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Résume

Pour avoir un fonctionnement de l'usine sir et bénéfique, des données précises et fiables
sont nécessaires. D'une manicre générale, une information précise méne a de meilleures
décisions et, par conséquent, de meilleures actions pour aboutir aux objectifs visés. Dans un
environnement industriel, les données souffrent de nombreux problémes comme les erreurs
de mesures (autant aléatoires que systématiques), 1'absence de mesure de variables clés du
procédé, ainsi que le manque de consistance entre les données et le modele du procédé.
Pour améliorer la performance de l'usine et maximiser les profits, des données et des
informations de qualité doivent étre appliquées a I'ensemble du contrdle de 1'usine, ainsi
qu'aux stratégies de gestion et d'affaires. Comme solution, la réconciliation de données est
une technique de filtrage qui réduit l'impact des erreurs aléatoires, produit des estimations
cohérentes avec un modele de procédé, et donne également la possibilité d'estimer les

variables non mesurées.

Le but de ce projet de recherche est de traiter des questions liées au développement, la mise
en ceuvre et I'application des observateurs de réconciliation de données pour les industries
minéralurgiques et métallurgiques. Cette thése explique d’abord l'importance de régler
correctement les propriétés statistiques des incertitudes de modélisation et de mesure pour
la réconciliation en régime permanent des données d’usine. Ensuite, elle illustre la facon
dont les logiciels commerciaux de réconciliation de données a 1'état statique peuvent étre
adaptés pour faire face a la dynamique des procédés. La thése propose aussi un nouvel
observateur de réconciliation dynamique de données basé sur un sous-modele de
conservation de la masse impliquant la fonction d'autocovariance des défauts d’équilibrage
aux nceuds du graphe de 'usine. Pour permettre la mise en ceuvre d’un filtre de Kalman
pour la réconciliation de données dynamiques, ce travail propose une procédure pour
obtenir un modele causal simple pour un circuit de flottation. Un simulateur dynamique
basé sur le bilan de masse du circuit de flottation est développé pour tester des observateurs
de réconciliation de données et des stratégies de contrdle automatique. La derniére partie de

la theése évalue la valeur économique des outils de réconciliation de données pour deux

il



applications spécifiques: une d'optimisation en temps réel et 'autre de commande

automatique, couplées avec la réconciliation de données.

En résumé, cette recherche révéle que les observateurs de réconciliation de données, avec
des modéles de procédé appropriés et des matrices d'incertitude correctement réglées,
peuvent améliorer la performance de l'usine en boucle ouverte et en boucle fermée par
I'estimation des variables mesurées et non mesurées, en atténuant les variations des
variables de sortie et des variables manipulées, et par conséquent, en augmentant la

rentabilité de l'usine.
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Abstract

To have a beneficial and safe plant operation, accurate and reliable plant data is needed. In
a general sense, accurate information leads to better decisions and consequently better
actions to achieve the planned objectives. In an industrial environment, data suffers from
numerous problems like measurement errors (either random or systematic), unmeasured
key process variables, and inconsistency between data and process model. To improve the
plant performance and maximize profits, high-quality data must be applied to the plant-
wide control, management and business strategies. As a solution, data reconciliation is a
filtering technique that reduces impacts of random errors, produces estimates coherent with

a process model, and also gives the possibility to estimate unmeasured variables.

The aim of this research project is to deal with issues related to development,
implementation, and application of data reconciliation observers for the mineral and
metallurgical industries. Therefore, the thesis first presents how much it is important to
correctly tune the statistical properties of the model and measurement uncertainties for
steady-state data reconciliation. Then, it illustrates how steady-state data reconciliation
commercial software packages can be used to deal with process dynamics. Afterward, it
proposes a new dynamic data reconciliation observer based on a mass conservation sub-
model involving a node imbalance autocovariance function. To support the implementation
of Kalman filter for dynamic data reconciliation, a procedure to obtain a simple causal
model for a flotation circuit is also proposed. Then a mass balance based dynamic simulator
of froth flotation circuit is presented for designing and testing data reconciliation observers
and process control schemes. As the last part of the thesis, to show the economic value of
data reconciliation, two advanced process control and real-time optimization schemes are

developed and coupled with data reconciliation.

In summary, the study reveals that data reconciliation observers with appropriate process
models and correctly tuned uncertainty matrices can improve the open and closed loop
performance of the plant by estimating the measured and unmeasured process variables,
increasing data and model coherency, attenuating the variations in the output and

manipulated variables, and consequently increasing the plant profitability.
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Foreword

This thesis consists of 9 chapters and two appendices. The first chapter provides a general
introduction to data reconciliation techniques, applications, issues, and objective of the
study. In Chapter 2, the necessary background to understand and apply the data
reconciliation techniques is presented. Chapters 3 to 6 are based on published or submitted
articles in international scientific journals and conferences. Chapter 7 presents phenomena
based simulator development of flotation circuits. In Chapter 8, value of data reconciliation
coupled with advanced process control and real-time optimization schemes are

investigated. Chapter 9 contains thesis conclusions and recommendations for future works.

Chapter 3:

Chapter 3 presents the importance of correctly tuning of the statistical properties of the
modeling and measurement uncertainties in steady-state data reconciliation. It reveals that
neglecting the covariance terms, which is a common industrial practice, and also incorrect
tuning of variance terms of the uncertainties matrices can deteriorate the observer
performance. In this chapter, using five case-studies taken from mineral and metallurgical

industries, the following topics are studied:

e importance of considering the model parameter errors and their correlation terms

e impact of taking into account the correlation of the measurement errors

e importance of involving process dynamic fluctuations in data reconciliation

e linearization of bilinear data reconciliation constraints and correctly tuning of
corresponding measurement error covariance matrix

e impact of the variance terms of the uncertainties matrix on data reconciliation

performance

This work is presented in:
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Amir Vasebi, Eric Poulin & Daniel Hodouin (2014), Selecting proper uncertainty
model for steady-state data reconciliation — Application to mineral and metal

processing industries. Minerals Engineering, 65, p. 130—144.
In this part of the project, |

e reviewed the related literature

e developed simulators for the case-studies in collaboration with my professors

e developed a new technique to calculate the measurement error covariance matrix for
bilinear data reconciliation problems

e wrote the necessary MATLAB codes and built Simulink models

e implemented the data reconciliation observers

e defined different simulation scenarios to investigate the effect of uncertainty
covariance matrix on the performance of steady-state data reconciliation observer

e analyzed and discussed the results in collaboration with my professors

e wrote the article manuscript in collaboration with my professors

Chapter 4:

Chapter 4 provides several techniques to apply the steady-state data reconciliation
commercial software packages for dealing with process dynamics. It proposes three
solutions. First, when unit inventories are measured, it is possible to use a sub-optimal
implementation of data reconciliation with dynamic mass or energy conservation methods.
In the second technique, plant input variables are pre-filtered for synchronizing with other
plant variables, in such a way that steady-state reconciliation can be applied. Then, the
dynamic process inputs are reconstructed. In the third option, fictitious streams representing

the accumulation rate variables (node imbalances) are added to the plant network.
This work is presented in:

Daniel Hodouin, Amir Vasebi & Eric Poulin (2012), How to adequately apply
steady-state material or energy balance software to dynamic metallurgical plant
data. IFAC Workshop on Automation in the Mining, Mineral and Metal

Industries, Gifu, Japan.
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In this chapter, [

e worked on the mathematical development of the solutions in collaboration with my
professors

e wrote the necessary MATLAB codes and built Simulink models

e developed simulators for the case-studies

e implemented the data reconciliation observers

e defined different simulation scenarios in collaboration with my professors

e analyzed and discussed the results in collaboration with my professors

e wrote the article manuscript in collaboration with my professors

Chapter S:

Chapter 5 introduces a new dynamic data reconciliation observer based on a mass
conservation sub-model. The observer uses the autocovariance of node imbalances as
additional information that improves the estimation precision. For evaluation purpose, two
simulated benchmark plants operating in a stationary regime are used, and its performance
is compared with classical sub-model based observers and Kalman Filter. The proposed
observer provides more precise estimates than steady-state and standard stationary
observers, particularly when the process dynamic regime becomes important compared to
measurement errors. It exhibits more robust performances against modeling errors
compared to Kalman filter. Although Kalman filter leads to optimal performances when

perfectly tuned, it is more sensitive to modeling errors than the proposed observer.
This work is presented in:

Amir Vasebi, Eric Poulin & Daniel Hodouin (2012), Dynamic data reconciliation
based on node imbalance autocovariance functions. Computers and Chemical

Engineering, 43, p. 81-90.
In this study, I
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e reviewed the related literature

e carried out the mathematical development of the proposed observer

e developed simulators for the case-studies in collaboration with my professors

e wrote the necessary MATLAB codes and built the Simulink models

e implemented the data reconciliation observer

e defined different tests, simulation scenarios, and performance evaluation indices
e analyzed and discussed the results in collaboration with my professors

e wrote the article manuscript in collaboration with my professors

Chapter 6:

Chapter 6 proposes a procedure to obtain a simple model for a flotation circuit to support
the implementation of Kalman filter for dynamic data reconciliation. Using simplifying
assumptions, first-order empirical transfer functions obtained from the plant topology,
nominal operating conditions, and historical data are used to build the model for Kalman
filter. The flotation circuit simulator introduced in Chapter 7 is employed as the case-study.
To obtain the model parameters and corresponding uncertainties, practical guidelines are
provided. The performance of Kalman filter is compared with two sub-model based
observers using the total estimation error variance reduction index and a robustness test.
Kalman filter with the empirical model provides more precise estimates than standard and
autocovariance based stationary observers. But in the robustness test, sub-model based

observers reveal slightly better performance than the implemented Kalman filter.
This work is submitted as:

Amir Vasebi, Eric Poulin & Daniel Hodouin (2015), Determining a dynamic
model for flotation circuits using plant data to implement a Kalman filter for data

reconciliation. Minerals Engineering, 83, 192-200.
In this chapter, |

e carried out the mathematical development of the modeling error covariance matrix

tuning
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e proposed guideline to estimate the model parameters and uncertainties using plant
data in collaboration with my professors

e wrote the necessary MATLAB codes and built Simulink models

e implemented the data reconciliation observers

e defined different tests, simulation scenarios, and performance evaluation indices

e analyzed and discussed the results in collaboration with my professors

e wrote the article manuscript in collaboration with my professors

Chapter 7:

Chapter 7 develops a dynamic simulator of froth flotation circuit for designing and testing
data reconciliation observers and automatic control strategies. This simulator is built based
on dynamic mass balance equations and empirical relationships. Collection and froth zones
are modeled as the perfect mixer and plug flow reactors. Flotation and entrainment
phenomena are considered in the collection zone modeling. Species drainage from the froth
zone into the collection zone is also modeled by modifying flotation rate constants.
Collector and frother concentrations, collection zone level, and air flowrate are considered
as manipulated variables. The performance of a single cell and a flotation circuit are
assessed using different test cases and scenarios. The simulator is employed as the case
study for data reconciliation observer and advanced controller design in Chapters 6 and 8§,

respectively.
In this chapter, [

e reviewed the related literature

e carried out the mathematical modeling of the flotation cell in collaboration with my
professors

e developed the simulator in MATLAB and Simulink

e defined different tests and simulation scenarios

e tested the simulator performance in collaboration with my professors

e analyzed and discussed the results in collaboration with my professors

e wrote a technical report in collaboration with my professors
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Chapter 8:

Two advanced process control and real-time optimization schemes based on receding
horizon internal model control are designed in Chapter 8. The aim is coupling dynamic data
reconciliation with an advanced controller and a real-time optimizer, and showing its
economic value. For this purpose, the flotation circuit simulator developed in Chapter 7 is
employed as the benchmark plant. For the advanced controller, a standard quadratic
reference tracking objective function is defined while real-time optimizer has an economic
based cost function. Then, they are coupled with autocovariance based stationary data
reconciliation observer presented in Chapter 5. To assess the effect of involving data
reconciliation in closed loop process, several test cases and disturbances are applied.
Performance and economic benefits of the advanced control and real-time optimization
schemes with and without data reconciliation are investigated using statistical measures and

an economic gain function.
In this study, I

e reviewed the related literature

e developed an advanced controller and a real-time optimizer in collaboration with
my professors

e applied a mass conserving system identification method to obtain the process model

e developed the necessary MATLAB codes and Simulink models

e implemented and integrated the data reconciliation observer with the plant

e defined different simulation scenarios and tests in collaboration with my professors

e defined the closed loop performance evaluation indices in collaboration with my
professors

e tested the closed loop performance in collaboration with my professors

e analyzed and discussed the results in collaboration with my professors

e wrote a technical report in collaboration with my professors
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Appendices:

Appendix A provides complementary information about the case-studies used in Chapter 3
while Appendix B presents the mathematical calculations used in Chapter 5 to build the

autocovariance based stationary observer.
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Chapter 1

Introduction

This chapter first discusses the data reconciliation observers and their effectiveness to
improve the accuracy and the reliability of plant data. Issues associated with data
reconciliation applications are also presented. Moreover, objectives of this research,

original contributions, and a list of publications are given in the following sections.

1.1 Data Reconciliation

Efficient, profitable, and safe plant operations depend on accurate and reliable process data
in mineral and metal processing plants. Measurement errors affecting variables such as
chemical species concentration and/or particle size distribution are usually important due to
sampling errors and material heterogeneity (Gy, 1982). Due costs associated with
instrumentation and maintenance and/or technical concerns, direct measurement of such
variables using on-line analyzers is faced with many limitations. On the other hand, taking
samples with off-line techniques, i.e. laboratory analysis, is also time-consuming and
expensive. Therefore, only necessary physicochemical variables and properties are usually
measured and evaluated. These issues lead to inconsistency between measurements and

process models, and also key properties of the material that are unmeasured.

Data reconciliation is considered as an effective technique to improve the accuracy and
reliability of plant data. It is normally formulated as an optimization problem minimizing
the measured and estimated variables difference while respecting constraints imposed by
the process model. Mass and energy conservation equations are used as process constraints.
The technique was first proposed by Kuehn and Davidson (1961) more than fifty years ago.

Over time, many improvements and modifications were brought to the technique as

1



reflected by several reference works (Narasimhan and Jordache, 2000; Romagnoli and
Sanchez, 2000; Puigjaner and Heyen, 2006). Data reconciliation has been recently
revisited, and interesting mathematical interpretations have been suggested by Mistas

(2010) and Maronna and Arcas (2009).

Usually, data reconciliation is coupled with complementary methods that take advantage of
improved state estimations. It has been involved in many applications like process
monitoring (Martini et al., 2013), plant simulation (Reimers et al., 2008), basic and
advanced process control (Bai and Thibault, 2009) or real-time optimization (Manenti et al.
2011). In mineral and metal processing plants, data reconciliation has been widely applied
in production accounting, survey analysis, sensor network design and fault detection
(Hodouin, 2010; Narasimhan, 2012; Berton and Hodouin, 2003; Berton and Hodouin,
2007).

A wide range of models ranging from simple sub-models like steady-state mass/energy
conservation constraints to a complete dynamic causal model has been proposed to handle
the plant dynamics for data reconciliation purpose. A model built based on detailed and
accurate information about process behavior leads to more precise estimations than those
obtained from simple process models. In practice, developing and calibrating such models
are demanding tasks. Hodouin (2011) has discussed and presented this point for mineral

and metal processing plants.

The simplest approach is to average data to attenuate dynamic variations and apply steady-
state data reconciliation (Bagajewicz and Jiang, 2000). Due to its simplicity, this technique
is commonly used in numerous industry applications (Bagajewicz, 2010). The approach
provides good results when processes have small dynamic variations, but for highly
dynamic regimes, estimates could be less precise than measurement themselves (Almasy,

1990; Poulin et al., 2010)

Stationary data reconciliation was proposed by Makni et al. (1995a, 1995b) and Vasebi et
al. (2012a) to handle plant dynamics with limited modeling efforts. These techniques
consider inventory variations as random variables and rely on the autocovariance function

of node imbalances. Other studies have also combined material conservation constraints



with inventory measurements to deal with dynamic variations. These studies can be
grouped into two categories: generalized linear dynamic observers (Darouach and
Zasadzinski, 1991; Rollins and Devanathan, 1993; Xu and Rong, 2010) and integral linear
dynamic observers (Bagajewicz and Jiang, 1997; Tona et al., 2005). However, assuming
the availability of inventory measurements is an important limitation. For instance, in the
mineral processing industries, measuring of the inventory for a particular species in a

separation unit is very difficult or almost impossible.

In the presence of a dynamic causal model of the process, Kalman filter (Kalman, 1960) is
largely used to solve dynamic data reconciliation problems (Narasimhan and Jordache,
2000). Approaches inspired by Kalman filter such as the predictor-corrector-based
algorithm (Bai et al., 2006) or the generalized Kalman filter (Lachance et al., 2006a) also
represent interesting alternatives. However, obtaining the required process models for these

algorithms implementation could be difficult and laborious in practice.

In mineral and metal processing industries, data reconciliation is well-established and
widely applied. Mass and energy conservation constraints are usually applied as the process
model to estimate the underlying steady-state values of process variables. Total material, as
well as species flowrates, are estimated leading to bilinear data reconciliation problems. In
the Gaussian context, a Maximum-Likelihood estimator is retained. Typically, it is assumed
that measurement errors are unbiased and uncorrelated. To characterize the measurement
errors, corresponding covariance matrices are often tuned using approximate techniques or
trial and error approaches without paying attention to the impacts on the precision of

estimated process variables.

1.2 Problem Statement

Data reconciliation is based on a trade-off between modeling effort and estimates precision.
In general, model built based on detailed and accurate information of process results in
more precise estimations than those that are estimated using the simple description of
process models. However, as mentioned before, developing, calibrating, and maintaining
such models are challenging tasks in practice (Hodouin, 2011). Using inadequate and

inappropriate dynamic models with highly uncertain parameters could also lead to biased



estimates (Dochain, 2003; Ozyurt and Pike, 2004). These considerations have often led to
the use of simple but reliable sub-models instead of complex and detailed models involving
uncertain parameters. The desire of finding a suitable compromise between modeling
efforts and estimation performances motivate the development of new observers and
development of procedures to obtain appropriate process models used in existing powerful

observers like Kalman filter.

Moreover, the performance of data reconciliation observers strongly depends on the
covariance matrices used to characterize the model and measurement uncertainties
(Bavdekar et al., 2011). In some cases, inappropriate selection can even lead to divergence
of the observation algorithm (Willems and Callier, 1992). In steady-state data
reconciliation, measurement uncertainties evaluation techniques are generally based on
direct methods (that only use measured process variables (Morad et al. 1999)) and indirect
methods (which rely on process constraint residuals (Keller et al., 1992; Chen et al., 1997;
Darouach, et al., 1989)). A tuning method based on covariance analysis to separate process
fluctuations from measurement errors has been proposed by Lachance et al. (2007) for
stationary observers. Regarding the evaluation of uncertainties for Kalman filter, several
techniques have been introduced in the literature as illustrated by Dunik et al. (2009),
Bavdekar et al. (2011), Dunik and Simandl (2008), and Akesson et al. (2008). Determining
these covariance matrices is a crucial exercise that has to be carefully addressed to ensure a
successful implementation of observers. Besides introducing new tuning techniques,
investigation on the effect of uncertainty covariance matrices on the performance of data

reconciliation observers is strongly in demand.

High-quality data is essential to make suitable decisions and consequently maximize
profits, deal with market changes, and achieve technical objectives. Moreover, to maintain
a plant around the optimum point, e.g. for advanced process control, real-time optimization,
or plant supervision applications, data quality plays a critical role. Based on the literature,
data reconciliation can generally improve the performance of control strategies and real-
time optimization by attenuating the measurement noise variance and control action
amplitude, estimation of unmeasured variables, updating model parameters, and improving

model and data coherency. From an industrial point of view, these improvements can bring



better products quality and more economic revenues. A limited number of papers have
coupled data reconciliation with process control (Ramamurthi et al., 1993; Abu-el-zeet et
al., 2002; Zhou and Forbes, 2003; Bai et al., 2005a; Bai et al., 2007) and real-time
optimization (Naysmith and Douglas, 1995; Zhang and Forbes, 2000; Faber et al., 2006;
Hallab, 2010). Most of these studies have evaluated the data reconciliation effectiveness
using statistical properties of manipulated and controlled variables, and/or some qualitative
measures. They have not investigated the potential economic revenues obtained by
applying data reconciliation. Therefore, at least a case-based study is required to reveal how
much data reconciliation can be beneficial for a given plant from the economic point of

view.



1.3 Objectives of this Work

As reflected by the literature on data reconciliation and as discussed in the problem
statement section, there are several issues associated with the development,
implementation, and application of data reconciliation observers in practice. To address

these points, the aims of this study are:

o Investigating the effect of correctly selecting uncertainty covariance matrices, used
for characterizing the modeling and measurement errors, on the data reconciliation

performance.

e Developing new dynamic data reconciliation observers based on limited modeling

efforts.

e Determining a simple dynamic model for mineral processing plants to support the

implementation of a Kalman filter for data reconciliation purpose.

e Developing a simulator of the mineral processing plants for design and test of data

reconciliation observers and process control strategies.

e Coupling data reconciliation observers with advanced process control and real-time
optimization schemes, and consequently investigating the benefits of using data

reconciliation in closed loop plants.



1.4 Original Contributions

Briefly, the main contributions of this thesis are:

Classification of the data reconciliation observers based on target value estimation:

steady-state underlying value versus the true value of variables.

Proposition of a systematic technique to classify the different source of uncertainties
(i.e. modeling errors, process dynamics, and sampling and analysis errors), and also
correctly selecting of the uncertainties covariance matrices for steady-state data

reconciliation purpose.

Development of a new technique to calculate the measurement error covariance
matrix for bilinear data reconciliation problems, in contrast with existing incorrect

practices.

Proposition of the recommendations and tricks to deal with plant dynamics using

the available steady-state data reconciliation software.

Development of a new stationary data reconciliation observer based on node

imbalance autocovariance function.

Proposition of a procedure to obtain a dynamic empirical model for a flotation
circuit based on plant operation and design information for dynamic data

reconciliation purpose using Kalman filter.

Development of the new performance indices for comparing the different data

reconciliation observers.

Development of a phenomenological simulator for a flotation circuit used for design

and test of data reconciliation observers and process control schemes.

Integration of the data reconciliation observers with advanced process control and
real-time optimization schemes for illustrating the economic value of using data

reconciliation in a simulated flotation plant.
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Chapter 2

Data Reconciliation: Background

This chapter presents the fundamental points that are necessary to understand and apply the
data reconciliation techniques. First, accuracy and precision of a measurement are defined
based on the different measurement error types. Then, various plant operating regimes are
illustrated and discussed. Moreover, the target value of each process variable, i.e. the one
that should be estimated by data reconciliation, is clearly stated. Different process models
used in the data reconciliation observers, ranging from a simple mass conservation sub-
model to a complete causal dynamic model, are also shown in the chapter. Finally, to
complete the presentation of process models, measurement equation of the process

variables is presented.

2.1 Introduction

Accurate and reliable process data is needed to have an efficient, profitable, and safe plant
operation. Plant-wide management and business strategies depend on performance
indicators like productivity, material quality and production cost information that combine
economic and technical factors. These factors are strictly related to the process variables
such as production rate, metal recovery, product grade, and energy consumption. High-
quality data is essential to make suitable decisions to maximize profits, deal with market
changes, and achieve technical objectives. Moreover, to keep a plant around the optimum
point, e.g. for advanced process control, real-time optimization, or plant supervision

applications, data quality plays a critical role.



Presence of the random and gross errors in the measurements, infrequent laboratory
analyses, and unmeasured strategic variables are the major concerns in most of mineral and
metallurgical plants. For these processes, there are many unmeasured flowrates because of
technical and economic issues. In contrast, the physical properties and the chemical content
of flowing material are analyzed for a large number of streams. However, these analyses
are subject to significant measurement errors associated with sampling errors (Pitard, 1993;

Holmes, 2004) causing problems for advanced control and optimization applications.

Data reconciliation (DR) is widely applied to improve the reliability and accuracy of data in
mineral processing industries. It reduces impacts of random errors by producing estimates
coherent with a process model and giving the possibility to estimate the unmeasured
variables under favorable observability conditions. For the first time, Kuehn and Davidson
(1961) have proposed data reconciliation based on Lagrange multipliers for the steady-state
data reconciliation problem. As a proven technique, it has been largely applied to various
industrial sectors such as chemical and biochemical processes (Dochain, 2003), pulp and
paper industries (Bellec et al., 2007) and mineral and metallurgical processing (Hodouin,
2010). Over the years, many comprehensive books and papers describing fundamental
aspects of data reconciliation have been presented (Narasimhan and Jordache, 2000;
Romagnoli and Sanchez, 2000; Bagajewicz 2010; Puigjaner and Heyen, 2006; Crowe,
1996, Tamhane and Mah, 1985; Hlavacek, 1977; Mitsas, 2010; Maronna and Arcas, 2009).

For successful implementation of data reconciliation observers, developing a process model
is a crucial task. The representation of process model could range from simple noncausal
sub-models, e.g. mass conservation constraints, to complete causal dynamic models. In
general, more accurate and detailed process model would lead to more precise estimates
while using simpler plant description produces less precise estimations. However, in
practice, building and calibrating of detailed models is a challenging task (Hodouin, 2011).
Updating and maintaining complex models is another point that could be problematic. All
these factors have often motivated the use of simple sub-models that have high confidence
level rather than complete but uncertain models. The trade-off between estimation
performances and modeling efforts has led to different observers regarding the various

types of models used to cope with process dynamics.
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Plant operating regime is another factor that can affect the development and performance of
the observers (Lachance et al., 2006b). Depending on how plant feed varies, the process
model and observer structure could be different. Assuming steady-state operating regime,
when feed largely fluctuates, could lead to much simpler observers with less precise
estimates while developing observers that take into account the feed variations could result

in better estimation.

Depending on which part of measured variables should be estimated by data reconciliation,
observer design could be different. Each process variable, ignoring the measurement noises,
can be represented by two components: a) local/underlying value and b) true value
including the underlying value and dynamic variations. Both of these values can be targeted
and estimated by data reconciliation observers. Estimation of the underlying value leads to
steady-state observers while attempt to estimate the true value is called dynamic DR.
Therefore when a data reconciliation observer is developed, the target value should be

clearly mentioned.

As the main objective, the points that are necessary to understand and develop data
reconciliation observers are presented in this chapter. These concepts are clearly defined for
avoiding any confusion in the thesis. Section 2.2 is dedicated to present the various
measurement errors, and consequently definition of the measurement accuracy and
precision. Then, in Section 2.3, plant operating regimes are illustrated based on the
inventory variations. Estimating the averaged underlying value or true dynamic value as the
objective of DR is extensively discussed in Section 2.4. Process models applied in DR
observers, ranging from a simple mass conservation sub-model to a complete causal
dynamic model, are shown in more details in Section 2.5. Finally, to complete the
presentation of process models, Section 2.6 provides the measurement equation of the

process variables.
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2.2 Precision versus Accuracy

Measured data is always affected by errors related to measuring devices. No sensor can be
built that is exact and accurate. Also, errors can arise from sampling or sensors positioning
caused by the inherent space and time heterogeneity of process variables. About the source
of errors in the measurements, a discussion is presented in Chapter 3. Narasimhan and

Jordache (2000) have categorized the measurement errors into two main classes:

e Random errors: the random term implies that neither the magnitude nor the sign of
the error can be predicted with certainty. In other words, if the measurement is
repeated with the same instrument under identical process conditions, different
values may be obtained depending on the outcome of the random error. The only
possible way that these errors can be characterized is using probability distributions,
a property that quantifies measurement precision. These errors can be caused by
some different sources such as power supply fluctuations, network transmission and
signal conversion noise, changes in ambient conditions, and so on. This error
usually corresponds to the high-frequency components of a measured signal and is

usually small in magnitude.

e Qross errors, including biases (systematic errors) and outliers, are caused by non-
random events such as instrument malfunctioning (due to improper installation of
measuring devices), miscalibration, wear or corrosion of sensors, and solid deposits.
Therefore, their occurrence and magnitude have not any random distribution. The
non-random nature of these errors implies that, at any given time, they have a

certain magnitude and sign that are usually unknown.

Based on the presented error classification, the accuracy of a measurement is defined as the
closeness to the true value and it includes the effect of both gross and random errors
(Miller, 1983). From a mathematical point of view, Mean-Square Error defined as the
expected value of the square of the deviation between the estimated and the true value can
be a representative for the measurements accuracy. While precision stands for the scattering
of samples, i.e. measurements, around the samples mean which could be different from true

value. In this sense, standard deviation ¢ can be an indication of the measurement
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precision. The smaller value of o implies more precision on the measurement and the
higher probability that the random error can be close to zero (Benglilou, 2004). When no

bias is present, accuracy and precision are equivalent.

2.3 Plant Operating Regimes

To implement appropriate DR observers, characterization of the process operating regime is
an essential factor. The variation of process states mainly depends on the plant dynamics,
production rate changes, and the nature of disturbances. Using the node imbalances as a

criterion for operating regime classification, four categories could be proposed (Lachance et

al., 2006b):

e The steady-state regime: this regime assumes that all process inventories are
constant; it implies a zero node imbalance at any time. Based on this definition,
flowrates are allowed to fluctuate when equipment related to process nodes have

fixed inventories or very fast time response compared to the stream dynamics.

e The stationary operating regime: in practice, a strictly steady-state regime with
constant inventory is never met. There are always random or deterministic dynamic
variations that can be small or quite significant. The stationary operating regime
assumes that, over a long period of time, the process stream properties as well as
inventories randomly vary around a constant value with positive and negative
values. This operating mode is more realistic than the steady-state regime, and it can
be applied to represent a wide range of industrial processes that operate in normal
conditions during sufficiently long periods where major deterministic changes do

not occur.

e The transient regime: when a process goes from one operating point to another one.
On a short time window, to make a distinction between a stationary operating

regime and a transient operating condition is a difficult task.

e The quasi-stationary regime: it is a combination of both stationary and transient
operating conditions where the stationary intervals are significantly longer than the
transient ones. In this mode, the process evolves from one stationary condition to

another.
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To illustrate the classification, Fig. 2-1 introduces a single node separation unit. The
inventory of this process is shown in Fig. 2-2 for different regimes. Local stochastic
variations (high frequencies) are mainly caused by input disturbances while trends (low-
frequency variations) are the consequences of the deterministic abrupt or slow changes in
the input variables. In this thesis, it is assumed that plants always operate in the stationary

regime that is a reasonable assumption from the industrial point of view.
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2.4 Process State Variable versus Steady-State Underlying Value

Feed fluctuations, either random or dynamic, cause dynamic variations in the process states

x . Under stationary operating regime assumption, at least for a sufficiently long operating

time, each process state x fluctuates around a mean value x,,, therefore allowing to define

a dynamic deviation x; = x —x,, (Fig. 2-3). Defining X, as the averaged value of a process

variable x in the time window of / samples, its variation tends to zero when 4 becomes

larger and it has the maximum variance when A=1 . In general, X, does not perfectly obey

the steady-state mass or energy conservation law, the deviation becoming smaller for larger

h.
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Fig. 2-3: Components of a state variable in stationary regime.
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Depending on the application of data reconciliation, x or x» can be targeted for estimation
purpose. For applications like material accounting and auditing, x» is estimated and the
procedure is called steady-state data reconciliation while estimation of the state variable x
including mean value and dynamic variations is named dynamic data reconciliation and
applied for process control and real-time optimization purposes. When x is estimated, data
reconciliation observer minimizes the measurement-estimate distance including process
dynamic variations xs and measurement error. In the estimation of x, data reconciliation

observer only minimizes the distance induced by measurement error.

In practice, process dynamics are never exactly stationary, and, therefore, the concept of
mean X,, estimation is not perfectly adapted to these real situations. It is more convenient

to define the steady-state data reconciliation problem as an estimation of a locally
underlying steady-state value, i.e. an estimation that exactly satisfies the steady-state mass
and energy conservation equations. The current study supposes that the process is locally
stationary and Gaussian. Although the process variables may have varying means,
assuming fluctuations have reasonably constant variances, Maximum-Likelihood (ML)
estimator is used as the optimal choice for data reconciliation purposes in this context.
Based on above discussed points, before developing and applying any data reconciliation
observer, it should be clearly indicated what is the target value for estimation, i.e. steady-

state underlying value or true state variable.

2.5 Process Models

This section reviews most commonly used process models starting with the simple mass
conservation sub-model and ending with the complete causal dynamic model. It also

presents the unified measurement model associated with the various plant descriptions.

2.5.1 Steady-state conservation model

The simplest model also used by Kuehn and Davidson (1961) is the application of mass
and/or energy conservation law in the steady-state situation for data reconciliation purpose.
In this context, the process is described through mass and/or energy conservation

constraints easily obtained using plant flow sheet. Here, to simplify the presentation, only
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mass conservation equations are shown. The model assumes that steady-state mass balance
equations are perfectly satisfied at any time, i.e. node imbalances strictly equal to zero.

Based on this assumption, the model is expressed by:
Mx(k)=0 (2-1)

where x is the vector of process state variables (e.g. solid and species mass flowrates f'),

k is the time index, and M is the incidence matrix determined by the plant flow diagram.
The elements of each row of M are either +1, -1 or 0, depending on whether the
corresponding stream is input, output or not associated with the process unit, respectively.
This model is used for processes operating in a near steady-state regime, having limited
inventory variations, or in combination with averaged data that attenuates most effects of
plant dynamics. When this model is employed for steady-state data reconciliation, i.e. the

underlying value is the estimation target value, x(k) should be replaced by x,, in Eq. 2-1.

2.5.2 Stationary conservation model

Despite the attractive simplicity of the steady-state model, when large disturbances happen
in the plant feed, because of the plant dynamics, it is no longer representative of the process
state variations. In this situation, applying the steady-state model for DR leads to estimates
with less precision than measurements (Almasy, 1990). To handle plant dynamics with
limited modeling efforts, Makni et al. (1995a) have proposed and applied stationary
conservation model. The model supposes that the plant is operating in a stationary mode
and it deals with node imbalances as the random variables. Consequently, the mass balance

equation is given by:
Mx(k) = e(k) (2-2)

where & is a random vector representing node imbalances. They have described the

statistical properties of & using a white noise:

e(k)~N(0,Z,) , covie(@),s(j)} =0 , Vizj (2-3)
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Under this assumption, the obtained model is simple but ignores the time correlation of the
node imbalances caused by plant dynamics. In Chapter 5, the model is modified so that it

takes into account the correlations.

2.5.3 Dynamic conservation model

Another approach to deal with the inventory variations caused by plant dynamics is to
directly incorporate the inventory variable in the mass conservation models. This method,
named linear dynamic mass conservation model, has been introduced by Darouach and
Zasadzinski (1991). Rollins and Devanathan (1993) have proposed improvements to the
algorithm to increase computational speed. The method has been also adapted by Xu and
Rong (2010) for processes with partial state measurements. The linear dynamic mass
conservation concept is expressed by using the inventory variable derivatives. In the

discrete time context, the model can be written as:
O(k+1)=Mf(k+1)+O(k) (2-4)

where O is the selected species inventories divided by the sampling period. To include

flowrates f as well as accumulated masses, the vector of states x is defined as:

O(k)
x(k)= (2-5)
S (k)
The model given by Eq. 2-4 can then be rewritten as:
— Ex(k+1)+ Dx(k)=0 (2-6)
where
E=[1 -M] , D=[1 0] 2-7)

2.5.4 Complete causal dynamic model

To cope with large process dynamics and feed variations, advanced observers like Kalman

filter (Kalman, 1960) need complete causal dynamic models. These models are able to
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simulate the process states and outputs from input variables and initial conditions. In
practical applications, where a plant operates around steady-state nominal values (i.e.

nominal inputs u, and parameters 8, ), the following linear time invariant approximation

can be used:
x(k+1)=A(0,)x(k)+ B(8,)u, + w(k) (2-8)

where x is the state vector, which may not necessarily represent physical variables of the
process. The model coefficients 4 and B are valid for a local operating regime
corresponding to nominal inputs and parameters. Model uncertainties as well as white
noise, generating disturbances in the input stream, are included in w. In the present study,

it is assumed to obey a normal distribution:
w(k) ~ N(0,X) (2-9)

Assuming that the plant is operating in stationary regime implies that the states are also

randomly distributed:
x(k) ~ N(x,.£,) (2-10)
where x, represents the process steady-state nominal value.

It is noticeable that any of the above-mentioned models could be used for data
reconciliation purpose regardless of the estimation of target variable x or x,, . However the
estimation accuracy is a determinative factor. For example steady-state conservation model
can be used for estimation of the true dynamic variable. But it can lead to less accurate
estimates than raw measurements especially when the process dynamic variations are larger

in comparison with measurement noises.
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2.6 Measurement Model

Process models are completed with a measurement equation that indicates which process
variables are measured and how they are corrupted by measurement errors. In the linear

case, the measurement equation is expressed by:
y(k) = Cx(k)+v(k) (2-11)

where y(k) and v(k) represent measurements and their corresponding error, respectively.

C i1s a projection matrix that links the model states to the measured process variables. This
matrix is useful for complete causal dynamic models where process states may not exactly
correspond to physical process variables. In other process models when all states are
measured, C is simply an identity matrix. In Eq. 2-11, v is assumed to be a white noise

signal with the following characteristics:

v(k)~N(0,Z)) , cov{v(@),v(j)} =0 , Vi#j (2-12)
Measurement error v is assumed to be independent of w and x :

covi(i),w(j)}=0 and cov{v(i),x(j)}=0 Vi, j (2-13)

Eq. 2-11 needs slight modification to be applied for estimation of the steady-state

underlying value:
y(k)=Cx, + Cx (k)+v(k) (2-14)

where x; stands for x—x, . This modification implies that the measurement-estimate

distance should contain the process dynamic variations X; and measurement error v.
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2.7 Summary

This chapter has presented the necessary foundations for understanding and using the data
reconciliation techniques. It has discussed the accuracy and precision of the measured data
based on the various measurement error types. Plant operating regimes have been classified
using node imbalance variation of the plant. Estimation target value of process variables
has been clearly presented and stated. Different process models applied in data
reconciliation observers have also been shown. At the end, the chapter has presented the

measurement model used n the data reconciliation observers.
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Chapter 3

Selecting Proper Uncertainty Model for Steady-State Data
Reconciliation - Application to Mineral and Metal Processing

Industries!

Résumé

La réconciliation de données est largement appliquée dans les usines de traitement des
minéraux et des métaux pour améliorer la qualit¢ de l'information. L’imprécision, le
manque de fiabilité et l'incomplétude des mesures sont des problémes communs qui
motivent la mise en ceuvre de cette technique. Les pratiques actuelles reposent sur les
contraintes de conservation de la masse et de 1'énergie pour estimer les valeurs statiques
sous-jacentes des variables de procédé. Le contexte est supposé gaussien et un estimateur
du maximum de vraisemblance est sélectionné. La performance d'un tel estimateur dépend
des matrices de covariance utilisées pour caractériser le modele et les incertitudes de
mesure. Dans la pratique, la détermination de ces matrices de covariance est une tache
difficile qui est souvent négligée. L’utilisation de modeles d'incertitude inappropriés, basés
sur des hypothéses simplistes, peut conduire a des sous-performances. L'objectif de ce
chapitre est d'illustrer I'impact de la sélection correcte des matrices de covariance des
incertitudes a des fins de réconciliation de données pour 1’estimation des états permanents
sous-jacents. Différentes études de cas impliquant une chambre de combustion, un

hydrocyclone, un circuit de flottation, et une unité de séparation sont utilisées pour étudier

! Amir Vasebi, Eric Poulin & Daniel Hodouin (2014) Selecting proper uncertainty model for steady-state data
reconciliation—Application to mineral and metal processing industries. Minerals Engineering, 65, p. 130-144.
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la sensibilité de 1'algorithme a la structure des matrices de covariance. Un exemple sur la
base de simulations de Monte-Carlo est présenté pour évaluer l'importance de l'attribution
de valeurs correctes aux termes de la matrice de covariance. Les résultats de simulation
montrent que l'ajustement de matrices de covariance a une influence significative sur la
précision des estimations et révelent que certaines pratiques d'optimisation habituelles

peuvent avoir des effets néfastes.

Abstract

Data reconciliation is widely applied in mineral and metal processing plants to improve
information quality. Imprecision, unreliability and incompleteness of measurements are
common problems motivating the implementation of the technique. Current practices rely
on mass and energy conservation constraints to estimate the underlying steady-state values
of process variables. Typically, the Gaussian context is assumed and a Maximum-
Likelihood estimator is selected. The performance of such an estimator depends on the
covariance matrices used to characterize model and measurement uncertainties. In practice,
determining these covariance matrices is a challenging task that is often overlooked. Using
inappropriate uncertainty models, based on simplistic or improper hypotheses, can lead to
unexpected underperformances. The objective of this chapter is to illustrate the impact of
correctly selecting uncertainty covariance matrices for data reconciliation purpose where
steady-state underlying variable states are estimated. Different case-studies involving a
combustion chamber, a hydrocyclone, a flotation circuit, and a separation unit are used for
investigating the sensitivity of the algorithm to the structure of covariance matrices. An
example based on Monte-Carlo simulations is presented to assess the importance of
assigning right values to variance terms. Simulation results show that the adjustment of
uncertainty covariance matrices has a significant influence on the precision of estimates and

reveal that some common tuning practices can have detrimental effects.
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3.1 Introduction

Obtaining data of good quality to control critical process variables is a major issue in
mineral and metal processing plants. Measurement errors affecting variables such as
chemical species concentration or particle size distribution are usually important due to
sampling errors and material heterogeneity (Gy, 1982). Direct measurement of such
variables with on-line analyzers is also made with parsimony because of instrumentation
and maintenance costs or feasibility concerns. Taking samples for laboratory analysis is
time-consuming and expensive, so only necessary physicochemical properties are usually
evaluated. These issues frequently lead to inconsistent measurements according to process

constraints and unmeasured key attributes of the material being processed.

Data reconciliation is an effective method to improve the accuracy and the reliability of
plant data. It could be formulated as an optimization problem that minimizes the difference
between measured and estimated variables while respecting constraints imposed by the
process model. Mass and energy conservation equations are used as process constraints.
The technique was introduced more than fifty years ago by Kuehn and Davidson (1961).
Over time, many improvements were brought to the technique as reflected by several
reference works (Narasimhan and Jordache, 2000; Romagnoli and Sanchez, 2000;
Puigjaner and Heyen, 2006). Recently, the method has been revisited, and interesting
mathematical interpretations have been suggested by Mistas (2010) and Maronna and Arcas

(2009).

Since data reconciliation is not an end in itself, the technique is usually coupled with
complementary methods that take advantage of improved state estimations. It can be found
in applications like process monitoring (Martini et al., 2013), plant simulation (Reimers et
al., 2008), basic and advanced process control (Bai and Thibault, 2009), or real-time
optimization (Manenti et al. 2011). In mineral and metal processing plants, data
reconciliation plays a central role in production accounting, survey analysis, sensor network
design and fault detection (Hodouin, 2010; Narasimhan, 2012). The target use of reconciled
data has a strong influence on the model that has to be developed to implement the

observer.

25



A wide range of methods have been proposed to handle plant dynamics. The plant
representation could go from simple sub-models like steady-state mass and/or energy
conservation constraints to a complete dynamic causal model. In general a model built with
detailed and accurate information about the process behavior leads to more accurate
estimations than those obtained with a simplified description. However, developing,
calibrating, and maintaining such models are demanding tasks in practice. This point has
been highlighted for mineral and metal processing plants by Hodouin (2011). Using
inadequate dynamic models with highly uncertain parameters could also lead to biased
estimates (Dochain, 2003). These considerations have often led to the use of simple but
reliable sub-models instead of sophisticated models involving uncertain parameters. The
desire of finding a suitable compromise between modeling efforts and estimation

performances has motivated the development of different data reconciliation algorithms.

A simple approach consists in averaging data to attenuate dynamic variations and use
steady-state data reconciliation (Bagajewicz and Jiang, 2000). This technique is commonly
used in numerous industries because of its relatively low complexity. Therefore most data
reconciliation software only addresses the steady-steady case (Bagajewicz, 2010). It gives
good results when processes present small dynamic variations, but for highly dynamic
regimes, estimates could be less precise than measurement themselves as raised by Almasy
(1990) and emphasized by Poulin et al. (2010), which is not acceptable from any point of

view.

To handle plant dynamics with limited modeling efforts, stationary data reconciliation was
proposed by Makni et al. (1995a) and Vasebi et al. (2012a). These algorithms consider
inventory variations as random variables and rely on the autocovariance function of node
imbalances. Other methods that have combined material conservation constraints with
inventory measurements to deal with dynamic variations can be grouped into the categories
of generalized linear dynamic observers (Darouach and Zasadzinski, 1991; Rollins and
Devanathan, 1993; Xu and Rong, 2010) or integral linear dynamic observers (Bagajewicz
and Jiang, 1997; Tona et al., 2005). However, assuming the availability of inventory
measurements is an important limitation. For example, in mineral processing, it is almost

impossible to measure the inventory of a particular species in a separation unit.
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When a complete dynamic causal model of the process is available, Kalman filter (Kalman,
1960) is largely used to solve dynamic data reconciliation problems as illustrated, among
others, by Narasimhan and Jordache (2000). Approaches inspired by the Kalman filter such
as the predictor-corrector-based algorithm (Bai et al., 2006) or the generalized Kalman
filter (Lachance et al., 2006a) also represent interesting alternatives. But obtaining the
required models for the implementation of these algorithms in large-scale industrial

processes could be difficult and laborious.

The performance of estimators discussed above highly depends on covariance matrices
used to characterize model and measurement uncertainties (Bavdekar et al., 2011).
Determining these covariance matrices is a crucial exercise that has to be carefully
achieved to ensure a successful implementation. In some cases, inappropriate selection can
even lead to divergence of the observation algorithm as mentioned by Willems and Callier
(1992). For steady-state data reconciliation, measurement uncertainty evaluation techniques
are generally gathered into direct methods that only use measured process variables (Morad
et al. 1999) or indirect methods which rely on process constraint residuals (Keller et al.,
1992; Chen et al., 1997). Other approaches taking advantage of the correlation between
process streams are presented by Narasimhan and Shah (2008) and Poulin et al. (2009). For
stationary observers, Lachance et al. (2007) have suggested a tuning method based on
covariance analysis to separate process fluctuations from measurement errors. Regarding
the evaluation of uncertainties for the Kalman filter, the literature is fairly rich as illustrated
by Dunik et al. (2009), Bavdekar et al. (2011), Odelson, et al. (2006), and Akesson et al.
(2008). Despite the availability of systematic methods for estimating uncertainty covariance
matrices, adjustments are frequently carried out by trial and error in the industrial

environment, which can impair the benefits of state filtering and estimation.

Data reconciliation is well established in the mineral and metal processing industries.
Common practices make use of mass and energy conservation constraints to estimate the
underlying steady-state values of process variables. Total material, as well as species
flowrates, are estimated which leads to bilinear data reconciliation problems. The
hypothesis of Gaussian context is made and a Maximum-Likelihood estimator is retained.

Typically, measurement errors are assumed to be unbiased and uncorrelated. Covariance

27



matrices characterizing measurement errors are often roughly estimated using approximate
methods or trial and error approaches without paying attention to the impact they have on

the precision of estimated process variables.

The objective of the chapter is to illustrate the effect of correctly selecting uncertainty
covariance matrices to characterize modeling and measurement errors. The role of matrix
structures and covariance values on the precision of estimates are investigated. The scope is
limited to steady-state, linear and bilinear data reconciliation problems to reflect industrial
practices because it corresponds to the basic needs of the industry for process performance
surveys. Objective of the data reconciliation techniques here is to estimate the steady-state
underlying variables states. Analyzes are conducted using various simulated processes: a

combustion chamber, a hydrocyclone, a flotation circuit, and a separation unit.

The chapter is organized as follows. Section 3.2 is dedicated to steady-state data
reconciliation. The reconciliation problem formulation is reviewed and criteria used for
performance assessment are also given. Section 3.3 investigates uncertainty sources and
highlights the various ways they affect covariance matrices. Most common methods used to
determine covariance matrices are presented in Section 3.4. Finally, Section 3.5 proposes
different case studies selected to illustrate the impact of covariance matrices on the

performance of steady-state data reconciliation.

3.2 Steady-State Data Reconciliation

Industrial processes are continuously influenced by disturbances and subject to changing
operating conditions. A perfect steady-state operation is never reached, and this should be
appropriately considered at the data reconciliation stage. The plant operating regimes and
the concept of underlying steady-state values have been well addressed in Chapter 2. Here,
data reconciliation equations are briefly presented. Evaluation criteria to assess the
performance of reconciliation algorithms are suggested. These criteria are used to evaluate
the impact of uncertainty covariance matrices for the five case studies presented later.
Regarding the definitions presented in Chapter 2, steady-state underlying variables are the

target values for estimation in this chapter.
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3.2.1 Data reconciliation formulation

The steady-state data reconciliation problem is expressed using constraint equations
(process sub-model), measurement equations, and an objective function to be minimized.

The process sub-model is written as:
f(xm):gm (3-1)

where f is the set of constraints, X,, represents the state vector of the underlying steady-
state variables, and ¢,, stands for the modeling error. The latter is assumed to obey a

Gaussian statistical distribution:
g, ~N(@QO,Z,) (3-2)

Eq. 3-1 contains energy and mass balance equations for the whole material and various
phases, as well as concentrations of untransformed components or chemical species, and
temperatures. It could also contain normalization equations and coherency equations
between different variable levels such as total mass and components mass flowrates. In

practice, these equations frequently involve flowrates, concentrations, and temperatures.

The measurement equation is formulated as:
y=gx)+v=g(x, +x,)+v=g(x,)+g(x,)+vV (3-3)

where y is the vector of measured variables, g stands for the process observation function,
and x 1is the dynamic state vector at the observation time. In Eq. 3-3, each given
measurement y has three components: the underlying steady-state to be estimated g,(x,,),
the uncertainty related to the process dynamic variations ¢, = g,(x,) around X, , and the

measurement error v. g1 and g2 are the observation functions corresponding to state
underlying value and dynamic variations. For the linear process models which is the case

here, g = g, = g,. The random measurement error v is assumed to have the following

statistical properties:
v~N(0,Z,) (3-4)
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Here, it is assumed that the plant operates in a stationary regime (Lachance et al., 2006b).

Therefore, £, obeys the following property:

where X, is the covariance of the dynamic fluctuations around X,, . The ML estimator x,,

is then given, through the minimization of an objective function over the argument x,,, by:

¢ - arg min [(y—gmxm))} W_l{(y—gl (x,,,))} (3-6)
w LS f5)

m

where W is a weighting matrix. In a Gaussian context, this matrix has the optimal value of:

. [54 + vJ
W =cov (3-7)

&

m

For steady-steady data reconciliation applications in the mineral and metal processing
industries, it is frequently assumed that mass conservation equations are exactly known,

and, therefore:
e =0 (3-8)

This assumption is only true when there is no mass leakage or component transformation.
This hypothesis could not be valid when more complex models than basic conservation
equations are used, especially for energy balance problems. Under this assumption, # only
contains covariance terms related to the measurement equation uncertainties. The estimator

comes down to:

%, =arg min{[y — g, (x, )]V ' [y - &,(x,)]
st f(x,)=0

(3-9)

where
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z“d Z:dv
V =cov(g, +v)= (3-10)
X4 X

v

and X, represents the covariance between process dynamic fluctuations and measurement
errors. Typically, X, 1is zero for instantaneous sampling. However, in some specific

circumstances, the correlation appears and X, should be considered (Hodouin and Ketata,

1994).

The nature of data influences the reconciliation problem. Taking into account total or
component flowrates F leads to a 1-level data reconciliation problem. Handling both total
mass flowrates (first level variables) and chemical and physical properties of streams z
such as species mass fractions, densities, particle sizes, enthalpies, or specific heats (second
level variables) generates a 2-level data reconciliation problem. Consequently, the state

vector x for 2-level data reconciliation becomes:

X, = (3-11)

2-level data reconciliation involves linear conservation equations (conservation of total
mass and normalization constraints of mass fractions) and bilinear equations (conservation
of minerals or chemical species, conservation of physical properties such as particle size
and density, temperature and enthalpy). Considering only total masses brings the problem
to linear data reconciliation, while using chemical species and physical properties leads to
bilinear data reconciliation where constraints contain cross products of total flowrates and
species/properties concentrations. Number of levels could be more than two when a phase
is decomposed into sub-phases and sub-phases are analyzed for their compositions (Bellec

et al., 2007).

This chapter considers both 1-level linear and 2-level bilinear steady-state data
reconciliation problems. The latter one is the most common situation met in the industry.
Since the vast majority of commercial data reconciliation software has been designed for 1-

level and 2-level data reconciliation, it is frequently proposed to linearize nonlinear and
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bilinear problems using the change of variable technique in the literature (Narasimhan and
Jordache, 2000). The impact of this approach on uncertainty covariance matrices is

illustrated in Section 3.5.4 by a specific case study.

3.2.2  Data reconciliation performance

Different approaches exist to evaluate the performance of an observer. Among others,
Poulin et al. (2010) proposed different indices for steady-state data reconciliation.
Generally, the performance of the algorithm is expressed in terms of the covariance matrix

of the state estimation errors P, and the measured variables estimation errors P, defined

by:
P, =cov(x, —%,) (3-12)
and
P, =cov(g,(x,) - &(%,)) (3-13)

where g,(x,,) is the process observation equation. When all the process state variables are

measured, then P, = P,.

Looking at Eq. 3-6 reveals that estimates and corresponding errors explicitly depend on the

weighting matrix . Obviously, using the exact uncertainty matrix W" leads to the

minimum variance estimates. However, in practice knowing the exact Gaussian behavior of
the errors as well as the perfect W tuning is impossible. Therefore, W # W leads to
estimation error covariance values (either P, or Py) larger than the optimum theoretical
value P’ . The estimation error covariance matrix could be expressed as a function of

optimum and applied weighting matrices P = f ww.

In this chapter, three major aspects are considered for assessing the performance of data
reconciliation: the overall uncertainty reduction on the measured variables, the overall state

estimation efficiency, and the uncertainty reduction on key process indicators. The first
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index evaluates the overall uncertainty reduction on measured process variables V. It

compares the estimation error variance of measured variables with the variance induced by

both plant dynamics and measurement errors. It is given by:

trace (P,

p, =1- 22eh) (3-14)
trace(V)

where the “trace” operator stands for summation of the diagonal terms of the covariance

matrix, V' is the covariance matrix of the measurement equation error including &, and v,
and P, is calculated using simulations. The index would be equal to 1 for the fictitious

situation of no estimation error. When there is no global variance reduction compared to V,

1, =0. A value between 1 and 0 shows the relative improvement brought by the observer

while negative values indicate that the observer produces estimates with a larger

uncertainty than the measurements themselves.

To assess the efficiency of overall state estimation the following index is proposed (Eldar,

2007; Kay, 1993):

B trace!Px ) (3-15)

¥ trace(P,)

The index is equal to 1 when the exact uncertainty matrix W is used while smaller values

mean less precise estimates due to the incorrect description of uncertainties.

Finally, the performance of data reconciliation could be illustrated using key process
indicators k& calculated using some critical variables expressing the plant performance. The
idea consists in comparing the variance of such indicators calculated using raw and
reconciled data. Indicators such as mineral species recovery or energy efficiency could be
listed as common examples. These performance measures are specific to each plant and are
related to production objectives. A general formulation of the index is:

o’ (k)

p =1_0'2(k) (3-16)
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where O'z(lg) and o’(k) represent the variances of a given key process indicator k
calculated using reconciled and raw data, respectively. The index varies between 0 and 1,

larger 77, implies more estimation error variance reduction.

3.3 Uncertainty Sources

As explained above, constraint and measurement equations include uncertainties that are
considered through the weighting matrix W of the objective function (Eq. 3-6).
Consequently, the data reconciliation performance depends upon the quality of the
uncertainty evaluation. They come from various sources and may be systematic, accidental,
or randomly distributed around a zero mean. This section investigates the major uncertainty
sources while their effects on the reconciliation performance are illustrated in Section 3.5.
It is worth noticing that the current study only considers random centered normal errors,
therefore assuming that systematic and accidental gross errors have previously been
detected and corrected, as discussed in Section 3.4 dealing with uncertainty covariance

tuning.

3.3.1 Modeling errors

Modeling errors in data reconciliation problems, i.e. uncertainties present in the

conservation constraints (Eq. 3-1), may originate from different sources (Hodouin, 2010):

e forgotten or neglected streams in the mass and energy balance network flows (e.g.
material leakages or infiltrations, flows due to intermittently activated pumps or
valves);

e neglected material transformation reactions;

e inaccuracies in the selection of model parameters (mass or heat transfer coefficients,

equilibrium constants, heats of reaction, etc).

One can name a few examples of such model errors induced by neglected phenomena such
as heat and gas losses outside the process, water evaporation, solid particle attrition,

oxidation of magnetite to hematite, and material overflow. Inaccurate parameters such as
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rates of reaction, heat conduction coefficients, and species diffusion coefficients represent

common uncertainty sources.

As other errors, they can be systematic or randomly distributed. Modeling errors are
frequently systematic, especially when they originate from biased conservation network
structures or biased parameter values. They can be randomly distributed, because the
dynamic variations of operating conditions may also induce random variations of the model
structural coefficients or parameters. While they have been set to constant values by

calibration of the model at nominal operating conditions of the plant.

3.3.1 Uncertainty due to process dynamics

As expressed in Eq. 3-3, the first source of randomness in the measured values comes from
the fact that no process can strictly operate in a perfect steady-state regime. Due to the

dynamic variations of sampled variables, an error &, always exists either in the

instantaneous or time-averaged measurements. This contribution to the measurement
equation error, named integration error, has been extensively studied by Gy (1982), and
generalized to multi-stream plant by Hodouin and Ketata (1994). It is valid whether the
process variable is numerically sampled (and possibly averaged over a certain time
window) or the process variable is measured in a physical sample of the processed material
(or possibly in a composite sample accumulated within a given period to attenuate the
dynamic contribution to the measurement error and to alleviate the cost of laboratory

analytical procedures (Patil, 1995)).

Since measurements at different locations in a plant network are considered, these
uncertainties are automatically correlated through the dynamic behavior of the different
units (Mirabedini and Hodouin, 1998; Hodouin et al., 1998). Therefore, most of the times,
X, 1s not diagonal, and covariance terms should be considered. For simultaneous
instantaneous sampling of input and output streams of a given process, these correlated

errors vanish because of pure delays introduced by the process.
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3.3.2  Sampling and analysis errors

The second source of randomness in Eq. 3-3 comes from the measurement procedure itself

and is represented by v . Several phenomena contribute to this error:

e stream primary sampling;

e fundamental error due to the heterogeneous material structure;

e segregation error due to the spatial distribution of the material properties in the
process load to be sampled;

e sample extraction, secondary sampling and sample preparation (drying, grinding,
leaching, etc);

e analytical instrument precision;

e miscalibration and ambient conditions;

e raw signal processing;

e data transmission process, etc.

In a real plant, as emphasized by Gy (1982), the sources are many, and their effects should
be added up. Depending on the source, this type of error can be systematic or randomly

distributed.

In the random error context, the covariance matrix X, is diagonal when all measuring

devices are independent (Narasimhan and Jordache, 2000). This is usually the case for total
flowrate measurements by in-line instruments. However, concentrations could be measured
for various species by the same centralized devices (e.g. sampler and X-ray analyzer). Also,
physical properties, such as particle size distributions, could be measured by a single device
(e.g. a sieving column or a laser diffraction analyzer). Also, the normalization to a sum of 1
for exhaustive chemical or physical material analysis creates a correlation between data.
This point has been illustrated by Bazin and Hodouin (2001) in the case of particle size
distribution measurements. These measuring techniques bring correlation between errors

for different measured variables and lead to non-diagonal X .

Measured values of process variables may also contain systematic errors (Narasimhan and

Jordache, 2000) caused by non-random events such as:
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e loss of water and fines when sampling slurries;

e automatic samplers placed in a segregated material area;
e thermocouples exposed to radiations;

¢ instrument miscalibration or malfunctioning;

e wear or corrosion of on-line sensors;

e holes in sieving screen, etc.

Accidental gross errors due to either data automatic or manual transmission problems or

mistakes in the material sampling or analysis process represent additional sources.

3.4 Determining Covariance Matrices

Data reconciliation for underlying local steady-state estimation requires the determination
of uncertainty covariance matrices for both constraint and measurement equations.
Typically, the adjustment is performed using a combination of prior process knowledge and
experimental data, after the elimination of biased sources of uncertainty. Since tuning
methods is a vast topic, that is not the central objective of the present chapter, this section
only proposes an overview of most common approaches for characterizing the different
uncertainties. Emphasis is rather put on illustrating the impact of covariance matrices on
the performance of steady-state data reconciliation through case-studies reflecting industrial

practices (Section 3.5).

3.4.1 Prior detection and correction of biases and gross errors

For correct tuning of uncertainty covariance matrices using experimental data, biases must
be initially detected and corrected since they do not satisfy assumptions formulated in Eq.
3-4. Several techniques have been proposed for bias detection and compensation before
performing data reconciliation (Bagajewicz and Jiang, 1998; Madron, 1985). Statistical
analysis of model residuals, calculated by applying measured values to equality constraints
of the compressed model, is a valuable approach. A compressed model is obtained through
an elimination of the unmeasured variables. The remaining equations are called redundancy
equations, and their residuals constitute a parity vector (Berton and Hodouin, 2003) on

which the statistical tests could be applied. Posterior statistical analysis of adjustments
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brought to the measured variables by reconciliation (i.e. innovation vector) could also be

used to detect the presence of systematic biases.

The detection of a systematic or accidental gross error is based on a statistically significant
discrepancy between the observed residuals (parity or innovation) and the assumed
uncertainty models. For a systematic error, the discrepancy is persistent while, for an
accidental gross error, it is not. It must be noted that an anomaly can be detected when the
measurement is correct, but the uncertainty model is incorrect. A careful analysis is always
recommended in specific cases before deciding whether the process is actually moving to a
different state (and, therefore, the model or measurement uncertainty has to be modified) or
if there is a true gross error. The problem is usually to correctly locate biases, i.e. pointing
out appropriate faulty sensors or model parameters. This is usually a difficult diagnosis task
that requires sequential statistical tests and possibly several data sets (Basseville and

Nikiforov, 1993).

3.4.2 Covariance of modeling errors

As seen in Section 3.3.1, modeling errors can be difficult to evaluate. They are plant
specific and require a careful analysis of either possibly neglected transformations
occurring in a process node or neglected small intermittent flows, or parameter
uncertainties. This is why, in common industrial practices, modeling error variances are set
to zero. This is frequently a reasonable assumption for steady-state data reconciliation
based on basic mass conservation constraints. It is sometimes a necessary assumption
because commercial reconciliation tools do not consider modeling errors. However, this
might be a detrimental assumption, particularly for data reconciliation based on energy
conservation equations (as illustrated by the first case-study), and for process models which

involve material transformation reactions.

3.4.3 Covariance of measurement uncertainty

Measurement uncertainty, described by Eq. 3-3, can be globally evaluated or decomposed
into two contributions: random process dynamics and measurement errors. The simplest

method to obtain the covariance matrix is to perform a statistical analysis of historical plant

38



data (Chen et al., 1997; Almasy and Mah, 1984; Keller et al., 1992). Data embeds both
dynamics variations and measurement errors, and this is exactly what is required for
underlying steady-state estimation. Obviously, this technique would not be acceptable if the
objective were to estimate the true dynamic states for process control purposes, as in
dynamic data reconciliation (Bai et al., 2006), or stationary data reconciliation (Vasebi et
al., 2012a). For statistical analysis, it is important to select data having a locally stationary
behavior with respect to their variances. If variable means seem to be drifting, it is
recommended to center the records using moving averages. The width of time window
must be selected according to the process time constants as well as time constants related to
the reconciled data subsequent application (control, real-time optimization, monitoring,

audit, modeling, accountability, etc).

Although this is not compulsory for covariance tuning, it might be informative, for process
behavior and measurement error knowledge improvements, to separate dynamic
contributions and measurement errors. Techniques such as extraction of the time-
uncorrelated part or the high-frequency part of the measured variables could be a useful

approach for this separation, as well as signal differencing for eliminating the mean drift.

An alternative to the previous method for characterizing the measurement uncertainty is to
systematically analyze the sources described in Sections 3.3.2 and 3.3.3. First, the
variations due to process dynamics can be evaluated either by plant modeling using a
phenomenological approach (process heat and transport phenomena as well as kinetics of
chemical or physical reactions describing transformations occurring at the various plant
nodes), or using empirical transfer functions roughly calibrated (with approximate values of
gains and time constants deduced from physical understanding of the process nodes
dynamic behavior). In both cases, the feed disturbances should be modeled as ARMA or
ARIMA random processes used as input variables to the plant simulator. The stochastic
models can be obtained from input signal autocovariances or power spectra, after removing
the white measurement noise. Afterward, the covariance matrix of the various measured
variables can be calculated from Monte-Carlo simulation or directly from the plant state-

space model. Then, the measurement error covariance itself can be obtained from the
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evaluation of the sampling errors, and the measurement errors of the analytical devices used

to measure flowrates or flowing material properties.

3.4.4 Industrial practices

In practice, approaches taken for tuning uncertainty matrices are usually simpler than the
above-mentioned approaches (statistical processing of historical data or systematic
quantification of uncertainty sources). Covariance terms are ignored and the diagonal
elements are usually selected based on a rough evaluation of the measurement accuracies.
The assumed quality of the measurement procedure is ranked using discrete values of the
relative error standard deviation (e.g. 2.5, 5, 10, or 20%). Dynamic variations are usually
ignored. In some cases, the data reconciliation objective function is simply un-weighted,
meaning that all errors have the same variance. In other cases, the objective function terms
are weighted by the inverse squared value of the measurement value, meaning that all the
measured variables have the same relative standard deviation. While the latter practice
normalizes the data, the former one is obviously not recommended because variables of the

objective function have neither the same units nor the same magnitudes.

3.5 Illustration of the Impact of Covariance Tuning

The impacts of correctly selecting uncertainty covariance matrix structure on steady-state
data reconciliation performances are illustrated in the current section. Various plants are
simulated using empirical transfer functions or phenomenological models (combustion
chamber, hydrocyclone, flotation circuit, and separation unit). Fives case studies are

selected to specifically illustrate the following effects:

I.  Modeling errors;

II. Correlated measurement error;
III. Dynamic fluctuations;

IV. Linearization by variable change;

V. Overall uncertainty variance magnitudes.

In each case, different tuning strategies are compared using the performance indices

proposed in Section 3.2.2.
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3.5.1 Case-study I: Modeling error effect

In contrast to mass balance equations, energy conservation equations usually exhibit a
larger model uncertainty due to model parameter inaccuracies. A gas burner unit is used to
illustrate steady-state data reconciliation with modeling errors in the context of
simultaneous mass and energy balances. Combustion chambers are common parts of
mineral and metallurgical processes, for instance in drying or conversion processes. Fig. 3-

1 depicts the scheme of such a device. This plant has three input streams (fuel gas, pure

oxygen, and humid air with respective mass flowrates O, , O, and O,) and one output
stream of flowrate Q. The fuel gas contains a mixture of butane and propane where the
randomly varying mass fraction of butane in Q, is expressed by c, . The input air stream
contains oxygen, nitrogen, and water vapor. The water fraction in Q, frequently varies, and

it is expressed by ¢, .

Qsjl_’D Combustion
0.1 = Chamber |—- 0.T

Fig. 3-1: Combustion chamber scheme.

In Fig. 3-1, T,, T,, T, and T stand for input gas, pure oxygen, air, and output gas
temperatures. It is assumed that the relative content of oxygen with respect to nitrogen in
0, 1s constant. Complete burning reaction is assumed, which implies that the oxygen O,

is in excess of the required amount for complete gas burning. Therefore, output stream

contains vapor, oxygen, nitrogen and carbon dioxide.

For steady-state simulation, the output process variables (flowrates, temperatures, and gas

composition) are calculated for a given set of process inputs. Only two input variables c,
and ¢, are able to vary. They randomly fluctuate around their nominal values according to
a Gaussian distribution law. Their standard deviations are 10% and 30% of ¢, and ¢,

nominal values, respectively.
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In this example, balance equations are nonlinear (not bilinear) because of the specific heats
dependence on gas compositions and temperatures. Twelve plant process states (four
flowrates, four temperatures and four concentrations of output gas) are then supposed to be
measured with Gaussian measurement errors that are added to the simulated values. The

combustion chamber state vector is:
xm:[Qg o, 0, 0 Tg I, T, T cyro Cor Cn2 Ccoz]T (3-17)

where ¢, is the mass fractions of species i at the chamber outlet. Steady-state reconciliation

is then performed on the measured data generated by the simulator. For this purpose, the
heat and mass balance equations are written under linear and bilinear expressions using the

following approximations:

o the specific heats of the species are assumed to be independent of temperature by
selecting averaged values in the nominal range of temperature variations;

o the specific heats of the gas mixtures are assumed to be independent of composition

variations and tuned for the nominal gas compositions;

e the values of ¢, and ¢, are set at their nominal values ¢, and ¢, .

Under these simplifications, the steady-state data reconciliation equations become linear

and bilinear, and are presented by using an energy conservation equation:

0, +e,0,T, +&0,T +¢,0,T,+es0,T +e0,T, +e;0,T, +e0,T =& (3-18)
a total mass balance equation:

0-0,-0,-0,=0 (3-19)
a mass fraction normalization equation:

CH20 +Coz +Cny + Ccpa =1 (3-20)
and four components conservation equations:

4Oy +mMQy — €209 =Enao (3-21)
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my Qg —Cc029 = €con (3-22)
m;Q, + 0, —myQ, —cp,0 = &p (3-23)
msQ, —cy,0 =&, (3-24)

In the above equations, ¢, to e; and m,; to ms stand for coefficients of energy balance
equation (Eq. 3-18) and mass conservation equations (Eqgs. 3-21 to 3-24), respectively (see
Appendix A.1). Also, €5, €420, €cor»> €02 and &y, represent modeling errors ¢, in

conservation equations. These uncertainties are induced by simplification and assumptions
made for writing the data reconciliation equations. They are correlated Gaussian variables
since the variation sources of the simulated data have only two degrees of freedom. In other

words, two input variables (¢, and c;, ) randomly fluctuate around their nominal value and

induce normal stochastic variations on the thirteen parameters of the conservation

equations. Because of that, model uncertainties ¢, are strongly correlated. The following

matrix illustrates the correlation between model errors:

€g €m0 €co2 €02 En2
[1.000 0.994 0.005 —0.993 —0.994 ]

0.994 1.000 -0.012 —-0.997 —-0.997
(3-25)
R. =| 0.005 -0.012 1.000 0.016 0.010

-0.993 -0.997 0.016 1.000 0.995

1—0.994 -0.996 0.010 0995 1.000 |

Moreover, the measurement error standard deviation is set to 1%, a small value, to only

focus on the effects of the modeling error in steady-state data reconciliation.

Three different tuning procedures for steady-state data reconciliation are applied and

compared for illustrating the impact of the structure of the model uncertainty matrix:

e Tuning A: the process modeling error is assumed to be negligible, in such a way that

the measurement noise is the only uncertainty source;
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e Tuning B: modeling error is considered, but only the diagonal elements of its
covariance matrix are used, meaning that the correlation between the modeling
errors of the various data reconciliation equations is neglected;

e Tuning C: the complete and exact covariance matrix is used.
Simulation results are presented in Table 3-1 using three data reconciliation performance
indices: 77, (reduction of error on measured variables), 77, (estimation quality of state
variables in comparison to optimal tuning), and 7, (improvement of process performance

index calculated using reconciled data rather than raw data). The key metallurgical index &

used here to calculated 77, (Eq. 3-16) is a burner efficiency index E, defined as the heat

capacity of the chamber output gas per unit mass of consumed fuel gas (Jg"'K™):

(3-26)

where C, is the gas output heat capacity per unit mass at temperature 7', i.e. the sum of

the specific heat capacities of the four chemical species weighted by their mass fractions.

According to the results obtained by performance indices from Egs. 3-14 to 3-16, Tuning C
(optimal tuning) provides the best estimation of the state variables, as expected since the
modeling uncertainty is adequately weighted in the ML estimator. Using modeling errors
with the correct variances without consideration to their inherent correlation structure
(Tuning B), and neglecting the modeling errors (Tuning A) are detrimental. The overall

uncertainty reduction index 7, for Tuning B has a negative value, which implies that data

reconciliation deteriorates the estimation compared to the raw measurements. This could
not be a general conclusion since it is specific to this case-study where the correlation
between modeling errors is quite significant. However in complex industrial plants, the
number of mass and energy equations is usually much larger than the number of fluctuation

sources in process operating regimes, a situation that brings significant correlation between

process variables. Finally, the conclusion is the same for 7,. The data reconciliation
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observer tuned with the complete uncertainty matrix more precisely estimates the process

performance key variable in comparison with the two other tunings.

Table 3-1: Case-study I: performance indices for various uncertainty matrix tunings.

Indices Tuning A Tuning B Tuning C
n, 0.190 -0.092 0.297
n, 0.853 0.610 1.000
n, 0.832 0.459 0.954

Figs. 3-2 and 3-3 illustrate the variance of estimates for each tuning, variable by variable

instead of global presentations (i.e. 77, and 7, ). The accuracy of estimates is normalized

based on raw data and optimum estimation precisions. In fact, P;/V; is the variance ratio

of reconciled to the measured value of variable i, while Bf / P, represents the variance ratio

of optimal to non-optimal estimated value of variable i. As seen from Fig. 3-2, both Tuning
A and Tuning B provide estimations that are less precise than raw measurements while
Tuning C never passes 1.00 line. Fig. 3-3 reveals that except for some variables, Tuning A

and Tuning B show lower estimation performance than Tuning C.

® Tuning A
Tuning B

Tuning C

1 2 3 4 5 6 7 8 9 10 11 12
Measured variable i

Fig. 3-2: Case-study I: estimates vs. raw measurements.
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B Tuning A
Tuning B

1 2 3 4 5 6 7 8 9 10 11 12
State variable i

Fig. 3-3: Case-study I: precision of estimated variables vs. optimum estimation.

Based on these simulation results, it could be concluded that taking into account modeling
errors improves the accuracy of the state variable estimates. However, neglecting

correlation terms between the model parameter errors is severely detrimental.

3.5.2 Case-study Il: Correlated measurement error effect

As a second example, a particle size separator (hydrocyclone), where mass fraction
measurements are inherently correlated, is selected for illustrating the effect of
measurement error correlation in data reconciliation performance. The process has one feed
stream and two output streams, underflow and overflow (Fig. 3-4). It is assumed that the
hydrocyclone operates in a given constant steady-state regime and measurement noise is the
only source of uncertainty. The hydrocyclone behavior is characterized by the separation
coefficients (SC) of five size classes (fraction of feed class directed to underflow stream),
and the particle size distributions (PSD) are measured by sieving. The nominal value of
mass fractions retained on the sieves and SC values are given in Table 3-2. Besides mass

fractions of PSD, which are measured, total mass split factor d is an unmeasured state

variable that should be estimated by the reconciliation procedure. Therefore the data

reconciliation constraints are bilinear and expressed by:

fi—du;—(1-d)o, =0 i=1,...,n (3-27)
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where f, u and o are the particle size mass fractions, and n stands for the number of

particle size classes. i represents the particle size class index.

o

f—

'

u

Fig. 3-4: Hydrocyclone scheme.

Table 3-2: Case-study II: feed PSD and SC.

Tyler | Feed PSD
Mesh (%)

SC

48 4.64 0.90

100 19.07 0.75

200 2431 0.60

400 18.01 0.30

-400 33.97 0.15

Repetitive measurements of the 15 state variables (five mass fractions in each stream) are

simulated using the following procedure:

e extraction of three samples of constant masses from the three streams;
e sieving of the three samples, with stochastic variations of material retained on the

sieves at constant total mass, equal to sample initial value (i.e. no loss of material

during sieving).
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e weighing of the masses retained on the four sieves and the pan with the addition of a
random error;
e calculation of the measured PSDs (i.e. f, o and u mass fractions);

e and data reconciliation.

In this case study, the process state vector consists of:

Xo=Lh fo f5 o fs w uy uy uy us o 0, 03 04 05 d]T (3-28)

Correlation in measurements is generated by two main phenomena: the nature of sieving
procedure that brings correlation in the measured masses on the sieve and PSD calculation
formula that relates different mass fractions to each other. Therefore, a significant
correlation among some measurements is generated (see Appendix A.2). The matrix is
dominantly tri-diagonal since the sieving errors are dominant compared to the mass
measurement errors of the material retained on the sieve. The correlation between two
adjacent sieves is major because obviously missing material on one sieve was retained in

the above sieve.

Beside Eq. 3-27, normalization equations could be applied as additional equations to the

data reconciliation mass conservation equations. They are:

> =S u =30 =1 (3-29)
=1 i=1 i=

1

For simulation purpose, two data reconciliation scenarios are considered:

e Scenario 1: only Eq. 3-27 is applied as the constraint in data reconciliation;

e Scenario 2: Eq. 3-27 is combined with the normalization constraints of Eq. 3-29.
Two measurement error covariance matrix tunings are defined:

o Tuning A: only diagonal elements of measurement error covariance matrix are used;

e Tuning B: complete covariance matrix is applied.

Table 3-3 gives the performance indices for the reconciled PSD, and also the standard

deviation of estimated mass split factor a(c;’ ). The quality of the reconciled estimates using
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the complete matrix tuning is clearly better. Moreover, when Tuning B is used, the mass
fraction normalization constraint (Eq. 3-29) is not compulsory since the weighting matrix
structure warrants it is obeyed. This point shows that even small correlation terms outside
the tri-diagonal part of the matrix has a structuring effect on the reconciled data, equivalent
to Eq. 3-29. However, as it is impossible to have the exact weighting matrix in practical

cases, so Eq. 3-29 must be always applied (Bazin and Hodouin, 2001). Also, smaller

standard deviation of d for T uning B in both scenarios shows the effectiveness of correctly

tuning of the covariance matrix.

Table 3-3: Case-study II: performance indices & standard deviation of estimated d.

Scenario 1 Scenario 2
Tuning A B A B
n, 0.346 0.408 0.367 0.408
1, 0.904 1.000 0.970 1.000
o, (%) 8.5 7.5 8.2 7.5

For each variable, the precision of estimates versus measured data is illustrated in Fig. 3-5
for Scenario 2. Moreover, Fig. 3-6 compares the estimate accuracies for the two proposed
tunings in Scenario 2. As seen in Fig. 3-5, both tunings bring rather a significant
improvement in comparison to raw measurements, and Tuning B has slightly better
performance (about 3% of 7,). Additionally, to link the reduction of estimation error
covariance to improvement in mineral performance indicators, separation coefficients SC
for the various size fractions are calculated and used as the metallurgical indices (Table 3-
4). Since the hydrocyclone operates in steady-state regime, their mean values are the same

for all tunings, but their variances are different. Slightly larger 7, for Tuning B suggests

the usefulness of applying complete covariance.
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Fig. 3-5: Case-study II: estimates vs. raw measurements (scenario 2).
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Fig. 3-6: Case-study II: variables estimation precision vs. optimum estimation (scenario 2).

Table 3-4: Case-study II: particle class separation coefficients and the estimation quality indices.

Tyler n, (scenario 1) 1, (scenario 2)
SC

Mesh Tuning A  Tuning B | Tuning A  Tuning B
48 0.90 0.98 0.99 0.97 0.99
100 0.75 0.91 0.92 0.91 0.92
200 0.60 0.81 0.83 0.82 0.83
400 0.30 0.50 0.64 0.63 0.64
-400 | 0.15 0.00 0.00 0.00 0.00
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Based on these simulation results, it is concluded that considering the correlation between
measured data can improve reconciliation accuracy. Moreover, correlation terms force the
data to obey the normalization constraints when they are not considered, therefore they
bring some additional information about sampling and measuring procedures that might be

not considered in data reconciliation constraints, but still highly recommended.

3.5.3 Case-study IIl: Dynamic fluctuation effect

The objective of the third example is to illustrate the effect of process dynamic variations
on the structure of the error in the measurement equations to estimate the underlying
steady-state values by data reconciliation. The flotation plant of Fig. 3-7 is simulated using
a dynamic empirical model described by transfer functions and separation coefficients
(Vasebi et al., 2012b). The feed stream contains two mineral species, pyrite and
chalcopyrite bearing Fe, Cu, and gangue. The plant is assumed to operate in stationary
conditions where ore feed rate and composition vary around nominal points. The variance
of the measurement noise due to sampling and analysis is perfectly known, and all
flowrates and compositions are measured with a relative precision of 5% of corresponding
nominal values. The plant feed dynamic fluctuations, responsible for an additional error in
the observation equations, are generated using transfer functions driven by Gaussian white
noises. The ore feed rate and composition fluctuate with standard deviations equal to 20%
and 25% of their nominal values. Moreover, it is assumed that cleaner separation
coefficients for both mineral species fluctuate with 1% standard deviation. Here, the

process state vector x is composed of ore flowrates f, copper and iron mass fractions:

x, =[fis -r fy» Cuy, ..., Cug, Fe,, ..., Fey]" (3-30)
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Fig. 3-7: Flotation circuit flow sheet.

The dynamic disturbances of the feed properties and the process parameters generate
statistical distributions for 24 states around their nominal values, and these variations are
added to the basic measurement errors. Therefore, the variables exhibit variances but also
covariances. The below matrix, built for the process variables around the rougher only,
illustrates the magnitude of the correlation between variables that include both true

dynamic variations and measurement errors:

/i VE /3 Cu, Cus Cug Fe, Fes Feg
1.00 077 0.82 -0.13 -0.13 -028 -024 -0.14 -0.36 |
077 1.00 085 -0.04 -0.04 -0.10 -0.10 -0.14 -0.24
082 085 1.00 -0.09 -0.13 -026 -0.17 -0.18 -0.36
-0.13 -0.04 -0.09 1.00 015 024 074 0.04 0.13 (3-31)
R, ., =/-013 -004 -0.13 0.5 100 043 012 0.12 025
-028 -0.10 -026 024 043 100 024 0.18 047
-024 -0.10 -0.17 074 012 024 100 0.19 033

-0.14 -0.14 -0.18 004 0.12 0.18 0.19 1.00 0.40

|-036 -024 -036 013 025 047 033 040 1.00 |

The following weightings of the reconciliation objective function were tested by

simulation:
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o Tuning A: the process is assumed to operate in truly steady-state, and there is no
process dynamics, the only uncertainty source being the uncorrelated measurement

noises of variance X, ;

o Tuning B: the process is assumed to present also dynamic fluctuations, but taking
into account only the diagonal elements of the uncertainty covariance matrix;
o Tuning C: the complete dynamic uncertainty covariance matrix is considered in

addition to the measurement noise variance.

As expected, Tuning C provides more precise estimations, i.e. larger 77, and 7., in

comparison to 4 and B tunings (Table 3-5). For industrial flotation circuits, recoveries of
mineral species are normally used to assess the plant performance. Therefore, the variances

of Cu and Fe recoveries calculated from reconciled and measured data in the whole plant

and rougher node are used in the calculation of the key variable index 77,. As shown in

Table 3-6, variances of mineral recoveries significantly decrease for Tuning C. This is
obviously due to lower estimation error variances of the reconciled data compared to
measured ones, and also to their estimation error covariances induced by the reconciliation
procedure (Hodouin and Flament, 1989). Reconciliation with Tunings A and B lead to
negative indices, meaning that reconciliation deteriorates the recovery reliability in
comparison to measured data, mainly because of the wrong structure of the covariance
matrix. Fig. 3-8 presents the estimation error variances state by state in comparison with
raw measured data variance. Tunings A and B estimate some variables with less precision
than raw measurements while optimal tuning estimates are always more accurate than raw

data. Fig. 3-9 graphically confirms this observation.

Table 3-5: Case-study III: performance indices for various uncertainty matrix tunings.

Indices Tuning A Tuning B Tuning C
n, 0.17 0.22 0.31
7, 0.86 0.89 1.00

53



Table 3-6: Case-study I1I: metallurgical performance index calculated using whole plant and

rougher recovery (Cu & Fe).

_ 1y
Species | R
Tuning A Tuning B Tuning C
Whole Cu 0.95 -0.92 -0.35 0.24
plant Fe 0.71 -0.87 -0.52 0.09
Rougher Cu 0.77 -0.62 -0.19 0.41
node Fe 0.60 -0.35 -0.07 0.40

1,75
1,50
1,25

571,00

~ ETuning A
A 0.75 Tuning B
0,50 @Tuning C
LEEEEEERLEELE
6 7 8 9

b

0,00 fl
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Measured variable i

1 2 3 4 5
Fig. 3-8: Case-study III: estimates vs. raw measurements.

1.00

0.75
=
= 0-50 B Tuning A
*Q-‘ unmg
Tuning B
0.25 I |
0.00 I I

1 2 3 4 5 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24
State variable i

Fig. 3-9: Case-study IlI: variables estimation precision vs. optimum estimation.
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The main conclusion is that neglecting covariance terms induced by process dynamic
variations in measurement equation can result in non-optimal and inaccurate estimates. For
some process states, the reconciled values could be even less precise than measurements.
This problem could become quite serious when performance indices such as mineral
species grade or recovery are calculated, because of the amplification of the errors through

the calculation process.

3.5.4 Case-study IV: Linearization by variable change

In bilinear data reconciliation problems where the state variable is given by Eq. 3-6 and the

observation function g,(x, ) is linear and written as Cx,, (C is the observation matrix), it

is reasonable to transform the ML criterion minimization problem into a linear quadratic

problem that has a direct analytical solution by making the following change of variables:

X { d } (3-32)

m
Foz

where F and z are the mass flowrates and species mass fractions, and o is the Hadamard

product operator (Ballantine, 1968). Thus F oz is the vector containing species flowrates.

For n number of species, F is the flowrate vector defined as:

T

(3-33)

F:[FT | FT | o | FT

n

Total mass and species conservation equations then become AX, =&, where 4 is the

incidence matrix, and ¢ is equal to zero when modeling errors are negligible. Applying the
same change of variables to the observation equation leads to a linear measurement

equation:

Y=CX,+C(X,~-X,)+E (3-34)
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where E represents the measurement noise for the new variable X, . Under this change of

variable and assuming that all variables are measured (i.e. C = I'), the analytical solution of

Eq. 3-6 for X, is:

X, =(1-w AT ATy a)y (3-35)
where 1 is an identity matrix with proper dimensions. The weighting matrix W of data
reconciliation must be obtained through the calculation of the total measurement error

variance of the new variable X,,. In Eq. 3-34, there are two error components: process

dynamic fluctuations that are correlated because of the data reconciliation bilinear nature,
and the random measurement errors. Here, measurement errors are necessarily correlated

because the measurement error of /' appear in the product /'z and, obviously, in F' itself.

As a consequence, for calculating the measurement error of the new variable X , one has to

calculate the variance of the cross-products Fz, but also the covariance between the
species flowrates Fz and the flowrate F . Furthermore there is a covariance between the

component flowrates, particularly on the same stream, since they contain the same variable
F . Those covariance terms have been neglected by some authors who used this
linearization method (Narasimhan and Jordache, 2000). Appendix A.3 presents the

calculation of the new covariance matrix.

To illustrate the importance of considering covariance terms in bilinear data reconciliation
where variable change technique is applied, a single node separation plant (Fig. 3-10) is
presented in the absence of dynamic fluctuations to focus only on the measurement error
itself. The separation unit has one feed and two output streams (reject and concentrate). It is
assumed that ore flowrates and concentrations are independently measured with 10% white

noise. The process state vector is expressed as:

X, =L o fs 21z z] (3-36)
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node
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Fig. 3-10: Single node separation unit flow sheet.

Using the variable change technique brings correlation , among fictitious measurements Y’

of the newly defined variables:

fi Lo s ha hz fin

[1.00 0.01 0.01 0.71 0.01 0.01]
0.01 1.00 0.00 0.01 0.71 0.00
0.01 0.00 1.00 0.01 0.00 0.71 (3-37)
0.71 0.01 0.01 1.00 0.01 0.01
0.01 0.71 0.00 0.01 1.00 0.00

0.0 0.00 0.71 0.01 0.00 1.00 |

To establish a detailed comparison, four steady-state data reconciliation methods are

proposed:

o Technique A: this method corresponds to optimally solving the bilinear data
reconciliation problem by wusing nonlinear technique (sequential quadratic
programming);

e Technique B: this technique is based on a linearization of the data reconciliation
constraints using a first order Taylor development approximation (Romagnoli and
Sanchez, 2000);

e Technique C: data reconciliation constraints are linearized by the proposed variable
change technique, but using the diagonal approximation of the error covariance
matrix of ¥ (Narasimhan and Jordache, 2000);

o Technique D: this method utilizes variable change technique the same Technique C,

but it takes advantage of the complete error covariance matrix of Y .
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Table 3-7 presents the performance indices based on the estimation error indices for
different data reconciliation techniques, showing again that Technique D, which benefits
from correct covariance matrix tuning exhibits the best performance. Figs. 3-11 and 3-12
shows the detailed information about the two first indices for each of the six reconciled
process variables. As expected, Technique D gives the same performance as the true
optimum solution of the bilinear data reconciliation problem (7echnique A). As a key
metallurgical index, the valuable mineral recovery is also considered. Since the plant

operates in steady-state regime, the recovery mean value calculated using different data
reconciliation techniques has a unique unbiased value: R =0.90. Table 3-7 shows n,

index values, which confirm the conclusions drawn from the two other indices. This
example illustrates that it is possible to transform a bilinear data reconciliation problem into
a linear one by a variable change technique, if the measurement covariance matrix is

correctly tuned.

Table 3-7: Case-study I'V: performance indices for various bilinear data reconciliation techniques.

Indices | Technique A | Technique B | Technique C | Technique D
n, 0.56 0.55 0.50 0.56
1, 1.00 0.98 0.87 1.00
m, 0.52 0.41 0.36 0.52
1,50
1,25
1,00 _
g B Technique A
i 0,75 z B .qu
[ ? ﬁ Technique B
0,50 ;_ ﬁ ? —  @Technique C
i ﬁ ; ""'; OTechnique D
0,25 7 ﬁ 7
ﬁ nl
0,00 - . AL <
1 2 3 4 5 6

Measured variable i
Fig. 3-11: Case study IV: precision of the estimations vs. raw measurements.
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Fig. 3-12: Case study IV: precision of the estimations vs. optimum estimation.

3.5.5 Case-study V: Effect of overall uncertainty variance magnitudes

This section presents a simple example to investigate the impact of correct value
assignment to the diagonal elements of the uncertainty covariance matrix. A single node
separation unit including one feed and two output streams is considered. It is assumed that
only ore feed, concentrate, and tail flowrates are measured with errors of 10%, 8% and 20%

of their nominal values. The plant is supposed to operate in true steady-state conditions.

To support the example, Monte-Carlo simulations are applied, and in each simulation run,

random values (uniformly distributed) for measured variables variances X, are picked
within the intervals that lies from 0.3 to 3 times of their nominal measurement noise
variances Z:, and then 7, is drawn from simulation run results. Fig. 3-13 shows the
histogram of 7, index for the different random values of X,. About 45% of simulation
runs give 77, larger than 0.95; this implies that in 45% of randomly tuning cases, the
estimation error variances are quite acceptable. To confirm the point, the test has been
repeated in a shorter range from 0.7 to 1.3 times of nominal variances 2:. Fig. 3-14 depicts
the histogram where 95% of 77, values lies between 0.95 and 1.00. This means that 30% of
uncertainty on the diagonal terms of X, is not detrimental to data reconciliation

performance, at least in the present case study. These results do not imply that all rough
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tuning techniques frequently used in industrial practice can lead to good data reconciliation

performance, as it is discussed below.
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Fig. 3-14: Case-study V: Monte-Carlo simulation results for X, tuning (range 0.7 to 1.3).

To evaluate the effectiveness of common industrial practices for variance tuning, the

performance of steady-state data reconciliation is investigated for three different tunings.
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e Tuning A: uniform weighting (i.e. no weighting);

e Tuning B: relative weighting;

e Tuning C: qualitative weighting;

e Tuning D: optimal weighting.



In the relative weighting practice, it is supposed that measurement error standard deviation
is a uniform percentage of the nominal or measured value. In the present simulation, 10%
of nominal values is selected. For the qualitative weighting technique, it is assumed that, in
the present case feed, tail, and concentration have moderate, bad and good precision,
respectively. Good, moderate and bad are here interpreted as 10%, 20%, and 30%
measurement error, respectively. Table 3-8 shows the performance indices for these tuning
techniques. As expected, uniform weighting gives the worst estimates while relative and
qualitative weightings show acceptable performances. Figs. 3-15 and 3-16 confirm this

conclusion for each process variable.

Table 3-8: Case-study V: performance indices for various industrial tuning practices.

Indices | Tuning A  Tuning B Tuning C Tuning D
n, 0.334 0.385 0.549 0.588
1, 0.620 0.682 0.930 1.000

1,50
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1,00
’ [
. % B Tuning A
= / 3

o % % Tuning B
0,50 - % % @ Tuning C
0.25 - g é O Tuning D
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Fig. 3-15: Case study V: precision of the estimations vs. raw measurements.
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Fig. 3-16: Case study V: precision of the estimations vs. optimum estimation.

To confirm this observation, the procedure was applied to a more complex plant (flotation
circuit), and almost the same conclusion was achieved. Obviously, these conclusions are
not general and may vary from case to case. However, these examples show that uniform
diagonal weighting, i.e. no weighting, is a really bad technique. They also show that
uncertainty on variances could be tolerated, and a qualitative analysis of the error

magnitudes might be sufficient to benefit from data reconciliation.

3.6 Conclusion

To maximize the precision of mass and energy balances in mineral and metallurgical
processes, the statistical properties of the modeling and measurement uncertainties must be
carefully tuned when steady-state data reconciliation techniques are applied. This chapter
has investigated the detrimental impact of neglecting the covariance terms of the
uncertainties, as it is usual industrial practice, and also incorrect tuning of variance terms

using five case-studies taken from mineral and metallurgical industries.

In the first case-study, a mass and energy balance for a combustion chamber has been
simulated to show how taking into account of model parameter errors, and their correlation
terms improves the accuracy of the state variable estimates. This example has illustrated
that using model uncertainty in steady-state data reconciliation for relaxing the mass and
energy conservation equations, improves the estimation precision when it is applied with

correct covariance structure.
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The second example, involving particle size classification by a hydrocyclone, has discussed
the importance of taking into account the correlation of the measurement errors produced
by sieving columns and particle size distributions calculation. Considering correlation
between measurements slightly increases data reconciliation precision. Its effect is
magnified when normalization equations are not incorporated in the data reconciliation
constraints. When the normalization equations are considered, as is usual practice, the
correlations of the measurement errors only bring marginal improvement to the data

reconciliation performance, at least for the specific studied example.

In the third example, a flotation plant has been used to show that applying measurement
errors covariance induced by dynamic fluctuations improves the accuracy of the steady-
state mass balance of the plant. The improvement is much more significant when

metallurgical indices like metal recovery are utilized for plant performance evaluation.

In case-study four, different data reconciliation techniques based on linearization of the
bilinear constraints have been presented. The linearization of mass balance equations by
generating pseudo-measurements of components flowrates has been shown to be efficient
to simplify the data reconciliation computation, however covariances of the pseudo-
measurements should be properly calculated, i.e. without forgetting the correlations
induced between the errors of the new state variables generated by the change of process

variables.

Finally, an example based on Monte-Carlo simulations has been used to investigate the
impact of uncertainties of the variance terms on the data reconciliation performance. The
example, limited to the variance terms of the weighting matrix, has shown that random
selection of measurement error variances within a reasonable range could provide
acceptable process variable estimations, i.e. a reasonable noise reduction on the measured
variables. However, some commonly used industrial practice, such as uniform weighting,
can be detrimental to data reconciliation performance while sound qualitative evaluation of

the measurement error variance may produce quite satisfying results.

As a general conclusion, it must be emphasized that the weighting strategies of the data

reconciliation objective function proposed in commercial packages (limitation to diagonal
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matrices, and ignoring modeling errors and correlated uncertainties generated by dynamic
variations of process variables) may result in poor performance of data reconciliation
techniques. Even worse, they may produce additional noises on measured variables and
increase the sensitivity of the calculated plant performance indices to measurement errors.
The error covariance terms can be extracted from repeated data acquisition campaigns. The
correlation terms must be understood as a nonparametric implicit additional model
constraint of the process behavior. This is confirmed by the hydrocyclone example where
the normalization equation can be replaced by off-diagonal terms in the covariance matrix.
This is also the case for the flotation plant where the covariance terms implicitly contain
information on the species separation coefficients. Regardless of the mass and energy
balance calculation purposes, either auditing, monitoring, modeling, on-line optimization or
fault detection, a careful analysis of the structure of uncertainty is a key factor for data

reconciliation success.
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Chapter 4

How to Adequately Apply Steady-State Material or Energy Balance

Software to Dynamic Metallurgical Plant Data?

Résumé

La réconciliation de données est une méthode d'observation bien connue qui améliore la
précision, c’est-a-dire la justesse et la fiabilit¢é des mesures industrielles. Cette technique
utilise des modeles de procédés qui vont de simples équations de conservation de la masse
et de DI’énergic en régime permanent a des équations complexes de modeles de
fonctionnement détaillés. Pour les applications industrielles, plusieurs produits logiciels
sont disponibles pour la réconciliation de données, mais la plupart d'entre eux sont basés
sur la conservation de la masse et de I'énergie sous I'hypothése que l'usine fonctionne en
régime permanent. Dans les cas réels des perturbations se produisent en continu et
produisent des variations dynamiques des états des procédés, incluant les variations des
inventaires de matiére dans les réacteurs. Ce chapitre propose quelques techniques pour
adapter ces produits a l'exploitation des données d'usine réelle, soit pour estimer les états
dynamiques ou pour atténuer les effets de la dynamique des processus sur les variables
réconciliées. Quatre techniques sont proposées pour utiliser les logiciels de réconciliation
en régime permanent dans des conditions de fonctionnement de 1’usine en régime
dynamique stationnaire. Leurs performances sont comparées aux méthodes dynamiques

optimales dérivées du filtre de Kalman.

2 Daniel Hodouin, Amir Vasebi & Eric Poulin (2012), How to adequately apply steady-state material or
energy balance software to dynamic metallurgical plant data. /FFAC Workshop on Automation in the
Mining, Mineral and Metal Industries, Gifu, Japan.
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Abstract

Data reconciliation is a well-known observation method that improves accuracy and
reliability of plant measurements. This technique uses process models that range from
simple mass and energy balance equations to complex detailed models. For industrial
applications, several software products have been released for data reconciliation purposes,
but most of them are based on mass and energy conservation equations under the
assumption that the plant operates in steady-state regime. In real plants, disturbances
continuously occur, and a true steady-state operation with constant process inventories is
never met. The present chapter proposes some techniques for adapting these products to
real plant operation, either for estimating the dynamic states or attenuating process
dynamics effects on the reconciled variables. Four techniques that can be cast into steady-
state reconciliation computer programs are proposed, and their performance compared to

optimal dynamic methods derived from the Kalman filter.

4.1 Introduction

Efficient process supervision using techniques such as fault detection and diagnosis,
automatic control, real-time optimization, maximization of either product quality or
productivity or economic return, and efficient accountability depend upon reliable
estimation of process states (Bagajewicz, 2010). Two types of knowledge are used to
estimate process states at the laboratory, pilot, or industrial scales (Romagnoli and Sanchez,
2000). On the one hand, fundamental physicochemical laws or empirical relationships,
usually cast into mathematical models, help to predict the process behavior. On the other
hand, measurements of process variables bring information on the process states. When
these two observation angles of process behavior bring redundant information, inherent
discrepancies appear between the process state estimates depending on the type of
information used (Narasimhan and Jordache, 2000). The redundancy can come from the
measurement data set itself or from the model equations set, but usually the redundancy
comes from the whole set of information involving experimental data as well as model

equations. When differences are large between the various ways of estimating states, one
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might even speak of conflicts, therefore leading to the concept known as data reconciliation

(Kuehn and Davidson, 1961; Stanley and Mah, 1977).

In mineral processing or metallurgical plants, conflicts frequently arise when trying to
produce material or energy balance of production units. The process knowledge is
encapsulated into model equations that express the law of mass and energy conservation
while measured values of process variables are simultaneously available. Industrial data
suffers from numerous problems, particularly in the harsh environment prevailing in
mineral and metal processing industries (Hodouin, 2010). Measurement of properties such
as particle size distribution, phase composition, temperature, flow rates, in a context of high
capacity plants manipulating heterogeneous and time-varying materials is a difficult and
costly task. Measurements are inherently contaminated by errors related to sampling as well
as to measurement techniques while models contain unavoidable assumptions leading to

prediction uncertainties (Hodouin, 2011).

Commercial software products exist for attenuating the conflicts generated by these two
sources of uncertainty, when redundant information is available, and when assumptions can
be made about the structure of the uncertainties that corrupt both types of knowledge. Most
plants now make use of commercial software packages like Bilmat™ and Metallurgical
Accountant™ (Algosys), Bilco™ and Inventeo™ (Caspeo), JKMultibal™ (JKTech),
Movazen™ (Banisi), Sigmafine™ (OSIsoft), Datacon™ (IPS), Advisor™ (AspenTech),
and VALI™ (Belsim) that are designed to balance chemical species, physical properties
and energy conservation equations. These computer programs simultaneously upgrade raw
data delivered by on-line sensors or laboratory analyses and estimate unmeasured variables.
These packages are based on a network description of the various species or material

properties that flow through the plant flow sheet.

The data reconciliation packages available on the market, which are widely used by the
minerals and metals processing industries, assume that plants are operating in steady-state
(SS) conditions (Bagajewicz and Jiang, 2000; Bagajewicz, 2010). This is obviously never
the case, and discrepancy to this hypothesis can sometimes be quite large and thus may
generate poorly reliable results (Almasy, 1990). Although there are other sources of model

uncertainties, such as neglected species transformations or material leaks or infiltrations, a
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major part of the model uncertainty is related to the deviation between the true dynamic

behavior of the process and the assumption of steady-state operating regime.

Obviously, to cope with process dynamics, it is possible to develop and implement
algorithms that explicitly take account of process dynamics. There are many approaches
that have been proposed to deal with data reconciliation in the context of material and
energy balance for dynamic plant regimes. For instance, one may refer to data
reconciliation techniques such as stationary observers (Makni et al., 1995a; Lachance et al.,
2006b; Vasebi et al., 2012a), generalized linear dynamic observers (Darouach and
Zasadzinski, 1991; Xu and Rong, 2010), integral linear dynamic observer (Bagajewicz and
Jiang, 1997), dynamic data reconciliation method (Bai et al., 2006), and Kalman filter
(Stanley and Mah, 1977; Dochain, 2003; Narasimhan and Jordache, 2000; Lachance,
2007). However, it is not the goal to describe here those techniques, although some of them

will be used as references to evaluate the results produced in this study.

The objective of this chapter is first to make metallurgical engineers aware of the limits of
the application of steady-state commercial data reconciliation packages, and, second, to
propose some techniques, or “tricks”, to use these products, while properly tuning software
parameters, either to partially take account of the process dynamics, or to partially
eliminate their effects on the data reconciliation procedure. After a brief description of the
plant dynamic properties and models, the following methods are proposed either for
estimating the underlying steady-state regime (direct use of instantaneous or averaged
dynamic data), or for estimating dynamic states (data synchronization for dynamic behavior
attenuation; stationary methods based on node imbalance statistics and methods that
involve process inventory measurements). The performance of these methods implemented
in steady-state reconciliation (SSR) programs is compared to optimal dynamic

reconciliation methods derived from the Kalman filter.

4.2 Properties of Plant Dynamics

In the metallurgical plants, process states that are typically handled consist of extensive
properties such as flowrates, and intensive properties such as chemical concentrations and

temperatures. They naturally lead to bilinear mass or energy conservation equations
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(Hodouin, 2010). For the sake of simplicity, it is considered in the following that process
states are species and/or heat flowrates, thus assuming that process states and
measurements are obtained through the multiplication of extensive and intensive variables.
This fortunately leads to linear balance equations but do not impede the application of the
here proposed “tricks” to bilinear problems, although this is neither demonstrated nor

illustrated in this chapter.

Different dynamic regimes should be considered. The simplest one is the stationary regime
where mean and variances around nominal operating state values are constant (Lachance et
al., 2006b). However, this is valid only when set-points are maintained at constant values
while disturbances exhibit stationary variations. In practice, a stationary behavior is only
observed locally, i.e. for limited periods of time separated by quasi-deterministic changes
occurring to disturbances, such as persistent variations of the mean properties of the
processed material, and changes to equipment tunings or plant set-points. Finally,
equipment stops or start-ups correspond to transient operating regimes where it is generally
neither recommended nor useful to perform data reconciliation. In the following, the plant
is considered as locally operating in a stationary mode, i.e. during periods stationary

disturbances occur in the plant feed.

Usually, metallurgical plants are described as networks where graph branches correspond to
streams and nodes to process equipment pieces. Although most commercial packages
propose a separation between intensive and extensive states, mass or energy conservation
equations, in the context of the present chapter objectives, can be formulated as the

following linear steady-state model:

M, - 0 - 0 x
0 M, 0 [ x [=Mx=0 , i=1--,n (4-1)
0 0 - M,|x,]|

69



where M, and x; stand for the incidence matrix and the extensive property vector of the i

element to be conserved. The corresponding measurement equation is:
y=Cx+v , v~N(0,X)) (4-2)

where y is the measured value, C is the measurement matrix and v the measurement

error, approximated as belonging to a normal statistical distribution. The solution of the

linear quadratic data reconciliation problem is consequently formulated as:

X =arg min{(y - Cx)T V(y - Cx)} , st Mx=0 (4-3)

X

where 7 is a weighting matrix, which optimally should be £,”'. The solution is the

v

following linear estimator (Kuehn and Davidson, 1961):

i=ty=|0"(1-m" g ) a0 v |y

(4-4)
o=C"yc
where [ is the identity matrix. The covariance matrix of the estimation error is:
P=L3 I (4-5)
When the optimal weighting matrix is used, P simply becomes:
p- Q‘l(l ~ M (Mo M7 )_IMQ‘l)

(4-6)

o=C"z'c

This method and its modifications proposed in this chapter are supposed to be applicable to

separation plants that can be described by the following dynamic model:

z(k+1) = Az(k)+ Bu, + w(k) , w~N(0,%,)
x(k) = Hz(k) (4-7)
y(k) = Cx(k)+v(k)
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where x and z are the process and model state variable vectors, respectively. u, is the

nominal value of the input streams and w the vector of white noises that drive flowrate
disturbances affecting input streams, as well as those which drive the separation

disturbances at the various plant nodes. 4,B,C and H are coefficient matrices. The

steady-state process variables corresponding to this state equation are:
x,=H(I—4)"Bu, (4-8)

The autocovariance of the state variable z is obtained through the solution of the following

equations:

Y. =A%, 4" +3,
s =3 (AT)I (4-9)

where X_ is the covariance of z and X_ is its autocovariance for a time lag of / sampling

periods. The corresponding variances of the process variables x are then:

., =HZ H" (4-10)

4.3 Direct Use of Instantaneous or Averaged Data

The simplest way to use a steady-state data reconciliation computer program is to estimate
x at time k by directly applying Eq. 4-3 and using the measurements at time & . The usual
practice is to select as weighting factor the inverse of the measurement error variance X, .
As the plant is in a dynamic state, it is rather difficult to appreciate the real meaning of this
kind of estimate. It could be either said that this is an estimate of a fictitious steady-state
plant regime which is close to the measurements obtained at time & or an estimate of a

fictitious local underlying steady-state at time k.

Another point of view is that the real objective of this approach is to estimate the true mean

value of process states, i.e. x, given by Eq. 4-8, assuming that the process exhibit a

stationary behavior as described by Eq. 4-7. If this is the true objective of the reconciliation

procedure, as it should be, the correct weighting factor in Eq. 4-3 must be the inverse of
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total variance of y (X, ), i.e. a variance which includes both the dynamic variance of x

and measurement error variance X, :
_ T
2,=CE.CT+%, (4-11)

The accuracy of this estimation method is obviously decreasing when the amplitudes of the
process dynamic variations are increasing in comparison to the experimental measurement
error standard deviation. To improve the reliability of the method, it is possible to pre-filter
the measured variables by averaging in a sliding window containing / subsequent values of
the process variables. This is partially cancel the process dynamics, and at the same time
decrease the measurement error. Again, the procedure of Eq. 4-3 can be directly applied by

substituting the averaged measurement y, to y, and tuning the weighting matrix 7 as the

inverse of the total variance X, :

2,

2, =CL. CT+ , (4-12)

where 25 is the dynamic variance of the averaged value of x in the window of size A. It is

given by:

3o = E|® -x,)® %)

. (4-13)

h=1

:?[hzx £y -1z, +z§’[)}
i=1

The estimate of x, and its variance are therefore obtained using Eqs. 4-4 and 4-6 with the

correct variable substitutions. When 4=1, the method is in fact applied to the instantaneous

measurements at time £.
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4.4 A Method when Inventories are Measured

Dynamic variations of plant stream properties do not disqualify steady-state reconciliation
problems when the processing equipment exhibits zero dynamics. This is the case for
instance for particle size classification by hydrocyclones. The residence time within the
reactor is so small that the instantaneous measurements on the input and output streams still
obey the steady-state balance equations. The source of problems of applying steady-state
reconciliation computer programs to dynamic data comes from process inertia that
generates equipment inventory variations. However, if it is possible to measure the content
of a reactor, one may cast the reconciliation problem into the same formulation as a steady-
state data reconciliation problem. The discretized mass or energy dynamic conservation
equation for each species or component i can be written as (Darouach and Zasadzinski,

1991):
M (k)= (0,(0) -0, (k~D) (4-14)

where O;(k) is the vector containing the amount of species i accumulated in the plant

nodes, and Af the sampling period. In a matrix form, this is expressed as:
x; (k)

[M. | -1 | +1] O.(k)/At [=0 (4-15)
O.(k—1)/ At

for the component i. For the whole set of components, one has:
MX(k)=0 (4-16)

In terms of the plant network used for defining the data reconciliation problem, this is

equivalent to add one input stream with flowrate O,(k—1)/At and one output stream with
flowrate O;(k)/At at each node of the oriented graph. For this case, the reconciliation

problem is solved as Eq. 4-3, substituting X to x and using the inverse of flowrates and

inventories measurement error variances as the weighting matrix. A large weighting factor
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is applied to O,(k —1), to freeze its value to the previously estimated one, if this is required

for the industrial application of the method. Otherwise, it could be set to the inverse value
of the previously estimated variance. This method leads in fact to a suboptimal version of
the optimal generalized linear dynamic (GLD) method proposed by Darouach and
Zasadzinski (1991). The estimate and its variance are obtained by applying Eqs. 4-4 and 4-
6 after substitution of the appropriate values of the measurements, incidence matrix, and

variance matrix.

4.5 Data Synchronization Method

Averaging, as presented in Section 4-3, is a method to cancel process dynamics, and
estimate an underlying steady-state regime. In the present method, the objective is to
estimate the true dynamic state value. In order to cope with the dynamic effect generated by
process nodes, it is proposed to reconstruct the properties of the plant feed streams in such a
way that they match with the other streams at time k. This synchronization of the input
streams with the behavior observed at time k& on the process states can be performed if, at
least, some rough approximation of the process dynamics can be identified. The simplest
way to approximate the dynamic behavior of a process would be to assume linear gains and
pure delays between the plant node input and outputs. However, more complex transfer
functions may also be used. For the sake of simplicity, the presentation will be limited to

plants consisting of a single node.
Let us consider the process unit of Fig. 4-1, where x;, x, and x; are the flowrates of a

selected species. The process dynamics are represented by the transfer functions G, and

G; and their corresponding pure delays d, and ds:

Xy (k) =Gy (z"")z " x,(k) (4-17)
x; (k) = Gy(z™) 2" x, (k)

1

where z is the discrete time domain operator, and z~ represents one sample delay.
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X3

Fig. 4-1: A single node plant.

Depending upon the method of dynamic model identification, transfer functions can be as
well replaced by polynomials or truncated impulse responses. Then, by creating the

synchronized input:

5 (6 =[Gy (=) + Gy (=) k) (4-18)
the reconciliation constraint becomes a steady-state conservation equation:

x; (k) —x, (k) —x3(k) = 0 (4-19)

The reconciliation problem can then be solved as Eq. 4-3, where y, must be replaced by its
synchronized measurement ;' , and its corresponding variance. The estimates X,(k) and
x;(k) are obtained with Eq. 4-4, allowing the reconstruction of the reconciled value of x,

by solving:

% (k—d)) =[Gy (272 ) 4 Gy (22 )% (k) (4-20)

where d;, = min(d,, d;). There are two ways to calculate y; and its variance ny' : 1) if the

reconciliation is infrequently performed, y; and its corresponding variance are calculated
from the past measurements of x;, and their variances by application of Eq. 4-19 to the
measured values of x; ; 2) if the reconciliation is performed at each sampling time, it is then
possible to replace the past measured values of x; by the recent estimate of x;, as

schematically shown in Fig. 4-2. The error variance of »; must be changed accordingly.

The proposed method is, in fact, a suboptimal implementation of a Kalman filter with input

uncertainty, which could be optimally solved by a generalized Kalman filter algorithm.
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Fig. 4-2: Data preprocessing for dynamic data reconciliation by steady-state reconciliation software

(data synchronization method).

4.6 Accumulation Rate Method
The dynamic conservation equation given by Eq. 4-14 can be rewritten as:

M; x;(k) = &,(k) (4-21)

where ¢; is the accumulation rate vector for species i, i.e. the rates of inventory variations
at the various nodes, alternatively named node imbalances. For a stationary plant, as
supposed here, &, is a zero-centered random variable, leading to a dynamic reconciliation
method already introduced as the stationary data reconciliation or node imbalance method

(Hodouin, 2010). For applying a steady-state reconciliation package, Eq. 4-21 can be

rewritten as the following steady-state conservation equation:

x; (k)
[M; | 1] =0 (4-22)
&;(k)
The dynamic conservation equation for the whole set of components to be conserved is,
therefore:
M, X, (k)=0 (4-23)

Graphically, this procedure is equivalent to adding an additional output stream to every
node of the plant oriented graph. This additional stream brings the vector of the various

component accumulation flowrates.

76



Again, the reconciliation problem solution is given by Eq. 4-3 where x is replaced by X, ,

v by the measured values of x augmented by the expected value of ¢, i.e. zero. The
variance of ¢ in the new weighting factor must be estimated using the plant model of Eq.
4-7. For this purpose, the new process variable ¢ which is a linear combination of x

variables (e.g. &= Fx) should be added to the vector of process states x . The associated
variance is FX_F'. Moreover, Matrix C is to be accordingly modified. The estimated

values of the augmented process states and their variances are obtained using Eq. 4-4 and

Eq. 4-6 by changing accordingly the variables in these expressions.

4.7 Numerical Illustration for a Single Node Plant

The above-proposed methods are tested on the single node plant of Fig. 4-1 simulated
through the approach of Eq. 4-7 applied to a single species. Two versions of Eq. 4-7 are
used: one where all flowrates are measured and another one where, in addition, the species
inventory is measured. Table 4-1 gives the numerical values of the model parameters. In
Table 4-2, transfer functions of the plant are given in Laplace domain where time constants
are expressed in minutes, and £ represents the Laplace operator. For simulation purposes,

discrete transfer functions are obtained with a sampling period of 1 minute.

Table 4-1: Nominal values and standard deviations (STD) of model parameters.

Process states x,(t/h) | x,(t/h) | x,(t/h) | O)

Nominal value (x,, ) 10.00 8.00 2.00 2.00

STD of state dynamic

.. 2.00 1.49 0.37 0.08
variation

Measurement  error

STD 0.50 0.40 0.10 0.20
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Table 4-2: Transfer functions of the process model.

Stream No. Transfer function
N TR ) E—
L(u +&) S0s+1
L(x,) 0.8
G =\ _ 77
2 2(5) L(x) 8s+1
L(x,) 0.2
G = 32 =
3 =70 1011

Table 4-3 gives the estimation error standard deviations obtained by the method that

estimates the underlying steady-state regime. The estimation accuracy of x, increases as

the number of samples for averaging increases, as expected. Since, in this example, the

degree of redundancy is quite low, the reconciled estimate X, is not significantly better
than the raw estimate y, obtained by averaging. For instance, for #=10, the reconciled, and
raw relative standard deviations for x, are respectively 18.6 and 19.5 %. Also, it must be
noticed that the variance remaining in y, is mainly due to process dynamics, since the

measurement error contribution has almost vanished (the total standard deviation is 20.6 %,
and the standard deviation due to dynamics is 20%). It must be also observed that there
exist a steady-state regime of the system which can be obtained by very few adjustments of
the dynamic variables, and therefore which is far from the nominal state. This again is

related to the very low information redundancy for this system.

It is repeated that usually steady-state reconciliation is applied to dynamic data with the
hope to improve the estimation of the dynamic data while using a weighting matrix that
incorporates only the measurement errors (Bagajewicz, 2010). This may generate
reconciled values that are less reliable than the measurements. In the present example, this
practice would, for instance, lead to a standard deviation of 5.8 % though the measurement

error is only 5%.
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Table 4-3: Results for the estimation of nominal values with different window widths

Standard deviation of
Window estimation error (%)
width A

X, X, X,

1 19.02 | 19.31 | 18.97
10 18.58 | 18.59 | 18.27
100 15.06 | 15.06 | 14.99
500 8.37 | 838 | 837

Table 4-4 gives the estimation error standard deviations obtained by the three data
reconciliation methods proposed for estimating the dynamic states x. The GLD method
implemented through a steady-state reconciliation algorithm produces sub-optimal results
compared to its optimal implementation. This is clearly noticeable for the inventory
estimation, since the method is not able to improve the flowrate estimation, because of the
inherently low redundancy degree of the GLD method, and of the relative values of the
measurement errors in inventory and flowrates. The inventory measurement is largely less

accurate than the flowrate ones and, therefore, exhibits room for improvement.

Data synchronization is applied here without using the implementation of Fig. 4-2, i.e. in
the case of its infrequent use. The results compared to those of the generalized Kalman
filter applied to the model of Eq. 4-7 (without inventory measurement) clearly show that
the steady-state reconciliation implementation produces a loss of optimality. In the present
case, it is, however, better than the accumulation rate method of Section 4-6, which
implemented in a steady-state reconciliation package gives exactly the same optimal results
than the original algorithm (already called stationary method). There is no loss of

optimality using its steady-state reconciliation implementation.

79



Table 4-4: Estimation results of the dynamic process states.

Standard deviation of

N o
DR Method estimation error (%)

X, X, X3 0

GLD (optimal) 5.00 | 5.00 | 5.00 | 2.29

GLD-implemented by SSR
(proposed in Section 4-4)

5.00 | 5.00 | 5.00 | 7.08

Generalized Kalman filter 5.00 | 1.06 | 0.92 | NA

Data synch.roniza.tion 480 | 183 | 486 | NA
(proposed in section 4-5)

Accumulation rate (original 438 | 461 | 498 | NA
stationary method)

Accumulation rate (SSR 438 | 461 | 498 | NA
implementation of section 4-6)

4.8 Conclusion

Data reconciliation methods for dynamic process information can be sub-optimally
implemented in commercial software products based on steady-state mass and energy
conservation equations. Steady-state processing can be directly applied to dynamic plant
data, in as much as the measurement errors dominate the plant unit dynamic variations.
However, in a strongly disturbed environment steady-state reconciliation may produce poor
results unless process variability is attenuated by averaging techniques. It must be
recognized that forcing steady-state mass and energy conservation equations requires that
measurement variances be adjusted to take account of the dynamic variances, including the
process state autocovariances when averaged measurements are used. Another approach
consists in using steady-state data reconciliation computer programs to estimate or filter
dynamic process variables. Three methods are proposed. When unit process inventories are
measured, it is possible to use a sub-optimal implementation of data reconciliation with

dynamic mass or energy conservation methods. Plant input process variables may also be
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pre-filtered for synchronization with other plant variables, in such a way that steady-state
reconciliation can subsequently be applied, and followed by a reconstruction of the
dynamic process inputs. The third option is to implement fictitious streams in the plant
network that take account of the accumulation rate variables (node imbalances). When the
variance of these variables is correctly evaluated, the steady-state implementation produces

the same optimal results as the stationary data reconciliation method.
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Chapter 5

Dynamic Data Reconciliation Based on Node Imbalance

Autocovariance Functions?

Résumé

Pour réduire 1'impact des erreurs de mesure sur les variables des usines, la réconciliation de
données est largement appliquée dans les industries. Des mesures réconciliées sont utilisées
dans des applications telles que le suivi de performances, le contréle des processus, ou
l'optimisation en temps réel. Toutefois, 1'estimation précise se fonde généralement sur des
modeles de procédés détaillés et précis qui pourraient étre difficiles a construire dans la
pratique. Le compromis entre la précision des estimations et la complexité du modele est un
défi pertinent motivant le développement d’observateurs efficaces avec des efforts de
modélisation limités. Ce chapitre propose une méthode de réconciliation de données basée
sur un sous-modele simple de conservation de la masse et/ou de I'énergie qui considere la
fonction d'autocovariance des déséquilibres de bilan aux nceuds du graphe d’écoulement de
la matiére dans I'usine. L'observateur est appliqué a des usines de référence simulées et sa
performance est évaluée en termes de réduction de la variance d’estimation et de la
robustesse face aux erreurs de modélisation. Les résultats montrent une performance
supérieure par rapport aux méthodes classiques a base de sous-modéle et moins de

dégradation des performances que le filtre de Kalman en présence d'incertitudes de modele.

3 Amir Vasebi, Eric Poulin & Daniel Hodouin (2012), Dynamic data reconciliation based on node imbalance
autocovariance functions. Computers and Chemical Engineering, 43, p. 81-90.
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Abstract

To reduce impacts of measurement errors on plant variables, data reconciliation is widely
applied in process industries. Reconciled measurements are used in applications such as
performance monitoring, process control, or real-time optimization. However, precise
estimation relies on accurate and detailed process models that could be difficult to build in
practice. The trade-off between estimate precision and model complexity is a relevant
challenge motivating the development of effective observers with limited modeling efforts.
This chapter proposes a data reconciliation method based on a simple mass and/or energy
conservation sub-model that also considers the autocovariance function of plant node
imbalances. The observer is applied to simulated benchmark plants, and its performance is
evaluated in terms of variance reduction and robustness against modeling errors. Results
show a superior performance in comparison with classical sub-model based methods and
reveal less performance degradation than the Kalman filter in the presence of model

uncertainties.

5.1 Introduction

Reliable and accurate process measurements are crucial for the improvement of plant
operations. The decision-making to achieve planned objectives strongly depends on data
collected from the plant instrumentation and laboratory analyzers. Critical actions to
increase plant performances also rely on process models, estimation of indicators, and
advanced control and optimization applications that require accurate data. To maximize
profits and reduce environmental impacts of industrial processes, high-quality data, and
information must be applied to plant-wide management and business strategies. In many
cases, advanced measurement methods incorporating appropriate filtering or estimation
techniques would generate significant benefits in comparison with their implementation

and maintenance costs (Bagajewicz, 2010).

Multiple errors, arising from different sources such as measuring devices, sampling
equipment, sensor positioning, or signal conversion, always affect measurements and
consequently reduce the reliability of gathered data. Measurement errors are classified as

random or systematic (Narasimhan and Jordache, 2000). Random errors are due to
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stochastic events related to instrumentation (sampling and measurement devices),
fluctuation of material properties, and external disturbances. These errors are characterized
by statistics such as standard deviation, a parameter that quantifies measurement precision.
Occurrence and magnitude of systematic errors, also called biases, are linked to deficient
instrumentation or inexact calibration. This kind of error should be treated in early filtering
stages before any further data processing. As defined by Miller (1983), the accuracy of a
measurement is the closeness to the true value and it includes the effect of both systematic
and random errors. In the present chapter, only random errors are considered, and thus,

accuracy and precision are equivalent.

Data reconciliation (DR), first introduced by Kuehn and Davidson (1961), is a model-based
filtering method that applies simple process models to improve the reliability and precision
of measured variables. Under favorable observability conditions, DR also allows the
estimation of unmeasured process variables. These abilities are valuable for process
industries since, in many practical cases, strategic variables are only measured with limited
precision or simply not measured because of technical or economic constraints. DR has
been applied to a large number of processes including petrochemical, chemical,
biochemical, mineral, and metallurgical processes as summarized by Mah (1990), Crowe
(1996), Narasimhan and Jordache (2000), Romagnoli and Sanchez (2000), and Hodouin
(2010).

Different DR techniques have been proposed based on various assumptions regarding
process dynamics and depending on the subsequent application of reconciled data. On the
one hand, steady-state DR is largely used to estimate the underlying average regime of a
plant in applications such as production accounting, process audit, or survey analysis. On
the other hand, advanced process control, fault detection algorithms, and real-time
optimization require the estimation of true dynamic states of a process, and are generally
coupled to dynamic DR. Different approaches could be taken for dynamic DR. The filtering
algorithm complexity depends on the selected process model. It could range from a simple
mass conservation constraint sub-model to a complete causal dynamic model. The selection
of the most appropriate algorithm should result from a compromise between modeling

efforts, required to develop and adapt the observer, and improvement of estimate precision.
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Tamhane and Mah (1985), Crowe (1996), Puigjaner and Heyen (2006), and Moreno (2010)
have discussed the properties of steady-state observers and related problems such as steady-
state detection, observability and redundancy analysis, and gross error detection. Poulin et
al. (2010) have studied steady-state DR applied on a real-time basis. They have concluded
that, despite the attractive simplicity of this solution, the estimate precision could be less
than measurement precision itself depending on plant dynamics, which is not acceptable
from the practical point of view. In order to cope with process dynamics, which can be
interpreted as inventory variations, Makni et al., (1995a, 1995b) have introduced a
stationary observer which offers an interesting compromise between estimate precision and
model complexity. They have considered process node imbalances as normally distributed
random variables. Also, Lachance et al. (2006a, 2006b) and Hodouin et al. (2007) have
investigated other practical aspects of this observer such as tuning, robustness and non-
linear cases found in mineral and metallurgical processing. Vasebi et al. (2011) have
proposed a modified stationary observer that takes advantage of the correlation of node
imbalances to improve estimation performances. However, only two successive time lags

were considered.

Darouach and Zasadzinski (1991) have proposed a generalized linear dynamic observer
(GLD) to handle mass conversation constraints incorporating accumulation terms. This
technique benefits from dynamic mass conservation equations, and it assumes that node
accumulations are measurable. As a main drawback of this technique, it can be mentioned
that measurement of species accumulation is difficult or impossible to achieve in most
practical cases. Recently, Xu and Rong (2010) have modified this method for partial
measurement situations. Bagajewicz and Jiang (1997) have also developed an observer
based on dynamic mass balance equations named integral linear dynamic observer. This
observer is close to the GLD concept, but it uses models of process accumulations and
flowrates to avoid dealing with singular systems. Bagajewicz and Jiang (2000) have applied
this observer to averaged plant data and have compared its performance with steady-state
observers. Bai et al. (2006) have proposed a sub-model based observer, called dynamic data
reconciliation filter. They have used a simple one-step-ahead prediction as process model

and they have concluded that, in asymptotic conditions, this method and the Kalman filter
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converge to the same results, but they have discussed neither tuning of the proposed model

nor its sensitivity against modeling error.

Definitively, the Kalman filter is the most important and commonly used dynamic
observer. It can be said that other dynamic observers have been originated from the Kalman
filter directly or are strongly related to it. These techniques use a complete dynamic model
for estimation purposes. In the literature, it has extensively been applied to dynamic DR
problems (Stanley and Mah, 1977; Almasy, 1990; Narasimhan and Jordache, 2000;
Dochain, 2003; Bai et al., 2006). Also, Lachance (2007) has investigated the application of

a generalized Kalman filter for DR purposes.

The objective of this chapter is to propose a DR observer based on a simple mass and/or
energy conservation sub-model that estimates process dynamic states and also includes the
autocovariance function of node imbalances as supplementary information. The observer is
compared to classical sub-model based DR methods (the steady-state and standard
stationary observers) and to the Kalman filter that serves as a reference. Performances are
evaluated by considering both the capability of reducing the estimation variance and the
robustness in the presence of process modeling uncertainties. Comparisons are carried out
in simulation using two benchmark plants commonly used in the mineral and metallurgical

industries: a single node separation unit and a flotation circuit.

The chapter is organized as follows. Section 5.2 presents process models used for DR are.
The principles of the proposed observer and details mathematical relations are explained in
Section 5.3. Other observers employed for comparison purposes are briefly reviewed.
Methods selected for performance evaluation are discussed in Section 5.4. Finally, Section

5.5 presents benchmark plants and discusses simulation results.

5.2 Plant Model and Constraints

The precision of reconciled data strongly depends on measurement errors, model
constraints, and the optimization criterion used to solve conflicts between the model and
measurements. For a given level of raw data precision, increasing the information contained

in the model, either in the complexity of its structure or the quality of its parameters, leads
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to more precise estimation of variables. Therefore, the design of a DR observer necessarily

requires a suitable trade-off between modeling efforts and precision of reconciled data.

The best model structure should be able to predict the process states from the values of
externally applied process variables (manipulated variables and disturbances). This is called
a complete causal dynamic model in what follows. Obviously, for a given level of model
complexity, the amount of information it contains increases with the accuracy of its
parameters. As the number of parameters to be calibrated increases with model complexity,
it may happen that the accuracy of parameters decreases unless they came from
fundamental knowledge. Thus, it is important to find the right balance between model
complexity and parameter reliability, in such a way to end with an observer that optimizes
estimate precision at a reasonable level of modeling efforts. In this section, model
structures are discussed starting with the complete causal dynamic model and then,

introducing the mass conservation sub-model.

5.2.1 Complete causal dynamic model

This model is able to simulate the process states and outputs from input variables and initial

states. In the general nonlinear and time variant case, it can be expressed by:
x(k+1)= f(x(k),u(k),0(k)) (5-1)
y(k) = g(x(k),u(k),0(k)) (5-2)

where x(k), y(k), and O(k) respectively stand for states, measured variables, and model
parameters vectors at time k. Functions f(-) and g(-) represent process dynamics and

observation relationships that link process states to external process variables u(k) .

For most practical DR applications, where a plant can be assumed to operate in a stationary

regime, the following linear and time invariant approximation can be used:
x(k+1) = Ax(k)+ Bu, + w(k) (5-3)

y(k) = Cx(k) +v(k) (5-4)
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where 4, B and C are model coefficients valid for a local operating regime corresponding
to nominal inputs u, and parameters €, . Modeling uncertainties and measurement errors
estimated at the nominal operating point are w(k) and v(k) respectively. In present study,

these are assumed to obey a normal distribution:

w(k)~ N(0,Z,) (5-5)
v(k)~ N(0,%,) (5-6)
coviw(i),v(j)}=0 , Vi,j (5-7)

Assuming the plant operating in a stationary regime implies that:

x(k)~N(x,,Z.) (5-8)

n’

covix(),v(j)}=0 , Vi, j (5-9)
where x, represents the process steady-state nominal value.

Flow diagram of a single node separation unit is presented in Fig. 5-1, and its

corresponding causal model structure is illustrated in Fig. 5-2. The plant feed rate x,(k) is
composed of the nominal feed rate u, disturbed by a random fluctuation, which is
generated by a white noise £(k) subsequently filtered by the transfer function F(z). The
transfer functions F,(z) and F;(z) are linear approximations of the local behavior of the
process operating in a stationary regime defined by x, and u, . Here, x,(k) and x,(k) are

respectively plant concentrate and reject flowrates.

xl > _>x3

X2

Fig. 5-1: Single node separation unit.
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Fig. 5-2: Complete causal dynamic model of the single node separation unit.

5.2.1 Mass conservation sub-model

As previously discussed, it could be more suitable for DR to use simpler models involving
fewer parameters with higher accuracy. Parameters of a complex model can be very
sensitive to the changing nature of operating conditions and consequently might require
sophisticated updating procedures. Simple models with precisely known parameters may
offer better information than complex models with highly uncertain parameters. For
industrial DR applications, simple but reliable models like deterministic natural laws of
conservation of mass or energy are frequently preferred to causal models. These models are
typically applied as constraints for DR since they are easily obtained from the process flow

sheet.
The general mass conservation equation can be expressed by

dO
—=Mx'+P. -5 (5-10)
dt
where O represents the total mass accumulation and/or accumulation of a given material or

chemical species in the process. The vector x/

represents the mass flowrate, M is the
incidence matrix determined by flowrate directions around each plant node where

conservation laws are applied. The vector P, stands for species production rate ( P, is zero

when the total mass is considered or when no reaction occurs). The uncertainty vector
represents structural errors such as forgotten secondary or intermittent streams, or errors in

the production rates evaluation.

For the sake of simplicity, it is assumed that O and x/ correspond to inventory and

flowrate of total material or a given species. In the latter case, process states and
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measurements are obtained through the multiplication of the concentrations and the total
masses or flowrates. This fortunately leads to linear mass balance equations (instead of
bilinear equations), giving the possibility of deriving analytical solutions for estimates and

estimation error covariance matrices.

For process operating under stationary regime and assuming P. =0, the mass balance

equation can be rewritten in discrete form as:
Mx” (k) = e(k) (5-11)

where &(k) represents process accumulation rates, also named node imbalances, and it is

assumed to be a random variable with the following statistical properties:

e(k)~N(0,%,) (5-12)
The observation equation for this model is:

y(k)y=C’x7 (k) +v(k) (5-13)
and it is assumed that

covie(i),v(j)}=0 , Vi,j (5-14)

Process dynamics implies that the node imbalances &(k) are time correlated. Fig. 5-3
illustrates the process node imbalance autocovariance function obtained for a single node
separation unit operating in a stationary regime defined in Chapter 2. This statistical
property can be injected into the observer model to improve the estimation precision for

DR. This is the main topic of the next section.
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Fig. 5-3: Node imbalance autocovariance function of the separation unit.

5.3 Observer Equations

This section presents the development of a DR observer, fundamentally based on a mass
conservation sub-model, which includes the node imbalance autocovariance properties as
supplementary information to improve estimate precision. It also briefly reviews concepts

and equations of classical observers used for comparison purposes in Section 5.5.

5.3.1 Autocovariance based stationary observer

The sub-model presented in Eq. 5-11 can be completed by the node imbalance
autocovariance function to improve DR performances since it contains valuable
information about process dynamics. The autocovariance based stationary (ABS) observer
uses the existing autocovariance between [/ successive time lags of process node
imbalances. Modifying Eq. 5-11 to incorporate material balance constraints along a period

of time running from k to k—/ leads to

M x” (k)= £(k) (5-15)
where
)_cf(k)=[xf(k) k=1 - x k-0 (5-16)
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eky=[etk) etk-1) - etk-0)" (5-17)
M=1,®M (5-18)

Here, 7,,, is an identity matrix of size /+1. The standard stationary observer (Makni et al.,
1995a) is a particular case of the ABS observer that does not consider the time correlation
of node imbalances and only uses its covariance function at time k. The measurement

equation for the ABS observer is expressed by

y(k)=C” x" (k) + (k) (5-19)
where

vy =[ytk) yk=1) - yk-n]" (5-20)
v(k)=[u(k) v(k=1) - v(k-D]" (5-21)
and

c/=1,Cc’ (5-22)

Assuming that measurement errors and node imbalances behave as independent Gaussian

stochastic phenomena, the maximum likelihood solution of this DR problem is

& (k) =argmin|( y() - ' & (0] £, (00 -’ ' b))+ &7 (0)E, ' 2(h) (5-23)

(k)
where the measurement errors are assumed unbiased and of constant variance given by:
z,=0,92, (5-24)

Since process dynamics is assumed stationary, the covariance matrix of node imbalances in

the time window [k—1, k] is:
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i zg Z:g,l Zs,l ]
25,1 Ze ' 28,]—1
z, = (5-25)
ze ! Zg,l—l 25
where
%, = covis(k),&(k—i)} (5-26)

Eq. 5-23 minimizes the sum of two weighted terms. The first term considers the difference
between measurements and estimated values (innovations) while the second term considers
process node imbalances over the selected time window. Both terms are appropriately

weighted according to their respective covariance matrices X, and X_. Eq. 5-23 attempts

to satisfy the process mass conservation for a sequence of time lags by taking into account
the correlation of node imbalances. Therefore, by using this concept, the ABS observer is

able to deal with process dynamics.

The solution of Eq. 5-23 can be formulated as (see Appendix B for a complete

demonstration)
# (0 =a-aM" €, +MaM "y Ma )€Y 5 (k) (5-27)
where
NS
a=(c’ys'c’) (5-28)

The estimation error covariance matrix under stationary operating regime is given by (see

Appendix B for a complete demonstration)
P=cov(#/ (h)-x' (h))=a—aM" (2, +MaM) ' Ma (5-29)

The selection of an appropriate time lag / can be done on the basis of the confidence
interval of the estimated autocovariance function using plant data. The impact of / is

investigated in Section 5-5.
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5.3.2  Observers used for comparison

Three DR observers are selected to evaluate the performance of the ABS observer: the
steady-state observer (SS), the standard stationary observer (ST), and the Kalman filter
(KF). These techniques rely on process models with a different level of complexity. The
expression of variable estimates and their estimation error covariance matrix are presented
in this section. Since the ST observer neglects the time correlation of node imbalances, its
properties can be obtained directly from ABS observer expressions by selecting /=0.

Consequently, its corresponding equations are not presented here.

5.3.2.1 Steady-state observer

The SS observer assumes that the mass conservation equation is strictly satisfied at any
time. Therefore, in Eq. 5-11 which expresses the process model, the node imbalances term
is zero. By minimizing the sum of the weighted squared innovations at time k, subject to
the constraint that node imbalances are zero, state estimates are given by (Kuehn and

Davidson, 1961):
# =12, MMz, MY M )y(k) (5-30)

This expression assumes that all variables are measured (i.e. C/ =1). For a process
operating in a stationary regime, implying that true states satisfy Mx” (k)=eg(k), the

estimation error covariance matrix is (Almasy, 1990):

P=cov(#/ (k)-x' (k))=Py+ 2, M (ML, M"Y 'S, (M, M"Y MX, (5-31)
where
P=%, - M "Mz, M"Y 'Mz, (5-32)

Eq. 5-31 shows that under a true steady-state operating regime, i.e. £, =0, the minimum
variance of estimates is F, . This variance is increased by the second term, related to node

imbalances, as the deviation from steady-state conditions becomes more significant.
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5.3.2.2 Kalman filter

In the context of involving linear models and Gaussian errors, KF is considered as an
optimal observer minimizing the variance of estimates. When a dynamic causal model

(Egs. 5-3 and 5-4) is available; KF recursive estimation equations are given by:

P(k|k=1)=AP(k-1]k-1)A" +X, (5-33)
K(k) = P(k|k-DCT (cP(k| k-DC” +3,)” (5-34)
%(k|k=1)= A%(k =1|k =1)+ Bu(k -1) (5-35)

where K (k) is the observer gain. The state estimate x(k|k) and the covariance P(k |k) at

time k, based on the knowledge of measurements up to time &, are given by:
2k | k)= 2k |k =1)+ K (k)(y(k) - CR(k | k —1)) (5-36)
P(k | k)= (I - K(k))P(k |k —1) (5-37)

In the present study, the KF observer is based on a complete causal model that has a
structure identical to the simulated process. So, it serves as a reference method to assess the

performance of other observers.

5.4 Evaluation Methods of the Performance of Observers

The proposed observer performance is assessed from two points of view. First, the variance
reduction is considered. Different indices are given to compare the estimation error

covariance matrix P with the covariance matrix of measurement errors X . Second, the

observer robustness in the presence of modeling errors is investigated.

5.4.1 Reduction of estimation error covariance

Several techniques could be applied to compare P and X . One possibility is to directly
compare diagonal elements of P with X . The following variance reduction index can be

used for this purpose:
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Vi _Pii
My =— (5-38)

where, £, . and F; are diagonal elements of X, and P respectively. Although this

method gives a rapid state by state indication of the precision improvement or degradation,
it is not able to completely assess the observer performance. It neglects the correlation
between estimates induced by DR, a property that has been shown as a positive factor when
using simultaneously various state estimates to calculate performance indices (Hodouin and

Flament, 1991).

To assess the overall performance of observers, Poulin et al. (2010) have suggested some
performance indices that deal with the comparison of covariance matrices. In the present
chapter, two performance indices are selected: the trace index (or total variance index) and
the user-defined index that is related to variables involved in the calculation of a key

performance indicator (KPI) of a plant. These indices are given by

trace P
— 5-39
' traceZ, (5-39)
tracez! Pz
n = (5-40)

=
tracez’ X z"

Eq. 5-40 assumes that a KPI is calculated as a linear combination of process states, i.e.
B =zx/. This combination is obtained either by linearization of B or by directly
formulating an economic indicator as a weighted sum of the process flowrates. Mazzour

and Hodouin (2008) have investigated cases where £ is a non-linear function of x/ .

5.4.2  Robustness to modeling errors

To verify the robustness of observers against modeling error, tuning is achieved for a
specific condition, and then observers are applied to non-ideal conditions where model
parameters vary randomly around nominal values. Trace and user-defined indices given by
Eqgs. 5-39 and 5-40 are used to illustrate the performances of DR observers under these

conditions.
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5.5 Benchmark Plants, Results, and Discussion

Two benchmark plants are used for comparing observer performances. Simulated plants are
taken from the mineral and metallurgical processing industries and consist of a single node
separation unit and a typical flotation circuit. In both cases, it is assumed that the plant
operates under a stationary regime, and all process variables are measured. Also, the feed
rate has a stationary behavior centered on a constant nominal value. For testing purposes,
five simulation scenarios are defined. They are generated by increasing feed rate
fluctuations to induce more important dynamic variations. The testing scenarios are

gathered in Table 5-1. In this table, o, refers to the standard deviation of the feed rate

stream normalized by its nominal value. Achieved simulation results for each plant are

presented and discussed separately in the following sections.

Table 5-1: Different simulation scenarios.

Scenario No. 1 2 3 4 5

o, (%) 0| 2| 10]20]|30

5.5.1 Single node separation unit

Fig. 5-1 illustrates the flow diagram of a separation unit which can be single equipment, a
processing circuit or an overall plant. It has one input stream x; (feed) and two output
streams x, and x; that respectively refers to concentrate and tailings. According to the
notation introduced in Fig. 3, the transfer functions of the plant are presented in Table 5-2.
They are given in Laplace domain and time constants are expressed in minutes. In the table,
L represents the Laplace operator. For simulation purposes, discrete transfer functions are
obtained with a sampling period of 1 minute. As indicated by the transfer function gains,
valuable material flowrates (obtained by multiplying the concentration and total flowrates)

are considered in this case study.
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Table 5-2: Transfer functions of the separation unit.

Input Filter Concentrate Reject
A= o L | p-fe) 08 ) Se) 02
L(u,+&) 50s+1 L(x) 8s+1 L(x) 10s+1

It is assumed that process variables are measured with a relative precision of 5 % of their

nominal values x, =[10 8 2]T in tons per hour. The plant recovery is considered as the

KPL It is obtained by linearization of the relation S=x,/(x,+x;) at nominal values. The

value of z is then
z=[0 0.02 -0.08] (5-41)

Table 5-3 shows performances of the ABS observer for different time lags when the feed
rate fluctuates with a standard deviation equal to 30 % of its nominal value (Scenario 5).
Each column shows the diagonal elements of P for a specific time lag ranging from 0 (ST
observer) to 20. The last column gives the variance of measurement errors. Achieved
results show that generally, increasing of time lag improves the estimation precision, but
for this case, the improvement is not significant for / larger than 5.

Table 5-3: F; for the ABS observer with different time lags / in Scenario 5 (separation unit).

ABS-0
Variable ABS-1 | ABS-2 | ABS-5 | ABS-10 | ABS-20 X,
(ST) ’
x| 0.217 0.189 0.186 0.187 0.187 0.187 0.250
Xy 0.146 0.134 0.133 0.133 0.133 0.133 0.160
X3 0.010 0.010 0.010 0.010 0.010 0.010 0.010

To assess ABS observer performances, results are compared to those obtained with SS, ST,
and KF observers using the variance reduction index (Eq. 5-38). Results are given in Table

5-4 for Scenario 5. The ABS observer, with a time lag larger than one, shows a significant
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improvement in comparison with SS and ST observers when process dynamic is relatively
high. Negative values for the SS observer imply that it provides less precise estimates than
measurements. Therefore, it is unable to handle highly dynamic operating regimes. Also,
Table 5-4 reveals that the ABS observer almost does not improve the precision of the reject

flowrate x;. This problem is due to the small measurement error variance of x; in

comparison with the variance induced by process dynamics. Variables which their
measurement error level is comparable with process dynamic variations are subjected to

more adjustments by the ABS observer.

Table 5-4: Variance reduction for SS, ABS and KF observers (separation unit).

7 (%)
Variables ABS-0
ABS-1 | ABS-2 | ABS-5 | ABS-10 | ABS-20 SS KF
(ST)
x| 13.2 24 .4 25.7 25.9 25.9 26.0 -1458 | 329
Xy 8.5 15.6 16.5 16.6 16.6 16.6 -93.3 95.9
X3 0.5 1.0 1.0 1.0 1.0 1.0 -5.8 96.9

Fig. 5-4 shows values of 7, and 7, as a function of time lag / in Scenario 5. This figure

confirms results of Tables 5-3 and 5-4 that there is no improvement for / larger than 5
because the autocovariance function becomes relatively small for large time lags as

depicted in Fig. 5-3.
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Fig. 5-4: Performance indices as a function of / in Scenario 5 (separation unit).

To investigate performances for different levels of process dynamics, Table 5-5 presents 7,

and 7, for the five evaluation scenarios. All observers show growing indices for increasing
value of o, . Generally, ABS observer exhibits better performance than SS and ST

observers, and the improvement is more significant for large values of o, . Again, SS

observer in Scenarios 4 and 5 shows performance indices larger than one, which implies
that it provides estimates with precision less than measurements. In all scenarios, KF serves
as a reference and gives the best performance. As already mentioned, it benefits from an
exact and complete plant model. Generally, observers show a similar behavior for both

indices, but 77, emphasizes improvement for some streams more than others.
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Table 5-5: 7, and 7, for SS, ABS and KF observers in different scenarios (separation unit).

] ur e
Scenario
No ABS-0 ABS-0
: ABS-5 SS KF ABS-5 SS KF
(ST) (ST)
1 0.500 0.500 | 0.500 | 0.000 0.893 0.893 0893 0.000
2 0.508 0.508 | 0.508 | 0.042 0.895 0.895 0895 0.000
3 0.640 0.600 | 0.692 | 0.196 0.923 0914 | 0.934 | 0.000
4 0.805 0.706 | 1.266 | 0.330 0.958 0.937 | 1.057 | 0.001
5 0.890 0.782 | 2.224 | 0416 0.976 0.953 1.262 | 0.001

5.5.2 Flotation circuit

To evaluate the performance of the proposed observer with a more complex and realistic
plant, a flotation circuit is considered (Fig. 5-5). The plant has seven streams and three
nodes. Transfer functions of the different units as well as the input stream filter that
manages feed rate dynamics is given in Table 5-6 in the Laplace domain. Time constants
are expressed in minute unit. A sampling period of 1 minute is selected to obtain the
discrete transfer functions for simulation. Similar to the single node separation unit,

valuable material flowrates are considered.

Xs

|

Rougher [—®» Scavenger [—»

— Cleaner —

2%

Fig. 5-5: Flotation circuit flow diagram.
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Table 5-6: Transfer functions of the flotation circuit.

Unit Name Concentrate Reject
L(x 0.77 Lx 023
L(x +x5+x,) 10s+1 L(x,+x,+x,) 8s+1
£(x ) 0.82 L(x ) 0.18
G §)= : = G S)= 3 =
Scavenger () L(x) 125+1 o (5) L(x,) 10s+1
L(x 0.93 L 0.07
Cleaner G, (s)= Lx) = G, (s)= (%) _
L(x,) 8s+1 L(x,) 6s+1
L(x 1
Input Filter Gz’ ’ (s)= ( ) —

Llu,+&) 50s+1

It is assumed that process variables are measured with a relative precision of 10 % of the

following nominal values (in tons per hour):

x,=[12.8 121 0.7 13.0 32 09 3.9]" (5-42)

The parameter z, which corresponds KPI (i.e. S = zx” ) is defined as:
z=[-1.0 20 -3.0 0 -1.5 -1 0] (5-43)

This indicator assigns profits to the concentrate x,, processing costs to streams x;, x5, and

X , and decontamination costs to x; .

The performance of the ABS observer for this circuit is evaluated using the same procedure
as the one applied to the single node separation unit. First, its performance with different
time lags is investigated in Scenario 5. Table 5-7 gives the diagonal elements of P for
specific time lags. These results show that the estimation precision improves with

increasing time lags. Again, this improvement is not significant for / larger than 5.
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Table 5-7: P

I,

; for the ABS observer with different time lags / in Scenario 5 (flotation circuit).

Variables | 2> | ABS-1 | ABS-2 | ABS-5 | ABS-10 | ABS-20 Zi
(ST)
X, 1.196 | 0.995 | 0.945 | 0.935 | 0937 | 0937 |1.638
X, 0.832 | 0.728 | 0.694 | 0.673 | 0.672 | 0671 |1.464
X, 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 |0.005
X, 0.669 | 0.650 | 0.647 | 0.647 | 0.646 | 0.646 |1.690
Xs 0.070 | 0.068 | 0.067 | 0.066 | 0.066 | 0.066 |0.103
X 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 |0.008
X 0.080 | 0.076 | 0.074 | 0.072 | 0.071 | 0.071 [0.152

The variance reduction achieved by the ABS observer in comparison with SS and ST
observers is illustrated in Table 5-8. It shows that the ABS observer improves the

estimation precision more than SS and ST observers, especially for x;, x, and x,. The SS

observer gives a negative value that confirms that this observer provides less precise
estimates than measurements for large inventory variations. Results also reveal that the

ABS observer does not significantly improves the precision of x; and x,. As for the

separation unit case study, this problem is due to their small measurement error variances

compared to node imbalance variances. Fig. 5-6 shows that the global indices 7, and 7,

decrease as the time lag increases in scenario 5. This confirms the detailed results presented
in Tables 5-7 and 5-8. For [ larger than 5, there is almost no improvement of DR
performances. In the remaining simulation runs, only 5 time lags are considered for the

ABS observer.
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Table 5-8: Variance reduction for SS, ABS and KF observers (flotation circuit).

i (%)
Variable ABS-0
ABS-1 | ABS-2 | ABS-5 | ABS-10 | ABS-20 SS KF
(ST)
X 27.0 39.3 423 43.0 43.0 429 -78.4 56.8
X, 43.2 50.3 52.6 54.1 54.1 54.2 -13.6 99.2
X5 1.4 1.6 1.7 1.8 1.8 1.8 0.0 99.2
Xy 60.4 61.6 61.8 61.8 61.8 61.8 57.2 98.1
X5 31.9 33.7 34.6 35.6 35.9 35.9 24.1 99.4
X 0.3 0.3 0.3 0.3 0.3 0.3 0.3 99.1
X5 473 50.1 51.5 52.9 53.3 53.3 35.7 97.5
0.6 -
0.55 -
=
0.5+ B
0.45 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
0.55 i
0.5 -
0.45+ B
:5
0.4 .
0.35+ B
0.3 | | | | | | | | |
2 4 6 8 10 12 14 16 18 20

Fig. 5-6: Performance indices as a function of / in Scenario 5 (flotation circuit).
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Table 5-9 gives values of 7, and 7, for all testing scenarios. Although the flotation circuit

is more complex than the single node separation unit, similar conclusions can be drawn.
The main difference is that the SS observer produces estimates that are more precise than
the measurements for a wider range of regimes (Scenarios 1 to 4). This is caused by the

higher filtering effect induced by circulating streams that reduces inventory fluctuations.

Table 5-9: 77, and 77, for SS, ABS and KF observers (flotation circuit).

77{ 77u
Scenario
ABS-0 ABS-0
No. ABS-5 SS KF ABS-5 SS KF
(ST) (ST)
1 0.343 0.343 | 0.343 | 0.000 | 0.096 0.096 | 0.096 | 0.000
2 0.346 0.346 | 0.346 | 0.011 0.102 0.102 | 0.103 | 0.003
3 0.401 0.382 | 0.433 | 0.061 0.209 0.170 | 0.282 | 0.031
4 0.495 0.430 | 0.727 | 0.111 0.385 0.248 | 0.893 | 0.066
5 0.565 0.475 1.180 | 0.153 | 0.503 0.316 | 1.830 | 0.093

To test the robustness of the ABS observer in the presence of modeling uncertainties, it is
assumed that the separation coefficients of the flotation circuit fluctuate randomly around
their nominal values with various standard deviations. Five cases corresponding to the

different level of variation of the separation coefficients of the rougher, scavenger, and
cleaner units (&, , &, and &) are proposed as presented in Table 5-10. In each case, the

standard deviation of feed rate fluctuations is 15 %. All observers are tuned for case 3.
Other cases thus illustrate observer performances with inappropriate tunings. The SS

observer, which has no tuning parameter for model uncertainty, is omitted in this
comparison. Values of 77, and 77, obtained for the five test cases are given in Table 5-10.

Roughly, the ABS observer demonstrates a superior robustness against modeling errors

than the KF observer.
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Table 5-10: 77, and 7, for the robustness test (0, = 15 %).

n, 7.,
Oy | Ou | O,
Case ABS-0 ABS-0
% % % ABS-5 | KF ABS-5 | KF
(ST) (ST)
1 0 0 0 0458 | 0408 [0.103| 0325 | 0213 | 0.065
2 2 2 1 0460 | 0409 [0.112| 0328 | 0214 | 0.082
3 5 2 1 0.467 | 0.412 |0.143| 0335 | 0.217 | 0.103
4 5 5 2 0470 | 0413 |0.154| 0338 | 0.218 | 0.136
5 10 5 2 0494 | 0421 [0273| 0359 | 0227 | 0216

To emphasize the performance degradation of an incorrectly tuned observer, the following

normalized index is proposed:

— 77(391)_77(191) i=1, 2’.

-5 5-44
n(i,i) (-4

i
where 77(3,i) is the performance index (trace or user-defined index) for test case i when
the observer is tuned for case 3. Therefore, 7(i,7) is the performance index for test case i

for a correctly tuned observer.

Table 5-11 presents normalized trace and user-defined indices ¢,; and g, ;. In general, all

observers show growing indices when model parameters depart from tuned conditions. In
comparison with the KF observer, the ABS-5 observer shows a superior performance and
its maximum deviation from the well-tuned situation is less than 1 %. Also, the ST observer
shows good performances with a deviation slightly larger than the ABS-5 observer one.
Although the KF observer still has better results in term of variance reduction (Table 5-10),

it demonstrates the most degraded performance (Table 5-11). In case 5, the deviation values

for KF are 43 % and 68.7 % for ¢,s and g, s, respectively. These results reveal that,

although the well-tuned KF gives optimal performances, it is very sensitive to modeling
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uncertainty, while ABS-5 observer shows encouraging performances in the presence of

modeling errors.

Table 5-11. Normalized indices for the robustness test (0, = 15 %).

4q:; (%) 4. (%)
O-a, O-a.y Gac
Case ABS-0 ABS-0
% | % % ABS-5 | KF ABS-5 | KF
(ST) (ST)
1 0 0 0 03 03 | 195]| 19 1.9 | 310
2 2 2 1 0.1 02 | 28| 10 1.4 2.0
3 5 2 1 0.0 00 | 00| 0.0 0.0 0.0
4 5 5 2 0.5 02 | 62| 02 03 | 200
5 10 5 2 1.7 06 |430]| 06 04 | 687

5.6 Conclusion

Efficient and safe plant operation can only be achieved by an accurate measurement of
process variables. Data reconciliation is a useful technique to provide a precise estimation
of measured or unmeasured variables. From a practical point of view, the trade-off between
modeling effort and estimate precision is important for a successful implementation of such
a technique. To estimate the process dynamic states, this chapter has proposed an observer
based on a simple mass conservation sub-model including the autocovariance of node
imbalances as additional information that improves the estimation precision. The observer
has been evaluated using two simulated benchmark plants operating in a stationary regime.
Comparisons with classical sub-model based observers and the Kalman Filter have been

performed to assess its performance and robustness.

The proposed observer has provided more precise estimates than steady-state and standard
stationary observers, particularly when the dynamic regime of the process becomes
important compared to measurement errors. It has exhibited more robust performances

against modeling errors compared to the Kalman filter. Although the Kalman filter has led
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to optimal performances when perfectly tuned, it is more sensitive to modeling errors than
the proposed observer. Also, it has been observed that autocovariance function could be
truncated after few time lags, thus limiting the modeling effort. In this study, 5 time lags
were sufficient to obtain a satisfactory precision improvement. Linear balance equations
were considered in order to give analytical expressions for estimates and covariance
matrices and, also, to simplify comparisons. However, the proposed method could be
extended to bilinear cases following an approach similar to the one suggested by Makni et
al. (1995a) applied to standard stationary observers. It can be concluded that the proposed
observer is able to cope with process dynamics, offers interesting estimation performances,

is robust against plant variations and requires reasonable modeling efforts.
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Chapter 6

Determining a Dynamic Model for Flotation Circuits Using Plant

Data to Implement a Kalman Filter for Data Reconciliation*

Résumé

La réconciliation de données est largement appliquée pour améliorer la précision et la
fiabilité des mesures des usines. Elle repose sur des modeles de procédé¢ allant des simples
équations de conservation de la masse et de I'énergie jusqu’aux modeles causaux. La
précision des données réconciliées dépend principalement de la complexité et de la qualité
des modéles des usines utilisés pour développer les observateurs utilisés pour la
réconciliation des données. En pratique, la difficulté d'obtenir des modéles détaillés
handicape l'application d'observateurs puissants comme le filtre de Kalman. L'objectif de
cette étude est de proposer une méthodologie afin de construire un modele simple pour un
circuit de flottation qui permet la mise en ceuvre d'un filtre de Kalman pour la réconciliation
de données dynamiques. Cette approche de modélisation est essentiellement basée sur les
informations de la topologie de 1'usine, les conditions nominales de fonctionnement, et les
données historiques. Les résultats de simulation montrent que l'application du filtre de
Kalman basé sur un modéle empirique grossier, mais correctement réglé, donne de
meilleures estimations que celles obtenues avec les observateurs basés sur de simples sous-

modeles.

4 Amir Vasebi, Eric Poulin & Daniel Hodouin (2015), Determining a dynamic model for flotation circuits
using plant data to implement a Kalman filter for data reconciliation. Submitted to Minerals Engineering, 83,
192-200.
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Abstract

Data reconciliation is extensively applied to improve the accuracy and reliability of plant
measurements. It relies on process models ranging from simple mass and energy
conservation equations to complete causal models. The precision of reconciled data mainly
depends on the complexity and quality of plant models used to develop data reconciliation
observers. In practice, the difficulty of obtaining detailed models prevents the application
of powerful observers like the Kalman filter. The objective of this study is to propose a
methodology to build a model for a flotation circuit to support the implementation of a
Kalman filter for dynamic data reconciliation. This modeling approach extracts essential
information from the plant topology, nominal operating conditions, and historical data.
Simulation results illustrate that applying a Kalman filter based on a rough empirical model
that has been correctly tuned gives better estimates than those obtained with sub-model

based observers.

6.1 Introduction

Data reconciliation is widely employed in the mineral processing industry. The method was
introduced by Kuehn and Davidson (1961), and many refinements were proposed over the
years as illustrated, among others, by Bagajewicz (2010). Data reconciliation aims at
improving the accuracy and the reliability of plant data. It attenuates the effect of
measurement errors and allows the estimation of unmeasured variables under favorable
conditions while ensuring that reconciled values satisfy the constraints imposed by the
process model. Several applications such as plant monitoring, process control or real-time

optimization take advantage of improved state estimations (Narasimhan, 2012).

Depending on the target use of reconciled data, different algorithms could be selected.
Steady-state data reconciliation is well suited for the estimation of underlying steady-state
operating conditions. It generally relies on static mass and energy conservation constraints
that could be extracted from plant flow diagrams. For slow dynamic regimes, stationary
observers (Makni et al., 1995; Vasebi et al., 2012a), generalized dynamic observers
(Darouach and Zasadzinski, 1991; Rollins and Devanathan, 1993; Xu and Rong, 2010) and

integral linear dynamic observers (Bagajewicz and Jiang, 1997; Tona et al., 2005) are
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valuable options. In addition to mass conservation constraints, these observers require
inventory variations to be either modeled or measured. Finally, the Kalman filter (Kalman,
1960), which is based on a dynamic causal model of the plant, is able to effectively cope
with highly dynamic regimes. A survey on dynamic data reconciliation observers and their

performances have been presented by Vasebi et al. (2012b).

The Kalman filter being the general representation of most observers based on sub-models
of a plant (Lachance et al., 2006a), one may think this algorithm is widely implemented for
a large class of data reconciliation problems in the mineral processing industry.
Surprisingly, this is not the case as reflected by the relatively few number of applications
reported in the literature. Moreover, the vast majority of data reconciliation software
offered on the market only considers the steady-state case (Bagajewicz, 2010). The
difficulty of developing a reliable dynamic causal model is generally evoked as the main

explanation of this situation.

The objective of this chapter is to propose a simple method to build a model of a flotation
circuit to support the implementation of a Kalman filter for dynamic data reconciliation.
The necessary information is extracted from the plant topology, nominal operating
conditions and historical data. Simulation results support that assumptions introduced
during the model elaboration does not impair the reconciliation performances while greatly

simplifying the development.

Section 6.2 begins with a description of the plant model. To simplify the presentation,
equations are given for a single separation unit even though the approach is general and is
applicable to more complex circuits. Extraction of parameters for a single separation unit is
detailed in Section 6.3. Section 6.4 first assesses the assumptions made in the modeling
phase and then compares the data reconciliation performances of the Kalman filter with the
ones obtained from stationary observers. Evaluations are performed through simulation of a
flotation circuit based on a phenomenological model. Concluding remarks are given in

Section 6.5.
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6.2 Plant Model

This section describes the plant model used for designing the Kalman filter. For this
purpose, a flotation unit is modeled using few low order transfer functions. For the Kalman
filter implementation, this model adds deterministic aspects (i.e. gains and time constants)
which create additional information increasing the observer efficiency while it decreases
the role of the stochastic elements which, in the sub-model observers, embeds the missing
deterministic information of causal models. Although it may seem ambitious to properly
model a complex flotation plant using such transfer functions, this approach lead to better

estimates than other sub-model based observers for data reconciliation, as illustrated later.

The plant is assumed to operate in stationary regime implying that, over a long period of
time, the process stream properties, as well as inventories, randomly fluctuate around a
constant value. In practice, this is a representative description of a wide range of industrial
processes. To seek simplicity and bring the problem to a linear case, only the valuable
mineral flowrates are here considered as process variables. This assumption does not
compromise the generality of the proposed technique, since literature has already
introduced some innovative methods to transform the bilinear data reconciliation problem
to a linear one (Crowe, 1989; Vasebi et al., 2014). Therefore, it could easily be applied to
chemical/physical species flowrates as well as total flowrates. In the following paragraphs,
the basic idea and formulation of the model is detailed for a single node separation unit. In
Section 6.4, which presents simulation results, the approach is extended to a flotation

circuit with three separation nodes.

The flow sheet of the separation unit, involving three streams (feed, concentrate and reject),
is presented in Fig. 6-1. The main idea is to model this unit using three empirical models
and assign corresponding uncertainties. The structure of such a model is illustrated in Fig.

6-2. Only the state variations x, around the operating point are considered and, therefore,
nominal values x, should be added if global values are desired. It is assumed that feed
variations x, are generated by filtering a zero-mean normally distributed white noise &
via a transfer function G, where the corresponding time constant 7y represents the

dynamics of feed disturbances induced by the material itself or generated by previous
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processing stages. In this process model, the gain of concentrate and reject transfer

functions are constrained so that steady-state mass conservation is obeyed for each species.

The parametric representation of transfer functions in discrete time form and their

corresponding poles are shown in Table 6-1, where 7, stands for the process sampling
time, and 7, and 7, are time constants that can be obtained based on the selected species

residence time toward the concentrate and reject streams, respectively, and a represents
the valuable mineral separation coefficient. When several species are considered, additional
transfer functions with corresponding separation coefficients and time constants can be
added. It is worth noticing that these parameters, i.e. time constants, poles, and separation
coefficients could be time variant. In Table 6-1, bi is only used to compact the model

presentation and is defined as:

b=l1-a  i=123 (6-1)

1 1

—‘>
Feed Reject

l Concentrate

Fig. 6-1: Separation unit flow diagram.

Fig. 6-2: Separation unit model.
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Table 6-1: Transfer functions of the separation unit model.

Input Filter Concentrate Reject
Discrete time bz b,z bz
Gz =" | G ma—E— | G,z =(—a)x—
transfer functions ' l—az l-a,z —a,z
1% T {15
Poles T, \r T,

Since first-order transfer functions cannot perfectly describe the complex behavior of the
valuable mineral flow inside the flotation cell, uncertainty is introduced to represent the
model imperfection. This uncertainty is characterized using a covariance matrix. The

separation unit model can be presented in the following state-space format:

xq(k +1) = A(k)x, (k) + B(k)S (k) (6-2)
where x, stands for the state vector representing the flowrate variations:

%, (0 =[x, (0 x, () x, 0] (63)
The coefficient matrices are given by

a, (k) 0 0
A(k)=| a(k)by(k)  a,(k) 0 (6-4)
(I-a()bs(k) 0 ay(k)
B(k)=[b(k) 0 o] (6-5)

In the present case, it is assumed that any variation in the feed (either in terms of flowrate
or composition) under a stationary operating regime leads to normally distributed variations

in the states and parameters. Therefore,

x4, ()~ N(0,Z,) (6-6)
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where X, is the variance of the process state X, that is strongly cross and autocorrelated.

The assumption of normally distributed parameter variations is investigated and supported

in the simulation and results section.

In a plant, the variation of feed, process states, and parameters are dependent, i.e. changing
one of them affects the others. For instance, increasing the valuable mineral feed can
change the material residence time inside the cell. Moreover, these variables and
parameters are time correlated. In the current study, as mentioned before, the objective is to
facilitate the development of the plant model used for data reconciliation purposes.
Therefore, several assumptions are made that might not perfectly reflect all observed
phenomena. Here, it is assumed that the model parameters, a; and « , are white noises with

the following properties, although they are obviously colored by the process dynamics:
a;(k)=a; +a,(k) , a;(k)~N(,Z,) (6-7)
ak)y=a, +a(k) , a(k)~N(0,XZ,) (6-8)

where the subscript 7 stands for the nominal value and ~ represents the variation. Using Eq.

6-1,
b(ky=-ak) .  b(k)~NOZ,) (6-9)

so these variables, taking into account the appropriate sign, can easily be interchanged in
the upcoming developments for convenience. Regarding model parameter variations, the

process model (Eq. 6-2) can alternatively be written as:

x, (k+1)= A, x, (k) + A(k) x, (k) + (B, + B(k))E(k) = 4, x, (k) + w(k) (6-10)
where

a,, 0 O
4,=| ab, a, 0| . B=[p 0 o0f (6-11)
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and w is the stochastic part of the model representing modeling uncertainty and feed

variation. Here, A and B stand for

a, (k) 0 0
Ay =| -a, @) +akb, —@®ak) @k o |, Bk)=[ak) o o (6-12)
~(-a,) @ (k) -ak)b, +a(k)ak) 0 a@k)

In expanded format, w can be expressed by:

w, (k) G (k)x, () +(1—a, —a )&k
w(k) =| w,(k) | = (_an 52(k)+&(k)bzn _5(16)‘72(/‘7))?%11 (k) +a, (k) x,, (k) (6-13)
wyk) || (=) @y k) - @by, +@k)a k) ), (k) +a k) x,, (k)

As the uncertainty, w can be characterized using statistical properties like covariance
matrix. The covariance of w can be calculated using variance and covariance of the product
of random variables as proposed by Goodman (1960) and Bohrnstedt and Goldberger
(1967), respectively.

X X X
cov(w) =| Z;; Zp 2o (6-14)
X3 Xy i

Considering the autocorrelation of X; and using the properties of geometric progression

series, one can obtain:

Ty =var(w)=%,%, +b’Z, +3, %,

a
%), = var(w,) = [a,f S, b2, +2, %, +20,b, WZ ]le +2,.%, (6-15)

a3
Y55 = var(wy) = ((1 -2, +b7%,+%, %, +2(1-a,)’b, 1_—"22a3 szl +3, %

az X3
a3n

and

118



~b,b, 2,5, i,je{23&i#

ln ]n
Z; =c0v(wl.,wj)={ . (6-16)

otherwise

For the transfer function of the input filter G, given in Table 6-1, a unit gain has been

assigned. This implies that the uncertainty on X has been neglected and not considered in

the development of Egs. 6-15 and 6-16. When the process state and parameter uncertainties
covariances are known, the overall model uncertainty could easily be evaluated using Eqgs.

6-15 and 6-16. To calculate cov(w), I, can be obtained from the state-space model of Eq.
6-10:

2 2
le :(al,, +Zla1 )le +b1,,2§ +Za125

2

2

a a

272 272 2, 2 2 2 2, 2

I, = [an b, +2a,b) 2 +a, X, +by X, +¥, X, +2a,b, - Z, sz. + (a2,, +Z, )sz
- 211 - 2"

a3n

2 [—

2
a
z, = [(1 —a,)'by +21-a,)’b) et (1= a,) S, +hIT 12,5, + 21, by T, }Z“

a31 a3
2
+(a3n + Za3 )2x3

Using the first relation in Eq. 6-17, X, can be calculated and then substituted in the next
two equations to get X, and X, , therefore allowing the evaluation of cov(w) from the

model parameter nominal values and uncertainties. In Section 6.3, the way of obtaining

these parameters and their associated uncertainties in practice is discussed.
The following measurement equation is coupled with Eq. 6-2 to build the observer model:

y(k)= Cx(k) +v(k) = Cx, (k) + Cx,, +v(k) (6-18)

where x(k) is the true process state including dynamic variation and nominal value, and

(k) =[y (k) »,(k) i) (6-19)

and x, stands for the vector of the process states nominal value,
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)cnz[xnl Xy X, ]T:[xnl a,x, (l—oz,l)xn1 ]T (6-20)

The vector of white noises v(k), which represents the random measurement errors, is

characterized by:
v(k)~N(0,X)) (6-21)

In the present study, it is assumed that all process variables x are measured, so the

observation matrix C comes down to an identity matrix.

6.3 Evaluation of Model Parameters and Uncertainties

This section proposes a procedure to estimate the parameters of the model presented in Eq.
6-10 and uncertainties introduced in Eqgs. 6-15, 6-16, and 6-17. A list of model parameters
and uncertainties that should be estimated is summarized in Table 6-2. To estimate them, it
is assumed that a set of historical data is available (at least, for an operation period of one
month). In the case that continuous measurements are not available for some of the
flowrates, either the nominal operating states or plant design information can be used to
establish the model. The nominal operating states can be evaluated, from time to time, by
carefully planned sampling campaigns, without permanent installation of flowmeters on all
the streams. Moreover, when some flowrates are unmeasured, bilinear steady-state data
reconciliation can be employed to estimate the steady-state value of flowrates using
redundant information obtained from the concentration of species in the collected samples
during sampling campaigns. So unavailability of continuous measurements for a number of

streams does not impair the generality and applicability of the proposed approach.

Table 6-2: Model parameters and uncertainties to be estimated.

Parameters Uncertainties

o )y

n [24

a ,i=12312, ,i=123

Iy
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6.3.1 Separation coefficient

To find a suitable value for the nominal separation coefficient ¢, and its corresponding
uncertainty X, , different techniques could be applied. The simplest way is to use the

average value of measurements y; :

a, =—22 (6-22)
Wt

The nominal values of process variables x;, taken from plant design information or steady-
state reconciled values, can also be used to estimate «, . To calculate X, , measured values
are selected,

_ _ Y, (k) ]
X, =var (a(k)) = var (yz )+, (k)] (6-23)

6.3.2 Time constants of the separation unit

Regarding the discrete time representation of the process, poles a; can be obtained from
reasonable estimates of the time constants calculated from plant information and historical
measured data. In the present case-study, it is assumed that time constants 7, and 7, can be

represented by the valuable mineral mean residence times toward concentrate and reject

streams:

T (k) = ). 6-24
(k) Fo(k) (6-24)
T (k)= m(k) +m, (k) (6-25)

Ee (k)

where m and m. are respectively the valuable mineral masses in the pulp and froth phases,
and Fy and F stands for mass mineral flowrates in the reject and concentrate streams.
The slurry phase behaves as a perfect mixer while the froth phase behavior is close to a

plug flow reactor. These are the modeling hypotheses used for simulating the plant in
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Section 6.4. However for simplifying the estimation of both time constants for the Kalman
Filter, perfect mixing conditions are assumed in the two phases. Therefore m and m. can be
estimated from the measurement of the concentrate and reject mineral concentrations, and
estimation of the slurry volumes and solid percent of the two phases. When continuous

measurements are available, the time constants can be updated at time 4. If they are not,

historical data can be used. The poles a,(k) and a;(k) are then estimated:

T

a,(k) = e[Tp(yk)j

(6-26)

T,

ay (k) = o)

Nominal values a, and a; can be calculated by averaging of a, and a; signals. In

Section 6.4, it is shown that when the feed has normally distributed stationary variations,

T. and 7, almost follow a log-normal distributions and so normal distributions can be

assigned to @, and a;. This idea is supported by simulation results. The variance of the

poles is estimated by usual statistical techniques.

6.3.3 Parameters and uncertainties of the feed transfer function

To estimate the parameters of the feed transfer function, the autocovariance of

measurement y1 with / time lags, i.e. C, (/), calculated from historical data can be used.

Using Eq. 6-18,
(k) =x, (k) +x, +v (k) (6-27)

Since v; is a white noise, it only contributes to C, (0). This fact can be utilized to separate

2, and X, , and consequently estimate @, , ¥, and X.. For a given ), a typical

V1

autocovariance function is shown in Fig. 6-3. For lag zero,
C,(0)=%, +Z, (6-28)

while for other time lags, the assumption of a first-order autoregressive system leads to:
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C,(D=(a )T, (6-29)

Moreover, the input transfer function implies that:

1—611"2
25 = m szl (6'30)

These relations can be used to estimate @; and X, , and then calculate 2. For this

purpose, an estimation technique based on autocovariance function fitting is applied. In
other words, @; , X, and X, are adjusted to produce an autocovariance function that fits
the one calculated using measurements. To select the appropriate number of time lags used
in Eq. 6-29, a reasonable solution is to choose the number of lags 4 over which the value of

the autocovariance function is significant according to the 95% confidence intervals. Fig. 6-

3 illustrates the autocovariance function including 95% confidence interval line (dash-line).

GO

s, {

Xi

~ Y

01 2 3 4 .. h

Fig. 6-3: Measurement autocovariance function.

An iterative estimation approach is applied that minimizes the least square criterion (see

Fig. 6-4):
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h

J = Z(cyl H-C, (z))2 (6-33)

=0

where éyl is the estimated autocovariance function that satisfies Eqgs. 6-28 to 6-30.

Lachance et al. (2007) presented an alternative method that uses two successive time lags
of the autocovariance function to formulate the estimation problem and then apply the

simple least squares solution.

Plant historical Y1 > Calculation of
data autocovariance
C b ()

~ +
Feed model Cyl ) . \1:
™| Egs. 6-28 t0 6-30 :

IS

Vl, .xl’

aln

Minimize J Do —

Fig. 6-4: Iterative approach to estimate the feed model parameters and corresponding uncertainties.

The proposed approach provides an estimation of X%, , X, , a; and X;. To find 2, , it is

necessary to generate several «@; and then calculate the variance of them. For this purpose,
the whole historical data set is fractioned into smaller sets and then the above-mentioned

algorithm is repeated to produce a set of @, and calculate its variance X, .

6.3.4 Measurement uncertainty

To apply the Kalman filter, the measurement error variance X, is required. Using Eq. 6-18

when C =1, it can simply be calculated by:

X, =var(y) = Var(x + v) (6-32)
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where X, is the variance of the measurements. Since x and v are independent,

S,=%,-%, (6-33)

where X, is calculated using Eq. 6-17. Eq. 6-33 implies that any incorrect estimation of X

is compensated by X, and the total variance observed in the measured data is preserved.

6.4 Simulation Results and Discussion

A phenomenological simulator of a flotation circuit is used as the case study. The simulator
is developed based on mass conservation equations, and a first-order kinetic is assumed to
model the flotation process. For the collection zone, a perfect mixing model is considered
while the froth zone is simulated using a plug flow model. The simulator takes into account
the particle size/volume distributions while bubble size distribution is neglected, i.e. it only
employs the air volume inside the tank. Entrainment that brings water and non-floatable
particles into the concentrate is also considered. In order to simulate the particle drainage, it
is assumed that the flotation rate constant is inversely affected by froth depth. The effect of
several manipulated variables, including collector and frother concentrations, air flow, and
interface level, are modeled. Complete details of the simulator are available in Chapter 7.
The flotation circuit flow sheet is depicted in Fig. 6-5. The circuit consists of three stages,

1.e. rougher, cleaner, and scavenger, and eight streams.

&

A4

Rougher Scavenger ——»

Cleaner

Fig. 6-5: Flotation circuit flow sheet.
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6.4.1 Distribution of model parameters uncertainties

As already mentioned, only flowrates of one valuable mineral have been considered as the
process variables, but the approach can be extended to multi-mineral systems. In the above
sections, it has been assumed that @; and « are normally distributed around a mean value
when feed properties exhibit normally distributed stationary variations. Fig. 6-6 shows the
stationary variation of the valuable mineral in the feed rate. This fluctuation results from
stationary variations of the feed flow and grade generated by filtering normally distributed
white noises with suitable time constants. Probability density functions of time constants,
poles and separation coefficient for the rougher cell are presented in Fig. 6-7 to support the
assumption of normal distribution. Although a log-normal distribution roughly fits the time
constants variations, their corresponding poles acceptably fit a normal distribution.
Obviously these fits are not perfect, but they are good enough to make the assumption
reasonable. For separation coefficients, the normal distribution shows almost a perfect

match.

Mineral flow rate
(ton/h)
N
T

| | | | | |
0 50 100 150 200 250 300 350 400
Time (min)

Fig. 6-6: Stationary variation of the valuable mineral feed rate.
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Probability density function

Probability density function
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Fig. 6-7: Distribution of time constants (7¢, T,), poles (a2, a3) and separation coefficient (« ).

6.4.2 Estimation of model parameters and uncertainties

In this section, the proposed estimation approach is applied to the flotation circuit
simulator, and results are presented. The procedure has been performed when feed rate and
grade vary with standard deviations of 10% and 15% of their nominal values respectively,
1.e. 100 t/h and 6.48%. Data is collected from 30 days simulation with a sampling time of
10 seconds, although slightly longer sampling period could have been selected. Here it is

assumed that all of the valuable mineral flowrates (as the true process states x) are
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measured, and they contain random errors with a standard deviation of 5% of their nominal

values:
X = [x1 X, . Xg ]T (6-34)
Y, =X, +V, i=1...8 (6-35)

Model parameters and their corresponding uncertainties are estimated using the procedure

described in Section 6.3. For simulation, a sampling time 7, of 10 seconds has been used.

The estimated process model parameters and their uncertainties are presented in Table 6-3

while the feed model characteristics are illustrated in Table 6-4.

Table 6-3: List of the estimated model parameters and uncertainties.

Separation
Mean residence time (min) Poles )
Unit coefficient
Concentrate (7'.) | Reject (T',) | Concentrate (a.) | Reject(a,) o
Rougher 3.17 4.80 0.949+0.007 0.966+0.002 0.670+0.030
Cleaner 3.35 12.18 0.952+0.008 0.986+0.003 0.800+0.020
Scavenger 12.25 6.63 0.987+0.001 0.975+0.002 0.400+0.018

Table 6-4: Estimation of feed model characteristics.

Feed Model

Value
Elements
T, (min) 14.6
ar 0.987+0.004
25 205.2

To simplify the calculation of the residence time in the froth zone, it is assumed that gas
hold-up inside the froth is constant. In practice, gas hold-up is measurable using

conductivity or ultrasonic sensors (Shean & Cilliers, 2011). Large value of valuable
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mineral residence inside cleaner toward the reject as well as scavenger toward concentrate
in comparison with other residence times come from the fact that only a small amount of
valuable minerals exists in the reject and concentrate streams of cleaner and scavenger,
respectively. So the residence time calculation from Eqgs. 6-24 and 6-25 leads to large

values. This point complies with what is observed in practice.

6.4.3 Observer performance evaluation
For comparing the performance of data reconciliation, three observers are considered:
e Standard stationary observer (ST) proposed by Makni et al.(1995a);

e Autocovariance based stationary observer (ABS) presented by Vasebi et al.,

(2012a);
e Kalman filter (KF) with the approximate model as previously described.

All of these observers estimate the instantaneous value of the variables rather than their
steady-state underlying value. As a brief recall, the ABS observer uses sub-model taken
from mass conservation law and plant flow sheet. It applies the autocovariance function of
node imbalances to estimate the dynamic value of the process states. The ST observer is a
particular case of ABS where only the node imbalances variance is utilized. The process

model used in ABS and ST observers is expressed as:
Mx(k)=e(k) (6-36)

where M is the process incidence matrix, and ¢ stands for the plant node imbalances. For
the present case-study, both sides of Eq. 6-32 are multiplied by M to estimate the variance

of ¢:
My(k)= (k) + Mw(k) (6-37)
and consequently,

T T
s, =M M - ML M (6-38)
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where X, is estimated using Eq. 6-33. Also, autocovariance of ¢ can easily be extracted

from simulation data. More details about ABS tuning and application are available in

Vasebi et al. (2012a).

Two indices are selected to evaluate the performance of the observers in terms of noise
reduction. The first one quantifies the total estimation error variance reduction. The

covariance of the estimation error is expressed by:
P=cov(x—x) (6-39)
where X is the reconciled value. The total variance reduction index is:

_ | trace(P) (6-40)

! trace(Z,)

A value of 1 means that all noises have been filtered, while smaller index shows less noise
reduction. To present the noise reduction for each valuable mineral flowrate, the second

performance index is defined as:

n, =1-—i i=12,...8 (6-41)

where 2, and P, stand for i diagonal element of =, and P, respectively.

u

For simulation purposes, a stationary variation with a standard deviation of 16% of the
nominal value has been applied to the valuable mineral feed rate. Simulation results are
given in Table 6-5. For ABS observer, 15 time lags were selected. KF observer with the
proposed empirical model shows much better estimates than the two others. This illustrates
that, by doing some limited modeling efforts, better reconciliation could be achieved. In the
stream by stream evaluation, the KF also has better performance except for the fourth
flowrate that is rougher concentrate. To illustrate the performance of observers, reconciled
value of the concentrate and reject flowrates is presented in comparison with true and
measured value of variables in Fig. 6-8. In this figure, the estimates are presented in a short
two-hour time window for illustration purposes. As shown in Fig. 6-8, the KF with

dynamic empirical model provides more precise estimates than the ST observer.
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Table 6-5: Performance indices (%) for ST, ABS, and KF observers.

Indices (%) ST ABS KF
n, 58.1 63.0 72.9
my, 50.6 59.0 68.3
My, 32.4 44.4 62.1
My, 20.0 23.5 79.6
Ty, 58.3 61.5 46.0
M, 8.4 8.9 37.9
M 2.6 2.8 46.1
Ny, 60.1 64.3 71.9
.8 73.2 77.3 81.1

~J

L (=]

s
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--== ST

T
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60
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Fig. 6-8: KF and ST estimates vs. true and measured values (concentrate and reject flowrates).
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For testing the robustness of KF observer, i.e. its sensitivity to the tuning of the covariance
matrices that corresponds to the uncertainties of model parameters, multiple stationary
disturbances with different variances are applied to the mineral feed rate. Observers are
tuned for a specific disturbance while they are facing disturbances having different
characteristics. Four test cases involving amplitude variation of the valuable mineral feed

rate have been considered. To quantify the robustness, the following index is proposed:

=’7r(3’f)f’7f(f’f) j=1,2,-,4 (6-42)
1,.(J>J)

q;

where j is the test index, and 7,(3, /) is the performance index of test j when the observer
is tuned for case 3. By this definition, 7,(j,j) stands for the performance index of test j

with the correctly tuned observer. Results presented in Table 6-6 reveal that all observers
show increasing indices when model parameters depart from well-tuned conditions. Sub-
model based observers, i.e. ST and ABS, reveal better robustness in comparison with the
proposed KF observer. The maximum deviation for KF from the reference situation is
about 12% while this value for ABS and ST is smaller. This point can be explained by the
fact that the Kalman filter relies on a more detailed and complex model than two other
observers. So it is more sensitive to plant operating conditions. However, it still gives better

estimates than ABS and ST even in the presence of the worst feed disturbances.

Table 6-6: Performance indices (%) of ST, ABS, and KF in the robustness test.

Test Mineral ST ABS KF

case | feed var.
. . .0 | 1.G.J) q; n.(>J7) | 1.3,)) q; .0 | 1,.G.)) q;
1)) (%)
1 0 75.0 70.0 6.4 75.0 71.0 5.0 100 89.0 11.0
2 9.0 71.0 69.0 2.8 72.0 70.0 2.8 88.0 85.0 34
3 16.0 58.0 58.0 0.0 63.0 63.0 0.0 73.0 73.0 0.0
4 28.0 45.0 43.0 4.4 49.0 47.0 4.1 57.0 50.0 12.2
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6.5 Conclusion

Precise measurement of process variables is vital for efficient and safe process operation. In
industrial plants, data reconciliation is widely applied to provide a precise estimation of
measured or unmeasured variables. Successful implementation of data reconciliation relies
on a compromise between modeling effort and estimate precision. Although many powerful
observers have been developed in the literature, they have not been frequently applied in
the mineral processing industry. As a main reason, these observers need complex and
detailed models that are not available or difficult to build in practice. Therefore, besides
developing any observer, a procedure for obtaining the corresponding model should also be

established.

In that sense, this chapter has proposed a procedure to get a simple model for a flotation
circuit to support the implementation of a Kalman filter for dynamic data reconciliation
purposes. Useful assumptions have been formulated to simply and facilitate the model
elaboration. Empirical first-order transfer functions obtained from the plant topology,

nominal operating conditions, and historical data were used to build the model.

A phenomenological flotation circuit simulator operating in a stationary regime has been
used as case-study. To simplify and linearize the data reconciliation problem, only the
valuable mineral flowrates have been considered as process variables. To obtain the
parameters and uncertainties of the causal model, the chapter has provided practical
guidelines. For instance, the mean residence time of the valuable mineral inside the
different units has been selected as the time constant of the transfer functions, while the
gains have been estimated using separation coefficients calculated from historical data. To

model the feed fluctuations, the autocovariance function has been used.

The performance of the Kalman filter has been compared with two sub-model based
observers: the standard and autocovariance based stationary observers. To assess the
performances, indices based on estimation error variance reduction and robustness tests
have been used. The Kalman filter with the empirical model has provided more precise
estimates than standard and autocovariance based stationary observers in all scenarios.

Regarding the robustness tests, sub-model based observers have been slightly better than
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the Kalman filter. The high sensitivity of the Kalman filter to the plant operational
conditions can be explained by the fact that the Kalman filter relies on a more detailed
model than two other observers that use a simple description of the process. Despite its
slightly higher sensitivity, the Kalman filter has produced better estimates even in the

presence of important feed disturbances.

Although many assumptions have been used in the modeling stage, simulations results have
revealed that these assumptions do not degrade reconciliation performances while greatly
simplify the model development. As a general conclusion, although all dynamic behaviors
of a complex plant like flotation circuits cannot completely be captured by few first-order
empirical transfer functions, such models are beneficial for data reconciliation purposes if
the model uncertainties are correctly represented. Therefore, a dynamic causal model with
well-tuned uncertainties can be considered as an alternative for sub-models in the data
reconciliation context. Doing some limited modeling efforts can facilitate the application of

advanced observers like the Kalman filter in the mineral processing industry.
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Chapter 7

Froth Flotation Circuit: Model and Dynamic Simulator

In this chapter, a dynamic simulator of a froth flotation circuit is presented for designing
and testing data reconciliation observers (Chapter 6), and automatic control and real-time
optimization schemes (Chapter 8). The simulator is derived from phenomenological and
empirical relationships. To develop the simulator, several assumptions are made to simplify
the model while its performance is kept reasonably close to a real process behavior. First, a
single flotation unit is modeled, and its performance is evaluated using different tests. Then
a flotation circuit simulator consisting of three cells is presented, and its behavior is

discussed.

7.1 Flotation Circuit Modeling: A Review

Flotation plants are dynamic processes, and their performance is always affected by
disturbances, strong interactions, and large and variable time delays (Pérez-Correa et al.,
1998). On the one hand, flotation units are faced with disturbances in feed characteristics,
e.g. flowrate, grade, and particle size distribution. On the other hand, changes in the
manipulated variables affect the particles and air bubbles behavior inside the cell. To
correctly understand the behavior of the cell, dynamic models are extremely beneficial,

especially for automatic control practices.

In the steady-state situation where plant transients are not considered, several models and
simulators have been developed (Arbiter and Harris, 1962; Mika and Fuerstenau, 1969;
Jamsa-Jounela and Lattila, 1995). As a pioneer, Arbiter and Harris (1962) have proposed a
two-phase model that conserves the mass in steady-state conditions. They have assumed

that froth and pulp phases are perfect mixers, and then considered the interaction between
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these two phases. Harris has extended the steady-state model to multiphase flotation cells
(Harris, 1978). However, to study the transient effects of disturbances and sampling
systems design, and also to develop automatic control systems, dynamic models are

required.

In the literature, a limited number of dynamic flotation models have been presented, mainly
based on Bascur and Hebst (1982). They have developed a phenomenological model to
describe the dynamic behavior of a flotation cell. Their model represents the behavior of
three types of particles (free valuable mineral, free gangue and locked mineral) in four
possible states in the cell (free in the pulp, attached in the pulp, free in the froth and
attached in the froth). A population balance model is applied to each state. Aeration rate,
froth addition, and impeller speed have been considered as manipulated variables. Bascur
(2000) has generalized the model by modifying the pulp/air and particle/bubble interactions

and introducing new manipulated variables such as wash water flowrate.

To study the transient and time responses, Williams and Meloy (1983) have introduced a
lumped-parameter dynamic model for continuous flotation circuits. Assuming a single
mineral class, they have proposed a model based on dynamic mass balance equations.
Pérez-Correa et al. (1998) have developed a dynamic model taken from mass balances and
empirical relationships. Then based on the proposed model, they have applied different rule

based and predictive control strategies.

Casali et al. (2002) have presented a flotation unit model specifically for control practices,
process performance evaluation, and training applications. The dynamic model has been
developed using phenomenological and empirical relationships. As the main core of the
model, mass conservation law has been applied while two empirical sub-models have been
used for modeling of feed composition, and bubble saturation. The model has been built
based on the following major assumptions: one slurry phase, perfect mixing condition, no
water flotation model, and constant airflow. The main advantage of the study is the
calibration of model parameters using plant data and comparing the simulator performance

with the plant behavior. Neglecting the froth zone model is the main weakness of the work.

A flotation circuit coupled to a grinding circuit has been modeled and simulated by Ruel

(2010). The model has been developed based on dynamic mass conservation equations of
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the particles and water. A perfect mixer model has been assumed for the collection zone. In
the simulator, twelve particles in 3 size and 4 composition classes have been considered,
and the corresponding first-order flotation and entrainment relations have been applied. As
the strength of the work, Ruel (2010) has coupled the flotation simulator with a grinding
circuit to present a more realistic case. However, he has not modeled the froth zone and
effect of the plant operational variables on the simulator performance. These points could

be considered as the drawbacks of the study.

Yianatos et al. (2012) have presented a procedure for modeling and simulating rougher
flotation banks based on operating variables and parameters fitted using empirical data
from plant measurements. They have first modeled mineral recovery in the collection and
froth zones, and then expressed the total recovery in the term of recovery of zones. The
recovery in the collection zone has been described as a function of residence time and
flotation rate distributions. To characterize the cleaning zone behavior, they have applied a
plug flow model leading to an exponential expression in terms of the maximum recovery of
froth zone, froth stability, and the gas mean residence time. As a key point, the paper has
proposed a sensitivity analysis for the effect of different operating conditions such as
particle size distribution, froth depth, feed tonnage, feed grade and solid percentage. The
simulator has not considered the effect of chemical reagents, i.e. collector and frother
dosages, as manipulated variables. Based on the developed simulator, Bergh and Yianatos

(2013) have investigated the control problem of rougher flotation circuits.

Pietila et al. (2015) have developed a flotation circuit simulator running in parallel with the
copper plant in Finland. The simulator has been designed based on mass conservation of
particles. A three-component first-order kinetic rate model, where the paritcles are defined
as fast, slow and non-floating particles, has been considered. The simulator parameters
have been tuned through a laboratory flotation test work. Although the simulator has not
taken into account water and air dynamic mass conservation and froth zone model, its main
advantage is the online updating of the model parameters based on the plant-model output

differences.

This chapter presents a dynamic simulator for froth flotation circuit. The simulator is

developed for designing and testing data reconciliation observers and automatic control
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strategies. In fact, the aim of this section is not to develop a complex and perfect simulator
but to build a simulator that reasonably behaves in transients and is suitable for process
control and data reconciliation studies. The core of simulator is derived from mass
conservation laws and flotation phenomena while empirical relationships are applied to
model the effects of manipulated variables on hydrodynamics and flotation rates. To
simplify the model, different assumptions are used while trying to keep its performance
reasonably close to the behavior of flotation plant. First, a single flotation cell is modeled

and discussed, and then a flotation circuit simulator that consists of three cells is presented.

Section 7.2 provides the basics and definitions needed to build a flotation cell model. Then,
in Section 7.3, assumptions used to model the process are presented and justified.
Collection zone model and effects of process operational variables are extensively
discussed in Section 7.4 where empirical relations and mass balance equations are
combined to build the dynamic model. Modeling of froth zone and froth depth effect on the
material drainage are shown in Section 7.5. In Section 7.6, more details about the plant
simulation procedure are provided. Sections 7.7 and 7.8 are devoted to investigate the

single cell and the flotation circuit performances.

7.2 Basics and Definitions

This section gives preliminary information and defines variables that are used for flotation
cell modeling. Fig. 7-1 shows the scheme of a flotation cell. To simplify the problem, froth
and collection zones are separated. In other words, two separate phases are assumed: pulp
phase and froth phase. In the collection zone, the interactions between particles, water, and
air are modeled using two phenomena: flotation and entrainment. A particle can be carried
into the froth by attachment to an air bubble (true flotation), or it can be suspended in the
water trapped between the bubbles (entrainment). While true flotation is selective between
hydrophobic and hydrophilic particles, entrainment is non-selective. So entrained particles
are just as likely to be gangue as they are to be the valuable mineral. Drainage, i.e.
returning particles from froth zone in collection zone, is embedded into the flotation rate
constant model. Table 7-1 presents the notation and corresponding units of the process

variables.
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Fig. 7-1: Flotation cell scheme.

Table 7-1: Process variables notations and units.

Variable Variable
. Variable description Unit . Variable description Unit
notation notation
h cell total height m Dy, water flowrate in concentrate t/h
h f froth zone height m D, water flowrate in reject t’h
h, collection zone height m C total solid flowrate in concentrate t/h
S tank sectional area m? R total solid flowrate in reject t/h
i species index | - G species i flowrate in concentrate t’/h
ol species i density g/em’ R; species i flowrate in reject t/h
Pr water density g/em’ C species i grade in concentrate
A solid flowrate in feed t/h r; species i grade in reject
Dy water flowrate in feed t/h a; species i grade in feed
Vs solid volume in pulp zone m’ M; species i mass inventory in pulp zone | t
s total solid inventory in pulp zone |t M water mass in pulp zone t
Uec collector concentration 1/t F species i attachment flowrate t/h
Cr frother concentration ppm E; species i entrainment flowrate t/h
0y air feedrate 1/s R, reject valve resistance | -—---
S, bubble surface area flux 5!
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7.3 Assumptions

Although a flotation cell is a complex system, applying some assumptions can simplify its
modeling for control and reconciliation purposes. These simplifications are selected to keep
the realistic behavior of the cell. Assumptions applied in the current study are discussed in

more details in the following sections.

7.3.1 Two phases

Here, two phases are considered for flotation cell modeling: the pulp and froth phases. It is
assumed that collection zone obeys a perfect mixing condition while a plug flow model is
considered for the froth zone. A perfect mixing condition implies that the concentration of

each particle in the pulp phase is equal to its concentration in the tailing.

7.3.2  Limited number of mineral classes

The flotation process should be considered as a distributed system where many
mineralogical species with different characteristics are involved. To keep the model simple,
the different classes have been grouped into a reduced number of classes that are
representative enough to describe the flotation behavior. In this study, it is assumed that the
solid feed contains a single valuable mineral like chalcopyrite, gangue, and their mixture.
Three size classes for solid particles are considered where each one has four different
compositions. In fact, twelve particles with different size and composition classes are
involved in the model (Table 7-2). In the table, particle grade stands for the chalcopyrite

percentage in each particle size class.

7.3.3 No bubble size distribution

Size distribution of air bubbles is not considered. Only an averaged bubble size as well as

total air volume is used in the modeling approach.
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Table 7-2: Particles distribution in the feed.

Particle size | Species (i) | Particle grade
1 100 %
2 70 %
Large
3 30 %
4 0%
5 100 %
6 70 %
Medium
7 30 %
8 0 %
9 100 %
10 70 %
Fine
11 30 %
12 0%

7.3.4  Net flotation and entrainment

As mentioned above, a particle can be carried into concentrate either by flotation or by
entrainment phenomena. At the interface of the phases, Fig. 7-1 shows that both of these
phenomena can act in forward and reverse directions, i.e. detachment and drainage could
happen. In the current research, only net flotation and entrainment are used. This means
that only particles entering the final concentrate stream are considered, and interaction
between two phases is not explicitly taken into account. However, it is notable that particle
drainage from the froth zone has been implicitly modeled by modifying the flotation rate

constant when froth characteristics are changing.
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7.4 Collection Zone Model

This section presents a model for the collection zone where a perfect mixing condition is
assumed. For modeling purpose, different phenomena and laws are applied ranging from
dynamic mass conservation equations to empirical relationships between the flotation rate

constant and the manipulated variables.

7.4.1 Mass conservation equations

The core of the simulator is based on mass conservation equations of the particles and

water. For the mineral particles, mass balance equation is:

%%:A@—Q—& i=1,..,12 (7-1)

where @;, M;, C,, and R, stand for the i particle mass fraction in the feed, mass

inventory, flowrate in the concentrate, and flowrate in the reject, respectively. A4 is the ore

feed rate. The water balance is expressed by:

dM
dt

=D, -D,-D; (7-2)

where Dy, Dy, and D are water flowrate in the feed, concentrate, and reject,
respectively. M, is water inventory mass. Considering flotation and entrainment

phenomena, the particle flowrate toward the concentrate is given by:

C,=F +E, i=1,..,12 (7-3)

where F,, and E, are the i particle flotation and entrainment flowrates.

7.4.2  Overall mass transfer to reject

Bernoulli law can be employed to find a relationship between tank content volume and

discharge flowrates. Local linearization of Bernoulli law gives a relation between the reject

flowrates, total mass inside tank, and resistance of the reject valve R, :
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Dp (LR My M

+> (7-4)
PE i=1 P; Rs Rs
where p, and p; stand for water and i particle density, and
12
Ms =2 M, (7-5)

i=1

7.4.3  Flotation kinetics

Assuming a first-order kinetics for the flotation mechanism, i.e. particles attachment into

bubbles, gives:
F=kM, i=1,..,12 (7-6)

where k, (min™!) is the flotation rate constant of particle i. Eq. 7-6 describes the particle

flowrate into concentrate stream caused by flotation phenomenon. The flotation rate
constant plays an important role in modeling of the cell behaviors. Many operational and

process variables and parameters can affect &, and consequently the plant performance. To
have a reasonable simulator, the relations between the manipulated variables and k; should

be precisely addressed and modeled. The flotation rate constant of a particle depends on:

o the particle size (d,): large particles are difficult to float because they are easily

detached from bubbles, but their probability of being collided is higher. On the
other hand, small particles are well attached to bubbles. However their collision

probability with bubbles are lower.

e the hydrophobicity of the mineral (#): when more collector is absorbed on the
mineral surface, its hydrophobicity gets higher and consequently its ability to be

floated is increased.

e the particle composition (c;): particles containing more hydrophobic minerals are

more likely to be floated.
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e the amonut of free surface available on the bubble: a parameter that depends on the

bubble size distribution and air flowrate. It is mainly expressed as the bubble

surface area flux S), (min™).

Therefore, k; can be expressed as:

k,=Ag(d;,c,)HS, (7-7)

[ R

where H stands for the mineral hydrophobicity, and g(d;,c;) is a function expressing the

1971
probability of being floated as a function of particle size and composition. A4 is a constant
coefficient. For the selected 12 particle classes presented in Table 7-2, the pure mineral
average size particle (i.e. class 5) is chosen to be the class that has the highest flotation rate

k. This class is used as the reference rate constant. Then the function g(d;,c;) 1is
numerically selected to represent a realistic situation. Table 7-3 gives the value of g(d,,c;)

for each particle, where

g(ds,cs)=1 (7-8)
and so

ks=ky=AHS, (7-9)
k, =g(d;,c)k, (7-10)

As mentioned before, H is mainly affected by the collector concentration while S;, depends
on the air flowrate O, and the bubble size distribution influenced by the frother

concentration C, (Gorain et al., 1998a; Ofori et al., 2014).
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Table 7-3: Value of g(d;,c;) function (Eq. 7-7) representing the distribution of the kinetic

1271

constant based on the particle size and composition.

Species (i) g(d;,¢;)
1 0.8
2 0.4
3 0.010
4 0.0004
5 1
6 0.5
7 0.02
8 0.0005
9 0.7
10 0.35
11 0.014
12 0.00035

7.4.3.1 Evaluation of hydrophobicity

The collector reagent can change the characteristics of the particle surface and consequently
affects the attachment mechanism. The collector concentration U, (I/t) is the amount of
collector (1) per ton of feed ore added into the cell. Finch and Dobby (1990) have shown
that the mineral hydrophobicity and collector concentration are directly related. Their
experiments have revealed that increasing U, increases the mineral hydrophobicity.
However, the trend is not linear; very high dosages of the collector can adversely affect the
hydrophobicity, and consequently the particle flotability. For low and moderate collector
dosages, which is assumed to be the case here, an exponential relationship with saturation

has been observed (Song et al., 2000; Song et al., 2001):
H=b +be" (7-11)
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where b, b,, and b; are constant values obtained from empirical tests. This relationship

depends on the collector type and changes from one collector to another one. It has been
observed for some of the collectors like kerosene and #2 fuel oil. Fig. 7-2 shows the model
used in the current research. The model coefficients are taken from experiments shown in
the literature. Moreover, to model the evolution of collector inside the tank, a linear
dynamic behavior with a 4-minute time constant (equal to the liquid residence time inside
the tank) is considered. This is the time that collector needs to be uniformly speared inside

the tank.

x10°

N
[$)]
T
|

Hydrophobicity
o
13;] -

| |
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0 0.5 1 15 2 25 3 35 4

Collector concentration (lit/ton)

Fig. 7-2: Mineral hydrophobicity and collector concentration relationship.

7.4.3.2  Evaluation of bubble surface area flux S,

S, is formally defined as the surface area of bubbles per unit cross-sectional area of the
flotation cell per unit time (Xu et al., 1991; Finch et al., 1999). Since both C, and O,
affect the flotation rate constant through §,, so their effects are simultaneously modeled.

S, 1s expressed as (Finch and Dobby, 1990):

S, =—= (7-12)

g, = (7-13)



and D,,, called Sauter mean diameter, is an average value for bubble size, i.e. bubble

diameter. It is defined as the diameter of a sphere that has the same volume/surface area

ratio as a bubble and here, it is used to represent the bubble size distribution. In Eq. 7-13, §

stands for the tank sectional area that is a constant value, so O, and J, can be considered

as the interchangeable variables in the text.
For a constant C, Nesset et al. (2006) have proposed a linear relationship between D,
and J, :

where D, and ¢ are constant values that can be estimated from experimental tests. D,

represents the minimum bubble size D, that can be inside the tank. Using Eq. 7-12 gives:

6J,
Sy=—"""— (7-15)
Dy+qJ,

In another case, when J, is constant, D;, could be expressed in term of Cp as (Finch, et
al., 2008):

D,, =D, + D,e"“r (7-16)
where D, and [ are constant values. So Eq. 7-12 comes down to:

P (7-17)
* D, +D,e "

In practice, Cr and J, can be simultaneously changed, so Eqs. 7-14 and 7-16 should be

properly combined. Maldonado (2010) presented a new equation for Ds, that takes into

account the variations of both variables:

Ds, =Dy(J,)+D,(J,)e " (7-18)
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where parameter D, and D, are functions of J,, :

Dy(J,)=d +q,J, (7-19)
Dy(J,)=d, +q,J,

here d,, d,, q, and g, are constant values and should be identified using curve fitting from

experimental tests. Fig. 7-3 illustrates the effect of J, and Cr on Ds,. Using Egs. 7-12

and 7-18, S, can be easily modeled based on C and J, . To model the evolution of the

frother as a chemical reagent, inside the tank, a first-order transfer function with 4 minutes
time constant (equal to the liquid residence time inside tank) is considered. Since air

flowrate shows a fast response, so no dynamic is considered for it.

24 T
] +Jg: 0.22 cm/s
22r \‘\\ —»—Jg: 0.45 cm/s
oL —o—1J :0.90 cm/s
g
——J :1.10 cm/s
1.8} ¢
+Jg: 1.60 cm/s
16+ +Jg: 2.20 cm/s
)
E 147 .
o
a 12+
1+
0.8r-
06 - AR — B85 8800060000
A A A A AR A R R R RS 7
L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Frother concentration (ppm)

Fig. 7-3: Ds, and frother concentration relationship.
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7.4.4  Mixing properties

The perfect mixing assumption in the collection zone leads to:

R M,
Lo (7-20)
Dy Mg
It means that reject flowrate and collection zone have the same pulp composition.
7.4.5  Collection zone height and hold-up
Changes in the feed properties and process operational variables, i.e. Uco, J, and Cp,

affect the collection zone volume and height 4, , and consequently froth depth that is an

important variable influencing the cell behavior. Therefore, it is valuable to find a

relationship expressing /2, dynamics and variations. The collection zone volume ¥ could

be expressed as:

where V, and ¥V, are pulp and air volume inside the collection zone, respectively. Using
the reject stream composition and Bernoulli law that led to Eq. 7-4, V', value can be easily
calculated. To find the air volume inside the collection zone, other relationships are needed.

Cr and J, variations change S, i.e. the bubble size distribution, and consequently the

bubble rising velocity is modified. This causes variation in the air resistance time and

volume inside the collection zone. In other words, C and J, variations also affect the air
volume V', . Therefore, as an alternative, V', could be expressed in terms of S, variations.
Using experiments, it has been observed that S, and gas holdup E, are related through a

linear relationship (Finch et al., 2000):

S,=7E, (7-22)

where 7 is a constant value, and £, (%) is defined as:
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V4

E, =100
¢ V,+V,

(7-23)

Combining Egs. 7-22 and 7-23 provides an equation that expresses the air volume

variations inside the collection zone as function of S; variations resulting from C. and

J, changes:
= i (7-24)
100y - S,

where V, can be obtained from the reject composition and flowrate (under the perfect
mixing condition), and linearized Bernoulli law. Using Eq. 7-21 and tank cross-sectional

area S, dynamic value of %, can be calculated by:

h o= (7-25)

Because of the important effect of %, on the plant behavior, its set-point value can be used
as a manipulated variable to change the plant performance. To bring 4, value to the

desired value, a simple PI controller could be designed where the reject valve resistance R,
acts as a manipulated variable. For this purpose, a PI controller using pole cancelation
technique has been designed and applied in the current chapter. This controller adjusts £,
by changing R,. In all the following sections, the simulator performance is always

illustrated in the presence of the level controller.

Table 7-4 summarizes the empirical relationships and equations expressed in the above
sections. In the current study, model coefficients presented in the table have been obtained
by curve fitting from the experiments that reported in the above-mentioned literature. Fig.

7-4 shows how the variables affect the flotation rate constant and E o
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Table 7-4: Summary of empirical relationships.

Equations Coefficients
ky=AHS, A=1
H =b, +b,e"" by,b,,b;
6.J
Sy=—% |
D32
D,, =D,(J,)+D,(J,)e "
32 0( g) l( g) D()’Dljdljci2
DO(‘]g):d1+qng 0 B
Dl(‘]g):d2+q2Jg P
— SbVP 7/
=P
100y - S,
U.
——» Eq.7-11 H
Cr
— ™ Eq.7-18 | Dx e ko >k
Je | Eq.7-19 s, Eq.7-9 |—| Table 7-3 :
Eq. 7-12 > ks
> l
Eg
Eq.7-22 —»

Fig. 7-4: Schematic of operational variables effect on the flotation rate constant and gas hold-up.
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7.4.6 Entrainment

Entrained water is supposed to be proportional to the mineral flotation, so:

D; =k, F, (7-26)

where k, is the water entrainment coefficient (a dimensionless parameter). Since solid

particles are entrained by water, the entrainment flowrate can be modeled as:

.M, .
El-:al.DEM— l=1,...,12 (7-27)

E
where @; is the particle i entrainment coefficient (a dimensionless parameter). Based on

the particle weight (size and density), a distribution can be assigned to the entrainment
constants (Table 7-5). Lighter particles have more chance to be entrained. Therefore, fine

particles have larger @ in comparison to other size classes. In this table, entrainment
coefficient of the lightest particle (12% species) is considered as the reference entrainment

coefficient .
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Table 7-5: Distribution of entrainment constants.

Species (i) %0
1 0.3
2 0.35
3 0.45
4 0.5
5 0.54
6 0.65
7 0.8
8 0.9
9 0.6
10 0.7
11 0.9
12 1

7.5 Froth Zone Model

For froth zone, a plug flow model with a pure time delay is considered. Value of the delay

depends on the froth depth 7, . Gorain et al. (1998b) have investigated the effect of froth

residence time, alternatively froth depth, on the kinetics of flotation. They have observed
that an increase in the froth depth exponentially decreases the flotation rate. This
conclusion could be applied to model the particle drainage from the froth zone into the
collection zone. They have proposed that the net effect of drainage and flotation can be

modeled as:
k=kye " (7-28)

where k; is the reference flotation rate constant in the collection zone, i.e. when the froth

depth effect is not taken into account, while k¢ stands for the reference flotation rate
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constant for the whole cell including the collection and froth zones. 6 is a constant value

and T is the pulp residence time inside the froth zone calculated by:

Eéf

r, - A=k

(7-29)

where E Iy (%) is the gas holdup inside the froth zone. Here, it is assumed to be constant

and set to 90% (Yianatos et al., 2008). C represents the volumetric flow rate of pulp into
the concentrate. To involve the nominal operating conditions, Eq. 7-28 should be slightly

modified as:

k =kye *UT) (7-30)

where 7, is the time delay resulting from the nominal froth depth and concentrate flowrate.

Therefore, Eq. 7-10 can be modified as k; = g(d,,c;)k, and then, the flotation rate

1271

distribution can be obtained using Table 7-3.

7.6 Simulation Algorithm

The simulation algorithm for the flotation cell is presented in Fig. 7-5. The plant model is
simulated using an explicit fixed-step continuous solver in Simulink (ode3) where the step
size is 1 second. If the empirical equations representing the manipulated variables (MV)
effects on the flotation rate constant are excluded from equations shown in Section 7.4, 52
differential-algebraic equations (DAE) remain. This equation set contains 13 differential
equations for the dynamic mass balance of 12 species and water, and 39 algebraic equations
for the flotation, entrainment, mixing condition, etc. To facilitate the simulator
implementation, 52 DAEs are reduced to 13 compact differential equations by substituting
variables and equations using Maple software. Water and species masses in the collection
zone are considered as the process states. The algorithm is iterative, and process states and
outputs in each step i are used as the initial value for the next step. As a key point, it is
worthwhile to say that since the simulator and equations are dynamic, the simulator is run
for about 1 hour to reach the nominal and steady-state situation. Table 7-6 precisely

describes each stage of the simulation algorithm.
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Fig. 7-5: Flotation cell simulation algorithm.
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Table 7-6: Simulation algorithm details.

Stage o
Description
No.

. Process states, i.e. water and species masses in the collection zone, are initialized using the
values that are close to the steady-state values (this reduces the plant start-up time).
Nominal value of MVs (i.e. collector concentration, air flow rate, frother concentration,

2 and collection zone level), feed characteristics, froth depth, reject valve resistance,
simulation duration (Tiermination) are fed.

If feed should be disturbed, a procedure generates the desired disturbances in feed

3 characteristics, i.e. composition and flowrate. These stationary disturbances in ore flowrate
and composition are generated by filtering of whine noises.

4 If necessary, MV values are changed by operator or controller.

Based on MV values and the froth depth, k£ is calculated, and the corresponding

5
distribution £; is generated.

6 Compact 13 differential equations are solved, and water and species masses are obtained.

. Using masses obtained in the previous step and 39 algebraic equations, the plant outputs,
flowrates, grades, collection zone level, froth depth, and recovery are calculated.

7.7 Flotation Cell Performance Test

This section presents the performance of the flotation cell simulator based on the above-
mentioned models. First the nominal value of variables and feed characteristics are shown.
Then steady-state performance, maximum theoretical recovery-grade curve, and cell batch
test are presented. The behavior of the cell, when multiple disturbances affect the

manipulated variables and feed characteristics, is also illustrated.

7.7.1 Nominal values and characteristics of process variables and feed

Table 7-7 presents the nominal value of cell dimensions, feed characteristics, and
manipulated variables. In this table, a stands for chalcopyrite grade in the feed. Nominal
characteristics of the particle distribution in the feed are depicted in Table 7-8 where

middling grade is the average grade of particles containing both gangue and valuable
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mineral, and liberation degree is defined as the percentage of valuable mineral that is fully

liberated. The table provides each size class grade, mass fraction, middling grade, liberation

degree as well as each particle mass fraction in the total feed.

Table 7-7: Nominal value of cell dimensions, feed characteristics, and manipulated variables.

Cell Nominal | Feed Nominal | Manipulated | Nominal
dimensions value characteristics value variables value
h 3.0m A 100 ton/h 0y 50 /s
N 4.5 m’ a 6.5% U, 0.5 I/t
Dy 100 t/h C, 11 ppm
h, 27m
Table 7-8: Characteristics of particles distribution in the cell feed.
Ore Particle | Species | Particle | Class | Class mass Particle mass Middling | Liberation Particle mass
grade size () grade grade fraction fraction in class grade degree fraction in feed-a;
1 100 % 0.15% 0.0375 %
2 70 % 0.5 0.125 %
Large 5.0 % 25% 31% 3%
3 30 % 15 3.75 %
4 0% 84.35 21.0875 %
5 100 % 1.8 0.63 %
6 70 % 35 1.225%
6.48% | Medium 6.35% 35% 43% 28%
7 30 % 7.0 245 %
8 0% 87.7 30.695 %
9 100 % 6.5 2.60 %
10 70 % 1.2 0.48 %
Fine 7.52 % 40 % 57% 86%
11 30 % 0.6 0.24 %
12 0% 91.7 36.68 %
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7.7.2  Cell nominal performance in steady-state

The simulator performance is first evaluated in steady-state regime when there is no
fluctuation in feed rate and manipulated variables. Value of plant outputs and flotation rate

constant are illustrated in Table 7-9 for nominal conditions where 7 stand for pulp

pulp
residence time inside the collection zone calculated based on the reject stream. o is the cell

recovery calculated based on output streams.

Table 7-9: Steady-state value of plant variables at the nominal operating regime.

Variable | Steady-state value

P 68.8 %
C 10.45 t/h
c 42.7 %
R 89.55 t/h
r 23 %

Toulp 5.8 min
k, 2.5 min™
T, 43's

7.7.3  Maximum theoretical recovery-grade curve

To generate a maximum theoretical recovery-grade curve, first it is assumed that all feed
content passes to the concentrate, so the recovery is 100% and the concentrate grade is
6.48% (equal to feed grade). Then feed species illustrated in Table 7-8 are eliminated from
the concentrate one by one and transferred to the reject, and corresponding recovery-grade
points are drawn. The order of species elimination from the concentrate is based on their
chalcopyrite content, less chalcopyrite content, sooner elimination. Table 7-10 shows the
elimination order used in this study. Fig. 7-6 presents the obtained maximum theoretical
recovery-grade curve for the designed cell based on the nominal feed composition
distribution. The plant nominal recovery-grade point is also illustrated (red point). The

nominal point is far from the curve boundary. It can be improved by changing design and
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modeling parameters such as tank dimensions, nominal value of manipulated variables,
entrainment coefficient, and flotation rate constant distributions. Since the objective of the
thesis is to use the simulator for testing data reconciliation observers and control schemes,
this chapter is not involved in the cell designing issues. Therefore, the nominal recovery

and grade are considered as acceptable.

Table 7-10: Maximum theoretical recovery-grade: species elimination order and recovery-grade calculation.

Eliminated specie no. | Particle Particle | Recovery | Grade
(based on Table 7-8) size grade (%) (%) (%)
All species in T T 100 6.48
12 Fine 0 100 10.2
8 Medium 0 100 19.9
4 Large 0 100 56.2
3 Large 30 82.6 68.7
7 Medium 30 71.3 86.5
11 Fine 30 70.2 89.2
6 Medium 70 57 95.24
10 Fine 70 51.8 98.8
2 Large 70 504 99.9
1 Large 100 49.8 100
5 Medium 100 40.1 100
9 Fine 100 0 100
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Fig. 7-6: Flotation cell maximum theoretical recovery-grade curve.

7.7.4  Flotation cell batch simulation test

A batch test can be used to monitor the flotation conditions, and it provides a lot of
valuable information about the flotation cell performance such as particles residence time,
flotation time response, verification of tank sizing, etc. Here, the test is performed to show
that behaviors and features of the designed cell are acceptable and not far from real cases.
For running the test, the tank is filled with pulp that has the nominal feed composition.
Then flotation starts with the nominal value of manipulated variables while the feed and
reject streams are turned off. Here, only flotation time response and residence time are

presented (Fig. 7-7). The figure reveals:

e at the end of the test, all particles that contain chalcopyrite have been floated. This

is reasonable because there is no trapped chalcopyrite in the feed particle

distribution.

e 95% of minerals containing chalcopyrite have been floated in 40 min showing
acceptable time response of the cell. Recovery reaches to 69%, i.e. nominal

recovery, in about 5 minutes.

e two fast and slow parts of flotation behavior frequently reported in the flotation

modeling literature.
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Fig. 7-7: Cell recovery during the batch test.

7.7.5  Cell steady-state outputs for disturbed feed characteristics

In Section 7.7.3, cell recovery and grade have been presented for nominal feed
characteristics. Here its recovery and grade are shown when feed characteristics are
changing. Therefore, twelve scenarios are defined (Table 7-11), and the corresponding
recoveries and grades are illustrated in the recovery-grade plot (Fig. 7-8). In this figure, the
cell behavior for all scenarios can be easily explained using three factors: feed particles
composition and size, residence time inside the collection zone, and residence time inside
the froth zone. When more liberated and smaller valuable mineral is injected, the flotation
is enhanced, and consequently recoveries and grades increase. More pulp flowrate means
less residence time inside collection and froth zones leading to less recovery and higher
grade. More feed solid percentage reduces the selectivity and increases the entrainment, so
it leads to higher recovery with a lower grade. In the current case, variation in the liberation
degree causes the largest variation in the recovery-grade plot. Based on the illustrated

results, the designed cell behavior is reasonably close to a real flotation plant performance.
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Table 7-11: Disturbances in the feed characteristics used to investigate cell steady-state

performance.
Scenario | Scenario index in o
] Description
No. Fig. 7-8
0 Nominal Table 7-8
| i Class mass fraction is increased for large particles while the particle
+ Size
mass fraction in each size class is constant.
5 i Class mass fraction is increased for fine particles while the particle mass
- Size
fraction in each size class is constant.
Feed grade is increased while size class mass fractions are constant. To
3 + Grade generate this scenario, ratio of the valuable mineral to the gangue inside
each size classes is increased (size class mass fractions is constant).
A Grad Feed grade is decreased while size class mass fractions are constant (the
- Grade
same procedure as + Grade, but the ratio is decreased).
Valuable mineral liberation degree is increased while class mass
b fractions are constant. In this scenario, the ratio of the particles
5 +Li
containing the full liberated valuable mineral to the other particles inside
each size classes is increased (size class mass fractions is constant).
Valuable mineral liberation degree is decreased while class mass
6 - Lib fractions are constant (the same procedure as + Lib, but the ratio is
decreased).
7 + Pulp Pulp flowrate is increased.
8 - Pulp Pulp flowrate is decreased.
9 + Solid(S) Increase feed solid percentage while water flowrate is constant.
10 - Solid(S) Decrease feed solid percentage while water flowrate is constant.
11 + Solid(W) Increase feed solid percentage while solid flowrate is constant.
12 - Solid(W) Decrease feed solid percentage while solid flowrate is constant.
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Fig. 7-8: Cell steady-state recovery-grade for different feed disturbances.
7.7.6  Flotation cell performance: manipulated variable changes

In this section, performance of the continuous cell is investigated when step changes are
applied to the manipulated variables. The plant time responses including transient and
steady-state behaviors are presented and discussed. Based on the variations of manipulated
variables, twelve scenarios are defined. Table 7-12 summarizes the simulation scenarios. In
this table, each scenario is presented as a transition from one stage to another stage as
shown in Fig. 7-9. Stage 0 stands for nominal operating conditions of the plant where all

manipulated variables and feed stream are set to nominal values.

Table 7-12: Different simulation scenarios based on the manipulated variables variations.

Scenario Sy S Ss S4 Ss Se S7 Sg So Sto St Sia
From stage 0 1 2 3 4 5 6 7 8 9 10 11
To stage 1 2 3 4 5 6 7 8 9 10 11 12

AU, (lit'ton) | +0.5 | -0.8 [ +0.3 | 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

AC;. (ppm) 00 | 00| 00 [+7.0]-13.0| +60 | 00 | 00 | 00 | 00 | 00 | 0.0

AQ , (lit/s) 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | +25.0 | -50.0 | +25.0 | 0.0 0.0 0.0

AL, (m) 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 0.0 0.0 0.0 | +0.25 | -0.45 | +0.20
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Fig. 7-9: Flotation cell: variations of the manipulated variables.
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7.7.6.1 Flotation cell performance: collector concentration changes

First three scenarios in Table 7-12 are devoted to present the effects of the collector
concentration on the cell behavior. Fig. 7-10 depicts how collector concentration variation
changes the flotation rate constant. Increasing the collector raises k, and consequently
enhances the material flotation. Because of the dynamic considered for the evolution of the
collector inside the tank, a first-order behavior is observed in the transients. The plant
output variables are illustrated in Fig. 7-11. When collector concentration and consequently
k increase, more hydrophobic particles including mixed particles and chalcopyrite are
floated toward the concentrate stream, and so concentrate flowrate increases while the
concentrate grade decreases. Based on the mass conservation of the solid and chalcopyrite,
the reject flowrate and grade decrease. The effects are reversed when the collector

concentrate decreases.

It is worthwhile to say that transients in the outputs are affected by several players like
collector concentration, collection zone level, particle composition inside the tank, etc. In
other words, £ is nonlinearly manipulated by the collector concentration and froth depth; so
depending on the direction and amplitude of step changes, the cell behavior is different.
This could be one of the reasons for the transient seen around 300 minute in the concentrate
flowrate time response. Time response of the froth depth as representative of the level
controller performance is illustrated in Fig. 7-12. As seen, the controller appropriately
keeps the level constant. However there are some smooth transients. Plant recovery and
grade calculated using output variables are shown in Fig. 7-13 where the variation of
recovery and grade comply with all other results, i.e. increasing collector improves the

recovery while decreases the grade.
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Fig. 7-13: Cell performance: plant recovery and grade when collector concentration varies.

7.7.6.2 Flotation cell performance: frother concentration changes

Scenarios Ss, S5 and Se in Table 7-12 present the effects of the frother concentration on the

cell behavior. The effect of frother variation on the flotation rate constant k is depicted in

Fig. 7-14. According to Egs. 7-18 and 7-12, increasing C;. at a constant J, reduces Dj,

and consequently increases S, and k. This exactly complies with the conclusion taken from

Fig. 7-14. Again, because of the evolution dynamic considered for the frother inside the

tank, a first-order behavior is observed in the transients.
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Fig. 7-14: Cell performance: frother concentration effect on the flotation rate constant.

The behavior of the plant output variables are illustrated in Fig. 7-15. An increase of k
enhances the material flotation and consequently increases the concentrate flowrate and
decreases the grade. Although based on mass conservation law, the reject flowrate should
decrease, but a kind of non-minimum phase behavior in transient is observed. At the
beginning, R has an overshoot and then converges to the steady-state value. In the current

case, 1.e. frother variation, two factors are determinative: flotation rate constant and air

volume percentage inside the tank E, . Effect of Cr on k has been already discussed and
shown in Fig. 7-14. Regarding the effect of E,, increasing frother concentration reduces

the bubble size D,, and rising velocity of the bubbles. This means that more air volume is

trapped inside the tank causing an increase in the collection zone level (interchangeably a
decrease in froth depth — Fig. 7-16). In this situation, the controller acts to reduce the level
by the reject valve opening that temporarily increases the reject flowrate. When the level is

controlled, R comes back to the steady-state value that is smaller than the nominal one.

Plant recovery and grade are shown in Fig. 7-17 where an increase of the frother
concentration improves the recovery and reduces the plant grade. The presented effects and
behaviors are reversed when the frother concentration decreases. It is also noticeable that
because of the nonlinear models utilized in the simulator, the plant performance and
response depend on the direction and amplitude of step changes applied to the manipulated

variables.
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7.7.6.3 Flotation cell performance: air flowrate changes

This subsection investigates the effect of air flowrate O, on the cell performance, i.e. S7,

Ss and So in Table 7-12. Q, can modify the behavior of the cell by changing the flotation
rate constant k and air volume inside the tank i.e. the collection zone level. As a key point,

it should be noticed that O, has very fast response to affect k and level, and so it has a very
fast transient. Influence of O, on k is more complex than C , because air flow participates
in both nominator and dominator of Eq. 7-12. In other words, an increase of (O, increases

both the bubble size D;, and J, , but the amplitude of the change in J; is larger. This point
results in an increase of S, and k. Fig. 7-18 illustrates & variation when air flowrate

changes. Overshoot in & is caused by the fact that when O, suddenly increases the volume

of air inside the collection zone rapidly increases, and froth depth consequently decreases.
In this situation, based on Eq. 7-30, large overshoot is observed in k. After this overshoot,

the level controller tries to bring down the level and so £ is settled down.
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Fig. 7-18: Cell performance: air flowrate effect on the flotation rate constant.

The behavior of the plant output variables is depicted in Fig. 7-19 when air flowrate
changes. Increasing of O, improves the flotation of particles and consequently increases

the solid flowrate in the concentrate stream. Therefore, chalcopyrite percentage in the
concentrate and solid flowrate in the reject decrease. In the transients, the time response of
the output variables has two parts: fast and slow responses. The fast part comes from the
immediate increase of the air volume that pushes the pulp toward the reject and concentrate
streams. The flotation phenomenon is responsible for the slow dynamics. The presented
behaviors are reversed when the air flow drops. However, some oscillations observed in the
transients could originate from nonlinearity of the models. Fig. 7-20 illustrates the froth
depth behavior. It shows immediate changes at the beginning, and then a slow dynamic
transition. Plant recovery and grade calculated based on the output variables are shown in

Fig. 7-21.
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Fig. 7-21: Cell performance: plant recovery and grade when air flowrate varies.

7.7.6.4 Flotation cell performance: collection zone level changes

In the section, the presented results correspond to Sio, S11 and Si2 in Table 7-12 where the

collection zone level changes. Increase of level decreases the froth depth 7, and, based on

Egs. 7-30 and 7-29, it increases the net flotation rate constant. In fact, it decreases the

material drainage from froth zone into collection zone. This point explains why & and 4,

have the same transients as shown in Figs. 7-22 and 7-23. Therefore, an increase of level
enhances the net material flotation; it consequently increases the solid flowrate in the
concentrate and reduces its chalcopyrite concentration (Figs. 7-24). For the reject flowrate,
the situation is different. When the level set-point suddenly rises; the level controller turns
off the reject valve to fill the tank. So a large drop happens in the reject flowrate at the
beginning. When the augmented volume of collection zone is compensated, the reject
flowrate tends to the steady-state value which, based on the mass conservation law, is
smaller than its nominal value. Plant recovery and grade calculated based on the output
variables are shown in Fig. 7-25 where an increase of level enhances the recovery and
reduces the plant grade. Despite the model nonlinearities, behaviors of the output variables

are reversed when the level drops.
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Fig. 7-23: Cell performance: froth depth when the collection zone level varies.
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7.7.7  Flotation cell performance: feed characteristics changes

In this section, the dynamic performance of the cell is investigated when different types of
disturbances are applied to the plant feed. In the first part, step changes in feed rate and
grade are applied, and the plant time responses are investigated. Then, the plant behavior

under the stochastic disturbances is shown and assessed.

7.7.7.1 Flotation cell performance: step changes in the feed

In this case, it is assumed that all the manipulated variables are set to their nominal values,
and only feed characteristics are changing. Based on the variations of the feed rate and
grade, six scenarios are defined. Table 7-13 summarizes the simulation scenarios. Each
scenario is presented as a transition from one stage to another as shown in Fig. 7-26. Stage
0 stands for nominal operating conditions of the plant where feed stream and all

manipulated variables are set to the nominal values.

Table 7-13: Different simulation scenarios based on the feed characteristics variations.

Scenario Si S, S3 S4 Ss Se
From stage 0 1 2 3 4 5
To stage 1 2 3 4 5 6
AA (ton/h) +10 | 20 | +10 | 0.0 | 0.0 0.0
Aa (%) 00 | 00| 00 [+0.7 | -1.2 | +0.5
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Fig. 7-26: Flotation cell: variations of the feed characteristics.

a) Feed rate change

Scenarios Si1, S2 and S3 in Table 7-13 present the effect of the feed rate changes on the cell
behavior. As it is expected, increasing the feed enhances both the concentrate and reject
flowrates (Fig. 7-27). It decreases the material residence time inside the collection zone. So
the plant recovery decreases while the grade slightly increases (Fig. 7-28). In the transient,
two different dynamics are observed: fast and slow variations. When feed rate suddenly
increases, at the beginning, it immediately pushes the material toward the outputs. This
causes an overshoot in the flowrates and grades. When the feed strike passed, the slow
dynamic is revealed. Increase of the feed reduces the froth depth (Fig. 7-29). In this
situation, level controller starts to bring back the level. Therefore, the concentrate flowrate

decreases while the grade is compensated.
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Fig. 7-27: Cell performance: feed rate changes effect on the output variables.
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In this test, although the manipulated variables are constant, some variations are observed

in k (Fig. 7-30). Constant manipulated variables guarantee that k, is constant, but the

variations of C change the residence time of material inside froth 7, calculated from Eq. 7-

29 and consequently change k. This could be explained by the fact that the smaller
residence time inside froth means less material drainage from the froth zone into the

collection zone, and therefore producing more floated material.
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Fig. 7-29: Cell performance: froth depth when feed rate changes.
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Fig. 7-30: Cell performance: feed rate changes effect on flotation rate constant.
b) Feed grade change

The effect of feed grade changes on the cell behavior is investigated using Scenarios S4, Ss
and Se of Table 7-13. This study is more complex than feed rate effect because twelve
particles classes contribute to the feed grade variations. Depending on which particle class
has more contribution, the plant performance could be different. Here, to generate the
disturbance, the mass fraction of particle classes is changed while the liberation degrees,
the particle size and composition classes are free to change. This disturbance generating
procedure is more representative for the disturbances in a real situation. So, as a starting

point, the distribution of the feed particle classes in each stage is presented in Table 7-14.
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Table 7-14: Characteristics of feed particles distribution for the grade variation scenarios.

Feed grade: 6.48%

Feed grade: 7.15%

Feed grade: 6.00%

Particle | Species | Particle Stage 3 — nominal Stage 4 Stage 5
size (1) grade (%) Particle mass Particle mass fraction | Particle mass fraction
fraction (%) (%) (%)
1 100 0.0375 0.040 0.040
2 70 0.125 0.150 0.100
Large
3 30 3.75 4.25 3.390
4 0 21.0875 20.79 21.230
5 100 0.63 0.51 0.47
6 70 1.225 1.51 1.22
Medium
7 30 245 3.00 2.34
8 0 30.695 29.98 30.89
9 100 2.60 2.62 2.34
10 70 0.48 0.71 0.52
Fine
11 30 0.24 0.49 0.36
12 0 36.68 3595 37.01

The output variable variations are illustrated in Fig. 7-31. As seen, when feed grade

increases (Fig. 7-26), the concentrate flowrate and reject grade increase while the two other

output variables decrease. Degradation of the reject flowrate can be explained by mass

conservation law, but decrease in the concentrate grade needs clarification. The explanation

could be found in Table 7-14 showing that although the feed grade increases in stage 4, the

total liberation degree decreases. It means that a larger amount of chalcopyrite is fed to the

plant, mostly through the mixed particle classes. In other words, the plant receives more

valuable mineral, but with less floatable particles. This point also justifies the reduction of

the plant recovery (Fig. 7-32).
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In scenario 5, where the grade comes down as illustrated in Fig. 7-26, both feed grade and

liberation degree decrease, so the concentrate flowrate decreases. Therefore, recovery

comes down. In this case, the mass fractions of pure gangue particles have also increased in

comparison to the previous scenario. In other words, the feed grade reduction partly comes

from the injection of pure gangue particles which are almost non-floatable. This point

explains the slight improvement of concentrate grade in comparison with the previous

scenario.

Here again, some variations are observed in k& (Fig. 7-33) while the manipulated variables

are constant. These variations come from the particle residence time 7; variations inside

the froth zone. They originate from concentrate flowrate variation. This is why k& and C

have similar trends. As a complementary result, the froth depth variation is depicted in Fig.

7-34 that could be beneficial for the explanation of some transients.
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Fig. 7-31: Cell performance: feed grade changes effect on the output variables.
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Fig. 7-34: Cell performance: froth depth when feed grade changes.

182



7.7.7.2  Flotation cell performance: stochastic disturbances in the feed

This section presents the performance of the cell when stationary disturbances affect both
feed rate and grade. Although it is hard to interpret the behavior of the plant under
stationary disturbances, it gives an idea of how plant reasonably operates. Applied
disturbances in the feed are shown in Fig. 7-35 where the feed rate and grade vary with a
standard deviation of 10% and 6% of their nominal value. To generate the disturbances,
random fluctuation of pulp flowrate and particles mass fractions are filtered using a low-

pass filter while sum of the particles mass fraction is always 1.
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Fig. 7-35: Flotation cell: stationary variations of the feed characteristics.
Variations of the plant outputs are illustrated in Fig. 7-36 where the manipulated variables
are constant. The variations could be explained by the facts presented in the previous

sections. In comparison to feed fluctuations, high-frequency variations in the outputs are

filtered by the plant nature. Calculated plant recovery and grade are depicted in Fig. 7-37.
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Fig. 7-36: Cell performance: stationary variation of the feed characteristics effect on the output

variables.
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Fig. 7-37: Cell performance: plant recovery and grade when the feed characteristics stationary

change.

In the current case, fluctuations in the rate constant £ (Fig. 7-38) come from the variation of
C that changes the material residence time inside froth 7, (Eq. 7-29). In fact, a smaller
residence time inside the froth means less material drainage from the froth zone into the

collection zone and so more floated material. This leads to a larger recovery and a smaller

grade. To illustrate how the level controller acts, the froth depth variation is shown in Fig.
7-39.
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Fig. 7-38: Cell performance: stationary variation of the feed characteristics effect on the flotation

rate constant.
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7.8 Flotation circuit: features and performance

In the previous sections, the model and performance of a single flotation cell have been
presented. Here, a flotation circuit consisting of three cells is considered. The circuit flow
diagram is shown in Fig. 7-40. In this topology, the rougher cell is mainly responsible for
the valuable mineral recovery while the cleaner increases the grade. The scavenger cell

helps the rougher to recover more valuable minerals. To achieve these goals, each cell is

250 300 350

designed with specific characteristics. Table 7-15 presents the dimensions of each cell.

6

»
»

A 4

Rougher

Cleaner

Scavenger |——»

Fig. 7-40: Flotation circuit flow diagram.

Table 7-15: Flotation circuit - cell dimensions.

Dimension Rougher Cleaner Scavenger
h (m) 3.0 1.0 3.0
S (m?) 4.5 1.0 6.0
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In the flotation circuit, as for the single cell, four types of manipulated variables are
considered: air flowrate, collection zone level, collector concentration, and frother
concentration. The two former manipulated variables are cell specific while the two later
ones are for the whole plant. In other words, chemical reagents, i.e. collector and frother,
are added to the plant feed, not to each cell feed. Therefore, a propagation model should be
considered for chemical reagents inside the circuit. In this study, it is assumed that the
reagents follow the water behavior in nominal operating conditions. Precisely, added
reagents in the plant first pass through the rougher with the appropriate dynamic discussed
in Section 7.4.3. At the rougher outputs that are also the cleaner and scavenger feeds, the
reagent amounts are proportional to water separation coefficient in the rougher. Then, the
chemical reagents pass through the cleaner and scavenger cells with corresponding
dynamics obtained from water residence time. Since most water finally goes to the plant

reject (about 90%), it is assumed that no chemical reagent is re-circulated.

7.8.1 Flotation circuit: steady-state performance

To present steady-state performance of the plant, it is essential to provide the nominal value
of the feed characteristics and manipulated variables of each cell (Table 7-16). Detailed
feed composition at nominal conditions has been already presented in Table 7-8. When the

plant operates in the nominal conditions, the steady-state performance of the different cells

is illustrated in Table 7-17 where 7,

stands for pulp residence time toward the reject
stream. In order to have an acceptable solid percentage in the cleaner feed, i.e. about 50%,
4.5 t/h water is added to its input stream. This variable could be also used as a manipulated
variable to affect the plant behavior. In comparison with the performance of the single cell
shown in Table 7-9, the circuit improves both grade and recovery by 20% and 4%,
respectively. If more recovery and grade improvements are desired, a grinding unit should
be added to the circuit. But, according to the objective of the current study, such a unit is

not needed.
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Table 7-16: Nominal value of feed characteristics and manipulated variables.

Feed Rougher cell Cleaner cell Scavenger cell
A 100 t/h U, 0.51/t U, 0.51/t U, 0.51/t
a 6.5 % 0y 50 1/s oy 111Vs 0y 67 /s
Dy 100 t/h C, 11 ppm C, 11 ppm C, 11 ppm
h, 2.7m h, 0.7 m h, 2.7m
hy 0.3 m hy 0.3m h, 0.3 m

Table 7-17: Steady-state value of flotation circuit variables in the nominal operating regime.

Whole plant | Rougher cell Cleaner cell | Scavenger cell

Recovery (%) 72.7 66.8 80.3 39.5
Concentrate

7.76 13.9 7.76 5.35
flowrate (ton/h)
Concentrate

60.8 42.1 60.8 21.5
grade (%)
Reject

92.24 97.60 6.15 92.24
flowrate (ton/h)
Reject

1.92 3.00 18.75 1.92
grade (%)
Toup (Min) | —eees 4.7 3.6 6.5
k (min | - 2.8 2.4 2.8
Iysy | - 43.0 10.0 120.0
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7.8.2  Flotation circuit performance: manipulated variables changes

In this section, performance of the circuit is assessed when step changes are applied to the
manipulated variables. In the simulator, several variables are available as the manipulated
variables. To keep the investigation concise, only variables that are used in Chapter 8 are
considered. These variables are: collector concentration, added water to the cleaner feed,
and collection zone level in rougher, cleaner, and scavenger. Based on the variations of
these variables, fifteen scenarios are defined (Table 7-18). Manipulated variable changes

are illustrated in Fig. 7-41.

Table 7-18: Flotation circuit: different simulation scenarios based on the manipulated variables

variations.

Scenario Si | S| Ss | Sa | Ss | Se S7 | Ss | So | Sw | Su| Sz | S | S| Sis
Fromstage | 0 | 1 | 2 3 4 5 6 7 8 9 |10 | 11 12 | 13| 14
To stage 1 | 2| 3 4 | 5 6 7 8 9 10 |11 ] 12 | 13 | 14| 15
AU, (/) [+0.5|-0.8|+0.3] 00 | 00 | 00 | 00 [ 00| 00 | 00 [ 00| 00 | 00 | 00| 0.0
AL, (m) 0.0 | 0.0 | 00 |+0.2|-04| +0.2 | 0.0 [ 00| 00 | 00 [ 00| 00 [ 00 | 00| 0.0
AL, (m) | 00 | 00| 00| 00 |00] 00 | +02|-04|+02| 00 | 00| 00 | 00 | 00| 0.0
AL, (m) 0.0 | 00 00|00 [00] 00| 00 |00/ 00 | +02|-04|+0.2| 00 | 00| 0.0
A4, (th) [ 00 00| 00] 00 [00| 00| 00 [00]| 00| 00 [00]| 00 | *30 |-6.0) +3.0

Similar to the manipulated variables, there are many candidates for the output variables.
Here, only solid flowrate and grade of the plant concentrate and reject streams are
considered. In the following subsections, the plant responses to each manipulated variable
variations are investigated. Since the transient behavior of the plant is complex and difficult

to be exactly explained, steady-state responses are mainly discussed.
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Fig. 7-41: Flotation circuit: variations of the manipulated variables.
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7.8.2.1 Flotation circuit performance: changes of the collector concentration

Increase of the collector concentration

increases the flotation rate constant and

consequently valuable mineral recovery while valuable mineral grade decreases in the plant

concentrate stream. Figs. 7-42 and 7-43 present the plant outputs and recovery-grade.
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Fig. 7-42: Circuit performance: the collector concentration effect on the output variables.
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Fig. 7-43: Circuit performance: plant recovery-grade when the collector concentration varies.

7.8.2.2 Flotation circuit performance: changes of the rougher collection zone level

Increase of the level has two effects on the valuable mineral recovery: a) it increases the
residence time inside collection zone, and b) it decreases residence time inside froth zone
(Eq. 7-30). Both will increase the particles flotation while reducing Chalcopyrite grade in
the concentrate stream. These explanations comply with what is observed in Figs. 7-44 and
7-45. Level of the rougher cell affects the plant recovery more than other cells level
because of its size and chalcopyrite grade inside the tank. As seen in Fig. 7-45, £0.2 m

variation in the level causes about £2% variation in the plant total recovery.
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7.8.2.3 Flotation circuit performance: changes of the cleaner collection zone level

Increase of the interface level in cleaner has almost the same effects on the output variables
as the rougher cell level increase. However, transients and amplitudes are different.
Variation of the cleaner level mostly affects the plant total grade. By increasing the level,

again concentrate flowrate and recovery increase while grade decreases. Figs. 7-46 and 7-

47 illustrate the simulation results.
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Fig. 7-46: Circuit performance: cleaner collection zone level changes effect on the output variables.
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Fig. 7-47: Circuit performance: plant recovery-grade when cleaner collection zone level changes.

7.8.2.4 Flotation circuit performance: changes of the scavenger collection zone level

Similar to the rougher and cleaner, increase of the level in scavenger causes a rise in the
concentrate flowrate and recovery while reducing the valuable mineral grade in the
concentrate and solid flowrate in the reject. But magnitudes of the variations are smaller in
comparison with rougher and cleaner. Moreover, because of the tank size, the transients are

slower. Figs. 7-48 and 7-49 show the plant outputs and recovery-grade.
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Fig. 7-48: Circuit performance: scavenger collection zone level changes effect on the output

variables.
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Fig. 7-49: Circuit performance: plant recovery-grade when scavenger collection zone level changes.
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7.8.2.5 Flotation circuit performance: changes of the water addition in cleaner feed

Increase of water in the cleaner feed decreases the residence time inside the collection zone,
so less material passes into the froth zone. Consequently, material residence time inside
froth increases. Therefore, it is expected to have an increase in the grade while concentrate
flowrate and recovery decrease. In Figs. 7-50 and 7-51, the output variables behavior and
plant recovery-grade are shown. As seen, the effect of 4w on the plant recovery is marginal,
but it significantly affects the plant concentrate grade showing that it could be a suitable

candidate as the manipulated variable for the control application.
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7.9 Summary

This chapter has presented a dynamic simulator of froth flotation circuit. The simulator has
been developed using dynamic mass balance equations and empirical relationships
characterizing the kinetic phenomenon parameters. The aim of this work was to build a
simulator for designing and testing data reconciliation observers and process control
strategies. In the simulator, the collection and froth zones have been modeled as perfect
mixter and plug flow reactor. Solid particles, water, and air interactions in the collection
zone have been expressed using flotation and entrainment phenomena. Species drainage in
the froth zone has been modeled by modifying the flotation rate constants. Dynamic mass
conservation equations have been applied to water and twelve particle classes (three size
and four composition classes). Collector and frother concentrations, collection zone level,
and air flowrate have been considered as the manipulated variables. Several assumptions
have been applied to simplify the models. Therefore, the simulator performance and model
are not perfect, but its behavior is reasonable, at least for the objective of testing data

reconciliation techniques and process control schemes.

First, a single cell has been modeled and its performance has been investigated using
different tests cases. The tests have evaluated the model responses to the different

disturbances applied to the plant feed and the manipulated variables. A detailed discussion
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has been presented to justify the effect of disturbances on the output variables and cell
behavior. Then, a flotation circuit simulator consisting of three cells has been considered,
and its performance has been tested. For this purpose, the collector concentration, added
water to the cleaner feed, and collection zone level in rougher, cleaner, and scavenger have
been employed as the manipulated variables. Simulation results have revealed that increase
of levels and collector concentrate improve the plant recovery while decreasing the grade.
Water addition in cleaner feed significantly has increased the grade and slightly decreased
recovery. In general, the simulator demonstrates a quite reasonable behavior and its
performance is representative of flotation plants. Therefore the simulator is suitable for the
study objective, and it can be applied as the case studies for data reconciliation observer
and advanced controller design in Chapters 6 and 8, respectively. However, the simulator
could be improved by: a) involving the bubble size distribution instead of using D32, b)
applying more detailed model for the froth zone, c) extending the model for more than two

minerals, and d) including a grinding unit in the plant.
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Chapter 8

Coupling Data Reconciliation with Process Control and Real Time

Optimization

This chapter presents and evaluates the effect of data reconciliation when it is coupled with
process control and real-time optimization strategies. In practice, estimating the benefits
brought by data reconciliation to process control and optimization is a difficult task and not
well addressed in the literature. The aim of this study is to illustrate that point at least for
specific processes. For this purpose, two schemes are considered: a) Advanced Process
Control (APC) and b) Real Time Optimization (RTO). For the first one, the objective is to
reject the disturbances and track the set-points while the second scheme attempts to
maximize the economic benefits of the plant over a period of time. To evaluate the
performance of both schemes in the presence of data reconciliation, the flotation circuit
simulator presented in Chapter 7 is used as a case-study, and statistical and economic

performance indices are applied.

8.1 Data Reconciliation Application in Process Control and Optimization: A Review

High-quality data is essential to make suitable decisions, and consequently maximize the
profits, deal with market changes, and achieve technical objectives. Moreover, to keep a
plant around the optimum point, e.g. for advanced process control, real-time optimization,
or plant supervision applications, quality of data plays a critical role. In practice, on the one
hand, measured process variables are always corrupted by errors, either random or
systematic. On the other hand, unmeasured key process variables and inconsistency

between the process model and data cause major problems for auditing, control, and
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optimization applications. To cope with the situation, data reconciliation is considered as an

alternative providing more reliable data.

Before going through the related literature, it is worthwhile to recall the hierarchy of the
plant monitoring, control, and optimization stages in a closed loop plant. To summarize all
the information, the process control pyramid, composed of five stages, is presented in Fig.
8-1. Stage 1 stands for the measurement devices and actuators. Stage 2 consists of local
control loops such as level, temperature, and pH controllers. In Stage 3, process key
variables like valuable mineral grade and concentrate flowrates are controlled using
advanced control strategies. In this step, manipulated variables are calculated to improve
the plant behavior at each sampling time. In RTO stage, set-points of the lower stage are
determined so that the plant performance, mainly economic performance, is improved for
longer periods of time, e.g. days or weeks. In the final stage, plant performance is
considered for even longer time windows, e.g. months and year, and based on desired

performance of the plant and market changes, the plant model used in RTO is updated.

Planning

Real time

@ optimization

@ / Advanced control loops \
@ Local control loops
(Regulatory control loop)
@ Sensors, Data acquisition system,
Actuators, ...

Fig. 8-1: Typical control hierarchy.

Based on the literature, DR can improve the performance of control strategies and RTO by
attenuating the measurement noise and control action variations, estimating unmeasured
variables, updating model parameters, and improving model and data coherency (Bai et al.,
2005a). From an industrial point of view, these improvements can bring better products

quality and more economic revenues. In the last decades, many studies have focused on the
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data reconciliation topic mainly considering the optimal estimation of process states under
open-loop conditions. On the contrary, few researchers have investigated the plant
performance in the presence of controller and real-time optimizers, i.e. closed the loop,

where reconciled data is applied instead of raw measurements.

For instance, Ramamurthi et al. (1993), Abu-el-zeet et al. (2002), Zhou and Forbes (2003),
Bai et al. (2005a), Bai et al. (2005b), and Bai et al. (2007) involved data reconciliation in
the process control level. Ramamurthi et al. (1993) proposed a new dynamic DR observer
and investigated its effects on the closed-loop performance of a nonlinear predictive
controller. They presented a successively linearized horizon-based estimator to estimate the
process states and parameters. Ramamurthi applied a two-level estimation algorithm to
reconcile the corrupted process inputs and outputs. Their study revealed that the integration
of the DR observer to the controller provides smoother control actions allowing the use of

more aggressive controllers.

In another attempt, Abu-el-zeet et al. (2002) introduced a dynamic DR observer, in
conjunction with systematic bias detection, coupled with an MPC scheme. They used DR to
improve the estimation of model parameters applied in MPC. They claimed that the overall
performance of the model-based predictive controller considerably improves when the
reconciled data is being fed to the controller. However, the degree of improvement in the

controller performance was not specified.

Zhou and Forbes (2003) presented a systematic algorithm for quantifying the benefits of
controller implementation in industrial plants. They proposed an optimization-based
technique for calculating the expected economic performance of a given control system.
This goal has been achieved in two steps: first, the performance estimation problem is
posed in a stochastic optimization form. This optimization problem determines the
controller operating conditions maximizing the economic benefits subject to some quality
constraints. In the next stage, quantifying these economic benefits is discussed. The
benefits were analyzed in analogy to the analysis of variance (ANOVA) technique. The
paper did not explicitly consider DR but it presented some ideas that are applicable for

integration of DR and process control.
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Bai et al. (2005a) also introduced a dynamic DR algorithm embedded in a conventional PI
control loop to reconcile noisy raw measurements before calculating the control actions.
They illustrated that the application of DR can result in better feedback control
performance. Filtering the measurements allows more aggressive controllers to be used,
and, at the same time, prevents the manipulated variables from excessive variations. Bai et
al. (2005b) investigated DR observer performance implemented in the conjunction with
PID control system for a binary distillation column. They simulated the controller

performance in 3 cases:

¢  Without measurement noise and DR.
e With measurement noise and without DR.

e With measurement noise and DR.

The results revealed that data reconciliation could reduce the propagation of measurement
noise in control loops, so that the overall performance of the controller is enhanced.
However, again, the degree of improvement in the controller performance was not
specified. Furthermore, they did not discuss the effect of plant-model mismatch, it seems

that they used the same model for the controller and plant simulator.

Bai et al. (2007) assessed the impact of model structure on the performance of dynamic
data reconciliation coupled with process control. They first presented different DR
observers based on different process models. Then observers were embedded inside the
feedback loops, and finally DR observers were evaluated based on their performance in
control procedure. For this purpose, they defined a plant overall cost function based on the

distance between true and set-point values of controlled variables.

Souza et al. (2011) considered another aspect of DR, i.e. estimation of unmeasured
variables and parameters, in the control loop of a polymer production plant. They
concluded that estimated variables and parameters can be used to update the model
implemented in the controller and to modify the optimum operation trajectory practiced at

the plant site.
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All above mentioned studies evaluated DR effectiveness using statistical properties of
manipulated and controlled variables, and they did not investigate the associated economic
gains. They only concluded that using DR in the process control layer allows more
aggressive controllers to be used, and at the same time, prevents the manipulated variables

from excessive manipulations.

Naysmith and Douglas (1995) presented a literature review on RTO applications in
chemical industries. They used reconciled data in RTO procedure and assessed the
performance of RTO with DR using an objective function derived from the plant model.
This objective function represents the economic model of the process based on products
value and associated costs. Finally, they concluded that application of RTO integrated with

DR can make the following benefits for chemical industries:

e Improved product yields and/or quality.

e Reduced energy consumption and operating costs.

e Increased capacity of equipment, stream factors.

e Consistently holding the process at production targets.

e Decreased product variability.

Zhang and Forbes (2000) proposed a systematic and comprehensive procedure, called
extended design cost, to evaluate the performance of different RTO designs. The design
evaluation metric was defined as the total loss in the performance of RTO system due to
design imperfections during a pre-specified evaluation period. Although, at the beginning,
the paper claimed that DR is an important stage in RTO procedure, at the end it was
neglected for simplicity purpose. However, the study presented a good systematic tool to

evaluate the performance of RTO.

Faber et al. (2006) integrated a data reconciliation approach into an online optimization
framework for a coke-oven-gas purification process. To increase the accuracy of the model,
process parameters were estimated using a sequential parameter estimation approach. Using
the parameter estimation based on the reconciled data, the average model deviations were

significantly reduced. They did not present any quantitative analysis for this improvement.
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Also, Forbes et al. (2006) introduced a general scheme for RTO integrated with data
reconciliation and data validation. They proposed a five-step procedure for analyzing the
results achieved from RTO. This procedure only checks the consistency of the results and
does not evaluated the benefits of RTO from economic point of view. In another attempt,
Jansky (2006) and Jansky (2007) investigated how data reconciliation can be economically
beneficial to power plants. They determined three factors that using reconciled data can
bring the financial benefits in power plants: a) increased efficiency (i.e. maximized output),

b) time advantage in retrieving “lost” megawatts, and c¢) reduction of maintenance costs.

All above-discussed literature combined DR with RTO schemes, but they did not provide
any economic analysis showing how much DR could be beneficial for a given plant. They
only used some qualitative measures. Few studies have involved DR in both process
control and optimization loops. Hodouin (2010) provided a general scheme for this
purpose. In the scheme, stationary or dynamic observer is used for the control loop while a
steady-state observer is applied for RTO level. Hallab (2010) employed Hodouin’s scheme
for a gold leaching circuit in mineral industry, and then it investigated the benefits of
combining data reconciliation, control, and optimization from a technical and economic
point of view. But for simplicity, it separately investigated DR effect on control and
optimization loops. The effectiveness of DR in control loop was presented using variance
reduction in the manipulated and controlled variables. For RTO layer, an economic
criterion driven from plant model and operation condition was maximized. Solving the
optimization problem revealed that DR can increase the economic revenues of RTO

implementation.

The aim of this chapter is to illustrate the effect of data reconciliation in control and real-
time optimization loops. Therefore, an advanced process control and a real time
optimization schemes are considered. In APC, the objective is to reject the disturbances and
follow the set-point changes while RTO attempts to maximize an objective function
defined based on the economic revenue of plant. To implement both schemes, a mass
conservation based system identification is applied and then a proper controller/RTO is
designed. To evaluate the performance of both schemes in the presence of data

reconciliation, statistical and economic performance indices are employed.
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Section 8.2 is dedicated to introduce the controller structure used in the chapter. Process
model identification and evaluation is presented in Section 8.3. Advanced process
controller design and related issues are described in Section 8.4. Real-time optimization
scheme based on economic features is design and discussed in Section 8.5. Section 8.6 is
devoted to present the data reconciliation observer used for coupling with APC and RTO.
In this section, observer model, test scenarios, and feed disturbances are illustrated.
Sections 8.7 and 8.8 show APC and RTO performances respectively with and without data

reconciliation observer under different feed disturbances.

8.2 Receding Horizon Internal Model Controller

Regardless of APC or RTO application, a general control scheme, called Internal Model
Control (IMC), is applied in the current study. Designed RTO in this chapter is a direct
scheme which couples both RTO and advanced control stages shown in Fig. 8-1, and it is
different form the hierarchical one shown in Hodouin (2010). Roughly speaking, this RTO
is a controller with an objective function maximizing economic benefits of the plant, and it
does not use any set-point. In the literature, such an approach is often called economic

MPC and mainly applied to improve the plant revenue over periods of time.

For control purpose, a receding horizon strategy is considered. The idea is to obtain the
control actions that optimize and control the plant behavior for a long period of time.
Therefore, standard MPC could be a good candidate but its closed loop observer, i.e.
Kalman filter, can cause some problems for the study of data reconciliation effect in the
closed loop plant. Having two observers (Kalman filter for MPC and DR observer) in the
same loop can lead to some issues because the controller observer and DR observer do not
necessarily share the same process states. For instance, sub-model based DR observers
always use the states that have physical meaning while this is not the case for Kalman filter.
Moreover, simultaneous use of KF (as the controller observer) and DR observer doubles
the noise and disturbance filtering, and this point prevents the study to independently
evaluate DR observer performance as the objective of the chapter. To isolate DR
contribution from the other observers, instead of the standard MPC, a receding horizon

IMC scheme that only benefits from a simple and open loop observer is employed in the
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current study. In this open loop observer, process states are estimated using already

identified models (i.e. transfer functions).

Schematic of the controller is shown in Fig. 8-2 where fi, c1, and Dg stand for the ore

flowrate rate, chalcopyrite concentration, and water flowrate in the feed stream used to

represent the feed characteristics and disturbances. Here, ore and chalcopyrite flowrates (f

and fc) in all streams are considered as the plant measured variables contaminated by

random noises v and ve. In the figure, there is also a block that extracts the controlled

variables y, i.e. variable required for controller, form the plant measurements. d stands for

the estimated disturbance containing the plant output disturbances and modeling errors. ux

and y» are the nominal values of the manipulated and controlled variables, respectively. u

represents the variation of the manipulated variables around their nominal values (i.e.

u=u, +u ) while X(k) is the current value of the process states obtained from identified

transfer functions represented in state-space form.
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The process state-space model used for state estimation could be expressed by:

{fc(k +1) = Ax(k) + B (k) (8-1)

y'(k)=Z3i(k)+y,

where 4, B, and Z stand for the process transition, input and observation matrices

obtained from already identified transfer functions. The output disturbance d(k) is

estimated using:

d(k) = y(k) - y" (k) (8-2)

For a given controller prediction horizon #,, the output prediction equations could be

written as:

yy, (k)y=M, x(k)+ N, u(k-1)+D, (k)+P, Au, (k) (8-3)
where

Yy, (k) = [y*(k +1k) Y (k+21k) y (k+31k) - y(k+h,| k)]T (8-4)
Au, (k) =[Au(k) Au(k+1) Au(k+2) - Au(k+h,-D]" ©5)
Au(k) = (k) — (k-1

and

D, (k)=E®d(k) (8-6)

where £ is a row vector of 1 with 7, length. In this implementation, it is assumed that

disturbance 4 is constant over the h, period. In Eq. 8-3,

Mhp:[ZA Z422 74 o zA"| (8-7)
N, =|zB z(a+DB Z(£+4+DB - Z(A" -t A+ DB (8-8)

and
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ZB 0
Z(A+1)B ZB
P, =| Z(A*+A+D)B Z(A+1)B ZB 0| (89)

Z(A" 4+ A+ DB Z(A" ' +-+ A+ DB Z(A" 7 +--+A+DB - ZB]

where 7 and O are identity and zero matrices with proper dimension, respectively. For a

control horizon of #_,

Au(k+i)=0  for i>h (8-10)

(4

Therefore, the last term of Eq. 8-3 can be replaced by P, Au, (k) where

A, (k) =[Au(k) Au(k+1) Au(k+2) - Au(k+h, D] (8-11)

and p, is the corresponding part of B, -

8.3 Process Model Identification

The flotation circuit simulator developed in Chapter 7 is used as the case-study in this
chapter. To implement the APC and RTO schemes, it is necessary to identify the suitable
plant model. For this purpose, a set of manipulated and output variables should be selected.
In the flotation simulator, there are a lot of possibilities for selecting the variables. Based on
the availability of variables and economic value associated with them, variables listed in
Table 8-1 are chosen. In practice, these variables are easily accessible and so they are
widely applied for control applications. In Table 8-1, Uc stands for collector concentration
and is defined as the amount of collector added to the plant feed per ton of ore feed. The
plant diagram and variable locations are illustrated in Fig. 8-3. In the implemented
schemes, the valuable mineral flowrates, i.e. C» and Rn, instead of reject and concentrate

grades are selected as the output variables for two reasons:
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e In plant, when the solid flowrates and grades are measured, the valuable mineral
flowrates can be easily calculated by multiplying them and applied in controller

design instead of grades. So they do not need additional efforts to be measured.

e This chapter aims to identify an empirical process model conserving the mass in the
steady-state situation. In such a model, gains of transfer functions for a given
manipulated variable, i.e. SIMO case, are dependent, and they should respect the
constraints induced by mass conservation law. To implement this idea, the reject
and concentrate grades cannot be applied, instead of them, valuable mineral

flowrates are selected as the output variables.

Table 8-1: Manipulated and output variables list selected for APC and RTO design.

_ ) Nominal ) Nominal
Manipulated variables Output variables
value value

Collector concentrate (Uc) 0.511 Reject total flowrate (R) 92.25t/h
Collection zone level: Rougher (Lr) 2.7m Reject valuable mineral flowrate (Rn) 1.77 t/h
Collection zone level: Cleaner (Lc) 0.7m Concentrate total flowrate (C) 7.75 t/h
Collection zone level: Scavenger (Ls) 2.7m Concentrate valuable mineral flowrate (Cy) 4.75 t/h
Water addition into cleaner feed (4w) 4.5t/h

A

w
* ffffffff —» Concentrate
R — 4{ 1‘ Le
Cleaner
—_— —|—|_> Lx
Feed U T T +
pup | | || L _______
Rougher o
Ls
» Reject

Scavenger

Fig. 8-3: Flotation circuit schematic and location of selected variables.
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To identify the model, successive steps are applied to the manipulated variables around
their nominal value shown in Table 8-1. Then a custom single-input multi-output

identification technique is used. The identification algorithm has the following properties:

e A quadratic criterion based on the measurement and model output distance is

minimized.
e Distances are uniformly weighted.

e The stochastic part of the model output is assumed to be a white noise implying

that the transfer function of stochastic part is unitary.

e Constraints induced by mass conservation are applied for the estimation of transfer

functions gains.

Identified transfer functions (TFs) are presented in Table 8-2. As seen, transfer functions

gains conserve the mass; i.e. for a given manipulated variable u:

GC,u (0) = _GR,u (0)

(8-12)
GC,, U (0) = _GRn U (0)

where G, (0) is the gain of G, ,(s) which stands for transfer function between C and u.

Listed transfer functions and variables in Table 8-2 are for the general case. For each of
APC and RTO schemes, appropriate TFs and variables are selected from this table and
applied. Identified transfer functions contain delays, right-hand side zero (non-minimum
phase case), real and complex poles. Having poles with imaginary parts can result from the
structure of plant where there are two circulating streams, i.e. cleaner reject and scavenger
concentrate. These streams can cause some oscillations in the plant behavior. To illustrate
the quality of identified models, fitted model compared to raw data is illustrated for the
variables used in the following sections in Fig. 8-4. Although transfer functions show a
good fit on a MSE basis and model parameters have acceptable estimation error, there is

still nonlinearity especially in gains.

212



Table 8-2: Identified model transfer functions.

Uc (1/t) Lg(m) Le(m) Ls(m) Aw(t/h)
R 16 e 16p_ (6860 + e 0,99 (23505 + 1)e™ 041385005 +1) 023 (28005 + 1)e™s
(t/h) © (208105 +102.4s +1) (276905 +203s +1) T (4623057 +194s5 +1) (1995 +1)(25s +1) : (3965 +1)°
Bl Lgap20sebe™ gy (@64t o187 @34De™ —0.13— 2005+ D 02 (T40s +De ™
(t/h) ‘ (808.5s +1)* (136%s* +180s +1) C (1192457 +110s+1) (3655 +1)(16s +1) T (4105 +1)2
C ~20s ~60s ~20s ~160s —20s
2168785+ e 11335t he 7 0.99 9315 +1e 0415 ~023—2
(th) (173.25+1) (1145 +1) (348s +1)(24s +1) (260s +1) (130s +1)(61s +1)
C, -20s ~60s 205 ~160s _
" 11315 +1 1-175
0.433(1181s+1)e2 0'336(1118s+1)ez 0137 (16595 +De 0.13 (1131s + )e2 000 ¢ . s)
(th) (1735 +1) (1095 +1) (177s +1)(26s +1) (14005 +1)(43565° + 48s +1) (568552 +90s +1)
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To show the mismatch between the identified model and the plant, an open loop test is

used. In this test, collector concentration and added water, as the manipulated variables,

change while output variables (i.e. reject and concentrate valuable mineral flowrates, and

concentrate solid flowrates) are considered. This procedure is repeated for plant and model,

and the results are compared (Fig. 8-5). As seen, the mismatch is mainly related to the gains

while transient behaviors are adequately represented. Because of the mismatch, i.e. error,

any control or RTO scheme designed in the following sections should be able to properly

handle the modeling errors.
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Fig. 8-5: Mismatch between plant and identified model.
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8.4 Advanced Process Controller

As above mentioned, this study is interested to evaluate DR performance when it is coupled
to an advanced control loop. Therefore, in this section, a control scheme keeping the plant
recovery and grade at the predefined values in the presence of feed disturbances is

designed. For this controller, a standard quadratic cost function is considered:
h,
2 2 . .
J ipc (k) = pe (php (k) - pref) + Brc (chp (k)— Cref) + ZA“T(k + Z)VVMAPCA”(k +1) (8-13)
i=1

where Au(k) is defined as u(k)—u(k—1), and p,,, and c,, are the reference recovery
and grade, respectively. Ch, and P, stand for the average grade and recovery over the

prediction horizon calculated under the rectangular approximation of the integral using:

hP
>.C,(k+i)T,
¢, (k) = H—— (8-14)
D Clk+D)T,
i=1
and
hP
> C.(k+DT,
P, (k) =+ = P (8-15)

2 Ck+D)T + 3 R, (k+0)T,
i=1 i=1

where 7, is the sampling period. R,, C and C, as the output variables are used to

no

calculate the controlled variables, i.e. <, and Ph, - In the current implementation, that is a

2x2 controller, the following manipulated variables are selected from Table 8-2:

N
L (8-16)
AW

From a practical point of view, U, as a manipulated variable controls the particles
hydrophobicity, and so directly acts on the physics and flotation kinetics of the particles.
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On the other hand, 4, increases the degree of freedom to control the grade and is costless.

To select the correct sampling time and prediction horizon, step responses of TFs are
considered. Fig. 8-6 depicts the time response of measured variables for manipulated

variables step change. As seen, the longest and shortest time responses correspond to

G y. and G , -, respectively. The longest response time is chosen as /, while the

shortest one is used to select the sampling time 7 :

041

T, =30s (8-17)
h =120
p
A
U. W
¢ 003
i 0.02t
=
1 &
| 0.01¢ 1
s s s 0 ‘ ‘ ‘ s s
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0
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0.02
4 0 4
=
O
e -0.02
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Fig. 8-6: Step response of model TFs (APC scheme).

Having a large control horizon /. allows the controller to reach the set-points or reject the

disturbances faster, and consequently leads to the large variations in the control actions. To

have less aggressive control actions and a robust control, 4, is selected as:

ho=1 (8-18)
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However, larger values for /4, have also been tried to see whether they can improve the

controller performance or not. But they did not much improved the closed loop plant
performance. In Eq. 8-13, since recovery and grade have a similar importance for the plant

performance evaluation and almost same magnitude, the corresponding coefficients, a ,p-

and B,pc, are equally assigned. Value of /7, is determined based on two facts:

e To improve the performance of the closed loop system, i.e. having a smooth
behavior and avoiding any oscillation, a weighting value for the control actions

should be assigned.
e W is able to filter the variations on the manipulated and output variables, and

U pc

consequently it can attenuate the measurement noise. This point could affect the

evaluation of DR performance. To reduce the filtering effect of W, ., a very small
value is chosen.

The value of the coefficients are illustrated in Table 8-3.

Table 8-3: APC objective function coefficients.

Coefficients Value
& 4pc 1
Barc 1

W, 0.0005 0
are 0 0.0005

In conclusion, the optimal controller comes down to:

Auy, = argmin(JAPC) st. g(u,y) (8-19)

Auy,,
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where g(u, y) is the set of constraints including maximum and minimum values of
manipulated variables u# and the minimum value of output variables y. In fact, the

manipulated variables are kept in the range where the model has been identified and is still
valid. The output variables are always positive values, and this point should be considered
in the optimization solver. In the current controller design, the limitation of manipulated

variables rate is not considered. Therefore, the applied constraints are:

T

and

R [0

C 2|0 (8-21)
c | |o

To test the performance of the controller, a reference tracking test is designed. A set of step

changes is applied to the references, i.e. p,,, and c,, . These set-points are chosen so that

they can be reachable for the closed loop plant considering the feed characteristics. Figs 8-7
and 8-8 show the plant behaviors, i.e. controlled and manipulated variables. All set-points
are reached in steady-state, and there is no steady-state error. In the figures, the transient
part of responses is not easy to be explained where they have non-minimum phase
behaviors that might be caused by non-minimum phase TF between 4, and C,, or the
interaction between manipulated variables of the multi-input multi-output controller.
However, general trends in the controlled and manipulated variables are reasonable and

explainable. In Fig. 8-7, first a -2% step occurs in the grade while p,,, is constant. The

grade has to track the new reference trajectory while disturbance in the recovery caused by
grade change should be rejected and the recovery must be kept at the previous value. In this
case, A, 1s mainly reduced while U, is almost constant (very small decrease). In the
second point, both recovery and grade get +1% and +2.5% step changes, respectively. To

reach the desired references, the controller largely increases 4, and U, in point 2. Both
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reference values for the controlled variables come down in the third point, and

correspondingly both manipulated variables are reduced by the controller.
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Fig. 8-7: APC performance test: controlled variables.
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8.5 Real-Time Optimization Scheme

This section develops a RTO scheme used for coupling with DR observer presented in the
following sections. This RTO maximizes economic benefits of the plant. As previously
mentioned, it is a direct RTO, not a hierarchical one as shown in Hodouin (2010). In such a
RTO, both RTO and advanced control stages shown in Fig. 8-1 are merged. In fact, it is a
receding horizon controller with economic objective function. Here, the objective function
is defined based on the economic value of produced valuable minerals and associated cost
for chemical reagents consumption. Moreover, a third term is considered to keep the

concentrate grade close to the predefined value in the contract c,,, . From a mathematical

point of view, this term brings more curvature in the search space of the optimization

problem and facilitates finding local minimums. The objective function is expressed by:

h,

10 () = @ Y ok +0VT, = Bare (0 ()= ooy F = aro Uk +i) fi(k+ DT, (8-22)

i=l1 i=l1

where f; stands for plant feed rate (t/h) and <h, is calculated from Eq. 8-14. To find the

correct weights, the economic value of each term is considered. The first term represents
the amount of valuable minerals produced in ton while the third integral stands for the
amount of reagent consumed in liter. For a certain reagent on the market, the price of the
reagent is almost twice of the chalcopyrite price in ton basis. So, from monetary point of

view:
1 liter reagent price = 2 x 1 liter chalcopyri te price = 0.002 x 1 ton chalcopyri te price  (8-23)

This point is used to assign correct values to oy, and ¥y, . In practice, large violations in

the concentrate grade for a long period of time cannot be tolerated. In this regard, to give a
reasonable value to Sy, it is assumed that any deviation in the grade up to 1% can be
tolerated and its corresponding term in Jy;, should almost have same magnitude as other
terms. Normalized values of coefficients are presented in Table 8-4. Here, again, value of
the first and third terms of Eq. 8-22 grow with increasing prediction horizon but this is not
the case for the second one. Therefore, the coefficients should be adjusted for the different
value of /p, correspondingly. As seen from Eq. 8-22, this scheme only has one manipulated
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variable U,. As mentioned before, U, directly changes the physics and kinetics of particle

and consequently affect the plant behavior. Also, it has an associated cost making it

suitable as a manipulated variable for the economic objective function.

Table 8-4: RTO objective function coefficients.

Coefficients Value
Arro [1/1] 1
Brro [] 16.66
Vrro [1/1] 0.002

In conclusion, RTO can be presented as:

AU, =argmax(Jzpp) st. g(U,,y) (8-24)
¢ AU,

€ he
where g(U,, y) is the set of constraints expressed by Eq. 8-21 and
02<U,.<1 (8-25)

For RTO implementation again, sampling time and prediction horizon are selected using
step responses of TFs taken from Table 8-2. The longest and shortest time responses stand

for Gy . and G, respectively. Using this information,

T, =1min

8-26
h, =60 (8-26)

As discussed in the APC section, larger control horizon 4, could lead to large variations in

the control actions, so to have a less aggressive actions and robust control, 4, is selected as:

ho=1 (8-27)
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To test RTO performance, step disturbances are applied to the feed rate and grade (Fig. 8-9)
where the flotation circuit simulator is used as the case-study. First, a +10% change in the
plant feed rate is applied, and then the plant feed grade is disturbed by a -0.5% (out of

6.5%) step. In this case,c,,, is set to 0.618 (i.e. 1% more than the nominal grad). Fig. 8-10

cont
illustrates the manipulated variable behavior. Although, in the current RTO implementation
there is no explicit controlled variable, output variables could be useful to present the RTO

performance (Fig. 8-11).
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Fig. 8-9: RTO performance test: step disturbance in the feed rate and composition.
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Fig. 8-11: RTO performance test: output variables.

From Figs. 8-10 and 8-11, it can be concluded that although there are some oscillations in
the transient part of the manipulated and output variables, RTO still has an acceptable
performance. These oscillations could be raised from the recycling streams of the plant.
Also it could come from modeling errors resulting from the plant nonlinearity and/or the

absence of an explicit term in the objective function to restrict AU .

8.6 Coupling DR with APC and RTO: Basics and Test Cases

In the following sections, above proposed APC and RTO schemes are applied to the
situation that measurements are corrupted by random errors, and plant feed contains
stationary disturbances. A DR block is added to the loop just before APC/RTO block (Fig.
8-12). In fact, DR block delivers the reconciled values of ore and chalcopyrite flowrates

(noted by 3,, 7, ) to the selection block of controlled variables.
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Fig. 8-12: Block diagram of DR coupled with APC and RTO loops.

8.6.1 Data reconciliation observer

Autocovariance Based Stationary observer (ABS) introduced in Chapter 5 is used to
improve closed loop process performance. The time lag applied in ABS is selected based
on plant information and node imbalance autocorrelation functions limited to the range
where the values are significant according to the 95% confidence intervals. To tune the

measurement noise variance X, and node imbalance autocovariance matrices X, , the

flotation circuit simulator including control loops was run for 30 days while different
disturbances were applied to the feed. Using this tuning procedure, the obtained
autocovariance function contains the effect of both model uncertainty and controller
behavior. More details about the tuning, time lag selection, and observer implementation

are available in Chapter 5.

In this chapter, DR observer is applied in two cases: first all solid flowrates and valuable
minerals flowrates are measured (called full measured case), and second all flowrates, i.e.
solid and valuable minerals, are measured except for feed stream (named partial measured

case). The plant flow sheet is illustrated in Fig. 8-13. In full measured case, solid flowrate
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/i and valuable mineral (chalcopyrite) flowrate f, for all of 8 streams are measured while

for partial measured case, f; and consequently f. are not available. The measurement
equations are expressed by:
{ y=f+v

Ve =Jfetv,

(8-28)

where y and y, stand for measurements of solid flowrate and valuable mineral flowrate,
respectively. v and v, are random measurement errors. For full measured case, state

vectors are:

f:[l fs]T

(8-29)
f=lf o I

and incidence matrices for the solid and valuable mineral flows, M, and M,

respectively, are:

1 0 0 0 1 1 0 —1]

0 0 0-1 0 0 -1 1
Mp=M, = (8-30)
“1o-1 01 0-1 0 0

o 0-1 0-1 0 1 0

)
v

> Rougher Scavenger ——»
1 s s 7 3

Cleaner

Fig. 8-13: Flow sheet of the flotation circuit simulator used as the plant.
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For ABS observer implementation, in partial measured case, the reduced state vectors and

reduced incidence matrices corresponding to the measured states are presented as:

r=fh o Al
(8-31)
f=ln, ol
and
0 0 -1 0 0 -1 1
Mp=M,=|-1 0 1 0 -1 0 0 (8-32)

0-1 0-1 0 1 O

8.6.2 Plant feed disturbances

To test the performance of DR coupled with APC/RTO, three different stationary

disturbances are applied to the feed stream:

e Disturbance 1: stationary variation in feed rate and grade while liberation degree and
middling grade are constant. Fig. 8-14 shows the corresponding feed grade, rate and

solid percentage.

e Disturbance 2: stationary variation in feed rate and grade, while the particle population

is not constant. Feed grade, rate and solid percentage are illustrated in Fig. 8-15.

e Disturbance 3: stationary variation in solid percentage of feed rate, while grade and

particle population are constant (Fig. 8-16).

More information about feed characteristics is available in Table 7-8. Here, stationary
variations in the plant feed including fluctuation in the particle population, grade, and feed
rate are generated by filtering white noises with suitable time constants. For Disturbance 3,
to create variation in the solid percentage, water flowrate is constant while solid flow is
changing. This is why in Fig. 8-16, solid feed rate and percentage are strongly correlated.
Although the original time duration of the disturbances is one day, for illustration purpose,

only first twelve-hours is presented in Figs. 8-14 to Fig. 8-16.
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Fig. 8-16: Disturbance 3: variation in solid percentage (constant grade and particle population).

8.6.3  Simulation scenarios and evaluation indices
For APC and RTO schemes, i.e., four different scenarios are considered:

e Scenario 0: feed disturbance applied while APC and RTO are not involved (open

loop case).

e Scenario 1: feed disturbance applied to the closed loop plant while there is no

measurement error (benchmark case).

e Scenario 2: feed disturbance and measurement error (5%) applied to the closed loop

plant while there is no DR observer.

e Scenario 3: in the closed loop plant, feed disturbance and measurement error (5%)

applied while ABS observer is utilized for data reconciliation purpose.

In addition to full measured case, these scenarios are also repeated for the partial measured

case, and in each scenario, all of three disturbances are examined.
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For the performance evaluation of control schemes, different statistical and economic
measures are employed, e.g. distribution and standard deviation of manipulated and output
variables. As an economic index, the following gain function is calculated using true value

of variables over a time window of one day:

1day 1day 1 day

J gco :aECOZCnTs_7ECOZUcf1Ts_¢’Ec05(E)ZCTS (3-33)

This function is slightly different from Jg;,; two first terms of J,., are the same as the
ones in Jyy, except for the calculation duration. But the last term is different, because in

practice delivering products with a higher grade than the pre-specified value in contract

¢, 1 not beneficial while a smaller grade is severely penalized. Averaged grade ¢ and

penalty function of grade violation are expressed using:

1 day

ZCnTs

i (8-34)
Ser
and
_\ -\ =
5(6) _ {IOO(Ccon — C) + (Ccon - C) c< Ceon (8-35)
0 c2c,,

In Eq. 8-35, ¢ and c,, are in mass fraction unit. In this study, value of c,,, is setto 0.618
which is 1% higher than the nominal plant concentrate grade. Fig. 8-17 gives visualization
about the penalty function. Value of J., coefficients are listed in Table 8-5. Here, to
assign a reasonable value to ¢, , it is again assumed that any grade deviation up to 1%
can be tolerated and its corresponding variation in J,., should almost have the same

magnitude as other terms. Larger divergences should be harshly penalized.
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Fig. 8-17: Grade violation penalty function.

Table 8-5: Coefficients of economic gain function.

Coefficients Value
Upco [$/1] 1

Veco [$/1] 0.002
Prco [$/1] 5000
Ceon ] 0.618

To easily recall the different parts of J;-, during the result presentations, its first, second,

and third terms are named produced valuable mineral, consumed collector, and grade

penalty, respectively.

8.7 Coupling DR with APC: Results and Discussion

In this section, APC scheme designed in Section 8.4 is involved with DR observer, and its
performance is illustrated using different disturbance cases already presented. Here, an
ABS observer with 10 time lags is applied where sampling time is 30 sec. Desired

references in Eq. 8-13, ¢,,, and p,,, are set to 0.618 and 0.720, respectively. As a general
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point, since results obtained for APC in the different disturbances are similar and coherent,

a discussion is presented after showing all the results.

8.7.1 Results of applying disturbance 1

Table 8-6 illustrates the performance of APC for different scenarios using indices when all
variables are measured and disturbance 1 is applied. As a recall, in disturbance 1, feed rate
and grade stationary change and the liberation degree and middling grade are constant. In
the table, A for each scenario presents the total benefit difference between Scenario 1 and
that scenario, expressed in %. To give a sense about statistical properties of the controlled
and manipulated variables, their histograms are illustrated in Figs. 8-18, 8-19 and 8-20 for
Scenarios 1 to 3. The histograms were constructed by averaging the variables value over 10
min windows. As seen and expected, measurement noise leads to an increase in variables
variances while DR reduces the variances. For open loop scenario, since manipulated
variables are constant, so no histogram is presented. A deep discussion about the results is

presented at the end of the section.
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Table 8-6: APC performance: disturbance 1 (feed rate & grade variation with constant liberation

and middling grade) and all variables measured.

Scenarios
Performance Indices With noise & | With noise &
Open loop No noise .
without DR DR
Earned mineral [k$ ] 112.5 112.2 112.6 112.4
Consumed collector [k$] -2.40 -2.14 -2.80 -2.38
Jrco Grade penalty [kS$ ] -20.0 0 0 0
Total benefit [k$ ] 90.10 110.06 109.80 110.02
A [%] -18.10 0.00 -0.23 0.00
Manipulated U, [I1] 0.5040.00 0.44+0.164 0.51+0.22 0.49+0.19
variables statistics | 4 = [t/h] 4.50+0.00 4.74+1.22 4.92+1.42 4.88+1.31
Controlled c [%] 60.6+0.69 61.84+0.49 61.86+0.85 61.84+0.70
variables statistics | p [%] 72.542.21 72+0.85 72.4+0.95 72.240.91
R, [t/h] 1.77+0.10 1.814+0.10 1.79+0.11 1.79+0.10
Output  variables
o C [t/h] 7.75+0.63 7.56+0.22 7.59+0.25 7.58+0.23
statistics
C, [th] 4.69+0.39 4.67+£0.15 4.69+0.18 4.69+0.15
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In the condition that feed rate £, is not measured, DR is able to estimate the value f,. This
is another benefit that DR can bring to the process control. In Scenario 3, f, is estimated

using DR while for other scenarios, under the assumption of stationary operating regime,

nominal value of feed could be considered as a reasonable estimation. So for Scenarios 0, 1
and 2, fl is set to 100 t/h. In the designed APC, f, is not involved in the control action
calculation in J -, and it only participates in DR if applicable. Therefore, calculated
control actions are independent of the feed rate variations, and consequently the closed loop
performance is independent of measuring or not measuring the feed flowrate. Also the

economic index Jgq, (Eq. 8-33) is calculated based on true variables values, so the feed
rate measurement does not also affect J;, value in the current APC. In conclusion,

measured or unmeasured f, does not have a direct effect on the plant performance and

revenue in the current implementation (only through DR). In Table 8-7, the performance of
APC in different scenarios, when the feed rate is not measured, and disturbance 1 is

applied, is shown. For this simulation case, since the results have the same trend as
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previous one, so the variable histograms are not presented to avoid any duplication. These

results prove that in the current APC, measuring or not measuring f, does not change the

plant revenue. However, DR is able to estimate the unmeasured variables if there is enough

degree of redundancy, which could be used for feed forward control design or process

model update.

Table 8-7: APC performance: disturbance 1 (feed rate & grade variation with constant liberation

and middling grade) and feed rate not measured.

Scenarios
Performance Indices ' With noise & | With noise &
Open loop No noise _
without DR DR
Earned mineral [k$] 112.5 112.2 112.6 112.38
Consumed collector [k$] -2.41 -2.15 -2.82 -2.39
Jeco Grade penalty [k$] -20.0 0 0 0
Total benefit [k$] 90.09 110.05 109.78 109.99
A [%] -18.10 0.00 -0.24 0.00
Manipulated U, [I1] 0.5+0.00 0.44+0.164 0.51+0.22 0.49+0.20
variables statistics | 4 = [t/h] 4.5+0.00 4.74+1.22 4.93+1.42 4.86+1.29
Controlled c [%] 60.6:0.69 61.8+0.49 61.86+0.85 61.82+0.72
variables statistics | p [%)] 72.5+2.21 72:0.85 72.440.95 72.3+0.92
R, [t/h] 1.77+0.10 1.81+0.10 1.79+0.11 1.79+£0.10
Output variables
o C [t/h] 7.75+0.63 7.56+0.22 7.59+0.25 7.58+0.24
statistics
C, [t/h] 4.69+0.39 4.67+0.15 4.69+0.18 4.69+0.16
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8.7.2  Results of applying disturbance 2

APC performance is evaluated using indices and presented in Table 8-8 when stationary

variations occur in the feed rate and grade, and the liberation degree and middling grade are

not constant, i.e. disturbance 2. Also it is assumed that all variables are measured. Again,

the presence of measurement error reduces the economic benefits of plant and increases the

variation range of variables; although the deterioration magnitude is marginal. Applying

DR mainly compensates the benefit reduction and improves the statistical characteristics of

variables.

Table 8-9 shows the simulation results for unmeasured feed rate when

disturbance 2 is applied. Here, since true values a used for economic benefits calculation,

so measuring or not measuring f, does affect the plant revenue.

Table 8-8: APC performance: disturbance 2 (feed rate & grade variation with non-constant

liberation and middling grade) and all variables measured.

Scenarios
Performance Indices ) With noise & | With noise &
Open loop No noise
without DR DR
Earned mineral [k$] 111.90 112.00 112.10 112.06
Consumed collector [k$] -2.40 -2.70 -3.00 -2.80
Jeco Grade penalty [k$] -20.5 0 0 0
Total benefit [k$] 89.00 109.30 109.10 109.26
A [%] -18.60 0.00 -0.18 0.00
Manipulated U, [Vt] 0.5+0.00 0.54+0.24 0.58+0.26 0.56+0.25
variables statistics | 4 [t/h] 4.5+0.00 4.96+1.61 5.20+1.72 5.10+1.68
Controlled c [%] 60.5+1.23 61.8+0.80 61.87+1.04 61.85+0.93
variables statistics | p [%] 72.4+2.01 72.0+1.52 72.2+1.58 72.2+1.53
R, [t/h] 1.78+0.16 1.79+£0.13 1.78+0.16 1.78+0.13
Output variables
o C [t/h] 7.71+0.66 7.52+0.64 7.53+0.67 7.53+0.64
statistics
C, [t/h] 4.67+0.40 4.66+0.39 4.67+0.40 4.67+0.39
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Table 8-9: APC performance: disturbance 2 (feed rate & grade variation with non-constant

liberation and middling grade) and feed rate not measured.

Scenarios
Performance Indices With noise & | With noise &
Open loop No noise .
without DR DR
Earned mineral [k$] 111.90 112.00 112.10 112.06
Consumed collector [k$] -2.41 -2.70 -3.01 -2.82
Jeco Grade penalty [k$] -20.5 0 0 0
Total benefit [k$] 88.99 109.30 109.09 109.24
A [%] -18.60 0.00 -0.18 0.00
Manipulated U, 4] 0.5£0.00 | 0.54£024 | 0.58+0.26 0.55+£0.255
variables statistics | 4 [t/h] 4.5+0.00 4.96+1.61 5.20+1.72 5.03+1.67
Controlled c [%] 60.5+1.23 61.8+0.80 61.87+1.04 61.86+0.94
variables statistics | p [%)] 72.4+2.01 72.0+1.52 72.2+1.58 72.2+1.53
R, [t/h] 1.78+0.16 1.79+0.13 1.78+0.16 1.78+0.13
Output  variables
o C [t/h] 7.71+0.66 7.52+0.64 7.53+0.67 7.53+0.65
statistics
C, [t/h] 4.67+0.40 4.64+0.39 4.65+0.40 4.65+0.39

8.7.3  Results of applying disturbance 3

Here, above procedure is repeated for APC performance evaluation when solid percentage

of feed is changing, disturbance 3. Tables 8-10 and 8-11 illustrate results for the measured

and unmeasured feed rate, respectively. Again, similar conclusions can be derived: a)

measurement noise increases variations on the variables and reduces the revenue of plant

and, b) applying DR in the APC loop marginally improves the results, and ¢) measuring or

not measuring f, does not have much effect on the plant revenue.
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Table 8-10: APC performance: disturbance 3 (stationary variation in solid percentage of feed rate)

and all variables measured.

Scenarios
Performance Indices With noise & | With noise &
Open loop No noise .
without DR DR
Earned mineral [k$ ] 113.8 113.4 113.8 113.7
Consumed collector [k$] -2.40 -2.00 -2.62 -2.36
Jrco Grade penalty [kS$ ] -22.1 0.0 0.0 0.0
Total benefit [k$ ] 89.30 111.40 111.18 111.34
A [%] -19.83 0.00 -0.20 0.00
Manipulated U, [I1] 0.5+0.00 0.415+0.12 0.498+0.19 0.489+0.16
variables statistics | 4 = [t/h] 4.5+0.00 4.83+1.06 4.93£1.36 4.90+1.35
Controlled ¢ [%] 60.541.23 | 61.84+0.70 | 61.88+0.97 | 61.86+0.86
variables statistics | p [%] 72.6+0.83 72.0+0.74 72.4+0.81 72.3+0.77
R, [t/h] 1.78+0.10 1.82+0.12 1.79+£0.13 1.80+0.12
Output  variables
o C [t/h] 7.81+0.68 7.58+0.48 7.61+£0.53 7.61+0.52
statistics
C, [t/h] 4.72+0.33 4.68+0.29 4.71+0.32 4.71+0.30
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Table 8-11: APC performance: disturbance 3 (stationary variation in solid percentage of feed rate)

and feed rate not measured.

Scenarios
Performance Indices With noise & | With noise &
Open loop No noise .
without DR DR

Earned mineral [k$ ] 113.8 113.4 113.8 113.69

Consumed collector [k$] -2.40 -2.10 -2.63 -2.35
Jeco Grade penalty [kS$ ] -22.1 0.0 0.0 0.0

Total benefit [k$ ] 89.30 111.3 111.17 111.34

A [%] -19.83 0.00 -0.20 0.00
Manipulated U, [I1] 0.5£0.00 | 0.415+0.116 | 0.498+0.193 | 0.489+0.165
variables statistics | 4 = [t/h] 4.540.00 4.38+1.06 4.93+1.36 4.90+1.35
Controlled ¢ [%] 6055123 | 61.84+0.70 | 61.88+0.97 | 61.87+0.86
variables statistics | p [%)] 72.6+0.83 72.0:0.74 72.4+0.81 72.3+0.78

R, [t/h] 1.78+0.10 1.82+0.12 1.79+£0.13 1.80+0.12
Output  variables

o C [t/h] 7.81+0.68 7.58+0.48 7.61+0.53 7.61+0.52

statistics

C, [t/h] 4.724+0.33 4.68+0.29 4.71+0.32 4.70+0.31

8.7.4 APC: Results analysis and discussion

This section discusses the results shown in the preceding tables and figures. It is noticeable

that the presented conclusions here are case-based and they cannot be generalized to other

case-studies. In the open loop scenario where no APC is involved, manipulated variables

are set to the nominal values regardless of the feed disturbances. For this scenario, almost

in all simulation cases, nominal value of U, is larger than the optimum value. This point

leads to more floated minerals and consequently having larger plant recovery then p,, .. For
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4, , the situation is inverse and therefore, the concentrate grade is less than c,,, . Therefore,

economic benefits of this scenario were severely penalized and degraded.

For other scenarios involving APC, it can be summarized that measurement noise does not
have much effect on the APC performance and plant revenue, and so DR cannot bring
significant improvement. Therefore, the first and main question that should be addressed
here is “why measurement noise does not adversely change the plant behavior and

benefits?”. To answer, it is important to clarify why grade penalty term in Jz., is always

zero. In the situation that the disturbances and measurement errors are stationary with zero
mean, the averaged grade used in the economic index is calculated over a one-day period.
The averaging over a long time window could be the source of this behavior. In the
implemented APC, the grade is mainly adjusted using the added water while the collector
concentration changes the plant recovery. Fig. 8-6 shows that 4w has a short response time
effect on the grade compared to U., approximately four times shorter. It means that the
water addition response time, which is about 8 minutes, is very short in comparison with
the integration time. Therefore, for the stationary disturbances and random noises, averaged
grade always stands around the optimal value. To reveal the effect of high frequency noises
on the plant revenue, shorter integration window can be applied, but using shorter time
window is faced with some difficulties. First, there are transfer functions related to
recovery with longer time responses, about 1 hour, and second, calculating the plant
benefits for periods shorter than one day is not acceptable from practical point of view. For

these reasons, one-day integration duration has been kept in the current study.

Moreover, having two manipulated variables that can compensate adverse effects of each
other could be one of the reasons. In APC scheme, the water addition acts as a free variable

in J, pc and there is no cost associated to 4,, in the economic gain function. So it can
easily compensate any drops in the grade caused by increase of U.. In other words,
optimization problem always finds an 4, action, which is costless and covers major
changes in U, . By this way, APC is able to appropriately compensate the variations of

manipulated and controlled variables caused by the measurement noise.
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Another factor that can reduce the effect of the feed disturbances and measurement errors is

the weighting of the manipulated variables rate W, . As mentioned, a very small value

was assigned to make the time response of closed loop plant smoother. However, this small

value limits and filters the control actions variations resulting from the disturbances and

noises. For instance, using a very large W, . can keep the control actions at constant

values and consequently almost makes the controller non-sensitive to feed disturbances.
However, despite of its filtering effect, it is necessary to have smoother plant response.
These reasons explain why the calculated economic index over one-day period almost has
the same value with and without DR observers. DR reduces the energy of the control

actions but might not significantly change the overall cumulated performance.

Another interesting point that needs clarification is “why DR does not bring any

improvement when feed rate is unmeasured?”. Eq. 8-13 shows that f, does not participate
in the control action calculation, i.e. J . This implies that, in the current implementation,
measuring or not measuring f; does not have any direct effect through DR on the
controller and plant performance. Moreover, for plant revenue calculation J,, true value

of variables are applied regardless of measuring or not measuring f,. Therefore,

measurement status of feed rate again does not affect the plant revenues. However, to take
advantage of DR application, one may consider a feed-forward control based on the
estimation of the unmeasured input disturbances. Estimated variables and parameters can

be also utilized to update the parameters of process model used in the controller.

Although the disturbances and noises are centered, mean value of variables shows a small
deviation from optimal values in some simulation cases. This point could be explained by
the fact that the measurement noise increases the variations in the control actions. On the
one hand, because of the plant nonlinearity, passing any symmetric noise or disturbance
through such a plant could lead to unsymmetrical outcomes. On the other hand, since the
optimal value of the manipulated variables may not exactly be located in the middle of the
range, so one of the upper or lower bounds is touched more than another one resulting in an
unsymmetrical distribution. For instance, Fig. 8-21 illustrates the collector concentration

profile when the stationary disturbance occurs in the solid percentage of the feed. As seen,
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without measurement noise, the lower bound has been not hit while it has been frequently
touched in the presence of noise. Because of the statistical distribution dissymmetry, there
is a small increase in the total collector consumption. From an economic point of view, it
leads to a small increase in the profit associated with the valuable mineral production and,

at the same time, a slight increase in the cost of collector consumption.

Finally, for the current APC implementation, it can be concluded that: a) measurement
error increases variations on all variables and marginally reduces the economic revenue,
and b) applying DR improves the results but the improvements are not significant.
However, using DR in the control loop limits unnecessary variations in the control actions

and consequently smooths the plant actuators actions reducing maintenance costs.
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Fig. 8-21: APC: collector concentrate - without and with measurement noise.

8.8 Coupling DR with RTO: Results and Discussion

In this section, RTO proposed in Section 8.5 is coupled with DR observer, and its
performance and economic benefits are presented using different disturbance cases for a
period of one day. Here, an ABS observer with 5 time lags is applied where sampling time
is 1 min. In Eq. 8-22, c,,,, the grade value in contract, is set to 0.618. As a general point,
similar to the preceding section, first all of the simulation results are presented and then a

full section is devoted to analyze and discuss the results.
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8.8.1 Results of applying disturbance 1

In Table 8-12, RTO performance for different simulation scenarios are shown when all

variables are measured and disturbance 1 is applied. As a quick recall, scenarios here refer

to four simulation cases: 0) process is open loop, 1) there is no measurement noise, 2)

measurement errors exist but DR is not in the control loop, and 3) measurement noises exist

and DR is involved.

Table 8-12: RTO performance: disturbance 1 (feed rate & grade variation with constant liberation

and middling grade) and all variables measured.

Scenarios
Performance Indices With noise & | With noise &
Open loop No noise
without DR DR

Earned mineral [k$] 113.04 112.00 112.35 112.20

Consumed collector [k$] -2.40 -1.87 -2.10 -2.00
Jeco Grade penalty [k$] -22.50 0.00 -5.40 -1.70

Total benefit [k$] 88.14 110.12 104.85 108.50

A [%] -20.0 0.0 -4.8 -14
Manipulated

U, [I] 0.5+0.00 0.386+0.06 0.427+0.21 0.423+0.16
variables statistics
Metallurgical c [%] 60.54+0.83 | 61.91+0.37 61.40+0.88 61.65+0.67
performance
variables statistics | 2 [%] 72.15+£2.21 71.83+1.32 72.07+1.73 72.01+1.59

R, [t/h] 1.784+0.10 1.83+0.10 1.81+0.10 1.8240.10
Output variables

o C [t/h] 7.78+0.62 7.524+0.19 7.61+0.50 7.57+0.39

statistics

C, [t/h] 4.71+£0.39 4.66+0.11 4.68+0.28 4.67+0.21
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From Table 8-12, it is concluded that the measurement noise causes a violation in the
averaged grade leading to a large penalty in the economic gain function. DR observer
significantly improves the grade drop and increases the economic revenue. Valuable
mineral flowrate in concentrate is slightly increased in the presence of noise in the cost of
more collector consumption. To show statistical properties of the metallurgical
performance indices and the manipulated variables, their histograms are illustrated in Figs.
8-22, 8-23 and 8-24 for Scenarios 1 to 3. The histograms were generated by averaging the
variables over 10 min windows. As seen and expected, measurement noise increases the
variance of variations on the variables while DR reduces the variances. For the open loop
scenario, since manipulated variables are constant, no histogram is presented. A deep

discussion about the results is presented at the end of the section.
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Fig. 8-22: RTO: histogram of controlled and manipulated variables — Scenario 1 (without noise).
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For unmeasured feed rate f,, fl estimated by DR is applied in the control action

calculation procedure. But other scenarios have to use nominal value of the feed rate. As a

key point in this RTO, on the contrary to the APC, f, directly participates in the control

action calculation, i.e. in Jy;,, and so it can considerably affect the plant closed loop

behavior. Table 8-13 illustrates the performance of RTO in different scenarios when the

feed rate is not measured and disturbance 1 is applied. For the current simulation, since

results have the same trend as the previous one, so variable histograms are not presented.

As a quick conclusion, having unmeasured variable increases the grade deviation and

consequently decreases the economic benefits of RTO. However, estimating the

unmeasured variables by DR mostly preserves the RTO performance.

Table 8-13: RTO performance: disturbance 1 (feed rate & grade variation with constant liberation

and middling grade) and feed rate not measured.

Scenarios
Performance Indices With noise & With noise &
Open loop No noise
without DR DR
Earned mineral [k$] 113.08 111.7 112.05 112.17
Consumed collector [k$] -2.42 -1.85 -2.05 -2.00
Jrco Grade penalty [kS$] -22.50 0 -6.50 -2.10
Total benefit [k$] 88.16 109.85 103.5 108.07
A [%] -20.0 0 -5.7 -1.6
Manipulated
‘ o U, [Iit] 0.5+£0.00 0.385+0.07 0.423+0.22 0.419+0.18
variables statistics
Metallurgical c [%] 60.54+0.83 61.94+0.38 61.3+0.88 61.6+£0.70
performance
. . P [%] 72.15+2.21 71.841.32 72.04+1.74 72.00+1.63
variables statistics
R, [t/h] 1.7840.10 1.83+0.10 1.82+0.10 1.82+0.10
Output  variables
o C [t/h] 7.78+0.62 7.524+0.19 7.615+0.50 7.56+0.42
statistics
C, [t/h] 4.71+0.39 4.65+0.11 4.67+£0.28 4.67+0.23

247




8.8.2 Results of applying disturbance 2

The simulation procedure applied in Section 8.8.1 is repeated here when stationary

variations occur in the feed rate and grade while the liberation degree and middling grade

are not constant, i.e. disturbance 2. Again, two simulation cases (measured and unmeasured

f,) are considered, and simulation results are presented in Tables 8-14 and 8-15,

respectively. Since obtained results are consistent with the previous ones, any discussion is

postponed to the final part of this section.

Table 8-14: RTO performance: disturbance 2 (feed rate & grade variation with non-constant

liberation and middling grade) and all variables measured.

Scenarios
Performance Indices With noise & With noise &
Open loop No noise
without DR DR
Earned mineral [k$ ] 112.50 111.14 111.56 111.38
Consumed collector [k$] -2.40 -1.93 -2.15 -2.07
Jzco Grade penalty [k$ ] -22.11 0.00 -6.07 -2.40
Total benefit [k$ ] 87.99 109.21 103.3 106.91
A [%] -194 0.0 -5.5 2.1
Manipulated
. o U, [I1] 0.5+0.00 0.392+0.07 0.435+0.20 0.430+0.16
variables statistics
Metallurgical ¢ [%] 60.5+1.32 61.93+0.71 61.35+1.02 61.7+0.81
performance
. . P [%] 72.342.51 71.4042.30 71.6242.52 71.5542.43
variables statistics
R, [t/h] 1.79+0.14 1.85+0.13 1.83+0.14 1.84+0.13
Output variables
o C [t/h] 7.76£0.76 7.48+0.71 7.57+0.84 7.52+0.81
statistics
C, [t/h] 4.69+0.54 4.63+0.43 4.65+0.50 4.64+0.48
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Table 8-15: RTO performance: disturbance 2 (feed rate & grade variation with non-constant

liberation and middling grade) and feed rate not measured.

Scenarios
Performance Indices ) With noise & | With noise &
Open loop No noise .
without DR DR
Earned mineral [k$ ] 112.24 111.00 111.32 111.30
Consumed collector [k$] -2.37 -1.90 -2.08 -2.06
Jrco Grade penalty [kS$ ] -22.11 0 -6.91 -2.50
Total benefit [k$ ] 87.76 109.10 102.33 106.74
A [%] -19.6 0 -6.2 2.2
Manipulated
. o U, [It] 0.5+0.00 0.389+0.10 0.430+0.25 0.429+0.18
variables statistics
Metallurgical c [%] 60.5+1.32 61.90+0.72 61.30+1.03 61.68+0.84
performance
. o p [%] 72.3£2.51 71.38+2.30 71.61£2.52 71.53+£2.45
variables statistics
R, [t/h] 1.79+£0.14 1.845+0.13 1.835+0.14 1.84+0.13
Output variables
o C [t/h] 7.76+0.76 7.47+£0.72 7.57+0.85 7.52+0.81
statistics
C, [t/h] 4.69+0.54 4.625+0.44 4.64+0.50 4.64+0.50

8.8.3  Results of applying disturbance 3

Here, the performance of RTO is evaluated when solid percentage of feed is changing,

disturbance 3. Simulation results for the different scenarios are shown in Tables 8-16 and

8-17 for the measured and unmeasured feed rate, respectively.
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Table 8-16: RTO performance: disturbance 3 (stationary variation in solid percentage of feed rate)

and all variables measured.

Scenarios
Performance Indices ) With noise & | With noise &
Open loop No noise .
without DR DR
Earned mineral [k$ ] 114.18 113.1 113.4 113.3
Consumed collector [k$] -2.40 -1.80 -2.06 -2.04
Jeco Grade penalty [k§ ] -21.00 0 -6.9 -3.1
Total benefit [k$ ] 90.78 111.3 104.44 108.16
A [%] -18.4 0 -6.2 -2.8
Manipulated
. o U, [I/t] 0.5+0.00 0.390+0.12 0.437+0.22 0.436+0.18
variables statistics
Metallurgical c [%] 60.59+1.21 61.90+0.84 61.30+1.12 61.55+1.02
performance
. i P [%] 72.6+1.81 71.75+1.30 72.10+1.56 72.00+1.48
variables statistics
R, [t/h] 1.80+0.10 1.85+0.11 1.83£0.12 1.84+0.11
Output variables
o C [t/h] 7.85+0.71 7.61+0.48 7.72+0.67 7.68+£0.60
statistics
C, [t/h] 4.76+0.43 4.714£0.27 4.734£0.38 4.724+0.34
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Table 8-17: RTO performance: disturbance 3 (stationary variation in solid percentage of feed rate)

and feed rate not measured.

Scenarios
Performance Indices With noise & | With noise &
Open loop No noise .
without DR DR
Earned mineral [k$ ] 114.00 112.95 113.3 113.2
Consumed collector [k$] -2.37 -1.78 -2.05 -2.00
Jrco Grade penalty [kS$ ] -21.00 0 -8.30 -3.30
Total benefit [k$ ] 90.63 111.17 103.00 107.90
A [%] -18.5 0 -7.3 -2.9
Manipulated
. . U, [I1] 0.5+0.00 0.389+0.12 | 0.433+0.25 0.435+0.20
variables statistics
Metallurgical c [%] 60.59+1.21 61.89+0.84 61.20+1.12 61.52+1.04
performance
. o p [%] 72.6+1.81 71.73£1.30 72.00£1.56 71.90£1.50
variables statistics
R, [t/h] 1.80+0.10 1.854+0.11 1.84+0.12 1.843+0.11
Output variables
o C [t/h] 7.85+0.71 7.60+0.48 7.71£0.68 7.67+£0.63
statistics
C, [t/h] 4.76+0.43 4.706+0.27 4.724+0.38 4.717+0.35

8.8.4 RTO: Results analysis and discussion

In this section, first a general conclusion taken from simulation results is presented and then

the results are discussed in more details. In the open loop scenario where no RTO is

involved, U, as the manipulated variable is set to 0.5 I/t (i.e. nominal value) regardless of

the feed disturbances. For this scenario, in all simulation cases, nominal value of U, is

larger than the optimum value calculated by RTO. It implies that more valuable minerals
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are floated and consequently plant recovery is increased. For a constant A4,, , which is the

case here, it leads to less grade and consequently more grade deviation from c,,,. Because

of this deviation, the economic gain of the scenario has been significantly degraded.

For other simulation scenarios, it can be summarized that measurement noise deteriorates
the RTO performance and the plant revenue. More precisely, it increases the variations in
the manipulated and output variables and leads to a deviation in the plant grade. Although
the valuable mineral flowrate is increased in the presence of noise, the cost associated with
the collector consumption and grade deviation also increases at the same time. The major

drop in J-, comes from the grade penalty part. So it would be useful to investigate why

the noise causes such deviation in the grade. In the current RTO implementation, since the
controller objective function has been defined based on the economic aspects, it only

contains one manipulated variable. Therefore, U, is only responsible to maximize the

chalcopyrite production, and, at the same time, it has to keep the grade in the certain range.

In other words, there is a strong compromise in Jy, .

In the RTO, the control action severely fluctuates to respond the variation caused by the
stationary disturbance in the feed and the noise in the measurements. Consequently, one of
the upper or lower bounds of U, is hit more frequently than another one resulting to an
unsymmetrical distribution of variables. This could be caused by the plant nonlinear nature
and/or location of the optimal point that may not exactly be in the middle of the range. For
instance, Fig. 8-25 illustrates the collector concentration profile when solid percentage
disturbance occurs in the feed. As seen, without measurement noise, the lower bound has
been hit few times while it has been frequently touched in the presence of noise. This

implies that mean value of U, in the presence of the noise should be larger than optimal

one, so more valuable minerals are floated, i.e. more valuable mineral in the cost of larger

grade deviation.
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Fig. 8-25: RTO: collector concentrate - without and with measurement noise.

Applying data reconciliation partially removes the measurement noises and so leads to less
variations in the collector concentration. Therefore, the lower bound is less touched in

comparison to the case without DR leading to a smaller mean value of U, and so less

deviation in the grade. Obviously, smaller grade deviation causes smaller penalties in Jzco.
From a statistical point of view, DR reduces the variance of output variables and improves

their distributions.

One question that could raise here is “why measurement noise has a significant impact on
the RTO, but not in APC scheme?”. In RTO objective function, which is an economic

based function, only U, is used as the manipulated variable because of its associated cost.
In fact, in the RTO, U, is the only variable that makes a balance between the amount of

produced chalcopyrite and the grade while for APC there are two manipulated variables.

The water addition, that acts as a free variable in J -, can easily compensate any drop in
the grade. In other words, in the APC, the effect of an increase in U is compensated by an

increase of A4,, leading to the compensation of the grade deviation in Jeco.

For unmeasured feed rate, fl is estimated by DR and used in the RTO. Since the

redundancy degree is reduced, so the RTO performance is slightly become worse, but not

far from full measured case. For the scenarios that have not been coupled with DR,
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degradation in the RTO performance is much larger. In these cases, nominal value of f| is

employed. Since the feed disturbances are stationary, nominal value of feed rate is still a
reasonable alternative. This is why degradation in the RTO performance is not huge with
and without feed rate measurement. Again, using the estimation of the unmeasured input
disturbances for designing a feed-forward controller and updating the process model could

emphasize the benefits of the data reconciliation.

8.9 Summary

In this chapter, two advanced process control and real-time optimization schemes based on
receding horizon internal model control have been designed. The flotation circuit simulator
developed in Chapter 7 has been employed as the benchmark plant. A process model
conserving masses has been identified and applied for the control purpose. The APC and
RTO performances using step changes in the set-points and plant feed characteristics have
been tested. Then they have been coupled with an autocovariance based stationary data
reconciliation observer proposed in Chapter 5. To assess the effect of involving DR in
closed loop process, several test cases and disturbances have been defined and applied. The
APC and RTO performance and economic benefits with and without DR observer have

been investigated using the statistical measures and economic gain function.

For the implemented APC, it has been concluded that: a) measurement error increases
variations in all variables and marginally reduces the economic revenue, b) applying DR
improves the results but the improvements are not significant. In fact, the simulation results
have revealed that measurement noise does not have much effect on the APC performance
and the plant revenue, and consequently DR cannot bring significant improvement. This
slight improvement is far away from what was expected. Many factors are candidate to
reduce and eliminate the noise effect in the implemented APC such as: 1) having two

manipulated variables so that the second one 4,, is costless and can freely compensate the
grade drops, 2) short response time of A, on the grade in comparison with the time

duration of economic benefit calculation, 3) the filtering effect of weighting factor of

manipulated variables changes W, . in the controller objective function, and 4) using a
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very small sampling time in comparison with the grade averaging and economic benefit

calculation durations.

From the simulation results of the developed RTO, it can be summarized that measurement
noise deteriorates the RTO performance and the plant revenue. It increases the variations in
the manipulated and output variables, and deviation in the concentrate grade. The later one
leads to a large decrease in economic revenue of the plant. The deviation in the grade

comes from the fact that in the RTO U, is the only variable that maximizes the

chalcopyrite production and, at the same time, it should keep the grade in the certain range

showing a strong compromise in Jg;, . In the implemented RTO, since 4,, is no longer

involved, the grade drop cannot be compensated.

As the final conclusion, first it should be noted that the presented results and discussions
are case-based, and they cannot be generalized to other control schemes and case-studies.
Second, in the implemented APC, data reconciliation and noise filtering techniques did not
bring significant improvement. Third, coupling DR with RTO loop here considerably
increased the plant revenue. Moreover, the performance of APC and RTO can be improved
by designing feed forward controller using feed estimates, and updating process model by

reconciled data.
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Chapter 9

Thesis Conclusion and Recommendations for Future Work

The aim of this section is to summarize and unify the conclusions presented in each chapter
and also give a general conclusion for the thesis. Moreover, it provides suggestions for

future work.

9.1 Thesis Conclusion

In mineral and metal processing plants, accurate and reliable process data is crucial for
optimum and safe plant operation. Measurements of process variables are always
influenced by errors, either random or systematic. Furthermore, unmeasured key variables
and inconsistency between the process model and data can cause major problems for
auditing, control, and optimization applications. To cope with the situation, data
reconciliation is considered as an alternative. Therefore, it has been involved in many
applications like process monitoring, plant simulation, process control, and real-time
optimization. In mineral processing industries, data reconciliation has been widely applied

for production accounting, survey analysis, sensor network design, and fault detection.

Data reconciliation observers are developed based on a trade-off between modeling efforts
and estimation precision. More detailed and sophisticated process models provide better
estimations than simple models. Obtaining and calibrating such complex models are a
challenging task in practice. Meanwhile, characterization of measurements and models
errors is another issue that should be carefully addressed. The literature has reported that
data reconciliation can improve the performance of advanced process control and real-time
optimization loops by attenuating measurement noises and control action variations,

estimating unmeasured variables, updating model parameters, and improving the model and
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data coherency. But there are limited efforts to show how much data reconciliation is

economically beneficial for a given plant. Based on these needs, the following objectives

were defined for this thesis:
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Investigating the effect of correctly selecting uncertainty covariance matrices, used
for characterizing the modeling and measurement errors, on the data reconciliation

performance.

Developing new dynamic data reconciliation observers based on limited modeling

efforts.

Determining a dynamic model for mineral processing plants to support the

implementation of a Kalman filter for data reconciliation purpose.

Developing a simulator of the mineral processing plants for design and test of data

reconciliation observers and process control strategies.

Coupling data reconciliation observers with advanced process control and real-time
optimization schemes, and consequently investigating the benefits of using data

reconciliation in closed loop plants.



In the first step, the thesis has presented the importance of correctly tuning the statistical
properties of the modeling and measurement uncertainties. Chapter 3 has revealed that
neglecting the covariance terms, as a common industrial practice, and also incorrect tuning
of variance terms of the uncertainties matrices can deteriorate the observer performance.
Using five case-studies taken from mineral and metallurgical industries the following topics

have been studied in the chapter:

e The importance of considering the model parameter errors and their correlation
terms.

e The impact of taking into account the correlation of the measurement errors.

e The effect of involving process dynamic fluctuations in the data reconciliation
procedure.

e Correct tuning of measurement error covariance matrix when constraint
linearization is used for the bilinear data reconciliation.

e The impact of uncertainties of variance terms on the data reconciliation

performance.

Chapter 3 has concluded that the weighting strategies of the data reconciliation objective
function used in commercial packages may result in poor performance of data
reconciliation. Regardless of the mass and energy balance calculation applications, a

careful analysis of the uncertainty structure is a key factor for data reconciliation success.

As the second step, Chapter 4 has illustrated how steady-state data reconciliation
commercial software packages can be adjusted to deal with process dynamics. It proposed
three solutions. First, when inventories are measured, a sub-optimal implementation of data
reconciliation with dynamic mass/energy conservation methods can be used. In the second
technique, plant input variables are pre-filtered for synchronization with other plant
variables, in such a way that steady-state reconciliation can be applied. In the third solution,
fictitious streams representing the accumulation rate variables are added to the plant
network. When the variance of these variables is correctly evaluated, the steady-state
implementation leads to the same optimal results as the ones obtained via stationary data

reconciliation method.
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For dynamic data reconciliation purpose, Chapter 5 has proposed a new observer based on
a mass conservation sub-model. The observer uses the autocovariance function of node
imbalances as the additional information improving the estimation precision. For evaluation
purpose, two simulated benchmark plants operating in a stationary regime have used, and
its performance has been compared with sub-model based observers and Kalman filter. The
proposed observer has provided more precise estimates than steady-state and standard
stationary observers, particularly when the process dynamic regime becomes important
compared to measurement errors. Moreover, it has exhibited more robust performance
against modeling errors compared to Kalman filter. Although Kalman filter has led to
optimal performances when perfectly tuned, it is more sensitive to modeling errors than the
proposed observer. It has been concluded that using limited modeling efforts, like involving
the node imbalance autocovariance function, can largely improve the estimates precision

and makes the observer able to cope with process dynamics.

Many powerful observers have been developed in the literature, but they have not been
frequently applied in the mineral processing industries for data reconciliation purpose.
These observers need detailed models that are not available or difficult to build in practice.
Therefore, Chapter 6 has proposed a procedure to obtain a simple model for a flotation
circuit to support the implementation of Kalman filter for dynamic data reconciliation.
Simplifying assumptions, empirical first-order transfer functions obtained from the plant
topology, nominal operating conditions, and historical data, have been used to build the
model. The flotation circuit simulator introduced in Chapter 7 has been applied as a case-
study. To obtain the model parameters and corresponding uncertainties, practical guidelines
have been provided. Kalman filter performance has been compared with two sub-model
based observers using the estimation error reduction index and robustness test. Kalman
filter with the empirical model has provided more precise estimates than standard and
autocovariance based stationary observers. In the robustness test, sub-model based
observers have shown slightly better performance than the implemented Kalman filter. The
chapter has concluded that for data reconciliation purpose using dynamic empirical models
with correctly tuned uncertainty matrices is extremely beneficial, although these simple

models do not represent all dynamic behaviors of complex plants like flotation circuits.
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Therefore, doing limited modeling efforts can facilitate the application of advanced

observers like Kalman filter in the mineral processing industries.

Chapter 7 has presented a dynamic simulator of flotation circuit for designing and testing
data reconciliation observers and process control strategies. This simulator is based on
dynamic mass balance equations and empirical relationships. For this purpose, the
collection and froth zones have been modeled as a perfect mixer and plug flow reactor. In
the collection zone, flotation and entrainment phenomena have been considered. Species
return from the froth zone into the collection zone has been also modeled by modifying
flotation rate constants. Collector and frother concentrations, collection zone level, and air
flowrate were considered as the process manipulated variables. A single cell has been first
simulated and tested using different disturbance scenarios. Then a flotation circuit
simulator consisting of three cells has been considered and assessed. Based on simulation
results, the simulator has demonstrated quite reasonable behavior, compatible with plant
behavior. Therefore, the simulator has been applied as a case-study for data reconciliation

observer and advanced controller design in Chapters 6 and 8, respectively.

As the last part of the thesis, two advanced process control and real-time optimization
schemes based on receding horizon internal model control have been designed. In Chapter
8, the aim was coupling dynamic data reconciliation with the advanced controller and real-
time optimizer and illustrating its impact in a closed loop plant. The flotation circuit
simulator developed in Chapter 7 has been employed as a case-study. For the controller
design, an empirical process model conserving mass has been identified and applied. For
advanced controller, a standard quadratic reference tracking objective function has been
defined while real-time optimizer has used an economic cost function. Then they have been
coupled to autocovariance based stationary observer presented in Chapter 5. To assess the
effect of involving data reconciliation in the closed loop plant, several test cases and
disturbances have been applied. Performance and economic benefits of advanced control
and real-time optimization schemes with and without data reconciliation have been

investigated using statistical measures and economic gain function.

For the implemented advanced controller, simulation results revealed that: a) random

measurement errors increase variations in all variables and slightly reduces the economic
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revenue, b) using data reconciliation improves the results but the improvements are
marginal. However, coupling data reconciliation to the control loop could limit variations
in the manipulated variables and smooths the plant actuator actions reducing maintenance
costs. For the real-time optimization scheme, it has been summarized that measurement
noise deteriorates the performance and revenue of the plant. It increases the variations in
the manipulated and output variables, and also deviation in the concentrate grade leading to
a large decrease in economic revenue of the plant. Involving data reconciliation with the
real-time optimization scheme mainly compensates these effects and significantly improves
the plant revenue. However, these conclusions are case-based, and they cannot be

generalized to other control schemes and case-studies.

As a general summary, the thesis has presented how inappropriate use of steady-state data
reconciliation without considering process dynamics and measurement correlation could
deteriorate the data quality, and consequently it has provided several recommendations and
solutions. Moreover, with minimum modeling efforts, it has proposed a dynamic observer
that gives better estimates than other sub-model based observers. To facilitate the
implementation of Kalman filter, a guideline has been provided to build a suitable dynamic
model for complex flotation circuit plants. As a huge effort, it has developed a phenomena-
based simulator that behaves reasonably close to the plant, and it can be easily used for the
control and data reconciliation practices. Finally, it has coupled the data reconciliation with
advanced process control and real-time optimization schemes to answer the questions about
the economic value of using data reconciliation, and it has concluded that data
reconciliation brings significant economic revenue in some cases, while the benefits are
marginal in other cases depending on the implementation of schemes. As a general
statement, the study has revealed that data reconciliation observers with appropriate process
models and correctly tuned uncertainty matrices can improve the open and closed loop
performance of the plant by: a) estimating the measured and unmeasured process variables,
b) increasing data and model coherency, c) attenuating the variations in the output and

manipulated variables, and d) consequently increasing the plant profitability.
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9.2 Recommendations for Future Work
The following issues should be addressed in future works:

e In Chapter 5, the autocovariance based stationary observer has been developed for
linear data reconciliation problem. However, it could be extended to bilinear cases
by developing corresponding uncertainty matrices. Moreover, time lags selection
procedure for the autocovariance function can be improved by introducing a

systematic procedure.

e Chapter 6 has provided a procedure to obtain an empirical model of a flotation
circuit for Kalman filter implementation. Proposing such modeling procedures for

other mineral processing units like grinding circuits would also be interesting.

e The flotation circuit simulator in Chapter 7 can be improved by involving the
bubble size distribution in the modeling and using detailed models for the froth

zone.

e The economic evaluation of data reconciliation in closed loop process can be
emphasized by applying reconciled data for process model updating and involving

plant feed estimates in the controller design, i.e. feed forward controller.

e In Chapter 8, the autocovariance based stationary observer has been coupled with
control schemes. Based on obtained model in Chapter 6, Kalman filter can be also

involved in the advanced process control and real-time optimization loops.

e Also, a strong study about the impact of sampling time and prediction horizon

selection on the final benefits of the plant is recommended.

e It would be interesting to validate the different methods developed in the thesis with
industrial data. For instance using plant data for validation of proposed observer,

calibration of the simulator, and implementation of Kalman filter.

e Furthermore, proposing a general and systematic procedure for evaluation of data

reconciliation integration in the closed loop plant would be a valuable contribution.
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Finally and most importantly, coupling data reconciliation with bias detection
techniques is more realistic and extremely beneficial from the technical and
economic point of view. Therefore, for any future work in the data reconciliation
field, introducing bias detection and identification methods are highly

recommended.
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Appendix A

This section provides complementary information about the case-studies used in Chapter 3.

A.1 Coefficients of energy and mass balance equations presented in Section 3.5.1

This part gives the expressions of the coefficients of the heat balance equation (Eq. 3-18)
and mass conservation equations (Eqgs. 3-21 to 3-24) discussed in Section 3.5.1. The

following equations give the heat balance coefficients:

e, =AH (T,)+T,(C, -C, +C,) (A-1)
e, =—C, (A-2)
€ = (_jch - 7(_70' (A-3)
e,=—C, +yC, (A-4)
es=C, (A.5)
es =—C, (A-6)
e; =—C, (A-7)
eg=C! (A-8)

where AH(T,) is the combustion enthalpy (J g™') of the fuel gas at the reference
temperature 7,, and » is the mass of oxygen consumed per unit mass of fuel. At the

nominal operating regime, the averaged mass specific heats C (Jg 'K ™) are calculated

using integration in the selected temperature period. They are defined as:

e C,:averaged mass specific heat for fuel gas in the temperature range of 7, to T,

o C_’o : averaged mass specific heat for oxygen in the temperature range of 7, to 7,
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(_70’ : averaged mass specific heat for oxygen in the temperature range of 7, to T’

C, : averaged mass specific heat for the air in the temperature range of T, to T

C

C

the temperature range of 7, to T .

, - averaged mass specific heat for the combustion products (CO, and H,0) in

The m; coefficients in mass conservation Eqs. 3-21 to 3-24 have the following definitions,

and are calculated for the nominal regime of operation.

: mass fraction of oxygen in the air

: mass fraction of nitrogen in the air

: mass of water produced per unit mass of fuel gas combustion

: mass of oxygen consumed per unit mass of fuel gas combustion

A.2 Measurements correlation matrix applied in Section 3.5.2

: mass of carbon dioxide produced per unit mass of fuel gas combustion

The correlation 7, among measured variables in the hydrocyclone case-study II (Section

3.5.2) is presented below.
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A.3 Uncertainty covariance matrix calculation for the variable change technique

(Section 3.5.4)

This section presents how to calculate the covariance matrix of the pseudo-measurements
Y wused in the variable change technique for linearizing the constraints of a data
reconciliation problem. As discussed in Section 3.5.4, in bilinear data reconciliation
context, the state vector contains ore flowrates /' and concentrations z . Assuming steady-
state regime implies that V" is diagonal in this case. After the variable change, the state
vector and its measured values contains F and component flowrates N = Foz. As a

consequence of the presence of F' in all the measured values, the new measurement

covariance matrix V) inherently has off-diagonal terms. For a given plant with m streams

and n species, Vy has four main parts:

. . . 2 .. .
e  Measurement noise variance of £} that is known (OF ), where i is stream index.

e  Variance of measurement noise of component flowrate N, ; = F; Xz, ;,

2 = 2o 2 (T2 <2 2 2
oN,, :(zl.,j) XOop +(E) xo, +opxo; (A-10)

5J

_ = . 2
where Z; ; and F; are mean value of concentration and ore flowrate, and o
5. LJ

represents the concentration measurement error variance.

e Covariance between component flowrate measurement noise and corresponding

flowrate measurement error,

cov(F, N, ) =z, )x o2 (A-11)

i

e Covariance between measurement errors of two component flowrates with shared

ore flowrate,

coV(N, ., N; ;) = (Zi,k )X (Ei,j )X O'?“- (A-12)

i
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Appendix B

This appendix shows the mathematical calculations used in Chapter 5 to build

Autocovariance Based Stationary (ABS) observer, and it consists of four parts. Each one

proves an expression or a property of the ABS observer.

B.1 State estimation equation
(B-1)

The optimization criterion for the ABS observer is expressed as:

Iy =y -’ " 0 =7 (k) - " 2 o))+ " (05 e k)
(B-2)

The derivative of J(k) with respect to )_cf ‘ (k) is
Faey 2ty - o)+ 25 (s 2 (k)

dJ(k) _
(B-3)

dx’ (k)
Setting Eq. B-2 equal to zero, the estimation expression is obtained as:

#y=(cste sm s M) (Y s k)
(B-4)

Additional manipulations lead to:

2 (ky=a-—aM" @, +MaM "y Ma )Yz yk)
(B-5)

where

a=lcz'c’)
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B.2 Confirmation that the solution corresponds to a minimum

To confirm that the solution given by Eq. B-4 is a minimum, the second derivative of the

criterion expressed by Eq. B-1 must be positive-definite. It is given by:

d*J (k)

AT () = ((Qf)TE;le +M" EEIM) (B-6)
x

Since matrices Z;l and Z;l are positive-definite, the first and second quadratic forms of

Eq. B-6 are positive-definite. Consequently, the second derivative of the criterion is

positive-definite.

B.3 Proof that the estimate is not biased

For this purpose, the mathematical expectation of estimates must be equal to the true

process states. The expected value of the estimate is:

El# ()= Bz’ +M 5] M) € g i
(B-7)
~([eysre vurstu) €y s Bl Wi Ew))

By using measurement error properties and after mathematical manipulations, Eq. B-7

becomes:
El# (0)={la—aM"E, + MamT ' Ma)xa™ < E{x' (b)) (B-8)

Using the definition of node imbalances given by Eq. 5-15 gives:

E\# 0= Elx' }-aM" S, + MaM” )y x Ele (k) (B-9)
Finally,
¥ f=Elx 0}=x () (B-10)
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B.4 Covariance matrix of the estimation error

The estimation error can be expressed as:

- () =a—aM (&, +MaM™ Y Ma )€ yik)-x' (k)
= (B-11)
Nam" @, + Ma M"Y ) M (k) +(1-aM (S, + MaM”y'M )a(C) 5, v(k)

The covariance of estimation error is given by

—aM'(Z
(

™

covls” (k) - x' (k)=

Finally, after some algebraic manipulations, the covariance matrix of the estimation error is

obtained as:

codi/ (0 -3/ (0))=a—aM' (S, +MaM ' Ma (B-13)
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