distur-

bances the ARX-MPC is expanded to the ∆ARX description

in Section III. Section IV presents the disturbance modelling

approach. These formulations are discussed with respect to

closed loop performance based on a set of simulation studies

in Section V before the final conclusions are drawn.

A. A numerical test case

In the following a series of closed loop simulations with

different MPC control implementations will be performed

and compared in terms of performance on a numerical

example. The example will use the same ARX-model as the

true system and for the model in the MPC-controller. The

model is

A(q−1)y(t) = B(q−1)u(t) + ε(t) (2a)

where ε(t) ∈ Niid(0, σ
2) and

A(q−1) = 1 − 2.4q−1 + 2.05q−2 − 0.63q−3 (2b)

B(q−1) = 0.5q−1 (2c)

σ = 0.1 (2d)

This model has a pole in 0.9 and a set of complex poles in

0.75 ± 0.37i.
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II. BASIC ARX-MPC

The ARX model (1) may be realized as a stationary state

space model in innovation form

xk+1 = Axk +Buk +Kεk (3a)

yk = Cxk + εk (3b)

with the matrices (A,B,K,C) in observer canonical form

A =















−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
...

−an−1 0 0 · · · 1
−an 0 0 · · · 0















B =







b1
...

bn






K =







−a1

...

−an







C =
[

1 0 · · · 0
]

The optimal predictions in the stationary state space model

in innovation form (3) is based on computation of the

innovations

εk = yk − ŷk|k−1 (4)

using the measurement yk at time k and the one-step-

ahead prediction, ŷk|k−1 = Cx̂k|k−1. The one-step-ahead

prediction of the states and outputs are

x̂k+1|k = Ax̂k|k−1 +Buk|k +Kεk (5a)

ŷk+1|k = Cx̂k+1|k (5b)

and similarly the (j+ 1)-step-ahead (j ≥ 1) predictions are

x̂k+1+j|k = Ax̂k+j|k +Buk+j|k j = 1, . . . , N − 1 (6a)

ŷk+1+j|k = Cx̂k+1+j|k j = 1, . . . , N − 1 (6b)

The ℓ2-based constrained predictive controller use an objec-

tive function of the form

φ =
1

2

N−1
∑

j=0

(ŷk+1+j|k − rk+1+j)
2 + ρ∆u2

k+j|k (7)

which obviously depends on the control variables, hence the

optimal control problem is

min
{uk+j|k}

N−1

j=0

φ = φ({uk+j|k}
N−1

j=0
) (8a)

s.t. (5), (6) (8b)

umin ≤ uk+j|k ≤ umax j ∈ N (8c)

∆umin ≤ ∆uk+j|k ≤ ∆umax j ∈ N (8d)

with ∆uk+j|k = uk+j|k − uk+j−1|k (j ∈ N ), uk−1|k =
ûk−1|k−1, and N = {0, 1, . . . , N −1}. The optimal solution

is denoted {ûk+j|k}
N−1

j=0
. Only the first part of the solution,

ûk|k, is implemented on the process and the computations

are repeated as new measurements arrive.

A. MPC as a Convex Quadratic Program

In this subsection we convert the constrained optimal

control problem (8) to a standard convex quadratic program.

To simplify the notation consider a horizon of N = 4. Define

the vectors Y , R, U , and ∆U as

Y =









ŷk+1|k

ŷk+2|k

ŷk+3|k

ŷk+4|k









R =









rk+1

rk+2

rk+3

rk+4









U =









uk|k

uk+1|k

uk+2|k

uk+3|k









∆U =









∆uk|k

∆uk+1|k

∆uk+2|k

∆uk+3|k









With this notation the constraints umin ≤ uk+j|k ≤ umax for

j = 0, 1, 2, 3 may be denoted as

Umin ≤ U ≤ Umax (9)

with

Umin =









umin

umin

umin

umin









Umax =









umax

umax

umax

umax









∆U may be expressed as

∆U = ΨU − I0ûk−1|k−1 (10)

with

Ψ =









1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1









I0 =









1
0
0
0









such that the constraints ∆umin ≤ ∆uk+j|k ≤ ∆umax for

j = 0, 1, 2, 3 may be expressed as

bl ≤ ΨU ≤ bu (11)

using

bl = ∆Umin + I0ûk−1|k−1 (12)

bu = ∆Umax + I0ûk−1|k−1 (13)

and

∆Umin =









∆umin

∆umin

∆umin

∆umin









∆Umax =









∆umax

∆umax

∆umax

∆umax









(14)

Using (5) and (6), the output, Y , may be expressed as

Y = b+ ΓU (15)

in which b is defined as

b = Φxx̂k|k−1 + Φεεk (16)

and

Γ =









H1 0 0 0
H2 H1 0 0
H3 H2 H1 0
H4 H3 H2 H1









Φx =









CA

CA2

CA3

CA4









Φε =









CK

CAK

CA2K

CA3K








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The impulse response parameters, Hi, are defined as

Hi = CAi−1B i = 1, 2, . . . (17)

Using these relations for Y and ∆U , the objective function

may be expressed as

φ =
1

2
‖Y −R‖2

2 +
ρ

2
‖∆U‖2

2

=
1

2
‖b+ ΓU −R‖2

2 +
ρ

2
‖ΨU − I0ûk−1|k−1‖

2
2

=
1

2
U ′HU + g′kU + ̺k (18a)

in which

H = Γ′Γ + ρΨ′Ψ (18b)

gk = Γ′(b−R) − ρΨ′I0ûk−1|k−1 (18c)

̺k =
1

2
‖b−R‖2

2 +
ρ

2
‖I0ûk−1|k−1‖

2
2 (18d)

Consequently, the constrained optimal control problem (8)

may be expressed as the convex quadratic program

min
U

φ =
1

2
U ′HU + g′kU + ̺k (19a)

s.t. Umin ≤ U ≤ Umax (19b)

bl ≤ ΨU ≤ bu (19c)

The computations in the predictive controller consists of

an off-line part involving computation of the state space

model {A,B,K,C}, the matrices {H,Φx,Φε,Γ,Ψ}, and

the vectors {Umin, Umax,∆Umin,∆Umax}. With these ma-

trices available, it is straightforward to do the on-line com-

putation, uk = µ(x̂k|k−1, uk−1, yk, {rk+j}
N
j=1). This com-

putation is listed in Algorithm 1. Note that the optimization

is independent of ̺k.

Algorithm 1 Basic ARX-MPC

Require: x̂k|k−1, ûk−1|k−1, yk, {rk+1+j}
N−1

j=0

Compute: εk = yk − Cx̂k|k−1

Compute: b = Φxx̂k|k−1 + Φεεk

Compute: c = b−R

Compute: gk = Γ′c− Ψ′(I0(ρûk−1|k−1))
Compute: bl = ∆Umin + I0ûk−1|k−1

Compute: bu = ∆Umax + I0ûk−1|k−1

Solve

min
U

ψ =
1

2
U ′HU + g′kU

s.t. Umin ≤ U ≤ Umax

bl ≤ ΨU ≤ bu

for U .

ûk|k = U(1).
x̂k+1|k = Ax̂k|k−1 +Bûk|k +Kεk

Return: ûk|k and x̂k+1|k

III. ∆ARX-MPC

In this section a reformulation of the ARX-MPC problem

is given which provides offset free tracking also when the

system is subject to a sustained unmeasured disturbance with

a non zero mean. For this type of disturbance it is convenient

to expand the system description in (1) to a description with

two different sources of external noise. One term ε(t) is still

zero mean Gaussian distributed random noise, but d(t) is a

non zero constant.

A(q−1)y(t) = B(q−1)u(t) + d(t) + ε(t) (20a)

where ε(t) ∈ Niid(0, σ
2) and

A(q−1) = 1 + a1q
−1 + a2q

−2 + · · · + anq
−n (20b)

B(q−1) = b1q
−1 + b2q

−2 + · · · + bnq
−n (20c)

By assuming the process noise term to be integrated white

noise, the non zero mean contribution can be removed.

1

1 − q−1
e(t) = d(t) + ε(t) ⇒

e(t) = (1 − q−1)ε(t) = εk − εk−1

since d(t) is constant in time. Modelling the noise as

integrated white noise in the ARX-model (20) gives

(1−q−1)A(q−1)y(t) = (1−q−1)B(q−1)u(t)+(1−q−1)ε(t)

Hence we can write this extended model as

Ā(q−1)y(t) = B̄(q−1)u(t) + e(t) (21a)

where

Ā(q−1) = (1 − q−1)A(q−1) (21b)

B̄(q−1) = (1 − q−1)B(q−1) (21c)

e(t) = (1 − q−1)ε(t) (21d)

This is not a standard ARX model since the ARX model is

assumed to be driven by white noise [6]. However, the con-

stant disturbance disappears in this ∆ARX model structure.

In fact the effect of a step in the disturbance d(t) will for the

∆ARX-MPC correspond to a impulse disturbance in d(t) for

the basic ARX-MPC. This property is due to the fact that ∆
is an integrator on the signals in the original ARX-model and

the introduction of an integrator gives the offset free tracking

performance.

Implementing of the ∆ARX-MPC is very similar to the

standard case. Given a model of the system on the form (20),

hence we know the coefficients in the A(q−1) and B(q−1)
polynomials, the system is brought to the ∆ARX form by

multiplying ∆ on the polynomials to achieve Ā(q−1) and

B̄(q−1). The MPC implementations is then constructed from

a state space transformation of the model (21) instead of (1)

despite the fact that e(t) is not white. This implementation

gives the offset eliminating effect in the controller. The

drawback is that the observer filter, which is designed as

if the noise was white, is no longer optimal.

2357



IV. DISTURBANCE MODELLING

In presence of unmeasured disturbances the classical

approach to achieve offset free tracking performance for

a model predictive control implementation, is to include

disturbance states in the process model. This method was

originally presented in [7] and a thorough presentation of

disturbance models for linear model predictive control is

given in [8] and [9] with conditions for detectability of the

augmented systems. Given a general system description on

state space form

xk+1 = Axk +Buk +Bddk +Gwk

yk = Cxk + Cddk + vk

(22)

It is assumed that the disturbance evolves as

dk+1 = dk + ξk (23)

where the noise in the system is given by the following

Gaussian distribution




wk

ξk
vk



 = Niid









0
0
0



 ,





Q 0 S

0 Qξ 0
ST 0 R







 (24)

The augmented system description becomes
[

xk+1

dk+1

]

=

[

A Bd

0 I

] [

xk

dk

]

+

[

B

0

]

uk +

[

G 0
0 I

] [

wk

ξk

]

yk =
[

C Cd

]

[

xk

dk

]

+ vk

(25)

The general idea is to use a state estimator with the

augmented system in the model predictive controller. The

prediction equations are

x̂k+1|k = Ax̂k|k +Buk|k +Bdd̂k|k (26)

d̂k+1|k = d̂k|k (27)

and the stationary Kalman filter are
[

x̂k|k

d̂k|k

]

=

[

x̂k|k−1

d̂k|k−1

]

+

[

Lx

Ld

]

(yk−Cx̂k|k−1−Cdd̂k|k−1) (28)

By an appropriate design of the gains {Lx, Ld} the state

estimator can estimate the unmeasured disturbance and ren-

der the controller capable of offset free tracking. If {Bd =
0, Cd = 1} in (25) the model is referred to as the output

disturbance model and in the opposite case where {Bd 6=
0, Cd = 0} one achieve the state disturbance model. A

special case of the state disturbance model is when Bd = B

and an input disturbance in modeled. For the ARX model

structure in (20) the correct disturbance model is when

{Bd = G = K,Cd = 1, Q = R = S = σ2}. In [10]

it is shown that any choice of disturbance model can give

the same closed loop performance despite the nature of the

disturbance. The requirement is that the disturbance covari-

ance, used in calculation of the estimator gain, is estimated

from the autocovariance of plant data. This result removes

the focus from modelling the disturbance to estimation of

the observer gain, which is a significant simplification.

An MPC implementation using the augmented system in

(25) and the state estimator (28) will provide offset free

tracking when the system is subjected to an unmeasured step

disturbance. The level of the disturbance is estimated by the

state estimator which allow the MPC to use this information

in the predictions.

V. DISCUSSION

It is of interest to see how the presented MPC implemen-

tations perform, both with respect to rejection of zero mean

random noise and for the case where a step disturbance enters

the system. It is clear already from the given presentation that

the methods differ in the degree of freedom the user needs

to specify. For the basic ARX-MPC and the ∆ARX-MPC,

the only free parameter is the weight ρ in the cost function

(7) which gives the relative penalty on the control move

compared to the tracking error. When disturbance modelling

is used one additional tuning parameter comes into play. That

is the choice of the variance Qξ which will affect the gain

Ld in the observer. First a formal relation between these

three methods will be established. This will provide insight

to the user with respect to tuning and which method to use.

Secondly a set of closed loop simulations will show the

performance of these methods.

A. Establishing a Formal Connection

It is clear that ARX-MPC and ∆ARX-MPC differ since

the ∆ variable introduces a deliberate model mismatch which

is necessary in order to reject non zero mean disturbances.

As a consequence the variance of the noise e(t) in the model

(21) is twice that of the model (1) which is used in the basic

ARX-MPC, hence the variance of the output from the ARX-

MPC will always be lower than from the ∆ARX-MPC. This

is the price to be paid for offset free tracking.

The offset free tracking is achieved by different means

when using disturbance modelling. The true dynamics of

the system is not changed but the system is extended with

an additional disturbance state and the observer corrects its

value according to the prediction error. The design of the

optimal observer given full process knowledge leaves Qξ

as a free tuning variable. The free variable gives a tradeoff

between fast estimation of an unknown step disturbance and

the sensitivity to random noise. For Qξ → 0, the optimal

gain Ld is zero, the disturbance state is not updated. In this

extreme the augmented system with the disturbance model

becomes equivalent to the original systems and the perfor-

mance is equal to the basic ARX-MPC. In the other extreme

where Qξ is chosen very large to give very fast estimation of

the step disturbance, the optimal gain Ld approaches 1. As

a consequence the variance of the disturbance state is equal

to that of the prediction error. The variance of the process

output receives twice the variance of the prediction error

additional to the state variance just as in the ∆ARX-MPC

implementation. Hence by looking at the extremes for the

tuning of the disturbance modelling method we can see that

for an invariant ρ the tuning of Qξ spans the range between

ARXMPC and ∆ARX-MPC. This is illustrated in Figure

2358
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Fig. 1. Pareto plot of the input and output variance of closed loop simulations with MPC implementations based on ARX, ∆ARX and disturbance
models. Different values of ρ in the performance cost function and for the variance Qξ ∈ [10−7; 102] in the disturbance model as indicated by the square,
triangular and round markers on the curves. Both results from constrained and unconstrained MPC are given.

1 which present a series of closed loop simulations of all

three methods varying ρ and Qξ. The performance is ploted

in terms of the variance on the input and output in a Pareto

plot. All simulations in the figure are based on the same seed

of zero mean random noise and 10000 samples. From this

figure it is easy to see the performances degradation rendered

by the ∆ARX model compared to the true model. This is

expected since the ∆ARX model is introduced in order to

handle non zero mean disturbances which is not the scenario

on the figure. Another unfortunate property of the ∆ARX

implementation is that for very low values of ρ, the output

variance is increasing. This is in contrast to when the true

model is used and the rationale behind tuning ρ in the cost

function. Furthermore the four series of simulations with the

disturbance model MPC implementation truly show that for

extreme values of Qξ the line hit the curves for ARX-MPC

and ∆ARX-MPC for the corresponding value of ρ.

With respect to tuning of ρ for the different methods, Fig-

ure 1 is very useful. A good choice of the tuning parameter

would render the variance of both the input and the output

reasonable small. It is clear for the figure that a value which

gave a point on the curves close to the origins is where they

bend. For the unconstrained case ρ = 0.01 and ρ = 0.1 for

the ARX-MPC and the ∆ARX-MPC respectively seems to

give the right trade off while reasonably values are ρ = 0.1
and ρ = 1 for the constrained case.

B. Closed loop performance

In the following the three MPC implementations will be

tested on a fixed scenario. The total simulation horizon is

250 samples. Between time 50 and 100 a step is introduced

in the reference and between 150 and 200 an unmeasured

step disturbance is acting on the system. The input will be

constrained between u ∈ [−1; 1] but the control move is

left unconstrained. In all simulations the value of ρ is 0.1

and for the disturbance modelling, DM-MPC, the variance

Qξ = 10−3. The closed loop response is shown on Figure 2.

The random noise sequence used on all runs is kept the same

in order to compare performance. The performance will be

quantified by the following function which reflects the MPC

performance cost but for the entire simulation horizon.

φ̄ =
1

2(tf − t0)

tf
∑

t=t0

(yt − rt)
2 + ρ∆u2

t (29)

The results from the closed loop simulations are given in

Table I. The closed loop simulations on Figure 2 show

that the basic ARX-MPC is incapable of providing offset

free tracking when the unmeasured step disturbance enters

the system while the two other methods do reject this

disturbance. From the figures in Table I we seen that in

the deterministic case the ∆ARX-MPC is superior while the

disturbance modelling approach perform best in the presence

of process noise. These results are natural since the tuning

of Qξ gives the tradeoff between fast disturbance estimation

and sensitivity to process noise. Hence for the deterministic

simulation no noise is present and the best performance is

achieved for Qξ → ∞ which is the same as the ∆ARX-

MPC. When random noise is present in the system which

is the case for all true systems the optimal performance is

achieved by balancing the convergence of the disturbance

estimate and its sensitivity to noise.

TABLE I

PERFORMANCE COST, φ̄, FOR THE CLOSED LOOP SIMULATIONS IN

FIGURE 2 WITH ALL THREE MPC IMPLEMENTATIONS.

Method Deterministic sim. Noisy sim.

ARX-MPC 0.0895 0.1344
∆ARX-MPC 0.0195 0.0740
DM-MPC 0.0217 0.0589
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(a) ARX-MPC: Deterministic
sim.
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(b) ∆ARX-MPC: Deterministic
sim.
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(c) DM-MPC: Deterministic sim.
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(d) ARX-MPC: Noisy sim.
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(e) ∆ARX-MPC: Noisy sim.
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(f) DM-MPC: Noisy sim.

Fig. 2. Closed loop simulation of all three MPC implementations with ρ = 0.1 and Qξ = 10−3. Two steps are induced in the reference signal and an
unmeasured step disturbance of 0.4 is added between time 150 and 200.

VI. CONCLUSIONS

This paper presents three MPC implementations based

on ARX model representations. The base case where the

controller uses the true system for predictions and two de-

scriptions, ∆ARX-MPC and disturbance model MPC, which

both provide offset free tracking in case of unmeasured non

zero mean disturbances. It is shown that a the disturbance

modelling approach has the ARX-MPC and the ∆ARX-MPC

as its extremes when tuning the disturbance state variance

Qξ. Hence this extra tuning parameter renders a better closed

loop performance since it explicitly balances the speed of

convergence for the disturbance state and the sensitivity to

noise in this estimate. The other free tuning parameter ρ in

the MPC cost functions balances input versus output variance

is common for all three implementations but it is seen by

analyzing a set of Pareto plots that its tuning is dependent on

the specific MPC implementation. This lead to the following

main conclusion:

For systems with unmeasured non zero mean disturbances

the disturbance model implementation in the MPC offers

the best closed loop performance. When tuning this im-

plementation, start by tuning the state variance Qξ to get

the right balance between estimation power versus noise

sensitivity. Information on the variance of the process noise

and the expected size and frequency of these unknown step

disturbances will be useful in this respect. Secondly, tune the

weight in the cost function ρ to achieve a reasonable balance

between input and output variance.
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