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A B S T R A C T

Offset-free model predictive control refers to a class of control algorithms able to track
asymptotically constant reference signals despite the presence of unmeasured, nonzero
mean disturbance acting on the process and/or plant model mismatch. Generally, in these
formulations the nominal model of the plant is augmented with integrating disturbances,
i.e. with a properly designed disturbance model, and state and disturbance are estimated
from output measurements. To date the vast majority of offset-free MPC applications are
based on linear models, however, since process dynamics are generally inherently nonlin-
ear, these may perform poorly or even fail in some situations. Better results can be achieved
by making use of nonlinear formulations and hence of nonlinear model predictive control
(NMPC) technology. However, the obstacles associated with implementing NMPC frame-
works are nontrivial. In this work the offset-free tracking problem with nonlinear models
is addressed. Firstly some basic concepts related to the observability of nonlinear systems
and state estimation are reviewed, focusing on the digital filtering and putting a strong
accent on the role of the disturbance model. Thus, a class of disturbance models in which
the integrated term is added to model parameters is presented together with an efficient
and practical strategy for its design and subsequent implementation in offset-free NMPC
frameworks. Extensive simulation results are presented to show the benefits of the result-
ing NMPC framework over standard ones.

v



C O N T E N T S

notations xi

1 introduction 2

1.1 Multiloop and multivariable control . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 MPC: motivation, structure and strategy . . . . . . . . . . . . . . . . . . . . . 3

1.3 Issues in nonlinear offset-free MPC and thesis objectives . . . . . . . . . . . . 4

1.4 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 preliminaries and literature review 7

2.1 Dynamics models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Continuous-time models . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Discrete-time models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 State estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Filtering problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Nonlinear observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Observability tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Degree of observability . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Offset-free control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Choice of the disturbance model and state augmentation . . . . . . . 32

2.4.2 State estimator design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.3 Target calculator and controller design . . . . . . . . . . . . . . . . . . 35

2.4.4 Conditions for offset-free control . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Review of related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 proposed method 42

3.1 Plant, nominal model and constraints . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Augmented model and state estimator design . . . . . . . . . . . . . . . . . . 43

3.3 Target calculator and controller design . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Design of the disturbance model . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Observability limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Design of the optimal disturbance model . . . . . . . . . . . . . . . . . 49

4 case study: non-isothermal cstr 53

4.1 Plant model and control task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Augmented model and state estimator design . . . . . . . . . . . . . . . . . . 56

4.3 Target calculator and controller design . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Design of the disturbance model . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Observability limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.2 Selection of the optimal disturbance model . . . . . . . . . . . . . . . . 65

4.5 Performances and comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.1 Disturbance on the feed temperature . . . . . . . . . . . . . . . . . . . 70

vi



contents vii

4.5.2 Plant\model mismatch in the pre-exponential factor of the reaction . 71

4.5.3 Plant\model mismatch in the overall heat transfer coefficient . . . . . 73

4.5.4 Plant\model mismatch in the enthalpy of reaction . . . . . . . . . . . . 75

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 conclusion 78

a supplementary material 81

a.1 Probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

a.1.1 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

a.1.2 Random variables and probability density . . . . . . . . . . . . . . . . 82

a.1.3 Conditional probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

a.1.4 Multivariate statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

a.1.5 Random processes and white noise . . . . . . . . . . . . . . . . . . . . 86

a.2 Differential geometry and Lie derivatives . . . . . . . . . . . . . . . . . . . . . 87

a.2.1 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

a.2.2 Vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

a.2.3 Lie derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

a.3 Fundamentals of numerical optimization . . . . . . . . . . . . . . . . . . . . . 89

a.3.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 89

a.3.2 Interior point algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

a.3.3 Nelder-Mead algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

b python codes 97

b.1 Evaluation of the degree of observability . . . . . . . . . . . . . . . . . . . . . 97

b.2 Verification of the Kalman rank condition . . . . . . . . . . . . . . . . . . . . . 102

b.3 Optimization of the state estimator performances . . . . . . . . . . . . . . . . 104

bibliography 105

acronyms 110

index 112



L I S T O F F I G U R E S

Figure 1 Schematic of an MPC unit. . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 2 Schematic of an MPC unit for offset-free control achievement. . . . . 5

Figure 3 Evolution of probability distributions of system state conditional on
the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 4 Effect of nonlinear transformation of Gaussian random variable and
EKF approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 5 Indistinguishable states - Image taken from Mangold [32] and par-
tially modified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 6 Observable system at x0 - Image taken from Mangold [32] and par-
tially modified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 7 Locally observable system at x0 - Image taken from Mangold [32]
and partially modified. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 8 Weakly observable system at x0 - Image taken from Mangold [32]
and partially modified. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 9 Locally weakly observable system at x0 - Image taken from Mangold
[32] and partially modified. . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 10 Relationships between the various form of observability - Image
taken from Hermann and Krener [21] . . . . . . . . . . . . . . . . . . 23

Figure 11 Output disturbance model. . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 12 Input disturbance model. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 13 Observable augmented models design procedure for systems run-
ning in the region of attraction of stable operating points. . . . . . . 48

Figure 14 Observable augmented models design procedure for systems oper-
ating in a neighborhood of unstable steady-states. . . . . . . . . . . . 50

Figure 15 Schematic of the well-stirred reactor - Image taken from [55] and
partially modified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 16 Degree of observability of each candidate augmented model. . . . . 61

Figure 17 Time varying disturbance sequence in the case of stable operating
point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 18 Closed-loop performances in presence of a disturbance on the in-
let flow rate for an NMPC framework with implemented the aug-
mented model corresponding to

[
T0, ER

]
. . . . . . . . . . . . . . . . . . 63

Figure 19 Time varying disturbance sequence in the case of stable operating
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 20 Objective function value against number of grid points for the two
observable augmented models. . . . . . . . . . . . . . . . . . . . . . . 66

Figure 21 Objective function value against number of grid points for the two
observable augmented models. . . . . . . . . . . . . . . . . . . . . . . 67

Figure 22 Closed-loop responses in presence of disturbances on the feed tem-
perature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 23 Closed-loop responses in presence of plant-model mismatch in the
pre-exponential factor of the reaction. . . . . . . . . . . . . . . . . . . 72

viii



List of Figures ix

Figure 24 Closed-loop performances in presence of plant\model mismatch in
the pre-exponential factor of the reaction for the NMPC framework
implementing the LDM . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 25 Closed-loop responses in presence of plant-model mismatch in the
overall heat transfer coefficient. . . . . . . . . . . . . . . . . . . . . . . 74

Figure 26 Closed-loop responses in presence of plant-model mismatch in the
enthalpy of reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 27 Comparison of different simplex transformations: ϕ (χ3) > ϕ (χ2) >
ϕ (χ1) - Image taken from Piccialli [50]. . . . . . . . . . . . . . . . . . 94



L I S T O F TA B L E S

Table 1 Measures for degree of observability - Table taken from [64] and
adapted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 2 Parameters of the well-stirred reactor. . . . . . . . . . . . . . . . . . . 55

Table 3 Open-loop steady-state operating point of the well-stirred reactor . . 55

Table 4 Results of the observability tests performed on each candidate aug-
mented model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 5 NMPC frameworks performance indices related to the rejection of a
disturbance in the feed temperature. . . . . . . . . . . . . . . . . . . . 71

Table 6 NMPC frameworks performance indices related to the compensa-
tion of a plant\model mismatch in the pre-exponential factor of the
reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 7 NMPC frameworks performance indices related to the compensation
of a plant\model mismatch in the overall heat transfer coefficient. . . 73

Table 8 NMPC frameworks performance indices related to the compensation
of a plant\model mismatch in the enthalpy of reaction. . . . . . . . . 76

x



L I S T O F C O D E

Code 1 Evaluation of the degree of observability . . . . . . . . . . . . . . . . 97

Code 2 Verification of the Kalman rank condition . . . . . . . . . . . . . . . . 102

Code 3 Optimization of the state estimator performances . . . . . . . . . . . 104

xi



N OTAT I O N S

Upper Case Symbols

F state transition augmented model
G augmented input function
H output augmented model
I identity matrix
Jlqr linear quadratic regulation problem objective function
KLQ linear quadratic controller gain
L disturbance selection matrix
Lφ upper bound of the rest function
Vf terminal cost function
X sequence of states
Y sequence of output measurements
A, B, C, G, F, Bd, Cd linearized system matrices
En set of n standard unit vectors
K Kalman gain matrix
K∗ gain matrix
M set of perturbation sizes
N prediction horizon
P estimation error covariance matrix
Q process noise covariance matrix
Qmin,Qmax matrices containing the bounds on the process noise covariances
Qreg, Rreg controller tuning matrices
R sensor noise covariance matrix
Tn set of perturbation directions
Ti i-th perturbation direction
U sequence of inputs
WO observability covariance matrix\empirical observability gramian

Lower Case Symbols

ci i-th perturbation size
d disturbance vector of system
∆t sampling time interval
∆u input variation between two sampling times
e output prediction error
ei i-th unit vector
f state transition model
g input function
h output model
k number of sampling step
m input dimension of system
n state dimension of system
nd disturbance dimension of system
nθ nominal model parameters vector dimension of system

xii



Notations xiii

nv sensor noise dimension of system
nw process noise dimension of system
p output dimension of system
p (x|y) conditional probability density function of x given y
r number of matrices for perturbation direction
ry controlled output reference function
s number of different perturbation sizes
` stage cost function
t continuous time
u input vector of system
v sensor noise vector of system
w process noise vector of system
x state vector of system
y output vector of system
ȳc controlled output set-point
gu input constraint function
gy output constraint function
pc controlled output dimension of system
qu input constraint dimension of system
qy output constraint dimension of system
t∗ time instant
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1 I N T R O D U C T I O N

1.1 multiloop and multivariable control
In order to reduce capital needs and energy costs, modern chemical industries are de-

signed with highly integrated processing units and small surge capacities between the
various parts of the installation. This makes them difficult to conduct and gives operators
scarce opportunities of intervention to prevent upsets from propagating from one unit to
another. Moreover, as a consequence of global competition, rapidly changing economic con-
ditions and more stringent environmental and safety regulations, plants are demanded to
satisfy higher performance requirements and tighter product quality specifications. Process
control allows manufacturers to keep operations running within a safe operating regime,
to maximize plant profitability and to ensure high product quality standards. Additionally,
since it contemplates automation, it enables a small staff of operating personnel to manage
complex process efficiently.
A generic automatic control unit combines several variable measurements provided by sen-
sors with a priori informations about the plant to drive the controlled outputs to their
desired values (set-points). In designing controller for multi-input multi-output (MIMO)
systems, it is common to distinguish between two approaches: multiloop control and multi-
variable control.
Multiloop control can be regarded as a strategy for directly exploiting single-input single-
output (SISO) methods in a MIMO setting: manipulated and controlled variables are paired
and then one single-loop controller is assigned to link each input-output pair, resulting in
a network of multiple interacting control loops. One advantage of this method is the usage
of simple algorithms, which leads to a reasonable computational burden for the analog
computing equipment. Another benefit is the ease of both understanding and monitoring
of the resulting control structure by plant operating personnel. Indeed, each manipulated
variable is coupled with a controlled one and a failed loop, once identified, can be eas-
ily maintained as its closure does not affect performances of the other loops. An ulterior
advantage is that standard control designs have been developed for common unit opera-
tions like furnaces, boilers, compressors [. . .], therefore, several general structures are in
common use and can be enhanced in a straightforward fashion in case of a plant upgrade.
However, since individual SISO controllers are usually detuned in order to mitigate the
effects of loop interactions, multiloop control performs poorly when there is a broad mu-
tual influence among control loops or when process disturbances have a great effect on the
controlled variables. Furthermore, since this approach needs at least an equal number of
inputs and outputs to be enforced, it cannot be applied to non-square systems with fewer
controls than responses which often arise in chemical industries.
In order to address such issues multivariable control can be used. This term refers to a
class of control strategies in which an explicit model of the plant and all the available vari-
ables measurements are used jointly to determine the value of the inputs. Multivariable
control techniques allow to reduce drastically the magnitude of the interactions between
system variables because the effect of each maneuvered on each controlled one is captured
by the dynamic model of the process making input signal based not just on the status of

2



1.2 mpc: motivation, structure and strategy 3

one assigned output, but on all plant responses. Moreover, since there are no restrictions
on process variables dimension, such approach can be even applied to non-square systems.
Many multivariable control techniques have been proposed and sometimes implemented,
but only Model Predictive Control (MPC) technologies have been widely applied in the
industrial processes [6].

1.2 mpc: motivation, structure and strategy
In general, each process unit is characterized by a series of peculiarities. These lead to

specific performance criteria that may be difficult to express in a unified control frame-
work, requiring additional logic to delineate different operating modes. Moreover, it is
well known that the economic operating point of a typical process unit often lies at the in-
tersection of constraints [52]. An efficient control system must therefore be able to handle
any desired performance criterion and keep the process as close as possible to constraints
without violating them.
The MPC algorithms success is largely due to their ability to take into account constraints
on both process inputs and outputs and to satisfy some optimal performance criteria by
solving on-line optimization problems. The incorporation of an explicit process model
allows controllers to deal straightforwardly with all significant features of the process dy-
namics while the direct inclusion of constraints into the control algorithm makes constraint
violations far less-likely, resulting in tighter control at the optimal constrained steady-state
for the process [53].
A schematic of an MPC unit is shown in Figure 1.

xs
k , u

s
k uk ykysp

xkˆ xkˆ

Target
Calculator Regulator Plant

State
Estimator

Figure 1: Schematic of an MPC unit.

Typically, an MPC unit is regarded to be composed by three modules: a state estimator, a
target calculator and a regulator.
The regulator predicts the dynamic behavior of the system over a prediction horizon and
determines a future command sequence over a shorter time interval, known as control hori-
zon, that brings the process from its current state, xk, to the current state target xsk. The
input profile calculation is based on optimizing a performance criterion, generally given
as a function of the predicted states and inputs deviations from their target values xsk, usk,
subject to system dynamics and constraints on both states and controls. Such problem is
often called optimal control problem (OCP).
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If the OCP could be solved for infinite horizons, and if there were no disturbances and no
plant-model mismatch, then one could apply the input sequence found at a certain time tk
to the system for all time t > tk. However, this is possible in a very limited number of spe-
cial cases. Thus, in order to incorporate some feedback logic a receding horizon philosophy
is adopted: at time tk only the first input uk of the optimal command sequence is actually
applied to the plant. The remaining control moves are discarded, and a new OCP is solved
at time tk+1 when a new value of the current state becomes available.
As stated above the implementation of the receding horizon regulator requires the knowl-
edge of xk to compute the solution of the OCP. Unfortunately, in most applications, for
reasons of convenience or cost-effectiveness the variables that can be measured are a small
subset of the state variables. There are also some cases in which the state variables have
no physical meaning and hence cannot be measured at all. In addition, measurements and
state evolution are corrupted respectively with sensor and process noise. The state estima-
tor module uses all the measured data to produce the optimal estimate of the actual state,
x̂k, to be used in both regulator and target calculator. Depending on the cases, the value
of x̂k can arise from the solution of a properly posed constrained optimization problem or
from the implementation of recursive algorithms. As feedback in the regulator comes from
the update of x̂k, its performances will be highly influenced by the quality of this estimate.
Finally, the target calculator determines new state and input targets defining the closest
stationary to the set-point, ysp; this allows the controller to respond to changes in ysp,
which may result from various plant-wide necessities. xsk and usk are calculated from an
optimization embroiling constraints on states and inputs and a steady-state model of the
process. Since it involves only the steady-state value of variables and not trajectories of
states and inputs through the prediction horizon, the target calculation problem is much
smaller than the estimator and regulator ones.

1.3 issues in nonlinear offset-free mpc and thesis ob-
jectives

Needing more solutions of optimization problems at each sampling instant, the MPC
implementation requires a solution algorithm able to converge reliably to the optimum
in no more than a few tens of seconds to be useful in industrial applications. By using
linear models (LMPC) the optimization problems take the form of convex linear (LPs) or
quadratic programs (QPs), for which a great variety of fast and reliable numerical methods
can easily be found in literature. Conversely, with nonlinear models (NMPC) they result
in nonlinear programs (NLPs) which may have multiple local optima and will demand a
much larger number of computations at each sample, even without providing any hard
guarantees that the solution found is a global optimum. Moreover, linear empirical models
can be identified in a more straightforward manner from process data than nonlinear mod-
els and prove themselves to be suitable for a great variety of operations, especially if high
quality feedback measurements are available.
For these reasons the vast majority of MPC applications are based on linear models.
Despite this, there are cases in which the use of NMPC technology is justified. In indus-
trial control system operations, for example, it is often required that the selected controlled
variables approach their set-point without offset in presence of unmodeled, nonzero mean
disturbances and plant-model mismatch; this problem is known as offset-free control. The
general approach to the offset-free control problem is to augment the dynamical model of
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the system with integrating disturbance terms and employ the state estimator to estimate
state and disturbance.

uk ykysp

xkˆ , dkˆ xkˆ , dkˆ

dk

Target
Calculator Regulator Plant

State
Estimator

xs
k , u

s
k

Figure 2: Schematic of an MPC unit for offset-free control achievement.

General conditions and design criteria to obtain steady-state offset-free performances using
augmented linear models in both state estimator and regulator implementations are well
established in common practice. Nevertheless, since process dynamics are in general inher-
ently nonlinear, even if zero steady-state offset is ensured for nonlinear plants, transient
behaviors may be unsatisfactory due to modelling errors, particularly if the nonlinearities
are significant. This motivates the usage of augmented nonlinear models and hence of
NMPC technology.
However, the obstacles associated with estimating state variables and disturbance terms
when implementing an NMPC offset-free framework are nontrivial. First of all, the a priori
observability of a dynamic system, that is the possibility to infer the states of the process
by knowledge of its outputs, is not a well explored concept as its linear counterpart and
can be difficult to check.
Secondly, due to the mathematical complexities introduced by a nonlinear model, nonlinear
state estimators are difficult to design, implement and tune. Some of them are developed
for certain classes of nonlinear systems only, while other are based on some simplifications
of or approximations to the nonlinear model and, consequently, have few limitations.
Finally, while in the linear case the equivalence of different disturbance model choices has
been extensively discussed in literature (Pannocchia [42] and Rajamani et al. [54]) there
have been no comparable breakthroughs in the nonlinear context. For nonlinear systems
the effects of adding integrating disturbances are specific to the application, therefore, the
disturbance representation must be properly chosen and the estimator optimally tuned in
order to obtain an high performing control system.

1.4 thesis overview
In this work the problem of designing a nonlinear disturbance model for offset-free

NMPC frameworks is addressed. The remainder of this thesis is organized as follows.
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chapter 2 contains the theoretical basis of this work.
Starting from the formulation of the state estimation problem, conditions under which
it particularized to a filtering problem are outlined. Then, the Kalman filter algorithm
is derived as the optimal solution of the filtering problem for linear systems and the
extended Kalman filter presented as its most straightforward extension to nonlinear
systems. Subsequently, a comprehensive survey of the theory of nonlinear observ-
ability is provided with focus on its implications in the estimator performances. Fur-
thermore, methods to check observability of nonlinear systems are reviewed in detail
together with various measures of the degree of observability.
Finally, the offset-free control problem is addressed, and general design criteria on
how to build an offset-free NMPC framework are exposed.

chapter 3 starts with a description of the modules constituting the offset-free NMPC unit
adopted, the general augmented model employed and the design choices made. Then
it deepens in the characterization of the proposed design strategy, showing all facili-
ties provided by this method in determining the optimal nonlinear disturbance model
to be implemented. At last it focus on the peculiar theoretical and computational as-
pects of the proposed approach outlining how the second phase of the procedure can
even be used in other contexts to improve the state estimator performances.

chapter 4 concerns the application of the proposed method for the design of an offset-
free NMPC framework for the control of a non-isothermal CSTR reactor. The tech-
nique effectiveness is proved with several examples which show how the NMPC algo-
rithm synthesized gives better performances if compared with the others commonly
adopted in the relevant literature.

chapter 5 contains a brief review of the main results and some conclusions specifying
where and how the proposed approach can be useful in future research and which
possible improvements can be easily implemented.



2 P R E L I M I N A R I E S A N D L I T E R AT U R E R E V I E W

In this chapter the theoretical basis of this work are presented together with references
to the relevant literature. The detailed outline is as follows. Section 2.1 contains a brief
overview of different model classes for nonlinear systems modeling with a focus on the
ODE models adopted in this thesis. The basic concepts of state estimation are discussed
later in section 2.2: after recalling conditions under which a state estimation problem par-
ticularized to a filtering one, it is shown that the Kalman filter is the optimal state estimator
for linear systems and how the extended Kalman filter is its natural nonlinear counterpart.
The final part of the section is devoted to the tuning of such filters. As observability of
nonlinear systems plays an important role in nonlinear state estimators performances, it
is addressed from a differential-geometric viewpoint in section 2.3. Finally, all the con-
cepts introduced in the previous sections are recalled in section 2.4 in order to give general
design criteria on how to build an offset-free NMPC framework.

2.1 dynamics models
In this thesis an ordinary differential equations (ODEs) model in state-space form is em-

ployed to represent the dynamic behavior of the real plant.
Although there exist a variety of models suitable for this purpose like neural networks,
fuzzy models and polynomial models, first-principle models are the most popular tools
in literature for dynamic process modeling [68]. These representations, which include not
only ordinary differential equations models but also partial differential equations (PDEs),
and differential algebraic equations (DAEs) models, have two major benefits with respect
to the other ones. The first one is that they are based on theoretical foundations, therefore,
exhibit the same type of behavior as the plant in a wider range of operating conditions.
The second one is linked to the fact that fewer model parameters need to be fit to the
real process resulting in easier and faster identification procedures. However, ODEs mod-
els may result computationally expensive especially for high dimensional systems as they
must be numerically integrated to predict the plant behavior. An ulterior disadvantage is
that, depending on the complexity of the physical system to be modeled, model equations
cannot be derived or require expertise in the area of knowledge at the advanced level for
their development.

2.1.1 Continuous-time models
The following time-invariant nonlinear state-space representation will be considered:

d

dt
x(t) = f(x(t),u(t),w(t))

y(t) = h(x(t), v(t))
(2.1)

where x(t) ∈ Rn denotes the state, u(t) ∈ Rm the input, y(t) ∈ Rp the output and

7
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w(t) ∈ Rnw and v(t) ∈ Rnv respectively the process and the sensor noise.
The following shorthand notation for (2.1) is introduced:

ẋ = f(x,u,w)

y = h(x, v)
(2.2)

where ẋ denotes the time derivative of x(t).

2.1.2 Discrete-time models
Often real sensors provide measurement at the times tk = k∆t, where k ∈ I+ represents

the number of the sampling step and ∆t denotes a fixed duration between two sampling
step, termed sampling time. These situations require a discrete-time representation of the
process dynamics which can be performed by discretizing the continuous-time nonlinear
model (2.2) with zero-order hold on the input, u(·), and the process noise, w(·), to give:

xk+1 = f (xk,uk,wk)

yk = h (xk, vk)
(2.3)

Note that in order to avoid an unnecessary and heavy notation, the functions f : Rn ×
Rm ×Rnw → Rn and h : Rn ×Rp → Rnv have been denoted in the same manner in both
the continuous (2.2) and discrete (2.3) time models even though they are different.

2.2 state estimation
State estimation is the problem of inferring the values of the state variables at any given

time tk based on the knowledge of the system dynamics and the availability of inputs and
noisy outputs measurements.
Consider the discrete-time system (2.3) and let x̂k|j represent the state estimate at sample
instant k given data up to sample instant j. Depending on the amount of information that
is available to be employed in the state estimate it is common to distinguish between three
classes of estimation problems: smoothing, filtering and prediction.
The smoothing problem consists in estimating xk from data collected both before and after
time tk. Thus, x̂k|j is a smoothed estimate when k < j. Since smoothing does not provide
current values of the state variable but only at some time in the past, it cannot be used in
real-time control applications but in process analysis and diagnosis only.
Conversely, if the aim is to find the optimal prediction of xk more than one time step ahead
of the available measurements, a predicted estimate, x̂k|j with k > j, must be formed.
Predictions are obtained by using the process model to extrapolate the filtered estimates
into the future and are typically used to compute the objective function in MPC regulator
unit formulations or when there are lab analysis delays in measurements of outputs (e.g.
in chromatographic analysis).
Finally, x̂k|j is a filtered estimate when k = j, i.e. when the state estimate at time tk is made
from data up to time tk, but not beyond. According to Ray [56], the filtering technique
is the most common employed in control applications because the most up-to-date state
estimates are provided in a sequential fashion. For that reason, only the filtering problem
will be threated in this work.
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2.2.1 Filtering problem
At any given time tk let an initial estimate x̂0 of x0, a sequence of noisy measurements

Yk = {y1,y2, . . . ,yk}, a sequence of inputs Uk−1 = {u0,u1, . . . ,uk−1}, and the represen-
tation of the process dynamics (2.3) be available and consider the conditional probability
density function of xk given such information, p (xk|Yk,Uk−1).

t = 0

t = t1 t = t2

µ− 2σ x

p (xk|Yk,Uk−1)

Figure 3: Evolution of probability distributions of system state conditional on the data.

p (xk|Yk,Uk−1), plotted in Figure 3, is the main statistical function of interest, since it con-
veys all the information about xk up to and including time tk.
It can be noted that p (xk|Yk,Uk−1) changes with time as new measurements are collected:
the smaller sensor and process noise covariances are, the narrower the dispersion is. Con-
tractions in the distribution lead to an improvement in the estimate quality.
Aiming at obtaining the optimal value of x̂k, a filter propagates the conditional probability
density function with time and at any given time tk produces the value of x̂k|k that op-
timizes a properly chosen objective function; depending on such criterion, different state
estimates may arise. The minimum mean-square error (MMSE) and the maximum a posteriori
(MAP) criteria are the most commonly used in filtering literature.
Defined the state estimation error as:

εk = xk − x̂k (2.4)

the MMSE estimation consists in finding the state estimate, x̂k, that minimizes the condi-
tional mean-square value of εk, that is:

min
x̂k
E
[
εTkεk|Yk,Uk−1

]
(2.5)

From Equation 2.4 the cost function can be rewritten as:

E
[
εTkεk|Yk,Uk−1

]
= E

[
(xk − x̂k)

T (xk − x̂k) |Yk,Uk−1
]

= E
[
xTkxk − x

T
k x̂k − x̂

T
kxk + x̂

T
k x̂k|Yk,Uk−1

]
= E

[
xTkxk|Yk,Uk−1

]
− E

[
xTk |Yk,Uk−1

]
E [x̂k|Yk,Uk−1] −

− E
[
x̂Tk |Yk,Uk−1

]
E [xk|Yk,Uk−1] + E

[
x̂Tk x̂k|Yk,Uk−1

]
= E

[
xTkxk|Yk,Uk−1

]
− E

[
xTk |Yk,Uk−1

]
x̂k−

− x̂TkE [xk|Yk,Uk−1] + E
[
x̂Tk x̂k|Yk,Uk−1

] (2.6)
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Adding and subtracting E
[
xTk |Yk,Uk−1

]
E [xk|Yk,Uk−1] to Equation 2.6 and substituting

the resulting expression in (2.5) yields:

min
x̂k
E
[
xTkxk|Yk,Uk−1

]
− E

[
xTk |Yk,Uk−1

]
E [xk|Yk,Uk−1] +

+ {x̂k − E [xk|Yk,Uk−1]}
T
{x̂k − E [xk|Yk,Uk−1]}

(2.7)

Since the first two terms in (2.7) do not depend on x̂k, the objective function achieves a
global minimum when the quadratic term is equal to zero, that is:

x̂k = E [xk|Yk,Uk−1] (2.8)

Therefore, the adoption of the MMSE criterion provides a value of x̂k which is equal to the
mean of the distribution p (xk|Yk,Uk−1).
The MAP estimation, conversely, can be formalized in the following manner:

max
x̂k

p (xk|Yk,Uk−1) (2.9)

Thus, the MAP criterion leads to a value of x̂k which is equal to the maximum (i.e. the
mode) of the dispersion p (xk|Yk,Uk−1).
Unfortunately, the conditional probability density function may have a complex expression
and many local maxima, therefore, finding an optimal state estimate in the MAP sense can
be a major computational challenge. Analogous considerations can be made relatively to
the MMSE criterion. Under a set of particular conditions related with the linearity of the
system dynamics and the normality of the random variables involved, things get better.
In particular, the conditional probability density function propagated by the filter at any
given time tk is a Gaussian for which a solution to the problems (2.9) and (2.5) can be
easily computed. Since the mode coincides with the mean and the median for a normal
dispersion, the MMSE and the MAP criteria lead to the same value of x̂k in such case.
Moreover, as a Gaussian is completely characterize by its mean and covariance matrix, the
filter is required to propagate only the first and the second moment of p (xk|Yk,Uk−1) and
not the entire distribution, with a strong reduction of the computational burden.
Under the assumptions made above the general optimal filter simplifies to what is known
with the name of Kalman filter (KF).

2.2.2 Kalman filter
Suppose that the actual plant has a linear (possibly time-varying) dynamics and consider

the following particularization of (2.3):

xk+1 = Akxk +Bkuk +wk (2.10a)

yk = Ckxk + vk (2.10b)

where Ak ∈ Rn×n, Bk ∈ Rn×m and Ck ∈ Rp×n represent the process matrices.
Assume that wk and vk are white noises, i.e. discrete signal whose samples can be regarded
as a sequence of serially uncorrelated random variables with zero mean and finite variance
(see subsection A.1.5 for further insights).
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In addition, assume that they are normally distributed with known covariance matrices
Qk ∈ Rn×n and Rk ∈ Rp×p, respectively:

wk ∼ N (0,Qk)

vk ∼ N (0,Rk)

E
[
wkw

T
j

]
= Qkδk−j

E
[
vkv

T
j

]
= Rkδk−j

E
[
vkw

T
j

]
= 0

(2.11)

where δk−j is the Kronecker delta function defined as:

δk−j =

{
1 if k = j

0 if k 6= j
(2.12)

The choice of a zero mean for wk and vk is made for simplicity of exposition. However,
in the general case of wk ∼ N (w̄k,Rk) and vk ∼ N (v̄k,Qk) is sufficient to consider two
constant additive terms equals to w̄k and v̄k in the state transition and output equations
respectively to move back to the said case.
Initially, since there are no data available to estimate x0, the following assumption is made:

x0 ∼ N
(
x̄0,P0|0

)
(2.13)

and x̂0|0 is set equal to the expected value of the initial state, that is:

x̂0|0 = x̄0 (2.14)

In general P0|0 represents the uncertainty in the initial estimate of x0: the larger P0|0 is and
the less is known about x0. In situations where there is absolutely no idea about the value
of the initial state a common choice, referred to in statistic literature as noninformative prior,
is to set x̄0 = 0 and choose a large value of P0|0.
Since x0 is assumed to be normally distributed, wk and vk are white and Gaussian and
the state and observation dynamics are linear, the conditional probability density functions
p (xk|Yk,Uk−1) are Gaussian for any k. Under the assumptions made on the mean of wk
and vk the expected value evolution with time of such distributions can be derived by
taking the expected value of both side of Equation 2.10a:

x̄k+1 = E [xk+1]

= Akx̄k +Bkuk (2.15)

Combining Equation 2.15 and Equation 2.10a yields:

(xk+1 − x̄k+1) (· · · )T = (Akxk +Bkuk +wk − x̄k) (· · · )T

= [Ak (xk − x̄k) +wk] + [· · · ]T

= Ak (xk − x̄k) (xk − x̄k)
T ATk +wkw

T
k+

Ak (xk − x̄k)w
T
k +wk (xk − x̄k)

T ATk

(2.16)
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thus, the distribution covariance time dependency can be obtained by explicating the mean
of the above expression:

Pk+1 = E
[
(xk+1 − x̄k+1) (xk+1 − x̄k+1)

T
]

= E
[
Ak (xk − x̄k) (xk − x̄k)

T ATk +wkw
T
k+

Ak (xk − x̄k)w
T
k +wk (xk − x̄k)

T ATk

]
= AkE

[
(xk − x̄k) (xk − x̄k)

T
]
ATk + E

[
wkw

T
k

]
+

(((
((((

(((
AkE

[
(xk − x̄k)w

T
k

]
+((((

((((
(

E
[
(xk − x̄k)w

T
k

]
ATk

= AkPkA
T
k +Qk (2.17)

Since the first measurement is taken at sample k = 1, there are no additional information
available to update x̂0|0 between sample k = 0 and k = 1. Therefore, the best that can be
done right now is an update of the state estimate and of its related covariance based on the
knowledge of their dynamics:

x̂1|0 = A0x̂0|0 +B0u0 (2.18)

P1|0 = A0P0|0A
T
0 +Q0 (2.19)

By extending the reasoning to each generic sample time tk the following more general
equations are obtained:

x̂k+1|k = Akx̂k|k +Bkuk (2.20)

Pk+1|k = AkPk|kA
T
k +Qk (2.21)

Equation 2.20 and Equation 2.21 constitute the so called time update step of the filter. Dur-
ing the time update step p (xk|Yk,Uk−1) is propagated through a linear transformation to
give p (xk+1|Yk,Uk), which conveys all that can be said about xk+1 before making the ob-
servation yk+1. When the measure is collected there is a need of a practically realizable
and computationally efficient method for the recursive improvement of the state estimate.
To accomplish this end Kalman [26] proposed an update of the conditional probability
density function mean based on a linear combination of the state prediction and the most
up-to-date observed measure:

x̂k+1|k+1 = K
∗
k+1x̂k+1|k +Kk+1yk+1 (2.22)

where K∗k+1 ∈ Rn×n and Kk+1 ∈ Rn×p are weighting or gain matrices that must be
properly chosen in order to form the optimal filtered estimate. A first desirable property
of the estimator (2.22) is that, on average, the state estimate is equal to the actual value of
the state. Such requirement is known as unbiasedness condition and can be formalized as
follows:

E
[
x̂k+1|k+1

]
= E [xk+1] (2.23)

Substituting Equation 2.10b into Equation 2.22 and taking expectations provides:

E
[
x̂k+1|k+1

]
= E

[
K∗k+1x̂k+1|k +Kk+1Ck+1xk+1 +Kk+1vk+1

]
= K∗k+1E

[
x̂k+1|k

]
+Kk+1Ck+1E [xk+1] +((((

(((Kk+1E [vk+1]

= K∗k+1E
[
x̂k+1|k

]
+Kk+1Ck+1E [xk+1] (2.24)
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Assuming that x̂k|k is an unbiased estimate yields:

E
[
x̂k+1|k

]
= E

[
Akx̂k|k +Bkuk

]
= AkE

[
x̂k|k

]
+Bkuk

= E [xk+1] (2.25)

Hence, by combining Equation 2.24 and Equation 2.25 it follows:

E
[
x̂k+1|k+1

]
= K∗k+1E [xk+1] +Kk+1Ck+1E [xk+1]

=
(
K∗k+1 +Kk+1Ck+1

)
E [xk+1] (2.26)

and the condition (2.23) reduces the requirement to:

K∗k+1 = I−Kk+1Ck+1 (2.27)

Substituting Equation 2.27 into Equation 2.22 and rearranging yield:

x̂k+1|k+1 = x̂k+1|k +Kk+1
(
yk+1 −Ck+1x̂k+1|k

)
(2.28)

where Kk+1 is known as the Kalman gain and the expression inside parentheses as innovation
term.
Since the estimator (2.28) is unbiased regardless of the value of Kk+1 used, the Kalman gain
can be determined in order to ensure that x̂k+1|k+1 is the optimal estimate in accordance
with some optimality criterion. By choosing the MMSE criterion follows:

` = min
Kk+1

E
[
εTk+1εk+1

]
= min
Kk+1

E
[
trace

(
εk+1ε

T
k+1

)]
= min
Kk+1

trace
(
Pk+1|k+1

)
(2.29)

where Pk+1|k+1 can be derived as:

Pk+1|k+1 = E
[
εk+1ε

T
k+1

]
= E
{
[(I−Kk+1Ck+1) εk −Kk+1vk+1] [· · · ]T

}
= (I−Kk+1Ck+1)E

[
εkε

T
k

]
(I−Kk+1Ck+1)

T −

−
((((

(((
((((

(((
(((

Kk+1E
[
vk+1ε

T
k

]
(I−Kk+1Ck+1)

T−

−
((((

((((
((((

(((
((

(I−Kk+1Ck+1)E
[
εkv

T
k+1

]
KTk+1 +Kk+1E

[
vk+1v

T
k+1

]
KTk+1

= (I−Kk+1Ck+1)Pk+1|k (I−Kk+1Ck+1)
T +Kk+1Rk+1K

T
k+1 (2.30)

Equation 2.28 and Equation 2.30 constitute what is known with the name of measurements
update step. During the measurements update step p (xk+1|Yk,Uk) is propagated through
a linear transformation to give p (xk+1|Yk+1,Uk) and the filtering recursion is complete.
Keeping in mind that for any matrix A and a symmetric matrix B:

∂ trace
(
ABAT

)
∂A

= 2AB (2.31)

combining Equation 2.29 and Equation 2.30 and differentiating with respect to the gain
matrix yield:

∂`

∂Kk+1
= 2 (I−Kk+1Ck+1)Pk+1|k

(
−CTk+1

)
+ 2Kk+1Rk+1 (2.32)
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Finally, setting the above derivative equal to zero and solving provide the value of Kk+1
that minimize `:

Kk+1Rk+1 = (I−Kk+1Ck+1)Pk+1|kC
T
k+1

Kk+1
(
Rk+1 +Ck+1Pk+1|kC

T
k+1

)
= Pk+1|kC

T
k+1

Kk+1 = Pk+1|kC
T
k+1

(
Ck+1Pk+1|kC

T
k+1 + Rk+1

)−1
(2.33)

Algorithm 1 reports a resume of the key equations which underly the KF algorithm.

Algorithm 1 Kalman Filter

1: At k = 0, initializations:

x̂0|0 = E [x0]

P0|0 = E
[(
x0 − x̂0|0

) (
x0 − x̂0|0

)T]
2: Time update:

x̂k+1|k = Akx̂k|k +Bkuk

Pk+1|k = AkPk|kA
T
k +Qk

3: Kalman gain:
Kk+1 = Pk+1|kC

T
k+1

(
Ck+1Pk+1|kC

T
k+1 + Rk+1

)−1
4: Measurement update:

x̂k+1|k+1 = x̂k+1|k +Kk+1
(
yk+1 −Ck+1x̂k+1|k

)
Pk+1|k+1 = (I−Kk+1Ck+1)Pk+1|k

5: Replace k+ 1 with k and go to Step 2

Note that even when x0, wk and vk are not assumed to be normally distributed the Kalman
filter still provides the optimal state estimate in the MMSE sense which can be achieved
with a linear filter. However, there may be a nonlinear filter that gives a better solution to
the filtering problem.

2.2.3 Extended Kalman filter
Originally proposed by Stanley Schmidt for spacecraft navigation problems the extended

Kalman filter (EKF) is undoubtedly the most widely used nonlinear state estimation tech-
nique that has been applied in the past few decades [62]. This filter relaxes the linearity
assumption and makes use of a nonlinear discrete-time process model like (2.3):

xk+1 = f(xk,uk,wk) (2.34a)

yk = h(xk, vk) (2.34b)

where acceptances (2.11) continue to be respected.
Since there are no data available at time t0, x0 is assumed to be normally distributed with
mean x̄0 and covariance P0|0. Even in this case x̂0|0 is set equal to x̄0.
When a normally distributed random variable is passed through a nonlinear dynamics the
resulting conditional probability density functions propagated by the filter at any time tk
are no longer gaussian in shape and hence all the related benefits provided by the normal
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distributions are lost. In order to avoid this, the EKF calculates a Gaussian approximation
of the real dispersion by carrying out a linearization of the nonlinear transformation around
the mean of the dispersion.
A graphical representation of the previous derivations is reported in Figure 4.

EKF Gaussian
E [xk+1|Yk+1,Uk]

Actual p (xk+1|Yk+1,Uk)
Actual E [xk+1|Yk+1,Uk]

Nonlinear function g (·)
Linear approximation

E [xk|Yk,Uk−1]
g (E [xk|Yk,Uk−1])

p (xk|Yk,Uk−1)
E [xk|Yk,Uk−1]

Figure 4: Effect of nonlinear transformation of Gaussian random variable and EKF approximation.

Thus, performing a fist-order Taylor series expansions of Equation 2.34a around the mean
of p (xk|Yk,Uk−1) and of Equation 2.34b around the mean of p (xk+1|Yk,Uk) provides:

xk+1 ≈ f
(
x̂k|k,uk, 0

)
+
df

dx

∣∣∣∣x=x̂k|k
u=uk
w=0

(
xk − x̂k|k

)
+
df

dw

∣∣∣∣x=x̂k|k
u=uk
w=0

wk (2.35a)

yk ≈ h
(
x̂k|k−1, 0

)
+
dh

dx

∣∣∣∣x=x̂k|k−1
v=0

(
xk − x̂k|k−1

)
+
dh

dv

∣∣∣∣x=x̂k|k−1
v=0

vk (2.35b)

By taking the expected value of both side of (2.34) the time dependencies of mean and
observation result:

x̂k+1|k = f
(
x̂k|k,uk, 0

)
(2.36a)

ŷk+1|k = h
(
x̂k+1|k, 0

)
(2.36b)
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and substituting them into Equation 2.35 yields:

xk+1 ≈ x̂k+1|k +
df

dx

∣∣∣∣x=x̂k|k
u=uk
w=0

(
xk − x̂k|k

)
+
df

dw

∣∣∣∣x=x̂k|k
u=uk
w=0

wk

yk ≈ ŷk+1|k +
dh

dx

∣∣∣∣x=x̂k|k−1
v=0

(
xk − x̂k|k−1

)
+
dh

dv

∣∣∣∣x=x̂k|k−1
v=0

vk

(2.37)

Then, by defining the system Jacobian matrices as:

Ak =
df

dx

∣∣∣∣x=x̂k|k
u=uk
w=0

Ck =
dh

dx

∣∣∣∣x=x̂k|k−1
v=0

Gk =
df

dw

∣∣∣∣x=x̂k|k
u=uk
w=0

Fk =
dh

dv

∣∣∣∣x=x̂k|k−1
v=0

(2.38)

and the signals:
ũ•k = x̂k+1|k −Akx̂k|k

ũink = ŷk|k−1 −Ckx̂k|k−1

w̃k ∼
(
0,GkQkGTk

)
ṽk ∼

(
0, FkRkFTk

) (2.39)

the following linear state-space model is obtained:

xk+1 = Akxk + ũ
•
k + w̃k (2.40a)

yk = Ckxk + ũ
in
k + ṽk (2.40b)

Therefore, the covariance matrix time dependency, the Kalman gain value and the mea-
surement update equations can be derived in an analogous manner to the linear KF and
result:

Pk+1|k = AkPk|kA
T
k +Qk (2.41)

Kk+1 = Pk+1|kC
T
k+1

(
Ck+1Pk+1|kC

T
k+1 + Fk+1Rk+1F

T
k+1

)−1
(2.42)

x̂k+1|k+1 = x̂k+1|k +Kk+1
[
yk+1 − h

(
x̂k+1|k, 0

)]
(2.43)

Pk+1|k+1 = (I−Kk+1Ck+1)Pk+1|k (2.44)

Note that the EKF requires Jacobians evaluations at each time instant, therefore, it is ex-
pected to have a grater computational burden than its linear counterpart especially when
implemented on high dimensional systems.
A resume of the extended Kalman filter, obtained by combining all the above equations
into a single algorithm, is reported in Algorithm 2.
Because EKF is obtained using a linear approximation of the nonlinear system and making
various stochastic assumptions on noise and disturbance that are rarely met in practice, it
gives no guarantees of optimality and, at worst, may led to unacceptable performances.
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Algorithm 2 Extended Kalman Filter

1: Initializations (k = 0):

x̂0|0 = E [x0]

P0|0 = E
[(
x0 − x̂0|0

) (
x0 − x̂0|0

)T]
2: State equation Jacobian matrices:

Ak =
df

dx

∣∣∣∣x=x̂k|k
u=uk
w=0

Gk =
df

dw

∣∣∣∣x=x̂k|k
u=uk
w=0

3: Time updates:
x̂k+1|k = f

(
x̂k|k,uk, 0

)
Pk+1|k = AkPk|kA

T
k +GkQkG

T
k

4: Measurement equation Jacobian matrices:

Ck+1 =
dh

dx

∣∣∣∣x=x̂k+1|k
v=0

Fk+1 =
dh

dv

∣∣∣∣x=x̂k+1|k
v=0

5: Filter gain:

Kk+1 = Pk+1|kC
T
k+1

(
Ck+1Pk+1|kC

T
k+1 + Fk+1Rk+1F

T
k+1

)−1
6: Measurement updates:

x̂k+1|k+1 = x̂k+1|k +Kk+1
[
yk+1 − h

(
x̂k+1|k, 0

)]
Pk+1|k+1 = (I−Kk+1Ck+1)Pk+1|k

7: Replace k+ 1 with k and go to Step 2



2.2 state estimation 18

More refined linearization techniques can be used to reduce the linearization error and
provide better estimation results, however, they do so at the price of higher complexity and
computational expense.
For these reasons the use of this technique is justified if there exists a sufficiently large
neighborhood in which the linearized model is a good representation of the nonlinear sys-
tem and if the disturbances are well represented by zero mean state and measurement
noise. In this case the optimal estimate for the linearized system provided by the EKF
should be a reasonable approximation to the optimal estimate for the nonlinear system.

2.2.4 Tuning
As seen before, the computation of the Kalman gain requires an a priori knowledge about

the process and the measurements noise covariances. If such statistics are known exactly,
then the Kalman gain matrix takes its optimal value and the resulting state estimate is the
better that can be achieved by the filter, otherwise things gradually get worse.
Concerning this, consider the Kalman gain expression:

Kk = Pk|k−1C
T
k

(
CkPk|k−1C

T
k + Rk

)−1
(2.45)

where Pk|k−1 depends on Qk according to Equation 2.21.
Looking at Equation 2.45 it can be noted that as Rk tends to zero Kk+1 increases, weighting
the innovation term more heavily. Specifically:

lim
Rk→0

Kk = Pk|k−1C
T
k

(
CkPk|k−1C

T
k

)−1
(2.46)

Therefore, if the assumed noise covariances are such that Rk is negligible in Equation 2.45,
then Kk will be too large. This leads to a deterioration of the filter performances and in the
worst case to unstable or biased state estimates due to the measurement noise having too
great an influence on them.
Conversely, as Pk|k−1 tends to zero Kk has limit zero and hence it weights the innovation
term less heavily.

lim
Pk|k−1→0

Kk = 0 (2.47)

Thus, if Qk and Rk adopted make Pk|k−1 too small the Kalman gain will be small in turn
and the state estimates will converge too slowly to their true values.
In most practical applications, while Rk might be determined from the a priori knowledge
of the sensor characteristics, Qk cannot be selected in an analogous deterministic way. The
main reasons of such inability are that it might be affected by unknown modelling errors
and the impossibility to measure the state vector directly.
Therefore, tuning the filter, i.e. choosing the covariances that provide the optimal value of
the filter gain, is a challenging task.
Often Qk and Rk are supposed to be time invariant and the tuning is performed by trial
and error. In this case, initial values for the matrices are randomly picked from a set of
candidates, which may result from the process knowledge or from information available in
literature, and adjusted until the filter went to convergence. Then, the rest of the procedure
consists in varying by trial and error the initial covariances found in order to improve the
filter performances according to a predefined criterion. This tuning approach represents a
considerable burden for the designer and often results very time consuming especially for
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high dimensional systems.
Although several techniques have been proposed to overcome this issue (see e.g. Saha
et al. [60] for an overview) the most interesting for the purposes of this thesis are the
optimization based ones. These methods consist in formalizing the tuning problem as:

min
Q,R

∑
k `
tun (2.48)

subject to:Q > 0

R > 0

and then in applying an efficient numerical algorithm for its resolution.
Several algorithms have been successfully implemented in literature, ranging from genetic
[69] to downhill simplex [51], however, their usage must be carefully evaluated in depen-
dence of the particular problem addressed.
The cost function must be properly selected in order to achieve the desired performances;
in this sense well performing solutions for linear systems are the ones proposed by Odel-
son et al. [40] and Pannocchia et al. [45].
These methods provide the benefit of selecting tuning parameters in an automatic and
optimal manner, however, they have the drawback of requiring an accurate selection of
the objective function by the designer and may result computationally intractable for high
dimensional nonlinear systems.

2.3 nonlinear observability
A necessary condition for the state estimator convergence is that the system for which

the states are to be estimated is observable. The basic idea of observability is that any two
different states can be distinguished by applying some input and observing the two system
outputs over some finite time interval [55].
Several equivalent definitions of observability have been developed for linear time-invariant
(LTI) systems. Each one of them can be easily verified with different tests and lends itself
to an explicit state reconstruction procedure. Researchers have tried to establish similar
results for nonlinear systems, however, apart from a few particular generalizations, a com-
pletely parallel theory on nonlinear observability has reveal itself not feasible. Therefore,
various weaker definitions of nonlinear observability have been developed, all with an em-
phasis on computational characterization, and their implication on the system structure
[24].

2.3.1 Definitions
Since process and measurement noises do not affect the observability, they are set to

zero and the following particularization of the continuous-time nonlinear system (2.2) is
considered:

ẋ = f(x,u) (2.49a)

y = h(x) (2.49b)

where x takes values in a connected n-dimensional manifold M, u in some open subset
U of Rm and y in some open subset Y of Rp. Functions f : M ×U ×R+ → M and
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h : M×R+ → Y are assumed to be C∞ with respect to their arguments, and input func-
tions u (·) to be locally essentially bounded and measurable functions in the set U. Equa-
tions which do not have solution for some valid inputs and initial conditions do not define
system behavior completely and hence are inappropriate for use in observability analysis.
For this reason it is also assumed that the system is complete, that is, for every admissible
input u and every x0 ∈M there exists a solution to Equation 2.49a such that x(0) = x0 and
x ∈M for all t ∈ R+.
According to what stated at the beginning of this section, observability is characterized by
the fact that one cannot admit indistinguishable states; such requirements can be formal-
ized as follows.

Definition 1 (Indistinguishable states). Let y (t, t0, x0,u(t)) denote the output trajectory
from an initial state x0, initial time t0, and input u(t) for the continuous-time nonlinear
system (2.49). Two states x0 and x1 in M are called indistinguishable if for every admissi-
ble input u(t) defined on the interval [t0, tf] identical outputs result: y (t, t0, x0,u(t)) ≡
y (t, t0, x1,u(t)) ∀t ∈ [t0, tf].

t0 tf

y(t,t0,x0,u(t))

t

x0
x1

x(t,x0,u(t)) 

t

x(t,x1,u(t)) 

t0 tf

y(t,t0,x1,u(t))

t

Figure 5: Indistinguishable states.

From this, denoted as I (x0,M) the set of all states in M that are indistinguishable from
x0, observability can be defined.

Definition 2 (Observability). The nonlinear system (2.49) is observable at x0 ∈M if I (x0,M) =

x0.
The same nonlinear system is globally observable if it is observable at x for all x ∈M.

Note that observability of a nonlinear system does not exclude the possibility of states
indistinguishable by certain inputs u(t) in the interval [t0, tf]. To avoid any such eventuality
there have to be additional constraints on the inputs.

Definition 3 (Universal input). An input u ∈ U is universal on [t0, tf] if for every pair of ini-
tial condition x0 and x1 there exists t∗ ∈ [t0, tf] such that y (t∗, t0, x0,u(t))��≡y (t∗, t0, x1,u(t)).

A non-universal input is called a singular input. If the nonlinear system (2.49) is globally
observable and all inputs u(t) are universal the reconstruction of x from measurement data
can be possible for all inputs u(t) in the time interval [t0, tf]. Such a system is said to be
uniformly observable.
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t0 tf

y(t,t0,x0,u(t))

t

x0
x1

x(t,x0,u(t)) 

t

x(t,x1,u(t)) 

t0 tf

y(t,t0,x1,u(t))

t

Figure 6: Observable system at x0.

Definition 4 (Uniform observability). The nonlinear system (2.49) is uniformly observable if
it is globally observable and all inputs u(t) are universal.

Observability, according to the above definitions, is a global concept; it might be neces-
sary to compute state trajectories that are very far from x (t0) or in which tf is very large
to distinguish between two states. Therefore, a local concept of observability is introduced
which restricts state trajectories to a neighborhood of x (t0) and implicitly sets a limit to tf
as well.

Definition 5 (Local observability). The nonlinear system (2.49) is locally observable at x0 ∈M

if for every open neighborhood U of x0 and for every solution x(t) completely in U it is
verified that I (x0,U) = x0.
The same nonlinear system is locally observable if it is locally observable at x for all x ∈M.

Remark 1. In other words, the system is locally observable if every state can be distinguished
from every other state in U by using system trajectories remaining close to the state.

Both definitions above ensure that a state x0 ∈M can be distinguished from every other
state in M but for practical purposes it is often enough to be able to distinguish between
neighbors in M. This leads us to the following weaken concept of observability:

Definition 6 (Weak observability). The nonlinear system (2.49) is weakly observable at x0 ∈M

if there is some neighborhood V of x0 such that I (x0,M)∩V = x0.
The same nonlinear system is weakly observable if such a neighborhood V exists for all x ∈M.

Once again it might be necessary to compute state trajectories that are very far from V to
distinguish states of V. Therefore, even in this case, a local concept of weak observability is
introduced.

Definition 7 (Local weak observability). The nonlinear system (2.49) is locally weakly observ-
able at x0 ∈ M if there is some neighborhood V of x0 such that I (x0,M) ∩ V = x0 for all
solutions x(t) completely in any neighborhood U of x0.
The same nonlinear system is locally weakly observable if it is locally weakly observable at x
for all x ∈M.
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t0 tf

y(t,t0,x0,u(t))

t tt0 tf

y(t,t0,x1,u(t))

t

x1x0

x(t,x0,u(t)) 
x(t,x1,u(t)) 

U

Figure 7: Locally observable system at x0.

x0 x1

x(t,x0,u(t)) x(t,x1,u(t)) 

t0 tf

y(t,t0,x0,u(t))

t tt0 tf

y(t,t0,x1,u(t))

t

V

Figure 8: Weakly observable system at x0.
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t0 tf

y(t,t0,x0,u(t))

t tt0 tf

y(t,t0,x1,u(t))

t

U

x1

x0

x(t,x0,u(t)) 
x(t,x1,u(t)) 

V

Figure 9: Locally weakly observable system at x0.

Local observability Global observability

Local weak observability Weak observability

Figure 10: Relationships between the various form of observability.
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Remark 2. Roughly speaking, the system is locally weakly observable if every state can be
distinguished from its neighbors by using system trajectories remaining close to the state.

By setting U in Definition 5 equal to M it can be verified that local observability implies
global observability. Furthermore, by placing V in Definition 7 equal to M it is possible to
demonstrate that it involves also local weak observability. Therefore, local observability is
a stronger property than global and local weak observability.
Finally, by posing V in Definition 6 and U in Definition 7 equal to M it can be shown that
both global and local weak observability implicate weak observability. These findings are
summarized in Figure 10.

2.3.2 Observability tests
In order to establish a priori whether or not a nonlinear system is observable there is the

need to characterize from a mathematical viewpoint the previous definitions.
Concerning this, the local weak observability, in addition to being of more practical interest
with respect to the other forms of observability, presents the advantage of admitting several
computation characterizations. Most notable ones are reviewed in this section.

Observability rank condition

The observability test presented here will be developed in terms of linear combinations of
vector fields on a smooth manifold M. Therefore, the formulation is limited to a particular
class of nonlinear systems known as control affine systems. Note that this is not a strong
restriction since many real-world nonlinear systems are well described by this type of
models.
Consider the following control affine system obtained as a particularization of the general
nonlinear system (2.49):

ẋ = f(x) + g(x)u (2.50a)

y = h(x) (2.50b)

and let x0 = x(0) be its initial condition.
Assuming that f,g and h are analytic functions it is possible to compute the Taylor series
expansion of the output at t = 0 as:

y =

∞∑
k=0

dky

dtk

∣∣∣∣∣
t=0

tk

k!

= h(x)|t=0 +
dy

dt

∣∣∣∣
t=0

t+
d2y

dt2

∣∣∣∣
t=0

t2

2
+H.O.T . (2.51)

where H.O.T. stands for higher order terms.
Recalling from subsection A.2.3 the notion of Lie derivative of a vector function, it is
straightforward to verify that:

dy

dt

∣∣∣∣
t=0

=

[
∂h(x)

∂x

dx

dt

]
t=0

=

[
∂h(x)

∂x
(f(x) + g(x)u)

]
t=0

= Lf[h(x0)] + Lg[h(x0)]u(0) (2.52)
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and so on for the higher order derivatives.
Substituting such expressions in Equation 2.51 yields:

y = h(x0) +

{
Lf [h(x0)] + Lg [h(x0)]u(0)

}
t+

{
L2f [h(x0)] + Lf {Lg [h(x0)]}u(0) +

+ Lg {Lf [h(x0)]}u(0) + L
2
g [h(x0)]u

2(0) + Lg [h(x0)]
du

dt

∣∣∣∣
t=0

}
t2

2
+H.O.T .

(2.53)

All the output functions as well as all their derivatives along the system trajectories are
contained in the so called observation space.

Definition 8 (Observation space). The observation space for a nonlinear system (2.50) is
defined as the smallest real vector space (denoted by G) of C∞ functions containing the
components of h(x) and closed under Lie derivation along system trajectories for any con-
stant u ∈ Rm.

By referring to Equation 2.53:

G =

{
h(x0),Lf [h(x0)] ,Lg [h(x0)] ,Lf {Lg [h(x0)]} ,Lg {Lf [h(x0)]} ,L2f [h(x0)] ,

,L2g [h(x0)] , . . .
} (2.54)

Consider now a point x0 + δx in open neighborhood V of x0 and let it be the new initial
condition. By computing the Taylor series expansion of the new output at t = 0 and
subtracting Equation 2.53 from the resulting expression it is possible to quantify the output
variation δy due to the change in the initial condition:

δy = dh(x0)δx+dLf [h(x0)] δxt+dLg [h(x0)] δxt+dLf {Lg [h(x0)]}u0δx
t2

2
+H.O.T . (2.55)

Thus, according to Definition 1 on the indistinguishability of two initial states, x0 and
x0 + δx will be indistinguishable if for every u ∈ U defined on the time interval [0, tf]
results:

δy = 0 (2.56)

from which follows:
Θ(x0)δx = 0 (2.57)

where:

Θ(x) =



dh(x)

dLf [h(x)]

dLg [h(x)]

dLf {Lg [h(x)]}
...


(2.58)

The space spanned by the rows of Θ(x) takes the name of observability codistribution, dG.

Theorem 1 (Observability rank condition). If Θ(x0) contains n linear independent row vectors,
i.e.:

rank Θ(x0) = n (2.59)

then the nonlinear continuous time system (2.50) is locally weakly observable at x0.
More generally, the same nonlinear system satisfying:

rank Θ(x) = n (2.60)

is locally weakly observable.
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In other words, if Θ(x) has rank equal to n there exist no nontrivial variations of the
initial condition δx such that the output and its derivatives along the system trajectories
remain unchanged independently on the input applied.
Notice finally that when f(x) and h(x) are linear functions and g is constant with respect
to x the observability rank condition particularized in the so called Kalman rank condition.

Kalman rank condition on the linearized system

Consider the continuous-time nonlinear system (2.49) and let (xs,us) be a steady state
operating point, i.e.:

f(xs,us) = 0 (2.61)

h(xs) = ys (2.62)

Performing the Taylor series expansion of (2.49) around (xs,us) yields:

ẋ =���
��f (xs,us) +

df

dx

∣∣∣∣
x=xs
u=us

(x− xs) +
df

du

∣∣∣∣
x=xs
u=us

(u− us) +H.O.T . (2.63)

y = h (xs) +
dh

dx

∣∣∣∣
x=xs

(x− xs) +H.O.T . (2.64)

For x sufficiently close to xs, the higher order terms will be very close to zero, and hence
can be neglected to obtain:

ẋ ≈ Aδx+Bδu (2.65)

δy ≈ Cδx (2.66)

where:

A =
∂f

∂x

∣∣∣∣
x=xs
u=us

(2.67)

B =
∂f

∂u

∣∣∣∣
x=xs
u=us

(2.68)

C =
∂h

∂x

∣∣∣∣
x=xs

(2.69)

δx = x− xs (2.70)

δu = u− us (2.71)

δy = y− ys (2.72)

Then, by recalling Equation 2.61 and by using the fact that:

δẋ = ẋ (2.73)

the following linearized system results:

δẋ = Aδx+Bδu (2.74a)

δy = Cδx (2.74b)
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Now, let δx0 = x0 − x
s be the initial state to be determined. Since δx0 has n unknown

components and the system (2.74) is linear, it is expected that n measurements yk taken at
different sample times tk are sufficient to figure out the initial state value:

δy0 = Cδx0

δy1 = CAδx0 +CBδu0

...

δyn−1 = CA
n−1δx0 +

n−2∑
j=1

(
CAjBδun−2−j

)
or in matrix form:

Y = Oδx0 (2.75)

where:

Y =


δy0

δy1 −CBδu0
...

δyn−1 −
∑n−2
j=1

(
CAjBδun−2−j

)

 (2.76)

O =


C

CA
...

CAn−1

 (2.77)

From the fundamental theorem of linear algebra the system of linear algebraic equations
with n unknowns (2.75) has a unique solution if and only if the columns of the system
matrix are linearly independent. Thus, the initial condition x0 is completely determined if
the so-called observability matrix O ∈ R(n·p)×n is full rank.
The previous derivations can be summarized in the following theorem:

Theorem 2 (Kalman rank condition). The LTI system (2.74) is observable if and only if

rank (O) = n (2.78)

If O is not full rank, any initial state with a component in the nullspace of O cannot be
uniquely determined from the output measurements. In this case the linearized system
(2.74) is not locally weakly observable at x0 and the null space of O is called the unobserv-
able subspace.
According to Ray [56], observability of nonlinear systems is often determined by the struc-
ture of the system and is not dependent on the state in a complex manner. Consequently,
such linearized observability test is usually adequate for many practical applications.
However, it must be noted that local weak observability of the linearized system (2.74)
may not imply local weak observability of the original nonlinear system (2.49) as O is an
approximation to the matrix Θ(x) defined in Equation 2.58.

Observability covariance matrix rank condition

As every real process has a region of operation, it is important for the state estimator
design to take into account information about the observability of the system over such
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region. Since the Kalman rank condition can be checked only for those points which lie
in a sufficiently small neighborhood of the operating point it reveals itself unsuitable for
this purpose. At the same time it is not currently feasible to compute the Lie-algebra based
observability matrix for systems of medium or even large scale and which does not belong
to the control-affine class. Both of this issues have been addressed by Hahn and Edgar [17]
who developed the so called observability covariance matrix rank condition.
Observability covariance matrix is a powerful tool for analyzing observability of nonlinear
systems as it is naturally computed from experimental or simulation data, collected within
a region of operation where the process has to be controlled. At the same time, it has
been successfully applied to system with dozen or even hundreds of states and extracting
information from observability covariance matrix is no more challenging than it is for linear
systems.
The following sets need to be defined for observability covariance matrix calculation:

Tn = {T1, . . . , Tn; Ti ∈ Rn×n, TTi Ti = I, i = 1, . . . , r}

M = {c1, . . . , cs; ci ∈ R, ci > 0, i = 1, . . . , s}

En = {e1, . . . , en; standard unit vectors in Rn}

where r is the number of matrices for perturbation directions, s is the number of different
perturbation sizes for each direction and n is the number of states of the system.
Usually, T is chosen to be {I,−I}, where the submatrix {I} refers to positive perturbations
in the state variables while {−I} corresponds to decreases in the value of the state variables.
More complicated choice for T are possible for some nonlinear systems as long as they
satisfy the conditions stated above. At the same time, the elements of M must be chosen
in such a way as to capture the nonlinear behavior of the system at a certain distance from
the nominal steady-state operating point (xs,us).

Definition 9 (Observability covariance matrix). Let Tn, En andM be given sets as described
above. The observability covariance matrix is defined by:

WO =

r∑
l=1

s∑
m=1

1

rsc2m

∫∞
0

TlΨ
lm(t)TTl dt (2.79)

where Ψlm(t) ∈ Rn×n is given by:

Ψlmij (t) =
(
yilm(t) − yilmss

)T (
yjlm(t) − yjlmss

)
(2.80)

yilm(t) is the output of the nonlinear system corresponding to the perturbed initial condi-
tion x (0) = xs + cmTlei with input u = us and yilmss is the steady-state of the output that
the system will reach after this perturbation.

It is now possible to formulate the following test.

Theorem 3 (Observability covariance matrix rank condition). The nonlinear continous time
system (2.49) is observable at a certain distance from a nominal steady-state operating point if the
associated observability covariance matrix, WO, has full rank.

Remark 3. The output trajectories generated by simulation are computed only for nominal
value of the input. Hence, observability analysis by the observability covariance matrix is
applicable only for nominal value of the input.
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Suppose that the initial state x(0) is within the region of attraction of the operating point,
defined as follows.

Definition 10 (Region of attraction). The region of attraction of a system is the set of initial
states x(0) from which the system converges to the equilibrium point (xs,us).

In this case, the observability covariance matrix reduces to the empirical observability
gramian.

Definition 11 (Empirical observability gramian). Let Tn, En and M be given sets as de-
scribed above. The empirical observability gramian is defined by:

WO =

r∑
l=1

s∑
m=1

1

rsc2m

∫∞
0

TlΨ
lm(t)TTl dt (2.81)

where Ψlm(t) ∈ Rn×n is given by:

Ψlmij (t) =
(
yilm(t) − yilms

)T (
yjlm(t) − yjlms

)
(2.82)

and yilm(t) is the output of the nonlinear system corresponding to the perturbed initial
condition x (0) = xs + cmTlei with input u = us. The yilms refers to the steady-state value
of the output of the system before this perturbation.

If the system under investigation is linear and stable, any initial condition will remain
within the region of attraction of xs and the observability covariance matrix is identical to
the empirical observability gramian. Because it has been proven (see Lall et al. [30]) that em-
pirical observability gramian reduces to the observability gramian of the linearized system
for small perturbations around the operating point, it can be ensured that the observability
results from Theorem 3 will locally match the ones derived for a linearized system.

2.3.3 Degree of observability
The tests presented in the previous sections can be used for checking observability of

nonlinear systems but they only gives a yes or no answer; they do not quantify how ob-
servable or unobservable the system is. In order to accomplish this end measures for the
degree of observability of nonlinear systems have been derived. Singh and Hahn [64] make
an overview of several of these that is reported below.
The first presented is:

µ1 = λmin (WO) (2.83)

where the eigenvector corresponding to the smallest eigenvalue λmin refers to the least
observable direction of the system and the eigenvalue corresponds to the degree of ob-
servability of this worst direction. Higher values of this measure imply higher degree of
observability of the least observable direction.
Another measure commonly used is based on the trace of the observability covariance
matrix inverse:

µ2 =
n

trace
(
W−1
O

) (2.84)

where n refers to the number of states of the system.
Recalling from the fundamentals of linear algebra that the trace of a matrix is the sum of
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its eigenvalues and that the eigenvalues of W−1
O are the reciprocals of the eigenvalues of

WO results:

µ2 =

(∑n
i=1

1
λi

n

)−1

(2.85)

Thus, µ2 can also be viewed as the inverse arithmetic mean of the reciprocals of the eigen-
values of WO. Larger values of µ2 indicate an higher degree of observability.
An ulterior alternative is to use the determinant of the observability covariance matrix:

µ3 = [det (WO)]
1
n (2.86)

since the determinant is the product of the eigenvalues of a matrix, Equation 2.86 can be
rewritten as follows:

µ3 =
n

√√√√ n∏
i=1

λi (2.87)

From Equation 2.87 can be seen that µ3 is equal to the geometric mean of the eigenvalues
of WO. A value of the determinant of zero indicates that the matrix is rank deficient,
corresponding to an unobservable system. Similarly, larger value of the determinant are an
indicator of the increased observability.
A further measure that can be used is the condition number (CN) of the observability
covariance matrix, defined as:

CN =
σmax (WO)

σmin (WO)
(2.88)

where σmin and σmax refer to the smallest and largest singular values of the observability
covariance matrix. Since WO is symmetric, σmin and σmax are identical to the smallest
and largest eigenvalues respectively.
A smaller value of the condition number generally implies increased observability of a
system.
One may also think to make use only of the smallest singular value of the observability
covariance matrix:

NS = σmin (WO) (2.89)

NS is similar to the measures based on the smallest eigenvalues given in Equation 2.83,
Equation 2.84 and Equation 2.86 as it serves as an indicator of how far the system is from
being unobservable. Higher values of this criterion imply an increased degree of observ-
ability.
All the above measures are strongly influenced by the smallest singular value or the small-
est eigenvalues. While it can be useful to ensure that a minimum degree of observability
exists even for the worst directions, this may not always be the best measures. The reason
for this is that in some application (e.g. sensor placement) it is unlikely that every single
state of the system needs to be observed; instead, the main focus should be on ensuring
that the most important states can be observed easily, e.g., measures which are strongly
influenced by the smallest eigenvalue of singular value can return misleading information
if some states that are not important for plant operation may be unobservable [64].
A measure based upon these ideas is for example the spectral radius of the covariance
observability matrix:

ρ (WO) = λmax (WO) = σmax (WO) (2.90)
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Large values of ρ (WO) indicate that the dominant direction in the observability covariance
matrix can be easily observed.
The final measure reported is the trace of the observability covariance matrix:

trace (WO) =

n∑
i=1

σi (WO) =

n∑
i=1

λi (WO) (2.91)

A large value of the trace corresponds to an increase in the overall observability of the
system.

Table 1: Measures for degree of observability

Measure Benchmark Equation

µ1 Smallest Eigenvalue (2.83)

µ2 Smallest Eigenvalue (2.84)

µ3 Smallest Eigenvalue (2.86)

CN Smallest Eigenvalue (2.88)

NS Smallest Eigenvalue (2.89)

ρ (WO) Largest Eigenvalue (2.90)

trace (WO) Largest Eigenvalue (2.91)

Summing up, the presented measures can be divided into two main categories: measures
which are mainly based upon the least observable direction in state space, and measures
which are predominantly influenced by the largest eigenvalue of the observability covari-
ance matrix. These findings are summarized in Table 1.

2.4 offset-free control
Suppose to have to control a time-invariant dynamical system of the form:

x?k+1 = f
? (x?k,uk,w?

k) (2.92a)

y?k = h? (x?k, v?k) (2.92b)

where x?k ∈ Rn is the plant state, u?k ∈ Rm is the control input, y?k ∈ Rp is the plant output,
w?
k ∈ Rnw and v?k ∈ Rnv denote plant states and output disturbances. The plant output

is measured at each sample time tk and the functions f? : Rn ×Rm ×Rnw → Rn and
h? : Rn ×Rnv → Rp are assumed to be continuous.
The following particularization of the discrete-time nonlinear system (2.3) is taken as a
representation of the plant dynamics:

xk+1 = f (xk,uk) (2.93a)

yk = h (xk) (2.93b)

Disturbances at any sample time tk are defined as:

w∗k = f? (x?k,uk,w?
k) − f (xk,uk) (2.94)

v∗k = h? (x?k, v?k) − h (xk) (2.95)
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and are assumed to be asymptotically constant and bounded in compact sets: w∗k ∈ W,
v∗k ∈ V.
Moreover, input and output are required to satisfy the following constraints at all times:

gu (uk) 6 0 (2.96)

gy (yk) 6 0 (2.97)

where gu : Rm → Rqu , and gy : Rp → Rqy are convex functions defining the following
compact convex sets:

U := {uk ∈ Rm |gu (uk) 6 0} (2.98)

Y := {yk ∈ Rp |gy (yk) 6 0} (2.99)

Induced by the process model and the output constraint set, the following state constraint
set results:

X := {xk ∈ Rn |gy (h (xk)) 6 0} (2.100)

Define the controlled output yc ∈ Rpc as a function of the measured output:

yc = ry (yk) (2.101)

and denote with ȳc ∈ Y its desired set-point.
The offset-free control problem consists in planning an output feedback MPC law:

uk = κ (yk) (2.102)

such that:

1. Input and output constraints are satisfied at all times.

2. The closed-loop system reaches an equilibrium.

3. The following condition holds true:

lim
k→∞yc = ȳc (2.103)

2.4.1 Choice of the disturbance model and state augmentation
The general approach to achieve offset-free performance, motivated by the works of Davi-

son and Smith [11], Kwakernaak and Sivan [28] and the Internal Model Principle of Francis
and Wonham [15], is to augment the system state with an integrating disturbance term and
design a controller that can remove asymptotically constant, nonzero disturbances.
To this end, the representation of the process dynamics (2.93) is augmented with a distur-
bance model to give an augmented model whose general form can be written as:

xk+1 = F (xk,uk,dk) (2.104a)

dk+1 = dk (2.104b)

yk = H (xk,dk) (2.104c)

where d ∈ Rnd is the so-called disturbance state or simply disturbance and F : Rn ×Rm ×
Rnd → Rn and H : Rn ×Rnd → Rp are supposed to be continuous, and consistent with
the nominal model, i.e. for all x ∈ Rn and u ∈ Rm there holds:

F (xk,uk, 0) = f (xk,uk)

H (xk, 0) = h (xk)
(2.105)
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Moreover, it is assumed that the augmented system is uniformly observable.
Note that the disturbance model does not necessarily have to represent the real distur-
bances acting on the plant for offset-free control: under the assumptions made its presence
is sufficient to move the state of the original system onto a manifold that cancels distur-
bance effects on the controlled variables [47]. For this reason the disturbance model design
is sometimes done using standard solutions; most notable ones are the pure Output Distur-
bance Model (ODM) and the pure Input Disturbance Model (IDM).
The pure output disturbance model adds one disturbance state for every output variable:

xk+1 = f (xk,uk) (2.106a)

dk+1 = dk (2.106b)

yk = h (xk) + dk (2.106c)

Although simplistic, that solution offers the benefits to accurately model set-point varia-
tions, which often enter feedback loops as step disturbances, and to provide zero offset for
step changes in reference signal. Moreover, since errors in the model can appear as slowly
varying output disturbances, it provides robustness to model error. In spite of that, the
framework suffers from observability issues for plant containing integrators, because the
effects of the plant integrating mode and of the output disturbance cannot be distinguished.
In addition, since it models poorly actual disturbance dynamics for many practical systems,
closed-loop dynamic performances are often unsatisfactory [37].

MPC Process
yc uk

dk

yk+

Figure 11: Output disturbance model.

An equally simple method is the pure input disturbance model:

xk+1 = f (xk,uk + dk) (2.107a)

dk+1 = dk (2.107b)

yk = h (xk) (2.107c)

With that choice the difference between the predicted and the actual plant output is as-
sumed to be caused by a step disturbance on the input, which remains constant in the
future. Since in this model disturbances enter upstream of the process, they are filtered
by the plant dynamics and resemble real disturbances in many practical applications. Fur-
thermore, the input disturbance model is very effective in rejecting disturbances with slow
dynamics and in rendering the MPC regulator not sensitive to input uncertainty with an
increment of the controller robustness for ill-conditioned process [48].
The main deficiency of this representation is that it can be used only for systems with the
same number of inputs and outputs.
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MPC Process
yc uk

dk

yk+

Figure 12: Input disturbance model.

2.4.2 State estimator design
In order to treat this topic there is a need of some preliminary definitions.

Definition 12 (K function). A function F : R+ → R+ belongs to the class K if it is continu-
ous, zero at zero, and strictly increasing.

Definition 13 (KL function). A function F : R+ × I+ → R+ belongs to the class KL if for
each k > 0 the function F (·,k) ∈ K, and for each α ∈ R+ there holds:

lim
k→∞F (α,k) = 0 (2.108)

Definition 14 (Asymptotic stability of the estimate). Let x̂k be an estimate of xk obtained
for the nonlinear system (2.93), given a sequence of output measurements Y = {y0, . . . ,yk}
and a (prior) estimate of the initial state x̂0. The estimate is asymptotically stable if there
exists F ∈ KL such that for all initial state x0, prior estimate x̂0 and k ∈ I+ there holds:∣∣xk − x̂k∣∣ 6 F (‖x0 − x̂0‖,k) (2.109)

Without loss of generality, it is assumed that the augmented state
[
xTk ,dTk

]T is estimated
from the output measurement yk at each time tk by using an observer of the following
form:

x̂k|k = F
(
x̂k−1|k−1,uk−1, d̂k−1|k−1

)
+ κx

(
yk −H

(
x̂k|k−1, d̂k|k−1

))
(2.110a)

d̂k|k = d̂k|k−1 + κ
d
(
yk −H

(
x̂k|k−1, d̂k|k−1

))
(2.110b)

Having defined the predicted estimates:

x̂k|k−1 = F
(
x̂k−1|k−1,uk−1, d̂k−1|k−1

)
(2.111a)

d̂k|k−1 = d̂k−1|k−1 (2.111b)

ŷk|k−1 = H
(
x̂k|k−1, d̂k|k−1

)
(2.111c)

and the output prediction error as:

ek = yk −H
(
x̂k|k−1, d̂k|k−1

)
(2.112)

Equation 2.110 can be rewritten as follows:

x̂k|k = x̂k|k−1 + κ
x (ek) (2.113a)

d̂k|k = d̂k|k−1 + κ
d (ek) (2.113b)
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where the functions κx : Rp → Rn and κd : Rp → Rnd are supposed to be continuous and
to satisfy:

κx (0) = 0 (2.114a)

κd (ek) = 0⇐⇒ ek = 0 (2.114b)

Moreover, Equation 2.111 and Equation 2.113 form an asymptotically stable observer for
the augmented system (2.104).
Note that condition (2.114) implies nd > p. In general there is no advantage of choosing
a disturbance model where nd > p as it provides more degrees of freedom than required
and increases the complexity of observer, target calculator and regulator. Therefore, in the
remainder it will be assumed that:

nd = p (2.115)

2.4.3 Target calculator and controller design
Obtained an estimate of the augmented state from the observer, the target calculator

compute the values of state, input and output required at steady-state to ensure exact
tracking of the controlled variable. Such values result from the solution at each generic
sample time tk of an optimization problem which can be formulated in general terms as
follows:

min
xk,uk,yk

`s (yk,uk) (2.116)

subject to: xk = F
(
xk,uk, d̂k|k

)
yk = H

(
xk, d̂k|k

)
ry (yk) = ȳc

yk ∈ Y

uk ∈ U

where `s : Rp ×Rm → R is the steady-state cost function.
Although (2.116) is an NLP problem and then may admits many local minima in depen-
dence of input/output dimensions and system dynamics, in the remainder it will be as-
sumed that (2.116) is feasible and that its solution

(
xsk,usk,ysk

)
is unique. Consider now a

state sequence X = {x0, x1, . . . , xN} and an input sequence U = {u0,u1, . . . ,uN−1} and let:

yi = H
(
xi, d̂k

)
for i = 0, . . . ,N− 1 (2.117)

be the model output corresponding to a state xi and a disturbance estimate d̂k|k.
As
(
xsk,usk,ysk

)
is available from the target calculation, it is possible to define the deviation

variables:

x̃i = xi − x
s
k for i = 0, . . . ,N (2.118)

ũi = ui − u
s
k for i = 0, . . . ,N− 1 (2.119)

and formulate the following finite-horizon OCP:

min
X,U

N−1∑
i=0

`ocp (x̃i, ũi) + Vf (x̃N) (2.120)
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subject to: x0 = x̂k|k
xi+1 = F

(
xi,ui, d̂k|k

)
yi ∈ Y

ui ∈ U

x̃N ∈ Xf

in which `ocp : Rn ×Rm → R+ is a strictly positive definite convex function. Xf ⊆ X and
Vf : Rn → R+ are, respectively, a terminal set and a terminal cost function, properly designed
in order to achieve closed loop stability.
Assuming that problem (2.120) is feasible, its solution is denoted by

(
Xok,Uok

)
and the

associated receding horizon implementation is given by:

uk = Uo0 (2.121)

Terminal set and terminal cost function design

The terminal set and the terminal cost function must be properly designed to ensure that
the origin of the closed-loop system is an asymptotically stable equilibrium point.

Definition 15 (Stability of an equilibrium point). Consider an autonomous nonlinear dy-
namical system xk+1 = f(xk) with an initial condition x0. Suppose that f : M→ Rn has an
equilibrium at xs so that f (xs) = 0 then:

1. This equilibrium is said to be stable, if, for every constant α1 > 0, there exists a
constant α2 > 0 such that, if ‖x0 − xs‖ < α2, then:

lim
k→∞‖xk − xs‖ < α1 ∀ tk > 0 (2.122)

2. This equilibrium is said to be asymptotically stable if it is stable and the constant α2 is
such that if ‖x0 − xs‖ < α2, then:

lim
k→∞‖xk − xs‖ = 0 (2.123)

3. This equilibrium is said to be unstable if it is not stable.

Note that asymptotic stability implies that a state trajectory starting close enough to an
equilibrium point (within a distance α2 from it) remains close to xs (within a distance α1)
and eventually converge to it.
In order to outline conditions for the asymptotic stability of the closed-loop system there is
the need to introduce the notion of positively invariant set.

Definition 16 (Positively invariant set). Given a dynamical system xk+1 = f(xk) and the
state trajectory x(k, x0) where x0 is the initial condition, let X = {xk ∈ Rn | F (xk) = 0}

where F ia a real valued function. The set X is said to be positively invariant if x0 ∈ X

implies that:
x(k, x0) ∈ X ∀tk > 0 (2.124)

Roughly speaking, this means that if the set X is positively invariant, then once a state
trajectory of the system enters X, it will never leave it again.
Assume now to know an auxiliary control law:

u = κa (x) (2.125)
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and a positively invariant set Xf ⊂ X containing the origin such that, for the closed loop
system:

xi+1 = f (xi, κa (xi)) (2.126)

and for any xj ∈ Xf the following conditions hold:

xi ∈ Xf for i > j (2.127)

ui = κ
a (xi) ∈ U for i > j (2.128)

Suppose also that the stage cost `ocp (·) in the objective function (2.120) is defined by:

`ocp (xi,ui) = ‖xi‖2Qreg + ‖ui‖
2
Rreg

(2.129)

where the tuning matrices Qreg ∈ Rn×n and Rreg ∈ Rm×m are real-valued, symmetric
and positive definite. Large values of Qreg in comparison to Rreg are adopted when there
is the intent to drive the state to the origin quickly even employing large control action.
Conversely, penalizing the control action through large values of Rreg relative to Qreg is
the way to reduce the control action and slow down the rate at which the state approach
the origin.
The deviation variables x̃i and ũi appearing in Equation 2.120 have been replaced in Equa-
tion 2.129 with xi and ui for simplicity of notation, however, the handling which will follow
is almost identical.
Under the assumptions made, the conditions for the asymptotic stability of the closed-loop
system are established by the following theorem [61].

Theorem 4. Let X0f be the set of states where a solution of the optimization problem (2.120) exists.
If for any xi ∈ Xf the condition:

Σi = Vf (f (xi, κa (xi))) − Vf (f (xi)) + ‖xi‖2Qreg + ‖ui‖
2
Rreg

6 0 (2.130)

is fulfilled and:
Vf (f (xi)) 6 F (‖xi‖) (2.131)

where F (‖xi‖) is a class K function, then the origin of the closed-loop system with the receding
horizon control law implicitly defined by (2.121) is an asymptotically stable equilibrium point with
region of attraction X0f .

A terminal set and a terminal cost function complying with the assumptions of the The-
orem (4) can be obtained by linearization of the state transition equation (2.93a) at the
origin:

f (xi,ui) ≈ Axi +Bui +φ (xi,ui) (2.132)

where:

A =
∂f

∂xi

∣∣∣∣xi=0
ui=0

(2.133)

B =
∂f

∂ui

∣∣∣∣xi=0
ui=0

(2.134)

lim
‖(xi,ui)‖→0

sup
‖φ (xi,ui)‖
‖(xi,ui)‖

= 0 (2.135)

The goal is to design a linear state feedback control law u = −Kax in a way such that
the nominal nonlinear system (2.93) is asymptotically stabilized in a neighborhood of the
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origin.
This neighborhood will be taken as the terminal set Xf in the optimization problem (2.120).
The optimal control approach to this design is to define the performance index:

Jlqr =
1

2

∞∑
i=0

‖xi‖2Qreg + ‖ui‖
2
Rreg

(2.136)

and search for the control that minimizes such index. This problem is commonly denoted
in linear systems theory as Linear Quadratic Regulation (LQR) problem.
As Jlqr is a monotonically increasing function with respect to i and is defined over an
infinite interval, in order to ensure its convergence to a finite value there is the need to
introduce the further assumption that the pair (A,B) is completely controllable.

Definition 17 (Complete controllability). A system is completely controllable if it is possible
to go from any initial state to any final state in a finite time.
For a linear system this is equivalent to the rank fullness of the so called controllability
matrix C ∈ Rn×(n·m), defined as:

C =
[
B AB · · ·An−1B

]
(2.137)

Thus, by dynamic programming arguments (see e.g. Rawlings and Mayne [55]), it is
straightforward to show that, under the assumptions made, the optimal stabilizing control
that minimizes (2.136) is given by:

ui = −KLQxi (2.138)

in which:
KLQ =

(
BTΠB+ Rreg

)−1
BTΠA (2.139)

and Π is a positive semidefinite matrix, defined as:

Π = Qreg +A
TΠA−ATΠB

(
BTΠB+ Rreg

)−1
BTΠA (2.140)

Equation 2.140 is referred to in literature as the Discrete-time Algebraic Riccati Equation
(DARE). Furthermore, the optimal value of the cost function from any point xi is:

`lqr =
1

2
‖xi‖2Π (2.141)

Substituting Equation 2.138 into Equation 2.132 yields:

f (xi,ui) ≈
(
A−BKLQ

)
xi +φ

(
xi,−KLQxi

)
(2.142)

where:

lim
‖xi‖→0

sup
‖φ
(
xi,−KLQxi

)
‖

‖
(
xi,−KLQxi

)
‖

= 0 (2.143)

Moreover, the objective function (2.136) becomes:

Jlqr =
1

2

∞∑
i=0

‖xi‖2Qreg + ‖ui‖
2
Rreg

=
1

2

∞∑
i=0

‖xi‖2Qreg + ‖KLQxi‖
2
Rreg

=
1

2

∞∑
i=0

‖xi‖2Q∗reg (2.144)
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In which:
Q∗reg = Qreg +K

T
LQRregKLQ (2.145)

Equation 2.144 and Equation 2.142 form an LQR problem without the control, whose opti-
mal cost in analogy with the previous case, results:

`lqr =
1

2
‖xi‖2Π∗ (2.146)

and Π∗ is computed by the DARE:(
A−BKLQ

)T
Π∗
(
A−BKLQ

)
= −α3Q

∗
reg (2.147)

in which a generic constant α3 > 1 is added to take into account the effects of the lineariza-
tion errors.
Let the terminal cost function Vf (xi) of the finite horizon controller (2.120) be defined by
Equation 2.146.
In the neighborhood of the origin:

Σi = Vf
(
f
(
xi,−KLQxi

))
− Vf (xi) +

(
‖xi‖2Qreg + ‖κa (xi)‖

2
Rreg

)
= f

(
xi,−KLQxi

)T
Π∗f

(
xi,−KLQxi

)
− xTi Π

∗xi + x
T
iQregxi+

+ xTi K
T
LQRregKLQxi

= xTi
(
A−BKLQ

)T
Π∗
(
A−BKLQ

)
xi + 2x

T
i Π
∗φ
(
xi,−KLQxi

)
−

− xTi Π
∗xi +φ

T
(
xi,−KLQxi

)
Π∗φ

(
xi,−KLQxi

)
+ xTiQ

∗
regxi

= xTi
{ (
A−BKLQ

)T
Π∗
(
A−BKLQ

)
−Π∗ +Q∗reg

}
xi+

+ 2xTi Π
∗φ
(
xi,−KLQxi

)
+φT

(
xi,−KLQxi

)
Π∗φ

(
xi,−KLQxi

)
= xTi (1−α3)Q

∗
regxi + 2x

T
i Π
∗φ
(
xi,−KLQxi

)
+

+φT
(
xi,−KLQxi

)
Π∗φ

(
xi,−KLQxi

) (2.148)

Letting:

Lφ = sup
‖φ
(
xi,−KLQxi

)
‖

‖xi‖
(2.149)

one has:
2xTi Π

∗φ
(
xi,−KLQxi

)
6 2‖Π∗‖Lφ‖xi‖2 (2.150)

and:
φT
(
xi,−KLQxi

)
Π∗φ

(
xi,−KLQxi

)
6 ‖Π∗‖L2φ‖xi‖2 (2.151)

Since:
lim
‖xi‖→0

Lφ = 0 (2.152)

then Σi 6 0 in a sufficiently small neighborhood of the origin, so that the decreasing
condition (2.131) of Theorem 4 is satisfied.
In addition, the following choice of the terminal set:

Xf =
{
xi | x

T
i Π
∗xi 6 α4} ⊂ X (2.153)

for some suitably chosen constant α4, guarantees that Xf is positively invariant for the LQ
control law (2.138).
Summing up, the adoption of the stage cost (2.129), of the terminal set (2.153) and of the
terminal cost function (2.146) in the optimal control problem (2.120) ensures the asymptotic
stability of the closed-loop system origin.
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2.4.4 Conditions for offset-free control
According to Pannocchia and Rawlings [47], a necessary condition for the offset-free

control achievement is that the closed-loop system reaches an asymptotically stable equi-
librium. Establishing general conditions under which this occurs is a very difficult task
because it would involve state estimator, target optimizer and regulator together.
Therefore, a common approach for offset-free MPC (see e.g. Pannocchia et al. [46]) is to as-
sume that an asymptotically stable equilibrium has been reached and then to demonstrate
that offset-free performances are achieved at such equilibrium.
Indeed, under the assumption that the closed-loop system reaches a steady-state, the sta-
bility of the observer implies that the augmented state estimate also reaches a steady-state(
x̂∞, d̂∞). Thus, from Equation 2.111 and Equation 2.113 follows:

d̂∗∞ = d̂∞ (2.154)

= d̂∗∞ + κd (y∞ − ŷ∗∞) (2.155)

where d̂∗∞ and y∞ are the predicted disturbance estimate and the process output at steady-
state respectively and ŷ∗∞ = H

(
x̂∞, d̂∞).

It is straightforward to see that Equation 2.154 implies:

κd (y∞ − ŷ∗∞) = 0 (2.156)

and then from Equation 2.114 results:

y∞ = ŷ∗∞ = ŷ∞ (2.157)

Consider now the target calculation problem and denote its solution as (xs∞,us∞,ys∞). Closed-
loop stability of the equilibrium and positive definiteness of the cost function `s imply:

(x̂∞,u∞) = (xs∞,us∞) (2.158)

where u∞ is the first element of the optimal control profile and x̂∞ is the corresponding
first element of the optimal state sequence.
Equation 2.158 coupled with output constraints of (2.116) and the previous relations, imply
offset-free control i.e.:

ry (y∞) = ry (ŷ∞) = ry (ys∞) = ȳc (2.159)

All the previous reasonings can be summarized in the following theorem [46].

Theorem 5. Assume that the target calculation problem (2.116) and the regulation problem are
feasible at all times, and that the closed loop system reaches an equilibrium with input u∞ and
output y∞. It follows that:

ry (y∞) = ȳc (2.160)

2.5 review of related literature
The earliest industrial implementations of offset-free model predictive control as Dy-

namic Matrix Control (DMC) (Cutler and Ramaker [10]) or Identification and Command
(IDCOM) (Richalet et al. [59]) date back to the ’70. These control algorithms used a par-
ticular class of linear models called finite-impulse or step-response models to predict the
future plant behavior and an output disturbance model to achieve offset-free performances.
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However they were applicable only to square, open-loop, stable systems. State-space MPC
formulations based on more general disturbance models and observer have been discussed
more recently. In this context Pannocchia and Rawlings [47] derived general conditions
and design criteria which apply to linear MPC for square and nonsquare, open-loop sta-
ble, integrating, and unstable systems and allow to achieve offset-free performances. Later,
effective linear formulations based on disturbance models and observers have been matter
of investigation (Pannocchia and Bemporad [44], Maeder et al. [31]) until Rajamani et al.
[54] presented an important result on the disturbance models equivalence. Apparently
different linear offset-free approaches are the velocity form approach [49] and the state dis-
turbance observer approach [67]. In the first the input and (possibly) the state are replaced
by their rate-of-change and the offset-free control is achieved without the need of defining
and estimating disturbances while the other method is characterized by fact that it does
not require state augmentation. However, newly Pannocchia [42] has demonstrated that
these two supposedly alternative approaches are actually particular cases of the distur-
bance model formulation.
The earliest state-space offset-free NMPC algorithm is probably the one proposed by Mead-
ows and Rawlings [34] where an output disturbance, computed at each sampling instant
as the difference between the measured plant output and the model prediction, is added
into the objective function for the entire predictive horizon. Later, Srinivasarao et al. [66]
proposed a formulation that integrates both the state and output disturbances from the
EKF and has the advantage to be applied to open-loop unstable systems. In order to incor-
porate constraints handling abilities in the state estimator unit Huang et al. [23] proposed
an offset-free NMPC based on nonlinear moving horizon estimation (MHE). When there
are no information about the plant-model mismatch or about the disturbances acting on
the system this framework implements a disturbance model which affects both state and
output dynamics. The method has been successfully implemented on a large scale air sep-
aration unit, where reveals himself to be very effective in removing offset in the controlled
variables at steady-state and, when the set-point is not feasible, in minimizing the differ-
ence between the reference signal and the steady-state response. The major disadvantage
of this framework is that it gives no guarantees on the observability of the augmented non-
linear system, therefore, it may be unimplementable in some practical applications. Few
years later, Morari and Maeder [37] have extended the concepts of linear offset-free MPC
to nonlinear MPC. The work presents a generalization of the concepts in Maeder et al. [31],
and Pannocchia and Rawlings [47] and at the same time offers a much simpler exposition
of the ideas behind offset-free linear MPC. Recently, those concepts have been reviewed by
Pannocchia et al. [46] who proposed an NMPC offset-free framework which implements
a linear disturbance model affecting the state evolution whose dynamics is described by a
properly chosen matrix.



3 P R O P O S E D M E T H O D

In this chapter a procedure aimed at designing the most suitable disturbance model
and associated observer to be implemented in an NMPC framework is developed. The
chapter is organized as follows. In section 3.1 the equations describing the plant behavior
and the nominal process model are introduced together with the basic assumptions on
the disturbance dynamics and the constraints on input, output and state. Then, the next
two sections are devoted to the description of the units constituting the offset-free NMPC
framework adopted in this work and of the design choices made. In particular, section 3.2
concerns state augmentation and estimator with a deepening on two disturbance model
employed in common practice, while section 3.3 regards target calculator and regulator.
Eventually, section 3.4 provides a detailed description of the actual procedure highlighting
its peculiar theoretical and computational aspects and showing all the facilities provided by
this method in determining the optimal nonlinear disturbance model to be implemented
in the offset-free NMPC framework designed.

3.1 plant, nominal model and constraints
Assume that the plant to be controlled is described by a set of nonlinear, time-invariant

and discrete equations like (2.92) and that its output is measured at each sample time tk.
The following discrete-time nonlinear system is taken as a representation of the plant dy-
namics:

xk+1 = f (xk,uk, θ0) (3.1a)

yk = h (xk, θ0) (3.1b)

where θ0 ∈ Rnθ denotes the nominal model parameters. The functions f : Rn ×Rm ×
Rnθ → Rn and h : Rn ×Rnθ → Rp are assumed to be continuous.
Disturbances at any sample time tk are defined as:

w∗k = f? (x?k,uk,w?
k) − f (xk,uk, θ0) (3.2)

v∗k = h? (x?k, v?k) − h (xk, θ0) (3.3)

and are assumed to be asymptotically constant and bounded in compact sets: w∗k ∈ W,
v∗k ∈ V.
Input and output are required to satisfy constraints of type (2.96) and (2.97) respectively
and therefore the related sets of admissible inputs and outputs are defined as in (2.98) and
(2.99).
The state constraints set results instead:

X := {xk ∈ Rn |gy (h (xk, θ0)) 6 0} (3.4)

42
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3.2 augmented model and state estimator design
In order to achieve offset-free control in presence of unmodeled, nonzero mean distur-

bances and/or plant-model mismatch the model (3.1), used by the controller, is augmented
with an integrated disturbance term:

xk+1 = F (xk,uk, θ0 + Ldk) (3.5a)

dk+1 = dk (3.5b)

yk = H (xk, θ0 + Ldk) (3.5c)

where L is an Rnθ×nd matrix whose columns are distinct standard unit vectors; the form
of L determines to which process parameters the integrated terms are added. The choice of
L is the key-issue of this thesis and, therefore, it is widely discussed in the sections ahead.
The functions F : Rn ×Rm ×Rnθ → Rn and H : Rp ×Rnθ → Rp are assumed to be
continuous and consistent with the nominal model (3.1), i.e. for all x ∈ Rn and u ∈ Rm

there holds:

F (xk,uk, θ0) = f (xk,uk, θ0) (3.6a)

H (xk, θ0) = h (xk, θ0) (3.6b)

The evolution of the augmented state ζk =
[
xTk d

T
k

]T can be rewritten as:

ζk+1 = Fa (ζk,uk, θ0 + Laζk) (3.7a)

yk = Ha (ζk, θ0 + Laζk) (3.7b)

in which La ∈ Rnθ×(n+nd) is a matrix of the form [0 L]. Even functions Fa : Rn+nd ×Rm×
Rnθ → Rn+nd and Ha : Rn+nd ×Rnθ → Rp are assumed to be continuous and consistent
with (3.1).
An extended Kalman filter is employed as a state estimator for (3.7) to estimate the aug-
mented state from the plant measurements.
The filter uses the following representation of the augmented system dynamics:

ζk+1 = Fa (ζk,uk, θ0 + Laζk,wk) (3.8a)

yk = Ha (ζk, θ0 + Laζk, vk) (3.8b)

in which wk and vk are white, normal, zero-mean and uncorrelated noises with covariance
matrices Qk ∈ R(n+nd)×(n+nd) and Rk ∈ Rp×p respectively.
Thus, the predicted estimates are defined as:

ζ̂k|k−1 = Fa
(
ζ̂k−1|k−1,uk−1, θ0 + Laζ̂k−1|k−1

)
(3.9a)

ŷk|k−1 = Ha
(
ζ̂k|k−1, θ0 + Laζ̂k−1|k−1

)
(3.9b)

and the filtering equation is linear in the form:

ζ̂k|k = ζ̂k|k−1 +Kk
(
yk − ŷk|k−1

)
(3.10)

where Kk ∈ R(n+nd)×p is the Kalman gain matrix introduced in Equation 2.42.
Equation 3.9 and Equation 3.10 are assumed to form an asymptotically stable observer for
the augmented system (3.5).
Equation 3.10 can also be written as:

x̂k|k = x̂k|k−1 +K
x
k

(
yk − ŷk|k−1

)
(3.11a)

d̂k|k = d̂k|k−1 +K
d
k

(
yk − ŷk|k−1

)
(3.11b)
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where Kxk ∈ Rn×p and Kdk ∈ Rnd×p are related to Kk by the following expression:

Kk =

[
Kxk

Kdk

]
(3.12)

From (3.11) is straightforward to see that taking a number of disturbances equal to the
number of outputs, i.e.:

nd = p (3.13)

and the assumption that Kd is full rank are sufficient to ensure that not only condition
(2.114a) is obviously satisfied but also condition (2.114b). Indeed, under the assumptions
made Kdk is a full rank square matrix and hence according to the rank–nullity theorem only
the zero output prediction error vector lies in its nullspace.

3.3 target calculator and controller design
Given the current augmented state estimate from the EKF, the target calculator determine

the equilibrium targets that ensure exact tracking of the controlled variables by solving the
following nonlinear program:

min
xk,uk,yk

`s (yk,uk) (3.14)

subject to: xk = F
(
xk,uk, θ0 + L d̂k|k

)
yk = H

(
xk, θ0 + L d̂k|k

)
ry (yk) = ȳc

yk ∈ Y

uk ∈ U

(3.14) is assumed to be feasible at all times and its (unique) solution is denoted as
(
xsk,usk,ysk

)
.

Let U = {u0,u1 . . . ,uN−1}, X = {x0, x1 . . . , xN} and Y = {y0,y1 . . . ,yN} be, respectively, an
input profile, a state trajectory and an output sequence.
Denote as ∆ui the difference between a manipulated variable ui and its former.

∆ui = ui − ui−1 for i = 0, . . . ,N− 1 (3.15)

Furthermore, let:

ỹi = yi − ȳc for i = 0, . . . ,N (3.16)

Γ̃i =

[
xi − x

s
k

ui−1 − u
s
k

]
for i = 0, . . . ,N (3.17)

The optimal control profile is chosen by solving the following finite-horizon nonlinear op-
timization problem:

min
X,U

N−1∑
i=0

`ocp (ỹi,∆ui) + Vf
(
Γ̃N
)

(3.18)
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subject to: x0 = x̂k|k
xi+1 = F

(
xi,ui, θ0 + L d̂k|k

)
yi = H

(
xi, θ0 + L d̂k|k

)
yi ∈ Y

ui ∈ U

Γ̃N ∈ Cf

in which Vf : Rn+m → R+ and Cf ⊆ X∪U are properly designed terminal set and termi-
nal cost function, respectively, and `ocp : Rp ×Rm → R+ is still a strictly positive definite
convex function.
Assuming that problem (3.18) is feasible, its solution is denoted by

(
Xok,Uok

)
and the asso-

ciated receding horizon implementation is given by:

uk = Uo0 (3.19)

Terminal set and terminal cost function design

The stage cost `ocp of the objective function (3.18) is taken as follows:

`ocp(yi,∆ui) = ‖yi‖2Qreg + ‖∆ui‖
2
Rreg

(3.20)

where Qreq ∈ Rp×p and Rreg ∈ Rm×m and the deviation variables have been replaced
by yi and ∆ui in order to avoid heavy notation. In this formulation Qreg is the matrix
containing the weights on the squared deviations of the output from the origin, while Rreg
is the matrix of weights on the square of the inputs change called move suppression factors.
The larger Rreg in comparison to Qreg, the more the optimizer tends to minimize the
associated input changes and the smoother the control action is. Conversely, employing
large values of Qreg with respect to Rreg the output are driven to the origin quickly even
at the expense of nervous control action.
Consider the following linearization of the state transition equation at the origin:

f (xi,ui) ≈ Aδxi +Bδui−1 +B∆ui +φ (δxi, δui) (3.21a)

δui = δui−1 +∆ui (3.21b)

from which: [
f (xi,ui)

δui−1

]
≈

[
A B

0 I

]
δΓi +

[
B

I

]
∆ui +

[
φ (δxi, δui)

0

]
≈ AaΓi +Ba∆ui +φa (δxi, δui) (3.22)

Thus, in analogy to the general case treated in subsection 2.4.3 the LQR problem objective
function (2.136) has the form:

Jlqr =
1

2

∞∑
i=0

‖Γi‖2QΓreg + ‖∆ui‖
2
Rreg

(3.23)

where:

QΓreg =

[
Qreg 0

0 0

]
(3.24)
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Proceeding in an analogous manner to what was done in subsection 2.4.3 is straightforward
to demonstrate that the choices:

Vf (Γi) =
1

2
‖Γi‖2Π∗ (3.25)

Cf =
{
Γi | ΓiΠ

∗ΓTi 6 α5
}
⊂ X∪U (3.26)

comply with the assumption of Theorem 4 and hence ensure the asymptotic stability of the
closed-loop system origin.

3.4 design of the disturbance model
Although output and (mostly) input disturbance models, discussed in subsection 2.4.1,

often perform adequately, process knowledge could be used to augment the nominal model
with integrating terms more effectively. For instance, if disturbances are known to enter
a process through specific parameters, it seems reasonable to add the integrators to these
parameters. However, when the number of disturbances which are known to enter the
process through specific parameters is greater than the number of outputs there is the
problem of establishing on which parameters to put the integrated terms.
In this section a systematic and structured procedure to overcome this issue and implement
a very effective nonlinear disturbance model is proposed.

3.4.1 Observability limitation
In order to update the augmented state estimate with Equation 3.10 and hence achieve

offset-free control performances the augmented system (3.5) has to be observable at least
in a neighborhood of the steady-states (xs,us) where the plant has to be controlled.
Thus, the first step of the disturbance design procedure is to determine which ones of all
the candidate augmented systems of type (3.5) are observable.
Different approaches must be adopted in dependence of the operating point stability

Introduced the preliminary definitions above it is now possible to proceed with the de-
tailed description of the first phase of the disturbance model designon procedure.

Stable operating point

According to the following definition, suppose that (xs,us) is an exponentially stable
steady-state.

Definition 18 (Exponentially stable equilibrium point). Let xs be an equilibrium point of
the continuous-time nonlinear system (2.49) with constant input us.
xs is called an exponentially stable equilibrium point of (2.49) if there exist some constants α6,
α7 and α8 > 0 such that the solution x satisfies∣∣x∣∣ 6 α6∣∣x0∣∣e−α8(t−t0) ∀

∣∣x0∣∣ < α7 and t > t0 > 0 (3.27)

α8 is called the rate of convergence.

In this case the observability of the augmented system (3.5) is verified by checking the
observability covariance matrix rank condition (3).
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Note that in order to obtain reliable results the sizes of the perturbations for each direction
cm must be chosen in a way such that:

x (0) = xs + cmTlei (3.28)

remains in the region of attraction of xs during the test.
The observability covariance matrix of the augmented system (3.5) can be decomposed into:

WO =

[
WOxx WOxd

WOdx WOdd

]
(3.29)

whereWOxx is the observability covariance matrix of the nonaugmented system (3.1),WOdd
represents the covariances of the outputs with respect to disturbances andWOxd andWOdx ,
which are one the transposed of the other, represent the covariance of the outputs resulting
from changes in the state variables and disturbances.
From Equation 3.29 it is straightforward to see that different disturbance models, each one
corresponding to a specific choice of L, will lead to a distinct WO. Thus, measures of the
degree of observability can be used to rank all candidate augmented systems from the
most observable in the region of interest to the least one. As in control applications it is
important that a minimum degree of observability exists even in the worst system direction,
measure (2.83) is used.
In general it is impossible to establish a limit value for λmin (WO) under which an aug-
mented model can be considered practically unobservable. Thus, defined the following
sequences of asymptotically constant disturbances:

Wsim =
{
wsim0 ,wsim1 , . . . ,wsimNsim

}
(3.30)

Vsim =
{
vsim0 , vsim1 , . . . , vsimNsim

}
(3.31)

where wsimi ∈ W and vsimi ∈ V, the augmented systems behavior in presence of dis-
turbances is simulated for a time interval of length tNsim and the candidate disturbance
models which result unobservable are discarded. The augmented models must be tested
in descending order of degree of observability. In this way if during the simulations a can-
didate augmented system results unobservable then all the other characterized by a lower
degree of observability should not be analyzed and can be discarded.
The procedure is summarized in Figure 13.
Under the assumptions made each candidate augmented model that meets the observabil-
ity requirement allows the regulator to remove offset in the controlled variables if imple-
mented in an NMPC framework. Therefore, if high performances are not required then one
may think to skip the second phase of the procedure and take directly the most observable
augmented model.
In this case it is possible to automate the disturbance model design by formulating and
solving the following optimization problem:

min
a

min
i
λmin (W0,i) (3.32)

subject to: xk+1 = F
(
xk,uk, θ0 + aTdk

)
yk = H

(
xk, θ0 + aTdk

)
na∑
i=0

ai = p

ai ∈ {0, 1} for i = 1, . . . ,na
where a ∈ Rna is a constant vector and W0,i is the observability covariance matrix relative
to a certain distance from the operating point.
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Define a set with all candidate augmented
models resulting from nθ !

nd !(nθ−nd)! different
choices of L

Initialize the augmented model selection:

i = 1

Compute WO:

WO =
∑r
l=1

∑s
m=1

1
rsc2m

∫∞
0 TlΨ

lm(t)TTl dt

and store the value of µ1 = λmin (W0)

i = i+ 1

is i > nθ !
nd !(nθ−nd)! ?

Rank the candidate augmented models on
the base of their degree of observability

Initialize the augmented model selection:

i = 1

Test the i-th candidate augmented model on
a properly designed disturbance sequence

Is the i-th candidate augmented model ob-
servable?

End of the procedure

Set i = i+1 and retain the candidate aug-
mented model for the second phase of
the disturbance model design procedure
(vd.subsection 3.4.2)

is i > nθ !
nd !(nθ−nd)! ?

End of the procedure

no

yes

no

yes

no

yes

Figure 13: Observable augmented models design procedure for systems running in the region of
attraction of stable operating points.
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Unstable operating point

The observability covariance matrix cannot be computed for unstable operating points,
therefore, in dependence of the structure of the system there is the need of employing the
Kalman rank test (2) on the linearized model or the observability rank test (2.60).
According to this criteria, they will be retained only augmented models for which:

rank Θ (ζ) = n+nd (3.33)

or
rank O = n+nd (3.34)

while the other are discarded.
In this case it is not possible to rank the retained augmented models on the base of their
degree of observability. Therefore, the augmented models behavior must be simulated
on the disturbance sequences W∗sim and V∗sim in order to establish which of them are
observable in the region of interest and discard the unobservables.
The whole procedure is summarized in Figure 14.

3.4.2 Design of the optimal disturbance model
As stated above, each observable augmented model in principle is able to ensure offset-

free control if implemented in an NMPC framework. However, depending on the distur-
bance model which is used the robust performances of the offset-free controller will be
quite different as the effects of adding integrating disturbances are specific to the applica-
tion in the nonlinear context.
The aim of this second part of the disturbance model design procedure is to determine
which one of the observable augmented models resulting from the previous test performs
better in closed-loop.
In order to accomplish this end there is the need to compare the closed-loop performances
of each NMPC algorithm linked to each candidate disturbance model. However, as the
regulator performances are highly dependent from the state estimator ones, the extended
Kalman filter employed for each augmented model must be properly tuned so that the
performances of each regulator are the better achievable.
As frequently the measurement error statistics remain constant during time, Rk is assumed
to be time-invariant, i.e.:

Rk = R (3.35)

and the value of R is evaluated by taking some off-line sample measurements and comput-
ing the measurement error variance.
Qk cannot be determined in an analogous deterministic way, therefore, to simplify the
tuning operations it assumed to be time-invariant like R:

Qk = Q (3.36)

and diagonal.
Note that the latter assumption is equivalent to consider that the process noises acting on
the augmented state are independent from each other.
Thus, taking an optimization based approach, the extended Kalman filter tuning problem
can be formalized as follows:

min
Q

Jtun (3.37)
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Define a set with all candidate augmented
models resulting from nθ !

nd !(nθ−nd)! different
choices of L

Initialize the augmented model selection:

i = 1

Check the observability rank condition:

rank Θ (ζ) = n+nd

or the Kalman rank condition on the lin-
earized model:

rank O = n+nd

Is the rank condition verified?

Test the i-th candidate augmented model on
a properly designed disturbance sequence

Is the i-th candidate augmented model ob-
servable?

Discard the i-th candidate
augmented model

Retain the i-th candidate augmented model
for the second phase of the disturbance
model design procedure (vd.subsection 3.4.2)

Set i = i+ 1

is i > nθ !
nd !(nθ−nd)! ?

End of the procedure

yes

no

no

yes

no

yes

Figure 14: Observable augmented models design procedure for systems operating in a neighbor-
hood of unstable steady-states.
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subject to: Qmin 6 Q 6 Qmax

where Qmin and Qmax are nonnegative diagonal matrices whose diagonal elements rep-
resent respectively the lower and the upper bounds of the diagonal elements of Q. These
matrices may results from the process knowledge, from information available in literature
or from tests previously conducted on the filter.
In filtering literature (see e.g. Powell [51] or Ting et al. [69]) it is common to develop
performance criteria as functions of the estimation error. However, when these objective
functions are adopted to tune the EKF of the NMPC framework in presence of disturbances
and noises, several optimization algorithms do not converge or progress slightly from the
initial condition. In particular, gradient-based methods fail because of the difficulty in an-
alytically calculating the gradient, approximating the cost function with a well-behaved
function, and the instability of numerical differentiation of noisy functions [4]. Even down-
hill simplex [51] has reveal itself unsuitable for this class of problems.
In order to overcome this issue, defined:

∆uk = uk − uk−1 (3.38)

and the tracking error:
ỹk = yk − ȳc (3.39)

the following solution is proposed:

min
Q

Nsim∑
k=0

`tun (ỹk,∆uk) (3.40)

subject to: Qmin 6 Q 6 Qmax

where `tun : R(n+nd)×(n+nd) ×Rp ×Rm → R+ is a strictly positive definite function.
When the disturbance sequences are applied to the system for which the state estimator has
to be tuned, the estimation error returns in a neighborhood of zero in a smaller amount
of time respect to the tracking error. Because of this, small improvements in the state
estimator performances are more visible on the tracking error than on the estimation error
and hence (3.40) is easiest to solve for numerical algorithms than optimization problems
which involve estimation error based objective functions.
Furthermore, from (3.18) it is straightforward to see that the smaller the estimation errors,
the better the control actions and the smaller the value of `t in the minimum. For this
reason, solve the optimization problem (3.40) indirectly leads to a minimization of a certain
function of the estimation error.
In conclusion, note that `tun (·) depends solely on measurable terms and hence the filter
performances can be easily monitored by operators.

Computational method

The objective function of the nonlinear program (3.40) is subject to noise and is char-
acterized by the presence of multiple local minima. For these reasons, a highly accurate
solution is not necessary, and may be impossible to compute also considered the fact that
there are no prior information available to initialize the optimization close to the solution.
Thus, all that is desired is an improvement in the objective function value rather than a full
optimization.
Global optimizers like genetic algorithms, differential evolution, and simulated annealing
are very effective methods but they cannot be adopted because of their high computational
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cost. Therefore, a brute force approach is used.
A brute-force approach is an algorithm that evaluates the objective function at each point
of a multidimensional grid of points and returns as solution the gridpoint at which the
lowest value of the objective function occurs.
Clearly, testing more points increases the computational cost of the method, however, at the
same time it raises the odds of the algorithm of getting smaller objective function values.
Note that this rule of thumb is not guaranteed because of the stochastic nature of the algo-
rithm. Indeed, it could easily be the case that in one short run the algorithm fortuitously
finds a point very close to the minimum achievable while in another much longer run the
algorithm is a less fortunate and does not get as close.
Although simplistic, the brute-force approach has the advantage of being able to work with
any objective function, even one that has a complex and irregular shape, multiple local op-
tima, and discontinuities. Furthermore, by trying points on the grid and always keeping
the optimal one, it is likely to get close to the global optimum and certain not to get stuck
in a local optimum [20]. However, when the algorithm gets a point close to the global
optimum, it does not improve on it except by possibly testing an even closer point.
Therefore, in order to give a significant improvement to the optimum found by the brute-
force search and achieve a better result the algorithm is followed by a certain number of
iterations of the Nelder-Mead method (see subsection A.3.3).
Since such optimizer is designed to solve unconstrained optimization problems, the non-
linear program (3.40) must be reformulated as follows:

min√
Q

Nsim∑
k=0

`tun (ỹk,∆uk) (3.41)

The Nelder-Mead algorithm does not require any derivative information and typically per-
forms one or two function evaluations per iteration. For these reasons it reveals itself
particularly suitable for the resolution of problems like (3.41) characterized by non-smooth
and noisy objective functions and very time-consuming function evaluations.



4 C A S E S T U DY: N O N - I S OT H E R M A L C S T R

This chapter illustrates the presented technique by determining the optimal disturbance
model to be implemented in the offset-free NMPC framework adopted, for the control of
an highly nonlinear plant. The control performances obtained are then compared to the
ones of other frameworks available in literature. The detailed outline of the chapter is as
follows. In section 4.1 a description of the nonlinear system used for the case study is given
highlighting the peculiarities of its dynamics and defining which are the control tasks to
be achieved. In section 4.2 and section 4.3 concern the state estimator, target calculator
and controller designs according to the rules given in the previous chapter. Section 4.4
is devoted to the application of the proposed method to the motivating example; it leads
to the synthesis of an NMPC offset-free framework whose control performances are then
evaluated and discussed in section 4.5.

4.1 plant model and control task
A non-isothermal continuous stirred tank reactor as shown in Figure 15 is considered.

This reactor was described in Pannocchia and Rawlings [47] and is adopted unchanged in
this work. An irreversible exothermic first-order reaction A→ B occurs in the liquid phase
and the temperature is regulated with external cooling.

F0 , T0 , c0 

Tc

h

r
F T , c 

Figure 15: Schematic of the well-stirred reactor.
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Mass and energy balances lead to the following nonlinear state-space model:

dc

dt
=

(F0c0 − Fc)

πr2h
− k0 exp

(
−
E

RT

)
c (4.1a)

dT

dt
=
F0 (T0 − T)

πr2h
+

(−∆H)

ρCp
k0 exp

(
−
E

RT

)
c+

2U0
rρCp

(Tc − T) (4.1b)

dh

dt
=
F0 − F

πr2
(4.1c)

The model parameters in nominal conditions are reported in Table 2.
The controlled variables are the reactant concentration, c, and the level of the tank, h; the
third state variable is the reactor temperature, T . The manipulated variables are the the
outlet flow rate, F, and the coolant liquid temperature, Tc.

x =

cT
h

 u =

[
Tc

F

]

Thus, (4.1) can be rewritten as:

dx1
dt

=
F0c0
πr2x3

− k0 exp
(
−
E

Rx2

)
x1 −

x1
πr2x3

u2 (4.2a)

dx2
dt

=
F0 (T0 − x2)

πr2x3
+

(−∆H)

ρCp
k0 exp

(
−
E

Rx2

)
x1 −

2U0
rρCp

x2 +
2U0
rρCp

u1 (4.2b)

dx3
dt

=
F0
πr2

−
1

πr2
u2 (4.2c)

from which it is straightforward to see that it has a control affine structure and that the
level dynamics is an integrator.
This class of reactors is characterized by a dynamics heavily dependent on the reactor pa-
rameters and having multiple equilibrium points (stable and unstable ones). Knowing the
existence of multiple steady-states and that some may be unstable, it is important to assess
how stable the reactor operation is to variations in the processing parameters. In general,
stable operating point have low sensitivity to variations in the processing parameters, while
clearly the unstable ones are highly sensitive. For the system under investigation the oper-
ating conditions corresponding to each open-loop steady-state are reported in Table 3.
As computer calculation are inherently discrete, a discretized model must be found from
(4.1). Performing such discretization as an explicit 4th order Runge-Kutta integration with a
fixed sampling time ∆t = 12 sec and a zero-order hold on the input provides an acceptable
numerical accuracy and hence numerical stability. This discretization scheme consists in
dividing each sampling intervals into a fixed number n∗ of steps:

∆t∗ =
∆t

n∗
(4.3)

and then in computing the value of the state as:

xk+1 = xk +
∆t∗

6
(k1 + 2k2 + 2k3 + k4) (4.4)



4.1 plant model and control task 55

Table 2: Parameters of the well-stirred reactor.

Symbol Parameter
Nominal

value
Units

F0 Inlet flow rate 0.1 m3

min

T0 Inlet temperature 350.0 K

c0
Inlet concentration

of the reagent
1.0 kmol

m3

r Radius 0.219 m

k0
Pre-exponential

factor
7.2 · 1010 min−1

E
R

Activation energy

over universal gas

constant

8750 K

U0
Overall heat

transfer coefficient
54.94

kJ
min·m2·K

ρ Density 1000
kg
m3

Cp
Specific heat

capacity
0.239

kJ
kg·K

∆H Heat of reaction −5.4 · 104 kJ
kmol

Table 3: Open-loop steady-state operating point of the well-stirred reactor

Eq. point c
[
kmol
m3

]
T [°C] h [m] Stability

# 1 0.206 97.0 0.659 stable

# 2 0.500 77.0 0.659 unstable

# 3 0.878 51.5 0.659 stable
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where:

k1 = f (xk) + g (xk)uk (4.5)

k2 = f

(
xk + k1

∆t∗

2

)
+ g

(
xk + k1

∆t∗

2

)
uk (4.6)

k3 = f

(
xk + k2

∆t∗

2

)
+ g

(
xk + k2

∆t∗

2

)
uk (4.7)

k4 = f (xk + k3∆t
∗) + g (xk + k3∆t

∗)uk (4.8)

Using an n∗ = 10 in Equation 4.3, a discrete state-space model is obtained and, assuming
that only the reactant concentration and the level of the tank are measured, the output
variable is:

y =

[
c

h

]
The corresponding nonlinear model has a very complex form and can be expressed in
general terms as follows:

xk+1 = f (xk,uk) (4.9a)

yk = Cxk (4.9b)

where:

C =

[
1 0 0

0 0 1

]
Note that the system dynamics has no longer a control affine structure after the discretiza-
tion. The input is required to satisfy the following constraints at all times:[

295.0 K

0.0 m3

min

]
6 u 6

[
305.0 K

0.25 m3

min

]

while the state: 0.0
kmol
m3

320.0 K

0.50 m

 6 x 6

1.0
kmol
m3

375.0 K

0.75 m


The control objective is to regulate the outlet concentration and the liquid level to their
set-point values without offset in presence of unmeasured, nonzero disturbances acting on
the system and plant-model mismatch.

4.2 augmented model and state estimator design
In order to achieve offset-free control in the controlled variables the nominal model (4.9)

is augmented with the disturbance representation proposed in section 3.2 to give:

xk+1 = F (xk,uk, θ0 + Ldk) (4.10a)

dk+1 = dk (4.10b)

yk = Cxk (4.10c)
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Typically, in CSTR reactors disturbances occur in the feed flow rate, temperature and com-
position because they are often determined by upstream processing units. Furthermore,
determining kinetic and thermodynamic parameters related to a particular chemical reac-
tion and the heat transfer coefficient is often a difficult experimental challenge which may
lead to modelling errors.
For these reasons θ0 is taken as:

θ0 =



F0

T0

c0

∆H

E
R

k0

U0


From (4.10) is straightforward to derive the following evolution of the augmented state ζk:

ζk+1 = Fa (ζk,uk, θ0 + Laζk) (4.11a)

yk = Caζk (4.11b)

where:

Ca =

[
1 0 0 0 0 0

0 0 1 0 0 0

]
Recalled from condition (3.13) that disturbance and output vectors should have the same
dimension, note that La must select two disturbances at the most.
The extended Kalman filter employed for (4.11) to estimate the augmented state ζk given
the plant measurement yk makes use of the mentioned representation of the augmented
system dynamics:

ζk+1 = Fa (ζk,uk, θ0 + Laζk) +wk (4.12a)

yk = Caζk + vk (4.12b)

The measurements noise covariance matrix is assumed to be determined from the sensor
characteristics provided by the manufacturers and is taken as:

R =

[
10−5 0

0 10−5

]
while the process noise covariances are derived case by case from a manual tuning of the
filter.
According to (3.9) the predicted estimates are defined as:

ζ̂k|k−1 = Fa
(
ζ̂k−1|k−1,uk−1, θ0 + Laζ̂k−1|k−1

)
(4.13a)

ŷk|k−1 = Caζ̂k|k−1 (4.13b)

and the filtering equation is:

ζ̂k|k = ζ̂k|k−1 +Kk
(
yk − ŷk|k−1

)
(4.14)

or equivalently:

x̂k|k = x̂k|k−1 +K
x
k

(
yk − ŷk|k−1

)
(4.15a)

d̂k|k = d̂k|k−1 +K
d
k

(
yk − ŷk|k−1

)
(4.15b)
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4.3 target calculator and controller design
Given the current disturbance estimate, d̂k|k, the state and input targets are computed

by solving the following nonlinear program with quadratic cost function:

min
xk,uk

‖yk − ȳc‖|2Qss (4.16)

subject to: xk = F
(
xk,uk, θ0 + L d̂k|k

)
yk = Cxk

ry (yk) = ȳc0.0
kmol
m3

320.0 K

0.50 m

 6 xk 6

1.0
kmol
m3

375.0 K

0.75 m


[
295.0 K

0.0 m3

min

]
6 uk 6

[
305.0 K

0.25 m3

min

]
where Qss is a diagonal matrix containing the weights on the squared deviations of the
output targets from the set-point values; the larger the coefficient, the more the optimizer
tends to minimize the associated deviation. Weighting the deviation relative to another is
simple if all outputs would have the same engineering units otherwise may be more com-
plicated. In order to overcome this issue the weights appearing in quadratic cost functions
are generally defined as the inverse square of the so called equal concern error (ECE):

qii =

(
1

ECEi

)2
(4.17)

Relatively to the target calculation the ECE can be viewed as the deviation of each output
target from the desired set-point (in engineering units) that causes a level of concern that is
equal to all the other deviations. Note that this factor both normalize the engineering unit
values and prioritized them at the same time.
As for a CSTR reactor deviations of the reactant concentration are clearly much more un-
desired than deviations of the tank level, the following weighting matrix is adopted:

Qss =

[
10 0

0 1

]
(4.18)

At each time instant the optimal control sequence is derived from the solution of the fol-
lowing finite horizon optimal control problem:

min
X,U

N∑
i=0

‖yk − ȳc‖2Qreg + ‖∆uk‖
2
Rreg

+ Vf
(
Γ̃N
)

(4.19)
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subject to: x0 = x̂k|k
xi+1 = F

(
xi,ui, θ0 + L d̂k|k

)
yi = Cxi

ry (yk) = ȳc0.0
kmol
m3

320.0 K

0.50 m

 6 xi 6

1.0
kmol
m3

375.0 K

0.75 m


[
295.0 K

0.0 m3

min

]
6 ui 6

[
305.0 K

0.25 m3

min

]
Γ̃N ∈ Cf

where the terminal set and the terminal cost function are designed as follows:

Cf = {0} ⊂ X∪U (4.20)

Vf
(
Γ̃N
)
= ‖Γ̃N‖2Π∗ (4.21)

in accordance with the stabilizing condition outlined in section 3.3.
An horizon of N = 50 is used and the weighting matrices are taken as:

Qreg =

[
1 0

0 1

]
Rreg =

[
10−3 0

0 10−3

]
(4.22)

Substituting Equation 4.20 and Equation 4.21 into (4.19) provides the definitive form of the
optimal control problem that must be solved in the regulator:

min
X,U

N−1∑
i=0

‖ỹi‖2Qreg + ‖∆ui‖
2
Rreg

+ ‖Γ̃N‖2Π∗ (4.23)

subject to: x0 = x̂k|k
xi+1 = F

(
xi,ui, θ0 + L d̂k|k

)
yi = Cxi0.0

kmol
m3

320.0 K

0.50 m

 6 xi 6

1.0
kmol
m3

375.0 K

0.75 m


[
295.0 K

0.0 m3

min

]
6 ui 6

[
305.0 K

0.25 m3

min

]
Γ̃N ∈ {0}

Both target calculation and optimal control problem are solved with IPOPT (Wächter and
Biegler [71]), a software library for large scale nonlinear optimization (see subsection A.3.2
for further insights) being run from the Python interface to the open-source CasADi frame-
work (Andersson [2]).
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4.4 design of the disturbance model
According to the disturbance and parameter vectors dimensions defined previously the

number of candidate augmented model results:

Ncan =
nθ!

nd! (nθ −nd)!

=
7!

2! (7− 2)!
= 21 (4.24)

In order to determine which of them is the most suitable to be implemented in the NMPC
framework the disturbance design strategy proposed in section 3.4 is applied.

4.4.1 Observability limitation
This phase of the procedure is aimed at ensuring the observability of the augmented

system and varies according to the nature of the operating point of interest.

Stable operating point #3

In this case the open-loop steady-state operating conditions are the following:

hs = 0.659 m, cs = 0.877
kmol

m3
, Ts = 324.5 K,

Fs = 0.1
m3

min
, Tsc = 300 K.

from which:

xs =

0.877324.5

0.659

 us =

[
300

0.1

]
ȳc =

[
0.877

0.659

]

The operating region of interest for the reactor is chosen to be ± 9.5 % around (xs,us),
therefore, each candidate augmented system is perturbed within the stability boundaries
of the operating point in the directions identified by the undermentioned set of matrices:

Tn = {I,−I} (4.25)

with the following different perturbation sizes for each perturbation direction:

M = {0.005, 0.01, . . . , 0.095} (4.26)

Thus, the observability covariance matrix W0 is computed for each candidate augmented
model by solving the system (4.10) with perturbed initial conditions from time 0 to 10 min
and sampling data every 12 sec from the simulation.
The computations result in three hundred ninety-nine matrices (nineteen perturbation sizes
for each candidate augmented model) with five rows and column, which are not shown
because of their number.
The degrees of observability obtained for each candidate augmented model are reported in
Figure 16.



4.4 design of the disturbance model 61

0 0.5 1 1.5 2 2.5

·10−5

[F0,T0][
F0,ER

][
T0,ER

]
[F0,c0]

[F0,k0]

[T0,c0]

[c0,k0][
c0,ER

]
[F0,U0][
E
R ,k0

]
[F0,∆H]

[T0,k0]

[T0,U0][
E
R ,U0

]
[c0,U0]

[c0,∆H]

[k0,U0]

[∆H,U0]

[k0,∆H]

[T0,∆H][
E
R ,∆H

]
λmin (WO)

R
ea

ct
or

pa
ra

m
et

er
s

on
w

hi
ch

th
e

di
st

ur
ba

nc
e

is
ad

de
d

Figure 16: Degree of observability of each candidate augmented model.
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Figure 16 shows that
[
E
R ,∆H

]
, to which corresponds following continuous-time augmented

model:

dx1
dt

=
F0c0
πr2x3

− k0exp

(
−
E

Rx2
+ d1

)
x1 −

x1
πr2x3

u2 (4.27a)

dx2
dt

=
F0 (T0 − x2)

πr2x3
+

(−∆H+ d2)

ρCp
k0exp

(
−
E

Rx2
+ d1

)
x1 −

2U0
rρCp

x2 +
2U0
rρCp

u1 (4.27b)

dx3
dt

=
F0
πr2

−
1

πr2
u2 (4.27c)

dd1
dt

= 0 (4.27d)

dd2
dt

= 0 (4.27e)

is unobservable in the region of interest as it is characterized by a practically zero value
of λmin (W0). As it is not possible to establish an a priori lower bound for the value of
λmin (W0), the dynamic behaviors of the other candidate augmented models are simulated
for a time interval tNsim = 1291 min, in descending order of λmin (W0), on the disturbance
sequence depicted in Figure 17.
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Figure 17: Time varying disturbance sequence in the case of stable operating point.

The results of the simulation made on the augmented model corresponding to
[
T0, ER

]
concerning positive deviations of the inlet flow rate from its nominal value in absence
of noise have been isolated from the whole sequence for a better comprehension and are
reported in Figure 18.
These reveal the presence of offset in the controlled variables which is a clear signal that
such augmented model is unobservable in the region of interest for disturbances acting on
the inlet flow rate. In particular at the steady-state results:

det
(
KdNsim

)
= det

[
−226.648 −1.19094

34.1218 0.179297

]
= 2 · 10−4

≈ 0
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Figure 18: Closed-loop performances in presence of a disturbance on the inlet flow rate for an
NMPC framework with implemented the augmented model corresponding to

[
T0, ER

]
.

which violates condition (2.114b) and hence prevents the disturbance estimate to converge
to the true value.
Since such augmented model is not observable, all the others characterized by a smaller de-
gree of observability are discarded while the ones linked to [F0, T0] and

[
F0, ER

]
are retained

for the second phase of the procedure.

Unstable operating point #2

This steady-state is identified by the following operating condition:

hs = 0.659 m, cs = 0.500
kmol

m3
, Ts = 350 K,

Fs = 0.1
m3

min
, Tsc = 300 K.

from which:

xs =

0.500350

0.659

 us =

[
300

0.1

]
ȳc =

[
0.500

0.659

]

As the discrete-time system under investigation has not a control affine structure, only the
Kalman rank test (2) on the linearized model can be used to check the local weak observ-
ability of each candidate augmented model. The results obtained by employing the Kalman
rank test on the linearized models are shown in Table 4.
Then, the dynamic behavior of each candidate augmented model verifying the Kalman
rank condition is simulated for a time interval tNsim = 1291 min in presence of the distur-
bance sequence reported in Figure 19.
Note that this sequence is characterized by minor deviations if compared to the one adopted
for the stable steady-state since, as stated above, unstable operating points are more sensi-
tive to variations in the processing parameters.
Even in this case the simulations show that only the candidate augmented model corre-
sponding to [F0, T0] and

[
F0, ER

]
are observable in the region of interest and hence are the
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Table 4: Results of the observability tests performed on each candidate augmented model.

Reactor parameters

on which the

disturbance is added

Kalman rank

condition

[F0,T0] Verified[
F0,ER

]
Verified[

T0,ER
]

Verified

[F0,c0] Verified

[F0,k0] Verified

[T0,c0] Unverified

[c0,k0] Unverified[
c0,ER

]
Unverified

[F0,U0] Verified[
E
R ,k0

]
Unverified

[F0,∆H] Verified

[T0,k0] Unverified

[T0,U0] Unverified[
E
R ,U0

]
Unverified

[c0,U0] Verified

[c0,∆H] Unverified

[k0,U0] Unverified

[∆H,U0] Unverified

[k0,∆H] Unverified

[T0,∆H] Unverified[
E
R ,∆H

]
Unverified
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Figure 19: Time varying disturbance sequence in the case of stable operating points.
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only retained for the second phase of the disturbance design procedure.

As in both cases of stable and unstable operating point the same candidate augmented
models (i.e. the ones corresponding to [F0, T0] and

[
F0, ER

]
) turn out to be observable in

the regions of interest, the most performing disturbance model design is almost the same
in both situations. Therefore, in the next subsection it will be treated only the case of the
stable steady-state # 1.

4.4.2 Selection of the optimal disturbance model
In order to determine which of the two observable augmented model ensures the better

closed loop performances the proposed method states that the state estimator must be
tuned using an optimization based approach. Furthermore, it asserts that this optimization
problem must be solved through an exhaustive search over a multidimensional grid of
points followed by a certain number of iterations of the Nelder-Mead algorithm. As the
problem domain has infinite dimension, it is not possible to explore it all and hence the
grid should be built so as to include a region in which a sufficiently good (and possibly
global) minimum is located.
In order to achieve this task there is the need to find an initial point from which to create the
grid for the brute force search. In the previous phase of the procedure the extended Kalman
filters employed to estimate the augmented state of each candidate augmented model have
been tuned by trial and error adjusting the values ofQ until acceptable simulated responses
were achieved. Varying these Q matrices by trial and error in such a way as to improve the
filter performances according to the undermentioned objective function:

Jtun (ỹk,∆uk) =
Nsim∑
k=0

‖ỹk‖2Qreg + ‖∆uk‖
2
Rreg

(4.28)

yields to the following initial points:

Q
[F0,ER ]
man =



10−2 0 0 0 0

0 10−2 0 0 0

0 0 10−2 0 0

0 0 0 1000 0

0 0 0 0 1000


Q

[F0,T0]
man =



0.1 0 0 0 0

0 0.1 0 0 0

0 0 0.1 0 0

0 0 0 1000 0

0 0 0 0 1000


to which corresponds the following values of the objective function:

J
[F0,ER ]
tun,man = 11.801 J

[F0,T0]
tun,man = 15.549
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DeterminedQ[F0,ER ]
man andQ[F0,T0]

man , by analyzing the dynamic behavior of each associated aug-
mented model during the simulations the following bounds on the optimization variables
are derived:

Q
[F0,ER ]
min =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 500 0

0 0 0 0 500


Q
[F0,ER ]
max =



10−2 0 0 0 0

0 10−2 0 0 0

0 0 10−2 0 0

0 0 0 3000 0

0 0 0 0 3000



Q
[F0,T0]
min =



10−2 0 0 0 0

0 10−2 0 0 0

0 0 10−2 0 0

0 0 0 100 0

0 0 0 0 100


Q

[F0,T0]
max =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 3000 0

0 0 0 0 3000


The results obtained from the brute force searches conducted in the regions subtended
from such bounds are reported in Figure 20.
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Figure 20: Objective function value against number of grid points for the two observable aug-
mented models.

From the graph it is possible to note how the objective function (4.28) requires approxima-
tively 2.78 min to be evaluated making the resolution of the tuning optimization problem
very onerous from a computational point of view. In general, fixed the NMPC framework
parameters, the function evaluation time increases with increasing values of tNsim and
hence with the number of disturbances investigated in the test sequence.
In second instance, note that in both cases the brute force search in approximatively 300

iterations leads to a 43÷ 55.5% improvement of the filter performances with respect to the
manual tuning. This is enough to motivate the use of an optimization based approach for
the tuning of the filter and more in general for the design of the optimal augmented model.
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Afterwards, the square root of each optimum found with the exhaustive search is taken as
initialization for the Nelder-Mead optimizer. In order to control the computation time a
maximum number of function evaluations equal to 600 has been used as no-convergence in
time test (see subsection A.3.3) for the algorithm. Recalling that the objective function (4.28)
needs 2.78 min to be evaluated, the criterion adopted forces the algorithm to compute a
solution of the optimization problem within approximatively 28 hr at maximum.
Note that for the Nelder-Mead method such test is not equivalent to impose a limit on the
maximum number of iterations, as at each iteration the optimizer may perform from one
to three function evaluations depending on the simplex transformation.
The results obtained are reported in Figure 21.
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Figure 21: Objective function value against number of grid points for the two observable aug-
mented models.

From the graph it can be noted that the minimum value of the objective function is reached
by the candidate disturbance model in which the integrating terms are added to

[
F0, ER

]
which is, therefore, the optimal ones to be implemented in the NMPC framework described
in the previous sections of this chapter. In the aftermath, it can be stated that similar re-
sults could have been achieved even with the exhaustive search only, however, in general
the usage of the Nelder-Mead optimizer provides more guarantees on the optimal solution
found.
Comparing Figure 21 and Figure 20 it is straightforward to see that the experimental points
are still at the same distance from each other and simply shifted in time of 28 hr. This
means that for each initialization value the Nelder-Mead optimizer performs the maximum
number of function evaluation allowed and hence that is possible in principle to obtain fur-
ther improvements in the objective function value by increasing the maximum number of
function evaluations. Alternatively, one may also think to find better local minima by en-
larging the region of the objective function domain and/or by increasing the number of
grid points for the exhaustive search. However, in both cases for this problem the computa-
tional cost of the optimization may become too onerous even for an off-line procedure like
this.
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4.5 performances and comparisons
In order to prove the effectiveness of the proposed method, the disturbance rejection

performances of the offset-free NMPC framework derived in the previous sections are com-
pared with the ones of the main proposals available in literature.
These latter implement one of the following alternatives:

1. Input disturbance model (see subsection 2.4.1).

2. Output disturbance model (see subsection 2.4.1).

3. Linear disturbance models (LDMs) of various types.

and use an observer manually tuned on the base of the observed responses.
As offset-free NMPC framework implementing a linear disturbance model a revisited ver-
sion of the one proposed by Tatjewski [67] for the linear case is considered.
In this formulation, at each time k the current state is estimated employing an extended
Kalman filter designed for the nominal model (4.9) by means of:

x̂k|k = x̂k|k−1 +Kk (yk − ŷk) (4.29a)

ŷk = Cx̂k|k−1 (4.29b)

Given the filtered estimate, a state disturbance is consequently defined and computed as:

dxk = x̂k|k − x̂k|k−1 (4.30)

= Kk (yk − ŷk) (4.31)

In addition, an output correction term, which is necessary to ensure offset-free tracking, is
defined as:

d
y
k = yk − ŷk (4.32)

Thus, the prediction model used, at time k, is:

x̂k+1|k = f
(
x̂k|k,uk

)
+ dxk (4.33a)

ŷk = Cx̂k|k−1 + d
y
k (4.33b)

According to Pannocchia [42], such method is equivalent to a particularization of the gen-
eral approach theorized in Pannocchia and Rawlings [47] in which the filtered estimates of
states and disturbances are given by:

x̂k|k = x̂k|k−1 +K
x
k (yk − ŷk) (4.34a)

d̂k|k = d̂k|k−1 +K
d
k (yk − ŷk) (4.34b)

while the predictions, at time k, by:

x̂k+1|k = f
(
x̂k|k,uk

)
+Bdd̂k|k (4.35a)

d̂k+1|k = d̂k|k (4.35b)

ŷk = Cx̂k|k−1 +Cdd̂k|k (4.35c)

where:
Bd = Kk, Cd = I−CKk, Kxk = Kk, Kdk = I

and for all k there holds that:
d̂k|k = dyk +Cd

x
k (4.36)

Note that in special case in which Kk = 0 such LDM particularized in the ODM.
Comparisons will regard four “class” of disturbance and plant\model mismatch which
often arise in CSTR reactors:
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1. Disturbances on the feed properties.

2. Plant\model mismatch in the kinetic parameters of the reaction.

3. Plant\model mismatch in the overall heat transfer coefficient.

4. Plant\model mismatch in the thermodynamic parameters of the reaction.

In addition, in order to obtain results the most significant as possible they will be not
considered those disturbances which enter the process through the inlet flow-rate F0 or
through the activation energy of the reaction E. Indeed, in these cases the proposed frame-
work would achieve better performances with respect to the others simply because the
disturbance model implemented resembles the actual disturbance acting on the process.
For a more straightforward interpretation of the closed-loop responses resulting from the
simulations the following performance indices are used:

• closed-loop cost function (4.23):

Jocp =

N−1∑
i=0

‖ỹi‖2Qreg + ‖∆ui‖
2
Rreg

+ ‖Γ̃N‖2Π∗ (4.37)

• integral of the absolute magnitude of the error (IAE);

IAE =

Nsim∑
k=0

|ȳc − yk|∆t (4.38)

• integral of the square of the error (ISE);

ISE =

Nsim∑
k=0

(ȳc − yk)
2∆t (4.39)

• integral of time multiplied by the absolute value of error (ITAE);

ITAE =

Nsim∑
k=0

|ȳc − yk|k∆t (4.40)

Despite revealing similarities, each error index refers to a different aspect in the perfor-
mance evaluation: the IAE tends to penalize small tracking errors, the ISE large tracking
errors, while the ITAE the persistent ones. Before to proceed with the performance com-
parison, note that as the observability covariance matrix cannot be computed for such aug-
mented systems whose disturbance model affects the output dynamics, only the degree of
observability of the augmented system correlated to the IDM can be determined.
This results to be:

λIDMmin (W0) = 2.130 · 10−5

> λ
[T0,ER ]
min (W0)

Thus, only the nominal model (4.9) augmented with the IDM is guaranteed to be observable
in the control region of interest for the reactor.
All the algorithms compared use the same horizon N, tuning matrices Qss, Rss, Qreg, Rreg
and objective functions for the target calculator (4.16) and the regulator (4.23).



4.5 performances and comparisons 70

4.5.1 Disturbance on the feed temperature
In that instance the feed temperature is supposed to increase linearly from time 2min to

3min acting as an unmeasured disturbance. Closed-loop results for all the NMPC frame-
works mentioned above are reported in Figure 22 while the related performance indices in
Table 5.
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Figure 22: Closed-loop responses in presence of disturbances on the feed temperature.

From Figure 22 it can be noted that the ODM leads to closed-loop instability for this type
of disturbance. This is due to the fact that in the ODM the integrating term does not
directly influence the state dynamics but appears as a bias term on the output. This mod-
els badly the actual disturbance dynamics providing very poor disturbance estimates and
hence closed-loop instability. At the same time the LDM results to be unobservable in
the operating region of interest as revealed by the presence of the offset in the controlled
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Table 5: NMPC frameworks performance indices related to the rejection of a disturbance in the feed
temperature.

Disturbance

Model
Jocp IAEc IAEh ISEc ISEh ITAEc ITAEh

Proposed DM 1.027 · 10−1 0.380 0.180 1.718 · 10−2 2.523 · 10−3 4.351 2.674

IDM 1.747 · 10−1 0.467 0.278 2.686 · 10−2 7.764 · 10−3 4.675 3.123

ODM inf. inf. inf. inf. inf. inf. inf.

LDM 3.929 · 10−1 1.905 0.181 7.724 · 10−2 7.685 · 10−4 50.187 4.804

variables and by the rank deficiency of its associated observability matrix evaluated at the
steady-state approached.
Thus, the only disturbance models which allow to achieve offset-free performances in pres-
ence of a disturbance on the feed temperature are the IDM and the proposed DM. However,
taking a look at the indices of the NMPC frameworks reported in Table 5 it can be noted
that the NMPC framework which implements the IDM is characterized by higher perfor-
mance indices if compared to the proposed one and hence reveals to be less effective.
In particular, referring to Jocp, it results 35.31% suboptimal with respect to the proposed
DM. As both the proposed DM and IDM did not resemble the real disturbance acting on
the system, this is due to the different tuning made on the state estimators.

4.5.2 Plant\model mismatch in the pre-exponential factor of the reaction
In this case the actual plant and the model (4.9) do not agree since the pre-exponential

factor of the reaction is grater than its nominal counterpart; this mismatch is realistic due
to the difficulty in identifying reaction kinetic parameters from experiments.
Results of the closed-loop simulations are reported in Figure 23.

Table 6: NMPC frameworks performance indices related to the compensation of a plant\model
mismatch in the pre-exponential factor of the reaction.

Disturbance

Model
Jocp IAEc IAEh ISEc ISEh ITAEc ITAEh

Proposed DM 7.737 · 10−2 0.343 0.182 1.147 · 10−2 2.317 · 10−3 3.361 2.389

IDM 1.038 · 10−1 0.4184 0.272 1.150 · 10−2 5.577 · 10−3 3.665 2.735

ODM 2.44 4.839 0.703 4.778 · 10−1 1.028 · 10−2 125.129 18.466

LDM 1.122 · 10−2 0.136 6.014 · 10−2 1.606 · 10−3 1.746 · 10−4 1.839 1.183

Note that in this situation the ODM leads to stable closed-loop operations. This is due to
the fact that, unlike the previous case, the state dynamics depends linearly from the pre-
exponential factor and hence even a simplistic linear model like the ODM, despite being
unobservable, is able to provide sufficiently good disturbance estimates for the closed-loop
system stabilization.
As can be noted more clearly taking a look at Figure 24, also the LDM reveals itself to
be unobservable for that kind of mismatch. For this reason it is reasonable to expect that
its related error indices, reported in Table 6 becomes larger than those of the frameworks
implementing the IDM and the proposed DM for longer simulation times.
In conclusion note that, for similar reasons to those of the previous case, the proposed
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(a) Reactant concentration.

0 10 20 30 40 50
Time (min)

0.65

0.66

0.67

0.68

0.69

0.70

Le
v
e
l 
(m

)

Set-point

Proposed DM

0 10 20 30 40 50
Time (min)

0.65

0.66

0.67

0.68

0.69

0.70

Le
v
e
l 
(m

)

Set-point

IDM

0 10 20 30 40 50
Time (min)

0.65

0.66

0.67

0.68

0.69

0.70

Le
v
e
l 
(m

)

Set-point

ODM

0 10 20 30 40 50
Time (min)

0.65

0.66

0.67

0.68

0.69

0.70

Le
v
e
l 
(m

)

Set-point

LDM

(b) Level of the tank.

Figure 23: Closed-loop responses in presence of plant-model mismatch in the pre-exponential factor
of the reaction.
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Figure 24: Closed-loop performances in presence of plant\model mismatch in the pre-exponential
factor of the reaction for the NMPC framework implementing the LDM

NMPC framework performs better than the other with respect to the totality of the perfor-
mance indices.

4.5.3 Plant\model mismatch in the overall heat transfer coefficient
Typically, the overall heat transfer coefficients are obtained from correlating equations

or diagrams, largely available in literature for different types of flows and systems, which
often have an overlooked associated with them. Furthermore, in order to be conservative
and prevent possible failures designers tend to underestimate U0.
For these reasons, the actual U0 is often greater than its corresponding design value. The
results of the simulations for this kind of mismatch are reported in Figure 25.

Table 7: NMPC frameworks performance indices related to the compensation of a plant\model
mismatch in the overall heat transfer coefficient.

Disturbance

Model
Jocp IAEc IAEh ISEc ISEh ITAEc ITAEh

Proposed DM 3.718 · 10−2 0.285 0.169 4.864 · 10−3 1.446 · 10−3 3.432 2.464

IDM 4.932 · 10−2 0.326 0.248 6.121 · 10−3 3.521 · 10−3 3.599 2.863

ODM 3.162 · 10−2 0.483 0.151 5.309 · 10−3 6.797 · 10−4 10.385 3.008

LDM 3.333 · 10−1 1.448 0.576 5.371 · 10−2 1.212 · 10−2 40.8672 17.401

Figure 25 shows similar results to those obtained in the previous case i.e. that the NMPC
frameworks implementing the ODM and the LDM, despite ensuring stable closed-loop
operations, cannot achieve offset-free performances for that kind of mismatch because of
unobservability of the augmented model employed at the steady-states approached.
This task is conversely accomplished by the NMPC frameworks which implement the IDM
and the proposed DM. This latter is also the one characterized by the lower error indices,
probably because of the optimal tuning made on its state estimator unit.
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Figure 25: Closed-loop responses in presence of plant-model mismatch in the overall heat transfer
coefficient.
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4.5.4 Plant\model mismatch in the enthalpy of reaction
In this case the actual plant and the model (4.9) do not agree as the enthalpy of reaction is

lower than its nominal value. Note that even this mismatch is realistic due to the difficulty
in determining reaction thermodynamics parameters from experiments.
Results of the closed-loop simulations are reported in Figure 26.

0 10 20 30 40 50
Time (min)

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

C
o
n
ce

n
tr
a
ti
o
n
 ( kmo

l

m
3

)

Set-point

Proposed DM

0 10 20 30 40 50
Time (min)

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

C
o
n
ce

n
tr
a
ti
o
n
 ( kmo

l

m
3

)

Set-point

IDM

0 10 20 30 40 50
Time (min)

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

C
o
n
ce

n
tr
a
ti
o
n
 ( kmo

l

m
3

)

Set-point

ODM

0 10 20 30 40 50
Time (min)

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

C
o
n
ce

n
tr
a
ti
o
n
 ( kmo

l

m
3

)
Set-point

LDM

(a) Reactant concentration.

0 10 20 30 40 50
Time (min)

0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66

Le
v
e
l 
(m

)

Set-point

Proposed DM

0 10 20 30 40 50
Time (min)

0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66

Le
v
e
l 
(m

)

Set-point

IDM

0 10 20 30 40 50
Time (min)

0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66

Le
v
e
l 
(m

)

Set-point

ODM

0 10 20 30 40 50
Time (min)

0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66

Le
v
e
l 
(m

)

Set-point

LDM

(b) Level of the tank.

Figure 26: Closed-loop responses in presence of plant-model mismatch in the enthalpy of reaction.

From Figure 26 it can be noted that also for this type of mismatch the ODM and the LDM
are unobservable and hence reveals themselves unable to remove offset in the controlled
variables. On the other hand the IDM is observable and even in this case, according to
the error indices reported in Table 8, provides only slightly worse performances than the
ones of the proposed DM. For this reason it can be stated that it is a practical and effective
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Table 8: NMPC frameworks performance indices related to the compensation of a plant\model
mismatch in the enthalpy of reaction.

Disturbance

Model
Jocp IAEc IAEh ISEc ISEh ITAEc ITAEh

Proposed DM 3.812 · 10−2 0.309 0.179 5.123 · 10−3 1.506 · 10−3 3.767 2.602

IDM 5.158 · 10−2 0.357 0.269 6.443 · 10−3 3.643 · 10−3 4.117 3.221

ODM 5.23 · 10−2 0.661 0.201 9.140 · 10−3 9.825 · 10−4 15.382 4.458

LDM 3.212 · 10−1 1.463 0.625 5.055 · 10−2 1.288 · 10−2 39.589 18.225

alternative to this latter in those situations in which high performances are not required
but there is only the need of achieving offset-free control.

4.6 results
In this chapter, an offset-free NMPC framework for the control of a non-isothermal CSTR

reactor has been design according to the strategy proposed in chapter 3.
The nominal model have been derived from material and energy balances on the reactor
while the disturbance model, once determined the process parameter more frequently af-
fected by disturbances and/or modeling errors, have been design in two phases. The first
aimed at ensuring the observability of the augmented model in the region of interest for
the control and the second devoted to the optimization of the extended Kalman filter (em-
ployed as state estimator) performances in closed-loop over the test disturbance sequence
depicted in Figure 19.
The effectiveness of the numerical methods proposed for the solution of such optimization
problem has been proved through simulation examples which also quantify the benefits
provided by the proposed optimal tuning strategy with respect to the manual one. Further-
more, this optimization needs to be performed off-line, thus with no (reasonable) concerns
for its computational complexity.
Next the disturbance rejection properties of the NMPC framework synthesized have been
compared in several cases with the ones of those implementing the main disturbance model
alternatives available in literature: the IDM, the ODM and the LDM.
Comparative simulations show that, according to the performance indices adopted, the
proposed offset-free NMPC algorithm, despite being its design very-time consuming, out-
performs the other considered while maintaining a good robustness to noises.
The augmented model corresponding to the IDM does not suffer from observability issues
for plant containing integrators and is characterized by a sufficiently high degree of observ-
ability to be observable in the region of interest for the control as reveled by the simulation
examples. Mainly for this reason it should be considered the best alternative to the pro-
posed disturbance model for this type of application.
The ODM, conversely, is unable to ensure stable closed-loop operations in presence of a dis-
turbance with an highly nonlinear dynamics like the one in the feed temperature T0 as in
this model the disturbance term does not directly influence the state dynamics but appears
only as a bias term on the output. This models badly the actual disturbance dynamics and
leads to very poor control performances. In addition, as the level dynamics is an integrator
the augmented model corresponding to the ODM reveal itself to be unobservable in all the
other cases.
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Similar results are obtained for the LDM which however, having a linear term affecting the
state transition and hence being less simplistic than the ODM, does not lead to unstable
closed-loop operations even for a disturbance entering in the feed temperature.



5 C O N C L U S I O N

In this final pages the main accomplishments of this thesis are summarized and the
conclusions of this work are drawn. Both strong and weak points of the proposed method
are described, providing some hints for future improvements and making some research
proposal.
This work has been a first trial to:

1. implement a class of disturbance models in which the integrating term is added to
model parameters in an NMPC offset-free framework;

2. verify and quantitatively assess the a priori observability of the augmented nonlinear
model to be implemented;

3. optimize the state estimator performances in closed-loop according to a criterion of
optimality properly designed for this class of problems;

4. develop a systematic procedure for the design of the optimal nonlinear disturbance
model of the class recalled in pt.1 to be implemented in an NMPC offset-free frame-
work.

The results show that:

• The usage of a class of disturbance models in which the integrating term is added to
model parameters provides significant advantages over linear ones and input distur-
bance model for both control and estimation.

• Verifying the a priori observability of the augmented systems resorting to the small-
est eigenvalue of their associated observability covariance matrix guarantees more
reliable results in a broader set of state trajectories than other methods employed in
literature which rely on a linearization of the model (Morari and Maeder [37]) or on
differential geometry.
Nevertheless, these latter methods are useful in performing observability analysis on
unstable operating points, as the observability covariance matrix of the augmented
model cannot be determined in such situations.

• The optimization of the state estimator performances, according to the suggested
optimality criterion, despite being very time-consuming, allows to obtain an NMPC
framework able to reject disturbances entering the process faster than another with
a manual tuning of the estimator while maintaining a good robustness to measure-
ments noise.

• The proposed strategy is effective in its aim of designing the optimal nonlinear distur-
bance model to be implemented in an offset-free NMPC framework, however, because
of the difficulties and time involved in its application, the benefits which it provides
have to be justified.
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open issues and further improvements
While this thesis has addressed some open questions about the implementation of nonlin-

ear disturbance models in offset-free NMPC frameworks, many other questions concerning
nonlinear model predictive control remain open; an overview of them can be found e.g. in
the work of Findeisen and Allgöwer [14].
This section is devoted to suggest some improvements to the proposed strategy that, for
several reasons, have not been included in this work. These modifications concern both
adding new capabilities and refining of the existing features:

Development of novel approaches for the evaluation of the a priori observability of nonlinear
systems in operating regions around unstable steady-states.

As stated many times before, the observability covariance matrix cannot be determined
for systems operating on unstable steady-states. Thus, in such situations the procedure
foresees to make use of the Kalman rank test on the linearized model or of the observability
rank condition. However, these latter methods are valid only locally and give exclusively a
yes or no answer preventing from sorting the candidate augmented model on the base of
their degree of observability. This facts imply that in the case of unstable operating points
there is often a greater number of candidate augmented model to test without, on the other
hand, having guarantees on their observability in the region of interest. For these reasons it
could be useful to develop a novel approach for the evaluation of the a priori observability
of nonlinear systems in operating regions around unstable steady-states (see e.g. Vaidya
[70]). This, once implemented, would allow to reduce the time required by the first phase
of the procedure and to obtain more reliable results.

Development of more efficient optimal tuning problem formulations

In subsection 3.4.2 a novel approach for the optimal tuning of the state estimator unit
in closed-loop have been derived. This overcomes the issues related to the optimization
algorithms convergence encountered when using criteria based on the prediction error and
opens to new possibilities. In this sense, it may be worth studying the effects of different
optimal tuning problem objective functions on the controller performances and develop
more efficient formulations.

Usage of more efficient computational strategies

Another field where ulterior improvements are possible is the one of the solvers. All sim-
ulation conducted in this work have been performed by using Mumps [1] as linear solver,
however, IPOPT can use also the HSL routines [22] MA27, MA57, HSL_MA77, HSL_MA86,
and HSL_MA97 when provided as shared library. Such routines are expected to drastically
reduce the time required for the solution of the optimization problems (3.14) and (3.18)
and hence for the evaluation of the objective function (3.40). Further enhancements in this
sense could be achieved by replacing the Nelder-Mead optimizer with faster algorithms
robust to noise. For instance, Elster and Neumaier [13] develop a robust algorithm for
the resolution of optimization problems characterized by noisy objective functions which
reveals itself to be more reliable and on average twice as fast in terms of total number of
function evaluations with respect to the Nelder-Mead approach.
The modifications mentioned above would allow to enlarge the region of the domain
and/or increase the number of grid points for the exhaustive search and/or perform a
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greater number of iterations of the local optimizer and, consequently, achieve better re-
sults.

Implement faster and more reliable recursive filters

Typically, when the state transition and observation models are highly nonlinear the ex-
tended Kalman filter, although easily implementable, may show slow convergence proper-
ties. This is mainly due to the fact that the state distribution is approximated by a Gaussian
random variable, which is then propagated analytically through a first order Taylor series
linearization of the nonlinear process model. The usage of recursive filters able to capture
the true posterior mean and covariance more accurately than the EKF could allow to solve
this problem and speed up the procedure.
Among possible alternatives, most notable is the unscented Kalman filter (UKF) proposed by
Julier and Uhlmann [25]. Employing this filter the state distribution is still approximated
by a Gaussian random variable but it is represented using a minimal set of properly cho-
sen sample points. This makes possible to describe the true mean and covariances with an
accuracy of the 3rd order (Taylor series expansion) for any nonlinearity while maintaining
a computational complexity of the same order as that of the EKF.



A S U P P L E M E N TA R Y M AT E R I A L

For the sake of completeness, several Definitions, Theorems and mathematical tools
which are of central importance for the thesis are reviewed in this appendix. The goal
is to focus on intuitive understanding of their meaning rather than on generality and thor-
oughness of arguments. However, the reader interested in a more complete and rigorous
theoretical treatment of these topics will find many references to the relevant literature.

a.1 probability theory
Here are summarized some notions from probability theory. This summary only con-

cerns those concepts that are part of the mathematical background required for a better
comprehension of many topics of this work in particular the ones concerning state estima-
tion. The material presented is taken by Simon [62] and Klenke [27].

a.1.1 Probability
The probability of an event A is defined as:

P (A) =
Number of times A occurs

Number of occurrances
(A.1)

The probability of a single event is called an a priori probability, because it refers to an event
apart from any previously known information.
Denoted with B an event possibly related with A, one may be interested in an a posteriori
probability, that is, the probability of A to occur given the fact that some information about
B are already known. Two common a posteriori probabilities are the conditional probability of
A given B, P (A|B), specifically the probability that A occurs given the fact that B occurred,
and the joint probability of A and B, P (A,B), that is the probability that A and B both occur.
These quantities are related by the following expression:

P (A|B) =
P (A,B)
P (B)

(A.2)

If A and B are independent events, i.e. the occurrence of B has no effect on the probability of
the occurrence of A, the previous relation becomes:

P (A|B) =
P (A,B)
P (B)

=
P (A)��

�P (B)

�
��P (B)

= P (A) (A.3)
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a.1.2 Random variables and probability density
Defined a random variable (RV), ξ, as a mapping from a set of events to real numbers,

the probability that ξ takes on a value less than or equal to x is given by its probability
distribution function, Fξ (x), formalized as follows:

Fξ (x) = P (ξ 6 x) (A.4)

Another function of interest is the probability density function, pξ (x), which is related to
Fξ (x) by the expression:

pξ (x) =
dFξ (x)

dx
(A.5)

and has the undermentioned interpretation in terms of probability:∫x2
x1

pξ (x) dx = P (x1 6 ξ 6 x2) (A.6)

Given these quantities, it is possible to define the following characteristic statistical proper-
ties of any RV:

• Moment
E [ξn] =

∫∞
−∞ xnpξ (x) dx (A.7)

• Mean or first moment about zero

ξ̄ = E [ξ]

=

∫∞
−∞ xpξ (x) dx

(A.8)

• Variance or second moment about the mean

var (ξ) =

∫∞
−∞
(
x− ξ̄

)2
pξ (x) dx

= E
[(
ξ− ξ̄

)2]
= E

[
ξ2
]
− E2 [ξ]

(A.9)

• Standard deviation
σ (ξ) = (var (ξ))

1
2 (A.10)

• Root mean square value

ψ (ξ) =
√
ξ̄2 + σ2 (ξ) (A.11)

• Mean square value

ψ2 (ξ) =

∫∞
−∞ x2pξ (x) dx

= ξ̄2 + σ2 (ξ)

(A.12)
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a.1.3 Conditional probability
As stated above, the probability that ξ takes on a value less than or equal to a given

scalar x is provided by Fξ (x). In analogy, the probability that both two RVs ξ and η take on
values less than or equal to the scalars x and y respectively is given by the joint probability
distribution function, defined as:

Fξ,η (x,y) = P (ξ 6 x,η 6 y) (A.13)

Thus, the related joint probability density function can be derived as:

pξ,η (x,y) =
∂2Fξ,η (x,y)

∂x∂y
(A.14)

and its meaning in terms of probability is given by the undermentioned expression:∫y2
y1

∫x2
x1

pξ,η (x,y) dxdy = P (x1 6 ξ 6 x2,y1 6 η 6 y2) (A.15)

By choosing ξ 6 x and y 6 η 6 y+ δy as events A and B respectively, from Equation A.2
follows:

P (ξ 6 x|y 6 η 6 y+ δy) =
P (ξ 6 x,y 6 η 6 y+ δy)
P (y 6 η 6 y+ δy)

(A.16)

and hence:

P (ξ 6 x|y 6 η 6 y+ δy) =
Fξ,η (x,y+ δy) − Fξ,η (x,y)

Fη (y+ δy) − Fη (y)
(A.17)

Taking the limits of both side of Equation A.17 as δy tends to zero and using the L’Hopital’s
rule provide:

Fξ|η (x|y) = lim
δy→0

∂Fξ,η (x,y+ δy) − Fξ,η (x,y)
∂δy

1
∂Fη(y+δy)−Fη(y)

∂δy


=
∂Fξ,η (x,y)

∂y

1

pη (y)
(A.18)

where Fξ|η (x|y) is the conditional probability distribution function of ξ given a specific realiza-
tion y of η. Differentiating the above expression with respect to x yields:

pξ|η (x|y) =
pξ,η (x,y)
pη (y)

(A.19)

where pξ|η (x|y) is the conditional probability density function of ξ given a specific realization
y of η.
Recalling that two events are statistically independent if they satisfy:

P (A,B) = P (A)P (B) (A.20)

from the definitions of joint distribution and density function it is straightforward to see
that this implies:

Fξ,η (x,y) = Fξ (x) Fη (y) (A.21)

pξ,η (x,y) = pξ (x)pη (y) (A.22)
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Thus, if RVs ξ and η are statistically independent, then Equation A.19 takes the form:

pξ|η (x|y) =
pξ,η (x,y)
pη (y)

=
pξ (x)���

�pη (y)

���
�pη (y)

= pξ (x) (A.23)

a.1.4 Multivariate statistics
In applications where there is a need to deal with multiple RVs one may think to group

them in a vector and let it takes on values in Rn with n > 1. Given two random column
vectors ξ and η it is possible to define the covariance matrix as:

cov (ξ,η) = E
[(
ξ− ξ̄

)
(η− η̄)T

]
(A.24)

Such matrix takes the name of autocovariance matrix in the special case of η = ξ.
Since cov (ξ, ξ)ij = cov (ξ, ξ)ji an autocovariance matrix is always symmetric. Moreover,
for any n-element column vector z holds that:

zTcov (ξ, ξ) z = zTE
[(
ξ− ξ̄

) (
ξ− ξ̄

)T]
z

= E
[
zT
(
ξ− ξ̄

) (
ξ− ξ̄

)T
z
]

= E
[(
zT
(
ξ− ξ̄

))2]
> 0 (A.25)

So an autocovariance matrix is also positive semidefinite.
Autocovariance matrix and mean value are sufficient to fully characterize the probability
density function of a Gaussian (or normal) n-valued RV. For this reason the following nota-
tion:

ξ ∼ N (m,P)

pξ (x) = n (x,m,P)

is commonly used to denote a normally distributed random vector ξ with mean m and
autocovariance P, in which:

n (x,m,P) =
1√

(2π)n det (P)
exp

[
−
1

2
(x−m)T P−1 (x−m)

]
(A.26)

Several interesting results are available for this class of vectors. Most notable, taken form
Rawlings and Mayne [55], are reported below.

joint independent normals. Let ξ and η be random vectors and suppose that they
have realizations x, y respectively. If:

i) ξ ∼ N (mξ,Pξ).

ii) η ∼ N (mη,Pη).

iii) ξ is statistically independent of η.

then their joint density is given by:[
ξ

η

]
∼ N

([
mξ

mη

]
,

[
Pξ 0

0 Pη

])
(A.27)
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linear transformation of a normal Let ξ be a normally distributed random vectors
with mean m and autocovariance P. If η is a linear transformation of ξ of the follow-
ing type:

η = Aξ

where A is a properly dimensioned matrix, then results:

η ∼ N
(
Am,APAT

)
(A.28)

conditional of a joint normal Let ξ and η be random vectors and suppose that they
have realizations x, y respectively. If ξ and η are jointly normally distributed as:[

ξ

η

]
∼ N

([
mξ

mη

]
,

[
Pξ Pξη

Pηξ Pη

])
(A.29)

then:
pξ|η (x|y) = n (x,m,P) (A.30)

with:

m = mξ + PξηP
−1
η (y−mη) (A.31)

P = Pξ − PξηP
−1
η Pηξ (A.32)

m is known as the conditional mean of ξ given η and can be derived regardless of the
shape of the distribution as:

m =

∫∞
−∞ xpξ|η (x|y) dx (A.33)

Extending the previous results to the case in which they are conditioned on additional
random variables yields what follows.

joint independent normals. Let ξ, η and ϑ be random vectors and suppose that they
have realizations x, y and z respectively. If:

i) pξ|ϑ (x|z) = n (x,mx,Px).

ii) η ∼ N (mη,Pη).

iii) η is statistically independent of ξ and ϑ.

then:

pξ,η|ϑ

([
x

y

] ∣∣∣∣∣z
)

= n

([
x

y

]
,

[
mξ

mη

]
,

[
Pξ 0

0 Pη

])
(A.34)

linear transformation of a normal. Let ξ and ϑ be random vectors and suppose that
pξ|ϑ (x|z) is a Gaussian with mean m and covariance P. If η is a linear transformation
of ξ of the following type:

η = Aξ

where A is a properly dimensioned matrix, then results:

pη|ϑ (y|z) = n
(
y,Am,APAT

)
(A.35)
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conditional of a joint normal Let ξ and η be random vectors and suppose that they
have realizations x, y respectively. If ξ and η are jointly normally distributed as:

pξ,η|ϑ

([
x

y

] ∣∣∣∣∣z
)

= n

([
x

y

]
,

[
mξ

mη

]
,

[
Pξ Pξη

Pηξ Pη

])
(A.36)

then:
pξ|η,ϑ (x|y, z) = n (x,m,P) (A.37)

in which:

m = mξ + PξηP
−1
η (y−mη) (A.38)

P = Pξ − PξηP
−1
η Pηξ (A.39)

a.1.5 Random processes and white noise
When the random vector ξ defined above changes with respect to an independent vari-

able it takes the name of random process RP.
Let ξ (t) be an RP and suppose that it has a realization x (t). If the random vector ξ (t1)
is statistically independent from the random vector ξ (t2) for all times t1 6= t2 then ξ (t) is
called white noise.
By assuming that ξ (t) is an ergodic RP and hence that its statistical properties are invariant
with respect to translation in time, they can be computed over a long enough time interval
of length T as:

ξ̄ = lim
T→∞ 1

2T

∫T
−T
x (x) dt (A.40)

var (ξ) = lim
T→∞ 1

2T

∫T
−T

(
x(t) − ξ̄

)2
dt (A.41)

ψ2 (ξ) = lim
T→∞ 1

2T

∫T
−T
x2(t)dt (A.42)

and so on for all the other previously defined statistics.
Given an expression for ψ (ξ), it is possible to define the power spectral density function of
ξ (t) as:

ψ2 (ξ) =

∫∞
0

Sξ(ω)dω (A.43)

Note that Sξ(ω) represents the rate of change of the mean square value with frequency.
It can be demonstrated (see Simon [62] for all details) that the requirement of statistical in-
dependence stated at the beginning of this section implies that a white noise has a constant
power spectral density function for all frequencies. Thus, since the power of an ergodic RP
is defined as:

Pξ =
1

2π

∫∞
−∞ Sξ(ω)dω (A.44)

it merges that continuous-time white noise is not something that occurs in real world
because it would have infinite power (and mean square value). Nevertheless, it is a useful
theoretical approximation in mathematical analyses of signals and systems.
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a.2 differential geometry and lie derivatives
As linear algebra is essential in the study of linear control systems, differential geometry

of manifolds is fundamental for the study of nonlinear ones [35].
This section contains an introduction to differential geometry, Lie derivatives and related
concepts as analysis tool for nonlinear process control systems and serves mainly as a
background for the nonlinear observability material that is discussed in section 2.3.
The reader interested in differential geometry of manifolds and Lie algebras is referred to
introductory texts and review articles like Doyle and Henson [12], Kwatny and Blankenship
[29] and Baldea and Daoutidis [5] for further insights.

a.2.1 Manifolds
A manifold, usually denoted with M, is an open subset of Rn, possibly equal to Rn,

which has special properties [36] that are useful for the results that follow. Most notably, a
manifold is locally Euclidean.

Definition 19 (Locally Euclidean manifold). A manifold M is called locally Euclidean of
dimension n if every point p ∈M has a neighborhood U such that there is a map φ : U→ Rn

with the following properties:

i) φ is bijection.

ii) φ is continuous.

iii) φ−1 is continuous.

Loosely speaking, “locally Euclidean of dimension n” just means that, for every point
p which lies on an n dimensional manifold M the points in the neighborhood U of p can
be specified by using a set of n coordinates (φ1 (p) , . . . ,φn (p)) in Rn called set of local
coordinates of p in the coordinate chart (U,φ).
In the remainder of this section the mapping φ and its inverse φ−1 are assumed to be C∞
functions.

a.2.2 Vector fields
A mapping f which associates a point x = (x1, . . . , xn) on an open subset of Rn (like M)

with the vector:

f (x1, . . . , xn) =


f1 (x1, . . . , xn)

f2 (x1, . . . , xn)
...

fm (x1, . . . , xn)

 (A.45)

in Rm takes the name of vector mapping. The notion of vector mapping is strictly related
with the one of vector field introduced by the following definition.

Definition 20 (Vector field). Let TMp be the space of tangent vectors to M at the point p. A
vector field f on M is a vector mapping which assigns a tangent vector at p, f(p) ∈ TMp , to
any point p ∈M.

The vector field f is called smooth if its components are of class C∞.
In the remainder of this section, only smooth vector fields will be considered.
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Integral curve of a vector field

By definition, any vector field f can be written as a differential equation of the form:

ẋ = f(x) (A.46)

The following definition is given.

Definition 21 (Integral curve). An integral curve of a vector field f on M is a parametrized
curve p = γ(t), t ∈ I ⊂ R whose tangent vector at any point coincides with f at that point.

In local coordinates the image of an integral curve x (t) = φ (γ (t)) satisfies the above
differential equation:

dx(t)

dt
= f (x) (A.47)

Definition 22 (Maximal integral curve). Let I denote an open interval of R containing the
origin. Suppose γ(t) is an integral curve of the vector field f such that γ (0) = p. The
integral curve γ(t) is said maximal integral curve if for any other integral curve γ̂(t) with
γ̂(0) = p, then Î ⊂ I and γ̂(t) = γ(t) for t ∈ Î.

From theorems on existence and uniqueness of solutions of ordinary differential equa-
tions it follows that if f is of class Ck and k > 1, then there exist a unique maximal integral
curve γ(t) passing through the point p ∈M.

Flow of a vector field

Let f and Ψ (t,p) be respectively a smooth vector field and the parametrized maximal
integral curve through p ∈M so that Ψ : I x M→M and Ψ (0,p) = p. Ψ (t,p) is called the
flow of the vector field f .
The flow of a smooth vector field has some interesting properties:

i) Φ (0) = id.

ii) Φ (t2,Φ (t1,p)) = Φ (t1 + t2,p).

iii) Satisfies the differential equation on M:

dΦ (t,p)
dt

= f (Φ (t,p))

As a consequence of (i) and (ii), it is clear that Φ (t,p)−1 = Φ (−t,p).
If I coincide with R then the vector field f is called complete and the flow is well defined for
all t ∈ R and p ∈M.

a.2.3 Lie derivatives
The Lie derivative of a scalar function h(x) : Rn → R along a vector field f(x) measures

how the function changes along the solutions of the differential equation associated with
the vector field (i.e. the flow of f). Roughly speaking, it can be interpreted as the directional
derivative of h along f.
In local coordinates the operator Lie derivative is given in the following manner:

Lf [h(x)] =

[
∂h(x)

∂x1
· · · ∂h(x)

∂xn

]
f1(x)

...

fn(x)

 (A.48)
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Note that Lf [h(x)] is itself a scalar function of x and that Lf [h(x)] : Rn → R. Consequently,
we can calculate its directional derivative along the vector field f, as:

Lf [Lf [h(x)]] = L
2
f [h(x)] (A.49)

or along the vector field g, as:

Lg [Lf [h(x)]] = LgLf [h(x)] (A.50)

with the latter representing the mixed Lie derivative of Lf [h(x)] with respect to the vector
field g.
Similarly, higher order Lie derivatives can be defined recursively as:

L0f [h(x)] = h(x) (A.51)

Lif [h(x)] = Lf
[
Li−1f [h(x)]

]
=
∂Li−1f [h(x)]

∂x
f i = 1, 2, . . . (A.52)

It is also possible to define LBh(x) as an (m x m)-dimensional matrix of Lie derivatives of a
vector function h(x) : Rn → Rm along the columns Bi, i = 1, . . . ,m of the matrix function
B(x) : Rn → Rn x Rm. LB [h(x)] is computed by multiplying the Jacobian of h(x) and B(x):

LB [h(x)] =


LB1 [h1(x)] . . . LBm [h1(x)]

...
. . .

...

LB1 [hm(x)] . . . LBm [hm(x)]

 =


∂h1(x)
∂x1

. . .
∂h1(x)
∂xn

...
. . .

...
∂hm(x)
∂x1

. . .
∂hm(x)
∂xn

B(x) (A.53)

a.3 fundamentals of numerical optimization
This section aims at providing some very basic concepts of non-convex optimization and

a description of the main numerical algorithms employed in various parts of this work.
There are several books which pursue the details of numerical optimization in greater
depth than is presented here. Most notable are the texts by Nocedal and Wright [39] and
Biegler [8].

a.3.1 Mathematical formulation
A mathematical programming problem can be formalized in general terms as follows:

min
χ∈Ω

ϕ (χ) (objective function)

subject to: c (χ) = 0 (equality constraints)

v (χ) 6 0 (inequality constraints)

where Ω = {χ ∈ Rn | c (χ) = 0, v (χ) 6 0} is the feasible set.
When constraints are not present the optimization problem is defined unconstrained and
Ω = Rn otherwise it is defined constrained and Ω ⊂ Rn.
Let ϕ : Rn → R, c : Rn → Rnc and v : Rn → Rnv to be twice continuously differentiable
and consider a feasible point χ∗ ∈ Ω. The following definitions are given.

Definition 23 (Global minimizer). A point χ∗ is a global minimizer if:

ϕ (χ∗) 6 ϕ (χ) ∀ χ ∈ Ω
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Definition 24 (Local minimizer). A point χ∗ is a local minimizer if there is a neighborhood
M ⊆ Ω of χ∗ such that:

ϕ (χ∗) 6 ϕ (χ) ∀ χ ∈M

Since usually the knowledge of the objective function is only local, most algorithms are
able to find only local minimizers.
In the unconstrained case, having assumed that the objective functions are twice continu-
ously differentiable allows to formulate the following necessary and sufficient conditions
of optimality to find out whether a point χ∗ is a local minimum.

Theorem 6 (First-Order Necessary Conditions). If χ∗ is a local minimizer, ϕ is continuously
differentiable in an open neighborhood of χ∗, and constraints are not present, then ∇ϕ (χ∗) = 0.

Theorem 7 (Second-Order Necessary Conditions). If χ∗ is a local minimizer of ϕ, ∇2ϕ exists
and is continuous in an open neighborhood of χ∗, and constraints are not present, then∇ϕ (χ∗) = 0

and ∇2ϕ (χ∗) is positive semidefinite.

Theorem 8 (Second-Order Sufficient Conditions). Suppose that ∇2ϕ is continuous in an open
neighborhood of χ∗, ∇ϕ (χ∗) = 0, ∇2ϕ (χ∗) is positive definite, and constraints are not present.
Then χ∗ is a local minimizer of ϕ.

In order to derive analogous conditions for the characterization of the solutions of con-
strained optimization problems there is the need to describe the feasible set in the neigh-
borhood of χ∗. Indeed, it may be that not all the ith inequality constraints are active (i.e.
vi (χ

∗) = 0) in such region. Let A (χ∗) be the index set of all active inequality constraints in
χ∗ defined as follows:

A (χ∗) =
{
i ∈ {1, . . . ,nv} | vi (χ

∗) = 0
}

The characterization of such set is strictly related with the concept of Linear Independence
Constraint Qualification (LICQ) introduced in the undermentioned definition.

Definition 25 (Linear Independence Constraint Qualification). Given the point χ∗ ∈ Ω
the LICQ is said to hold at χ∗ if all vectors ∇ci (χ∗) for i ∈ {1, . . . ,nc} and ∇vi (χ∗) for
i ∈ A (χ∗) are linearly independent.

It is now possible to define the equivalents of the first-order necessary conditions of
optimality given above in the case of constrained optimization problems. Such conditions
are often known as the Karush-Kuhn-Tucker conditions, or KKT conditions for short.

Definition 26 (Karush-Kuhn-Tucker optimality conditions). If χ∗ is a local minimizer and
the LICQ holds at χ∗, then there are two vectors λ∗ ∈ Rnc and µ∗ ∈ Rnv such that the
following conditions are satisfied at (χ∗, λ∗,µ∗):

∇χL (χ∗, λ∗,µ∗) = 0 (A.54a)

c (χ∗) = 0 (A.54b)

v (χ∗) 6 0 (A.54c)

µ∗ > 0 (A.54d)

µ∗Ti vi (χ
∗) = 0 for i ∈ {1, . . . ,nv} (A.54e)

where L : Rn ×Rnc ×Rnv → R is the Lagrangian function, defined as:

L (χ, λ,µ) = ϕ(χ) + λTc (χ) + µTv (χ)

while λ and µ are the Lagrange multipliers vectors.
A triple (χ∗, λ∗,µ∗) satisfying KKT conditions and LICQ is called KKT point.
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The conditions (A.54e) are called complementarity conditions.
A special case of complementarity is important in the remainder of this section and it is
introduced in the following definition.

Definition 27 (Strict complementarity). Given a KKT point (χ∗, λ∗,µ∗) the strict comple-
mentarity conditions is said to hold at χ∗ if and only if µ∗ > 0 for each active inequality
constraint in χ∗.

Note that in case of strict complementarity of a KKT point (χ∗, λ∗,µ∗), the objective
function can be seen as subject to equality constraints only which collected define the
following vector:

c• =

[
c (χ)

vi (χ) for i ∈ A (χ∗)

]
The second-order optimality conditions for constrained optimization problems can now be
defined.

Definition 28 (Second-Order Necessary Conditions). Consider a KKT point (χ∗, λ∗,µ∗) and
let strict complementarity hold in χ∗. If χ∗ is a local minimizer, then:

sT∇2χL (χ∗, λ∗,µ∗) s > 0 for s ∈ null

(
∂c•

∂χ

∣∣∣∣
χ=χ∗

)

Definition 29 (Second-Order Sufficient Conditions). Consider a KKT point (χ∗, λ∗,µ∗), a

basis s of the null-space of ∂c
•

∂χ

∣∣∣∣
χ=χ∗

∈ Rnc•×nχ and let strict complementarity hold in χ∗.

If:
sT∇2χL (χ∗, λ∗,µ∗) s > 0

then χ∗ is a local minimizer in its neighborhood.

In this section all the elements necessary to distinguish a local minimizer have been
introduced; in the remainder of this chapter the optimization algorithms most frequently
used in this work for the resolution of both constrained and unconstrained optimization
problems will be presented.

a.3.2 Interior point algorithm
Consider the following equivalent form of the general constrained optimization problem

described in the previous section:
min
χ,s•

ϕ (χ) (A.55)

subject to: cE (χ) = 0

cI (χ) − s
• = 0

s• > 0

where the vector cI (χ) ∈ RnI is formed from scalar function and similarly cE (χ) ∈ RnE .
Note that the introduction of a vector s• of slack variables allows to transform the inequal-
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ities cI > 0 into equalities.
The KKT conditions for the nonlinear program (A.55) can be written as:

∇ϕ (χ) − JTE (χ) λ− J
T
I (χ)µ = 0 (A.56a)

Sµ− τe = 0 (A.56b)

cE (χ) = 0 (A.56c)

cI (χ) − s
• = 0 (A.56d)

in which τ = 0, together with:
s• > 0, µ > 0 (A.57)

Here JE and JI are the Jacobian matrices of the functions cE and cI, respectively, λ and µ
are their Lagrange multipliers, S is a diagonal matrix whose diagonal entries are given by
the elements of the vector s• and e = (1, . . . , 1)T .
Consider now the following optimization problem known with the name of barrier prob-
lembarrier problem:

min
χ,s•

ϕ (χ) − τ

nI∑
i=1

log (s•i ) (A.58)

subject to: cE (χ) = 0

cI (χ) − s
• = 0

where τ is a positive parameter and log (·) denotes the natural logarithm function.
By comparing objective functions (A.55) and (A.58) and considering that the KKT condi-
tions of the barrier problem have the same form of those of (A.56) but are characterized by
a positive value of τ, it follows that the solution of the barrier problem does not coincide
with that of (A.55) until τ = 0.
IPOPT and more in general all the interior-point methods try to find an approximate solu-
tion of the barrier problem for a sequence of positive barrier parameters {τk} that converges
to zero. Indeed, in this way the final solution found by the algorithm, in the limit, is equiv-
alent to the solution of the optimization problem (A.55).
Such solution must satisfy the KKT conditions (A.56) with τ > 0 for some vectors s•, λ and
µ. These conditions form a nonlinear algebraic system in the unknowns χ, s•, λ and µ that
is solved in interior-point algorithms via Newton-like methods.
Applying Newton’s method to the nonlinear system (A.56) yields:

∇2χχL 0 −JTE (χ) −JTI (χ)

0 Z 0 S

JE (χ) 0 0 0

JI (χ) −I 0 0




pχ

ps•

pλ

pµ

 = −


∇ϕ (χ) − JTE (χ) λ− J

T
I (χ)µ

Sµ− τe

cE (χ)

cI (χ) − s
•

 (A.59)

where Z is a diagonal matrix whose diagonal entries are given by the elements of the vector
µ and L denotes the Lagrangian for (A.55):

L (χ, s•, λ,µ) = ϕ (χ) − λTcE (χ) − µ
T (cE (χ) − s

•) (A.60)
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Then after the step p = (pχ,ps• ,pλ,pµ) have been determined, the new iterates are com-
puted as:

χ+ = χ+αs•pχ (A.61)

s•,+ = s• +αs•ps• (A.62)

λ+ = λ+αµpλ (A.63)

µ+ = µ+αµpµ (A.64)

(A.65)

in which αs• ∈ (0, 1] and αλ ∈ (0, 1].
Denoted by E (χ, s•, λ,µ; τ) the maximum absolute error of the KKT equations, defined for
some vector norm ‖·‖ as:

E (χ, s•, λ,µ; τ) = max{‖∇ϕ (χ) − JTE (χ) λ− J
T
I (χ)µ‖, ‖Sµ− τe‖, ‖cE (χ)‖,

‖cI (χ) − s•‖}
(A.66)

the basic algorithm implemented in IPOPT is summarized in Algorithm 3 (in which j is
the index of the outer loop, k is the index of the inner loop, and ε > 0 is an user-defined
convergence tolerance).

Algorithm 3 IPOPT Algorithm

1: Initialize the method by supplying the values of τ0,αr, λ0,µ0 and form the initial non-
linear system (A.59) accordingly. Set: j = 0, k = 0.

2: Given the current iterates χk, s•k, λk and µk determine the Newton step p and then
compute the new iterates as:

χ+ = χ+αs•pχ

s•,+ = s• +αs•ps•

λ+ = λ+αµpλ

µ+ = µ+αµpµ

3: If E0
(
χk+1, s•k+1, λk+1,µk+1; τk+1

)
6 ε stop. Otherwise, go to Step 4.

4: If Ej
(
χk+1, s•k+1, λk+1,µk+1; τk+1

)
6 κτj (for some κ > 0) go to Step 5. Otherwise,

update k← k+ 1 and go to Step 2.

5: Set τj+1 =
τj
ι (for some ι > 0), update j← j+ 1, k← k+ 1 and go to Step 2.

a.3.3 Nelder-Mead algorithm
The Nelder-Mead algorithm is one of the most known derivative-free multidimensional

unconstrained optimizer.
In order to explain how it works the following definition must be introduced.

Definition 30 (Simplex). Let χ1, . . . ,χn+1 ∈ Rn be n+ 1 affinely independent points. The
simplex determined by them is the set of points

S =

{
Υ ∈ Rn| Υ =

n+1∑
i=1

aiχi, ai > 0,
n+1∑
i=1

ai = 1

}
(A.67)
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The method begins by generating a set of n+ 1 points around the point of initialization
χinit ∈ Rn and considers them as vertices of an initial working simplex S0. The initial
working simplex has to be nondegenerate, i.e. the n+ 1 points generated must not lie in the
same hyperplane.
Then, at each iteration the method performs a sequence of transformation of the current
working simplex Sk aimed at decreasing the function values at its vertices. In particular,
the algorithm keep track of the n + 1 vertices of Sk and sort them on the base of their
corresponding objective function value:

ϕ (χ1) 6 · · · 6 ϕ (χn+1) (A.68)

Then, only the worst vertex χn+1 is replaced with a new point of the form:

χ (α) = (1+α)χc −αχn+1 (A.69)

where χc is the centroid of the n remaining points, defined as:

χc =
1

n

n∑
j=1

χj (A.70)

Thus, the idea is to make a reflection of the worst vertex χn+1 with respect to χc, where
α > 0 is a properly chosen reflection coefficient. Typically, α is selected from a sequence of
the following type:

− 1 6 αic < 0 < αoc < αr < αe (A.71)

A common choice is:

{αr,αe,αoc,αic} =
{
1, 2,

1

2
,−
1

2

}
(A.72)

The effects of different choices of α on the shape of the simplex having χ1,χ2 and χ3 as
vertices are shown in Figure 27.

χ3 χ2

χ1
χr

χ2

χc

χe

χoc

χic

Reflection
Extension

Inside contraction
Outside contraction

Figure 27: Comparison of different simplex transformations: ϕ (χ3) > ϕ (χ2) > ϕ (χ1).

A practical implementation of the Nelder-Mead method must include a test that ensures
termination in a finite amount of time. For simplicity, assume that the algorithm computes
the boolean value break which becomes true when it is time to stop the iterations. Quite
generally, break is composed of three different parts: breakχ, breakf and breakfail.
breakχ is the domain convergence or termination test and becomes true when some or all
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vertices of the working simplex S are close enough in some sense.
Conversely, breakf is the function value convergence test which becomes true when some
or all function values ϕ

(
χj
)

are close enough in some sense.
Finally, breakfail is the no-convergence in time test and becomes true if the number of
iteration or function evaluations exceeds some prescribed maximum allowed value.
The algorithm terminates as soon as at least one of these tests becomes true.
The general algorithm is summarized in the Algorithm 4.

Algorithm 4 Nelder-Mead Algorithm

1: Initialize the method by supplying the values of χinit,αr,αe,αoc and αic and form the
initial working simplex Sinit accordingly. Set: k = 0.

2: Sort the vertices of the working simplex Sk in such a way as to have:

ϕ (χ1) 6 · · · 6 ϕ (χn+1)

3: If break is true stop, otherwise compute:

χc =
1

n

n∑
j=1

χj

χ (αr) = (1+αr)χc −αrχn+1

ϕr = ϕ (χ (αr))

4: Perform the transformation of the working simplex Sk.

reflection: If ϕ (χ1) 6 ϕr 6 ϕ (χn) replace χn+1 with χ (αr), update k← k+ 1 and
go to Step 2.

expansion: If ϕr < ϕ (χ1) compute:
ϕe = ϕ (χ (αe))

and if ϕe < ϕr replace χn+1 with χ (αe); otherwise replace χn+1 with χ (αr),
update k← k+ 1 and go to Step 2.

outside contraction: If ϕ (χn) 6 ϕr 6 ϕ (χn+1) compute:
ϕoc = ϕ (χ (αoc))

and if ϕoc < ϕr replace χn+1 with χ (αoc), update k ← k+ 1 and go to Step 2;
otherwise go to Step 5.

inside contraction: If ϕr 6 ϕ (χn+1) compute:
ϕic = ϕ (χ (αic))

and if ϕic < ϕn+1 replace χn+1 with χ (αic), update k ← k+ 1 and go to Step 2;
otherwise go to Step 5.

5: Set:

χi = χ1 −
(χi−1)
2 ∀ 2 6 i 6 n+ 1

compute ϕ (χi), update k← k+ 1 and go to Step 2.

From the scheme results clear that the idea behind the algorithm is to try to expand the
simplex if good values of the objective function are found and to contract it otherwise.
As very little is known about the convergence properties of the method (with mainly neg-
ative results), the Nelder-Mead algorithm is commonly considered an heuristic technique.
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However, despite of this it has reveal itself very efficient in practice, particularly for the
solution of problems with less than ten degrees of freedom [50].
For this reason it is commonly implemented in various standard optimization libraries.



B P Y T H O N C O D E S

b.1 evaluation of the degree of observability
1 "

2 SUMMARY:

3 This function computes the observability gramian\covariance matrix Wo for

4 stable dynamical systems by making use of data collected along system

5 trajectories. It applies initial condition perturbations in each state to

6 compute the empirical observability gramian or the observability covariance

7 matrix.

8 Moreover, it computes the magnitude of the smallest eigenvalue for Wo useful

9 to represent observability of a nonliner system over an operating region.

10

11 SYNTAX:

12 assignment = W(f, h, t_par, Cm, xss, uss, flag)

13

14 ARGUMENTS:

15 f - SXFunction having state, x, and control, u, symbolic variables

16 as inputs and state derivative symbolic variable as outputs;

17 signature: f = SXFunction([x,u],[dx/dt])

18 where:

19 * x = SX.sym(x,state size)

20 * u = SX.sym(u,control size)

21 * dx/dt = \

22 vertcat([1st eq., \

23 2nd eq., \

24 ......., \

25 nth eq.])

26

27 h - SXFunction having state, x, symbolic variables

28 as inputs and measurement symbolic variable as outputs;

29 signature: h = SXFunction([x,u],[h(x)])

30 where:

31 * x = SX.sym(x,state size)

32 * u = SX.sym(u,control size)

33 * h(x) = \

34 vertcat([1st eq., \

35 2nd eq., \

36 ......., \

37 nth eq.])

38

39 t_par - time discretization;

40 signature: t_par = np.array([start,stop,step])

97
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41 Cm - excitation sizes for each excitation direction;

42 signature: Cm = [Cm_1,...,Cm_n]

43 xss - steady-state operating point;

44 signature: xss = [x1_ss,...,xn_ss]

45 uss - steady-state value of the input;

46 signature: uss = [u1_ss,...,un_ss]

47 flag - gramian\covariance matrix type;

48 signature:

49 * ’obs_cov’ : observability covariance matrix

50 * ’obs_gram’ : empirical observability gramian

51 "

52

53 from casadi import*
54 from casadi.tools import*
55 import numpy

56

57

58 def W(f, h, t_par, Cm, xss, uss, flag):

59

60 # redefine some variables for clarity of notation

61

62 # run-time parameters

63 t_start = t_par[0] # simulation start time

64 t_end = t_par[1] # simulation end time:

65 # be aware that the system will have reached equilibrium

66 #for some time tf < t_end

67 delta_t = t_par[2] # sample length

68 t_npti = int(np.floor((t_end-t_start)/delta_t)+1) # # of discr. pts

69 time = np.linspace(t_start, t_end, t_npti) # time vector

70

71 # get vectors size

72 p = f.inputExpr(1).shape[0] # # of inputs

73 n = f.inputExpr(0).shape[0] # # of states

74 k = h.outputExpr(0).shape[0] # # of outputs

75

76 # get initial steady state value of the output

77 h.setInput(xss)

78 h.evaluate()

79 yss = h.getOutput().toArray().squeeze()

80

81 # scaling transformation matrices calculation

82 Tx = diag(xss)

83 Tu = diag(uss)

84

85 # scale the states with respect to their steady state values

86 x_scal = mul(Tx,f.inputExpr(0))

87 u_scal = mul(Tu,f.inputExpr(1))

88 f_scal = mul(inv(Tx),f([x_scal,u_scal])[0])

89
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90 # computational settings (part 1)

91 r = 2 # # of matrices for excitation directions (DON’T CHANGE)

92 cm = Cm # excitation sizes for each direction

93 s = len(cm) # # of different excitation sizes for each direction

94

95 # set the whole series of sundials options available for the user

96 opts = {}

97 opts_b = {}

98 opts["fsens_err_con"] = True

99 opts_b["fsens_err_con"] = True

100 opts["quad_err_con"] = True

101 opts_b["quad_err_con"] = True

102 opts["abstol"] = 1e-6

103 opts_b["abstol"] = 1e-6

104 opts["reltol"] = 1e-6

105 opts_b["reltol"] = 1e-6

106 opts["t0"] = t_start

107 opts_b["t0"] = t_start

108 opts["tf"] = t_end

109 opts_b["tf"] = t_start+delta_t

110

111 # initialization (part 1)

112 w_o = DMatrix.zeros(n,n)

113 x_init = DMatrix.ones(n)

114 u_d = DMatrix.ones(p)

115

116 # computational settings (part 2)

117 T = DMatrix.zeros(n,2*n) # matrices for excitation

118 T[0:n,0:n] = DMatrix.eye(n)

119 T[0:n,n:2*n] = -DMatrix.eye(n)

120 e = DMatrix.eye(n) # matrix filled with standard unit vectors

121

122 for l in range(r):

123

124 for m in range(s):

125

126 # initialization (part 2)

127 chsi = DMatrix.zeros(n, n)

128 z = DMatrix.zeros(n, t_npti*k)

129

130 for i in range(n):

131

132 # compute perturbed initial condition

133 x_pert = x_init + cm[m]*mul(T[0:n,l*n:n*(l+1)],e[:,i])

134

135 # set input on its scaled steady state value

136 u = u_d

137

138 # Manipulate the function to adhere to the integrator
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139 #input/output signature f(time;states;parameters)

140 f_ode = SXFunction("ODE_right_hand_side",\

141 daeIn(x=f.inputExpr(0),\

142 p=f.inputExpr(1)),\

143 daeOut(ode=f_scal))

144

145 # define the integrator

146 integrator = Integrator("integrator","cvodes", f_ode, opts)

147 integrator.setInput(x_pert, "x0")

148 integrator.setInput(u_d, "p")

149 integrator.evaluate()

150 integrator.reset()

151

152 #define a convenient function to acces x(t)

153 def out(t):

154 integrator.integrate(t)

155 return integrator.getOutput().toArray()

156 x = np.array([out(t) for t in time]).squeeze()

157

158 # compute the output of the system corresponding to the

159 #perturbed initial condition

160 y = DMatrix.zeros(k,x.shape[0])

161

162 for index in range (x.shape[0]):

163 x_star = x[index,:]

164 h.setInput(x_star)

165 h.evaluate()

166 y[:,index] = (h.getOutput().toArray()).squeeze()

167

168 y = y.T

169

170 for iii in range(k):

171

172 # compute difference between the output of the system

173 #corresponding to the perturbed initial condition and

174 #the steady state that the output will reach after per-

175 #turbation

176 if flag == ’obs_gram’:

177

178 # compute the steady state that the output will reach

179 #after perturbation

180 yss_fin = yss

181

182 if k == 1:

183

184 dev = (y[:,iii] - DMatrix.ones(len(time),1))*\

185 yss_fin

186

187 else:
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188

189 dev = (y[:,iii] - DMatrix.ones(len(time),1))*\

190 yss_fin[iii]

191

192 elif flag == ’obs_cov’:

193

194 # compute the steady state that the output will reach

195 #after perturbation

196 yss_fin = (y[len(time)-1,:]).T

197

198 if k == 1:

199

200 dev = (y[:,iii] - DMatrix.ones(len(time),1)*\

201 yss_fin)*yss

202

203 else:

204

205 dev = (y[:,iii] - DMatrix.ones(len(time),1)*\

206 yss_fin[iii])*yss[iii]

207

208

209 z[i,t_npti*iii:t_npti*(iii+1)] = dev.T

210

211 #chsi matrix calculation

212 chsi = mul(z, z.T)

213

214 # observability covariance matrix\empirical grammian calcula-

215 #tion

216 chsi_TT = mul(chsi,(T[0:n,l*n:n*(l+1)]).T)

217 w_o = w_o + (1/(r*s*(cm[m]**2)))*delta_t*mul(T[0:n,l*n:n*(l+1)],\

218 chsi_TT)

219

220 # symmetrization

221 Wo = 0.5*(w_o+w_o.T)

222

223 # compute the magnitude of the smallest and biggest eigenvalues for Wo

224 lambda_min = np.amin(np.array(np.linalg.eigvalsh(Wo)))

225

226 return Wo, lambda_min

Listing 1: Evaluation of the degree of observability
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b.2 verification of the kalman rank condition
1 "

2 SUMMARY:

3 This function computes the observability matrix and performs the Kalman

4 rank test for a given linear or nonlinear system.

5

6 SYNTAX:

7 assignment = KRC(f, h, xss, uss, t_steps)

8

9 ARGUMENTS:

10 f - SXFunction having state, x, and control, u, symbolic variables

11 as inputs and state derivative symbolic variable as outputs;

12 signature: f = SXFunction([x,u],[dx/dt])

13 where:

14 * x = SX.sym(x,state size)

15 * u = SX.sym(u,control size)

16 * f = \

17 vertcat([1st eq., \

18 2nd eq., \

19 ......., \

20 nth eq.])

21

22 h - Expression having state, x, symbolic variables

23 as inputs and measurement symbolic variable as outputs;

24 signature: h = \

25 vertcat([1st eq., \

26 2nd eq., \

27 ......., \

28 nth eq.])

29

30 xss - steady-state operating point;

31 signature: xss = [x1_ss,...,xn_ss]

32 uss - steady-state value of the input;

33 signature: uss = [u1_ss,...,un_ss]

34 t_steps - discretization parameters;

35 signature: [t_steps_1, t_steps_2]

36 where:

37 * t_steps_1 = # of time interval in each sampling interval.

38 * t_steps_2 = sampling interval for the integrator.

39 "

40

41

42 from casadi import *
43 from casadi.tools import *
44 import numpy

45

46

47 def KRC(f, h, xss, uss, t_steps):
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48

49 # get vectors size

50 ny = h.shape[0] # # of outputs

51 nx = xss.shape[0] # # of states

52

53 # create the simple RK4 integrator for propagating the system model

54 # dynamics

55 Faug_model = simpleRK(f, t_steps[0])

56 Faug_model.init()

57 [X_next] = Faug_model([f.inputExpr(0), f.inputExpr(1), t_steps[1]])

58

59

60 # get the augmented system Jacobian functions

61 Adummy = jacobian(X_next,f.inputExpr(0))

62 A = SXFunction([f.inputExpr(0),f.inputExpr(1)], [Adummy])

63 A.init()

64 Cdummy = jacobian(h,f.inputExpr(0))

65 C = SXFunction([f.inputExpr(0)], [Cdummy])

66 C.init()

67

68 # build the observability matrix

69 [A_lin] = A([xss,uss])

70 [C_lin] = C([xss])

71 O_rc = DMatrix.zeros(ny*nx, nx)

72

73 for i in range(nx):

74 O_rc[ny*i:(i+1)*ny,:] = mul(C_lin,np.linalg.matrix_power(A_lin,i))

75

76 # perform the Kalman rank test

77 if np.linalg.matrix_rank(O_rc) == nx:

78

79 flag = ’observable’

80

81 else:

82

83 flag = ’unobservable’

84

85 return O_rc, flag

Listing 2: Verification of the Kalman rank condition
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b.3 optimization of the state estimator performances
1 "

2 SUMMARY:

3 This function optimizes the state estimator performances with respect to

4 a given optimality criterion acting on the diagonal elements of the

5 process noise covariance matrix.

6 The optimization consists in an exhaustive search followed by a certain

7 number of Nelder-Mead algorithm iterations.

8

9 SYNTAX:

10 assignment = opt_se(fobj_bf, fobj_nm, maxfev, grid)

11

12 ARGUMENTS:

13 fobj_bf - Objective function to be minimized with the exhaustive search;

14 signature: fobj_bf = f(x, *args)

15 fobj_nm - Objective function to be minimized with the Nelder-Mead algorithm;

16 signature: fobj_nm = f(x, *args)

17 where:

18 * x : argument in the form of a 1-D array.

19 * args: tuple of any additional fixed parameters needed to completely

20 specify the function.

21

22 maxfev - Maximum number of function evaluations to be performed with

23 the Nelder-Mead algorithm;

24 signature: maxfev = #

25 grid - evaluation grid;

26 signature: grid = slice(lower bound, upper bound)

27 "

28

29 from casadi import*
30 from casadi.tools import*
31 import scipy.optimize

32 import numpy

33

34 def opt_se(fobj_bf, fobj_nm, maxfev, grid)

35

36 # call the global optimizer

37 q_bf = scopt.brute(fobj_bf, grid, full_output=True, finish=None)

38

39 # improve q_bf by performing a certain number of Nelder-Maed iterations

40 q_opt = scipy.optimize.minimize(fobj_nm, np.sqrt(q_bf),\

41 method="Nelder-Mead",\

42 options={"maxfev":maxfev})

43

44 return q_opt

Listing 3: Optimization of the state estimator performances
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A C R O N Y M S

CN Condition Number.

DAE Differential Algebraic Equation.

DARE Discrete-time Algebraic Riccati Equation.

DMC Dynamic Matrix Control.

ECE Equal Concern Error.

EKF Extended Kalman Filter.

IAE Integral of the Absolute magnitude of the Error.

IDM Input Disturbance Model.

ISE Integral of the Square of the Error.

ITAE Integral of Time multiplied by the Absolute value
of Error.

KF Kalman Filter.

LICQ Linear Independence Constraint Qualification.

LMPC Linear Model Predictive Control.

LP Linear Program.

LQR Linear Quadratic Regulation.

LTI Linear Time Invariant.

MAP Maximum A Posteriori.

MHE Moving Horizon Estimation.

MIMO Multiple Input Multiple Output.

MMSE Minimum Mean Square Error.

MPC Model Predictive Control.

NLP Nonlinear Program.

NMPC Nonlinear Model Predictive Control.

OCP Optimal Control Problem.

ODE Ordinary Differential Equation.

ODM Output Disturbance Model.
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PDE Partial Differential Equation.

QP Quadratic Program.

RP Random Process.

RV Random Variable.

SISO Single Input Single Output.

UKF Unsceted Kalman Filter.
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KL function, 34

K function, 34

a
asymptotically stable equilibrium point,

36, 37

augmented model, 32

autocovariance matrix, 84

b
barrier parameters, 92

brute force algorithm, 52

c
complementarity conditions, 91

Complete controllability, 38

complete system, 20

conditional mean, 85

conditional probability, 81

conditional probability density function,
9, 83

conditional probability distribution
function, 83

control affine system, 24

control horizon, 3

controllability matrix, 38

coordinate chart, 87

covariance matrix, 84

d
degree of observability, 29

disturbance state, 32

e
empirical observability gramian, 29

equal concern error, 58

exponentially stable equilibrium point, 46

f
filtering, 8

flow of a vector field, 88

g
global minimizer, 89

global observability, 20

i
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input disturbance model, 33
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Kalman gain, 13
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KKT conditions, 90

l
Lagrange multipliers vectors, 90

Lagrangian function, 90

Lie derivatives, 88

linear quadratic regulator, 38
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local observability, 21
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manifold, 87
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multiloop control, 2
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Nelder-Mead algorithm, 52
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observability at x0, 20

observability codistribution, 25
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offset-free control, 4

optimal control problem, 3
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probability distribution function, 82

r
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state estimation error, 9
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