237 research outputs found

    Expressive Policy-Based Access Control for Resource-Constrained Devices

    Get PDF
    Upcoming smart scenarios enabled by the Internet of Things envision smart objects that expose services that can adapt to user behavior or be managed with the goal of achieving higher productivity, often in multi-stakeholder applications. In such environments, smart things are cheap sensors (and actuators) and, therefore, constrained devices. However, they are also critical components because of the importance of the provided information. Therefore, strong security is a must. Nevertheless, existing feasible approaches do not cope well with the principle of least privilege; they lack both expressiveness and the ability to update the policy to be enforced in the sensors. In this paper, we propose an access control model that comprises a policy language that provides dynamic fine-grained policy enforcement in the sensors based on local context conditions. This dynamic policy cycle requires a secure, efficient, and traceable message exchange protocol. For that purpose, a security protocol called Hidra is also proposed. A security and performance evaluation demonstrates the feasibility and adequacy of the proposed protocol and access control model.This work was supported in part by the Training and Research Unit through UPV/EHU under Grant UFI11/16 and in part by the Department of Economic Development and Competitiveness of the Basque Government through the Security Technologies SEKUTEK Collaborative Research Projec

    Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

    Get PDF
    This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions

    Proceedings of the 1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020)

    Get PDF
    1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020), 29-30 August, 2020 Santiago de Compostela, SpainThe DC-ECAI 2020 provides a unique opportunity for PhD students, who are close to finishing their doctorate research, to interact with experienced researchers in the field. Senior members of the community are assigned as mentors for each group of students based on the student’s research or similarity of research interests. The DC-ECAI 2020, which is held virtually this year, allows students from all over the world to present their research and discuss their ongoing research and career plans with their mentor, to do networking with other participants, and to receive training and mentoring about career planning and career option

    Partitioning workflow applications over federated clouds to meet non-functional requirements

    Get PDF
    PhD ThesisWith cloud computing, users can acquire computer resources when they need them on a pay-as-you-go business model. Because of this, many applications are now being deployed in the cloud, and there are many di erent cloud providers worldwide. Importantly, all these various infrastructure providers o er services with di erent levels of quality. For example, cloud data centres are governed by the privacy and security policies of the country where the centre is located, while many organisations have created their own internal \private cloud" to meet security needs. With all this varieties and uncertainties, application developers who decide to host their system in the cloud face the issue of which cloud to choose to get the best operational conditions in terms of price, reliability and security. And the decision becomes even more complicated if their application consists of a number of distributed components, each with slightly di erent requirements. Rather than trying to identify the single best cloud for an application, this thesis considers an alternative approach, that is, combining di erent clouds to meet users' non-functional requirements. Cloud federation o ers the ability to distribute a single application across two or more clouds, so that the application can bene t from the advantages of each one of them. The key challenge for this approach is how to nd the distribution (or deployment) of application components, which can yield the greatest bene ts. In this thesis, we tackle this problem and propose a set of algorithms, and a framework, to partition a work ow-based application over federated clouds in order to exploit the strengths of each cloud. The speci c goal is to split a distributed application structured as a work ow such that the security and reliability requirements of each component are met, whilst the overall cost of execution is minimised. To achieve this, we propose and evaluate a cloud broker for partitioning a work ow application over federated clouds. The broker integrates with the e-Science Central cloud platform to automatically deploy a work ow over public and private clouds. We developed a deployment planning algorithm to partition a large work ow appli- - i - cation across federated clouds so as to meet security requirements and minimise the monetary cost. A more generic framework is then proposed to model, quantify and guide the partitioning and deployment of work ows over federated clouds. This framework considers the situation where changes in cloud availability (including cloud failure) arise during work ow execution

    GUISET: A CONCEPTUAL DESIGN OF A GRID-ENABLED PORTAL FOR E-COMMERCE ON-DEMAND SERVICES

    Get PDF
    Conventional grid-enabled portal designs have been largely influenced by the usual functional requirements such as security requirements, grid resource requirements and job management requirements. However, the pay-as-you-use service provisioning model of utility computing platforms mean that additional requirements must be considered in order to realize effective grid-enabled portals design for such platforms. This work investigates those relevant additional requirements that must be considered for the design of grid-enabled portals for utility computing contexts. Based on a thorough review of literature, we identified a number of those relevant additional requirements, and developed a grid-enabled portal prototype for the Grid-based Utility Infrastructure for SMME-enabling Technology (GUISET) initiative – a utility computing platform. The GUISET portal was designed to cater for both the traditional grid requirements and some of the relevant additional requirements for utility computing contexts. The result of the evaluation of the GUISET portal prototype using a set of benchmark requirements (standards) revealed that it fulfilled the minimum requirements to be suitable for the utility context

    An approach to cross-domain situation-based context management and highly adaptive services in pervasive environments

    Get PDF
    The concept of context-awareness is widely used in mobile and pervasive computing to reduce explicit user input and customization through the increased use of implicit input. It is considered to be the corner stone technique for developing pervasive computing applications that are flexible, adaptable, and capable of acting autonomously on behalf of the user. This requires the applications to take advantage of the context in order to infer the user’s objective and relevant environmental features. However, context-awareness introduces various software engineering challenges such as the need to provide developers with middleware infrastructure to acquire the context information available in distributed domains, reasoning about contextual situations that span one or more domains, and providing tools to facilitate building context-aware adaptive services. The separation of concerns is a promising approach in the design of such applications where the core logic is designed and implemented separately from the context handling and adaptation logics. In this respect, the aim of this dissertation is to introduce a unified approach for developing such applications and software infrastructure for efficient context management that together address these software engineering challenges and facilitate the design and implementation tasks associated with such context-aware services. The approach is based around a set of new conceptual foundations, including a context modelling technique that describes context at different levels of abstraction, domain-based context management middleware architecture, cross-domain contextual situation recognition, and a generative mechanism for context-aware service adaptation.Prototype tool has been built as an implementation of the proposed unified approach. Case studies have been done to illustrate and evaluate the approach, in terms of its effectiveness and applicability in real-life application scenarios to provide users with personalized services
    • …
    corecore