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Abstract 

State Estimation, Covariance Estimation, and Economic Optimization of 
Semi-Batch Bioprocesses 

 

Ronald H. Alexander 

 

One of the most critical aspects of any chemical process engineer is the ability to 
gather, analyze, and trust incoming process data as it is often required in control and 
process monitoring applications. In real processes, online data can be unreliable due to 
factors such as poor tuning, calibration drift, or mechanical drift. Outside of these sources 
of noise, it may not be economically viable to directly measure all process states of 
interest (e.g., component concentrations). While process models can help validate 
incoming process data, models are often subject to plant-model mismatches, unmodeled 
disturbances, or lack enough detail to track all process states (e.g., dissolved oxygen in 
a bioprocess). As a result, directly utilizing the process data or the process model 
exclusively in these applications is often not possible or simply results in suboptimal 
performance. 

 To address these challenges and achieve a higher level of confidence in the 
process states, estimation theory is used to blend online measurements and process 
models together to derive a series of state estimates. By utilizing both sources, it is 
possible to filter out the noise and derive a state estimate close to the true process 
conditions. This work deviates from the traditional state estimation field that mostly 
addresses continuous processes and examines how techniques such as extended 
Kalman Filter (EKF) and moving horizon estimation (MHE) can be applied to semi-batch 
processes. Additionally, this work considers how plant-model mismatches can be 
overcome through parameter-based estimation algorithms such as Dual EKF and a 
novel parameter-MHE (P-MHE) algorithm. A galacto-oligosaccharide (GOS) process is 
selected as the motivating example as some process states are unable to be 
independently measured online and require state estimation to be implemented. 
Moreover, this process is representative of the broader bioprocess field as it is subject 
to high amounts of noise, less rigorous models, and is traditionally operated using 
batch/semi-batch reactors. 

 In conjunction with employing estimation approaches, this work also explores how 
to effectively tune these algorithms. The estimation algorithms selected in this work 
require careful tuning of the model and measurement covariance matrices to balance 
the uncertainties between the process models and the incoming measurements. 
Traditionally, this is done via ad-hoc manual tuning from process control engineers. This 
work modifies and employs techniques such as direct optimization (DO) and 
autocovariance least-squares (ALS) to accurately estimate the covariance values. Poor 
approximation of the covariances often results in poor estimation of the states or drives 
the estimation algorithm to failure. 



 

 Finally, this work develops a semi-batch specific dynamic real-time optimization 
(DRTO) algorithm and poses a novel costing methodology for this specific type of 
problem. As part of this costing methodology, an enzyme specific cost scaling correlation 
is proposed to provide a realistic approximation of these costs in industrial contexts. This 
semi-batch DRTO is combined with the GOS process to provide an economic analysis 
using Kluyveromyces lactis (K. lactis) β-galactosidase enzyme. An extensive literature 
review is carried out to support the conclusions of the economic analysis and motivate 
application to other bioprocesses. 



iv 

 

Dedicated to 

My mom Annmarie Alexander 
  



v 

 

Acknowledgments  

 

I would like to thank everyone who I have worked with during my time as both a 

BS and PhD student at WVU. The last 8 years of my life at WVU have been a 

transformational experience and it is incredibly hard to believe how fast it all went by! 

First, I would like to specifically thank Dr. Fernando V. Lima for kickstarting my 

interest in the field of process systems engineering (PSE) research and allowing me to 

join the CODES research group during my junior year of undergrad. It is hard to state 

how significant of an impact this initial opportunity has had on my life, both professionally 

and personally. Professionally, this initial research opportunity led to Dr. Lima becoming 

my Summer Undergraduate Research Experience (SURE) advisor between my Junior 

and Senior years. This experience ultimately led to me choosing to pursue my PhD at 

WVU under the advisement of Dr. Lima. I knew I wanted to continue working in the 

CODES group and as a result only applied to WVU for graduate school with the intention 

of remaining in the CODES group. Without this mentoring and support during my 

undergraduate and graduate years, I would not be where I am today. 

I am also extremely grateful for the financial support I have received from Statler 

College in the form of a Statler Fellowship. This funding source gave me the opportunity 

and flexibility to explore the PSE topics discussed in this dissertation with few restrictions. 

As a result, I would like to especially thank Benjamin Statler for establishing this 

fellowship. Additionally, I would also like to thank both the Department of Chemical and 

Biomedical Engineering and Statler College for additional financial support. 



vi 

 

Of course, I would also like to thank each one of my committee members: Dr. 

Debangsu Bhattacharyya, Dr. Stephen Zitney, Dr. Mario Perhinschi, Dr. Marcelo P. A. 

Ribeiro, and Dr. Paolo Pezzini for their time, support, and suggestions! 

In terms of former CODES members, I would like to give special thanks to Dr. 

Rebecca Kim and Dr. San Dinh, as both were extremely helpful mentors during both my 

time as a BS and PhD student in the CODES group.  Additionally, I would also like to 

thank Dr. Brent Bishop, Hunter Barber, Lillian Bischof, Ashley McCullough, Selorme 

Agbleze, Victor Alves, Daniel Kestering, Vitor Gama, Claudemi Nascimento, Beatriz 

Dantas, Bernardo Vecchio, Savannah Sakhai, Krishna Busam, Davi Oliveira, Michael 

Fouts, and Antonio Mascaro. 

Finally, I would also like to thank Rebekah Rice and my mom Annmarie Alexander 

for their support and always being there for me! 

Thank you very much! 

 

 

 

Montani Semper Liberi 

 

  



vii 

 

Table of Contents 

Abstract ...........................................................................................................................ii 

Acknowledgments .......................................................................................................... v 

List of Tables ................................................................................................................. x 

List of Figures ............................................................................................................... xii 

Nomenclature ...............................................................................................................xv 

Chapter 1 Introduction ................................................................................................... 2 

1.1 Research Outputs ................................................................................................. 8 

1.2 Dissertation Organization ................................................................................... 11 

Chapter 2 Literature Review ........................................................................................ 12 

2.1 State Estimation ................................................................................................. 12 

2.2 Covariance Estimation ........................................................................................ 19 

2.3 Dynamic Optimization Considering Process Economics .................................... 23 

Chapter 3 State Estimation Applied to Nonlinear Semi-Batch Processes .................... 26 

3.1 Galacto-oligosaccharide Overview ..................................................................... 26 

3.1.1 GOS Model Used ......................................................................................... 30 

3.1.2 Simulated Data Generation .......................................................................... 34 

3.2 EKF-Based Estimation Approach ....................................................................... 39 

3.2.1 Application of Direct Optimization for EKF .................................................... 41 

3.2.2 EKF and Modified DO Case Study ............................................................... 45 

3.3 Dual EKF-Based Estimation Approach ............................................................... 48 

3.4 Comparison of EKF Algorithms .......................................................................... 53 

3.5 MHE-Based Estimation Approach ...................................................................... 60 

3.5.1 MHE Case Study .......................................................................................... 62 



viii 

 

3.5.2 Proposed Parameter-Based Moving Horizon Estimation (P-MHE) ............... 65 

3.5.3 P-MHE Case Study ...................................................................................... 67 

3.5.4 Comparison of MHE Algorithms ................................................................... 69 

Chapter 4 Improved Covariance Estimation Techniques ............................................. 74 

4.1 Autocovariance Least-Squares Background ....................................................... 74 

4.2 ALS Code Modification ....................................................................................... 82 

4.2.1 ALS LTI Test Case ....................................................................................... 84 

4.2.2 Nonlinear ALS Test Case ............................................................................. 87 

4.3 ALS Application to GOS Process ....................................................................... 91 

4.3.1 ALS with EKF for GOS Process ................................................................... 95 

4.3.2 ALS with MHE for GOS Process .................................................................. 98 

Chapter 5 Semi-Batch Process Costing Approach with Dynamic Real-Time 

Optimization ............................................................................................................... 102 

5.1 Economic Model and Optimization Approach ................................................... 102 

5.2 GOS Process Economic Parameters ................................................................ 110 

5.3 Case 1: β-galactosidase from K. lactis Results ................................................. 121 

5.3.1 Diluted β-galactosidase from K. lactis DRTO Results ................................ 122 

5.3.2 Concentrated β-galactosidase from K. lactis DRTO Results ...................... 128 

5.3.3 β-galactosidase from K. lactis Monte Carlo Results ................................... 133 

Chapter 6 Conclusions ............................................................................................... 141 

Chapter 7 Future Work .............................................................................................. 144 

7.1 Combining State Estimation, Covariance Estimation, and DRTO ..................... 144 

7.2 Applying ALS to Joint State and Parameter Estimation Algorithms .................. 146 

7.3 Add Additional Factors into Semi-Batch Costing Formula ................................ 148 



ix 

 

References ................................................................................................................ 149 

 

 

 

  



x 

 

List of Tables  

Table 3.1 Values of kinetic parameters for K. lactis β-galactosidase (reproduced from 

Schultz et al., 2021) ..................................................................................................... 33 

Table 3.2 Average state values considered ................................................................. 36 

Table 3.3 Reactor concentration parameters employed .............................................. 38 

Table 3.4 SE values for EKF-based estimation ........................................................... 54 

Table 3.5 SE values for EKF-based estimation with modified initial conditions ........... 57 

Table 3.6 Computational times for EKF-based estimation ........................................... 59 

Table 3.7 MHE case study examining horizon length selection ................................... 61 

Table 3.8 SE values for MHE-based estimation .......................................................... 69 

Table 3.9 Computational times for MHE-based estimation .......................................... 69 

Table 3.10 SE values for MHE-based estimation with modified initial conditions ........ 71 

Table 3.11 Computational times for MHE-based estimation with modified initial 

conditions ..................................................................................................................... 71 

Table 4.1 Performance assessment of ALS algorithm using LTI system ..................... 86 

Table 4.2 SE values for nonlinear ALS case study ...................................................... 90 

Table 4.3 QALS value for GOS process ........................................................................ 92 

Table 4.4 RALS value for GOS process ......................................................................... 92 

Table 4.5 Computational time of covariance estimation algorithms ............................. 93 

Table 4.6 SE values for DO and ALS based EKF estimation ....................................... 97 

Table 4.7 SE values for DO and ALS based MHE estimation .................................... 100 

Table 5.1 Economic parameters found in literature for GOS process ........................ 111 

Table 5.2 Enzyme data used to derive benz ................................................................ 116 



xi 

 

Table 5.3 β-galactosidase from K. lactis laboratory costing values (Sigma-Aldrich, n.d. 

A) ............................................................................................................................... 119 

Table 5.4 Quantitative analysis of β-galactosidase from K. lactis Monte Carlo results

 ................................................................................................................................... 139 

 

  



xii 

 

List of Figures  

Figure 1.1 Basic PID loop interaction with DCS ............................................................. 3 

Figure 2.1 Recursive estimation algorithm procedure .................................................. 14 

Figure 2.2 Shifting horizon window of MHE ................................................................. 18 

Figure 2.3 Google trends data for GNU Octave and MATLAB ..................................... 22 

Figure 3.1 Schematic of dynamic GOS process .......................................................... 31 

Figure 3.2 Procedure for generating synthetic data for bioprocess application ............ 35 

Figure 3.3 Distribution of kinetic parameters considered ............................................. 37 

Figure 3.4 Distribution of selected concentrations and GOS moles produced ............. 37 

Figure 3.5 Standard DO framework using simulated data from several simulations .... 41 

Figure 3.6 Modified DO framework using simulated data from several simulations ..... 44 

Figure 3.7 EKF estimation performance for state variables using Modified DO ........... 46 

Figure 3.8 EKF performance results for outputs using Modified DO ............................ 47 

Figure 3.9 Dual EKF estimation performance for state variables using Modified DO... 51 

Figure 3.10 Dual EKF estimation performance for outputs using Modified DO ............ 52 

Figure 3.11 SE values for EKF simulations performed ................................................ 55 

Figure 3.12 SE values for EKF simulations with modified initial conditions .................. 58 

Figure 3.13 MHE performance results for state variables using modified covariances 63 

Figure 3.14 MHE performance results for outputs using modified covariances ........... 64 

Figure 3.15 P-MHE performance results for state variables ........................................ 67 

Figure 3.16 P-MHE performance results for output measurements ............................. 68 

Figure 4.1 ALS framework using simulated data from several simulations .................. 81 

Figure 4.2 ALS results for LTI case study .................................................................... 85 



xiii 

 

Figure 4.3 Sample of ALS derived covariances for nonlinear EKF example ................ 89 

Figure 4.4 EKF performance for state variables using ALS derived covariances ........ 95 

Figure 4.5 EKF performance for outputs using ALS derived covariances .................... 96 

Figure 4.6 MHE performance for state variables using ALS derived covariances ....... 98 

Figure 4.7 MHE performance for outputs using ALS derived covariances ................... 99 

Figure 5.1 Bilayer DRTO approach ............................................................................ 108 

Figure 5.2 β-galactosidase from K. lactis purchase price correlation ......................... 120 

Figure 5.3 Diluted β-galactosidase from K. lactis DRTO results ................................ 123 

Figure 5.4 Diluted β-galactosidase from K. lactis optimal feeding profiles ................. 124 

Figure 5.5 Component concentration profiles for optimal diluted β-galactosidase from K. 

lactis profile ($1000/kg) .............................................................................................. 126 

Figure 5.6 Component concentration profiles for optimal diluted β-galactosidase from K. 

lactis profile ($670/kg) ................................................................................................ 126 

Figure 5.7 Concentrated β-galactosidase from K. lactis feed DRTO results .............. 129 

Figure 5.8 Component concentration profiles for optimal concentrated β-galactosidase 

from K. lactis feed ...................................................................................................... 131 

Figure 5.9 Reactor enzyme concentration for optimal concentrated β-galactosidase from 

K. lactis feed .............................................................................................................. 132 

Figure 5.10 Validation plots for modified DRTO algorithm ......................................... 135 

Figure 5.11 Distribution of economic parameters for β-galactosidase from K. lactis Monte 

Carlo analysis ............................................................................................................ 137 

Figure 5.12 Distribution of β-galactosidase from K. lactis profitability rate and optimal 

batch time .................................................................................................................. 137 



xiv 

 

Figure 7.1 Synergistic combination of PSE tools ....................................................... 145 



xv 

 

  

Nomenclature  

Notation  

a Intercept P-quantity Q correlation 

𝐴̅𝑘 Linearized system matrix 

b P-quantity Q correlation slope 

bavg Average P-quantity Q correlation slope 

benz Enzyme specific P-quantity Q correlation slope  

B Input matrix 

𝐶𝑘̅ Linearized controllability matrix 

𝐶𝑒𝑛𝑧 Enzyme feed concentration [M] 

𝐶𝑙𝑎𝑐 Lactose feed concentration [M] 

Di Total disaccharide concentration [M] 

e Free enzyme concentration 

E Active enzyme concentration [M] 

𝑓(𝑥̂𝑘, 𝑢𝑘) Nonlinear reactor model 

G System noise matrix 

𝐺̅𝑘 Linearized system noise matrix 

Gal Galactose concentration [M] 



xvi 

 

Glb Galactobiose concentration [M] 

Glu Glucose concentration [M] 

GOS3 Total trisaccharide concentration [M] 

GOS4 Total tetrasaccharide concentration [M] 

ℎ(𝑥̂𝑘
−) Nonlinear system function 

𝑖𝑛𝑖𝑡𝑙𝑎𝑐 Initial lactose 

J Number of data sets 

𝑘 Discrete time index 

𝐿𝑘 Kalman filter gain 

Lac Lactose concentration [M] 

MW Molecular weight 

N Horizon length 

NALS Number of lags 

P Unit price of chemical [$/kg] 

𝑃0
− Initial forecasted estimator covariance matrix 

PB Bulk unit price [$/kg] 

𝑃𝑘+1
−  Forecasted estimator covariance matrix 

𝑃𝑘 Estimator covariance matrix 

P1 Single unit price [$/kg] 



xvii 

 

Q Model covariance matrix 

QB Representative bulk amount [g] 

Qcorr Purchase quantity [g] 

Q1 Single unit purchase quantity [g] 

R Measurement covariance matrix 

ℛ𝑘 Autocovariance matrix 

𝑡𝑏𝑎𝑡𝑐ℎ Batch time [min] 

tprep Preparation time [min] 

Tet Glucose rich tetrasaccharide concentration [M] 

Tetg Purely galactose rich tetrasaccharide concentration [M] 

Tri Glucose rich trisaccharide concentration [M] 

Trig Purely galactose rich trisaccharide concentration [M] 

𝑢 Control moves 

𝑢𝑒𝑛𝑧 Enzyme feed flowrate [m3/min] 

𝑢𝑙𝑎𝑐  Lactose feed flowrate [m3/min] 

𝑉̂𝑇
−(𝑥𝑇−𝑁) Arrival cost 

v Measurement noise 

V Volume [m3] 

Vmax Maximum reactor volume [m3] 



xviii 

 

w Model noise 

𝑥̅0 Initial guess of the system states 

𝑥̂0
− Initial forecasted state estimate 

𝑥̂𝑘+1
−  Forecasted state estimate 

𝑥̂𝑘 State estimate 

𝑥𝑚𝑜𝑑𝑒𝑙 Model output 

𝑦𝑘 Measurement 

𝕪𝑘 Innovation sequence 

z Augmented state vector 

⊕ Direct sum 

⊗ Kronecker product 

|𝑋|𝑌
2 Quadratic Error 

 

Acronyms 

ACM Autocovariance matrix 

ALS Autocovariance least-squares 

A. oryzae Aspergillus oryzae 

CSTR Continuous stirred-tank reactor 



xix 

 

DCS Distributed control system 

DO Direct optimization 

DRTO Dynamic real-time optimization 

EKF Extended Kalman filter 

GOS Galacto-oligosaccharide 

HPLC High performance liquid chromatography 

KF Kalman filter 

K. lactis Kluyveromyces lactis 

LTI Linear time-invariant 

MHE  Moving horizon estimation 

MPC Model predictive control 

MV Manipulated variable 

NEGA Noise covariance matrices estimation with Gaussianity assessment 

OPC Open Platform Communication 

P-MHE  Parameter-based moving horizon estimation 

PID Proportional-integral-derivative 

PSE Process systems engineering 

PSO Particle swarm optimization 



xx 

 

RTO Real-time optimization 

SE Square Error 

SP Setpoint 

SQP Sequential quadratic programming 

UKF Unscented Kalman filter 

Greek Letters 

Δt Discretization time 

𝜀𝑘 State estimation error 

Ϛ𝑝,𝑁 Permutation matrix 

𝜃 Kinetic parameter covariance matrix 

ρ Solution density 

ρkin Kinetic parameters 

Ψ  Augmented model covariance matrix   



1 

 

 

 

 

 

State Estimation, Covariance Estimation, and Economic 

Optimization of Semi-Batch Bioprocesses 

  



2 

 

Chapter 1 Introduction 

 

One of the most critical aspects of any chemical process is the ability to gather, 

analyze, and trust incoming process data. Real processes use a variety of online sensors 

and offline measurements derived from process samples, correlations, process models, 

and even operator knowledge as sources of information to help informed decision 

making at various levels. Although all data sources have some inherent value and 

potential use, not all data are equally valuable for making decisions for online monitoring 

and control of chemical plants. For example, operators may provide useful insight 

regarding the mechanical health of process equipment (e.g., degradation or leaks) but 

are unable to manually gather temperature and pressure readings to operate a plant in 

an online manner. 

As a result, all modern chemical plants heavily rely on online sensors such as 

thermocouples, pressure gauges, inline gas chromatography units, and flowmeters to 

provide a constant stream of information to the distributed control system (DCS). In 

particular, the DCS is the brain of the modern chemical plant and is responsible for 

interpreting the incoming process data and responding with the appropriate control 

action (Segovia & Theorin, 2013). Operators and control engineers can override the 

DCS, but much of the time the DCS is at the helm of monitoring and controlling the plant. 

Although variations in DCS vendor can influence the inclusion of specific features such 

as nonlinear control, Industry 4.0 integration, or integration with external software tools, 

nearly all commercial DCS implementations will directly supervise an ongoing process. 
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Most commonly, this supervision is performed using proportional-integral-

derivative (PID) control algorithms directly embedded into the DCS software, where the 

incoming process data is used to determine the current process states. If a process state 

or output does not match its specified setpoint (SP) within the PID, corrective control 

action will be taken by varying a manipulated variable (MV) (Rice, 2010). It should be 

noted that model predictive control (MPC) is becoming more common across DCS 

vendors, but this does not modify the DCS’s responsibility for regulating the process 

through variation of the MVs (Rockwell Automation, 2016). Figure 1.1 shows how a basic 

PID control loop interacts with the DCS. 

 

 Figure 1.1 Basic PID loop interaction with DCS 

 

This example control loop is designed to regulate the effluent temperature of the 

process stream leaving the heat exchanger by varying the flowrate of the utility stream. 
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For this example, the temperature of the effluent stream is measured using an online 

temperature sensor (TE) which feeds this information to the DCS inside the control room 

using a transmitter (TT). Tuned PID controllers inside the DCS software read this signal 

and update the flowrate of the utility steam by relaying (TY) an updated valve stem 

position for the utility steam control valve (TCV), if the effluent stream temperature does 

not match the specified setpoint. Even in this basic control loop, additional process states 

such as pressure (PI) or flow rate (FI) may be tracked and transmitted (PT and FT, 

respectively) to the DCS to help validate temperature measurements or to track difficult 

to measure process phenomena such as fouling. 

In theory, raw online process data is all that is required to conduct feedback 

control of a process. However, in real processes, data from online sensors may be 

unreliable due to measurement errors, poor tuning, calibration drifts or mechanical 

failures. For some processes, there are no online sensors that can measure key process 

states of interest, or in many cases the measurements cannot be collected in an 

economically efficient manner. State estimation techniques can be applied to reduce 

these noise effects and provide a higher amount of confidence in the process data. In 

the DCS example shown above, a state estimation algorithm could blend a model 

prediction for the outlet temperature with the available measurements to filter out noise 

and provide more accurate states for feedback control. 

Most of the literature involving state estimation is devoted to its application to 

continuous processes that are operating at steady-state or those which are undergoing 

dynamic transitions from one steady-state to another. This trend is largely driven by the 

popularity and success of continuous processes in the petrochemical and commodity 
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chemical industries, power plants and other large-scale highly automated processes with 

high production rates (Chen, 2017). Due to this emphasis on continuous processes, 

entire segments of the chemical process industry that rely heavily on batch processes, 

such as the pharmaceutical and food industries, are not addressed thoroughly in the 

estimation literature.  

State estimation could be particularly attractive to the pharmaceutical industry as 

it is beholden to strict quality control regulations. Although some attempts are being 

made to convert this industry to continuous operation, there are still many challenges 

that must be addressed such as, economic viability of switching, technology not currently 

existing (in particular for biological products), or process safety (Chen, 2017; Lee, 2017). 

Likely, batch processes will remain common place for certain aspects of the 

pharmaceutical industry as well as food processing industry. As a result, there is a clear 

motivation to develop batch or semi-batch specific state estimation algorithms to address 

this gap in the literature. 

The development of semi-batch specific state estimation algorithms is not enough 

however, as these algorithms require careful tuning to correctly filter out the noise and 

derive accurate estimates of the process states (Alexander et al., 2020). Most commonly 

process control engineers will attempt to quantify the uncertainty of various data sources 

to correctly weigh the significance of each piece of information. For example, in Figure 

1.1 if a model prediction is available and accurate, then the model will have a lower 

uncertainty and will be relied upon more than the online measurement in the state 

estimation algorithm. Over time, if the model becomes a poor representation of the plant 

due to unmodeled disturbances (e.g., fouling), then the uncertainty of the model may 
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become large enough such that the measurement would be relied upon more. Even in 

this simple example, identification and quantification of the model and measurement 

uncertainties is a non-trivial task. This motivates the development of specific techniques 

to derive the covariances that characterize these uncertainty sources to help achieve 

more accurate state estimation values for industrial processes. This is particularly critical 

in the food and pharmaceutical industries where accurate state estimates could be used 

to help ensure that quality control standards are reached. 

Although not directly related to online control, some DCS implementations go well 

beyond process control tasks and are beginning to adapt to the new paradigm of Industry 

4.0 combined with internet of things (IoT) (Badii et al., 2020). The increased access to 

plant data, ability to share data through communication protocols such as Open Platform 

Communication (OPC), and expansion in computing power has revolutionized 

scheduling, optimization, supply chain management, and tracking of relevant 

performance indicators (Bellini et al., 2022). As a result of this data access and 

connectivity, there are many possible ways of improving traditional control approaches. 

For example, economic-based dynamic real-time optimization (DRTO) algorithms written 

in an external coding language such as Python or MATLAB could receive updated 

economic data regarding product value, feedstock cost, or other operating expenses 

from supply chain experts, and then update setpoints within the plant. Such automated 

algorithms would be extremely useful for batch or semi-batch processes which are 

traditionally controlled using repeatable recipes, programmable logic controllers (PLC), 

or other nonoptimal forms of control. Once again, this could be useful in the 

pharmaceutical or industrial food industry as market demands and feedstock costs are 
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constantly varying, and few tools are available to rigorously optimize and optimally 

control these processes due to the batch and semi-batch nature of these industries. 

Overall, there are many opportunities to develop and apply process systems 

engineering (PSE) tools to achieve better process monitoring and state estimation for 

improved bioprocess economics. In particular, the emphasis on continuous processes 

has created a unique gap in the literature where batch and semi-batch specific PSE tools 

can be developed. As a result, this motivates the 4 specific aims of this dissertation listed 

below: 

1) Develop semi-batch specific state estimation algorithms. Various classes 

of recursive and optimization-based algorithms will be developed and 

implemented for semi-batch specific process applications. This will include the 

development of a new parameter-based moving horizon estimator (P-MHE). 

As part of this work, a discussion on estimator robustness and computational 

cost is included to facilitate further application of these tools. 

2) Employ systematic tools for deriving estimates of model and 

measurement covariances. To improve upon the standard ad-hoc 

covariance estimation techniques, systematic tools will be developed, tested, 

and applied to the algorithms in Aim 1. Specifically, direct optimization (DO) 

and autocovariance least-squares (ALS) techniques will be further developed. 

These systematic algorithms will yield consistent and accurate approximations 

of the system covariances, thus leading to improved estimation accuracy over 

ad-hoc tuning methods. 
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3) Propose a novel costing approach as part of a semi-batch specific DRTO 

framework. To address the semi-batch DRTO gap in the literature, an entirely 

novel semi-batch specific costing methodology and DRTO problem 

formulation are proposed. The novel costing approach serves as the objective 

function for the DRTO and allows the optimal feeding policy to be derived for 

maximization of the process economics considering factors such as batch 

time, yield, and product quality. As a part of this aim, an enzyme specific cost 

scaling approach is developed which allows bulk industrial cost to be 

estimated from laboratory-scale pricing data. 

4) Apply state estimation, covariance estimation, and semi-batch DRTO 

tools to a bioprocess. To test the approaches developed in the individual 

aims, a semi-batch galacto-oligosaccharide (GOS) process is used as the 

case study. This process requires state estimation as not all process states 

are directly measurable. Furthermore, there are few economic studies of this 

process (particularly in semi-batch operation), so a robust-economic based 

DRTO study is needed to determine its optimal feeding policy. 

1.1 Research Outputs 

The specific contributions of this work are: i) development of a new joint parameter 

and state estimation algorithm known as P-MHE. This algorithm is designed to address 

plant model mismatches common in batch processes and modifies existing approaches 

to allow for direct estimation of the kinetic parameters and process states concurrently 

with a much lower computational time than traditional approaches; ii) propose and test 
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alternative DO techniques to improve this covariance estimation method; iii) 

development of a MATLAB specific version of the ALS technique for semi-batch 

processes with application to the GOS process; iv) creation of a novel semi-batch 

specific economic DRTO approach that is generalizable to other semi-batch process; 

and v) propose an enzyme specific cost scaling approach to estimate bulk enzyme costs 

for economic studies associated with the GOS process. 

Overall, these contributions have resulted or will result in the following publications: 

Journal Publications 

1. Alexander, R., Campani, G., Dinh, S., & Lima, F. V. (2020). Challenges and 

Opportunities on Nonlinear State Estimation of Chemical and Biochemical 

Processes. Processes, 8(11), 1462. https://doi.org/10.3390/pr8111462 

2. Schultz, G., Alexander, R., Lima, F. V., Giordano, R. C., & Ribeiro, M. P. A. 

(2021). Kinetic modeling of the enzymatic synthesis of galacto-

oligosaccharides: Describing galactobiose formation. Food and Bioproducts 

Processing, 127, 1-13. https://doi.org/10.1016/j.fbp.2021.02.004 

3. Alexander, R., Dinh, S., Schultz, G., Ribeiro, M. P. A., & Lima, F. V. (2023). 

State and covariance estimation of a semi-batch reactor for bioprocess 

applications. Computers & Chemical Engineering, 172, 108180. 

https://doi.org/10.1016/j.compchemeng.2023.108180 

4. Alexander, R., Maione, N. R., Ribeiro, M. P. A, & Lima, F. V. (In preparation) 

Economic Analysis of Galacto-oligosaccharide Production using a Semi-

batch Dynamic Real-Time Optimization Framework. 

https://doi.org/10.3390/pr8111462
https://doi.org/10.1016/j.fbp.2021.02.004
https://doi.org/10.1016/j.compchemeng.2023.108180
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5. Alexander, R., & Lima, F. V. (In Preparation) Development of an 

Autocovariance Least-Squares Covariance Estimation Technique for Semi-

Batch Bioprocesses. 

Selected Conference Presentations 

1. Alexander, R., Schultz, G., Ribeiro, M. P. A. & Lima, F. V. (2020) Modeling 

and Nonlinear State Estimation for Advanced Process Control of the 

Enzymatic Conversion of Lactose into Value-Added Products. Oral 

presentation at AIChE Annual Meeting (Virtual) 

2. Alexander, R., Dinh, S., Schultz, G., Ribeiro, M. P. A. & Lima, F. V. (2021) 

Keynote: Multi-Objective Optimization, State Estimation, and Advanced 

Control of a Semi-Batch Process for the Enzymatic Conversion of Lactose 

into Value-Added Products. Oral presentation at AIChE Annual Meeting in 

Boston, MA 

3. Alexander, R., Ribeiro, M. P. A., & Lima, F. V. (2022) An Integrated State 

Estimation, Covariance Estimation, and Optimal Control Framework of a 

Semi-Batch Reactor for Bioprocess Applications. Oral presentation at AIChE 

Annual Meeting in Phoenix, AZ 

4. McCullough, A., Bischof, L., Alexander, R., Agbleze, S., & Lima, F. V. (2023) 

Development of an Algorithm to Evaluate the Performance and Economic 

Feasibility of Expansion of Solar and Wind Power Generation in the 

Appalachian Region. Oral presentation at Clearwater Clean Energy 

Conference (Hybrid) 
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1.2 Dissertation Organization 

To facilitate discussing the first 3 aims of this dissertation, each aim is broken 

down into its own independent chapter. Chapter 2 summarizes the current literature of 

each aim and helps to provide context for each topic. Chapter 3 is dedicated to 

developing, implementing, and testing various estimation algorithms on semi-batch 

bioprocesses. This chapter also introduces the GOS process that is used as the case 

study system for much of this dissertation. Chapter 4 builds upon Chapter 3, by 

discussing how ALS can be used to derive accurate estimates of the model and 

measurement covariance matrices while maintaining low computational time. Chapter 5 

focuses on developing a novel semi-batch specific costing approach with an emphasis 

on bioprocesses. Additionally, this chapter also presents a novel DRTO algorithm for 

optimizing semi-batch processes with respect to process economics. Finally, Chapters 

6 and 7 document the conclusions of this dissertation and future recommendations that 

can be used to further develop and improve upon the work presented. 
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Chapter 2 Literature Review 

 

The fields of state estimation, covariance estimation, and dynamic optimization 

considering process economics are distinct areas of research that can be difficult to 

connect. Much of the published literature in these fields focuses on a single topic, thus 

there are limited publications discussing how these fields can synergistically work 

together. As a result, this literature review will be broken down into distinct sections that 

will focus on a single topic independently.  Some of the information from this section was 

previously discussed and published in a state estimation review paper. Specifically, 

segments of Sections 2.1 and 2.2 are derived from Alexander et al. (2020) which can be 

referenced for a broader literature review of the estimation field. The content presented 

in this chapter is intended to provide enough context for the proceeding chapters of this 

dissertation. 

2.1 State Estimation 

Simply stated, state estimation is a mathematical approach for improving 

knowledge of process states by blending measurements and process models together. 

This is essential as both measurements and process models are imperfect and thus can 

provide unrealistic information regarding where the true process state values are. 

Measurements provide real-time information about the process states but are frequently 

subject to noise, poor calibration, instrumentation failure, or maybe unavailable for 

certain states (e.g., concentration, density). Additionally, measurement devices are 

unable to predict the future behavior of processes which may be required to avoid unsafe 

operating regions or to reach production targets (Alexander et al., 2020). 
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Process models can provide predictive behavior but are frequently developed 

offline and tuned using historical data sets that may not reflect the current conditions of 

the plant. For example, a kinetic model may be developed for a packed bed reactor 

(PBR) using historical data that does not account for coking or gradual deactivation of 

the catalyst experienced in the plant. Over time, the state values predicted by the model 

will deviate further and further from the true state values seen in the plant. By combining 

these two data sources, it is possible to leverage the benefits of both process models 

and measurements to gain a better approximation of the true process states. 

Historically, many state estimation techniques can trace their origins back to the 

Bayesian rule developed by Thomas Bayes in the 18th century (Bayes, 1763). Modern 

algorithms can more directly trace their roots to Rudolf Kalman and the development of 

the Kalman filter (KF) in the 1960s (Kalman, 1960). Canonically, the KF is a recursive 

linear filter which employs a linear state-space model of the process with measurements 

to derive estimates of the process states using the 2-step recursive procedure shown in 

Figure 2.1. 
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Figure 2.1 Recursive estimation algorithm procedure 

 

Figure 2.1 shows the basic structure of most recursive estimation techniques and 

begins by providing an initial guess of the system states (𝑥̅0), an initial guess of the 

measurement covariance matrix (𝑅) and an initial guess of the model covariance matrix 

(𝑄) to derive the initial forecasted state estimate (𝑥̂0
−) and the initial forecasted estimator 

covariance matrix (𝑃0
−). Upon collection of the first measurement (𝑦𝑘), the correction step 

of the algorithm is initialized to derive the current state estimates (𝑥̂𝑘) and the estimator 

covariance matrix (𝑃𝑘). Once this step is completed, the process model is used to 

conduct the forecast step of the algorithm to derive the new set of forecasted state 
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estimates (𝑥̂𝑘+1
− ) and forecasted estimator covariance matrix (𝑃𝑘+1

− ). Finally, the 

estimation loop is closed by iterating the discrete time index (𝑘) ahead one step and 

reconducting the correction step upon collection of a new measurement. This 2-step 

recursive process continues until the algorithm is terminated by the user. 

To address nonlinearities found in many processes (particularly chemical 

processes), techniques such as model linearization and nonlinear transformations were 

introduced to develop the extended Kalman filter (EKF) (Rawlings et al., 2022) and 

unscented Kalman filter (UKF) (Julier & Uhlmann, 2004). From here, other forms of EKF 

and UKF have been developed to address differential algebraic equations (DAE) (Purohit 

& Patwardhan, 2018), parameter uncertainty (Sun et al., 2008), and other unique 

situations. 

Although these recursive techniques are computationally efficient, there are 

several drawbacks to their industrial use, with the most significant being the inability to 

guarantee feasibility. EKF has many well documented examples of failing in the literature 

and cannot easily be modified to prevent this from occurring (Wilson et al., 1998; 

Haseltine & Rawlings, 2005; Alexander et al., 2020). There have been some ad-hoc fixes 

for EKF such as “clipping” the state estimates to feasible values if they become infeasible 

(Kolås et al., 2009), but this presents its own set of issues and generally produces poor 

estimation results. Due to this unconstrained nature, a variety of factors can lead to EKF 

instability (Ungarala et al., 2007) including multiple states satisfying the steady-state 

measurement (i.e., multiple solutions), poor initial guess of the system states (Haseltine 

& Rawlings, 2005), poor linearization, incorrect covariances, and even limited arithmetic 

precision leading to round-off operations (Verhaegen & Van Dooren, 1986; Lu et al., 
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2007). For certain nonlinear systems, first-order linearization can cause large errors for 

the mean and covariance calculations or they may simply be nondifferentiable, thus not 

allowing the Jacobian matrices to be calculated (Zarei & Shokri, 2014). A very commonly 

cited paper examining EKF failure (and the benefits of alternative methods) is Haseltine 

& Rawlings (2005) which ultimately led to a rigorous discussion of this topic throughout 

the PSE community. 

A commonly cited response paper is from Schneider & Georgakis (2013) which 

argues that under appropriate initialization conditions with effective design algorithms, 

EKF is an attractive state estimation method. Specifically, it is argued that if the initial 

covariance guess is specified accordingly (Valappil & Georgakis, 2000), the EKF can 

converge (Schneider & Georgakis, 2013). In terms of remediating numerical issues, 

square-root filtering methods have been proposed (Bellantoni & Dodge, 1967; Lu et al., 

1992). Outside of these methods, numerical stability has been improved by replacing 

conventional matrix inversion methods with the Moore-Penrose matrix pseudoinversion 

(Kulikov & Kulikova, 2019). Additional publications in the literature have developed 

alternative filter formulations including the constrained extended Kalman filter (CEKF) 

(Ungarala et al., 2007), the constrained cubature Kalman filter (CCKF) (Zarei & Shokri, 

2014), and other Kalman filter formulations that allow equality and inequality constraints 

to be incorporated. Overall, the underlying unconstrained nature of EKF requires 

applying a variety of unique filter modifications to promote feasible and derive reliable 

state estimation results.  

 In industrial applications, the infeasibility of traditional EKF can cause systematic 

control problems if the resulting state estimates from the filter are sent to the control 
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algorithms inside the DCS. Although alternative EKF formulations could be applied to 

remediate some of these infeasibilities, these algorithms have not been widely deployed 

in industrial applications and would require the control engineer to identify the source of 

the Kalman filter failure and choose an appropriate algorithm to remediate that challenge. 

Overall, this is more of an academic approach to applying state estimation as the solution 

is not scalable or immediately robust across all potential applications. For cases where 

feasibility is a concern, an alternative class of optimization-based estimation algorithms 

is available that can immediately be implemented into a wide variety of processes.  

Many optimization-based state estimation approaches structure the objective 

function as a least-squares problem that incorporates data from the process model and 

measurements, along with their model and measurement covariances, respectively. The 

most common algorithm from this class is the moving horizon estimation (MHE) which 

uses a sliding window of recent measurements (Rawlings et al., 2022). The sliding 

window limits the computational cost of the optimization problem by reducing the 

estimation to recent data points instead of the full information problem (i.e., deriving 

estimates for the entire process).  As MHE uses optimization, it is straightforward to 

embed a variety of constraints such as non-negative values, min/max value, nonlinear 

constraints, mass balances, and energy balances. The moving horizon approach can be 

seen below in Figure 2.2 
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Figure 2.2 Shifting horizon window of MHE 

The horizon window (dashed purple box) shown in Figure 2.2 uses a horizon 

length of 4 (i.e., N=4) and only utilizes the most recent measurements (red circles) 

available to the estimator. Using these specific data points and the process model, MHE 

derives a set of state estimates (green squares). Upon collection of new data, the horizon 

window advances forward by removing the oldest measurement from the window and 

replacing it with the new measurement. 

Due to the flexibility of the MHE problem structure, a variety of alternative 

formulations can be found in the literature including parameter and state estimation 

forms (Kühl et al., 2011; Alexander et al., 2023).  A particular challenge of using most 

MHE techniques is the significant increase in computational cost when compared to 

recursive techniques. This has motivated research into appropriate optimizer selection 

and horizon length selection (Rao & Rawlings, 2002; Thierry et al., 2018; Zavala & 

Biegler, 2009). Many optimizers can be used to solve this estimation problem including 
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sequential quadratic programming (SQP), modified SQP (modSQP) (He & Lima, 2020), 

IPOPT (Wächter & Biegler, 2006), meta-heuristic methods such as particle swarm 

optimization (PSO) (Zhou & Tan, 2009), or even combinations of different optimizers 

(e.g., PSO + SQP) (Kim & Lima, 2020). 

The main limitation of using MHE over EKF is the associated increase in 

computational time due to repetitively solving online (often nonlinear) optimization 

problems instead of recursive calculations. For example, for a 2×2 nonlinear system 

MHE can have a 3-4 order of magnitude increase in computational time over traditional 

EKF estimation methods (Alexander et al., 2020). The specific increase in computational 

time depends on many factors including optimizer choice, problem complexity and size 

of the optimization problem, and horizon length used. Depending on the specific 

requirements of the process, this high computational time may not allow for MHE to be 

applied in an online manner as state estimates may not be readily available. In general, 

many of these estimation techniques have been developed for continuous processes 

operating at steady state, or transient processes shifting between steady states. Overall, 

there has been a lack of systematic algorithms developed or applied for semi-batch 

processes which do not have a steady state. As a result, this motivates Aim 1 of this 

dissertation, the application and development of specific state estimation algorithms for 

nonlinear semi-batch processes subject to plant-model mismatches. 

2.2 Covariance Estimation 

A limitation of both recursive and optimization-based approaches is having to 

supply accurate values of the model covariance matrix (Q) and measurement covariance 
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matrix (R) to obtain accurate approximations of the true process states. Since the 

development of the original KF algorithm, researchers have emphasized that poor 

approximations of these covariances can produce higher peak variances, slower 

convergence, instability, and overall suboptimal performance (Heffes, 1966; Nishimura 

1967). 

 Estimation of the model and system noise covariances is a challenging endeavor 

and is most commonly conducted using ad-hoc techniques. Often control engineers will 

assume the Q and R matrices are diagonal in nature, which carries the assumption all 

sources of process and measurement noises are uncorrelated. A consequence of this 

assumption is a significant reduction in the number of variables that must be tuned by 

the control engineer. This more easily allows the process control engineer to simply 

modify the specific values of Q and R until acceptable estimation performance is 

achieved (Lima et al., 2013). Even with this simplification, these ad-hoc techniques 

cannot guarantee accuracy, can be time consuming to implement, and quickly become 

infeasible to manage for large nonlinear systems. These challenges have motivated the 

development of more systematic approaches for deriving covariance estimates. 

Currently there is no de facto algorithm or systematic approach that has reached 

a consensus in the covariance estimation literature, as numerous methods have been 

proposed. These methods vary in terms of the required assumptions including linearity, 

number of system noises (e.g., full matrix estimation or diagonal elements only), and 

observability. Generally, these algorithms can be divided into 4 main categories: 1) 

correlation techniques, 2) maximum likelihood, 3) covariance matching, 4) Bayesian 

methods (Duník et al., 2017; Duník et al., 2018; Odelson et al., 2005). 
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Of these four methods, both Bayesian and maximum likelihood methods are 

commonly unpreferred due to their large computational time (Odelson et al., 2005). 

Bayesian methods employ a recursive joint estimation of the process states along with 

the covariance matrices using a nonlinear state estimator (Duník et al., 2018). Maximum 

likelihood methods are similar to Bayesian methods but conduct joint estimation of states 

and covariance matrices though maximization of a likelihood function (Duník et al., 2018; 

Kashyap, 1970). Covariance matching methods derive the covariance matrices by 

employing a statistical filter using the actual states and measurement estimation error 

statistics (Duník et al., 2018). Commonly cited algorithms using covariance matching 

include noise covariance matrices estimation with Gaussianity assessment (NEGA) 

(Duník et al., 2018; Duník et al. 2020) and adaptive limited memory filter (ALMF) (Myers 

& Tapley, 1976). Although NEGA has been applied to both linear time-invariant and 

linear time-varying systems, this class of covariance estimation technique has been 

shown to give biased estimates of the true covariances (Odelson et al., 2005). This 

leaves correlation techniques, which employ the innovation sequences of a linear 

estimation with a statistical assessment (Odelson et al., 2005). These methods were 

originally developed by Merha (1970) and Bélanger (1974) and were used as a starting 

point for the development of the ALS method. 

 ALS is a widely used covariance estimation technique and has gone through 

several revisions to build upon and resolve some concerns with Mehra’s approach such 

as uniqueness and variance reduction. Originally, ALS was posed as a linear covariance 

estimation technique and generated more accurate estimates of the system and model 

covariances over Mehra’s approach (Odelson et al., 2005). Overtime, ALS has been 
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further extended to nonlinear systems with EKF estimation (Rajamani et al., 2007) and 

nonlinear systems with MHE (Lima & Rawlings, 2011). From this point, ALS has been 

further modified and applied to weakly observable systems (Lima et al., 2013), batch 

processes (Rincόn et al., 2014A), and semi-continuous (AKA, semi-batch) 

polymerization processes (Rincόn et al., 2014B). 

Despite ALS’s proven track record and numerous successful applications, major 

algorithm development has stopped. The ALS package download available from 

Rawling’s website from the University of California, Santa Barbara was last updated on 

December 5th, 2014, and requires using GNU Octave with Sundials toolbox (Rawlings, 

2019). GNU Octave is a free high-level programming language mostly compatible with 

basic MATLAB functions (Eaton, n.d.; Eaton, 2012) but has not been widely 

disseminated in PSE applications. Figure 2.3 highlights the disparity between Google 

search results for GNU Octave and MATLAB. 

 

Figure 2.3 Google trends data for GNU Octave and MATLAB 
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The results shown in Figure 2.3 are generated from Google Trends (2023) and 

show the relative search interest for the two different coding languages. A value of 100 

indicates the peak popularity of the search results, while a value of 50 indicates a search 

popularity of half the peak value. Overall, this search result demonstrates and supports 

the claim that GNU Octave popularity is not as high as MATLAB. As a result, the ALS 

toolbox currently available for download is rather out of date and unlikely to be used by 

the PSE community. Due to past successful applications of ALS, it has motivated the 

development of a MATLAB specific version and application to semi-batch processes 

considering plant-model mismatches in Aim 2 of this dissertation. 

2.3 Dynamic Optimization Considering Process Economics 

Optimization of chemical processes is a widespread field that can traditionally be 

divided into two main categories: steady-state optimization and dynamic optimization. 

Steady-state optimization is generally well understood by most process engineers and 

is commonly used to justify long term (i.e., days, weeks, years) changes to the plant 

through modification of the plant operating conditions or even capital projects by 

modifying topology. Costing and evaluating long-term capital projects for steady-state 

processes is a well-documented topic and can be solved using tools such as CAPCOST 

(Turton et al., 2018), process simulators (e.g., Aspen Capital Cost EstimatorTM 

(AspenTech, n.d. A), Aspen UtilitiesTM (AspenTech, n.d. B), CHEMCAD’s cost algorithms 

(Chemstations, n.d.)) or even internal company costing guidelines or vendor quotes. 

Changes to plant operating conditions generally fall under the purview of real-time 

optimization (RTO). RTO simply modifies setpoints throughout units or entire plants to 
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improve metrics such as process economics with constraints on product quality, 

production rate, safety operating regions, or other limits. RTO is a well-established 

technology and is commonly used in the petrochemical industry, paper industry, and is 

often a key part of many modern control systems (Câmara et al., 2016). 

Dynamic optimization is a less defined area of research in the chemical process 

industry and can encompass different topics depending on the specific definition being 

used. For the purposes of this dissertation, dynamic optimization can be viewed as a 

strategy “that provides an optimal input trajectory using a dynamic model” 

(Krishnamoorthy et al., 2018) and includes algorithms such as DRTO and MPC 

(Krishnamoorthy et al., 2018; Kim & Lima, 2022). When considering MPC, most of the 

literature for DRTO is dedicated to improving the transient behavior of processes while 

transitioning between various steady states. As a result, DRTO and steady-state 

optimization approaches most commonly exclude processes that never reach steady-

state and are always operating dynamically. A common example of such a process is a 

semi-batch reactor. 

Semi-batch processes fall outside the scope of much of the existing literature and 

exhibit unique characteristics such as: inherent dynamic behavior, lack of steady states, 

mass accumulation/decumulation, and time dependent reactions. These characteristics 

make semi-batch reactor processes attractive for liquid phase reactions where selectivity 

is a key concern (Fogler, 2016). This dynamic behavior, controlled inputs, and lack of 

steady states produce a challenging economic optimization problem that has not been 

thoroughly addressed in the literature. Recent publications such as Kummer (2020) and 

Sass (2022) have addressed some control aspects of semi-batch processes using 
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various techniques, without focusing on maximizing the profitability. This lack of 

emphasis on economic optimization of semi-batch processes through optimal 

control/DRTO is the motivation behind Aim 3 of this dissertation. 
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Chapter 3 State Estimation Applied to Nonlinear Semi-Batch 
Processes 

 

In this chapter, both recursive and optimization-based nonlinear state estimation 

techniques are applied to a semi-batch GOS process where not all process states can 

be measured using online techniques. As a result, this requires the use of estimation 

algorithms to conduct process monitoring or process optimization. Noise is introduced 

into the system by varying the kinetic parameter values and applying white noise to 

synthetically generate measurements. The work presented in this chapter was published 

as part of Alexander et al. (2023). 

 This chapter begins by providing a brief overview of the GOS market, the process 

model selected, and the procedure used to generate simulated data for the estimation 

studies. Then, various recursive estimation techniques are tested and evaluated in terms 

of accuracy and robustness. As part of this chapter, a preliminary covariance estimation 

technique is also discussed for this class of estimation algorithms which is further 

elaborated in Chapter 4. Finally, optimization-based state estimation techniques are also 

tested and evaluated to determine their effectiveness on semi-batch processes. 

3.1 Galacto-oligosaccharide Overview 

 Although a variety of chemical or biochemical processes could have been 

selected as the case study for this work, the synthesis of GOS via the 

transgalactosylation of lactose using β-galactosidase was chosen due to several main 

reasons: 1) health benefits, 2) application of green chemistry principles, 3) increasing 
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market demand, 4) unmeasurable states requiring state estimation, 5) potential 

improvement from operation in a semi-batch form.  

GOS refers to a class of value-added food products that are traditionally derived 

from lactose to form a series of galactose and glucose-based products (often 

galactobiose, a mixture of tri- and tetrasaccharides) (Yin et al., 2017; Frenzel et al., 

2015). These compounds have been associated as having health benefits for intestinal 

microbiota and barrier functions, which have shown positive effects for mineral 

absorption, weight management, and decreased carcinogenesis on intestinal microbiota 

(Lamsal, 2012). Beyond these health benefits, GOS has demonstrated stability in 

adverse temperature and acidic conditions, thus making it an excellent food additive in 

dairy products (Catenza & Donkor, 2021). 

Lactose-derived GOS products leverage green chemistry principles by 

remediating the waste disposal problem of dairy farms. During the production of cheese, 

dairy farms often produce lactose rich waste (i.e., whey permeate) which is problematic 

to dispose of and has few avenues for conversion to a value-added product (Albayrak & 

Yang, 2001). This whey byproduct has a high chemical oxygen demand (COD) and 

biochemical oxygen demand (BOD) and cannot be disposed of in municipal sewers, 

dumped onto land due to soil degradation, or discharged into water without risking 

damage to aquatic life (Yadav, 2015). Although unwanted whey production is not new to 

the dairy industry, currently an estimated 180 to 190 million tons/year are produced and 

this is likely to increase as whey generation increases at approximately 2% per year 

(Yadav, 2015). Currently, water from dairy processing is one of the largest sources of 

industrial food wastewater (Slavov, 2017). The production of GOS from lactose is thus 
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an excellent example of a potential application of green chemistry principles to 

bioprocess manufacturing. 

Outside of the green chemistry motivations for this process, the market demand 

for GOS is strong with a proven worldwide consumer base. GOS containing products 

have been sold commercially in Japan and Europe since the 20th century as a prebiotic 

food additive (Wang et al., 2021). These products have helped GOS to reach an 

estimated market value of 1.01 billion USD with a product demand of 175.7 kilo tons in 

2020 (Wang et al., 2021). Looking forward, the GOS market is expected to experience a 

compound annual growth rate (CAGR) of 7.5% through 2032 (Future Market Insights, 

2020). As a result, there is an excellent opportunity to promote and continue the 

widespread adoption of this process. 

Finally, this process poses significant challenges in terms of process monitoring 

as not all process states are able to be directly measured. The monomer building blocks 

that comprise these GOS products are galactose and glucose which are stereoisomers 

that differ exclusively in the positioning of the hydroxyl group on the 4th carbon. In turn, 

this similarity creates some difficulty when trying to isolate and differentiate these 

monomers (Sturgeon, 1990). As these compounds react to form higher-order 

saccharides, it becomes very difficult to distinguish the specific product distributions 

using offline or online analytical techniques. 

 In terms of offline analytical methods, High-performance Anion-Exchange 

Chromatography with Pulsed Amperometric Detection (HPAEC-PAD) with gradient 

elution is an effective chromatographic method that has high resolution for different 
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carbohydrates with the main drawback being an analysis time of 75 minutes or longer 

(Rodriguez-Colinas et al., 2011). High Performance Liquid Chromatography (HPLC) 

using Refractive Index detector (RI) and isocratic elution, is another more widespread 

offline technique due to its simplicity, lower analysis time of around 20 min, and ability to 

uniquely distinguish the concentration of galactose, glucose, all combined disaccharide 

isomers, trisaccharide isomers, and all combined tetrasaccharide isomers (Schultz et al., 

2021). 

 For online process monitoring, there have been attempts to apply Fourier 

transformed mid-infrared (FTIR) (Rico-Rodriguez et al., 2021) and UV 

spectrophotometry (Dias et al., 2009) techniques combined with chemometrics to 

measure the concentration of the GOS products, galactose and glucose. These 

techniques are subject to a high amount of noise, poor calibration, and other factors that 

would reduce the accuracy of their associated measurements. Furthermore, these 

techniques are currently unable to measure the specific disaccharide, trisaccharide and 

tetrasaccharide isomer concentrations and instead are only able to measure the total 

concentration of the disaccharide, trisaccharide and tetrasaccharide isomers. Although 

spectrometric analysis may be able to determine these concentrations, the available 

HPLC reference data is unable to determine these specific concentrations. In essence, 

it is impossible to measure each component concentration using offline or online 

analytical techniques given the current technology available. As a result, the most 

convenient method for deriving the true process states is to apply a state estimator. 
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3.1.1 GOS Model Used 

The GOS model used in this work is derived from Schultz et al. (2021) as it is one 

of the most recent kinetic models published in the literature. This model is unique as it 

incorporates enzyme deactivation and the formation of galactobiose, tri-, and 

tetrasaccharides into one cohesive model. Furthermore, unlike many of the existing 

models in the literature, the model differentiates between purely galactose rich tri- and 

tetrasaccharides compounds while striking a careful balance between complexity, 

accuracy, and parameter correlation to prevent model overfitting (Schultz et al., 2021). 

In literature, this model was published in a batch form but was converted to a dynamic 

continuous stirred-tank reactor (CSTR) form as shown below as Equations 3.1-3.15. 

Additionally, a pictorial representation of the dynamic process is shown in Figure 3.1. 

 
𝑑𝑙𝑎𝑐

𝑑𝑡
= 𝑒 (

𝑘𝐻

𝐾𝑀𝐻
𝑡𝑟𝑖 −

𝑘𝑐𝑎𝑡

𝐾𝑀
𝑙𝑎𝑐 −

𝑘𝑇

𝐾𝑀𝑇
𝛾 𝑙𝑎𝑐) +

𝑢𝑙𝑎𝑐𝐶𝑙𝑎𝑐

𝑉
−

𝑢𝑖𝑛𝑙𝑎𝑐

𝑉
 (3.1) 

 
𝑑𝑔𝑙𝑢

𝑑𝑡
= 𝑒

𝑘𝑐𝑎𝑡

𝐾𝑀
𝑙𝑎𝑐 −

𝑢𝑖𝑛𝑔𝑙𝑢

𝑉
 (3.2) 

 
𝑑𝑔𝑎𝑙

𝑑𝑡
= 𝑒 (𝛾 (𝑘𝑐𝑎𝑡′ −

𝑘𝑇

𝐾𝑀𝐺𝑎𝑙
𝑔𝑎𝑙) +

𝑘𝐻

𝐾𝑀𝐻
𝑔𝑙𝑏) −

𝑢𝑖𝑛𝑔𝑎𝑙

𝑉
 (3.3) 

 
𝑑𝑡𝑟𝑖

𝑑𝑡
= 𝑒 (𝛾

𝑘𝑇

𝐾𝑀𝑇
(𝑙𝑎𝑐 − 𝑡𝑟𝑖) +

𝑘𝐻

𝐾𝑀𝐻
(𝑡𝑒𝑡 − 𝑡𝑟𝑖)) −

𝑢𝑖𝑛𝑡𝑟𝑖

𝑉
 (3.4) 

 
𝑑𝑡𝑒𝑡

𝑑𝑡
= 𝑒 (𝛾

𝑘𝑇

𝐾𝑀𝑇
𝑡𝑟𝑖 −

𝑘𝐻

𝐾𝑀𝐻
𝑡𝑒𝑡) −

𝑢𝑖𝑛𝑡𝑒𝑡

𝑉
 (3.5) 

 
𝑑𝑔𝑙𝑏

𝑑𝑡
= 𝑒 (𝛾𝑘𝑇 (

𝑔𝑎𝑙

𝐾𝑀𝐺𝑎𝑙
−

𝑔𝑙𝑏

𝐾𝑀𝑇
) −

𝑘𝐻

𝐾𝑀𝐻
(𝑔𝑙𝑏 − 𝑡𝑟𝑖𝑔)) −

𝑢𝑖𝑛𝑔𝑙𝑏

𝑉
 (3.6) 

 
𝑑𝑡𝑟𝑖𝑔

𝑑𝑡
= 𝑒(𝛾

𝑘𝑇

𝐾𝑀𝑇
(𝑔𝑙𝑏 − 𝑡𝑟𝑖𝑔) +

𝑘𝐻

𝐾𝑀𝐻
(𝑡𝑒𝑡𝑔 − 𝑡𝑟𝑖𝑔) −

𝑢𝑖𝑛𝑡𝑟𝑖𝑔

𝑉
 (3.7) 
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𝑑𝑡𝑒𝑡𝑔

𝑑𝑡
= 𝑒 (𝛾

𝑘𝑇

𝐾𝑀𝑇
𝑡𝑟𝑖𝑔 −

𝑘𝐻

𝐾𝑀𝐻
𝑡𝑒𝑡𝑔) −

𝑢𝑖𝑛𝑡𝑒𝑡𝑔

𝑉
 (3.8) 

 
𝑑𝐸

𝑑𝑡
= −𝑘𝑒𝐸 +

𝑢𝑒𝑛𝑧𝐶𝑒𝑛𝑧

𝑉
−

𝑢𝑖𝑛𝐸

𝑉
 (3.9) 

 
𝑑𝑣

𝑑𝑡
= 𝑢𝑖𝑛 (3.10) 

 𝑢𝑖𝑛 = 𝑢𝑒𝑛𝑧 + 𝑢𝑙𝑎𝑐 (3.11) 

 𝛾 =

𝑘𝑐𝑎𝑡
𝐾𝑀

𝑙𝑎𝑐+
𝑘𝐻
𝐾𝑀𝐻

𝑎

𝑘𝑐𝑎𝑡
′ +

𝑘𝑇
𝐾𝑀𝐺𝑎𝑙

𝑔𝑎𝑙+
𝑘𝑇
𝐾𝑀𝑇

𝑏
 (3.12) 

 𝑎 = 𝑔𝑙𝑏 + 𝑡𝑟𝑖 + 𝑡𝑟𝑖𝑔 + 𝑡𝑒𝑡 + 𝑡𝑒𝑡𝑔 (3.13) 

 𝑏 = 𝑙𝑎𝑐 + 𝑔𝑙𝑏 + 𝑡𝑟𝑖 + 𝑡𝑟𝑖𝑔 (3.14) 

 𝑒 =
𝐸

1+
𝐺𝑎𝑙

𝐾𝐼
+
𝐿𝑎𝑐

𝐾𝑀
+

𝑎

𝐾𝑀𝐻
+𝛾(1+

𝐺𝑎𝑙

𝐾𝑀𝐺𝑎𝑙
+

𝑏

𝐾𝑀𝑇
)
 (3.15) 

 

Figure 3.1 Schematic of dynamic GOS process 

Equations 3.1-3.10 characterize the rate of change of the 10 state variables and 

are influenced by independent feed streams into the reactor as shown in Figure 3.1. 
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Lactose (𝑢𝑙𝑎𝑐)  and enzyme flowrates (𝑢𝑒𝑛𝑧) of constant lactose (𝐶𝑙𝑎𝑐)  and enzyme feed 

concentrations (𝐶𝑒𝑛𝑧) are independently regulated to control lactose concentration (Lac) 

and active enzyme concentration (E) throughout operation of the semi-batch process. 

Throughout the batch, lactose is broken down to increase the glucose (Glu) and 

galactose (Gal) concentrations. These monomer building blocks subsequently influence 

the formation of and concentration of galactobiose (Glb), glucose rich trisaccharides 

(Tri), glucose rich tetrasaccharides (Tet), purely galactose rich trisaccharides (Trig), and 

purely galactose rich tetrasaccharides (Tetg). Over time, E decreases and is maintained 

by feeding fresh active enzyme in the reactor. Additionally, if a semi-batch operation is 

assumed than reactor volume (V) changes dynamically subject to the system inputs (𝑢𝑙𝑎𝑐 

and 𝑢𝑒𝑛𝑧). 

Nonlinearities are introduced into the process model described by the differential 

equations through the presence of the parameters γ, a, and b, which involve most 

process states (excluding Glu, Gal, E and V). Variable e in the model is the free enzyme 

concentration (not linked or complexed with substrates or products) which is evaluated 

from the mass balance on the total enzyme load. The 10 kinetic parameters associated 

with using Kluyveromyces lactis (K. lactis) β-galactosidase and their nominal values 

(regressed at 40 °C and pH 7) can be found in Table 3.1 (Schultz et al., 2021). 
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Table 3.1 Values of kinetic parameters for K. lactis β-galactosidase (reproduced from 
Schultz et al., 2021) 

Kinetic Parameter (unit) Value 

kcat (min-1) 3.526∙107 

kcat' (min-1) 9.943∙109 

KMH (mol/L) 3.345∙10-6 

KMT (mol/L) 1.758∙10-6 

kH (min-1) 2.876∙103 

kT (min-1) 1.439∙104 

KI (mol/L) 9.405∙10-6 

KM (mol/L) 2.586∙10-2 

KMGal (mol/L) 2.433∙10-6 

kE (min-1) 1.651∙10-4 

  

One important caveat to this GOS model not encountered in this specific 

implementation is the lactose solubility limit and its temperature dependency. Like most 

bioproducts, the solubility of lactose increases with temperature and can vary from 10 

wt% to around 65 wt% across a temperature range of 0 °C to 100 °C. In this work, a 

reaction temperature of 40°C was assumed (consistent with the kinetic parameter 

regression temperature) which correlates to a lactose solubility limit of approximately 25 

wt% (0.88 M) (DFE Pharma, 2006). This constraint was avoided by feeding fresh lactose 

at a concentration less than the solubility limit. In real GOS processes this solubility limit 

may not be a concern as lactose fed into the reactor as a solid could continuously enter 

the liquid phase to maintain operation at the lactose solubility limit. However, the current 

GOS model has not been designed for solid-liquid phase equilibrium but could be further 

developed to address this specific form of operation. 
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As stated in the previous section, not all process states are measurable for this 

process. Figure 3.1 depicts the 6 measurements that are available for this process: total 

disaccharide concentration (Di), Glu, Gal, total trisaccharide concentration (GOS3), and 

total tetrasaccharide concentration (GOS4), and V. Although Di, GOS3, and GOS4 do 

not directly measure state variables, they are result of the joint concentration of several 

process states defined in Equations 3.16-3.18 and can be used in conjunction with the 

process model to infer the individual state concentrations (Glb, Lac, Tri, Trig, Tet, Tetg). 

Only state E is unable to be measured directly since it is unclear if it is possible to have 

a good estimate of the enzyme load in this system using UV or NIR spectra without 

extensive laboratory experiments using various enzyme concentrations and careful 

calibration for this variable. 

 𝐷𝑖 = 𝑔𝑙𝑏 + 𝑙𝑎𝑐 (3.16) 

 𝐺𝑂𝑆3 = 𝑡𝑟𝑖 + 𝑡𝑟𝑖𝑔 (3.17) 

 𝐺𝑂𝑆4 = 𝑡𝑒𝑡 + 𝑡𝑒𝑡𝑔 (3.18) 

 

3.1.2 Simulated Data Generation 

Due to cost limitations and limited amounts of data, it is often challenging to 

conduct robust state estimation studies using real bioprocess data. As a result, the 

procedure shown below in Figure 3.2 is used to generate synthetic data for mimicking 

the real process data. 
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Figure 3.2 Procedure for generating synthetic data for bioprocess application 

Figure 3.2 begins with varying all kinetic parameters independently by applying a 

normal distribution to the nominal (true) kinetic values outlined in Table 3.1. These 

randomized kinetic parameters become the simulated plant kinetic values and reflect 

disturbances in pH, temperature, and other process conditions that modify the underlying 

enzymatic reactions. This set of kinetic parameter values is used in conjunction with the 

reactor model described in the previous section to produce the simulated plant model 

output. Upon derivation of this data set, Equations 3.16-3.18 and a Gaussian white noise 

distribution (WN) are applied to generate the simulated data. Table 3.2 supplies the 

average state values used for the Gaussian white noise distributions, which are derived 

offline by running extensive simulations employing the reactor model with random control 

inputs thousands of times and finding the average value of each measurement across 

all sampled times and iterations. Overall, this framework creates a plant-model mismatch 

and applies a Gaussian white noise to the plant model to simulate real process 

measurements. 
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Table 3.2 Average state values considered 

Measurement Average State Value 

Disaccharide Concentration (M) 0.0197 

Glucose Concentration (M) 0.00973 

Galactose Concentration (M) 0.00714 

GOS 3 Concentration (M) 0.00109 

GOS 4 Concentration (M) 5.53 ∙ 10-5 

Volume (m3) 2.90 ∙ 10-3 

 

State estimation is essential for this process as any disturbance that affects the 

enzymatic model will eventually propagate throughout the operation of the fed-batch 

reactor and influence the amount of GOS produced, component concentrations, and the 

active enzyme concentration. To visualize and show this propagation occurring, a Monte 

Carlo analysis is carried out by running the procedure outlined in Figure 3.2. Figure 3.3 

shows the distribution of all kinetic parameters used in the Monte Carlo analysis, and 

Figure 3.4 depicts the distribution of selected component concentrations and total GOS 

moles synthesized from running the simulated plant model. 
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Figure 3.3 Distribution of kinetic parameters considered 

 

Figure 3.4 Distribution of selected concentrations and GOS moles produced 
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The distributions shown in Figures 3.3 and 3.4 are generated using 1000 

simulations, for a constant lactose to enzyme ratio of 7, a constant feeding rate of        

2∙10-4 m3/min, and the parameters outlined in Table 3.3. The kinetic parameter 

distributions shown in Figure 3.3 follow the expected Gaussian behavior and have a 

mean value identical to the nominal kinetic values. Due to the dynamic nature of this 

process, Figure 3.4 tracks lac (top row), tri (middle row), and the number of GOS moles 

(bottom row) distributions at three different times: 200 minutes (left column), 400 minutes 

(middle column), and 600 minutes (right column). The number of GOS moles is defined 

below in Equation 3.19 and is a useful metric for characterizing the performance of this 

GOS process. Across all the plots shown in Figure 3.4, the distribution of kinetic 

parameters ultimately results in a Gaussian process for the examined outputs with time 

varying means and variances. Ultimately this demonstrates that any uncertainty or 

disturbance in the kinetic parameters, propagates through the reaction system model 

and leads to uncertainty in the process states which can be mitigated by the application 

of a state estimator. 

 𝐺𝑂𝑆 𝑚𝑜𝑙𝑒𝑠 = (𝑔𝑙𝑏 + 𝑡𝑟𝑖 + 𝑡𝑟𝑖𝑔 + 𝑡𝑒𝑡 + 𝑡𝑒𝑡𝑔) ∙ 𝑉 (3.19) 

Table 3.3 Reactor concentration parameters employed 

Constant Value 

Clac init – Initial Lactose Concentration 0.652 (M) 

Cenz init -Initial Enzyme Concentration 0 (M) 

Clac – Feeding Lactose Concentration 0.652 (M) 

Cenz – Feeding Enzyme Concentration 3.63∙10-7 (M) 
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3.2 EKF-Based Estimation Approach 

Due to the nonlinear nature of the GOS model, linear estimation filters were not 

considered for implementation. Instead, the first estimation algorithm implemented into 

the GOS case study was the classical EKF formulation as shown below in Equations 

3.20-3.28, which is adapted from Rawlings et al. (2022). 

 𝑥̂0
− = 𝑥̅0 (3.20) 

 𝑃0
− = 𝑄 (3.21) 

 𝑥̂𝑘+1
− = 𝑓(𝑥̂𝑘, 𝑢𝑘) (3.22) 

 𝑃𝑘+1
− = 𝐴̅𝑘𝑃𝑘𝐴̅𝑘

′ +𝑄 (3.23) 

 𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐿𝑘(𝑦𝑘 − ℎ(𝑥̂𝑘

−)) (3.24) 

 𝐿𝑘 = 𝑃𝑘
−𝐶𝑘̅

′ (𝑅 + 𝐶𝑘̅𝑃𝑘
−𝐶𝑘̅

′ )−1 (3.25) 

 𝑃𝑘 = 𝑃𝑘
− − 𝐿𝑘𝐶𝑘̅𝑃𝑘

− (3.26) 

 𝐴̅𝑘 =
𝛿𝑓(𝑥,𝑢)

𝛿𝑥
|
(𝑥̂𝑘,𝑢𝑘)

 (3.27) 

 𝐶𝑘̅ =
𝜕ℎ(𝑥)

𝜕𝑥
|
𝑥̂𝑘
−
 (3.28) 

The EKF algorithm follows the basic procedure outlined in Figure 2.1 and is 

initialized using Equations 3.20 and 3.21. The initial guesses are used in the correction 

step of the algorithm as shown in Equations 3.24-3.26. Within this correction step, 

Equation 3.25 is used to calculate the Kalman filter gain (𝐿𝑘) (AKA optimal estimator 

gain). An important distinction with this filter formulation is the ability to use a nonlinear 
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equation to relate the state estimate forecast to the measurements via a nonlinear 

system function (ℎ(𝑥̂𝑘
−)) as shown in Equation 3.24. This nonlinear function is only 

applied in Equation 3.24 and must be linearized using Equation 3.28 to derive the 

linearized controllability matrix (𝐶𝑘̅) required in Equations 3.25 and 3.26. Upon 

completion of this correction step, the forecast step is conducted using Equations 3.22 

and 3.23 

Due to the flexibility of EKF, the forecast of the state estimate is conducted using 

the nonlinear reactor model (𝑓(𝑥̂𝑘, 𝑢𝑘)) directly with the state estimates and the control 

inputs as shown in Equation 3.22. The forecast of the covariance matrix is conducted in 

Equation 3.23 and done using the linearized system matrix (𝐴̅𝑘) which is derived using 

Equation 3.27. 

The various states and measurements of the GOS model vary in order of 

magnitude from 10-8 to 10-1 and pose significant challenges for the EKF. In general, these 

large differences tend to cause EKF instability and more difficulty when tuning the filter. 

As a result, in this work state values and measurements are normalized for use in the 

algorithm. Normalization is conducted by following the procedure outlined in Figure 3.2 

and calculating the mean value of the state variables and measurements. These mean 

values are used to form the state estimate normalization vector and the measurement 

normalization vector, which are subsequently divided and multiplied where needed to 

convert the model forecast and raw measurements to the normalized values required in 

the EKF. 
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3.2.1 Application of Direct Optimization for EKF 

As noted in Section 2.2, poor approximation of the model and measurement 

covariances will produce suboptimal estimator performance. To remediate this 

challenge, a basic optimization-based covariance estimation method known as DO is 

used in this section of the dissertation. DO was chosen for several reasons including its 

level of simplicity for the user, the ability to be conducted offline, incorporation of real 

process data, and minimization of estimator error (Rincón et al., 2013; Rincón et al., 

2014A). The standard DO formulation is shown below as Equations 3.29-3.32 and is 

adapted from Rincón et al. (2014A). A schematic of the standard DO formulation is 

shown in Figure 3.5. 

(𝑄, 𝑅) = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑄𝐷𝑂,𝑅𝐷𝑂)∑ ∑ (𝑦𝑘(𝑗) − 𝑥̂𝑘(𝑗))
𝑇
(𝑦𝑘(𝑗) − 𝑥̂𝑘(𝑗))

𝐾
𝑘=1

𝐽
𝑗=1   (3.29) 

 𝑄𝐷𝑂 = 𝑑𝑖𝑎𝑔[𝑤1, 𝑤2, … , 𝑤𝑞] (3.30) 

 𝑅𝐷𝑂 = 𝑑𝑖𝑎𝑔[𝑣1, 𝑣2, … , 𝑣𝑟] (3.31) 

 s.t. EKF and process model 

 (𝑄, 𝑅) = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑄𝐷𝑂,𝑅𝐷𝑂)∑ ∑ (𝑦𝑘(𝑗) − 𝐶𝑘̅𝑥̂𝑘(𝑗))
𝑇
(𝑦𝑘(𝑗) − 𝐶𝑘̅𝑥̂𝑘(𝑗))

𝐾
𝑘=1

𝐽
𝑗=1  (3.32) 

 

Figure 3.5 Standard DO framework using simulated data from several simulations 
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Equation 3.29 is the standard DO objective function and defines the estimation 

error as the difference between measurements and the state estimates (generated from 

the EKF) across K time steps and J number of fed-batches with the assumption that all 

states are directly measurable. For clarity, in the term 𝑦𝑘(𝑗), subscript k corresponds to 

the specific discrete time and parenthesis j corresponds to the specific fed batch data 

set. The estimation error is minimized by varying the process model and measurement 

covariances defined in Equations 3.30 and 3.31, respectively. Figure 3.5 shows that 

each data set is associated with a specific EKF implementation that receives updated 

covariances from the optimization algorithm. Upon rerunning all EKFs with these 

updated covariances, the resulting state estimates are used to calculate the objective 

function. This closes the optimization loop and is repeated until the optimizer converges 

or reaches some predefined stopping criteria. 

In this DO implementation, it is assumed that all noises in the system are 

uncorrelated, which limits the optimization to only the diagonal components of the 

process and measurement noise covariance matrices. This drastically reduces the size 

of the optimization problem from  ∑ 𝑖𝑞
𝑖=1 + ∑ 𝑖𝑟

𝑖=1  variables to 𝑞 + 𝑟 variables. Not every 

element in matrix Q and R can/should be directly optimized as the covariance matrices 

are symmetric (e.g., (1,2) = (2,1)). In this system, this produces a 16 variable optimization 

problem as matrix Q is 10x10 (q=10) and matrix R (r=6) is 6x6. Although this 

simplification eliminates the covariance relationships between states and measurements 

(i.e., off diagonal cells in matrices Q and R), this is a commonly accepted practice in 

estimation applications (Bolognani et al., 2003). Feasibility is guaranteed by constraining 

the model noise (w) and measurement noise (v) to have values greater than 0. An upper 
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value constraint of 10 is applied here to all w and v terms to facilitate convergence of the 

DO algorithm but this limit can be specified as any positive value. Due to the lack of 

independent measurements for all process states, Equation 3.32 is modified here with 

the measurement matrix 𝐶𝑘̅ to allow for the di-, tri-, and tetrasaccharide measurements 

to be used, producing an alternative form of the standard DO algorithm.  

The standard DO algorithm in literature employs a measurement bias (i.e., only 

incorporates data from measurements) and is modified in this work. This modified form 

employs the measurements, model outputs, and state estimates concurrently to reduce 

overfitting of the measurements. This modified DO algorithm is shown in Equation 3.33 

and is combined with the EKF using the framework shown in Figure 3.6. In Equation 

3.33, xmodel refers to the model output block (Model Output) of Figure 3.6. Visually, Figure 

3.6 depicts how the standard DO algorithm is modified by generating simulated data in 

parallel to the measurement data. This model data is directly fed into the DO block of the 

algorithm and is used to reduce the bias from solely using the measurements.  

 (𝑄, 𝑅) = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑄𝐷𝑂,𝑅𝐷𝑂)∑ ∑ (𝑦𝑘(𝑗) − 𝐶𝑘̅𝑥̂𝑘(𝑗))
𝑇
(𝑦𝑘(𝑗) − 𝐶𝑘̅𝑥̂𝑘(𝑗))

𝐾
𝑘=1

𝐽
𝑗=1 +

∑ ∑ (𝑥𝑚𝑜𝑑𝑒𝑙 𝑘(𝑗) − 𝑥̂𝑘(𝑗))
𝑇(𝑥𝑚𝑜𝑑𝑒𝑙 𝑘(𝑗) − 𝑥̂𝑘(𝑗))

𝐾
𝑘=1

𝐽
𝑗=𝑖  (3.33) 
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Figure 3.6 Modified DO framework using simulated data from several simulations 

 

Figure 3.6 can be broken down into two main segments: generation of the 

simulated data sets using a Monte Carlo approach (dashed brown boxes) and running 

the DO/EKF algorithm (blue dashed boxes). The generation of simulated data sets 

follows the procedure outlined in Figure 3.2 and applies a uniform distribution to vary the 

reactor manipulated variables to expand the range of possible operating conditions. Any 

number of data sets can be used in this framework, but all results presented in this 

chapter of the dissertation use 50 random data sets (J=50). Upon generation of these 

data sets, the DO algorithm is initialized by running the EKF with initial feasible 

approximations of the measurement and process model covariances to produce the 

state estimates. This is proceeded by calculating the DO error for each simulation which 

are subsequently summed to calculate the total DO error. This total DO error is sent to 

the optimization algorithm (fmincon in MATLAB) to update the process and 

measurement noise covariances, subject to the feasibility constraints. These updated 

covariances are fed back into the estimation algorithm, closing the DO algorithm. 
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This estimation, DO error calculation, and optimization cycle is iterated until the 

optimization algorithm reaches convergence or some other predefined stopping criteria. 

In this work, the default fmincon settings except for 5000 max function evaluations and 

5000 max iterations (both larger than the default settings) are used. It is important to 

note that across all iterations of the DO algorithm, the data sets remain constant (to 

represent available historic process data). 

3.2.2 EKF and Modified DO Case Study 

To validate and test this framework, a series of randomized case studies are 

carried out using separate synthetic measurements, the derived covariances, and an 

EKF. Figure 3.7 shows the EKF estimation performance in terms of the state variables 

using a selected random data set with its corresponding set of manipulated variable 

values, and the covariance values derived employing the process outlined in the 

previous section. 
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Figure 3.7 EKF estimation performance for state variables using Modified DO 

 

To assist in visualizing the estimator performance for the state variables, Figure 

3.7 shows the model output (generated from the nominal kinetic parameters), the 

simulated plant data (generated from the “true” but unknown kinetic parameters), and 

the obtained state estimates. Typically, for state estimation applications, the state 

estimates should lie between the model output and measurements (simulated plant data 

+ noise) as the true process states are likely to lie within this region. When using the 

modified DO algorithm, many of the state variables lie within the model output and 

simulated plant data bands. States Lac, Glu, Tri, and Tet converge to the simulated plant 

data while state Tetg converges to the model output. States Glb and Trig fall outside of 

these bands, but generally follow a similar trajectory with converged state estimate 

values. Due to the lack of unique/direct measurements of states such as Glb and Trig, it 

is challenging to derive accurate estimates of these specific states. These states are 
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measured concurrently with their reciprocal isomers (Lac and Tri) which may be of much 

larger concentrations to form the Disaccharide and GOS3 measurements. As a result, 

there is a bias towards their reciprocal isomers, resulting in worse estimation results for 

Glb and Trig. State Gal oscillates around the model output and simulated plant data 

bands; thus, not producing a series of smooth states estimates. Figure 3.8 shows the 

estimation performance in terms of the outputs and measurements for this case study. 

 

Figure 3.8 EKF performance results for outputs using Modified DO 

 

The results shown in Figure 3.8 are generated using the same data and estimation 

results from Figure 3.7. For the di, tri, and tetrasaccharide concentration measurements, 

Equations 3.16-3.18 are used to generate the output estimate for these measurements 

(i.e., reconstruct measurements from constituent isomer components). When applying 

the modified DO algorithm, the output estimates do not strictly follow the measurements. 

Instead, most output estimates (Di-, Tri-, Tetrasaccharide, Glucose, and Volume) lie 
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within the peaks and valleys of the measurement data and maintain a relatively smooth 

profile. Only the Galactose output estimate oscillates synchronously with the 

measurement. These estimation results can be explained by consulting the covariance 

values obtained using this framework. The average measurement covariance value is 

approximately 4.8 while the average model covariance value is 2.9. These larger 

measurement covariance values result in less bias towards the measurements and result 

in a better balance between the model forecast and correction stages of the EKF 

algorithm. Overall, by applying this modified DO framework it is possible to filter out a 

large portion of the measurement noise while obtaining accurate state estimates for 

many of the state variables. 

3.3 Dual EKF-Based Estimation Approach 

The standard EKF implementation does not consider parameter uncertainty in its 

formulation and instead solely relies upon using the nominal kinetic parameters when 

conducting the state estimate forecast. As a result, the model forecast step of the EKF 

algorithm will always introduce estimation error as there is a chronic mismatch between 

the nominal kinetic parameters and the true kinetic values from the plant. This mismatch 

is not resolved in the traditional EKF algorithm implemented and produces the state 

estimation results shown above where it is challenging to obtain accurate state estimates 

for all process states. To improve the robustness of the estimation algorithm, a modified 

form of the EKF known as the Dual EKF is applied to simultaneously solve the kinetic 

parameter and the state estimation problems (Sun et al., 2008). 
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 In the estimation literature, there are many publications involving joint parameter 

and state estimation using modified formulations of the EKF such the extended Kitanidis 

Kalman Filter (Varshney et al., 2019) and the Dual EKF (Sun et al., 2008). The specific 

Dual EKF used in this work has already been applied to nonlinear models of biochemical 

networks and can be readily implemented by making a few changes to the existing EKF 

implementation (Sun et al., 2008). The specific Dual EKF formulation used is shown 

below in Equations 3.34–3.42. 

 𝑧̂−(0) = 𝑧0̅ (3.34) 

 𝑃−(0) = 𝜓0 (3.35) 

 𝑧̂𝑘+1
− = 𝑓(𝑧̂𝑘, 𝑢𝑘) (3.36) 

 𝑃𝑘+1
− = 𝐴̅𝑘𝑃𝑘𝐴̅𝑘

′ +𝜓𝑘 (3.37) 

 𝑧̂𝑘 = 𝑧̂𝑘
− + 𝐿𝑘[𝑦𝑘 − ℎ(𝑧̂𝑘

−, 𝑢𝑘)] (3.38) 

 𝐿𝑘= 𝑃𝑘
−𝐶𝑘̅

′ [𝐶𝑘̅𝑃𝑘
−𝐶𝑘̅

′ + 𝑅𝑘]
−1 (3.39) 

 𝑃𝑘 = 𝑃𝑘
− − 𝐾𝑘𝐶𝑘̅𝑃𝑘

− (3.40) 

 𝑧 = [
𝑥
𝜌𝑘𝑖𝑛

] (3.41) 

 𝜓 = [
𝑄 0
0 𝜃

] (3.42) 

 Once again, this recursive estimation technique follows the procedure outlined in 

Figure 2.1 and modifies the standard EKF by augmenting the state vector and the model 

covariance with parametric information. The initialization of the Dual EKF is conducted 
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in Equations 3.34 and 3.35 and remains largely unchanged from the standard EKF as 

the state vector and model covariance matrix are simply augmented with the kinetic 

parameters (ρkin) and their covariance matrix (θ) to form the augmented state vector (z) 

and augmented model covariance matrix (Ψ), respectively. The specific augmentations 

are conducted using Equations 3.41 and 3.42. 

 The correction step of the Dual EKF is carried out using Equations 3.38-3.40 and 

still updates the covariance matrix, Kalman gain, and the augmented state vector upon 

arrival of a new measurement. Once again, for this system, the controllability matrix is 

assumed to be linear and does not need to be linearized from a nonlinear system model. 

Prediction is carried out using the remaining equations shown above (3.36 and 3.37) and 

utilizes the nonlinear system model and the linearized state-space model. During this 

step, the estimated kinetic parameters are held constant and are only updated during 

the correction stage of the algorithm. 

 In terms of novelty, this work builds upon the existing Dual EKF algorithm by 

combining it with DO to improve the estimation performance. Both the standard and 

modified DO approaches can still be applied to the Dual EKF algorithm but require more 

computational time as the size of the optimization problem increases from 16 to 26 

variables, due to the incorporation of the kinetic parameters in matrix Q (Q now has 

dimensions of 20×20). For brevity, only the modified DO algorithm is applied with the 

Dual EKF here as it has shown better estimation performance than the standard 

formulation. Once again, to guarantee feasibility, constraints are placed to bound the 

covariance values between 0 and 10.  
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The derived covariances are used with the previous data sets (i.e., the simulated 

plant data from Section 3.2.2) to produce the estimation results shown in Figures 3.9 and 

3.10 and fairly compare the Dual EKF to the traditional EKF algorithm. Figure 3.9 

specifically shows the Dual EKF performance in terms of the state variables. 

 

Figure 3.9 Dual EKF estimation performance for state variables using Modified DO 

 

Most of the state estimates shown in Figure 3.9 either lie within or converge to the 

simulated plant data or model output data sets. States Glb and Trig fall outside of these 

bands but closely follow the model output data and trajectory of these curves. This is an 

improvement from the previous EKF results, where the Glb and Trig state estimate 

deviations were more oscillatory in nature and larger in magnitude. State Gal still 

maintains an oscillation around the data sets, but the magnitude of the oscillations is 

much less severe using the Dual EKF. Overall, in terms of the state variables, the Dual 
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EKF performs well and generates satisfactory and more realistic approximations of the 

true state values when compared to the traditional EKF. Figure 3.10 shows the 

estimation performance in terms of the measurements and demonstrates that the Dual 

EKF is also able to filter out a large amount of the measurement noises. 

 

Figure 3.10 Dual EKF estimation performance for outputs using Modified DO 

 

Figure 3.10 demonstrates that the Dual EKF can filter out a large portion of the 

white noise applied to the measurements as the output estimates generally lie in between 

the oscillations of the measurements. Using the Dual EKF, the Galactose output 

estimates no longer experience the rapid oscillations found in the previous estimation 

implementations. The remainder of the output measurements closely follow the previous 

case study trends and exhibit excellent behavior. Overall, of the EKF-based estimation 

approaches applied to this system, the Dual EKF is able to derive the most accurate and 

converged state estimation results. 
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3.4 Comparison of EKF Algorithms 

Although the case studies are effective at highlighting the estimation performance 

in terms of the state variables, it does not use a quantity to measure the estimation error 

between the state estimates and the true state values. To quantify the performance of 

the different EKF techniques, the squared error (SE) between the state estimates and 

the simulated plant model is used and is defined in Equation 3.43. 

 𝑆𝐸 = ∑ (𝑥𝑝𝑙𝑎𝑛𝑡 𝑘 − 𝑥̂𝑘)
2𝐾

𝑘=1  (3.43) 

In industrial applications, calculation of the SE is often challenging as the true 

state values are unknown or require expensive and time intensive procedures to gather. 

However, in this work the simulated plant model serves as the source of the true state 

values as these are derived using the simulated plant kinetics. This allows the SE 

formulation defined above to be used to measure estimator performance. In this work, 

an SE of 0 implies that the state estimates perfectly reflect the true process state values 

(i.e., the simulated plant model), thus providing the best possible outcome. As the 

estimation performance may vary across different data sets, Table 3.4 shows the SE for 

the case studies discussed above and the average SE from running 100 estimator 

implementations using randomized values for lactose to enzyme ratios (between 3-25) 

and total feed rates (between 0-0.001667 m3/min) entering the reactor. 
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Table 3.4 SE values for EKF-based estimation 

EKF – Standard DO EKF – Modified DO Dual EKF – Modified DO 

Case Study 

SE 

Average SE Case Study 

SE 

Average SE 

(*) 

Case Study 

SE 

Average SE 

(*) 

0.0549 0.0457 0.0125 0.0128 0.0096 0.0078 

The asterisks indicate that one or more simulations were unstable and produced an SE 

value orders of magnitude higher than the average. These values were neglected for the 

average SE calculation.  

 

When running the 100 simulations, the same data sets are used for all EKF 

implementations to fairly compare the various implementations. Overall, the EKF with 

standard DO had the largest SE values while the Dual EKF had the lowest SE values. 

Intuitively, these SE results are rational because the EKF with standard DO estimates 

the covariances for minimizing the measurement error, which leads to significant 

oscillations from the true states. Furthermore, the standard EKF always relies upon the 

nominal kinetic parameters for the estimated forecast, rather than parameters being 

estimated in the Dual EKF. In turn, this produces more forecasting error and contributes 

to producing higher SE values. Due to these two factors, the EKF with standard DO has 

approximately 6 times higher SE value than the Dual EKF.  

Figure 3.11 breaks down the individual simulation SE values for each EKF 

algorithm and supplies insight into how robust each algorithm is when applied to this 

system. Robustness in this dissertation refers to the ability of a state estimation algorithm 

to produce feasible, but not necessarily optimal estimation results. 
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Figure 3.11 SE values for EKF simulations performed 

 

Due to the range of SE values in Figure 3.11, a semi-log plot is used to show the 

SE values of the different estimation techniques being tested. Robustness is inferred by 

counting the number of simulations that diverge significantly (i.e., by orders of 

magnitude) from the average SE values or produce a NaN error, with more simulations 

diverging inferring less robustness. The EKF with standard DO produces a range of SE 

values between 0.0342 and 0.0574 and has no simulations diverging from this region. 

The EKF with modified DO produces an SE range around 0.01 and 0.02, with 4 

simulations falling far outside this SE range. The Dual EKF produced an SE range 

between 0.0043 and 0.0178 and has two simulations with an SE of NaN (not shown 

above), due to instability of the estimation algorithm. Based upon these results, the EKF 

with standard DO tuning exhibits more robustness considering these simulations, as all 

the simulations produce valid estimation results. Although there is some arbitrary 
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decision making currently being employed to determine when the simulations diverge, 

an excellent tool that could be utilized are box-and-whiskey plots. These plots are useful 

for comparing relative values and can point out exceptionally large or small values with 

ease, thus determining when outlier simulation results are present (Larsen, 1985). 

Although it is difficult to track the root cause of each simulation failure, it appears 

that the high SE values or NaN results are the product of negative state estimates 

behaving poorly with the model. For example, in simulation 2 of the EKF with modified 

DO, Glb begins to experience negative state estimates beyond discrete time step 3. Over 

time this drives the Lac state estimates to much higher values than predicted by the 

model. This error continues to rapidly build in these specific state variables, but 

eventually propagates through the other states, thus leading to poor estimates of all state 

variables. The propagation of error occurs due to the interrelated nature of all state 

variables in the model. 

 Due to the random plant kinetic parameters and joint measurements of states 

such as Glb and Lac, it may be possible that certain randomized studies are not well 

represented by the DO derived covariances. In these cases, the EKF attempts to filter 

out the measurement noise and does so by overestimating the value of Lac and 

underestimating the value of Glb, in some cases to the point where Glb is assigned a 

negative value. Theoretically, it may be possible to apply clipping or another EKF based 

algorithm discussed in the literature review to prevent negative estimates, but this is 

outside the scope of this work as it may not be generalizable to other bioprocesses. 
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As EKF-based estimation can be sensitive to poor initialization conditions, the 

initial enzyme concentration is now varied from 0 M to 3.63×10-7 M and then used to 

initialize the EKF simulations. By varying the initial conditions, estimation robustness can 

be examined again considering different startup conditions. Table 3.5 shows the SE 

values for the different estimation techniques across 100 simulations. 

Table 3.5 SE values for EKF-based estimation with modified initial conditions 

EKF – Standard DO EKF – Modified DO Dual EKF 

Average SE (*) Average SE (*) Average SE (*) 

0.0496 0.0530 0.0575 

The asterisks indicate that one or more simulations were unstable and produced an SE 

value orders of magnitude higher than the average. These values were neglected for the 

average SE calculation.  

 

When varying the initial conditions, all EKF implementations produce some 

number of infeasible sets of state estimates that must be rejected when calculating the 

average SE values. Overall, there is little difference in the average SE values when 

directly applying the EKFs with the new set of initial conditions. These average SE values 

are greater than those from Table 3.5 and could potentially be improved by re-running 

the covariance estimation with the new initial conditions. Figure 3.12 highlights a 

significant decrease in the robustness of all the EKF algorithms when using this new set 

of initial conditions.  
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Figure 3.12 SE values for EKF simulations with modified initial conditions 

 

When looking at Figure 3.12 many of the simulations diverge significantly from 

the low SE values and are very sporadic. In terms of robustness, the EKF with standard 

DO tuning produced 1 set of invalid state estimates, the EKF with modified DO tuning 

produced 25 sets of invalid state estimates, and the Dual EKF produced 4 invalid sets of 

state estimates. Overall, when modifying the initial conditions, all the EKF-based 

estimation algorithms fail to produce constant and reliable estimation results which could 

introduce some challenges for implementing this technology into an industrial 

application. As a result, the initial state estimates must be carefully chosen to help 

promote feasible estimation results when using EKF-based estimation approaches.  

Although EKF-based estimation techniques cannot guarantee feasibility for all 

scenarios, the recursive nature of the algorithm allows near instant derivation of state 

estimates, which is critical for online estimation applications. Table 3.6 outlines the 
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computational time required to run the EKF-based estimation algorithms considering the 

EKF simulations from Table 3.4. 

Table 3.6 Computational times for EKF-based estimation 

EKF – Standard DO EKF – Modified DO Dual EKF 

Case Study 100 Sims Case Study 100 Sims Case Study 100 Sims 

0.32 (s) 6.85 (s) 0.32 (s) 11.23 (s) 0.33 (s) 31.92 (s) 

 

The computational times outlined in Table 3.6 consider running the entire 

estimation algorithm, which includes all 101 iterations of the EKF for each simulation. 

Case study time refers to the time required to derive the state estimates associated with 

the datasets from Figures 3.7-3.10, while the “100 Sims” time refers to the total time 

required to derive all state estimates for all simulations of Figure 3.11. The DO tuning 

part of the framework is not included when calculating simulation time as this is 

conducted offline and is not directly used in the day-to-day process monitoring 

operations. Overall, all these EKF-based estimation algorithms are able to generate near 

instantaneous state estimates and take under a minute to run 100 implementations of 

their algorithm (which generates over 10,000 sets of state estimates). Among these 

algorithms, the Dual EKF has the highest computational time and is likely caused by the 

increased dimensionality of the system covariances used to accommodate the 

estimation of the kinetic parameters. Despite this, all these EKF formulations can be 

applied to a real process for online estimation of the process states, at the risk of lack of 

feasibility approximately 2-4% of the time, based off the data in Table 3.4. 
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3.5 MHE-Based Estimation Approach 

After reviewing the failure rates in the previous section, MHE was applied to 

guarantee feasible state estimates. As noted in Section 2.1, MHE uses an optimization-

based approach to derive estimates of process states which directly allows constraints 

to be incorporated into the estimation problem. For this system, the much higher 

computational time of MHE is not a significant concern as the process has relatively slow 

dynamics and does not require rapid intervention. For reference, the canonical 

formulation of the linear MHE algorithm is shown below as Equation 3.44 (Rawlings et 

al., 2022). 

𝑉̂𝑇(𝑥𝑁(𝑇)) = 𝑉̂𝑇−𝑁
− (𝑥𝑇−𝑁) +

1

2
[∑ |𝑦𝑘 − 𝐶𝑥̂𝑘|𝑅−1

2𝑇
𝐾=𝑇−𝑁 ] +

1

2
[∑ |𝑥̂𝑘+1 − 𝐴𝑥̂𝑘|𝑄−1

2 ]𝑇−1
𝐾=𝑇−𝑁  (3.44) 

In Equation 3.44, the term 𝑉̂𝑇
−(𝑥𝑇−𝑁) refers to the arrival cost, the middle term 

incorporates measurements into the algorithm, and the last terms incorporates the 

process model into the algorithm. The notation |𝑋|𝑌
2 corresponds to a quadratic error 

function (𝑋𝑇𝑌−1𝑋), that is calculated across each point in the horizon and is eventually 

summed. The horizon length (N) is tuned to balance computational time and potential 

estimation performance as these are generally inversely related. Based upon Alexander 

et al. (2020), this estimation problem is solved via the modSQP algorithm as it has 

exhibited an order of magnitude reduction in computational over MATLAB’s fmincon 

algorithm. Due to this reduction in computational time and slow process dynamics, the 

MHE algorithm in this work does not need to use a linearized reactor model during the 

forecasting phase. Instead, the nonlinear model is utilized to eliminate error from 

linearization, thus reducing associated modeling inaccuracies. 
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 The canonical MHE formulation is adapted to handle nonlinear forecasting of the 

state estimates by simply modifying Equation 3.44 into the form shown in Equation 3.45. 

The arrival cost is not included in Equation 3.45 as it was set to a value of zero in the 

upcoming case study in Section 3.5.1. Additionally, in this implementation, all state 

variables are constrained to be nonnegative as defined in Equation 3.46. 

𝑉̂𝑇(𝑥𝑁(𝑇)) =
1

2
[∑ |𝑦𝑘 − 𝐶𝑥̂𝑘|𝑅−1

2𝑇
𝐾=𝑇−𝑁 ] +

1

2
[∑ |𝑥̂𝑘 − 𝑓𝑥̂𝑘|𝑄−1

2 ]𝑇−1
𝐾=𝑇−𝑁  (3.45) 

Subject to the following constraint for this process: 

  𝑥̂𝑘 ≥ 0 (3.46) 

To assist in selecting a reasonable horizon length for MHE, a balance between 

minimizations of the SE and computational time is established through running 

simulations by varying the horizon length and examining these objectives. The results of 

this study are shown in Table 3.7. 

Table 3.7 MHE case study examining horizon length selection 

N Total SE across 5 
simulations 

Computational Time (s) Time per Iteration (s) 

1 0.157 131.56 0.26 

2 0.132 463.17 0.93 

3 0.126 866.34 1.73 

4 0.123 1439.88 2.88 

5 0.122 3525.09 7.05 

 

The results shown in Table 3.7 are generated using the synthetic measurement 

framework described earlier, to create 5 randomized data sets that remain constant 

across all horizon lengths tested. The computational time refers to the entire time 
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required to run all 5 MHE implementations completely and the time per iteration refers 

to the average amount of time required to derive a single set of state estimates, while 

using modSQP. For online implementation, the average time per iteration cannot exceed 

300 seconds (5 minutes) and should be well below this limit to ensure that state 

estimates are always available when the control law needs to be updated. Based upon 

Table 3.7, going above a horizon length of 3 or 4 provides little reduction in the estimator 

SE error and increases the computational time several folds with the horizon length. As 

a result, the upcoming MHE case study in Section 3.5.1 uses a horizon length of 4. 

3.5.1 MHE Case Study 

To compare the estimation performance of the MHE to the EKF, the same data 

sets introduced above are reused in the MHE case study. Covariance estimation coupled 

with MHE is significantly more challenging due to the inclusion of linear and nonlinear 

constraints on state estimates and a higher computational time. Although it is 

theoretically possible to combine DO and MHE, this would ultimately form a bilevel 

optimization problem that would be intractable online. As a result, the MHE covariances 

are estimated in this section by performing extensive simulations until acceptable 

estimation results are achieved. It is possible to reuse the same covariances from the 

EKF case study, but this resulted in worse estimation performance for the MHE case 

study. For the case study shown in Figure 3.13, a diagonal Q matrix (of size 10x10) with 

value 10, a diagonal R matrix (of size 6x6) with value 1, and a horizon length of 4 are 

applied. 
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Figure 3.13 MHE performance results for state variables using modified covariances 

 

When using these covariances, minimal offset occurs between most state 

estimates, the model output and simulated plant data. States Tri, Tet, Glu, and Volume 

converge to the simulated plant data and produce smooth state estimates. States Glb, 

Trig, and Tetg converge to the model output and generally have smooth state estimates. 

State Tetg experiences some oscillations beneath 100 minutes, but eventually 

converges and smooths out. Despite having feasible and good estimation performance 

for many of the state variables, the enzyme concentration (E) estimates oscillate 

significantly from time step to time step and fail to converge to the simulated plant data. 

This likely occurs as this state variable is entirely derived from the model output, and the 

MHE algorithm simply fits this state variable to minimize the offset between the other 

state variables, the model output, and the measurements. Figure 3.14 shows the 

estimation performance in terms of the output estimates. 
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Figure 3.14 MHE performance results for outputs using modified covariances 

 

In terms of the output estimates, the relative weights of the covariances reduce 

the significance of the measurements, thus minimizing the oscillatory behavior of output 

estimates. Based upon the results of these case studies, it appears that the traditional 

MHE algorithm struggles to successfully produce reliable estimates of the enzyme 

concentration. Although the goal of this work is to estimate and monitor the production 

of GOS, knowledge of the enzyme concentration may be critical in a real implementation. 

As a result, the standard MHE algorithm cannot be relied entirely upon for this specific 

process, despite its ability to guarantee feasible state estimates. To retain this benefit 

and attempt to improve the enzyme concentration state estimates, a joint parameter and 

state estimation MHE framework is formulated and implemented next. 
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3.5.2 Proposed Parameter-Based Moving Horizon Estimation (P-MHE) 

Joint parameter and state estimation using MHE approaches have been 

addressed in the literature using a variety of methods (Kühl et al., 2011) (Sun et al., 

2015) (Rodríguez et al., 2021). In this work, a novel approach is applied to estimate the 

kinetic parameters and the state variables concurrently and is referred to as the 

Parameter-based Moving Horizon Estimation (P-MHE). This novel P-MHE algorithm is a 

constrained optimization-based estimation technique that modifies the canonical MHE 

formulation to directly include the kinetic parameters into the estimation algorithm. The 

derivation of the P-MHE is outlined in Equations 3.47-3.51. 

Standard MHE formulation: 

𝑉̂𝑇(𝑥𝑁(𝑇)) = 𝑉̂𝑇−𝑁
− (𝑥𝑇−𝑁) +

1

2
[∑ |𝑦𝑘 − 𝐶𝑥̂𝑘|𝑅−1

2𝑇
𝐾=𝑇−𝑁 ] +

1

2
[∑ |𝑥̂𝑘+1 − 𝐴𝑥̂𝑘|𝑄−1

2 ]𝑇−1
𝐾=𝑇−𝑁  (3.47) 

For a nonlinear system, apply the following assumptions: 

𝑉̂𝑇−𝑁
− (𝑥𝑇−𝑁) ≈

1

2
|𝑥𝑇−𝑁 − 𝑓(𝑥̂𝑇−𝑁−1, 𝑢, 𝜌)|(𝑄)−1

2  (3.48) 

1

2
[∑ |𝑦𝑘 − 𝐶𝑥̂𝑘|𝑅−1

2𝑇
𝐾=𝑇−𝑁 ] ≈

1

2
[∑ |𝑦𝑘 − 𝐶𝑓(𝑥̂𝑇−𝑁 , 𝑢, ∆𝑡)|𝑅−1

2𝑇
𝐾=𝑇−𝑁 ]  (3.49) 

1

2
[∑ |𝑥̂𝑘+1 − 𝐴𝑥̂𝑘|𝑄−1

2 ]𝑇−1
𝐾=𝑇−𝑁 = 0; 𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑤𝑖𝑡ℎ

1

2
|𝑝𝑘𝑖𝑛 − 𝑝̂𝑘𝑖𝑛|(𝜃)−1

2   (3.50) 

Resulting in the P-MHE formulation: 

𝑉̂𝑇(𝑥𝑁(𝑇)) =
1

2
|𝑥̂𝑇−𝑁 − 𝑓(𝑥̂𝑇−𝑁−1, 𝑢, 𝜌)|(𝑄)−1

2 +
1

2
[∑ |𝑦𝑘 − 𝐶𝑓(𝑥𝑇−𝑁 , 𝑢, ∆𝑡)|𝑅−1

2𝑇
𝐾=𝑇−𝑁 ] +

𝟏

𝟐
|𝑝𝑘𝑖𝑛 − 𝑝̂𝑘𝑖𝑛|(𝜽)−𝟏

𝟐   (3.51) 
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Equation 3.47 is the standard MHE formulation (also seen in Equation 3.43) that 

does not identify the source of model noise and requires N sets of state variables to be 

incorporated into the optimization problem. As a result, as N increases, there is a 

subsequent increase in the number of decision variables, optimization complexity, and 

computational time. For this bioprocess application, a number of assumptions can be 

applied to modify Equation 3.47 and reduce the computational time of the algorithm. 

In this particular process application, it is assumed that all model uncertainty and 

subsequent model error is the result of a difference between the nominal kinetic values 

and the true plant kinetic values. As a result, these kinetic parameters can be directly 

embedded into the estimation algorithm for their calculation. Furthermore, if the 

estimated kinetic parameters are assumed constant for an estimation horizon of N 

points, then any forecasting of the state estimates should have reduced error (as most 

model error is assumed to come from the kinetics). This ultimately produces the 

assumptions shown in Equation 3.50 and only requires a single set of state estimates 

and the kinetic parameters to be fit for an estimation horizon of N, thus shrinking the size 

of the optimization problem. Equation 3.48 defines the arrival cost as the difference 

between the current state estimates being calculated (𝑥̂𝑇−𝑁) and the forecast of the 

previous state estimates using the nonlinear reactor model (𝑓(𝑥̂𝑇−𝑁−1, 𝑢, 𝜌)). In many 

MHE applications, the arrival cost is defined by the user, so this one stage arrival cost is 

assumed here. Equation 3.49 uses the state estimate and the nonlinear model to derive 

the error between the measurements and state estimates. 
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3.5.3 P-MHE Case Study 

Figure 3.15 shows the application of the P-MHE to the same data set used in the 

other estimation case studies. 

 

Figure 3.15 P-MHE performance results for state variables 

 

Due to the constrained nature of the P-MHE algorithm, all state estimates 

generated are guaranteed to be feasible, which can be seen by all states having 

estimates greater than or equal to 0. In terms of estimation performance, P-MHE 

produces state estimates that generally lie in-between the simulated plant data and the 

model output with most state estimates converging to the simulated plant data. Only 

states Trig and Tetg lie outside the model output and simulated plant data, but closely 

follow the trajectories and values of the simulated plant data. Moreover, the first data 

point for the state estimate of enzyme concentration (E) does not strictly follow the model 
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output and simulated plant data, as a sufficiently long horizon length was chosen (N=5) 

that neglected the very rapid change in enzyme concentration at the start of the batch. 

This rapid change occurs because the reactor is initialized with no enzyme and a very 

small amount of lactose (Lac). Overall, P-MHE provides accurate and guaranteed 

feasible state estimates for all states. Figure 3.16 shows the P-MHE estimation 

performance considering the output measurements. 

 

Figure 3.16 P-MHE performance results for output measurements 

 

The P-MHE does an excellent job at reducing the effects of the white noise on the 

measurements as the output estimates lie within the peaks and valleys of the 

measurements. Additionally, the output estimates are smooth and free from the rapid 

oscillations found in the measurements. At times the volume output estimate does 

deviate from the volume measurement, but generally converges to the measurements. 

This behavior and the estimation of Trig and Tetg can likely be remediated in future P-
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MHE implementations by further tuning the covariances using another systematic 

approach from the literature such as ALS. Furthermore, due to the flexibility of this 

algorithm, additional constraints could be implemented to bound the estimates to certain 

regions of acceptable values. 

3.5.4 Comparison of MHE Algorithms 

Due to the use of optimization algorithms in MHE, there is a much greater 

computational time for this estimator when compared to EKF and other recursive 

techniques. In this work, the computational time of the MHE is limited by selecting an 

approximate and reasonable horizon window and selecting the more efficient modSQP 

technique over standard optimization algorithms such as in fmincon. Overall, each 

specific MHE implementation can vary significantly with respect to computational time 

and estimation accuracy. The results of this implementation in terms of the SE values 

and computational times are shown in Tables 3.8 and 3.9, respectively. 

Table 3.8 SE values for MHE-based estimation 

MHE SE P-MHE SE 

Case Study 25 Sims Case Study 25 Sims 

0.0138 0.3057 0.0086 0.278 

 

Table 3.9 Computational times for MHE-based estimation 

MHE CPU Time P-MHE CPU Time 

Case Study 25 Sims Case Study 25 Sims 

524.72 (s) 9961 (s) 179.33 (s) 2654 (s) 
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Due to the 3-4 orders of magnitude increase in computational time of the MHE, it 

is impractical to run 100 simulations to examine performance. As a result, to examine 

the feasibility, estimator robustness, and average computational time across multiple 

iterations, only the first 25 data sets from the EKF simulations are used with the MHE. 

Using the original MHE, it takes approximately 525 seconds to derive 100 sets of state 

estimates (≈5.5 seconds/measurement) of the MHE algorithm for all measurements. The 

P-MHE minimizes the computational time of this class of estimation problem and 

produces an average computational time of approximately 1.7 seconds/measurement as 

fewer variables are being optimized concurrently, thus reducing the complexity of the 

optimization problem. 

In terms of robustness, all MHE implementations performed excellently and 

produced feasible estimation results for all simulations, unlike the EKF-based estimation 

approaches. In terms of estimation error, the MHE performed marginally worse than the 

P-MHE. Intuitively, this result makes sense as the original MHE implementation does not 

have a method of overcoming the chronic plant-model mismatch. The P-MHE 

restructures the MHE into a joint parameter and state estimation problem which helps to 

overcome the plant-model mismatch, thus minimizing the SE further than the traditional 

estimation algorithm. Despite not applying any systematic tuning approach for the P-

MHE, further reductions in the SE may be possible with additional tuning. To further test 

the robustness of this class of estimation algorithm, the modified initial conditions from 

Table 3.5 are applied to the MHE. The SE and computational time results for the modified 

initial conditions study are shown in Tables 3.10 and 3.11, respectively. 
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Table 3.10 SE values for MHE-based estimation with modified initial conditions 

MHE SE P-MHE SE (using fmincon) 

Case Study 25 sims Case Study 25 sims 

0.0140 0.303 0.0119 0.338 

 

Table 3.11 Computational times for MHE-based estimation with modified initial 
conditions 

MHE CPU Time P-MHE CPU Time (using fmincon) 

Case Study 25 sims Case Study 25 sims 

554.16 (s)  10144(s) 237.78 (s) 5601 (s) 

 

For the P-MHE simulations, fmincon was used to solve the optimization problem 

as it did not require any modifications to the algorithm. The current version of modSQP 

can often fail to converge during function evaluations and was particularly prone to failure 

under these modified initial conditions. Future versions of modSQP can hopefully 

improve upon the stability and robustness of this algorithm. Despite this switch in 

optimization algorithm, P-MHE still generates a series of state estimates in a relatively 

short amount of time (every 2.5 seconds/measurement). For the MHE implementation, 

modSQP was still able to be used and did not change the computational times in any 

meaningful way. Although MATLAB’s fmincon optimization algorithm is not the most 

state-of-the-art optimizer available, the results shown in this work can likely be continued 

to be improved through incorporating more robust optimization techniques. Overall, 

when using this new set of initial conditions, the MHE-based approaches remained 

tractable for different initial conditions. 
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In terms of the estimation robustness, all the MHE-based approaches can adapt 

to the new initial conditions and consistently produce quality and feasible estimation 

results. In part this is due to the constraints (i.e., nonnegative concentrations) imposed 

on the state estimates. Overall, this results in all simulations being included in the total 

SE calculation as all simulations produced valid state estimates. By modifying the initial 

conditions, the SE values remain largely consistent for the standard MHE formulations 

and increase by approximately 22% for the P-MHE. The increase in the SE for the P-

MHE places this estimation algorithm on par with traditional MHE techniques, but still 

has a reduction in the computational time. Overall, the P-MHE algorithm can adapt to 

the new initial conditions and provide robust estimation performance. 

When compared against the EKF-based estimation approaches, the P-MHE 

algorithm exhibits several benefits. Primarily, the P-MHE algorithm is more robust than 

the EKF algorithms tested as it guarantees feasibility regardless of the specific 

initialization conditions due to imposing constraints in the estimation algorithm. 

Furthermore, the SE of P-MHE is less than or approximately equal to the SE of EKF-

based estimation approaches. As a result, the quality of the estimation from the P-MHE 

is on par with the Dual EKF. Due to the slow process dynamics of this system, estimates 

are not required in a short amount of time (i.e., seconds). However, for systems where 

rapid estimates are needed (e.g., safety systems, power systems, rapid reactions) the 

reduction in computation time achieved with the P-MHE would be significant as it could 

allow for near-real-time estimates with guaranteed feasibility. Although recursive 

techniques will almost certainly be faster than any optimization-based method, they 

cannot guarantee feasibility, thus limiting the usefulness and reliability of these 
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techniques. Overall factors such as SE value must be considered concurrently with 

factors such as the computational time and feasibility for any online state estimation 

implementation. As this P-MHE is a novel algorithm, improvements such as estimating 

tuning parameters and selecting alternative optimization techniques may continue to 

improve the estimation results and reduce the computational time. 

Overall, the results in this chapter demonstrate the limitations of recursive state 

estimation approaches for use with this GOS process and the broader semi-batch 

bioprocess field. The sensitivity to initialization and failure rate of EKF severely limits its 

ability to be relied upon for quality control applications or feedback control. Based upon 

these case studies, optimization-based state estimation algorithms such as MHE or P-

MHE are highly recommended for real industrial semi-batch bioprocess. These 

algorithms provide guaranteed estimation robustness and are tractable given they are 

applied to processes with relatively slow dynamics (which many bioprocesses are). 

The main limitation of this chapter was the difficulty in tuning these estimation 

algorithms. The DO approaches shown in this chapter require offline tuning due to the 

algorithm being slow and computationally inefficient, even when applied to recursive 

techniques. For the optimization-based approaches it was simply not tractable to apply 

this technique. As a result, ad-hoc tuning of these optimization-based algorithms was 

performed and carries no claim of optimality. These limitations motivate the covariance 

estimation work highlighted next in Chapter 4 of this dissertation. 
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Chapter 4 Improved Covariance Estimation Techniques 

 

Building off Chapter 3, the primary aim of this chapter is to improve covariance 

estimation with DO by employing auto-covariance least squares (ALS). As part of this 

chapter, the mathematics behind ALS are presented along with a brief explanation 

outlining what parts of the GNU Octave code had to be updated for the algorithm to run 

in MATLAB. The MATLAB specific ALS code is examined using a performance 

assessment with a linear time-invariant (LTI) system and a nonlinear reactor example. 

Upon this assessment, ALS is applied to the GOS process to improve the state 

estimation results. As part of this implementation, ALS is directly compared against DO 

by examining the SE of the associated state estimates and the computational time of 

both algorithms. Novelty is introduced in several ways including applying and testing ALS 

to a nonlinear bioprocess system operating in batch/semi-batch mode while undergoing 

a chronic plant-model mismatch. Ultimately this results in the production of a set of re-

deployable ALS codes for other PSE implementations.   

4.1 Autocovariance Least-Squares Background 

As mentioned in Chapter 2, ALS is a widely used correlation-based covariance 

estimation technique employing historical measurement data that has demonstrated 

success with nonlinear systems, batch processes, and semi-batch processes (specific 

to polymerization applications). The main components of ALS can trace their roots to 

Odelson et al. (2005), but the mathematical framework presented here is reproduced 

from Odelson et al. (2005) and Lima et al. (2013). Over time, the specific ALS 

nomenclature has varied from publication to publication, and the nomenclature 
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presented in this dissertation makes some modifications to help alleviate confusion and 

increase consistency between the nomenclature from other chapters. 

The original ALS formulation was developed for a LTI, discrete-time state-space 

system in the form of Equations 4.1 and 4.2, with the assumption that the model and 

measurement covariances are time invariant in nature.  

 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐺𝑤𝑘 (4.1) 

 𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 (4.2) 

In particular, Equation 4.1 propagates the current state variables at discrete time 

k ahead one time step using the control moves (u), input matrix (B), and linear system 

matrix (A), while accounting for a random white noise using the system noise matrix (G) 

and process model noise (w). Equation 4.2 translates the state variables to the 

corresponding measurements through the linear controllability matrix and random 

measurement noise (v). Over time, this LTI restriction was relaxed and allowed ALS to 

be applied to the nonlinear stochastic discrete time system shown in Equations 4.3 and 

4.4. 

 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) + 𝐺(𝑥𝑘)𝑤𝑘  (4.3) 

 𝑦𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘  (4.4) 

Much like EKF, ALS cannot directly use the nonlinear stochastic system shown 

above and instead uses linearizations at different time steps to convert the nonlinear 

system into the required linear state space form. Ultimately, this linearization of the 
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nonlinear system produces the set of time-varying equations shown below in Equations 

4.5-4.9. 

 𝑥𝑘+1 = 𝐴̅𝑘𝑥𝑘 + 𝐵̅𝑘𝑢𝑘 + 𝐺̅𝑘𝑤𝑘  (4.5) 

 𝑦𝑘 = 𝐶̅𝑥𝑘 + 𝑣𝑘  (4.6) 

 𝐴̅𝑘 =
𝜕𝑓(𝑥𝑘,𝑢𝑘)

𝜕𝑥 (𝑥̂𝑘|𝑘,𝑢𝑘)
  (4.7) 

 𝐶𝑘̅ =
𝜕ℎ(𝑥𝑘)

𝜕𝑥 (𝑥̂𝑘|𝑘)
  (4.8) 

 𝐺̅𝑘 = 𝐺(𝑥̂𝑘|𝑘, 𝑢𝑘)  (4.9) 

Equations 4.5 and 4.6 are similar to the LTI system but substitute the time-

invariant linear matrices (A, C, G) by time-varying matrices (𝐴̅𝑘, 𝐶𝑘̅, 𝐺̅𝑘) derived using the 

linearization Equations 4.7-4.9. This set of linearized equations is used in conjunction 

with a time-varying state estimator (e.g., EKF) to derive an initial set of state estimates 

to calculate the state estimation error (𝜀𝑘) defined in Equation 4.10 which is evolved 

(𝜀𝑘+1) using Equations 4.11-4.14. It is important to note that an initial approximation of 

the model and measurement noise covariance matrices must be provided to the time-

varying estimator to derive this initial set of state estimates.  

 𝜀𝑘 = 𝑥𝑘 + 𝑥̂𝑘|𝑘−1 (4.10) 

 𝜀𝑘+1 = 𝜀𝑘 + 𝐺̃𝑘 [
𝑤𝑘

𝑣𝑘
] (4.11) 

 𝐴̃𝑘 = (𝐴̅𝑘 − 𝐴̅𝑘𝐿𝑘𝐶𝑘̅) (4.12) 

 𝐺̃𝑘 = [𝐺̅𝑘 −𝐴̅𝑘𝐿] (4.13) 
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 𝑤̌𝑘 = [
𝑤𝑘

𝑣𝑘
] (4.14) 

In the above set of equations, variables 𝐴̃𝑘, 𝐺̃, and 𝑤̌𝑘 are simply used in the ALS 

mathematical manipulations and are derived from the linearized time-varying matrices, 

noises, and Kalman gain. These estimation error equations are used to obtain an 

alternative state-space model in terms of the L-innovations (i.e., estimator gain) which 

are employed to define the innovations sequence (𝕪𝑘) in Equation 4.15. 

 𝕪𝑘 = 𝑦𝑘 − 𝐶𝑘̅𝑥̂𝑘 = 𝑦𝑘 − 𝑦̂𝑘  (4.15) 

From here, several assumptions are applied to assist in formulating the ALS 

problem. The original linear ALS formulation requires three key assumptions to be valid 

for the process it is being applied to: 

1. System (A, C) is detectable  

2. 𝐴̃ is stable: ∏ 𝐴̃ ≈ 0𝑚+𝑘−1
𝑚  

3. Steady-state initial conditions or selection of k sufficiently large so that initial 

condition effects can be neglected: 𝐸(𝜀0) = 0, 𝑐𝑜𝑣(𝜀0) = 𝑃− 

The nonlinear form of ALS builds upon this assumption list and requires one 

additional assumption to be valid. 

4. Noise from error due to linearizing the nonlinear model is indistinguishable from 

other sources of noise and the derived state estimates are considered to be 

accurate for the employed state estimation technique (Lima et al., 2013). 

Equation 4.11 and Assumption 2 allow the innovations sequence to be defined in 

terms of the linearized controllability matrix, linearized system matrix, linearized 
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measurement covariance matrix, model noise, and measurement noise as shown below 

in Equations 4.16 and 4.17. These equations ultimately lead to the formulation of the 

autocovariance matrix (ACM) as seen in Equation 4.18, where NALS is the number of lags 

defined by the user. This lag can be thought of as the ALS equivalent of the MHE horizon 

length, as a higher number of lags increases the amount of data being used, possibly 

improving the quality of the covariance estimation results at the cost of increased 

computational time. In these equations the symbol “⊕” is the direct sum. Equations 4.19 

and 4.20 define some mathematical expressions used throughout the ALS formulation 

and specifically feed into Equations 4.16 and 4.17. Odelson et al. (2005) contains a LTI 

form of these equations and thus a more convenient expression for the ACM matrix and 

can be referenced as needed. 

 𝐸[𝕪𝑘𝕪𝑘
𝑇] = 𝐶𝑘[𝐴̃[𝑘−1,1]𝐺̃0… 𝐺̃𝑘−1]𝑥

𝑘
⊕

𝑖 = 1
ℚ[𝐴̃[𝑘−1,1]𝐺̃0… 𝐺̃𝑘−1]

𝑇𝐶𝑘
𝑇 + 𝑅  (4.16) 

 𝐸[𝕪𝑘+𝑗𝕪𝑘
𝑇] = 𝐶𝑘+𝑗[𝐴̃[𝑘+𝑗−1,1]𝐺̃0… 𝐴̃[𝑘+𝑗−1,𝑘]𝐺̃𝑘−1]𝑥

𝑘
⊕

𝑖 = 1
ℚ[𝐴̃[𝑘−1,1]𝐺̃0… 𝐺̃𝑘−1]

𝑇𝐶𝑘
𝑇 −

𝐶𝑘+𝑗(𝐴̃[𝑘+𝑗−1,𝑘+1])𝐴𝑘𝐿𝑘𝑅   (4.17) 

 ℛ𝑘(𝑁𝐴𝐿𝑆) = 𝐸 [
𝕪𝑘𝕪𝑘

𝑇

⋮
𝕪𝑘+𝑁−1𝕪𝑘

𝑇
]  (4.18) 

 𝐴̃[𝑖,𝑗] = ∏ 𝐴̃𝑘 =
𝑖
𝑗=𝑘 𝐴̃𝑖𝐴̃𝑖−1… 𝐴̃𝑗+1𝐴̃𝑗  (4.19) 

 ℚ = [
𝑄 0
0 𝑅

]  (4.20) 
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Upon derivation of the ACM, column-wise stacking of the matrix is done to convert 

the ACM into a form suitable for a least-squares formulation. This column-wise stacking 

is shown in Equations 4.21-4.26 where “⊗” is the Kronecker product. Equation 4.21 is 

the main equation and is broken down into smaller expressions (Equations 4.22-4.26) 

for a more convenient presentation. Variables 𝛤, 𝛺1, 𝛺2, 𝛤1
′, 𝛹1 (seen in Equations 4.22-

4.26) are ultimately derived from the linearized state space model, the Kalman gains, 

and initial assumed process model and measurement noise covariances.  

 [ℛ(𝑁𝐴𝐿𝑆)]𝑆 = (𝛤1𝛺1 ⊗𝛤𝛺1)Ϛ𝑔,𝑘(𝑄)𝑠 + [(𝛤1𝛺2⊗𝛤𝛺2)Ϛ𝑝,𝑘 + 𝐼𝑝 ⊗𝛹1](𝑅)𝑠    (4.21) 

 𝛤 = [

𝐶𝑘(𝐴̃[𝑘−1,1]) … 𝐶𝑘
⋮ ⋱ ⋮

𝐶𝑘+𝑁−1(𝐴̃[𝑘+𝑁−2,1]) … 𝐶𝑘+𝑁−1(𝐴̃[𝑘+𝑁−2,𝑘])
]  (4.22) 

 𝛺1 = [
𝐺0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐺𝑘−1

]  (4.23) 

 𝛺2 = [
−𝐴0𝐿0 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ −𝐴𝑘−1𝐿𝑘−1

]  (4.24) 

 𝛤1
′ = [

(𝐴̃[𝑘−1,1])
′
𝐶𝑘
′

⋮
𝐶𝑘
′

]  (4.25) 

 𝛹1 =

[
 
 
 

𝐼𝑝
−𝐶𝑘+1𝐴𝑘𝐿𝑘

⋮
−𝐶𝑘+𝑁−1(𝐴̃[𝑘+𝑁−2,𝑘+1])𝐴𝑘𝐿𝑘]

 
 
 
  (4.26) 
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In which the symbol Ϛ𝑝,𝑁 represents the permutation matrix and converts the direct sum 

to a vector as defined in Equation 4.27. More details on the mathematical derivation of 

the ACM and the column-wise stacking process can be found in Lima et al. (2013). 

 (
𝑁
⊕

𝑖 = 1
𝑅𝑣)

𝑠

= Ϛ𝑝,𝑁(𝑅𝑣)𝑠  (4.27) 

These previous equations build upon each other to form the ALS expression 

presented in Equations 4.28-4.32. 

 𝑥̂ = min
𝑄,𝑅

‖[

𝒜𝑘

⋮
𝒜𝑁𝑑−𝑁+1

] [
(𝑄)𝑠
(𝑅)𝑠

] − [
𝑏̂𝑘
⋮

𝑏̂𝑁𝑑−𝑁+1

]‖

𝑊𝑓

2

  (4.28) 

𝑠. 𝑡. 𝑄, 𝑅 ≥ 0, 𝑄 = 𝑄′, 𝑅 = 𝑅′ 

 𝒜𝑘 = [𝒜𝑘1 𝒜𝑘2]  (4.29) 

 𝒜𝑘1 = (𝛤1𝛺1⊗𝛤𝛺1) Ϛ𝑔,𝑘  (4.30) 

 𝒜𝑘2 = [(𝛤1𝛺2 ⊗𝛤𝛺2) Ϛ𝑝,𝑘 + 𝐼𝑝 ⊗𝛹1]  (4.31) 

 𝑏̂𝑘 = [ℛ̂𝑘(𝑁𝐴𝐿𝑆)]𝑠 = [
𝕪𝑘𝕪𝑘

𝑇

⋮
𝕪𝑘+𝑁−1𝕪𝑘

𝑇
]

𝑠

  (4.32) 

Equation 4.28 is the final ALS form and is formulated as a positive semidefinite 

constrained least-squares optimization problem, where the time invariant Q and R 

matrices are the decision variables used to minimize the objective function. Unlike DO, 

ALS does not require state estimates to be rerun as the Q and R matrices are varied 



81 

 

while minimizing the least-squares objective function, thus significantly reducing the 

computational time. A schematic for this ALS approach is shown below in Figure 4.1  

 

Figure 4.1 ALS framework using simulated data from several simulations 

 

For each data set shown in Figure 4.1, ALS derives a unique set of covariances 

for each data set tested (as seen with (Q&R)1, …, (Q&R)J) and then averages these data 

set specific covariances to produce the final model and measurement covariance 

matrices (QALS and RALS). Overall, the setup of ALS requires substantially more effort 

than DO but uses a more fundamental approach for deriving the covariance estimates 

based on statistics rather than the more “trial and error” approach of DO.  

A key challenge that has not been addressed in the ALS literature is how to define 

or select an appropriate value for NALS. Unlike MHE where a heuristic for horizon length 

has been established (twice as large as system size) (Rao & Rawlings, 2004; Rincon, 

2014 B), none has been established for ALS. Much of the ALS literature has cited Lima 

and Rawlings (2011) which used a NALS of 15 as it was large enough to provide good 

covariance estimates. The original ALS publication from Odelson (2005) did not provide 
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any specific guidance for this parameter and states it is a “user-defined parameter” and 

the amount of data (Nd) should be far greater than NALS. Other publications have used 

alternative lag sizes, but it is well documented that the computational time of ALS is 

highly dependent on the number of lags. As no pre-established procedure or heuristic 

has been developed for ALS, this work will choose sufficiently large NALS values to derive 

good covariance estimates. Additionally, in this work, it is assumed that larger NALS 

values are going to be required for systems of higher nonlinearity or higher 

dimensionality. 

4.2 ALS Code Modification  

As noted in the literature review, ALS is currently only available as a series of 

GNU Octave files which require downloading the Sundials toolbox and linking it to Octave 

(Rawlings, 2019). For program consistency and more widespread applicability to the 

general PSE community, a MATLAB specific version of ALS (using mostly standard 

MATLAB functions) is developed and validated as part of this work. Portions of the GNU 

Octave codes are directly interchangeable with MATLAB as both languages are high-

level programming languages with extensive linear algebra tools. Specifically, most of 

the basic linear algebra functions are directly interchangeable while functions from 

MATLAB toolboxes such as the Control System Toolbox and ODE solvers require using 

alternative Octave functions. Below are some of the changes that were made to develop 

a MATLAB specific version that will be available as a set of downloadable files, easily 

deployable to other problems. These codes are being developed to be well documented, 

user friendly, and serve as a jumping off point for other ALS applications. The final 
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product will resemble something similar to the modSQP MATLAB toolbox (He and Lima, 

2020) or the Biologically Inspired Optimal Control Strategy (BIO-CS) MATLAB toolbox 

(Mirlekar et al., 2017).  

1. Octave contains a function for generating the duplication matrix 

(duplication_matrix). MATLAB lacks this function natively, so the MATLAB 

Central community was consulted for an equivalent function (Jan, 2021). 

2. Complete removal of the ODE solvers from the Sundials toolbox (e.g., 

CVODES) and replacement with standard MATLAB ODE solvers (e.g., ode45 or 

ode15). 

3. Removal of structure arrays (e.g., m.x, m.y) for the models and replacement with 

standard variables. 

4. Conversion from the logarithmic barrier function form for the objective function to 

a standard constrained least-squares estimation problem. 

The duplication matrix function is required to generate the final ALS least-squares 

form and is used throughout the Octave codes. As a result, the equivalent MATLAB 

function proposed by the MATLAB Central community (self-titled duplication_matrix.m 

as no name was provided) was adapted and validated. For semi-batch processes, 

linearization is performed using analytical derivatives provided by the user or through the 

MATLAB symbolics toolbox for difficult to calculate derivatives. At each discretization 

time the linearization is reperformed. Additionally, some tuning of the NALS parameter is 

required to improve the quality of the covariance estimates. 
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The other significant code change made was the removal of the logarithmic barrier 

function. ALS was originally posed using a least-squares formulation with an alternative 

form utilizing a logarithmic barrier function to constrain Q and R to values greater than 

zero (Odelson et al., 2005). Although this is a valid form and may be beneficial depending 

on the optimizer selected, subsequent publications have presented ALS without this 

logarithmic barrier function (Rajamani et al., 2007; Rincon et al., 2014A; Lima and 

Rawlings, 2011). As a result, in this work, the logarithmic barrier function was not 

included as MATLAB optimization algorithms were shown to be generally robust when 

solving constrained least-squares optimization problems as demonstrated with the MHE 

results from Chapter 3. 

4.2.1 ALS LTI Test Case 

To test this MATLAB specific ALS implementation, the LTI system from Odelson 

et al. (2005), depicted in Equations 4.33-4.39, is used as a case study 

 𝐴 = [
0.1 0 0.1
0 0.2 0
0 0 0.3

] (4.33) 

 𝐶 = [0.1 0.2 0] (4.34) 

 𝐺 = [
1
2
3
] (4.35) 

 𝑄𝑟𝑒𝑎𝑙 = 0.5 (4.36) 

 𝑅𝑟𝑒𝑎𝑙 = 0.1 (4.37) 

 𝑄𝑔𝑢𝑒𝑠𝑠 = 0.2 (4.38) 
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 𝑅𝑔𝑢𝑒𝑠𝑠 = 0.4 (4.39) 

In this LTI system, Qreal and Rreal are the true model and measurement covariances 

that are used to introduce noise to the system, while Qguess and Rguess are the initial 

covariances used to initialize ALS. A KF is used in this LTI example to supply the Kalman 

gains and state estimates required for ALS. To maintain consistency with Odelson et al. 

(2005), 200 simulations with 1000 data points and an NALS of 15 are employed. Figure 

4.2 shows the result of this ALS case study. 

 

Figure 4.2 ALS results for LTI case study 

 

 The blue scatter dots in Figure 4.2 are individual optimal Q and R values derived 

for each randomized simulation, while the red scatter dot is the average of all simulation 

results and has a QALS value of 0.5559 and an RALS value of 0.2458. This differs from the 

results from Odelson as that implementation more closely approached Qreal and Rreal 
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(many simulations centered around RALS value of 0.1 and QALS value of 0.5) with an QALS 

range of 0.1-0.8 and a RALS range of 0.02-0.18. One possibility behind this disparity is 

the difference in ALS formulation as Odelson used a logarithmic barrier function to 

prevent constraint violation and an undefined optimization technique. In contrast, the 

MATLAB version simply used the least-squares formulation from Equation 4.28 with the 

fmincon solver with a min-max value constraint of 0 and 2 respectively. Despite not 

converging as closely to the true covariances, when the derived QALS and RALS are 

applied to this LTI system using a KF, the SE is minimized as seen in Table 4.1. 

Table 4.1 Performance assessment of ALS algorithm using LTI system 

Algorithm Total SE SE – A SE – B SE – C 
Computational 

Time (s) 

ALS 16.77 1.27 4.65 10.84 243.93 

Real Cov. 19.42 1.47 5.39 12.56 - 

Modified DO 26.58 2.05 7.27 17.25 37.73 

Standard DO 44.72 3.27 12.73 28.72 36.86 

Guess Cov. 21.69 1.66 5.98 14.05 - 

 

To quantity the estimation performance, SE calculations are carried out for states 

A, B, C, and are summed up to form the total SE value. Within Table 4.1, the Modified 

DO corresponds to using Equation 3.33 and the Standard DO corresponds to Equation 

3.32 to derive the covariances used for the KF. Additionally, the guess covariances use 

the Qguess and Rguess values, while the real covariances employ Qreal and Rreal. Overall, 

this simple LTI example demonstrates that ALS can improve state estimation results by 

deriving relatively accurate approximations of the model and measurement covariance 

matrices. Interestingly, even when using the true system covariances in the KF, the ALS 
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derived covariances managed to result in more accurate state estimates as seen with 

the lower SE values. Due to the simplicity of this system, DO is a more computational 

efficient algorithm as seen with computational times required to derive the estimated 

covariances. However, real chemical processes are rarely linear in nature so this 

computational time result cannot be exclusively relied upon. 

4.2.2 Nonlinear ALS Test Case 

To test the effectiveness of ALS on nonlinear systems, a simple nonlinear case 

study is carried out using the reaction model shown below in Equations 4.40-4.43 from 

Alexander et al. (2020). 

 𝐴

𝑘1
→

𝑘−1
← 

2𝐵 (4.40) 

 𝐵
𝑘2
→ 𝐶 (4.41) 

 
𝑑𝐶𝑎

𝑑𝑡
= −𝑘1𝐶𝑎 + 𝑘−1𝐶𝑏

2 (4.42) 

 
𝑑𝐶𝑏

𝑑𝑡
= 2𝑘1𝐶𝑎 − 2𝑘−1𝐶𝑏

2 − 𝑘2𝐶𝑏 (4.43) 

 This reaction model considers the reversible reaction of component A into 

component B and the conversion of component B into component C using a batch 

reactor. Of the process states, only component B is measured. In the model above, there 

are three kinetic parameters of interest, k1, k-1, and k2, which are fixed to a value of 1 

with appropriate units. Noise is introduced into the system by applying randomized white 

noises to the process model and the measurements by using the model covariances, 

measurement covariances, and system noise matrix shown below in Equations 4.44, 
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4.45 and 4.46, respectively. Random white noise is applied at every discretization point 

of 0.05 arbitrary time units ranging from 0 to 25. Additionally, the corresponding 

linearized-state space model, measurement matrix, and initial conditions are shown 

below in Equations 4.47, 4.48 and 4.49, respectively. As component C does not influence 

the estimation implementation, it has been neglected from the state-space model for this 

analysis. 

 𝑄𝑟𝑒𝑎𝑙 = [1 ∙ 10
−7 0

0 1 ∙ 10−7
] (4.44) 

 𝑅𝑟𝑒𝑎𝑙 = [1 ∙ 10−4] (4.45) 

 𝐺 = [
1 0
0 1

] (4.46) 

 𝐴𝑘 = [
−𝑘1 2𝑘−1𝐶𝑏
2𝑘1 −𝑘2 − 4𝑘−1𝐶𝑏

]
𝑘

 (4.47) 

 𝐶𝑘 = [0 1] (4.48) 

 𝑥𝑖𝑛𝑡 = [
1
1
] (4.49) 

 Both the modified DO and ALS algorithms are applied to the model shown above 

and employ fmincon to derive the covariance estimates. Additionally, 200 randomized 

simulations are carried out to generate the required plant data and measurement data. 

In this nonlinear batch process, a NALS of 25 is utilized for the ALS technique. A sample 

of the estimation results achieved using the ALS derived covariances combined with an 

EKF implementation are shown below in Figure 4.3. 
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Figure 4.3 Sample of ALS derived covariances for nonlinear EKF example 

 

 The ALS state estimates shown in Figure 4.3 use the QALS and RALS derived from 

the ALS function, while the guess state estimates are derived using the initial guess of 

the model and measurement covariance matrices. Like in Chapter 3, the simulated plant 

data represents the true state values, and the model output is the model prediction from 

the reactor model. Overall, the ALS associated state estimates filter out a large portion 

of the measurement noise and achieve better estimation results than simply using the 

initial covariances guesses, particularly for state B. The DO associated state estimation 

results are not depicted in Figure 4.3 but are reflected in Table 4.2 which quantifies the 

SE across 200 randomized simulations and the associated computational time to derive 

the covariances. 
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Table 4.2 SE values for nonlinear ALS case study 

Algorithm Total SE A B Computational Time (s) 

Guess 136.2 80.0 56.2 - 

Full DO 135.7 39.5 96.2 14528 

Diagonal DO 113.4 58.8 54.6 2488.6 

ALS 106.7 59.1 47.6 344.7 

 

 Both DO covariance estimation techniques shown in Table 4.2 use the modified 

DO algorithm to derive the covariance estimates. The full DO algorithm does not assume 

the covariances are uncorrelated and derives a covariance value for each element of the 

Q and R matrices. In contrast, the diagonal DO algorithm follows the procedure shown 

in Chapter 3 and assumes the noises are uncorrelated, thus only fitting the diagonal 

components of the Q matrix. Overall, the ALS associated state estimates decrease the 

total SE by 6% when compared to the diagonal DO and 27% for the full DO. 

 The computational time shown in Table 4.2 is the time required to derive the 

covariance estimates for the various techniques using the 200 randomized data sets. 

For this nonlinear system, ALS experiences a sharp decrease in computational time 

(86%-98%) when compared against DO. This makes sense as DO requires repeatedly 

running 200 EKF simulations each time the covariance values are updated during a 

function evaluation. ALS does not require rerunning these simulations and simply needs 

to minimize the least-squares function at once using all the information obtained from 

the innovations. 



91 

 

4.3 ALS Application to GOS Process 

Following the performance assessment of the ALS algorithm, the method is now 

applied to the GOS system to build upon and improve the state estimation results shown 

in Chapter 3. Due to the relatively large size of the Q (10x10) and R (6x6) matrices, the 

diagonal ALS technique from Lima & Rawlings (2011) is applied in this work. This 

diagonal technique acts similar to the DO formulation from Chapter 3 and simplifies the 

ALS formulation by estimating only the diagonal components of the measurement and 

process model covariance matrices. Once again, this reduces the least-squares problem 

from ∑ 𝑖𝑞
𝑖=1 + ∑ 𝑖𝑟

𝑖=1   variables to 𝑞 + 𝑟 variables, thus reducing the computational time. 

Additionally, for ill conditioned 𝒜𝑘 matrices this technique has proven to be effective 

(Lima & Rawlings, 2011). 

 For direct comparison between DO and ALS, both covariance estimation 

techniques are run in parallel using 200 randomized data sets and the randomization 

procedure outlined in Figure 3.2. Additionally, both algorithms are initialized employing 

an initial guess of the measurement and model covariances set to the identity matrix. 

ALS is run initially using a NALS value of 35 and derives the QALS and RALS covariance 

values shown in Tables 4.3 and 4.4. It is important to note that the true covariances are 

unknown, due to the noise generation procedure from Chapter 3. 
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Table 4.3 QALS value for GOS process 

State Value QALS Position 

Lac 0.0625 (1,1) 

Glu 0.1434 (2,2) 

Gal 0.0423 (3,3) 

Tri 0.0427 (4,4) 

Tet 0.0414 (5,5) 

Glb 0.0419 (6,6) 

Trig 0.0485 (7,7) 

Tetg 0.0414 (8,8) 

E 0.3225 (9,9) 

V 0.0219 (10,10) 

 

Table 4.4 RALS value for GOS process 

Measurement Value RALS Position 

Disaccharide 0.0624 (1,1) 

Glu 0.1423 (2,2) 

Gal 0.0414 (3,3) 

GOS3 0.0414 (4,4) 

GOS4 0.0414 (5,5) 

V 0.0219 (6,6) 

 

Due to employing the diagonal ALS technique, all matrix positions not listed in 

Tables 4.3 or 4.4 are set to a value of 0. It is important to note that the covariances 

presented above are derived using the normalized form of the state variables to balance 

the large order of magnitude differences in some process states. As a result, when 

reviewing these covariance values, the amount of noise is relative to the mean state 
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values. Interestingly, the ALS algorithm seems to apply an equal amount of weight 

between the model and measurements. This is most easily shown in states Glu, Gal, 

and V having nearly identical model and measurement covariance weights for their 

specific states. States not measured directly also have nearly identical QALS values as 

their corresponding isomer (e.g., Tri + Tetg). By far the largest covariance value is 

associated with state E as this value is approximately an order of magnitude larger than 

most of the other process states. Intuitively, this makes sense as the ALS algorithm does 

not have any corresponding measurement for this state variable. As a result, all the noise 

for this state must come from the model. Additionally, this state influences all other 

process states so any noise on this state will eventually propagate to the other states. 

When applied to the nonlinear GOS system, ALS exhibits significant 

computational time benefits over DO as shown in Table 4.5. 

Table 4.5 Computational time of covariance estimation algorithms 

Algorithm Computational Time 

ALS 309 seconds 

DO 10157* seconds 

* Indicates part of the DO algorithm was parallelized  

Using the 200 randomized data sets, ALS can derive covariance estimates in 

approximately 3% of the computational time of DO. The least-squares ALS objective 

function is solved using MATLAB’s fmincon and provides high quality results without 

having to modify the standard optimizer settings. In contrast, DO is most effectively 

solved via a hybrid parallelized particleswarm+fmincon optimization algorithm. 
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Additionally, the DO computational time shown in Table 4.5 is heavily favorable towards 

DO as this is the clock time of the algorithm, which is reduced by using 8 workers during 

the parallelized particleswarm phase of the algorithm. Without parallelization, this DO 

computational time would increase and further highlight the computational time benefits 

of ALS which was not parallelized. 

 DO requires a more complex optimization approach as simply using fmincon can 

often result in the optimizer driving the EKF algorithm to instability (producing NaN state 

estimate values) during the function evaluations. When this occurs, the optimizer cannot 

proceed and returns an error to the user. The most effective avenue for remediating this 

problem is to initialize fmincon with the optimization results from an initial preliminary 

particleswarm search (Kim & Lima, 2020). In this DO implementation, a swarm size of 

300 with a max iteration count of 5 is used to provide a more reasonable starting point 

for fmincon despite being well below the default settings for MATLAB. For context, the 

default MATLAB particleswarm settings for a 16 variable optimization problem would be 

a swarm size of 100 with a max iteration count of 3200. As the individual agents in the 

swarm operate independently when running, parallelization is easily applied to help 

reduce the computational time of this algorithm. 

 Overall, it may be possible to implement alternative optimizers or combinations of 

optimizers to improve DO’s computational time. However, this example demonstrates 

that for nonlinear systems with relatively large models it is intractable to run DO for online 

applications, such as live covariance updating to reflect changes in the instrumentation 

calibration or disturbances to the plant. The necessity of having to continuously rerun 
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EKF simulations for the DO algorithm will be much slower than simply solving the least-

squares optimization problem of ALS. 

4.3.1 ALS with EKF for GOS Process 

To demonstrate the robustness of the ALS algorithm, the covariances shown in 

Tables 4.3 and 4.4 are used with an EKF implementation on the GOS process. A sample 

of estimation results in terms of the state variables are shown below in Figure 4.4. 

 

Figure 4.4 EKF performance for state variables using ALS derived covariances 

 

The results shown above in Figure 4.4 follow the conventions from Chapter 3 and 

plots both the DO and ALS associated EKF results against each other for direct 

comparison. Overall, the ALS associated results match or exceed the estimation 

performance as the ones achieved using DO. For states Lac, Glu, Gal, Glb, and V both 

sets of covariances produce state estimates that converge to the true process states 
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(i.e., Simulated Plant Data). For states Tri, Tet, and Trig, the ALS results more closely 

follow and track the true process states and generate higher estimation performance 

than the DO associated state estimates. Only state Tetg has better estimation 

performance for DO over the ALS associated state estimates. Figure 4.5 shows the 

estimation results for the measurements. 

 

Figure 4.5 EKF performance for outputs using ALS derived covariances 

 

Figure 4.5 also follows the conventions from Chapter 3 and plots both the output 

estimates from the DO and ALS associated EKFs for more direct comparison. Overall, 

the ALS associated output estimates closely match or improve the DO associated output 

estimates. All the ALS associated output estimates lie in-between the peaks and valleys 

of the white noise corrupted measurements and help to smooth out the noisy data, while 

for DO the GOS3 and GOS4 output estimates diverge from the trajectory of the 

measurements. Due to the random stochastic nature of generating the noises, Table 4.6 
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displays the total SE for both DO and ALS associated state estimates after running 100 

EKF simulations using the same datasets for both methods. 

Table 4.6 SE values for DO and ALS based EKF estimation 

 Lac Glu Gal 
Tri 

(102) 

Tet 

(105) 

Glb 

(103) 

Trig 

(105) 

Tetg 

(108) 

E 

(1014) 

V 

(102) 

Total 

SE 

DO* 
1.178 0.259 0.318 2.813 8.447 3.331 2.201 6.820 5.128 1.922 1.806 

ALS* 
0.856 0.318 0.179 0.314 0.958 4.456 2.037 9.176 6.990 2.862 1.390 

*Indicates that one or more simulations were unstable and produced SE values orders 

of magnitude higher than the average (or NaN simulation results) and thus are not 

included in the SE totals. 

 

 As demonstrated in Chapter 3, EKF based estimation has the potential to fail 

under different combinations of covariance estimates, data sets, and initial conditions. 

When generating the results in Table 4.6, both ALS and DO produced 1 infeasible set of 

estimation results. For most process states, ALS was shown to reduce average SE 

values, thus demonstrating a higher level of state estimation accuracy. Although several 

states (Glu, Glb, Tetg, Et, V) have higher SE values when using ALS, this is insignificant 

as the total SE is reduced by approximately 23% when using ALS over the modified DO 

algorithm.   

Based upon the qualitative results shown in Figure 4.4 and Figure 4.5 and the 

quantitative results shown in Table 4.6, the ALS covariance estimation technique can 

reliably derive valid estimates of the model and measurement covariances that can be 

successfully used with EKF. These derived covariances ultimately lead to estimation 
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performance on par with or exceeding DO, while requiring only 3% of the computational 

to derive the covariance estimates. 

4.3.2 ALS with MHE for GOS Process 

To further test the robustness of the ALS approach, the derived covariances from 

both DO and ALS techniques are applied to a series of MHE case studies using the GOS 

process. A sample of the MHE case study results in terms of the state values is shown 

in Figure 4.6. 

 

Figure 4.6 MHE performance for state variables using ALS derived covariances 

  

The MHE results shown in Figure 4.6 follow the conventions from Chapter 3 and 

demonstrate that ALS combined with MHE can generate high quality state estimates. 

For direct comparison, DO is also applied using the same data sets and consistently fails 

to generate reasonable state estimates for the enzyme concentration (as demonstrated 
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with the large rapidly changing scatter dots). This sporadic behavior was also seen in 

Chapter 3 when using the ad-hoc covariances with MHE. In contrast, ALS closely follows 

the simulated plant data for the enzyme activity and could be used to accurately infer 

what the true enzyme concentration is. Beyond this state, the difference between DO 

and ALS are hard to pinpoint and look similar from a purely qualitative perspective. Other 

randomized case studies for this process do highlight more robust state estimates using 

ALS. Overall, the state estimates derived using the ALS covariances closely follow the 

simulated plant data or the model output. Figure 4.7 shows the corresponding output 

estimates and the measurements associated with Figure 4.6. 

 

Figure 4.7 MHE performance for outputs using ALS derived covariances 

  

Based upon Figure 4.7, the ALS derived covariances results in an MHE that can 

filter out the white noise of the measurements as the estimates lie within the peaks and 

valleys of the measurements. The output estimates for DO and ALS are indistinguishable 
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in this specific case study but are generally smooth and represent the system well. More 

noise filtering could possibly be achieved by increasing the length of the MHE horizon, 

but at the cost of increased computational time. For consistency, these results still utilize 

the horizon length of 4 from Chapter 3. For a more quantitative analysis of these results, 

Table 4.7 is provided and is generated using 20 randomized case studies with the MHE 

using both the DO derived covariances and the ALS derived covariances. 

Table 4.7 SE values for DO and ALS based MHE estimation 

 Lac Glu 

Gal 

(102) 

Tri 

(103) 

Tet 

(106) 

Glb 

(104) 

Trig 

(106) 

Tetg 

(109) 

E 

(1013) 

V 

(102) 

Total 

SE 

DO 
0.353 0.110 3.794 2.261 4.930 5.500 1.914 8.276 10.71 1.912 0.523 

ALS 
0.325 0.086 4.331 1.124 2.600 4.827 1.879 8.171 0.498 1.380 0.470 

 

In terms of SE values, ALS performs well and derives system covariances that 

improves the estimation results for all states, except Gal, when compared to using DO. 

The accurate estimation of enzyme activity shown in Figure 4.5 is consistent across the 

randomized MHE case studies as the SE for E is approximately 95% lower than DO. 

Additionally, due to the constrained nature of MHE, all the simulations produce valid and 

feasible estimates across all the randomized case studies. Overall, these results support 

the conclusion that ALS is an effective covariance approach that is capable of being 

applied to semi-batch bioprocesses to derive computationally efficient estimates of the 

process model and measurement noise covariances. As demonstrated, ALS further 

minimizes the SE of most process states when compared to using the modified DO 

formulation from Chapter 3 (the most optimal form of DO). For this specific 16 variable 



101 

 

covariance estimation problem, ALS uses 3% or less of the computational time of DO. 

This significant reduction in computational time could allow ALS to be applied in online 

settings where recent data sets could be used to update the model and measurement 

covariances, subject to subtle changes to the plant conditions (e.g., fouling or decreasing 

activity), measurement offset/bias, or other chronic disturbances. Based upon the MHE 

results using ALS, application of a more robust algorithm such as Dual-EKF or P-MHE 

may not be needed for this specific GOS process. In this work, the kinetic parameters 

are assumed random but held constant across the entire batch time. If instead, the kinetic 

parameters were allowed to vary with time and subject to a chronic plant model mismatch 

a more robust algorithm may be required. 
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Chapter 5 Semi-Batch Process Costing Approach with Dynamic 
Real-Time Optimization 

 

In this chapter, a semi-batch specific costing approach is developed to strike a 

tradeoff between individual batch yield, product quality, batch time, and other key factors 

that influence the profitability of semi-batch processes. A generalized form of this costing 

approach is discussed and then applied to semi-batch GOS processes using β-

galactosidase enzyme from Kluyveromyces lactis (K. lactis) with economic data obtained 

from an extensive literature review. As part of this, an enzyme specific cost scaling 

correlation is developed to approximate bulk enzyme cost from laboratory-scale cost that 

are more readily available. This semi-batch costing approach is used as the objective 

function for a novel semi-batch specific DRTO framework. The work presented in this 

chapter will be published as part of an upcoming manuscript (Alexander, R., Maione, N. 

R., Ribeiro, M. P. A., & Lima, F. V., In preparation). 

5.1 Economic Model and Optimization Approach 

Although different reactor configurations may be possible for the synthesis of 

GOS (e.g., fixed-bed (Albayrak and Yang, 2001), continuous (Shin et al., 1998), 

immobilized packed-bed reactor (Petzelbauer et al., 2002), batch ultrafiltration 

membrane bioreactor (Cόrdova et al., 2016), etc.) this process is commonly performed 

as a standard batch process at industrial scale (Scott et al., 2016). Conceptually, this 

method of operation has several challenges such as limited ability to maintain a high 

substrate (i.e., lactose) concentration, inability to maintain a high enzyme activity, and 

inability to respond to process disturbances through corrective control actions. Under 



103 

 

batch operation, the substrate (i.e., lactose) concentration and enzyme activity will 

gradually decline, thus reducing the reaction rate for forming glucose (Glu) and galactose 

(Gal) (which are used to form GOS products). These undesired trends can be resolved 

by switching from a batch to a semi-batch configuration with independent feeding of 

lactose (𝑢𝑙𝑎𝑐) and enzyme (𝑢𝑒𝑛𝑧) throughout operation of the reactor. This behavior is 

supported by analyzing the following equations of the GOS process model (Equations 

5.1 and 5.2). The full GOS model considered here can be referenced in Chapter 3. 

 
𝑑𝑙𝑎𝑐

𝑑𝑡
= 𝑒 (

𝑘𝐻

𝐾𝑀𝐻
𝑡𝑟𝑖 −

𝑘𝑐𝑎𝑡

𝐾𝑀
𝑙𝑎𝑐 −

𝑘𝑇

𝐾𝑀𝑇
𝛾 𝑙𝑎𝑐) +

𝑢𝑙𝑎𝑐𝐶𝑙𝑎𝑐

𝑉
−

𝑢𝑖𝑛𝑙𝑎𝑐

𝑉
 (5.1) 

 
𝑑𝐸𝑡

𝑑𝑡
= −𝑘𝑒𝐸𝑡 +

𝑢𝑒𝑛𝑧𝐶𝑒𝑛𝑧

𝑉
−

𝑢𝑖𝑛𝑒

𝑉
 (5.2) 

By gradually feeding fresh lactose and enzyme into the reactor, it may be possible 

to increase the productivity of the reactor by maintaining a higher production rate of GOS 

across the batch time. Although not traditionally thought of as a manipulated variable, 

batch time (𝑡𝑏𝑎𝑡𝑐ℎ) can theoretically be regulated as the control engineer or operator can 

terminate the batch at any time. This provides an additional process variable (or degree 

of freedom) that can be varied to improve the process. Overall, this combination of 

variables and dynamic process nature creates an interesting optimal control problem.  

As noted in Chapter 2, it is challenging to optimize the operation of semi-batch 

processes due to the lack of a steady state, but also the tradeoff between batch yield, 

batch time, process constraints, and overall process economics. In the literature, Vera 

et al. (2013) have conducted an optimal control study of a fed-batch (i.e., semi-batch) 

GOS process using β-galactosidase from Aspergillus oryzae (A. oryzae) without directly 

optimizing the underlying process economics. Instead, in their study, the objective 



104 

 

function was the maximization of the reaction yield as a stand in for process economics 

and was solved using gPROMS (Vera et al., 2013). The work presented in this chapter 

contributes to the literature in several distinct ways including direct optimization of the 

process economics, analysis of K. lactis derived β-galactosidase for GOS production, 

Monte Carlo analysis, and derivation of an alternative semi-batch costing methodology. 

Direct optimization of the process economics will force a compromise between batch 

time, individual batch performance, and overall GOS production, versus just maximizing 

the reaction yield. 

The main costing function proposed for a generalized semi-batch process is 

presented as Equation 5.3 and is further broken in the subsequent costing functions 

presented below that are specific to this GOS process. 

max
𝑡𝑏𝑎𝑡𝑐ℎ,𝑢𝑗=𝑜,1,…,(𝑡𝑏𝑎𝑡𝑐ℎ/∆𝑡−1)

𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑅𝑎𝑡𝑒 = (𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑢𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 −

𝐹𝑒𝑒𝑑 𝐶𝑜𝑠𝑡𝑠) ∗ (
𝐵𝑎𝑡𝑐ℎ𝑒𝑠

𝑑𝑎𝑦
)   (5.3) 

The objective function posed in Equation 5.3 seeks to maximize the profitability 

rate of a general semi-batch process in terms of a $/day rate. This is done via optimizing 

the batch time (𝑡𝑏𝑎𝑡𝑐ℎ) and feeding profile by manipulating the system inputs (u) with a 

constant discretization time (Δt), assuming a zero-order hold is employed for a discrete-

time system.  Although profitability rate is an unconventional unit for analyzing process 

economics, for semi-batch processes, this helps to balance the number of batches 

produced per day and the amount of product generated in each individual batch. The 

specific costing functions for the GOS process are broken down in Equations 5.4-5.12. 
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𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑉𝑎𝑙𝑢𝑒 = 𝐺𝑂𝑆 𝑀𝑎𝑠𝑠 ∗ 𝐺𝑂𝑆 𝑉𝑎𝑙𝑢𝑒 (5.4) 

𝐺𝑂𝑆 𝑀𝑎𝑠𝑠 = [𝐺𝑙𝑏 ∗ 𝑀𝑊2−𝑠𝑎𝑐𝑐ℎ + (𝑇𝑟𝑖 + 𝑇𝑟𝑖𝑔) ∗ 𝑀𝑊3−𝑠𝑎𝑐𝑐ℎ + (𝑇𝑒𝑡 + 𝑇𝑒𝑡𝑔) ∗

𝑀𝑊4−𝑠𝑎𝑐𝑐ℎ] ∗ 𝑉  (5.5) 

𝑃𝑢𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑁𝑜𝑛 𝐺𝑂𝑆 𝑀𝑎𝑠𝑠 ∗  𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑅𝑎𝑡𝑒 (5.6) 

𝑁𝑜𝑛 𝐺𝑂𝑆 𝑀𝑎𝑠𝑠 = [(𝐿𝑎𝑐 ∗ 𝑀𝑊2−𝑠𝑎𝑐𝑐ℎ) + (𝐺𝑎𝑙 + 𝐺𝑙𝑢) ∗ 𝑀𝑊1−𝑠𝑎𝑐𝑐ℎ] ∗ 𝑉 (5.7) 

𝐹𝑒𝑒𝑑 𝐶𝑜𝑠𝑡 = 𝐿𝑎𝑐𝑡𝑜𝑠𝑒 𝐹𝑒𝑒𝑑 𝐶𝑜𝑠𝑡 + 𝐸𝑛𝑧𝑦𝑚𝑒 𝐹𝑒𝑒𝑑 𝐶𝑜𝑠𝑡𝑠 (5.8) 

𝐿𝑎𝑐𝑡𝑜𝑠𝑒 𝐹𝑒𝑒𝑑 𝐶𝑜𝑠𝑡 = ([∑ 𝑢𝑙𝑎𝑐 𝑡=𝑖∗∆𝑡
(
𝑡𝑏𝑎𝑡𝑐ℎ

∆𝑡⁄ )−1

𝑖=0
∗ 𝐶𝑙𝑎𝑐 ∗ ∆𝑡] + 𝑖𝑛𝑖𝑡𝑙𝑎𝑐) ∗ 𝑀𝑊2−𝑠𝑎𝑐𝑐ℎ ∗

𝐿𝑎𝑐𝑡𝑜𝑠𝑒 𝐶𝑜𝑠𝑡  (5.9) 

𝐾. 𝑙𝑎𝑐𝑡𝑖𝑠 𝐹𝑒𝑒𝑑 𝐶𝑜𝑠𝑡 =  ([∑ 𝑢𝑒𝑛𝑧 𝑡=𝑖∗∆𝑡
(
𝑡𝑏𝑎𝑡𝑐ℎ

∆𝑡⁄ )−1

𝑖=0
∗ ∆𝑡]) ∗ 𝜌 ∗ 𝐾. 𝑙𝑎𝑐. 𝐵𝑢𝑙𝑘 𝐶𝑜𝑠𝑡 ∗

𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑎𝑐  (5.10) 

𝐵𝑎𝑡𝑐ℎ𝑒𝑠

𝑑𝑎𝑦
=

1440 𝑚𝑖𝑛

(𝑡𝑏𝑎𝑡𝑐ℎ+𝑡𝑝𝑟𝑒𝑝)
 (5.11) 

 The specific costing functions shown above utilize the GOS model from Alexander 

et al. (2023) and Schultz et al. (2021), but this distinction does not affect the value of 

GOS products as GOS is simply cost on a mass basis as seen in Equations 5.4 and 5.5. 

In principle, any GOS model could be used in place of the selected model, but the one 

chosen has been designed to accurately model enzyme deactivation, Glb formation, and 

GOS formation while preventing overfitting. For dynamic optimization studies, this ability 

to model enzyme deactivation is critical. The GOS model reports the concentration of 
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the various components in a molar basis, which is converted to mass using the 

components molecular weights (MW) and the current reactor volume (V). 

Most GOS processes require downstream purification to meet specific product 

quality guidelines and can vary significantly depending on the specific market being 

targeted. For example, GOS can be sold as a powder or syrup with a GOS mass purity 

range of 48-100 g/100g with varying amounts of galactose and lactose (Lamsal, 2012). 

The process optimization of these purification steps is beyond the scope of this work but 

is accounted for by adding a penalty rate for failing to remove non-GOS components, 

calculated by multiplying the component concentrations (i.e., lactose – Lac, galactose – 

Gal, and glucose – Glu), by their molecular weights (i.e., MW2-sacch and MW3-sacch), and 

the current reactor volume. This penalty represents the additional separation work that 

would be required for removing these non-GOS compounds. 

 The analyzed process considers the independent feeding of lactose and enzyme 

into the semi-batch reactor with the ability to vary flowrates (u) throughout the batch. This 

requires the use of the summations seen in Equations 5.9, and 5.10. For clarity, this work 

assumes a constant lactose feed concentration (𝐶𝑙𝑎𝑐) and constant enzyme feed 

concentration (𝐶𝑒𝑛𝑧 ) across the entire batch time. To prevent a divide by zero error in 

the calculations, the reactor is initially charged with a small amount of lactose (𝑖𝑛𝑖𝑡𝑙𝑎𝑐) 

with a concentration matching the lactose feed. The dilution factor present in Equation 

5.10 scales the cost of the enzyme feed if diluted from the industrial scale concentration, 

as β-galactosidase from K. lactis is typically sold as a concentrated solution. In Equation 

5.10, the solution feed density (ρ) is used to convert the volumetric flowrate to a mass 

flowrate. 
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Equation 5.11 calculates the number of batches per day and allows the user to 

assume a preparation time (tprep) to unload, clean, and prepare the reactor for another 

batch. Without incorporating tprep directly into the optimization problem, there is no 

penalty for running many short batches per day. The numerator of this equation is the 

number of minutes of operations per day and can be switched to alternative time units 

(i.e., hours) if tprep and tbatch are dimensionally consistent. Section 5.2 details how these 

economic parameters were derived for this chapter. 

The maximization of the profitability rate through optimization of the batch time 

and feed rates requires a unique problem formulation as the number of manipulated (i.e., 

decision) variables change as a function of the batch time and discretization time. Longer 

batch times increase the number of opportunities to vary the system inputs (i.e., lactose 

and enzyme flowrates), thus making the total number of manipulated variables 

dependent on batch time (another decision variable). For this GOS process, Equation 

5.12 quantifies the relationship between batch time and the number of manipulated 

variables. 

𝑇𝑜𝑡𝑎𝑙 # 𝑀𝑉𝑠 =
𝐵𝑎𝑡𝑐ℎ 𝑇𝑖𝑚𝑒

(∆𝑡)
∗ 2 + 1 (5.12) 

Conventional optimization algorithms such as MATLAB’s fmincon (MathWorks, 

n.d. A), particle swarm optimization (Poli et al., 2007), and IPOPT (Wächter & Biegler, 

2006) require a fixed number of variables and are unable to dynamically change the 

number of decision variables while running. To remediate this issue, this economic study 

structures the problem using a novel bilayer DRTO approach as shown in Figure 5.1.   
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Figure 5.1 Bilayer DRTO approach 

 

This bilayer DRTO approach splits the problem into two distinct layers, Level 1 

and Level 2. Level 1 (or the top layer) selects a batch time within a given range of values 

(i.e., min and max value constraints) and can employ a basic searching algorithm such 

as golden search or sensitivity studies to efficiently select batch times to be evaluated. 

Upon selection of several candidate batch times to be evaluated, Level 2 of the DRTO 

approach is employed. Unlike Level 1, Level 2 hosts several nodes in which each receive 

a single specific candidate batch time (i.e., one batch time per node). Each node in Level 

2 derives the optimal lactose and enzyme flowrates into the reactor at every 

discretization time for the node’s assigned batch time. With each node in Level 2 

receiving a fixed batch time, the number of manipulated variables remains constant, thus 
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allowing standard optimization algorithms to be employed. Once the Level 2 node 

derives the maximum profitability (and the relevant optimal control inputs) for its assigned 

batch time, it feeds this information back to Level 1 to inform the search for the optimal 

batch time, subject to the specific Level 1 optimizer being used.  The ultimate output from 

this bilayer DRTO is a single optimal batch time with the corresponding optimal lactose 

and enzyme feed flow rates required to maximize the profitability rate. 

 Although framing the DRTO in this bilayer manner method requires solving for 

multiple Level 2 nodes, this structure allows parallel computing to be performed where 

each Level 2 node is simultaneously solved. As MATLAB is being used to develop this 

bilayer DRTO, parallelization is easily performed using the Parallel Computing Toolbox. 

Additionally, by employing this bilayer approach, constraints regarding the control moves 

are isolated to Level 2. These constraints are shown as Equations 5.13, 5.14, and 5.15. 

0 ≤ 𝑉(𝑡) ≤ 𝑉𝑚𝑎𝑥  (5.13) 

𝑉(𝑡) = ∑ 𝑢𝑙𝑎𝑐 𝑡=𝑖∗∆𝑡

(𝑡𝑏𝑎𝑡𝑐ℎ
∆𝑡
⁄ )−1

𝑖=0
∗ ∆𝑡 + ∑ 𝑢𝑒𝑛𝑧 𝑡=𝑖∗∆𝑡

(𝑡𝑏𝑎𝑡𝑐ℎ
∆𝑡
⁄ )−1

𝑖=0
∗ ∆𝑡 (5.14) 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥  (5.15) 

In which, Equation 5.13 is a linear inequality constraint for the maximum reactor 

volume (Vmax) and is related to the control moves using Equation 5.14. The reported 

literature review did not provide any specific guidance for sizing industrial GOS reactors. 

However, Scott et al. (2016) did state that batch reactors typically range from cubic 

meters to 10s of cubic meters. Equation 5.14 simply tracks the amount of lactose and 

enzyme entering the reactor across the batch time and ensures the reactor is not 
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overfilled. Equation 5.15 influences these equations by providing minimum and 

maximum values for the specific control moves. Although not specifically outlined in an 

equation, the batch times on Level 1 are subject to a minimum and maximum value 

constraint to assist in bounding the optimization. 

In this specific implementation, the bilayer DRTO is being used to derive the 

optimal feeding policy of a nominal process (i.e., no noise GOS process) and is not rerun 

subject to the state feedback from the plant. A true DRTO algorithm would continuously 

update the optimal dynamic trajectory, subject to the current plant conditions. If this 

bilayer DRTO were to be applied to a real system, the optimal batch time and associated 

control moves would be updated frequently. As the bilayer DRTO is being applied in this 

chapter as a tool for evaluating GOS profitability, it is being applied as a dynamic 

optimization tool exclusively. 

5.2 GOS Process Economic Parameters 

Table 5.1 summarizes the results of the conducted literature review and provides 

initial guidance on selecting values for specific GOS economic parameters. 
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Table 5.1 Economic parameters found in literature for GOS process 

Parameter Published Values Assumed Value 

(in this study) 

GOS Value (Future Market 

Insights, 2020; Yang, 2003; Tang, 2002; 

Valero, 2009) 

$6/kg, $10/kg, $11/kg, $17/kg $11/kg 

Lactose Cost (Tang, 2002; 

Valero, 2009; Scott et al., 2016; USDA, 

2023) 

$0.26/kg-$0.88/kg, $0.88/kg, 

$0.5/kg, $0.66/kg-$1.15/kg 

$0.7/kg 

β-galactosidase from K. 

lactis Cost (Valero, 2009) 

$550/kg $670/kg-$1000/kg 

Penalty Rate Not found in Literature* $1/kg 

Preparation Time Not found in Literature 60 minutes 

*Scott et al. (2016) conducted an economic analysis of industrial scale GOS processes 
and reported the associated “Separation aids” contribution to the minimum product 
selling price (MPSP) 

 

When reviewing the literature on GOS process economics, there were no clear 

guidelines on how to evaluate these processes or commonly accepted economic 

parameter values due to the wide range of GOS products and different production 

pathways. The GOS values shown in Table 5.1 are derived from a variety of sources and 

did not include any specific mention to the type of GOS product being made. The GOS 

value of $6/kg is not directly from Future Market Insights (2013) but is derived by dividing 

their reported GOS market value and their reported metric tons of GOS sold. The lactose 

cost varies significantly and has been reported as having a volatile market price (Yang, 
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2003) constantly tracked by the United States Department of Agriculture (USDA, 2023). 

Due to these fluctuations, it is reasonable to assume a $0.7/kg price for lactose. 

The penalty rate is a unique aspect of this costing approach and could not be 

found directly in the literature. Essentially, this penalty is here to represent the required 

downstream purification costs of having excess non-GOS components at the end of a 

batch. After conducting the literature review, the most comparable data found was from 

Scott et al. (2016). The assumed $1/kg value was developed after reviewing the literature 

results for a case study producing GOS considering 5 different processes (2 with β-

galactosidase from A. oryzae and 3 with β-galactosidase from Bacillus circulans) with a 

combination of purification techniques to produce a 75% pure GOS product. Eventually, 

these case studies derived the minimum product selling price (MPSP) with a breakdown 

of various categories including “Separation aids”. These values range from 

approximately $0.04/kg US to $0.54/kg US (Scott et al., 2016). The $1/kg value assigned 

in Table 5.1 provides an additional safety cushion for determining the profitability rate. 

The most challenging values to find in the literature were approximations of the 

enzyme cost. Generally, most literature did not report their specific enzyme feed costs 

and simply provided the enzyme used in their experiments. For K. lactis derived β-

galactosidase, only a single estimate of the enzyme cost could be found in the academic 

literature, which ended up being a 2009 PhD dissertation from Valero (2009). This 

reference simply listed the β-galactosidase from K. lactis cost as $550/kg with an activity 

of 3000 lactase unit/g or mL with no specific mention of how this cost was obtained. This 

study (Valero, 2009) does mention the β-galactosidase from K. lactis used in their 
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experiments was obtained from Valley Research and the specific criteria used to define 

one lactase unit in their work.  

As a result of these challenges, the enzyme cost found in the literature could not 

be solely relied upon as it was not clear how this $/kg value was derived or how this cost 

could vary depending on the enzyme provider. For example, it was unclear how a 

different β-galactosidase from K. lactis vendor may price their enzyme given differences 

in factors such as enzyme feed concentration (i.e., amount of dilution/purification), 

activity, localized market conditions, or even discount rates for industrial clients. Attempts 

were made to convert these $/kg values to $/U (or $/activity unit) values to help compare 

enzymes across different vendors, but enzyme activity is a nonstandard unit often 

customized to specific enzyme solutions. 

Valero (2009) defines one β-galactosidase from K. lactis lactase unit (LU) as “the 

amount of enzyme which liberates 1 μmol of glucose per minute from lactose 

(concentration 10%) at the early stages of reaction at 40 °C, pH 6”. Schultz et al. (2021) 

also uses K. lactis derived β-galactosidase, but defines one unit of enzyme activity (U), 

“as the amount of enzymes that produces 1μmol of ONP [o-nitrophenyl] per minute” in a 

potassium phosphate buffer solution, pH 7, containing specific amount of ONPG [o-

nitrophenyl-β-D-galactopyranoside], NaCl and MgCl2. An online vendor (Sigma-Aldrich) 

lists the β-galactosidase from K. lactis activity as being ≥ 2600 units/g with one unit 

hydrolyzing 1.0 umol of o-nitrophenyl-D-galactoside to o-nitrophenol and D-galactose 

per minute at pH 4.5 at 30°C (Sigma-Aldrich, n.d. A; Sigma-Aldrich, n.d. B). These 

different activity definitions provide no clear pathway for simply reapplying the enzyme 

costs found in the reported academic sources. 
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As a result, the literature review was expanded to consider chemical supply 

company websites to find bulk or industrial scale enzyme prices. However, this did not 

yield any specific bulk enzyme costs for K. lactis. Of the companies researched, only 

Sigma-Aldrich published specific quantities of enzyme available for purchase and their 

associated cost. The main limitation of simply defaulting to using these costs is the 

laboratory scale at which these enzymes are being sold as it does not reflect the bulk or 

industrial scale cost. However, it is possible to extrapolate these laboratory scale costs 

to bulk prices using cost correlations, data from supply catalogues, and the methodology 

proposed by Hart & Sommerfeld (1997). 

The methodology from Hart & Sommerfeld (1997) was developed to estimate the 

selling price of commercial chemicals produced in specialty quantities from laboratory 

supply catalogs. In Hart & Sommerfeld (1997), the industrial cost of twenty-four 

chemicals including benzoic acid, morpholine, 4-octylphenol, and other specialty 

chemicals were examined using their specific laboratory pricing and the cost formulas 

defined in Equations 5.16 and 5.17. 

𝑃 = 𝑎𝑄𝑐𝑜𝑟𝑟
𝑏  (5.16) 

log10 𝑃 = log10 𝑎 + 𝑏 log10 𝑄𝑐𝑜𝑟𝑟 (5.17) 

 Equation 5.16 is the P-quantity Q correlation, where P is the unit price of the 

chemical (units $/kg), Qcorr is the purchase quantity (units g), with a being the intercept 

and b being the slope of the cost correlation. Equation 5.17 is the logarithmic form of 

Equation 5.16 and is useful when regressing the correlation parameters. For the 

chemicals evaluated in Hart & Sommerfeld (1997), the weighted average value of 
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parameter b was found to be -0.7518 when using individual correlations. Additionally, 

Hart & Sommerfeld (1997) also provided Equation 5.18 to predict the bulk price from a 

single laboratory price if limited data is available. 

𝑃𝐵 = 𝑃1(
𝑄𝐵

𝑄1
)𝑏𝑎𝑣𝑔 (5.18) 

 Equation 5.18 uses the single unit price (P1) (units $/kg) and associated purchase 

quantity (Q1) (units g) along with the average slope value (bavg) and the representative 

bulk amount (QB) to estimate the bulk unit price (PB). 

 This cost scaling methodology was adapted in this work to enzymes specifically 

by surveying Sigma-Aldrich values for various enzymes and deriving an enzyme specific 

slope value (benz) that could be used to estimate the industrial scale cost of K. lactis and 

A. oryzae derived β-galactosidase. A specific enzyme slope value was desired as the 

cost of specialty chemicals may scale differently than the enzyme market. Table 5.2 

shows the specific enzymes used in deriving benz, the number of different quantities 

available for purchase, the price range, and each enzyme’s specific slope value and 

intercept. 
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Table 5.2 Enzyme data used to derive benz 

Enzyme Name Entries Pack Size Price Activity Intercept Slope 

β-Galactosidase 
from 
Escherichia coli 

(Sigma-Aldrich, 
n.d. C) 

4 1000 – 

15000 

units 

$110.00 
– 

$999.00 

≥500 

units/mg 
protein 

(500) 

7.23 -0.182 

Cellulase from 
Aspergillus 
niger 

(Sigma-Aldrich, 
n.d. D) 

3 5000 – 

100000 

units 

$59.70 – 

$420.00 

≥0.3 

units/mg 

(0.3) 

3.98 -0.349 

Pectinase from 
Aspergillus 
niger 

(Sigma-Aldrich, 
n.d. E) 

4 5000 – 

100000 

units 

$66.60 – 

$604.00 

≥5 

units/mg 

(5) 

4.82 -0.264 

Pectinase from 
Rhizopus sp. 

(Sigma-Aldrich, 
n.d. F) 

3 500 – 

5000 

units 

$68.40 – 

$501.00 

400-800 

units/g 

(600) 

4.94 -0.170 

Protease from 
bovine 
pancreas 

(Sigma-Aldrich, 
n.d. G) 

4 0.250 – 

10  

grams 

$76.00 – 

$1210.00 

N/A 5.33 -0.250 

Protease from 
Streptomyces 
griseus 

(Sigma-Aldrich, 
n.d. H) 

3 0.100 –  

5  

grams 

$57.00 – 

$836.00 

N/A 5.44 -0.314 

α-Amylase from 
porcine 
pancreas 

(Sigma-Aldrich, 
n.d. I) 

5 500000 – 

10000000 

units 

$55.70 – 

$408.00 

≥5  

units/mg  

(5) 

3.40 -0.331 
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α-Amylase from 
Aspergillus 
oryzae 

(Sigma-Aldrich, 
n.d. J) 

3 250000 –  

5000000  

units 

$76.70 – 

$364.00 

≥150 

units/mg 

(150) 

4.76 -0.473 

α-Amylase from 
human saliva 

(Sigma-Aldrich, 
n.d. K) 

3 100 –  

2500  

units 

$65.70 – 

$570.00 

1000-3000 

units/ mg 

(2000) 

7.51 -0.375 

α-Amylase from 
Bacillus sp. 

(Sigma-Aldrich, 
n.d. L) 

3 1000000 - 

25000000  

units 

$177.00 
– 

$2440.00 

≥400 

units/mg 
(400) 

4.92 -0.183 

Bromelain from 
pineapple stem 

(Sigma-Aldrich, 
n.d. M) 

5 0.01 -  

1  

kg 

$85.40 – 

$3090 

N/A 4.14 -0.223 

Ficin from fig 
tree latex 

(Sigma-Aldrich, 
n.d. N) 

3 100 –  

1000 

units 

$268.00 
– 

$1530.00 

≥1units/mg 
(1) * 
(Sigma-
Aldrich, 
n.d. O) 

6.18 -0.246 

Catalase from 
Aspergillus 
niger 

(Sigma-Aldrich, 
n.d. P) 

3 10 –  

100  

mg 

$111.00 
– 

$552.00 

N/A 6.44 -0.303 

Lipase from 
Aspergillus 
niger 

(Sigma-Aldrich, 
n.d. Q) 

3 0.100 –  

5  

grams 

$28.90 – 

$258.00 

N/A 4.99 -0.471 

Glucose 
Oxidase from 
Aspergillus 
niger 

(Sigma-Aldrich, 
n.d. R) 

5 10000 –  

2500000  

units 

$62.40 – 

$3020.00 

100000-
250000 

units/g 

(175000) 

5.56 -0.213 
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Alcohol 
Dehydrogenase 
from 
Saccharomyces 
cerevisiae 

(Sigma-Aldrich, 
n.d. S) 

6 7500 – 

300000  

units 

$50.00 – 

$646.00 

≥300 

units/mg 

(300) 

5.81 -0.286 

Glyoxalase I 
from 
Saccharomyces 
cerevisiae 

(Sigma-Aldrich, 
n.d. T) 

4 200 –  

2500  

units 

$137.00 
– 

$1010 

≥400 

units/mg 

(400) 

7.75 -0.209 

*(Sigma-Aldrich, n.d. O) is required as (Sigma-Aldrich, n.d. N) did not list the activity, so 
the product specification sheet was consulted for this conversion factor 

 

 All 17 enzymes in Table 5.2 were selected as they contained 3 or more entries on 

their product page which made regression of the slope (log10 𝑎) and intercept (b) 

possible. Many of these enzymes were listed in terms of number of units being sold 

which did not align with the $/kg purchase price and the grams of material purchased 

required in Equations 5.16-5.18. As a result, the reported activity per mass units were 

used to properly convert units where needed. The activity per mass units in parenthesis 

are the values that were assumed to make the conversion. Intercept values in Table 5.2 

are reported in their log10 form and vary from 3.4-7.75 depending on the enzyme cost. 

These values are much larger than the 2.4-4 range reported in Hart & Sommerfeld (1997) 

as enzymes are typically much more expensive than specialty chemicals. 

 The slope values found for the enzymes range from -0.17 to -0.473 and have a 

benz value of -0.285, which is significantly lower than the -0.7518 bavg for the chemicals 

examined in Hart & Sommerfeld (1997). This would suggest that enzyme cost is not 
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subject to the same large bulk price decreases as specialty chemicals are. It may be 

possible that this -0.285 value is the result of costing formulas specific to Sigma-Aldrich, 

but without industrial prices for these enzymes it is challenging to confirm this hypothesis. 

As a result, this derived benz is assumed to be accurate for implementation in this study. 

The costing data specifically for β-galactosidase from K. lactis is presented below in 

Table 5.3 and was used to approximate the bulk price of this enzyme (Sigma-Aldrich, 

n.d. A). 

Table 5.3 β-galactosidase from K. lactis laboratory costing values (Sigma-Aldrich, n.d. 
A) 

Pack Size Price Purchase 

Quantity 

Unit Price Bulk Price  

(From Equation 5.18) 

50 ml $114.00 50 g $2280/kg $971.39/kg 

250 ml $278.00 250 g $1112/kg $749.26/kg 

 

Due to the limited amount of data, Equation 5.18 was applied to each of the 

available pack sizes assuming a bulk purchase quantity of 1000g along with using benz. 

Additionally, a solution density of 1g/ml was assumed to convert pack size to the 

appropriate units for the cost correlation. This produced an estimated bulk enzyme price 

range for K. lactis derived β-galactosidase of approximately $750/kg-$970/kg. When 

applying benz and using these two data points, a log10 𝑎 value of 3.767 was regressed. 

This intercept value in conjunction with Equation 5.16 and benz were used to produce the 

cost scaling chart shown in Figure 5.2. 
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Figure 5.2 β-galactosidase from K. lactis purchase price correlation 

 

The raw data shown in Figure 5.2 is obtained from Table 5.3 and closely follows 

the cost correlation derived using benz. For additional comparison, the costs scaled using 

Equation 5.18 are also plotted in Figure 5.2 and agree with the cost correlation. When 

following the cost trajectory to a purchase quantity of 2000 g, the purchase price begins 

to level out and approaches a value of $670/kg. As this cost correlation is subject to 

uncertainty, the values shown in Figure 5.2 are consistent when reviewing the $550/kg 

β-galactosidase from K. lactis cost from Valero (2009). This $550/kg price is lower than 

the values shown in Figure 5.2 but is from 2009 and has not been adjusted due to 

inflation. If the standard 41.4% U.S. cumulative rate of inflation from 2009 to 2023 is 

applied to this value, then the adjusted price would be $777.72/kg (CoinNews Media 

Group Company, n.d.) which is more in line to the current prices estimated in Figure 5.2. 
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Overall, between the cost curves and limited historical data it is reasonable to assume a 

bulk β-galactosidase from K. lactis cost of $777/kg.  

Although many of these economic parameters are hard to pinpoint down due to 

regional influences, market volatility, and pricing agreements, the values and 

methodology presented in this work can serve as basis for an initial economic study to 

determine profitability of operating GOS processes in a semi-batch mode. Additionally, 

the framework and economic analysis is designed to be easy to implement and rerun as 

the underlying process economics shift or additional data becomes available. This 

identified uncertainty is also a large motivation for conducting the Monte Carlo analysis 

discussed below. 

5.3 Case 1: β-galactosidase from K. lactis Results 

The application of the economic parameters outlined in Section 5.2 along with the 

framework outlined in Section 5.1 are employed to generate the results presented. For 

these performed case studies, a max reactor volume of 1 m3 was assumed and different 

inlet lactose concentrations were applied (0.4 M – 0.8 M) to examine their effect on 

profitability. An economic analysis of different lactose feed concentrations was desired 

as specific feedstock concentrations can vary depending on the preprocessing steps or 

originating source. Additionally, all DRTO results were achieved by using MATLAB’s 

fmincon optimization algorithm with an increased number of maximum function 

evaluations of 15000 to improve the quality of the optimization results. Moreover, 

minimum and maximum constraint values of 1×10-8 m3/min and 1×10-1 m3/min were 
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applied to the inlet flowrates while implementing the zero-order hold on the system 

inputs.  

5.3.1 Diluted β-galactosidase from K. lactis DRTO Results 

When conducting the economic analysis of the diluted β-galactosidase from K. 

lactis enzyme feed, the commercial (i.e., feedstock) grade enzyme solution was diluted 

from an estimated commercial concentration of 2.7×10-4 M to a concentration of  

3.63×10-7 M (a dilution factor of 0.0013) to be within the range of enzymes concentrations 

used in the GOS model from Schultz et al. (2021). A diluted enzyme case study is desired 

as much of the existing GOS literature uses diluted enzyme feed solutions and regress 

model kinetic parameters using data collected from these conditions. Figure 5.3 shows 

the specific DRTO results for multiple inlet lactose concentrations across batch times 

ranging from 100 minutes to 2000 minutes, with a discretization time of 25 minutes and 

β-galactosidase from K. lactis costs of $1000/kg and $670/kg. The $1000/kg value for β-

galactosidase from K. lactis represents the upper bound of the expected bulk purchase 

price (i.e., worst case scenario) as seen using Equation 5.18 data from Table 5.3. Also, 

$670/kg is considered the lower bound of the expected bulk purchase price (i.e., best 

case scenario) and is taken from Figure 5.2. 
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Figure 5.3 Diluted β-galactosidase from K. lactis DRTO results 

 

The main takeaway from Figure 5.3 is the importance of lactose feed 

concentration on profitability potential of the GOS process regardless of enzyme cost. 

Based upon this economic analysis, lactose concentrations less than 0.6 M are unable 

to produce positive profitability rates under the two different enzyme prices evaluated. 

Under the lowest expected bulk cost, 0.6 M lactose feed solutions begin to become 

profitable given large enough batch times (around 1400 minutes). It should be noted that 

the DRTO approach used in this work does allow the process to simply not be operated 

if positive profitability rates cannot be achieved. When combinations of decision variables 

(e.g., batch time) and parameters (e.g., lactose feed concentration, enzyme cost) are not 

profitable, the optimizer sets the inlet flowrates to the lower bound (≈0 m3/min) for the 

duration of the batch. 
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 A key difference between the tested bulk costs was the maximum profitability 

achieved and associated optimal batch time. Specifically, the $1000/kg bulk price 

reached a maximum profitability of approximately $64/day with an optimal batch time of 

1950 minutes using a lactose feed concentration of 0.8 M. The $670/kg bulk price 

achieved a maximum profitability of $87.6/day with an optimal batch time of 1400 minutes 

using a 0.8 M lactose feed. The associated optimal feeding profiles for each bulk price 

are shown below in Figure 5.4. 

 

 

Figure 5.4 Diluted β-galactosidase from K. lactis optimal feeding profiles 
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The results in Figure 5.4 suggest the most optimal way of operating the semi-

batch reactor is similar to a batch reactor (with a very brief loading period), regardless of 

the enzyme feed cost. The left column of Figure 5.4 corresponds to a bulk β-

galactosidase from K. lactis cost of $1000/kg and the right column corresponds to a bulk 

cost of $670/kg. Within the first control move (0-25 minutes), the DRTO algorithm loads 

the maximum amount of lactose and enzyme into the reactor and rides the maximum 

volume constraint (Vmax = 1 m3) until termination of the batch. After this set of initial 

control moves, the algorithm approaches the minimum flowrate constraint for the 

remainder of the batch. To rule out fmincon reaching a suboptimal solution, combinations 

of initial guesses were assessed. Additionally, varying the enzyme cost seemed to only 

affect the amount of enzyme added into the reactor during the initial loading period. The 

$670/kg enzyme cost used a feed flowrate of 2.9 × 10-3 m3/min within the first control 

move, while the $1000/kg enzyme cost used a feed flowrate of 2.0 × 10-3 m3/min within 

the first control move and 2.8 × 10-4 m3/min during the second control move. The 

associated component concentration profiles using these optimal feeding profiles are 

shown in Figures 5.5 and 5.6. 
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Figure 5.5 Component concentration profiles for optimal diluted β-galactosidase from 
K. lactis profile ($1000/kg) 

 

Figure 5.6 Component concentration profiles for optimal diluted β-galactosidase from 
K. lactis profile ($670/kg) 
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 Figures 5.5 and 5.6 track the ten state variables of the GOS model, the amount 

of GOS mass in the reactor, and the amount of monosaccharide molecules fed into the 

reactor. The GOS mass is not a state variable in the model but was derived using the 

process states and Equation 5.5. A monosaccharide molecule balance was performed 

to help validate the results and tracks the amount of monosaccharide molecules in the 

system using two different points of calculation. The blue “Reactor” line for the 

monosaccharide molecule balance is derived by using the component concentrations, 

reactor volume, and associated number of monosaccharide molecules in each 

compound (e.g., 2 for Lac and 3 for Tri). The red “Fed” circles use the inlet lactose 

flowrates and the inlet lactose concentration to derive the amount of monosaccharide 

molecules fed into the reactor. Overall, these two data sources match and confirm the 

mass balance for this system remains solved, thus helping to validate the optimization 

results achieved. 

 Despite only having one significant control move into the reactor, the effect of this 

move can still be seen for the plots in Figures 5.5 and 5.6. For example, in Figure 5.6 

the reactor is initialized with 0 M of enzyme and rapidly spikes to a peak of 2.6 × 10-8 M 

and slowly begins to deactivate as the reaction progresses. In both cases, the GOS mass 

increases over time with a logarithmic growth style profile and approaches 50 kg of GOS 

mass as the reaction terminates. Figure 5.5 reaches 50.65 kg and Figure 5.6 reaches 

49.17 kg. 
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As discussed in the previous section, decreasing lactose concentration in 

conjunction with decreasing enzyme activity was thought to inhibit GOS formation as this 

would reduce the reaction rate. Generally, the literature has come to the consensus that 

lactose concentration has a high influence on reaction yield (Vera et al., 2013).  The 

results shown above demonstrate that although the rate of lactose consumption 

decreases as the batch time increases, the concentration of glucose and galactose 

continues to rise in the reactor at a stable rate. Theoretically, an elevated enzyme 

concentration may help to promote the formation of GOS products. However, the 

prohibitive cost of enzyme forces the DRTO algorithm to strike a balance between GOS 

formation rate and enzyme activity in the reactor. Overall, this result was unexpected but 

suggests that there is limited benefit from adopting a semi-batch GOS process over a 

batch process when considering the underlying economics of a diluted enzyme feed. 

5.3.2 Concentrated β-galactosidase from K. lactis DRTO Results  

Although the GOS model was not developed using highly concentrated enzyme 

feeds, additional GOS studies were conducted using the undiluted enzyme feed stream 

of approximately 2.77 × 10-4 M. This value was derived from the enzyme feed solution 

used in Schultz et al. (2021) by rationing the diluted enzyme activity (5800 U/L) to the 

undiluted enzyme activity (6.633 × 106 U/L) and assuming activity was proportional to 

concentration. The rationale for using a concentrated enzyme feed solution is that less 

solvent is required to be fed into the reactor, which reduces the overall dilution of the 

reactor. Using this new enzyme feed concentration, the DRTO approach was applied to 

generate the following results shown in Figure 5.7 with a bulk enzyme cost of $670/kg. 
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Figure 5.7 Concentrated β-galactosidase from K. lactis feed DRTO results 

 

Overall, the results in Figure 5.7 are similar to those from Section 5.3.1 with more 

concentrated lactose feed streams producing higher profitability rates across the same 

enzyme concentration. When using the concentrated enzyme feed, the maximum 

profitability rate achieved was $142.4/day using a batch time of 900 minutes and the 0.8 

M lactose feed. The optimal feeding policy results match the diluted case with all the 

lactose and enzyme being fed within the first or second control moves. Specifically, 

during the second control move (25-50 minutes), lactose is fed into the reactor at a 

flowrate of approximately 0.04 m3/min while enzyme is fed during the first control moves 

(0-25 minutes) with a flowrate of 6.0×10-6 m3/min. The enzyme flowrate into the reactor 

is much lower than the diluted case as the solution is approximately 762 times more 

concentrated than in Section 5.3.1. Additionally, as the industrial enzyme solution is 

undiluted in this study the dilution factor becomes 1. This raises the cost of the enzyme 
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feed on an equivalent $/m3 basis and severely restricts the amount of enzyme solution 

fed into the reactor. 

In this case, some of the 0.6 M results in Figure 5.7 around a batch time of 1600 

minutes converged to the suboptimal solution of simply not operating the batch, despite 

nearby batch times producing positive profitability rates. The most probable cause of this 

behavior was the initialization conditions of fmincon and how minor changes in the 

enzyme flowrate, enzyme concentration, and GOS production affected the process 

economics. The results shown here were generated using MATLAB’s GlobalSearch 

function with fmincon still being selected as the optimization method. GlobalSearch uses 

a scatter-search mechanism to select alternative sets of initial conditions and attempts 

to find the global minimum by resolving the optimization problem with alternative starting 

points (MathWorks, n.d. B).  

Overall, this posed optimization problem is difficult to solve as the lactose feed 

and enzyme feed flowrates operate at different orders of magnitude. Additionally, minor 

changes in enzyme feed flowrate will result in substantial changes to the enzyme 

concentration, thus affecting the synthesis of GOS. These factors could explain why the 

optimizer converged to a solution where lactose was fed during the second control move 

versus the first control move. The sensitivity of this optimization problem is reflected with 

the component concentrations shown in Figure 5.8. 
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Figure 5.8 Component concentration profiles for optimal concentrated β-galactosidase 
from K. lactis feed 

 

The component profiles shown above in Figure 5.8 generally follow the results 

shown in Figure 5.6 for most curves once the loading/charging phase is completed. Due 

to the sensitivity of the optimization formulation, the blue dots in Figure 5.8 are points 

that were neglected from the component concentration profiles (Lac, Glu, Gal) as they 

were subject to very rapid changes that are simply present because of potential 

numerical issues regarding initialization of the batch as it is very stiff and requires using 

stiff ODE solvers. For example, the reactor is initialized with a small amount of lactose 

(to prevent a divide by zero for the reactor volume) but very rapidly decreases to a 

concentration of zero upon enzyme being added into the reactor during the first control 

move. During the second control move, the much larger lactose feed flowrate rapidly 
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restores the lactose concentration. This same reasoning explains the very rapid changes 

in reactor enzyme concentration. 

 Despite this brief period of rapid changes, the overall component profiles are 

smooth and produce more GOS (55.5 kg) while reducing the optimal batch time by 500-

minutes. This is simply due to the reactor enzyme concentration being much higher than 

the diluted case as shown in Figure 5.9. 

 

Figure 5.9 Reactor enzyme concentration for optimal concentrated β-galactosidase 
from K. lactis feed 

 

Figure 5.9 is derived from Figure 5.8 but excludes the rapid changes in reactor 

enzyme concentration to highlight the enzyme concentration present during the 

synthesis of GOS. The reactor enzyme concentration stays within the 4×10-8 – 4.5 ×10-8 

M region, which approximately doubles the reactor enzyme concentration seen in the 

diluted case. This increase in enzyme concentration raises the reaction rate of all 

reactions and reduces the amount of time it takes to produce the same amount of GOS. 

In turn, this helps to increase the profitability rate of the reactor. 
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Overall, this case study suggests that regardless of enzyme feed concentration, 

the most optimal method of operation is to simply charge the reactor quickly and then 

operate as a batch process. Additionally, this case study demonstrates that simply 

feeding the industrial enzyme solution into the reactor is the most optimal way and no 

dilution is required. This conclusion assumes though that the GOS model and kinetic 

parameter values accurately represent the synthesis of GOS while operating at these 

elevated enzyme concentrations. 

5.3.3 β-galactosidase from K. lactis Monte Carlo Results  

As a result of the uncertainty and wide range of published economic parameters 

in the literature, a Monte Carlo study was conducted to provide an outlook on how 

changes in the assumed values could modify the profitability rate and optimal batch time. 

Due to the large computational time of running hundreds of different case studies, each 

consisting of tens of Level 2 optimization problems, a modified DRTO algorithm for β-

galactosidase from K. lactis was developed, validated, and implemented. The modified 

DRTO algorithm simplifies the problem structure by only optimizing the charging of the 

reactor (with a zero-order hold of 5 minutes) and then operating as a batch process until 

terminating the reaction as suggested by the previous results. Simply stated, the 

simplified DRTO algorithm only optimizes three variables: lactose flowrate from 0-5 

minutes, enzyme flowrate from 0-5 minutes, and batch time. Once this loading period is 

complete, the reactor continues to be operated until the batch time is reached. A 

mathematical representation of this simplified DRTO approach is shown below in 

Equations 5.19-5.21. 
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max
𝑡𝑏𝑎𝑡𝑐ℎ,𝑢𝑙𝑎𝑐 𝑜→5 𝑚𝑖𝑛,𝑢𝑒𝑛𝑧 0→5 𝑚𝑖𝑛

𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑅𝑎𝑡𝑒 = (𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑢𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 −

𝐹𝑒𝑒𝑑 𝐶𝑜𝑠𝑡𝑠) ∗ (
𝐵𝑎𝑡𝑐ℎ𝑒𝑠

𝑑𝑎𝑦
) (5.19)  

(𝑢𝑙𝑎𝑐 0−5 𝑚𝑖𝑛 + 𝑢𝑒𝑛𝑧 0−5 𝑚𝑖𝑛) × 5 = 𝑉𝑚𝑎𝑥 (5.20) 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥  (5.21) 

 This simplified approach was developed after reviewing the results from the 

previous sections and concluding that this process is best operated as a batch when 

attempting to maximize process economics. As a result, the only optimization required 

is the amount of lactose and enzyme used to charge the reactor and the total batch time 

(tbatch). Additionally, the previous results suggested that the process is optimized by filling 

the reactor to Vmax as all volume curves hit or approach 1 m3 after the initial control 

moves. To further simplify the optimization problem, the inequality volume constraint 

from Equation 5.13 was converted to an equality constraint as shown in Equation 5.20. 

To validate these modifications to the algorithm, the modified DRTO was run using the 

dilute β-galactosidase from K. lactis conditions with a bulk enzyme cost of $670/kg to 

produce the optimization results shown below in Figure 5.10. 
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Figure 5.10 Validation plots for modified DRTO algorithm 

 

The results shown above in Figure 5.10 match the results from Figures 5.3 and 

5.4 as the maximum profitable rate was achieved using a lactose feed solution of 0.8 M, 

a batch time of 1400 minutes, and the same quantity of enzyme being fed into the reactor 

(0.072-0.073 m3). Although there was a marginal increase in maximum profitability to 

$89.2/day when compared to $87.6/day, this increase is simply due to the reactor being 

charged with a higher flowrate, thus allowing Vmax to be reached earlier and more 

material reacting sooner. The main difference between the results from this modified 

DRTO approach and the standard DRTO approach was the removal of the algorithm’s 

ability to simply not operate the reactor if a positive profitability rate could not be 

achieved. Due to the equality constraint, the reactor must be filled to Vmax, thus producing 

highly unprofitable simulations at low batch times and low lactose feed concentrations. 

For easy validation, the y axis of Figure 5.10 is clipped to a lower value of -$20/day. For 
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the purposes of the Monte Carlo analysis, only the most optimal simulation results are 

recorded so this is not an issue. 

The Monte Carlo analysis varied the economic parameters in Table 5.1 with an 

assumed β-galactosidase from K. lactis bulk price of $777/kg, where all parameters were 

subjected to a normal distribution with a standard deviation equal to 25% the nominal 

parameter value. All economic parameters are varied concurrently and randomized for 

each of the 400 Monte Carlo iterations. Once again, the effect of lactose concentration 

was examined by evaluating four inlet lactose concentrations (0.35 M, 0.5 M, 0.65 M, 

and 0.8 M) with the diluted enzyme feed. Figure 5.11 shows the distribution of the 

economic parameters and Figure 5.12 shows the resulting distributions of profitability 

rate and optimal batch time. For these Monte Carlo simulation results, only the most 

optimal profitability rate and associated optimal batch time were recorded for each inlet 

lactose concentration at every iteration. 
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Figure 5.11 Distribution of economic parameters for β-galactosidase from K. lactis 
Monte Carlo analysis 

 

Figure 5.12 Distribution of β-galactosidase from K. lactis profitability rate and optimal 
batch time 



138 

 

The main takeaway from Figure 5.12 is the difficulty in achieving consistent 

positive profitability rates across all lactose feed concentrations evaluated. This is 

demonstrated with the large histogram bins located at or below $0/day profitability rate 

and at a 2500-minute optimal batch times. Profitability rates less than $0/day, were 

lumped into the $0/day histogram bins of Figure 5.12 to easily show how many 

simulations were unable to achieve a positive profitability rate. Of the 400 Monte Carlo 

simulations, 52, 153, 266, and 322 simulations have positive profitability rates for the 

0.35 M, 0.5 M, 0.65 M, and 0.8 M inlet lactose concentrations, respectively. As the Monte 

Carlo analysis randomly varied the economic parameters, it created combinations of 

parameter values that were unprofitable to operate under. For these simulations, the 

DRTO algorithm simply decided to operate the batch until the 2500-minute maximum 

batch time was reached. Due to batch time being in the denominator of the profitability 

rate expression, when the profitability rate becomes negative, longer batch times allow 

the rate to approach a value of $0/day. Using the results from Figure 5.12, the average 

profitability rates were $2.25/day, $19.28/day, $62.72/day, $131.72/day for the 0.35 M, 

0.5 M, 0.65 M, 0.8 M lactose feed concentrations, respectively. For these average 

profitability values, any simulation with a profitability less than 0 was set equal to zero. 

Once again, the less concentrated lactose feeds produced worse profitability 

results as demonstrated by the distribution of profitability rates. The 0.35 M lactose feed 

had a much higher number of simulations failing to produce a positive profitability and a 

lower maximum profitability rate than the 0.65 M and 0.8 M lactose feeds. A more detailed 

quantitative analysis of these results is presented in Table 5.4. 
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Table 5.4 Quantitative analysis of β-galactosidase from K. lactis Monte Carlo results 

 
Lactose 
Feed 
($/kg) 

Enzyme 
Feed 
($/kg) 

GOS 
Revenue 
($/kg) 

Purification 
Cost  
($/kg) 

Preparation 
Time  
(min) 

Monte Carlo 0.690 756.6 10.86 1.002 59.3 

Lac. = 0.35 M 0.560 670.9 13.48 0.748 56.5 

Lac. = 0.5 M 0.625 698.6 12.87 0.898 60.9 

Lac. = 0.65 M 0.661 738.2 12.02 0.952 61.1 

Lac. = 0.8 M 0.676 750.2 11.59 0.961 60.0 

 

The objective of Table 5.4 is to help infer the impact each economic parameter 

has on GOS profitability. This is accomplished through finding the average parameter 

value across Monte Carlo simulations where positive profitability rates are achieved. 

Large deviations between an average economic parameter value across all Monte Carlo 

simulations and the positive profitability rate associated value indicate that this economic 

parameter plays a large role in affecting the profitability. Theoretically, if the positive 

profitability rate associated average parameter value matches the Monte Carlo average, 

then it demonstrates that modification of this parameter will not significantly disturb the 

ability to achieve a positive profitability rate. 

The Monte Carlo row of Table 5.4 contains the average parameter value across 

400 simulations. The remaining rows of Table 5.4 track the average parameter values, 

where positive profitability rates are achieved. As each lactose feed concentration (0.35 

M, 0.5 M, 0.65 M, and 0.8 M) is examined independently in the Monte Carlo analysis, 

each concentration has its own set of average values.  

Based upon the simulation results, the preparation time had the least effect on 

determining when the process became profitable as there is negligible % difference          
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(-4% - +2%) between the average Monte Carlo value and those for the other lactose 

concentrations. The most significant economic parameter was the GOS revenue as it 

has a % difference of +24%, +18%, +11%, and +7% for the 0.35M, 0.5 M, 0.65 M, and 

0.8 M inlet lactose concentrations, respectively. The second most impactful economic 

parameter was purification cost with a % difference of -25%, -10%, -5%, and -4% for the 

same order of inlet concentrations. These substantial changes in average parameter 

values suggest these are the most impactful economic parameters that should be 

optimized when possible. 
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Chapter 6 Conclusions 

 

The primary aims of this dissertation were to develop state estimation, covariance 

estimation, and DRTO tools for semi-batch specific bioprocess applications subject to 

plant-model mismatches. Each one of these individual aims was addressed in a specific 

chapter of this dissertation and applied to a GOS process to test the viability and 

performance of these PSE tools. In terms of state estimation, a variety of recursive and 

optimization-based algorithms were developed and applied successfully. For recursive 

estimation techniques, EKF and Dual EKF algorithms were implemented and tuned 

using a preliminary covariance estimation technique known as DO. A specific aspect of 

novelty in this work was the development of the P-MHE algorithm which modifies the 

traditional MHE formulation by estimating the kinetic parameters and process states 

concurrently while reducing the computational time of standard MHE algorithms. When 

applied to the GOS process, it demonstrated excellent state estimation results and was 

able to successfully estimate the unmeasured process states from the online 

measurements and process model.  

 Upon completion and implementation of these estimation algorithms, covariance 

estimation techniques such as DO and ALS were investigated to improve estimation 

performance. In this dissertation, modifications to the published DO formulations were 

introduced to strike a more fine-tuned balance between the model prediction and plant 

measurements over the existing formulations. Although this modified DO algorithm 

derived process model and measurement noise covariances that resulted in lower SE 

values than the traditional DO algorithms, the associated computational time cost was 
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very large (i.e., hours). As a result, it would be infeasible to apply this modified DO 

technique for online covariance estimation applications and thus limits the potential for 

industrial applications. 

 To remediate this large computational time, a MATLAB specific ALS code was 

developed, validated, and applied to derive covariance estimates for the GOS process. 

The previously available ALS codes were not directly compatible with MATLAB, so 

modifications to the code were required to produce a MATLAB specific version. When 

implemented to the GOS system, ALS reduced the covariance estimation time by 97% 

(approximately 164 minutes), while retaining excellent state estimation performance 

when coupled with recursive and optimization-based state estimation algorithms. As a 

result, the developed ALS code could allow for the online covariance updates and 

improvements to state estimation applied to process monitoring applications. 

 Finally, the last major aim of this dissertation was to develop and apply a semi-

batch specific costing approach combined with a novel semi-batch DRTO algorithm. The 

profitability rate-based costing function derived for semi-batch processes blends key 

metrics such as individual batch yield, product quality, and batch time into a single 

customizable expression. This costing function was used as the objective function of the 

posed semi-batch DRTO algorithm which employs a bilayer approach to decouple the 

optimal batch time and optimal control moves into separate layers. This allows for 

traditional optimization algorithms to be employed to optimize the operation of a semi-

batch process. Although the bilayer structure could increase the computational time, the 

structure easily allows for parallelization to be employed to minimize such time. These 

developed approaches were applied to the GOS process and ultimately produced the 
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result that maximum profit is achieved through batch operation versus semi-batch 

operation when using K. lactis.  

 A byproduct of the DRTO application on the GOS process was the development 

of a specific cost scaling correlation for enzymes. This correlation was derived from an 

extensive literature review of laboratory scale pricing and resulted in an enzyme cost 

scaling slope value of -0.285. This value can be applied to other bioprocesses to assist 

in conducting economic studies where no bulk purchase price information is available. 

For the GOS process this correlation led to a bulk purchase price estimate of $670/kg-

$1000/kg for K. lactis derived β-galactosidase. 
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Chapter 7 Future Work 

 

 In this chapter, several possible avenues for continuing this research are 

discussed, including some preliminary results for some of these avenues. 

7.1 Combining State Estimation, Covariance Estimation, and DRTO 

 As mentioned in Chapter 2, there are few publications in the literature that 

combine these various PSE tools together into a cohesive framework. Ideally, the 

synergistic combination of these tools would follow the steps below to leverage the 

benefits of each tool. A schematic of the how these tools could interact is shown in Figure 

7.1. 

1. Covariance estimation techniques such as ALS would use recent sets of plant 

data, live plant data, or selected sets of historical data to derive accurate 

covariance estimates of the current plant conditions. 

2. State estimation algorithms would utilize the current covariance estimates to 

derive online and accurate estimates of the process states, including difficult to 

track states (e.g., related to fouling, coking, efficiency). 

3.  DRTO algorithms would use the live state estimates to modify the optimal 

control moves and maximize profitability subjected to the tracked disturbances. 
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Figure 7.1 Synergistic combination of PSE tools 

 

The DRTO results from Chapter 5 demonstrated that the most optimal operation 

method for producing GOS is as a batch process, so there was no motivation to build 

upon and apply this avenue of research to this specific process. Ideally, Figure 7.1 would 

be best applied to another semi-batch process undergoing process disturbances where 

the DRTO algorithm could update the optimal control moves subject to the derived state 

estimates. Although not a bioprocess, the production of polyvinyl chloride (PVC) is 

traditionally a difficult to control highly nonlinear process that is often conducted using a 

suspension method (similar to a semi-batch process) (Gau et al., 2018). Additionally, it 

may be possible to apply this framework to power plant cycling problems as many 

baseload fossil fuel power plants operate dynamically and undergo frequent transitions 

between steady states. The dynamic optimization of baseload power plants was 
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addressed extensively by Dr. Rebecca Kim (2021) and could be coupled with state 

estimation algorithms to improve the accuracy of the generated DRTO trajectories.  

For industrial implementation of this proposed framework, it would be possible to 

run this algorithm in a dedicated MATLAB or Python application. Communication 

protocols such as OPC could be used to pull live, recent, or historical data from the DCS 

or data historian and import the data into the application. By isolating this framework to 

an external application, the DCS would still be able to safely regulate the process if an 

error arose with any block of this framework (e.g., memory overload). This imported data 

could be used by the ALS algorithm to derive updated estimates of the system noise 

covariances and by the state estimation algorithm to derive live state estimates. Upon 

generating the live state estimates, the DRTO block could be run to update the optimal 

control moves. Upon deriving a new optimal trajectory, the MVs could be sent back to 

the DCS through the same communication protocol and implemented in the plant. 

7.2 Applying ALS to Joint State and Parameter Estimation Algorithms 

 Currently, ALS has exclusively been combined with traditional state estimation 

approaches (e.g., MHE and EKF) and has not been applied to joint state and parameter 

estimation problems. In theory, the current ALS formulation should be able to accurately 

derive covariance estimates for use with the Dual EKF for several reasons: 1) state-

space models are still utilized and are only augmented with the parameters being 

estimated; 2) linearization can be performed with respect to the estimated parameters; 

and 3) estimator gain can be readily calculated. 
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 As a result, an attempt was made at applying ALS with the Dual EKF to the GOS 

process. During this test, an initial set of covariance estimates was applied to the Dual 

EKF to calculate an initial set of Kalman gains. These gains were utilized by the ALS 

algorithm to derive a set of covariance estimates, which in turn produced relatively poor 

estimation results when compared to the DO-based Dual EKF as the total SE was more 

than double. However, these results were rather preliminary and can likely be 

significantly improved and further developed.  

 Outside of the Dual EKF, work could also be conducted to extend ALS to work 

with the P-MHE. This specific research avenue is more challenging than the Dual EKF, 

as the P-MHE significantly restructures the least-squares optimization problem of the 

traditional MHE algorithm and does not currently have a gain function that could be used 

with ALS. Although MHE does not have a gain function, it is acceptable to utilize the 

Kalman gain as the full information problem is identical to the one step recursive 

technique for linear systems (Rawlings et al., 2022). If ALS could not be extended to 

work with the P-MHE then perhaps an alternative covariance estimation technique could 

be developed. 

Finally, work could be done to fully build out a deployable ALS software tool in 

MATLAB or other coding language. Currently, ALS is a set of MATLAB files, that can be 

reapplied to other processes by the end user manually making modifications to the code 

where needed (e.g., changing NALS, modifying plot commands, manually entering 

dimensions of various matrices). A fully built-out app with a GUI could improve the end 

user experience and allow ALS to be reapplied with more ease. 
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7.3 Add Additional Factors into Semi-Batch Costing Formula 

 The presented semi-batch costing algorithm posed in this dissertation does not 

include the effect of capital cost on determining profitability rate. Currently, only the 

operating costs (i.e., feed cost, purification penalty, batch time) and potential revenue 

(i.e., product value) are used to derive the profitability rate. As the profitability rate is on 

a $/day basis, it is challenging to incorporate the effect of capital cost as this is a one-

time cost. Potentially, some form of annuitization could be applied to the capital cost, 

thus converting this to a $/day basis for use in the profitability rate expression. Although 

the effect of capital cost is likely to be negligible for many bioprocesses, this would be 

useful for determining breakeven operating conditions and would provide a more realistic 

estimation of the overall process economics.  

 Additionally, the semi-batch costing function could be updated to handle utility 

costs, as this is likely to play an important role in the food industry and commodity 

chemical industry. Many semi-batch reactors require some form of temperature 

regulation, and this is not currently included in the costing function. For some processes, 

modification of the vessel temperature may improve product yield or minimize batch time, 

but at the expense of increased utility cost. Also, the mass-based purification penalty 

can be updated or replaced with a function that penalizes both the concentration and 

amount of non GOS components in the batch. Depending on the GOS product being 

targeted, various amounts of non GOS components (e.g., lactose) are acceptable. If 

these costs were included, then the DRTO would be able to account for additional 

information and thus improve the overall process economics. 
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