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Abstract

With cloud computing, users can acquire computer resources when they need them

on a pay-as-you-go business model. Because of this, many applications are now being

deployed in the cloud, and there are many different cloud providers worldwide. Im-

portantly, all these various infrastructure providers offer services with different levels

of quality. For example, cloud data centres are governed by the privacy and security

policies of the country where the centre is located, while many organisations have

created their own internal “private cloud” to meet security needs.

With all this varieties and uncertainties, application developers who decide to host their

system in the cloud face the issue of which cloud to choose to get the best operational

conditions in terms of price, reliability and security. And the decision becomes even

more complicated if their application consists of a number of distributed components,

each with slightly different requirements.

Rather than trying to identify the single best cloud for an application, this thesis

considers an alternative approach, that is, combining different clouds to meet users’

non-functional requirements. Cloud federation offers the ability to distribute a single

application across two or more clouds, so that the application can benefit from the

advantages of each one of them. The key challenge for this approach is how to find the

distribution (or deployment) of application components, which can yield the greatest

benefits. In this thesis, we tackle this problem and propose a set of algorithms, and a

framework, to partition a workflow-based application over federated clouds in order to

exploit the strengths of each cloud. The specific goal is to split a distributed application

structured as a workflow such that the security and reliability requirements of each

component are met, whilst the overall cost of execution is minimised.

To achieve this, we propose and evaluate a cloud broker for partitioning a workflow

application over federated clouds. The broker integrates with the e-Science Central

cloud platform to automatically deploy a workflow over public and private clouds.

We developed a deployment planning algorithm to partition a large workflow appli-
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cation across federated clouds so as to meet security requirements and minimise the

monetary cost.

A more generic framework is then proposed to model, quantify and guide the parti-

tioning and deployment of workflows over federated clouds. This framework considers

the situation where changes in cloud availability (including cloud failure) arise during

workflow execution.
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Chapter 1: Introduction

Introduction

The importance of scientific computing has increased significantly over the past decades,

encouraged by rapid advances in the speed and capacity of computer technology. This

has led to increasing amounts of data being stored and processed, and as a result the

field of e-Science has grown to address large-scale scientific data processing issues.

The scientific workflow now plays a crucial role in large-scale scientific processing, data

modelling and operations such as loading input data, data analysis and outputting re-

sults. Typically, a scientific workflow is represented as a directed graph of operations.

Using a workflow encourages re-use of operations, and prevents scientists from having

to implement complex processing mechanisms such as scheduling operations and re-

specting processing dependencies. In some cases it also provides further facilities such

as provenance capture [81] [9].

In recent years, Cloud computing has provided users with cheap, elastic and diverse

computing resources. This allows scientists to easily hire the resources they need to

store data and execute workflows. As a result, cloud computing has been exploited as

the main computing infrastructure underpinning scientific workflows.

However, existing systems are unable to coordinate processing over different clouds

in order to optimally allocate application services to meet users’ requirements. A

collection of a set of clouds is usually called “cloud federation”,and these can, for

example, be exploited to meet security and reliability requirements, where work is

allocated to different clouds based on their security levels and data are replicated

across clouds to meet availability needs.

Cloud security is one of the key issues affecting customers’ decision-making concerning

which applications should be deployed in the cloud. The influential Berkeley report

[12] placed data confidentiality and audibility high on the list of concerns that may

deter organisations from moving to or creating applications in the cloud. A Cloud

Security Alliance report [8] indicated that a malicious insider is one of the primary se-

curity concerns, and one risk is that customers may lose direct control over potentially

business sensitive and confidential data. Furthermore, such dears are made worse by

the lack of transparency cloud providers’ processes and procedures. For example, cus-
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tomers do not know how the cloud providers access physical and virtual assets, how

they monitor the status of their data-centres, and how they analyse and report on

policy compliance. This may put customers’ sensitive data at risk and, in more serious

situations, result in financial impacts, brand damage, and huge productivity losses [8].

Cloud reliability is another key issue that users may consider before moving to cloud

computing. For example, the common SLA (service-level agreement) for cloud com-

puting is 99.95%. In practice, this means that, in any given month, the service can

only be offline for about 20 minutes, which represents only about 250 minutes per year.

In early 2011, several high-profile technical companies experienced problems when

Amazon’s EC2 service suffered an outage [2]. This lasted for almost 11 hours, which

violated the 99.95% SLA. In addition, an outage at GoDaddy took down millions of

websites [62]

Considering these issues, the cloud federation has the potential to provide a solution

that facilitates just-in-time, opportunistic, and scalable provisioning of application

services, consistently fulfilling user requirements under variable workload, resource

and network conditions [27]. Using a federated cloud, users are able to deploy their

applications over a set of clouds from different cloud providers, across different geo-

graphical locations, therefore bringing various advantages such as leveraging unique

cloud specific services, providing higher availability and redundancy, disaster recov-

ery and geo-presence. However, to achieve this, several unsolved problems need to

be addressed; these are the basis for the research questions that are addressed in this

thesis.

1.1 Research Question

With the variety of clouds now available, application developers who decide to host

their system on a cloud face the issue of how to choose the best platform in terms

of price, reliability and security. The decision becomes even more complicated if the

application consists of a number of distributed components, each with different re-

quirements.

Considering these problems, cloud federation enables a single application to be dis-
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Smart Meter Data Anonymise Analyse Write Results

Figure 1.1: A Smart Meter Analysis Workflow

Smart Meter Data Anonymise Analyse Write Results

Private Public

Figure 1.2: Deploying the Smart Meter Analysis Workflow Over Federated Cloud

tributed on two or more clouds, so that the application can combine the benefits from

each cloud [116]. For example, consider the smart meter analysis workflow, run by an

energy company, shown in Figure 1.1. This consists of four tasks. The “Smart Meter

Data” reads customers’ personal information and so a decision is made to run it on

a private cloud. However, the “Analyse” task operates on anonymised data, but is

computationally intensive which may result in the energy company spending a large

amount of money if they have to upgrade their internal private cloud hardware to sup-

port this analysis for many customers simultaneously. Furthermore, it is likely that due

to fluctuations in demand, these resources will be idle for much of the time. Meeting

the security requirements while minimising cost can be achieved by cloud federation.

The workflow is split into two partitions as shown in Figure 1.2. The sensitive data

is stored and anonymised in the private cloud but then processed in the public cloud,

benefiting from the scalable computing resources and the pay-as-you-go model.

Currently, this partitioning and deployment must be carried out in a manual and ad-

hoc manner, with a human expert considering possible deployment plans and deciding

if they meet the security requirements while driving down costs. However, human

error may compromise security, and the decision cannot be verified because of the lack

of an auditable explanation [144]. So the main goal in this thesis is to explore How

to distribute (or deploy) a workflow over a federated cloud in order to meet specific

requirements.

In this thesis, an attempt is made to tackle this problem and propose a set of al-
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gorithms and a framework to partition workflow-based applications over a federated

cloud in order to exploit the strengths of each constituent cloud. The following research

questions are explored:

• How can the security levels of the clouds, services and data be defined?

• How can the reliability of the clouds and services be defined and measured?

• How can the services and data be mapped to the available clouds to meet different

requirements?

• How can the dynamics of cloud federation be handled; for example, when a cloud

fails, joins or leaves the federation?

Taking into account the research queastion above, the main contributions of this thesis

are described in next section.

1.2 Contributions

Two novel static algorithms (considering security, reliability and monetary cost) are

proposed to partition scientific workflow over a federated cloud. In addition, a generic

framework is also developed to dynamically deploy workflow applications over a fed-

erated cloud. A cloud broker is designed and implemented to interact with a set of

cloud based workflow platforms. The main contributions made are as follows:

1. An overview is given of existing work on scientific workflow resource allocation

and deployment in cloud computing. The existing methods or algorithms are

categorised and analysed.

2. A cloud broker is designed and implemented to partition workflow applications

over a federated cloud. The broker is evaluated by interfacing it to e-Science

Central (thereafter e-SC)- which is a science cloud platform [81] used to deploy

e-SC workflows over public and private clouds.
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3. A low complexity deployment planning algorithm is proposed to partition a large

workflow application across federated clouds so as to meet security requirements

and reduce the price paid for executing the workflow. The algorithm takes into

account the three main sources of financial cost in the cloud: computation, data

transfer and data storage.

4. A framework is designed and implemented for modelling, quantifying and guiding

the partitioning and deployment of a workflow over a federated clouds to meet

security requirements while minimising costs. The framework also considers the

situation where a change arises in the set of available clouds during the execution

of the workflow.

5. An algorithm is designed and evaluated to partition a workflow application across

federated clouds taking into account reliability as well as security requirements,

while reducing the monetary cost incurred by computation, data transfer and

data storage.

6. A simulation tool is implemented by combining WorkflowSim [40] and Dynam-

icCloudSim [26].

7. The algorithms and the framework are evaluated by using this simulation tool,

and an implementation of the cloud broker.

1.3 Thesis Structure

Chapter 1 describes the motivation behind the work carried out as part of this thesis,

and highlights the main contributions of the research.

Chapter 2 presents background material and a summary of work closely related to

the original research described in this thesis.

Chapter 3 describes a new automatic architecture for dynamically partitioning ap-

plications across a set of clouds in an environment in which clouds can fail during

workflow execution.
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Chapter 4 proposes a novel algorithm to deploy complex workflow-based applica-

tions over federated clouds, while meeting security requirements and minimising

financial costs.

Chapter 5 explores a workflow deployment framework to dynamically deploy scien-

tific workflows over federated clouds to meet security requirements while min-

imising financial costs. The framework employs a set of static algorithms for

optimising the deployment of workflows over federated clouds, and a dynamic

rescheduling algorithm for handling changes in cloud availability.

Chapter 6 proposes a novel algorithm to deploy workflow applications on federated

clouds, taking into account security, reliability and monetary cost. Firstly,an

entropy-based method is introduced to quantify the reliability of workflow de-

ployments. Secondly, an extension of the Bell-LaPadula Multi-Level security

model is applied to meet application security requirements. Finally, deployment

is optimised in terms of its entropy and also its monetary cost, taking into ac-

count the cost of computing power, data storage and inter-cloud communication.

Chapter 7 summarises and provides the conclusion of the work presented in this

thesis and proposes directions for further work in the area.
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Summary

This chapter starts by describing some of the background information concerning the

overall topic, including a brief primer on cloud computing, cloud federation, workflow

systems and workflow deployment. In section 2.5, research in area of workflow deploy-

ment optimisation which relates to the main focus of this thesis is investigated. At

the same time, gaps in current research are highlighted and is then briefly illustrated

and how this thesis fills these gaps.

2.1 Cloud Computing

Cloud computing has become another buzzword, after Web 2.0, and yet it has var-

ious definitions. However, there is some consensus on defining the cloud [11], [63]

as A large-scale distributed computing paradigm that is driven by economies of scale,

in which a pool of abstracted, virtualised, dynamically-scalable, managed computing

power, storage, platforms, and services are delivered on demand to external customers

over the Internet.

This transforms computing into an utility models much like water, electricity, gas and

telephony. In such a model, users can access services according to their requirements

regardless of where the services are hosted and how they are delivered. Furthermore,

using a pay-as-you-go fashion, users can pay for their computing resources on demand.

Services in cloud computing have been defined in terms of three popular computing

models [115]: 1) Infrastructure as a Service (IaaS)– the cloud resources are offered

in the form of independent raw virtual machines. Users take the responsibility for

and have the flexibility to install operating systems and software, such as Amazon

EC2 [83]and Microsoft Azure [103], as required 2) Platform as a Service (PaaS)– in

this model, the cloud providers offer a computing platform which consists of operating

systems, programming language execution environments, web servers and databases.

This provides an environment for developers to create, host and deploy applications,

saving developers from managing the complexities of the infrastructures (setting up

and configuring). Examples of PaaS include Google App Engine (GAE) [84] and Sles-
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force.com [85] 3) Software as a Service (SaaS)– in this model, cloud providers install

and operate application software on the cloud and end users can access the software

from cloud clients. Examples of SaaS include Microsoft Office 365 and Dropbox.

While cloud computing brings numerous promises and benefits, it also introduces many

problems and challenges. In paper [11], the authors introduced ten prominent obstacles

that cloud computing faces, including Availability, Data Lock-in, Data Confidential-

ity and Cloud Audibility, Data Transfer Bottlenecks, Performance Unpredictability,

Scalable Storage, Bugs in Large Distributed Systems, Scaling Quickly, Reputation

Fate Sharing and Software Licensing. There are currently increasing numbers of re-

searchers dedicated to the exploration and discovery of novel but practical solutions

to overcome these issues.
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2.2 Cloud Federation

Cloud computing as a paradigm aims to provide on-demand elasticity at different

levels. Cloud federation offers the potential for the just-in-time, opportunistic, and

scalable provisioning of application services in order to achieve Quality of Service

(QoS) targets under variable workload, resource and network conditions. It can provide

support for the dynamic expansion or contraction of capabilities to handle variations

in users’ demands.

However, studies of cloud federation are relatively new in the field of cloud computing.

So far, the literatures is sparse and some of the concepts involved are yet to be clearly

established. Buyya [27] mentioned that a cloud federation must have the following

three characteristics: (1) the capacity to dynamically expand or resize resources to

fulfil incoming demand; (2) the ability to operate as part of a market directed to

resource lending; and (3)the capacity to deliver reliable services at competitive costs

and complying with established quality of service requirements.

The authors of papers [14], [88] and [60] have pointed out that federated cloud ser-

vice providers who joined together to offer more resources to their users can mitigate

problems related to lack of Service Level Agreement (SLA) compliance. Therefore, the

federated cloud can provide the following advantages: (i) performance guarantees –

by lending resources, it is possible to maintain the necessary levels of performance for

the services they render; (ii) availability guarantees – location diversity for data and

services allows the migration of services out from one cloud to another, for example

in disaster prone areas, maintaining higher availability for the client; (iii) convenience

– federation is convenient to clients as it provides a unified view of the services of

different providers; and (iv) dynamic workload distribution – geographic distribution

makes it possible to spread the load taking into account the client’s location.

Manno et al. [112] represent cloud federation as a geographically dispersed community

with the shared resources available to achieve a common object in terms of the federa-

tion’s contract. This contract includes its economic and technical aspects, defining the

policies, restrictions, standards and penalties related of cooperation. Moreover, each

cloud, which is seen as an autonomous domain, can leave the community any time as
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needed.

Consequently, a cloud federation is an inter-cloud organisation with its own inde-

pendence. It is presented as a geographically dispersed and well-defined commercial

system, composed of a set of autonomous and heterogeneous clouds with a federal

contract. It is able to offer sufficient and effective resources to meet users’ functional

requirements (typically hardware) and non-functional requirements so as to realise the

dynamic distribution of participation. To design a set of federated clouds, two issues

must be considered: interoperability and the federation model. These are looked into

in detail next.

2.2.1 Interoperability

Interoperability provides the opportunity to create a federation, as it allows systems

in the community to interact with each other. An investigation of existing clouds

shows that cloud providers offer application programming interfaces (APIs) for their

customers to interact with their cloud services, whereas there is a lack of standard

APIs fostering cloud interoperability. Thus, building mediator components among all

the interacting providers in federation is a possible solution in such a situation.

The Service Oriented Architecture (SOA) can be a lesson for providing interoperability

in a federated cloud [139]. Here, each cloud operates as a service with standard APIs,

and the communication among services is based on the remote procedure call (e.g.

REST, RMI).

2.2.2 Federation Model

The cloud federation model is becoming more popular as the cloud paradigm matures.

This section discusses four different approaches to model cloud federation which vary

in terms of business focus, internal components, the service of interest, and the target

market:

• Semantics based : A federated cloud model has been proposed in [112] based

on semantics in order to integrate heterogeneous resources which are deployed
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as services in different clouds. An specific ontology is utilised to present each

cloud as an independent instantiation. However, these instantiations can interact

within a shared resource environment. The main challenge in utilising this model

concens interoperability, which is a critical aspect of cloud federation. Therefore,

the ontology used must be able to understand and model the differences between

the various implementation schemes used by each cloud.

• Market-oriented : Buyya et al [28]. introduced a model that structures the cloud

infrastructure resources as a service market. The model includes four main com-

ponents: (1) Cloud providers: are where resources are located and services are

offered to users. (2) Cloud broker: is a middleware responsible for interaction

and operation of users and the federated Clouds. (3) Cloud coordinator: is a

located in each cloud responsible for maintaining and managing the federated

community. (4) Concentrator: prices the resources and acts as the market mech-

anism.

• Reservoir : this model aims to provide the cloud resources as an utility analogous

to electricity [148] [126]. In this model, a number of cloud providers offer com-

puting resources, which are consumed and made available as a commodity by

a distributor. Users interact with the distributor to access the resources. This

eliminates limitations such as the lack of interoperability, the difficulties that

small providers have in providing scalability, and the lack of support for business

service management (an approach which is used to manage business IT services)

[151].

• Service-layers-oriented : It has been proposed [140] that layered cloud services

(Saas, PaaS and IaaS) can leverage multiple independent clouds by creating

a federation. The authors mentioned that the federation of clouds should be

isolated into identical layers - each of which has a broker, and which offers a

different service to meet user requirements. For example, a SaaS broker is mainly

based on the users’ requirements and Service Level Agreements (SLA) between

different cloud providers. Meanwhile a PaaS broker is mainly based on the

application’s requirements in terms of deployment (e.g. compilation framework)
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and runtime support (e.g. libraries), and an IaaS broker is mainly based on

combining different types of resources such as VMs (with different cpu, ram and

storage space etc) from different locations.
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2.3 Scientific Workflow Systems

Scientific researchers now run increasingly complex, data-intensive simulations and

analyses and there is a corresponding increase in the use by scientific communities of

workflow technologies to manage this complexity [135]. Workflows are used to schedule

computing tasks on shared resources, manage dependencies among tasks, and stage

datasets in and out of execution sites.

The workflow life cycle can be classified in four areas [45]: composition, mapping,

execution and provenance. The following sections, focus on these four phases and give

a general taxonomy of scientific workflow.

2.3.1 Workflow Composition

The workflow allows users to represent the steps and dependencies required for a

desired analysis. In some cases workflows are designed by representing both the com-

putational steps and the data flows. In other cases, the composition is split into two

levels: one an abstract level describing the high-level workflow, and the other con-

sists of instances of the abstract level with actual data [81]. According to the existing

literature, current methods for composing workflows can be categorised as follows.

• Textual workflow editing : these are workflow systems that can be composed

by using a particular workflow language through a plain text editor. For the

scientific workflow, the script is usually generated by a high-level language such

as Python or Ruby which generate the lower-level workflow primitives. For

example, the workflows in Pegasus [47] are represented in a form of a Directed

Acyclic Graph in XML format (DAX), and DAX can be generated by any type

of scripting language.

• Graphical workflow editing : workflow systems provide a graphical tool for creat-

ing workflows. This can simplify the lives of scientific users. However, graphical

renderings are only feasible for small workflows with fewer than a dozen tasks.

To solve this problem, most graphical tools such as Kepler [9], Triana [134] and
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Vistrails [33] allow some form of graphical nesting based on sub-workflow hier-

archies.

• Semantic composition of a workflow provides an approach to represent and reason

about workflows and their components so that [69]:

– workflow templates and instances are semantic objects

– data collections are specified with intensional descriptions in work-

flow templates and extensional descriptions in workflow instances

– intensional descriptions of node collections that offer appropriate

abstractions for the repetitive structure of the workflows

Therefore, scientists must not only to describe the constraints of control flow,

but also those of the involved tasks in order to enable a workflow engine to dis-

cover concrete services during runtime. Furthermore, the description of existing

services with semantics for discovery, selection, invocation and composition is

also necessary. A typical semantic workflow system such as Wings [68] combines

semantic representations of workflow components with the formal properties of

correct workflows with the assistance of artificial intelligence planning techniques

[67].

2.3.2 Mapping a Workflow to Computational Resources

A workflow describes the process flow of a scientific analysis, and this then needs

to be mapped to computing resources. This can be performed by the user in some

cases, but can also be done by the workflow system directly. Even in the latter case,

users may also be able to direct the distribution of their workflow to target execution

environments through low-level commands. Therefore, depending on the execution

model, the mapping consists of finding and binding the execution resources for the

high-level tasks or applications to meet functional or non-functional requirements.

In general, resources are represented as computing resources, such as Cloud, High

performance computer (HPC) or workstation. However, workflow systems have a

different meaning regarding the concept of resource, which can even be a person; for
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example, where a step of a workflow requires a scientist to verify the correctness of

the processing. In other cases, the resources may be a required application that is

deployed, requiring the outputs of the application as inputs.

Mapping the workflow onto available resources needs a broker to schedule jobs or tasks

to the resources. Brokers may be external or internal. The external broker is not in-

cluded as part of the workflow system. For example, P-GRADE [94] uses DAGMan

to control the node dependencies of the workflow graph and provides interfaces to

support other brokers, such as GTBroker [95], LHC-Broker [61], and gLite-broker [34],

to schedule the workflow onto execution environments. Another type of brokers are

included in the workflow system, such as Trinan and Karajan[64], and these supports

the dynamic binding of their workflow tasks or services to resources. These two types

of broker both support the mapping of a workflow to multiple distributed resources

in order to simplify the orchestration process for distributed execution. The former

is more flexible than the latter, and can support different workflow systems, and the

distribution of their tasks to computing resources. However, to support different work-

flow systems, the workflow APIs need to be bound with a broker, which may make

the broker too complicated, and this may therefore impacting on the usage.

Adam Barker et al. [20] have proposed a MultiAgent Protocol (MAP) to a capture

scientific process. This allows a scientific workflow to be executed in an agent-based,

decentralised, peer-to-peer architecture. A Large Synoptic Survey Telescope (LSST)

was used to demonstrate how the agent-based approach is helpful to classify previously

unknown objects. Each agent taking part in the interaction adopts a role, according

to which the agent refers to a reasoning Web Service that implements all the decision

procedures required for that role type.

2.3.3 Workflow Execution

Workflows are executed through the workflow execution engine and the enactment sub-

system. Pegasus and Askalon can distribute their tasks or services to remote resources,

and use a workflow engine (such as DAGMan) for the execution of jobs. Besides these,

the Java CoG kit [4] supports hierarchical workflows based on GAGs. This design

allows each subsystem to be submitted to different resources to achieve scalability.
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Scalability has been demonstrated by scaling hundreds of thousands of jobs.

2.3.4 Provenance

Provenance in workflow means the provenance of data, which records the history of

the creation of a data object. It includes the chain/graph of processes such as the time

stamp, program version number, component or service version number, execution host

and library versions, etc, as well as intermediate data products back to the source data

used to initialise the workflow.

For the scientific workflow, data provenance gives users the capacity to reproduce and

verify the results, which is a crucial component of the scientific method. Furthermore,

it also has benefits for the workflow optimisation. For example, based on the execution

logs of a workflow, the makespam of this workflow can be optimised.

Data provenance is also required for transformed workflow execution; where for ex-

ample, the inputs of a workflow are the outputs of the components of the executed

workflow. Therefore by tracking the provenance of the executed workflow, the outputs

can be reused immediately.

However, the challenges facing data provenance is that a workflow system needs differ-

ent ways to record provenance information in order to interact with various workflow

systems. Some systems use internal structures to manage provenance information,

while others rely on external services which can be very generic.

Triana, for example, has its own internal format to record provenance information and

also to interact with external services [37]. Karma [130] is a provenance system for

representing large independent workflow. It can gather data from various workflow sys-

tems in several different ways, and provides a searchable database of data provenance

that has extensive capabilities for formulating data provenance queries.
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2.4 Deploying Workflow Systems on the Cloud

The previous section, we has described how the workflow has to be mapped to the

execution environments to complete the process. As the cloud becomes an attractive

host for computing resources, workflow systems are increasingly being moved into the

cloud. Before introducing the deployment of cloud workflow systems, some tools which

can automatically provision cloud resources, which are normally virtual machines, have

to be considered.

2.4.1 Cloud Provisioning Tools

Cloud provisioning tools are designed to allow the automagical setting-up of VM.

Eucalyptus [3] is designed to be an open-source answer to the commercial EC2 cloud.

It saves users from having to deal with complex underlying systems by asking users

to set the size of available processors, memory and hard drive space, and then the

VMs can be automatically set up. Furthermore, Eucalyptus also provides software

configuration, distributed storage system and network configuration to enable users to

easily maintain and manage their Amazon VMs.

OpenNebula [1] permits a huge amount of customisability. It exposes more of the

underlying features of libvirt to cloud users and administrators. For example, it pro-

vides a shared file system for all disk images and all files for running OpenNebula

functions. To initialise a VM, users have to provide a configuration file containing

parameters which will be fed into the VM command line, allowing the configuration

of any required resources such as memory, processors, networks, disk space and so on.

Furthermore, OpenNebula is suitable for researchers in computer science who wish to

conduct experiments combining cloud systems with other technologies.

Nimbus [7] is affiliated to the Globus project, which is used as a disk image repository

on GridFTP (one of the Globus projects). There are some customisations available

in Nimbus, yet it is different from OpenNebula. In Nimbus the customisations are

mostly open exclusively to the administrator, and the underlying technical details

of VM creation are more protected. Moreover, among these three tools, Nimbus is
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the one which pays most attention to capacity optimisation. It gives different users

different lease limits of hiding VMs, so Nimbus needs the support of scheduling. After

Cloud resources have been provisioned by the tools either automatically or manually,

scientific workflow systems can be deployed and executed on the Clouds. The following

section, reviews existing research on how to deploy workflows on Clouds.

2.4.2 Deployment of Cloud Workflow Systems

Aneka [138] is a cloud platform for .NET applications. The Gridbus workflow man-

agement system was used in this platform to represent and maintain workflows, Aneka

can also be used to distribute jobs to a cloud federation.

Galaxy [104] is one of the most widely used scientific workflow management systems.

It is an open-source web portal platform, addressing the problem of accessibility, repro-

ducibility and transparency. The system aggregates bioinformatics tools and connects

them in pipelines. Galaxy consists of three aspects: computational analysis, publish-

ing workflow and sharing data, and extending researcher tools with the help of system

deployment. The Galaxy workflow system has been developed by adding a number

of tools to achieve data management capabilities, domain specific analyses, automatic

deployment on the cloud, and support for validating the correctness of workflows. The

automatic deployment of Galaxy on the cloud is achieved by using a Globus Provision-

based method [10], which is a tool for automatically deploying distributed computing

system.

Madduri et.al [109] demonstrated how to use Globus to deploy Galaxy on EC2. The

Globus Online file transfer system is used to transfer the data from remote sequencing

centre or database, and the On-demand computing resources were provided by Amazon

EC2 via the Globus provision cloud manager.

PRECIP (Pegasus Repeatable Experiments for the Cloud in Python) [18] plays the role

of a management API to support cloud interoperability, whereby researchers can run

their experiments across multiple clouds. Furthermore, this tool allows experiments

to be automatically logged and reproduced, and it provides a simple way to maintain

computing resources and basic fault tolerant mechanisms.
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Vockler et al. [141] has demonstrated how to execute a scientific workflow application

in a set of clouds. Firstly, well-configured workflow execution environments which are

deployed over a set of clouds can be prepared either by hand or some automated tools

such as Nimbus Context Broker [92], Wrangler [91] and others. Secondly, Pegasus

analyses the abstract workflow and maps them onto the available resources. The

Workflow is executed by using DAGMan to add the executable workflow to a Condor

queue, and then Condor sends the jobs to the available Condor workers (the available

clouds). Finally, the cloud resources are released either manually or by using tools

after the workflow execution was finished.

CloudDragon [157] is a cloud platform based on OpenNebula that can be integrated

with a scientific workflow management system, automating scientific analysis and dis-

covery on clouds. Furthermore, the platform provides a set of approaches to recycle

cloud virtual machine instances and improves the efficiency of the integration between

the workflow system and clouds.

- 22 -



Chapter 2: Literature review

2.5 Workflow Deployment Optimisation

Deployment optimisation is an activity that takes into account the requirements of

the software to be deployed along with the resources of the target environment on

which the software will be executed, and decides on the details of implementation and

how and where the software will be run in that environment [119]. Therefore, through

optimisation, the workflow deployment or execution can lead to: (1) reduction of

monetary costs and execution makespan (execution time), (2) increase in the security

and reliability, (3) improvement in QoS, (4) improvement in resource utilisation. Paper

[100] shows that by using MER (Maximum Effective Reduction) algorithm, resource

consumption can be reduced by 54% but only increasing makespan by 10%.

2.5.1 Financial Cost-driven Workflow Deployment

Cloud computing provides a pay-as-you-go model. Therefore, in terms of cloud providers,

the pricing should be well-defined in order to attract users and save their operation

costs. Meanwhile users want to use the least money to meet their requirements (such

as performance). This thesis attempts to investigate a framework for the optimisation

of workflow deployment, it therefore, existing studies attempting to minimise workflow

execution cost in cloud computing are reviewed as follows.

2.5.1.1 Single Cloud

Microsoft Azure provides various VMs at different prices, but in general the more

powerful VMs are more expensive. However, the most powerful VM may not meet the

performance requirements for executing a scientific workflow. Therefore, distributing

the workflows (or tasks of a workflow) over different VMs can increase the execution

performance and reduce the monetary cost (if possible). These studies discussed bellow

aimed to optimise the cost of execution through scheduling workflows (or tasks of a

workflow) over a set of VMs within a single cloud provider.

Zhou and He in [160] introduced a workflow optimisation algorithm to minimise the

cost of running a workflow on the cloud while guaranteeing a deadline. The optimisa-

tion was achieved by modifying the structure of the workflow. For example, executing
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two parallel tasks at the same time usually requires hiring two VMs. However, if these

two tasks are running on more powerful VMs in sequence, it may cheaper and faster

than running them in parallel.

Mao et al, in [113] applied an “auto-scaling” mechanism to assign tasks to the cost-

efficient VMs in order to meet the deadline and minimise the monetary cost.

The authors of another study [30], they first described an Integer Linear programming

(ILP) model to represent the optimisation problem in terms of referring to cost and

performance. Next, forward and backward scheduling methods were applied to allocate

the tasks of the target workflow to VMs based on the results generated from the ILP

model.

In [120] and [76], the authors have presented a heuristic algorithm based on particle

swarm optimisation (PSO) to optimise execution time (including data transfer and

processing time) and the monetary cost of workflow processing on a cloud.

Byun et al.[29] developed the Partitioned Balanced Time Scheduling (PBTS) algorithm

for cost optimisation and deadline constrains in the execution of a workflow on a cloud.

The cost is reduced by minimising the number of VMs hired through partitioning the

tasks into different groups.

Montage [44] users often need several workflows with different parameters to gener-

ate a set of image mosaics that can be combined into a single, large mosaic. The

Galactic Plane ensemble [6], which generates several mosaics at different wavelengths,

consists of 17 workflows each of which contains 900 sub-workflows. The workflows or

sub-workflows also have dependencies to each other, for example, where a workflow’s

outputs are the inputs of another workflow. Therefore, maximising the number of

completed workflows from an ensemble under both budget and deadline constraints is

also a very important research problem.

DPDS (dynamic provisioning dynamic scheduling) and SPSS (static provisioning static

scheduling) algorithms have been introduced to solve this problem [110] [111]. The

DPDS is an online scheduling algorithm which is based on resource utilisation to

adjust the numbers of VMs according to how well they are utilised by the workflows.

A priority queue was used to store workflows which are ready to execute, therefore
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distributing the workflows from the queue to idle VMs. Otherwise, if there are not

VMs available, new VMs will be created for the workflows in the queue. Moreover, if

the queue is empty but there are idle VMs, these should be shut down. However, the

SPSS aims to prevent over provisioning. The algorithm always prefers to extend the

runtime of existing VMs before allocating new VMs, so that a new VM is created only

when the tasks cannot be finished within their deadlines.

Single cloud workflow deployment reduces the diversity of cloud computing resources.

Even a transnational corporation, playing role of cloud provider cannot provider most

types of clouds, especially at the level of SaaS. This thesis therefore attempts to provide

solutions for federated clouds to obtain the great benefits of Multiple Clouds in terms

of the diversity of different clouds.

2.5.1.2 Multiple Clouds

As discussed in section 2.2, the clouds involved in optimisation problems may have

different characteristics. Therefore, users can minimise their workflow execution costs

and meet other non-functional requirements by distributing work to different clouds

(from different providers). Compared with a single cloud, multiple clouds have more

types of computing resources, but also bring communication costs for transferring

data from one cloud to another. Microsoft Azure [5], for example, charges users for

downloading data from the cloud. This section reviews the studies that have deployed

workflows over federated clouds to minimise the financial costs.

Kllapi et al. [97] modelled execution of the workflows (dataflows) and the monetary

cost of running workflows over clouds. Furthermore, a set of state-of-the art scheduling

algorithms were studied and adapted to optimise monetary cost and performance.

In another study [25], an algorithm was in introduced that schedules workflow appli-

cations in hybrid clouds composed of a public cloud and a private cloud. The public

cloud has more high-performance computing resources but charges for their use. The

private cloud is owned by the users and it was assume that this can be utilised with-

out any cost. The algorithm first schedules the whole workflow to the private cloud.

However, if this cannot meet the deadline, the public cloud is considered. The Ptah

Clustering Heuristic (PCH) [24] is used to generate the execution order of each task.
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Next, a cost model, including computation and communication costs, helps to set the

priorities of each task. Finally, the tasks are rescheduled onto the public cloud to meet

the deadline, with three rescheduling policies designed to minimise the cost.

In a similar study [82], the private cloud (the user’s own machines) was also assumed to

be a free computing resource, yet with limited computing power. A public cloud such

as Amazon EC2 can meet the users’ performance requirements, but the cost still needs

to be minimised. A framework, called PANDA (PAreto Near optimal Deterministic

Approximation) was designed to schedule a workflow across both public and private

clouds with the best trade-off between performance; hence, Pareto-optimality. For

example, if a schedule σ is dominated by schedule σ′, where the values of both of

cost and time metrics are worse than or equal to σ′ and strictly worse in at least one

criterion, therefore a schedule σ∗ which is not dominated by any other schedule is

Pareto-optimal.

Subsequent studies [57] and [56] introduced a Pareto-based algorithm to make the best

deployment decision for the two trade-off dimensions of cost and performance. This

algorithm firstly lists K trade-off solutions, and then applies a crowding distance [42]

method to choose the solution with the highest crowding distances.

In a commercial multi-cloud environment, individual providers focuse on increasing

their own revenue regardless of the utility for users and other providers. Therefore, the

information provided by cloud providers may not be fully trustworthy. For example,

one study [137] found that scalability perform once is not enhanced with cloud virtual

machines by increasing the numbers of virtual cores. Fard et al [59] introduced a

pricing model and truthful mechanism for scheduling workflows to different clouds,

taking into consideration monetary cost and completion time. In order to solve the

trade-off between cost and performance, a Pareto-optimal solution was adapted in the

scheduling algorithm.

Relevant research focuses on how to solve trade-offs between monetary cost and per-

formance in the execution of workflows over multiple clouds. However, realistic tools

which apply optimisation algorithms to partition workflows over federated clouds are

lacking. Thus, this thesis is the first study which develops a cloud broker taking into

consideration security issues to partition workflows over different clouds.
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2.5.2 Security-driven Workflow Deployment

Cloud resources can be offered by more than one provider, and even a single one

provider may also want to diversify its offerings. For example, Microsoft Azure provides

both private Clouds and public Clouds according to the security levels. The private

cloud is considered to be more secure than the public cloud, as it is hosted on a share-

nothing server architecture and access is by VPN (virtual private network). Therefore,

the user can increase the security of their application by deploying the components of

the workflow on more secure resources, e.g. by allocating sensitive components to the

high security cloud with more expensive resource, and vice versa.

Mace et al. in [108] explored the current information security issue with the public

cloud and provided general security solutions to choose what workflows or subsets of

workflows can be executed in a public cloud, while meeting the security requirements.

The Bell-LaPadula security model [21] has applied to partition workflow based applica-

tions over a federated cloud to meet the security requirements [143] and [146]. Firstly,

the components of the workflow and clouds were assigned with security levels. Next,

the workflow was mapped to a set of clouds to meet the security requirements. Con-

sequently, the cheapest mapping was explored using various optimisation algorithms.

Goettelmann et al. [70] applied the same security model to map a workflow application

over a federated Clouds, but they focused on minimising the communication cost to

increase the reliability of their system.

A task priority mechanism has been introduced to rank the security priority of tasks

[150]. Scheduling was driven by the priority ranking to achieve the highly secure

deployment of an application in a heterogeneous distributed system. In addition, min-

imising the makespan of the workflow execution was also considered in the scheduling

algorithm.

The SABA (Security-Aware and Budget-Aware workflow scheduling strategy)[154]

provided a static workflow deployment solution over multiple clouds for optimising

security, makespan and monetary cost. The optimisation in this work was based on

a heuristic list which ranks the priority of each task of the workflow by using a nor-

malisation function. Therefore, each task was scheduled onto the clouds based on its
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priority.

Another model has been proposed [106] which distributes a scientific workflow to clouds

based on the security levels of intermediate data in the tasks (including inputs and

outputs). Firstly, the security of the datacenter and data were measured, based on

confidentiality, integrity and authentication. An ACO (ant colony optimisation)-based

algorithm was used to dynamically map the workflow to clouds (data centres).

In another study, a decentralised workflow system was introduced [15] to solve perfor-

mance bottlenecks, and a Chinese Wall Security Model was applied to the decentralised

workflow environment in order to resolve the conflict-of-interest problems.

To increase the security of the cloud, most efforts focus on the cloud provider side by

upgrading hardware, software of data centres, in order to provider more secure cloud.

However, in this thesis a method is proposed which increases the security by deploying

workflow over different clouds.

2.5.3 Reliability-driven Workflow Deployment

Node and network failure can have a detrimental impact on workflow performance.

Therefore, a distributed workflow mapping algorithm which takes into reliability con-

sideration is highly desirable to avoid or reduce the workflow execution failures.

One study [75] introduced the problem of mapping distributed workflows onto system

where nodes and links are subject to probabilistic failures. Throughput and reliabil-

ity was considered within the mapping problem, and a decentralised layer-oriented

method was proposed to handle the high throughput of data flows while satisfying a

pre-specified overall failure limit. An extension of the LDP(Layer-oriented Dynamic

Programming) workflow mapping algorithm [74] was used to minimise the transfer-

ring time at global bottleneck links through a distributed manner under a reliability

constraint.

Assayad et al. [13] attempted to explore the trade-off between reliability, power con-

sumption and execution time. A heuristic scheduling algorithm was designed, which

obtained the Pareto front of each object, and then approached two pre-defined con-

straints of two objects such as reliability and power consumption respectively and
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finally minimised execution time.

To reduce the effect of failures on an application executing on a failure-prone system,

an algorithm has been proposed [52] which not only minimise the execution time but

also considers the probability of the failure of the application when deploying the

workflow over distributed environments. Both execution time and reliability rate are

taken into account in one cost function, and then this function is optimised to find the

best deployment solution.

Similarly, a BSA(Bi-Objective Scheduling Algorithm) [79] can quickly make a de-

ployment decision for a workflow over heterogenous distributed computing systems,

considering performance and reliability via a bi-objective compromise function. This

function includes two steps. Firstly, the minimal solutions for both reliability and

performance of each task are generated, and next, a weight parameter θ is used to

privilege one of the objectives.

Dongarra et al. [53] introduced a pareto curve-based algorithm to optimise makespan

and the reliability of workflow execution. The algorithm firstly generated the pareto-

front of reliability for each task of a target workflow, without considering the order

of the tasks. Next, based on the pareto-front, the makespan was refined to meet

the time constraint M for each task, and record the computing resources. Finally, a

solution was generated based on the recording, maximising the reliability and meeting

the makespan constraint.

Another study [142] applied a method to measure the reliability rate dynamically,

relating the time to the computing resource failure rate. In addition, a version of

genetic algorithm was developed to optimise both the makespan and reliability of a

workflow application.

Cao and Zhu [35] attempted to optimise the reliability and performance in a distributed

workflow system, in which the measure of reliability includes the communication link

and computing resources. A method was designed to combine iterative critical path

search and Layer-based priority assigning techniques (CPL) to minimise the end-to-

end delay (EED) by focusing on the optimal allocation of tasks on the critical path.

Then a refinement method was applied to the tasks which were not on the critical
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path, so as to increase the reliability of the whole system.

In paper [105], the authors proposed an approach to the optimise the performance and

reliability of scheduling workflow systems over clouds. Like BSA [79], the Pareto fronts

were generated as two vectors as step one. However, they extended the Euclidean

Distance [50] to define distance between the two vectors, in order to function two

objectives. Therefore, the optimal solution can be found based on the function.

Fault Tolerance

Another way to increase the reliability of workflow deployment is by introducing meth-

ods to add fault tolerance. Ideally, this should avoid reproducing and redeploying the

entire workflow when nodes or links fail during execution.

AHEFT [152] is a rescheduling algorithm based on [136]. It was used to handle the grid

environment changes such as computing node failures, and supports the resumption of

unfinished executions. A workflow was initially planned and executed over distributed

computing resources, minimising the makespan. When the availability of resources is

changed, a new schedule is generated based on the current computing resources and

unfinished tasks, aiming to maximise the performance.

VgrADS [123] is a tool that enables the execution of a workflow over multiple comput-

ing resources such as clouds and Grids. Furthermore, fault tolerance techniques were

added to increase the probability of success for each workflow task. The fault tolerance

techniques analyse the initial mapping of the workflow, determine the mapping of the

replicated tasks on the available slots and return the mapping to the planner. The

replicated tasks are selected based on the predicted failure rate of each tasks of in the

initial mapping.

QAFT [161] is a fault-tolerant scheduling algorithm that can tolerate permanent fail-

ures of one node in a heterogeneous cluster, during real-time tasks with QoS require-

ments. The fault-tolerant model extended the conventional primary-backup tolerant

model[122] through scheduling two copies of a task on two different resources. This

increases the success of the execution and can also verify correctness by comparing

two versions of the results. Based on the fault-tolerant model, a reliability model can

be used to quantitatively evaluate the system’s level of fault tolerance.
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AhmedIbrahim et al. in [127], introduced a robust mechanism (called AGS) which

can detect resource failures and continue to offer functionality. A mobile agent model

was used to decentralise the workflow execution and enhance the resource discovery

and monitoring processes. Once a mobile agent has detected a failure in a computing

resource, the agent and the tasks which were assigned to this failed resource should be

migrated to another computing resource through ITT (in advance Task Transmission).

Workflow execution can then be resumed.

Most relevant research uses the power method to measure the reliability of workflow

deployment. However, this can only guarantee the reliability of the whole workflow,

whereas a more advantageous entropy-based method is introduced and utilised in this

thesis.

2.5.4 Performance-driven Workflow Deployment

To minimise the makespan of workflow execution is the most explored aim in workflow

optimisation. For scientific workflows, execution performance is the most important

issue and how to maximise performance in the presence of constraints has been thor-

oughly investigated. In HPC (high performance computing), researchers aim to scale

execution by paralleling tasks and distributing them to multiple computing resources.

However, with the pay-as-you-go model of cloud computing, users are considering how

to maximise the utilisation of the resources they have been paid for. Different algo-

rithms or techniques proposed to optimise the workflow execution performance are

now investigated.

It has been shown [137] that cloud environments are very dynamic, especially in terms

of fluctuations in the level of performance delivered. For example, it was found that

the scalability of cloud virtual machine will not increase by increasing the number of

virtual cores above a certain limits. In another study [32] an algorithm was proposed

that uses the idle time of provisioned resources and surplus budget to replicate tasks

so as to increase the likelihood of meeting deadlines. At the same time, the economic

cost of execution can also be minimised by carefully planning the provision of VMs.

Although authors [102] was investigating a bag-of-tasks application which consists of

a large number of independent tasks, the optimisation method developed can also
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be adapted to workflow applications. The cloud resources were assumed to be more

reliable than grid resources for completing a job. The workflow was initially scheduled

over grid resources, but if there is a delayed task and it impacts on meeting deadlines,

this task will be rescheduled to a cloud.

A utility function-based method has also been used [99] to minimise the sum of the

execution times for a set of workflows. Here the workflow execution was described

as an optimisation problem for the utility function. Then, the authors attempted to

uncover the space of possible assignments to maximise utility for limited computing

resources.

ADOS (adaptive dual objective scheduling)[101] has been adapted to dynamically

manage performance when changes resources occur. Firstly, a workflow was initially

assigned to the resources by a method based on a branch-and-bound technique and a

genetic operator, in order to minimise makespan and maximise resource usage. Next,

a rescheduling event was triggered if a job finished later than expected and the delay

completion resulted in an increase in the overall application completion time.

Zhang et all. [156] proposed a hybrid re-scheduling mechanism, and the reschedul-

ing algorithm used is similar to AHEFT. However, the authors considered only the

communication costs. This is because migrating some tasks to new resources may sig-

nificantly increase these costs, thereby reducing the performance. Using a model that

combines performance and communication costs, the potential penalty of excessive

extra communication costs can be avoided.

Other authors [132] have introduced a taxonomy of grid workflow scheduling policies

based on the amount of dynamic information used in the scheduling process. Seven

dynamic workflow scheduling policies were applied to assign workflow tasks to multiple

computing resources, including Round Robin [47], Single Clusters, AllCluster File-

Aware, Coarsening, Cluster minimisation and HEFT. After analysing the performance

of these scheduling policies, it was found that no single policy gave good performance

across all the scenarios investigated. Another finding was that the limitations of the

head-nodes of the grid clusters may lead to performance loss.

Another study [107] first systematically investigated a general exception handling

- 32 -



Chapter 2: Literature review

framework for the automatic and cost-effective (including monetary cost and time

overheads) handling of temporal violations in scientific workflow systems. The frame-

work included several levels of predefined fine-grained temporal violations and a set

of corresponding handling strategies were required. The higher the level of temporal

violation, the more computing resources were required to recover the time deficit in

order to guarantee a deadline was met.

A dynamic task rearrangement and rescheduling algorithm has been described which

exploits the scheduling flexibility from precedence constraints among tasks [38]. This

algorithm aims to deal with the delay arising from inaccuracy in performance informa-

tion from previous execution logs in multiple workflows. If a delay in one of the work-

flow executions impacts on the execution performance of other workflows, the tasks

in other workflow applications are rearranged. For dynamically rearranging tasks to

other resources, a dynamic search tree-based algorithm was developed to rearrange the

matches along an augmenting path to replace the edges that have not been processed.

Performance optimisation is one the most important branches of workflow optimisation

research either in Grid computing, or cloud computing. In cloud computing well-

defined pricing has brought a new and interesting challenge for researchers concerning

how to solve the trade off between performance and monetary cost. However, this

thesis does not tackle the issue of performance in optimisation problems. This will be

investigated in the future.

2.5.5 Data Aware-driven Workflow Deployment

The data used in scientific workflows are often intensive and distributed geographically,

published by scientists from a range of different institutions. Therefore, the movement

of data becomes a challenge in situations where tasks need to process data from differ-

ent data centres. Even if the application data can be moved to the task, moving data

from one cloud to another can bring large performance and monetary costs, especially

if the volume of data is large. There can also be implications in moving sensitive data

to a cloud that is not sufficiently secured. The following, discussion considers using

data awareness to improve workflow execution.
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The High Performance Computing (HPC) community is currently trying to understand

how to design or adapt applications to be able to exploit heterogeneous multicore ar-

chitectures such as multi-GPU clusters. In order to optimise performance, superfluous

data transfers should be avoided. Therefore, an asynchronously policy has been intro-

duced [16] to minimise the impact of communications on computations. This policy

decides whether or not it is worth moving data. The time required to process data is

estimated, and then a pre-fetch mechanism is designed to transfer input data in the

background while the previous tasks are still being executed.

In distributed cloud workflows, large amounts of data may need to be stored in different

data centres. Yuan et al. [153] proposed a matrix-based k-means clustering strategy

for data placement in scientific workflows. This attempted to schedule the tasks to the

date centre that holds the most datasets in order to minimise the total data movement

during the initial scheduling. During workflow execution, data was pre-allocated to

data centres to reduce the waiting time. In addition, logs of the intermediate data

produced by each task in a workflow were studied. Therefore, the cost of generating

and storing intermediate data can be predicted. The authors attempted to optimise

costs by deciding whether an intermediate dataset should be stored or deleted.

ADAS(adaptive data-aware scheduling) was developed to scale workflow execution

over multi-clouds through increasing parallelisation opportunities [155]. Firstly, the

dependencies between tasks were analysed and partitioned into different data-centres,

increasing the parallelisation of execution. At runtime, dynamic data movement was

overlapped with task execution so as to reduce the waiting time required for the data.

An efficient data and task co-scheduling strategy has also been proposed [49] that

can load-balance input datasets and group the most inter-related datasets and tasks

together. This was achieved by using the k-means clustering method that is based on

analysing the catalogue of dependencies. Moreover, data staging is used to overlap

task execution with data transmission in order to shorten the starting time of tasks.

Barker et al. [19] proposed a service-oriented architecture which facilitates the combi-

nation of an orchestration model and a choreography model to optimise data transport

in workflow execution. This architecture avoids unnecessary data transfer, in order to

solve the problem of the engine becoming a bottleneck when executing a workflow.
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FlexIO [158] is a tool (middleware) with simple abstractions and diverse data move-

ment methods for coupling simulation and analytics. Data-aware scheduling policies

can be exploited and it can also cooperate with the workflow enactment engine to

optimise workflow execution.

2.5.6 Multi-objective Resource Allocation for Workflow De-
ployment

Large-scale distributed computing resources such as clouds enable a variety of geo-

graphically dispersed resources to be interconnected and shared. In deciding how to

do this, we may be faced with a set of potentially conflicting objectives such as mone-

tary cost, performance, reliability, security and so on. Previous sections have discussed

existing approaches that optimise one or two objectives, but what if there is the need to

optimise an arbitrary number of objectives at the same time? The two most common

approaches are: (1) to linearise the problem by assigning weights to the criteria and

then optimising the weighted sum, (2) to optimise one criterion and keep the others

constrained within predefined thresholds. The following discussion explores existing

methods for optimising multiple objectives.

Szabo and Kroeger proposed a method to optimise makespan, communication over-

head and monetary cost [133]. Two types of chromosome were used to represent the

allocation and execution order of each task. Obviously there is a trade-off between

execution performance, communication overhead and monetary cost. To handle this,

the NSGA-II algorithm [43] was used to optimise both the allocation and ordering

strategies simultaneously. Therefore, the evaluation method returns three-dimensional

arrays referring to the communication overhead, makespan and financial cost. A linear

equation was designed to include the three objects and then to minimise the equation.

Another study [131] presented a hybrid PSO algorithm to maximise workflow execution

performance, and to minimise the monetary cost and energy consumption. The Pareto

front of both execution performance and monetary cost were firstly generated, thereby

combining them to be a candidate set. Secondly, the method finds a solution in the

candidate set which minimises energy consumption.

A generic multi-object optimisation framework has been presented [58] which is sup-
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ported by a list heuristic for scientific workflows in heterogeneous distributed com-

puting infrastructures. The framework was demonstrated to address four objectives:

makespan, economic cost, energy consumption and reliability. The makespan of each

task of a workflow was sorted in ascending order according to its lowest level. In other

words, the value of each task was the execution time from the given task until the last

task through the longest path. Then, a resource was selected for each task by using

the Euclidean distance corresponding to the longest weighted distance. Furthermore,

a method (called schedw) was used to improve the selection, which is a Pareto optimal.

Jrad et al.[89] proposed a cloud broker to a schedule larger scientific workflow over

federated clouds to match the QoS and cost requirements. To optimise the objects, a

quasi-linear utility function [98] was applied, including user preferences for QoS and

monetary cost. Therefore, the monetary cost can be minimised based on the set of the

preference values of QoS.

Security is also an important part of QoS, but none of the work mentions above

considers security along with other QoS factors to optimise the deployment of workflow

application over federated clouds. This thesis therefore takes reliability, security, and

monetary cost into account while optimising deployment.

2.6 Conclusion

Deploying workflow applications over clouds are usually aims to meet functional re-

quirements such as specific execution environments. In real-world scenarios, non-

functional requirements such as performance, security, reliability and monetary cost

also significantly influence workflow execution. Most current work in cloud computing

focuses on improving the infrastructure to meet users’ functional requirements, but

very few researchers have considered partitioning workflow applications over different

type of clouds in order to meet non-functional requirements.

Although some studies have investigated how to make the best deployment decisions

to solve trade-off problem between performance and the monetary cost, few consider

reliability and security. In sections 2.5.2 and 2.5.3, research has been discussed which

tried to improve the security and reliability of workflow execution by scheduling a
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workflow over different computing resources. However, most of these studies focus on

single cloud or Grid computing.

Moreover, most of the work required is designed specifically for a typical type of

workflow, whereas this thesis explores a generic framework for partitioning a scientific

workflow over federated clouds to meet non-functional requirements.

- 37 -



Chapter 2: Literature review

- 38 -



3
Dynamic Exception Handling for
Partitioned Workflows running

on Federated Clouds

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Representing Security Requirements . . . . . . . . . . . . . . . 42

3.2.2 Valid Deployment Options . . . . . . . . . . . . . . . . . . . . . 43

3.3 Dependable Multiparty Interaction Framework . . . . . . . . 45

3.3.1 DMI Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Integrating DMI with the Workflow Partitions . . . . . . . . . 46

3.3.3 Extension to Clouds . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Exception Handler . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Handling Exceptions . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 Example of Exception Handling . . . . . . . . . . . . . . . . . . 50

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 Testing the Exception Handler . . . . . . . . . . . . . . . . . . 58

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

- 39 -



Chapter 3: Dynamic Exception Handling for Partitioned Workflows running on
Federated Clouds

Summary

This chapter introduces a new automatic method for dynamically partitioning applica-

tions across a set of clouds in an environment in which clouds can fail during workflow

execution. The method deals with exceptions that occur when clouds fail, and selects

the best way to repartition the workflow whilst still meeting security requirements.

This avoids the need for developers to have to code ad-hoc solutions to address cloud

failure, or simply accepting that an application will fail when a cloud fails.

3.1 Introduction

Cloud computing can provide cheap scalable storage and processing on demand in a

wide range of domains. It is becoming increasingly important in both business and

scientific research. Furthermore, as discussed in chapter 2, cloud federation provides

the possibility to meet security and dependability requirements, with work allocated

to clouds based on security levels and data replicated across clouds to meet availability

needs.

Cloud security is one of the key issues affecting decisions on which applications should

be deployed in the cloud. The influential Berkeley report [12] placed data confiden-

tiality and auditability high on the list of concerns that may deter organisations from

moving to or creating applications in the cloud. Using a federated clouds is one way

to address security concerns. For example, some organisations combine their internal

clouds (private cloud) with an external, public cloud such as Amazon EC2, as they

judge that the private cloud is more secure. Sensitive applications are deployed on the

private cloud, while others are deployed on a public cloud so that its scalability can

be exploited.

Dependability is also an important issue to be considered in cloud-based applications.

Individual nodes may fail during an execution, and in some extreme cases whole clouds

have been unreachable for several hours. These frequency of failures may cause huge

problems for an organisation, thus improving the dependability of cloud applications

has become a pressing issue. This chapter does not consider improving the depend-
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ability at the infrastructure level; instead it is addressed this by introducing a method

that handles failure for applications structured as workflows running over federated

clouds so as increase dependability.

A few studies have considered deploying workflows over federated clouds to meet secu-

rity requirements. One model based on the Security Alliance’s Cloud Controls Matrix

and Consensus Assessments Initiative Questionnaire has been described [23] to find

a quality cloud which will meet users’ requirements. Furthermore, as mentioned in

chapter 2, two studies [150] and [154] have considered both monetary cost and secu-

rity requirements. However, this chapter not only considers how to optimise the cost

of meeting security requirements, but also considers how to deal with exceptions when

the workflow applications are running on a set of clouds.

The remainder of this chapter is structured as follows. In section 3.2, a method

is introduced to partition a workflow application across a federated cloud to meet

security requirements. The following section then describes how to apply the DMI

model is applied to integrate with the workflow over a federated clouds. In section 3.4,

an example is given, showing the exceptions that may happen in a simple workflow

running over a federated cloud, and then is shown that the proposed method gives the

best solution is one exists for each exception. Before conclusions are draw, an example

of how the Exception Handler works for a real cloud platform is given in section 3.5.

3.2 Security Model

This section extends our previous work [143],based on the Bell-LaPadula [21] Multi-

Level Security model [36], to demonstrate how it is adapted to our system. With this

adaptation, the security levels of the clouds, data and services are incorporated to

achieve a secure deployment for the workflow over a federated cloud.

A workflow-based application consists of a set of services and data. It is modelled as

a Directed Acyclic Graph (DAG), G = (S,E), where S is the set of services, and E

is a set of dependencies between those services. Services are represented by the graph

vertices and the edges represent the dependencies between those services. Although

a workflow-based application can have several different types of dependency relation-
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ships, the present study considers the data dependency (this is the most common

dependency relationship in scientific workflow applications). In this type of depen-

dency, a data item is generated from a source service and consumed by a destination

service. For example, ei,j represents data dependency between service si and service

sj. To represent data dependencies we use a distance matrix D = [di,j] of size |S|× |S|

where a positive value of di,j indicates a dependency from si to sj as well as the size

of transmitted data. (si → sj) o denotes either D or S, and O is a set of o, noting

o ∈ O. Furthermore, C represents a set of clouds which are available for deployment.

3.2.1 Representing Security Requirements

In our security model, each service S has two security levels: “Clearance” and “Loca-

tion”. “Clearance” represents the services’ highest security level, and “Location” is the

required operation security level of the service in a specific application. The data D

and cloud C only have “Location”. l(o) and c(o) represent the security of location of

o and the clearance of o respectively.

W represents the security constants, including three rules:

• NWD “no-write-down”: denotes that a service cannot write data which has a

lower security level (required security level) than its own.

NWD(di,j , sj) =

{
true, c(sj) ≥ l(di,j)

false, Otherwise

• NRU “no-read-up”: means a service cannot read data if the data’s location

security is higher than the service’s clearance security.

NRU(si, di,j) =

{
true, l(di,j) ≥ l(si)

false, Otherwise

• SIC “security in cloud computing” (SIC): defines the location security level of a

cloud that should be greater than or equal to the location security level of any

service or data that are hosted on this cloud.
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Figure 3.1: A Smart Meter Analysis Workflow

SIC(dci,j , s
c
j) =


true, l(c) ≥ l(si)

and

l(c) ≥ l(di,j)

false, Otherwise

Where dci,j and scj represent both data di,j and service si to be deployed on cloud

c.

To show how the security model can be applied to a workflow, we have applied the

above security rules to the workflow shown in Figure 3.1. The workflow is a four

services pipeline workflow for analysing Smart Meter Data.

By apply NWD as shown in figure 3.2, the Clearance of s2 (c(s2)) must be greater

than or equal to the Location of data(s1, s2) (l(data(s1, s2))). Moreover, NRU requires

that the Location of s1 (l(s1)) must less than or equal to l(data(s1, s2)). Regarding

to SIC, the Location of cloud c (l(c)) must be greater than or equal to the location

the of data or service that have been deployed, l(s1) and l(data(s1, s2)).

Figure 3.2 shows the full picture of applying these security rules to the smart meter

analysis workflow, where arrows represent ≥ relationships and c here can be different

valid clouds for hosting the services and data.

3.2.2 Valid Deployment Options

The security levels are assigned to each o of the given workflow, as shown in Table 3.1.

For simplicity, only two levels are used: 0 (representing low security) and 1 (repre-

senting high security). Moreover, two available clouds C1 and C2, representing public

cloud and private cloud, are considered to host the workflow. The private cloud has a

higher security level than the public cloud, where l(C1) = 0 and l(C2) = 1.

- 43 -



Chapter 3: Dynamic Exception Handling for Partitioned Workflows running on
Federated Clouds

l(data(s1, s2)) l(data(s3, s4))l(data(s2, s3))c(s1) c(s2) c(s3) c(s4)

l(c) l(c) l(c)

l(s1) l(s2) l(s3) l(s1)

Figure 3.2: The security lattice for Smart Meter Analysis Workflow

Object Clearance Location
S1 1 1
S2 1 0
S3 0 0
S4 1 0

Datas1,s2 1
Datas2,s3 0
Datas3,s4 0

Table 3.1: Workflow Security Levels
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S1 S2 S3 S4
C2 C2 C1 C1
C2 C2 C2 C1
C2 C2 C1 C2
C2 C2 C2 C2

Table 3.2: Valid Options

C2 C2 C2 C2 C1 C1 C1
S1 Datas1,s2 S2 Datas2,s3 S3 Datas3,s4 S4

Table 3.3: One Option

This example includes two clouds and four services, and the total number of deploy-

ment options is 24. However, only four options meet the security requirements, as

shown in Table 3.2.

To be precise, in the first option, for example, S1 and S2 are deployed on C2, but

S3 and S4 are assigned to C1, as shown in Table 3.3. True of applying NWD to

this option, we can find c(S2) == l(Datas1,s2), c(S3) == l(Datas2,s3) and c(S4) >

l(Datas3,s4). Regarding to NRU , we also can get true based on l(Datas1,s2) ==

l(S1),l(Datas2,s3) == l(S1) and l(Datas1,s2) == l(S1). The third rule SIC gives the

true as well by l(C2) is great or equals to l(S1), l(Datas1,s2), l(S2) and l(Datas2,s3).

Moreover, we assume that put Datas2,s3 either in C2 or C1 is the same option, if it

does not violate the security rules. In the rest of the thesis, we assign the data to the

cloud as the same as its source service.

3.3 Dependable Multiparty Interaction Framework

Multiparty interaction is a mechanism that encloses multiple parties executing a set

of activities together. Zorzo and Stroud in [162] proposed a dependable multiparty

interaction (DMI) in terms of using multiparty interaction for handling concurrent

exceptions and the synchronisation of participants (all participants have to wait until

the whole interaction finishes).
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Figure 3.3: The Architecture of DMI

3.3.1 DMI Framework

The system is composed of a Manager, Role, ExternalObject and SharedObject as

shown in Figure 3.3. The Manager is responsible for monitoring of the components of

the interaction, managing the synchronisation of participants, testing the pre-and post-

condition for the interaction, and deciding upon which exception is to be handled by

the participants in the interaction. Role hosts the set of operations for the participants

of the interaction. Sharedobjects are used for cooperation between the participants.

The state of the system in and out of the interaction is carried in Externalobjects.

Therefore, there is no failure only Manager is activated for the basic interaction, and

others are used for dealing with exceptions that may be raised during the execution of

interactions.

3.3.2 Integrating DMI with the Workflow Partitions

The DMI is a distributed object-oriented programming framework. However, in the

present study is extended and adapted to integrate with distributed workflow parti-

tions.

In the adaptation, each partition is represented as a Role, and it interacts with
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Figure 3.4: DMI Exception Handing Architecture

a corresponding Manager. Furthermore, all Manager communicate with a single

ShareObject (called Exception Handler), providing the solutions to handle the excep-

tions.

Figure 3.4 shows the architecture of the DMI exception handler. Role represents the

executing partition, and the state information of the Role is passed to the correspond-

ing Manger(i) through the dedicated channel to check that the partition is running

correctly. If an exception is detected by the Manager(i), it will send an exception

notification to Role. Role is stopped and the system state is rolled back to the state

before the Role was executed.

3.3.3 Extension to Clouds

This section describes how the DMI model is applied to a workflow enactment, and

how it can be extended to a federated cloud. In the method used in a previous study

[143], a workflow is split into several partitions and deployed onto a federated cloud.

To integrate this approach with the DMI model, the DMI must monitor the cloud

states in order to ensure that each partition runs reliably. There are 3 policies that

have to be added into the Manager:

• Checking the state of the cloud hosting the partition that is the destination of a

data transfer between two partitions, before transmitting data to it.

• Checking the state of the cloud on which a partition is to be run, before the

partition starts running.
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Figure 3.5: DMI applied to partitioning

• Checking the state of the clouds hosting the currently running partitions.

Figure 3.5 shows the DMI applied to a workflow partitioned over a federated cloud.

A workflow is split into two partitions, P1 and P2, which are deployed onto two

clouds: Cloud 0 and Cloud 1. Before P1 executes, the manager (1) must check the

pre-condition that Cloud 1 is available for executing P1 and all the required data

has already been loaded onto the cloud. If those requirements are met, Cloud 1 will

execute P1. When P1 finishes, a notification is sent to manager (1), which then invokes

manager (2) to tell it to execute P2. Manager (2) must then check the state of Cloud

0 to see whether or not it is ready to process P2. If every requirement is met, manager

(2) will tell manager (1) to send a notification to P1. If manager (1) does not receive

a confirmation notification, the exception handler will be invoked. When P1 receives

the notification, the data generated by P1 will immediately be sent to P2. P2 is then

executed after manager (2) checks all requirements for executing P2. The requirements

include the availability of the data generated by P1.
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3.4 Exception Handler

Exceptions are classified into two types: Type #1 partition fails and Type #2 cannot

transfer data from one partition to another. An exception of Type #1 is caused by:

• A cloud failing while the workflow partition is running

An exception of Type #2 is caused by:

• Data being lost in transmission between clouds.

• A cloud being unable to consume the input from another cloud.

3.4.1 Handling Exceptions

After application of the security method, a set of partitioning options is generated,

and then the set of partitions contained in those options are collected in a Valid

Partition List. Next, the dependency relationships from each option are added to the

partitions in the Valid Partitioning List, discard the duplicated paths and calculate

the cost of each partition by applying a cost mode[143]. As a result, a Partition Tree

is generated, which includes dependency relationships and the cost of each partition.

A running example will be used to demonstrate how to create the Partition List and

Partition Tree in next section.

When exceptions occur, the Exception Handler is invoked to deal with them. There are

two possible solutions: sleeping for an interval of time before re-invoking the Exception

Manager to try to re-execute the partition or finding a new Manager to invoke an

alternative partition. These are dealt with by the Exception Handler as follows:

• If the cloud service fails when a partition is running in a cloud, the manager which

corresponds to the partition will detect the failure when carrying out the post-

condition test. Next, an exception notification is sent to the Exception Handler

to invoke it to deal with the exception. In this situation, finding a new cloud to

execute this partition is the only solution. Therefore option1 is invoked and the
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Figure 3.6: A Sample Pipeline Workflow

“Find a New Manager” function is activated. If one or more clouds which meet

the requirements of by the partition which has raised the exception are available,

the Exception Handler selects the cheapest one and invokes the Manager which

corresponds to the selected partition. If not, an extension of option1 is invoked,

and the “Find a New Manager” function tracks back to the previously executed

partitions, and option1 is used to find a suitable partition. If the function cannot

find a replacement partition, this workflow has to be abandoned.

• Data may be lost in transferring from one cloud to another because of network

problems, or if the leader Manager (corresponding to the running partition)

finds that the next partition is not able to accept the data sent to it. When

an Exception Handler receives this exception notification and analyses it in “Ex-

ception Analysis”, then option2: Thread Sleep is activated to wait for a small

period of time before retrying. If the Retry fails after a set number of times then,

option1 will be invoked.

3.4.2 Example of Exception Handling

The exception handling algorithm is illustrated using the running example from the

previous study [143], showing how it can be extended to deal with cloud failure. Fig-

ure 3.6 shows the workflow (→ denotes a data dependency, D and S represent datum

and service respectively, while the subscript is a unique identifier for each block).

The example of a pipeline workflow is partitioned over a federated cloud that is com-

posed of two clouds: a public cloud and a private cloud. The previously described

method [143] uses a static partitioning algorithm that generates six valid partitioning

options (Figure 3.7).

Once the valid options for deploying the services and data to the clouds have been

determined, it is necessary to select an option for execution, and a cost model is used
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Figure 3.7: The Six Valid Cloud Mappings

Cloud Storage Transfer In Transfer Out CPU
(GB / Month) (/GB) (/GB) (/s)

c0 10 10 10 10
c1 20 5 5 20

Table 3.4: Cloud Costs: Example

to find the best option. The factors that affect costs are the price of the Storage,

Transfer and CPU. Table 3.4 gives an example of costs for the two clouds, while

Table 3.5 gives examples of costs for the workflow blocks

In the prior study [143], the cost model was used to choose the best option, which was

then executed. The model is summarised as follows:

Block Size Longevity CPU
(GB) (months) (s)

D0 10 12
S0 60
D1 5 0
S1 100
D2 20 12

Table 3.5: Block Info
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cost =
∑
di,j∈D

store(dcii,j) ∗ size(di,j) ∗ longevity(di,j)+

=
∑
sj∈S

exec(ci) ∗ time(sj)+

=
∑
di,j∈D

(coutj + cini ) ∗ size(di,j)

where store(dcii,j) is the cost of storing a unit data in ci. The size() and longevity()

represent the data size and storage time respectively. Moreover, exec(ci) is the unit

price of ci, which multiplied by with the execution time of sj. coutj and cini give the

cost of transferring a unit data out cj and that in ci.

However, no consideration was given as to the action to take if there was a cloud

failure during execution which prevented its completion. The key contribution of this

chapter is to propose a method for extending the previous model to allow the exception

handler to decide on the best way to deal with exceptions that occur during workflow

execution. The aim is to choose the cheapest available option at the point when the

exception is raised.

Firstly, the options generated by the partitioning algorithm (see Figure 3.7) are com-

bined into a Partition Tree. This is achieved as follows:

1. A Partition Set is created, consisting of all partitions found in the partitioning

options (Figure 3.8 shows all the partitions for the running example)

2. Create a directed graph from this set of partitions by adding directed edges

between partitions wherever a data dependency between those partitions exists

in the partitioning options

3. Prune the graph to replace multiple edges between two partitions with a single

edge

4. Label the graph with the cost of executing each partition (including any costs of

transferring any input data into that partition)
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Figure 3.8: Valid Partitioning List

Figure 3.9 shows the Partition Tree for the running example. The yellow nodes indicate

that the partitions are deployed on Cloud 1, while the salmon colour represents those

deployed on Cloud 0. By convention, the cost of the initial partitions A, G and J, do

not include the cost of transferring data in to the clouds on which they are deployed (we

assume that the data is already there); likewise, no outgoing data cost is calculated for

the terminal partitions B, E, G and J. The costs are shown as labels on the incoming

edges to the partitions.

Next, the Partition Graph can be used to work out the best option for executing the

workflow. Initially, from Figure 3.9, it is easy to see that the“best path” is A→ H.(the

weight in each path represents the lowest cost from its start node to the leaf nodes.)

In this case, the workflow application consists of two partitions, which are deployed

onto two clouds, Cloud 0 and Cloud 1, as shown in Option1 of Figure 3.7a.

When an exception occurs in a partition currently being executed, the program iden-

tifies the type of exception first, and then decides to how to handle it. If the exception

must be solved by replacing the currently running partition, an alternative partition

is found using the Partition Tree as follows

For a Type1 (failed communication) exception all the other child partitions are consid-

ered, and tried in order of the cost of the path through that child to a terminal node
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Figure 3.9: Partition Tree

(cheapest first). If this node does not have child nodes or none are able to accept the

data then the same approach is taken, starting with the parent node of the partition

that raised the exception. If this is unsuccessful, then the process is repeated for the

grandparent partition, and so on, moving up the tree, checking all alternatives, until

the data is safely delivered to another partition, or the “Start” node is reached, in

which case there is no possibility of executing the workflow.

To deal with a Type 2 exception (partition execution fails), attempts are first made

to re-execute the partition that generated the exception, after a time delay between

each attempt. If this fails then, starting from the parent of the failed partition, all the

other child partitions are considered, and tried in order of the cost of the path through

that child to a terminal node (cheapest first). If this is unsuccessful, then the process

is repeated for the grandparent partition, and so on, moving up the tree, checking all

alternatives, until the data is safely delivered to another partition, or the “Start” node

is reached in which case there is no possibility of executing the workflow.

For the running example, path A → H is the best initial option.

The actions that the exception handling system will take in some example cases are

now considered.
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Figure 3.10: Exception Handler Works on Option1

1. The first case is a failure of Cloud 1 while partition A is running. When Man-

ager(1) detects this exception, it abandons the workflow application as there is

no a partition that can replace partition A.

2. If the exception is caused by losing D1 when it is transferred from Cloud 1 to

Cloud 0 then, as Figure 3.10 shows, after a limited number of retries Manager(3),

the controller of partition C, is invoked to replace partition H.

3. When partition A’s execution has finished, the system will try to execute par-

tition H. However, if Cloud 0 is not available, running H is not an option.

Keeping the workflow running on Cloud 1 would be the only way to solve this

problem. Therefore partition I or C from Option2 and Option6 respectively are

both potential replacement partitions.

4. If the exception is caused by Cloud 0 failing while partition H is running, then

partition C will be the best alternative partition because the path C → D is

the cheapest option which is still executable. Cloud 0 may be available when

partition C is finished; and even if it is not, partition D can also be replaced by

partition F.

3.5 Evaluation

To allow the system to be used for real cloud applications, and to support a thorough

evaluation, we built a tool that exploits e-Science Central[81]. e-Science Central is a

- 55 -



Chapter 3: Dynamic Exception Handling for Partitioned Workflows running on
Federated Clouds

Figure 3.11: Architecture of the e-Science Central Cloud Platform

high-level cloud platform which can run on a range of clouds including public clouds

(Amazon, Windows Azure and OpenShift) but also private clouds. Figure 3.11 shows

the Architecture of e-Science Central. We built a tool that uses the method described

above to split the original workflow into several partitions, and then deploy them

across a set of clouds on which e-Science Central has been installed. It then handles

any exceptions that arise.

e-Science Central provides a range of APIs to allow users to drive the system by

using programmes, such as creating a workflow, executing a workflow, or uploading or

downloading data etc. It is therefore possible to create a third-party tool to manage a

number of e-Science Central instances which are installed in a set of clouds, in order to

deploy and execute partitioned workflows over federated clouds. Figure 3.12 shows the

architecture of the tool, which indicates how the DeploymentManager communicates

with a range of e-Science Central instances. DeploymentManager generates several

valid options by applying the method described above to a workflow. Furthermore,

e-Science Central has a sophisticated provenance capture and analysis system[149],
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Figure 3.12: The Architecture of the General Cloud Workflow Partitioning Tool

and provides APIs to access this data which includes a record of service performance

and data sizes. Therefore, the cost model can be calibrated from information derived

from the past history of workflow execution.

The DeploymentManager could also monitor the availability of the clouds and the

status of the running workflow partitions. For example, DeploymentManager could

send regular notifications to e-Science Central deployments to get the running infor-

mation for each partition of the workflow, and to find available clouds. This allows

the DeploymentManager to select dynamically between possible workflow partitions

according to the availability of the clouds, and to automatically handle exceptions

generated by the running partitions.

3.5.1 Implementation

The above section has described the architecture of the tool and how it integrates with

e-Science Central instances to distribute workflows over a set of clouds. This section

now describes how it is implemented.

The first issue to be considered is how to implement the DeploymentManger which

is responsible for analysing and partitioning the target workflow and distributing the

partitions. Therefore, in this implementation the DeploymentManger includes three

components as follows:
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1. Downloader is a component in which the e-Science Central APIs are used to

download the target workflow including services, data size and security informa-

tion as in JSON format.

2. Planner is used to analyse the downloaded workflow, and then generate the

deployment solution by partitioning the workflow over available clouds based on

the workflow and cloud information.

3. Dispatcher distributes the partitions to each e-Science Central by using APIs to

create services and upload the data. Furthermore, Dispatcher needs to initial a

manager in the target cloud for each assigned partition.

4. ExceptionHandler is triggered when an exception occurs in one of the parti-

tions, and it then re-partitions the unfinished services over available clouds while

meeting the security requirements and minimising the cost.

From section 3.3.3, each partition corresponds to a manager, which it is composed

of monitor, messenger and transfer. The monitor can execute the partition when

the services are created and input data are ready, and monitor the execution status

of the partition. In addition, the messenger sends the exception notifications to the

Exception Handler if there is a failure in the corresponding partition. Otherwise, the

messenger sends the normal notification to DeployManger to get running status as

heart beat way. Moreover, if the cloud fails, the ExceptionHandler will not get notifi-

cations from themanager which are deployed on this cloud. The transfer is designed to

transfer the output data of the corresponding partition to successor partitions through

e-Science Central APIs.

3.5.2 Testing the Exception Handler

This section describes how the Exception Handler works with e-Science Central. To

test the method described in this study, two virtual machines are created, each of which

runs an instance of e-Science Central on which partitions can be deployed and executed.

One plays the role of the private cloud, the other acts as a public cloud. For example,

the partitioned workflow Option1 shown in Figure 3.7a is distributed onto two instances
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Partitioning Execution Time
(s)

A 20
H 30
C 25
D 10

Table 3.6: Partitioning Info

of e-Science Central: eSC1 and eSC2. When Partition#1 has completed execution

in eSC1, if eSC2 is not available to execute Partition#2, the DeploymentManager

is triggered to find an alternative path to complete the workflow from the Partition

Tree. The DeploymentManger calls eSC1’s APIs to deploy the alternative partition

in eSC1, and then sets the outputs of Partition#1 as the inputs for the alternative

partition.

The Exception Handler is invoked when exceptions occur. In order to test the sys-

tem, an “Exception Generator” component was developed to simulate the exceptions.

Figure 3.13 shows the architecture of the testing system, where the “Deployment Man-

ager” receives an exception from the “Exception Generator” and then the “Exception

Handler” decides on which e-Science Central instance it can be deployed (“Exception

Handler” is a module of the “Deployment Manager”, which is used to analyse and

handle exceptions).

Table 3.6 shows the execution time of the partitions when e-Science Central is de-

ployed in two virtual machines which have the same performance level when the sam-

ple pipeline workflow (shown in Figure 3.6) and the clouds and workflow blocks cost

information(list in Table 3.4 and Table 3.5 respectively) are load into our tool. Based

on the “Partition Tree”’ the option: A → H is selected as the “best” option. The

following three cases demonstrate that the system works in the case of no-exception,

Type #1 and Type #2 exceptions respectively.

CASE1 :

Both eSC1(e-Science Central 1) and eC2(e-Science Central 2) (representing Cloud1

and Cloud0 respectively) have the times when they are available (“up”) defined in

the ExceptionGenerator. In the case of this example, this is from 0 to 100 seconds
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Exception Generator

e-Science Central2

e-Science Central1

Exception Handler

Deployment 
Manager

Figure 3.13: Testing System

Figure 3.14: Case 1

Figure 3.15: Case 2
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Figure 3.16: Case 3

for both clouds. The DeploymentManager requests the deployment of partition A.

DeploymentManager is given information on the available clouds using feedback from

ExceptionGenerator. In this case, eSC1 is available for partition A, so there is no

exception. After partition A finishes, partition H can also be deployed, because the

system time is 20 seconds and eSC2 is available for deployment. Figure 3.13 indicates

the process.

CASE2 :

In this case, eSC1 is still available from 0 to 100 seconds, but eSC2 is unavailable from

0 to 30 second. This means that eSC2 is not ready to execute partition H when A has

finished (at time 20). Figure 3.15 shows that 10 seconds are expended re-trying the

execution of H on eC2 (as described above, this occurs when a type #2 exception is

generated. At the end of this time, eSC2 becomes available again, and so Partition H

can now be deployed and executed.

CASE3 :

The time eSC1 in which is available is from 0 to 100 seconds. However, eSC2 is only

available between 50 and 100 seconds. As a result, it is not available after 10s of

re-tries (the limit imposed for this example), and so partition H can not be deployed

on it. Therefore the ExceptionHandler is invoked to find an alternative partition to

handle the exception. After searching from the“Partition Tree”, partition C is selected
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to replace H. Partition C has completed its execution at a system time of 55 seconds,

at which time eSC2 is available for deploying partition D.

3.6 Conclusion

This chapter has described a new model which is used to automatically deal with cloud

failure during the execution of a workflow on one or more clouds in a federation. The

workflow is initially split into partitions, taking into account security and cost. These

are deployed on a set of clouds, and execution begins. However, the contribution of

this chapter is an algorithm that allows the execution to continue, if this is possible,

when one or more clouds fail. The algorithm evaluates all the deployment options

which can ensure that security requirements continue to be met, and determines the

best possible option to complete the execution using the cloud(s) that is (are) still

available.

The method extends the previous model [143] and integrates it with the DMI exception

handling approach. It is shown how the DMI model can be applied to handle run-time

exceptions and adapt the computation as necessary to find the best way to replace a

failed workflow partition.

The approach has been applied to e-Science Central which is a high-level cloud plat-

form, by creating a tool that implements the method. The evaluation shows that

users can create or select a workflow and allow the tool to determine the “best” par-

titioning option. The partitions are automatically deployed across a set of available

e-Science Central instances. If exceptions happen at run-time then the tool uses the

method to work out the new best option, and automatically deploys the new parti-

tions accordingly. The promise of the scheme is that it can exploit federated clouds

to allow applications structured as workflows to run reliably even in the presence of

cloud failure.

However, the partition method used in this chapter is not very scalable. It cannot

handle the problem of partitioning complex workflows (with large numbers of services)

over a federated clouds and meeting security requirements. Therefore, the next chapter

describes and evaluates a scalable method to deploy large workflow applications over
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federated clouds.
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Summary

The previous chapter discussed how to partition a workflow application over feder-

ated clouds while meeting security requirements and minimising the monetary cost.

However, the method that was presented cannot scale to handle large or complex work-

flows. The previous method ranks the cost of deployment solutions for the given cloud

and workflow. The time complexity is exponential distribution. Therefore, a novel

algorithm is desired for the deployment complex of workflow-based applications over

federated clouds, while still meeting security requirements and minimising financial

costs. The following sections introduce a method which can rapidly generate a deploy-

ment plan for a large complex workflow over a federated cloud which meets security

requirements and minimises costs.

4.1 Introduction

There are now several cloud providers, including Microsoft, Google and Amazon, and

each is making multiple, geographically distributed cloud data centres available. This

enables customers to select an individual cloud data centre based on their requirements

in terms of price, functionality, latency and governance regulations. However, it also

opens the possibility of running applications over a set of cloud data centres to meet

availability requirements. This has led to an interest in the idea of federated clouds

[146][71], but the main drive for these has been security.

As discussed in the last Chapter, some organisations have sensitive data or services

that they are not prepared to host on a public cloud. A potential solution to this also

comes from the idea of federated clouds: deploy those parts of applications that are

sensitive on trusted internal IT resources within an organisation (on what have come

to be known as private clouds), but allow those parts with fewer security requirements

to be deployed on public clouds where they can take advantage of their scalability and

cost benefits.

Achieving this is not necessarily straightforward, especially for complex applications.

There can be a very large number of options for how to deploy the data and services
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across a set of clouds, each of which will have a different cost model. Therefore, this

chapter tackles one of the main problems faced by organisations wishing to exploit

federated clouds: how to select a deployment option that meets their security require-

ments, while at the same time minimising the cost that a given deployment will incur.

From the literature review chapter, it is clear that a few work has been conducted of

optimising cost through scheduling workflow over different resources. For example, In

[59], the authors introduced a pricing model and a truthful mechanism for scheduling

workflow applications to different clouds. Chen and Deelman have described in [39]

how to use Genetic Algorithm (GA) to map a workflow to different clouds in order

to minimise the monetary cost. While both of the papers are focused on minimising

the monetary cost of completely executing workflow applications, neither consider the

security issues that can limit the set of options.

In the study most relevant to the present research [70] an approach was proposed

to partition business workflow applications over a set of clouds to satisfy security

constraints. However, the authors focused on minimising communication to improve

the reliability of the workflow enactment. In contrast, our aim is to minimise the

monetary cost of the enactment of scientific workflows which are often characterised

by high demand in terms of processing power and/or requiring the transfer and storage

of large amounts of data.

Therefore, in this chapter we describe the design and evaluation of an algorithm to

deploy an application structured as a workflow over a federated cloud in order to ex-

ploit the strengths of each cloud. The algorithm improves on the method presented in

the previous chapter, making it suitable for large workflow applications. The previous

method, based on the Bell-LaPadula [21] Multi-Level Security model [36], gave a solu-

tion for deploying a workflow over a set of clouds to meet certain security requirements.

However, in order to find the cheapest workflow deployment, all of the potential de-

ployment options need to be listed and ranked to find the cheapest. Although this

method is optimal and guarantees that the result is the cheapest deployment (we use

the term “ACO” which means Always Cheapest Option to represent this method in

the following sections), it is not very scalable. For example, it can take more than

15 minutes to optimally partition a workflow comprising 12 blocks (services and data
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items) over 4 clouds. The complexity of the method is O(cs), where c is the number

of clouds and s is the number of blocks. Therefore increasing the number of blocks in

the workflow, raises the planning time exponentially.

Consequently, to handle more complex workflows and larger cloud federations our

idea is to sacrifice some cost in order to reduce the time to produce a recommended

deployment option. We present an approximate algorithm which still meets Bell-

LaPadula security requirements. Its time complexity approximated closely to O(2·s·c)

but gives an acceptable yet suboptimal result in terms of costs.

The rest of the chapter is structured as follows. The security problem and the cost

issue are discussed in Section 4.2. Next, the algorithm is presented in Section 4.3,

followed by an illustrative example. In Section 4.5 the complexity of the algorithm

is briefly analysed. Finally, our experimental results are discussed and conclusion are

drawn.

4.2 Problem Description

In this thesis we use the shared model (the workflow model in Chapter 3) to represent

the workflow based application. Furthermore, we also share the same security model

as last chapter. The following subsection introduces a novel cost model to calculate

the cost of partitioning a workflow application over federated clouds.

4.2.1 Cost Model

We assume that the clouds are linked in a fully connected topology but the data can

be freely transferred between clouds only if the security requirements described above

are met. Additionally, a cloud can run several services at the same time. To represent

cost we first define some basic metrics of our cost model:

• Compu is a |S|×|C|matrix that represents computation cost such that Compuschi

is the cost of running service si on cloud ch.

• The matrix Com represents a unit cost of data transmission from one cloud to
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another. For example, Comch→cf means the cost of transferring 1GB of data

from cloud ch to cf .

• CStore is a vector for describing the cost of a unit of data stored in a cloud for

a unit time CStorech , for instance, denotes the cost of stored 1GB of data for

1 hour on cloud ch. This cost is only charged by source clouds when the data

crosses cloud boundaries.

• The storage time of each unit of data is denoted in the matrix TStore. For

instance, TStorei,j is the storage time of di,j, which is equal to the sum of the

execution time of services si and sj and plus the data transfer time if crossing

cloud boundaries.

Given these basic metrics we now define a set of cost functions that we will use later

in our algorithm:

• First is the data storage cost:

SCOST (dchi,j) = di,j × TStorei,j × CStorech

where dchi,j represents data di,j stored on cloud ch. Where data is transferred from

cloud ch to another cloud (to transfer it from one partition of the application

to another held on a different cloud) we make the assumption that data only

remains stored on the source cloud so as not to double-account for the cost. A

reason for storing the output of a partition even after the data it generates has

been sent to another cloud is that if the destination cloud fails, it provides a

way to continue the computation on another cloud without having to restart the

execution of the whole workflow.

• The communication cost of a set of data transferred from service si to sj, which

are deployed on cloud ch and cf respectively, can be defined as:

CCOST (schi , s
cf
j ) = di,j × Comch→cf
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Note that when both si and sj are deployed on the same cloud, the communica-

tion cost is 0.

• SCOST and CCOST are used to derive the key functions in our algorithm, SOC

and COD. SOC(s
cf
i ) is the costs incurred in bringing the input data consumed

by service si to cloud cf before the service is executed. This includes the storage

cost and communication cost

SOC(s
cf
i ) =

∑
s
ch
n ∈Pred(si)

CCOST (schn , s
cf
i )+

∑
s
ch
n ∈Pred(si)

SCOST (dchn,i)

where Pred(si) represents the set of immediate predecessor services that pro-

duce data consumed by service si. Furthermore, schn indicates that one of si’s

predecessor service sn was running on cloud ch. If a service has no predecessors

(i.e. it is one of the initial services in the workflow), then:

SOC(schentry) = 0

The COD function denotes the extended cost of having a service deployed on a

specific cloud. It is calculated by adding the computing cost of the service si to

the transmission cost and storage cost of data sent from any of its predecessor

services that are not in the same cloud.

COD(s
cf
i ) = Compuicf + SOC(s

cf
i )

• We define a |S|×|C| matrix PrePLAN = [preplani,h] which is used to determine

the initial deployment of workflow services to clouds. Each value in the matrix

is defined as preplani,h = COD(schi ). Thus, each row of the matrix therefore

contains COD values for a selected service as deployed on each specific cloud

(except where deploying the service on a cloud would violate the security re-

quirements). The initial deployment is then based on the smallest COD value
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in each row (i.e. for each service). Later, to improve this initial deployment

we use the “Re-Deployment Method” (discussed in the following section) which

generates the final deployment matrix for each service. The final deployment is

stored in an |S| × |C| adjacency matrix DEP , where depi,h = 1 indicates that

service si is deployed on cloud ch. Consequently, the total COST of deploying a

workflow application is:

COST =
∑
si∈S

h∈C depi,h=1

COD(shi )

4.3 Algorithm

The COD function is used to determine the initial deployment of services to clouds. It

does not provide optimal deployment because it takes into account only the local costs

related to each single service considered in isolation. Thus, the idea of our algorithm

is to use more information in the planning of the final deployment and to make a short

term sacrifice for long term benefit. We call our algorithm NCF (Not Cheapest First).

The algorithm consists of three steps. It starts by applying security rules to verify

whether or not security requirements are met by the original workflow. We use rule

CS to verify security for deploying services to clouds. Next, if the security requirements

are met, we use COD to calculate the initial deployment matrix PrePLAN . Finally,

the“Re-Deployment Method”is applied to improve the initial deployment, which works

by combining services deployed in different clouds into a single cloud. The overall aim

is to detect whether the costs can be reduced by avoiding intercloud communication

and related storage costs.

The following sections describe the steps of the algorithm in more details.

4.3.1 Workflow Security Checking

The workflow is valid iff all return NRU and NWD values are true. Otherwise, the

workflow is invalid, the security check returns an error and the whole algorithm stops.

The pseudocode of the ”Workflow Security Check” is shown in Algorithm 1.
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Algorithm 1 Workflow Security Check

D set of dependencies between related services
S set of service
Secure: =True
for di,j ∈ D do

if not (NRU(di,j, sj) and NWD(si, di,j)) then
Secure:=False
Stop

end if
end for

4.3.2 Initial Deployment

The initial deployment of services is based on the smallest COD value of each service

taking into account security requirements checked by the CS rule. If a cloud ch

generates the smallest COD value but does not meet requirements imposed by CS, a

cloud with the second smallest COD value is considered. The algorithm works until it

finds a cloud that can meet the security requirements and the COD value associated

with this cloud is stored in the vector REC. If no cloud is found that meets CS, the

algorithm stops. Algorithm 2 shows pseudocode for the initial deployment step.

Algorithm 2 Initial Deployment

S set of services in the workflow
REC init with INF
PrePLAN init with zero
for si ∈ S do

for ch ∈ Cloud do
if CS == 1 then

if COD < RECi then
RECi = COD
PrePLANi,h = 1

end if
end if

end for
end for

4.3.3 Re-Deployment Method

The core idea behind the “Re-Deployment Method” is to avoid scheduling services to

clouds which bring excessive communication cost. To realise this we use two functions
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“detect” and “replace” which are defined as follows:

detect(si) =



case1, a & ¬b

case2, ¬a & b

case3, a & b

case4, ¬(a & b)

si,max = maxsj∈Child(si)(REC(sj))

SETP (si) = Parent(smax) ∪ smax

SETC(si) = Child(si) ∪ si

MIN(SET ) = minch∈C(SET )∑
sh∈SETP (si)

REC(sh) > MIN(SETP (si)) a

∑
sh∈SETC(si)

REC(sh) > MIN(SETC(si)) b

From the descriptions above, the minimal COD value of each service and the pre-

planned deployment are recorded in REC and PrePLAN respectively. The detect

function determines four different cases based on this and additional information:

• si,max denotes the service si’s child service with a maximum COD value.

• SETP (si) is a set which includes service si,max and all its parent services.

• SETC(si) includes si and all its child services.

• MIN(SET ) is the minimum cost of deploying the services from SET on a single

cloud which meets the security requirements of all services in SET .

• a is true if the cost of the initial deployment of the services in SETP (si) is

greater than the cost of MIN(SETP (si))

• b is true if the cost of the initial deployment of the services in SETC(si) is

greater than the cost of MIN(SETC(si))
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Given all this information, detect returns four different sets of services. In case1 it

returns SETP (si), in case2 it returns SETC(si), in case3 it returns one of SETP ,

SETC which has the smaller MIN value. Finally, in case4 it returns {si}.

After the services are selected by detect, the replace function is invoked to assign these

services into a cloud which minimises deployment cost. The pseudocode is shown in

Algorithm 3.

Service C0 C1
S1 50 100
S2 100 200
S3 150 250
S4 160 200

Table 4.1: The CPU Cost
in Clouds

Cloud C0 C1
C0 0 10
C1 20 0

Table 4.2: Cloud Communication Costs (per GB)

Data Time (hour) Size(GB)
ds1,s2 15 10
ds1,s3 15 20
ds2,s4 5 8
ds3,s4 5 6

Table 4.3: Data Size and
Data Storage Time

Cloud Cost
C0 0.1
C1 0.2

Table 4.4: Cloud Storage Cost of Clouds (per GB Hour)

Algorithm 3 Re-Deployment Method

US = S
for si ∈ US do

switch(detect(si))
case1:replace(SETP (si))
case2:replace(SETC(si))
case3:
if MIN(SETP ) > MIN(SETC) then

replace(SETC(si))
else

replace(SETP (si))
end if
case4: replace({si})

end for
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Figure 4.1: Sample Workflow Application

Matrix Element Clearance Location

SecS

S1 0 0
S2 1 1
S3 1 1
S4 1 0

SecC
C0 0
C1 1

SecD

ds1,s2 0
ds1,s3 0
ds2,s4 1
ds3,s4 1

Table 4.5: The Security Levels for Services, Data and Clouds

4.4 An Illustrative Example

The workflow, shown in Figure 4.1, is used to demonstrate the algorithm. More

complicated workflows are evaluated in section 4.6.

Workflow and cloud cost information is shown in Tables 4.1, 4.2, 4.3, 4.4. Additionally,

the security levels of the services, data and clouds are also required, and these are given

in Table 4.5.

Before assigning the services to clouds, the security of the workflow is checked. From

Table 4.5, every service and data meet the security rules NRU and NWD.
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Figure 4.2: Pre-Deployment Workflow System

Next, the workflow has to be pre-assigned by following the function COD and security

rule CS. The initial deployment is shown in Figure 4.2 and the cost is 1045.

To improve on the initial deployment, the “Re-Deployment Method” is applied. When

detect(s1) is applied, the value of
∑

sh∈SETP (si)
REC(s1) = 530 andMIN(SETP (s1)) =

300 (SETP (s1) includes s1 and s3, and “ Cloud1” is the one to minimise the cost).

In addition,
∑

sh∈SETC(si)
REC(s1) = 845, while MIN(SETC(s1)) = 550 (s1, s2 and

s3 are selected for SETC(s1), and “Cloud1” is also the best choice ). In this example,

both case1 and case2 are satisfied. However, the former case has a cheaper MIN

value, therefore assigning services in SETP (s1) to “Cloud1”.

Next, after applying the detect method to “s2”and “s2” belonging case4, that are as-

signed to “Cloud1” after replace(s2) is invoked. Similarly, service “s4” is also allocated

to “Cloud1” after the application of the “Re-Deployment Method”. Consequently, all

services are assigned to “Cloud1”, and the cost is 750.

4.5 Complexity Analysis

In the proposed algorithm, we split the workflow security check and pre-planned de-

ployment into two parts, because this can make the algorithm easier to understand.

However, they can be combined in one step. This makes calculations more efficient

and results in complexity O(|E| × |C|), where E is the set of data dependency edges

and C is the set of clouds. The detect and replace functions compare the cost of a

service and its immediate predecessor services in a pre-planned situation with the cost
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of deploying these services in one cloud. However, the complexity of the algorithm is

also affected by the structure of the workflow. If the workflow is linear, the complexity

in the worst case becomes O(|E + S| × |C|). Conversely, for a star-shaped workflow

the best case complexity is O(|E| × |C|).

4.6 Experimental Results and Discussion

4.6.1 Randomly Generated Workflows

In this case, the workflow is represented by a distance matrix D in which if di,j is

greater than 0 that means service si sends data to service sj. The value represents the

size of data that is transferred between them. We create a n × n matrix with “-1” as

the initial value. Next, the values of the matrix are assigned randomly, however we

make sure that workflows are connected and acyclic.

In the experiment, we consider five different clouds that are assigned security levels

from 0 to 4 randomly and stored in SecC vector. The other required matrices are

generated in a similar way.

The experiments are implemented in the Java language and run on a 4-Cores machine

with 2 GHz Intel Core i7 processor, 8G RAM and OS X Mavericks.

Figure 4.3a denotes the execution time of the NCF algorithm for different workflows

with different numbers of blocks, as shown on the x-axis from 2 to 30. In all cases the

time taken was less than 1 millisecond. However, the execution time does not grow

linearly with the number of blocks because the time complexity depends also on the

structure of the workflow. In our experiment we can control the number of clouds,

services and edges but the structure of the workflow is randomly generated. Note also

that due to huge differences in the execution time of the NCF and other algorithms,

we present in the Figures ratio alg/NCF rather than absolute execution time.

The time cost of each column is the mean value of ten different structures of workflows.

For example, we calculate the time cost of a workflow with five blocks by mean of the

time cost of the algorithm which is applied to ten different 5 blocks workflows. As

Figure 4.3b shows, the time cost of the ACO significantly increases when the workflow
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has more than 10 blocks. Figure 4.3b compares the ACO and NCF algorithms. The

x-axis shows the number of blocks in random workflows, which is from 2 to 12 blocks,

and the y-axis is the ratio of execution time of ACO to the execution time of NCF.

A sudden surge can be noted in the run time of the ACO algorithm when workflows

have more than 10 blocks

The relative monetary cost of both algorithms is displayed in Figure 4.3c. In most

cases NCF is very close to the optimum with the worst case result we found being 25%

higher than reported by ACO. The reason for this gap is that NCF can only improve

the result by adjusting the deployment of the immediate predecessor services of the

current planning service. However, further away services are not considered by our

algorithm.

To generate results for more complex workflows by using ACO is very costly in time;

therefore we also compare our algorithm with GA and Greedy Algorithm (GR). Both

are popular methods used to deploy large workflow systems on federated clouds as

proposed in [39]. As Figure 4.4a shows, the deployment options generated by our al-

gorithm are closer to the optimal options. For a 30-block workflow, NCF generates a

solution that is 20% less costly than that of the GA and 36% less costly than the GR

Besides this, NCF is thousands of times faster than GA to generate a deployment op-

tion, and only 13 times slower than GR in the worst case, as shown in Figure 4.4b, 4.4c.

These experimental results are generated by testing more than 750 workflows, between

5 blocks and 30 blocks.

4.6.2 Workflows from a Real Scientific Application

To verify our algorithm on a real workflow, we used one from the Cloud e-Genome

project[31] (Figure 4.5). The project’s overall goal is to facilitate the adoption of

genetic testing in clinical practice on a population wide scale. To realise this goal,

Cloud e-Genome uses workflow modelling to program the whole exome sequencing

pipeline, cloud computing to run the workflows on a large scale and provenance of

workflow enactment to achieve reproducibility. All these aspects are supported by the

e-Science Central platform (e-Science Central) [81] used to develop the pipeline
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Figure 4.5: e-Genome Workflow

Although security aspects are not a central focus of this pilot project, guaranteeing that

human genome data can be securely processed on the cloud is a key issue. Therefore,

we selected a workflow from Cloud e-Genome and modelled its security requirements

by assigning security levels as shown in Tables 4.6 and 4.7. The services “Data In” and

“Data Out” are e-Science Central storage services which are not represented by blocks.

Therefore they are not included in Figure 4.5

Using logs collected by e-Science Central, we are able to determine the size of data

transferred between workflow blocks and execution times. Table 4.6 includes the exe-

cution times in hours, while a value of 0 means that the times was less than 1 minute.

Table 4.7 shows the data sizes in GB, where 0 means that the size was less than 1

MB. From this data we calculated the cost of running the workflow in clouds offered

by two major cloud providers.

The pricing of the clouds is shown in Table 4.8. We chose the same type of Virtual

Machines in both clouds and also refer to public and private cloud setup offered by

both providers; the private cloud setup is more secure yet more expensive. In the same

table we present also data transfer costs between the clouds.

From these inputs, services S1 and S5 are assigned to Azure public cloud, and others

are located in Azure private cloud. The total cost is 84.319 dollars.
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Service Name Clarence Location Execution Time(hours)

Data In S1 0 0 0
List Samples S2 0 0 0

Get Samples Info S3 0 0 0
Generate MetaData S4 0 0 0

Align Sequences S5 0 0 6.42
Clean Sequences S6 0 0 4.05

Recalibareate Sequences S7 0 0 11.45
Serialise CSV S8 0 0 0
Export File S9 0 0 0

Detect Variants S10 1 1 4.46
Column Select S11 0 0 0

CSVExport S12 0 0 0
Recalibareate Variants S13 1 1 1.425

Filter Variants S14 1 1 0.5
Generate String List S15 0 0 0

Column Join S16 0 0 0
Annotate Sample S17 1 1 0.86

Export File S18 1 1 0
Data Out S19 1 1 0

Table 4.6: Services Representation and Security and Execution Time

4.7 Conclusion

In this chapter, we have described a novel, efficient scalable algorithm to automatically

deploy complex workflows over a federated cloud while meeting security requirements

and minimising execution cost. The main contribution is to redesign the exact algo-

rithm presented in [143] to enable it to be applied in real world scenarios by reducing

the time it takes to generate a low-cost, secure partitioning option.

The algorithm was tested on randomly generated workflows and real world scientific

workflows. Comparing with other methods, the time complexity of our algorithm has a

significant advantage, and the cost is very close to the cost of the optimal deployments

and less than the cost of deployments that generated from widely used algorithms.

In next chapter, we will introduce a framework which provides a generic way to deploy

scientific workflow over federated cloud to meet security requirements and minimise

the cost. Furthermore, cloud availability change is also considered, and the framework

will been evaluated through both simulation tool and realistic cloud based workflow

platforms.
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Service Location Size (GB)

S1,2 0 0
S1,3 0 0
S1,5 0 24.99
S2,3 0 0
S2,5 0 0
S2,15 0 0
S2,17 0 0
S3,4 0 0
S4,6 0 0
S5,6 0 18.63
S6,7 1 15.56
S7,8 0 0
S7,10 1 6.87
S8,9 0 0
S8,10 0 0
S9,19 0 0
S10,11 0 0
S10,13 1 0.074
S11,12 0 0
S11,13 0 0
S12,19 0 0
S13,14 1 0.09
S14,17 1 0.055
S15,16 0 0
S16,17 0 0.11
S17,18 1 0
S18,19 1 0.11

Table 4.7: Data Security

Cloud Pu1 Pr1 Pu2 Pr2
Security 0 1 0 1

CPU 1.68(/hour) 3.41(/hour) 1.40(/hour) 3.23(/hour)

EC2 0 0.08 0.02 0.07
EC(private) 0.08 0 0.07 0.12

Azure 0.06 0.11 0 0.1
Azure(private) 0.11 0.16 0.1 0

Table 4.8: Cloud Cost (U.S. Dollar per GB)
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Summary

In the previous Chapter, we have proposed a scalable algorithm to partition a complex

workflow over federated clouds. However, the algorithm considered only one type of

security model and it lacks of solutions to handle the cloud availability change in the

federation. In Chapter 3 we have introduced a method to dynamically handle the

clouds fail, but this method cannot be applied to a complex workflow application, and

also do not consider the situation of new clouds becoming available. Therefore, in this

chapter we propose a generic framework to partition a scientific workflow over federated

clouds to meet security requirements while minimising the monetary cost. To this end,

the framework needs to support more general workflow and security models, and the

ability to addres other non-functional requirements such as reliability and performance

is reqired. Furthermore, our framework also provides a dynamic rescheduling method

to deal with cloud availability changes during workflow execution.

5.1 Introduction

Previous chapters have focussed on exploiting clouds that differ in security and price

allowing workflow applications to optimise their deployment over a set of clouds. Fur-

thermore, Chapter 3 introduced a tool which can partition a workflow application over

federated clouds and interact with a method to handle the failure of clouds during the

workflow execution. However, the method is not very scalable for complex workflow

applications and a generic framework is lacking which would allow users to quickly

adapt their own workflow application and security models to optimise deployment. In

addition, we aim to support dynamic federations in which clouds can join and leave at

any time. Therefore, a method is needed to handle cloud availability changes during

workflow execution.

In paper [89] Jrad et al. proposed a cloud broker to schedule larger scientific workflows

over federated clouds to match the QoS and cost requirements. However, the static

scheduling algorithms involved are unable to manage changes in cloud availability.

In this chapter, we propose DoFCF (Deploy on Federated Cloud Framework), a frame-
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work for deploying workflows over federated clouds that meets security requirements

and optimises cost. The proposed framework can be efficiently adapted to suit different

structures of scientific workflows and different security models. The framework also

adopts a general optimisation process to minimise the cost for executing a workflow

application over different types of cloud.

The proposed framework provides a set of solutions for workflow scheduling, includ-

ing where to deploy tasks, when to start each service and how to handle the cloud

environment changes. The deployment of the workflow over federated clouds is based

on a set of specific security requirements and minimisation procedures. Additionally,

DoFCF offers a solution to dynamically reschedule a running workflow to new clouds,

in order to complete the execution of an unfinished workflow or save on costs.

To this end we list the following core contributions:

• A framework for modelling, quantifying and guiding the deployment of workflows

over a federated cloud to meet security requirements while minimising the cost.

The framework also considers the situation of a change in the available clouds

during workflow execution.

• Presentation of an analysis of the existing state-of-the-art algorithms for opti-

mising deployment. In addition, we compare and adapt those algorithms to our

framework to achieve rapid exploration for a possible deployment solution, while

handling cloud resource changes.

• Implementation of DoFCF as a Cloud Service Broker [28] to deal with scientific

workflow deployment over federated clouds, and dynamically handle the available

clouds change.

• Evaluation of the implementation on CloudSim [32], which is a Cloud simulator,

and e-Science Central [81] (e-SC), a real scientific workflow based cloud platform.

The rest of this chapter is organised as follows. In Section 5.2 the basic models of

the framework are discussed, including General Security model, Cost model, Cost

optimisation problem and Handling Cloud change problem. Next, the state-of-the-

art optimisation algorithms are analysed, in order to provide a general suggestion in
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applying algorithms to do the deployment. In Section 5.4, we evaluate the framework

by using CloudSim, and also develop a tool to schedule the workflows over a set of

e-SC instances to meet security requirements.

5.2 Basic Modelling Constructs

In this section, we present models of security requirements for deploying a workflow ap-

plication over federated clouds. In addition, a general cost model - extending the cost

model in previous chapter is used to calculate the monetary cost of deployment. More-

over, we present an optimisation model that can guarantee the deployment solution

meets security constraints as well as minimising cost. Finally, a dynamic cost model

is used to help reschedule the running workflow when the available clouds change.

5.2.1 General Security Model

An application’s security can be improved using two approaches: firstly, byrefining the

design and implementation of the application; secondly, by deploying the application

over more trustworthy resources, such as shifting the application to a higher security

server. In this chapter, we propose to increase the security of a workflow by adopting

the latter approach. To achieve the enhancement in workflow security, we present

two functions which are used to provide a concrete representation of different types of

security requirements:

func1 is to embed constraints for d and s. According to the security model that will

be used in the following sections, either d or s should be deployed on a cloud where

can meet its security requirements.

We assume that each o ∈ O has its own security constraints and must be deployed on

a cloud c ∈ C which can meet those constraints. Therefore, func1 can be defined as:

func1 : O × C →true, if o ∈ O can be deployed onto c ∈ C (oc)

false, Otherwise
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func2 represents the constraints for the whole workflow deployment W . For example,

the Common Vulnerability Scoring System (CVSS) [114] can generate consistent scores

to accurately represent the impact of vulnerabilities.

In this function, Λ represents the possible deployment solutions for W over federated

clouds C, and λ is one of the the deployments noting that {oci1 , ....., ocmn } and H is one

of the security requirements. Therefore function func2 can be defined as:

func2 : Λ→ true, if λ ∈ Λ can meet the security constraint H

false, Otherwise

5.2.2 Cost Model

In the previous chapter, we have introduced a specific cost model for algorithm NCF to

calculate the cost of deploying a workflow over federated clouds. However, in this sec-

tion we propose a generic cost model which supports calculating the cost of deploying

the most general scientific workflow over federated clouds.

Therefore, a set of cost functions is defined as follows:

• The first function is the data storage cost:

SCOST (sci) =
∑

di,j∈OUT

di,j × Ti,j × Storec (5.1)

Where sci means that service si is deployed on cloud c. OUT is a set of data

dependencies, representing the data that are generated by si and transferred to

its immediate successor sj which is not deployed on c (note that if all immediate

successors of si are on c, then OUT = ∅). di,j represents the amount of data

which is generated by si and consumed by sj. Ti,j denotes the storage time of

data di,j, which is the required time starting from the generation of data until

the completion of workflow execution. Finally, Storec is the cost of storing 1GB

of data for one hour on cloud c.
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In this model, we make an assumption that the data remains stored only on the

source cloud to avoid double-accounting for the cost. The reason for storing the

outputs of a service even after the generated data has been sent to another cloud

is to be able to deal with a failure of the destination cloud. In this case, the

stored data provides a way to resume the computation on another cloud without

the need to restart the whole workflow execution. This process can be adapted

to handle the cloud change problem.

• The second function, CCOST , is used to estimate the communication cost for

transferring data between different services.

CCOST (scj) =
∑

di,j∈IN

di,j × Comc′,c (5.2)

This is the cost of the data transferred from the immediate predecessors of service

sj (denoted as IN). Comc′,c represents the unit cost of transferring 1GB of data

from cloud c′ to c. However, if two services are deployed on the same cloud, the

cost is zero, i.e. ∀c′ = c : Comc′,c = 0.

• Finally, ECOST (scj) indicates the execution cost of service sj on c. It is defined

as:

ECOST (scj) = T cj × Execc (5.3)

Where T cj is the execution time of sj on cloud c, and Execc represents the cost

of using compute resources on c for one hour.

Based on the three cost functions, we can formulate the COST (λ) function to

define the total cost of a workflow deployment over a set of clouds:

COST (λ) =
∑
sci∈λ

(SCOST (sci) +

CCOST (sci) + ECOST (sci))

(5.4)
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5.2.3 Deployment Optimisation

As mentioned previously, we propose a model for optimising monetary cost as well as

meeting the security requirements. Therefore, the optimisation problem is to find a

deployment λ ∈ Λ with two constraints: 1) the deployment λ must meet the security

requirements by belonging to either func1 or func2. 2) the value of COST (λ) should

be minimised to obtain deployments with a low cost of execution. We express this

problem as:

minimise (COST (λ))

subject to∀ oc ∈ λ : func1(oc) := true OR

func2(λ) := true

∃λ ∈ Λ

In the following, we use func1 as an example to prove that the optimisation problem

is a NP-completeness problem.

Theorem: The optimisation is a NP-completeness problem.

Proof: we first verify that the problem of deploying a workflow over a set of clouds

to meet security requirements is a NP problem (noting ∃λ ∈
∑

(Λ,W), where W

represents the security requirements).

The NP-completeness of optimising the cost can be illustrated as follows: we start by

transforming PARTITION [65] (one of six core NP-complete problem) to our problem.

Let the instance of PARTITION be a finite Set A = (a1...am) and a weight w(ai). We

want to have two disjoint subsets A1 and A2 A1, A2 ⊆ A, where A1 ∪ A2 = A and

A1 ∩ A2 = ∅, such that
∑

a∈A1w(a) =
∑

a∈A2w(a).

In order to reduce our problem to a PARTITION problem, we assume that a workflow

has m numbers of O, and two clouds are available for deployment. Further, we do

not consider the security issue, which means any o can be deployed over any of the

two clouds. Therefore, we can have two sets of deployments C1 = (o1....om) and

C2 = (o1....om) over the two available clouds

Regarding our problem, we need to have two disjoint subsets C ′1 and C ′2, where C ′1 ∪
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C ′2 = O and C ′1 ∩ C ′2 = ∅. This match the conditions of the PARTITION problem.

Furthermore, w(o) represents the cost of deploying o onto the cloud, so
∑

o∈C′
1
w(o)

is the cost of set C ′1. However, the PARTITION problem is to find two disjoint sets

with the same weight, which has the same complexity as our problem that is trying

to find two disjoint sets while minimising the total cost, noting min(
∑

o∈C1′ w(o) +∑
o∈C2′ w(o)).

5.2.4 Dynamic Cost Model

The dynamics of Cloud resources may affect workflow execution. Situations arise

when individual nodes may fail during execution, or in some extreme cases the whole

cloud is unreachable for several hours. As a consequence of such failures, workflow

applications may not be executed to completion. Furthermore, new clouds, which may

be attractive because they are cheaper or more secure etc., and they may become

available during the execution of workflow applications. Therefore, to deal with the

dynamism of cloud resources, we develop a new cost model that dynamically calculates

the cost of deploying uncompleted services over the currently available clouds.

We assume a set Selected is composed of the services that need to be rescheduled, in-

cluding unfinished services as well as the services that have been completely processed,

and their outputs are the inputs of unfinished services, but the outputs have not been

stored because of the failure of the clouds. The details are illustrated in Section 5.3.4.

Input is a set of data which has already ben generated from the processed services

and is required for services in Selected, and stored in the available clouds. Based on

the definition, we can have the initial cost for setting up a new deployment, which is

the cost of storing the input data of Selected, can be defined as:

ICOST (Selected) =
∑

di,j∈Input

di,j × Ti,j × Storec (5.5)

In addition, Λ′ is the possible deployments of the services in Selected over the available

clouds C. Consequently, the cost of the new deployment can be defined as:

DCOST (λ′) = COST (λ′) + ICOST (Selected) (5.6)
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Where λ′ ∈ Λ′ represents one of the possible deployments for the services in Selected.

5.3 Deployment Optimisation Algorithms

To demonstrate how to adapt the security model to DoFCF, we still use the security

model which have been explored in previous chapter. In this section, we investi-

gate and analyse some state-of-the-art optimisation algorithms and then provide some

suggestions for adapting these algorithms to our framework for deploying workflow

applications over federated clouds.

5.3.1 Branch and Bound Algorithm

As discussed above, we need to find a λ ∈ Λ which minimises the deployment cost. The

most common approach is B&B (branch and bound algorithm) [124]. Generally, this

type of algorithm ranks all of the secure deployment solutions and then chooses the

cheapest one. However, we have proven that our problem is a NP-hardness problem,

and therefore it is very difficult to design an algorithm using B&B to find an optimised

deployment solution in polynomial time.

Although this method gives the optimal solution and guarantees that the result is

the cheapest deployment, it is not very scalable. In chapter 3, we demonstrated that

when the number of services is increased to 12, a version of B&B that we implemented

needed approximately 15 minutes to generate a solution. For larger workflow sizes, the

execution time grows exponentially. Thus, these types of algorithms are not considered

in our framework.

5.3.2 Genetic Algorithm

A Genetic Algorithm (GA) can efficiently find a solution to a problem in a large

space of candidate solutions [117]. It is a search heuristic that mimics the process of

natural selection to find an optimal solution, yet in our case the heuristic function will

not constantly produce the optimal (or cheapest) solution. Moreover, the design or

method of application of GA can also have a significant impact on the quality of the

solution[77].
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In the following, we extend and adapt GA to our framework to find an acceptable

solution in polynomial time.

5.3.2.1 Security Candidate List

In this chapter, we are aiming to find an optimised solution that meets security re-

quirements while minimising the monetary cost. Therefore, this can be considered as

a bi-objective optimisation problem. As mentioned in Section 3.2.1 of chapter 3, each

object of the workflow has its security requirements for deploying over clouds. There-

fore, we firstly list the satisfied clouds for each object of the workflow in “Candidate

List”. The pseudocode in Algorithm 4 shows how to create the “Candidate List” for a

given workflow by following the security rules.

Algorithm 4 Candidate List

C set of Clouds;
SArray –Security Candidate List
for o in O do

for c in C do
if o is secured deployed on c then

SArray[o]← c
end if

end for
end for

The security requirements for each object can be hard constraints (noting it must be

met), and the valid clouds that meet these constraints will be maintained in the “Can-

didate List”. Consequently, our problem is reduced to a single objective optimisation

which is minimising the monetary cost of the deployment.

5.3.2.2 Elitist Prevention and Diversity Maintenance

The basic GA can be adapted to generate a deployment solution for the problem

discussed above. However, to generate an efficient solution, the two primary factors of

selection pressure and population diversity have to be considered carefully [147]:

• Selection pressure. A highly effective search must have a search criterion (the

fitness function) and a selection pressure that makes the individuals with higher
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fitness have a higher chance to be selected for reproduction, mutation, and sur-

vival.

• Population diversity. Having a variety of individuals to be compared allows the

algorithm to fruitfully explore the search space, e.g. if we only explore a subset of

the clouds for deploying a given workflow, it will significantly reduce the search

space but may miss some efficient solutions.

Unfortunately, these two factors are inversely related. Increasing selection pressure

must lead to a loss of population diversity; likewise, maintaining the population diver-

sity will reduce selection pressure. In other words, the GA must be carefully designed

to balance the effects on the population of diversity and selection pressure. In order

to solve this trade-off, we apply the elitism method[22] summarised in Algorithm 5, to

increase the selection pressure, and at the same time control diversity dynamically.

The purpose of the elitist method is to avoid destroying superior individuals in crossover

and mutation. Thus, once a solution is confirmed as elitist, it should be directly in-

herited by the new generation of the population.

Algorithm 5 Elitist Prevent

s, the size of elitist list; elist-list of elitist individuals; pop-list of all individuals
if elist is empty then

. ASCsort sort the pop as ascending order
ASCsort (pop)
. copy the first s number of solutions to elist
elist← from pop[0] to pop[s− 1]

else
pop ← combine elist and pop
ASCsort (pop)
delete s numbers of pop in tail
elist← from pop[0] to pop[s− 1]

end if

Generally, diversity can be measured at three levels: gene-level, chromosome-level,

and population-level, with reference to different problems[51]. The challenges, i.e. the

large search range and indeterminate chromosome length, a diversity measurement

algorithm with high complexity will strongly affect the efficiency of GA. As a result,

in our algorithm we applied a simpler diversity measurement at population level.
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In contrast, the low diversity of a population usually means that the search reaches

a local extreme, which significantly affects the solution. In order to solve this prob-

lem, we dynamically control the mutation rate to influence the generation of the new

chromosome. Algorithm 6 shows how the diversity protection works.

Firstly, we remove duplications in pop, and count the total number (sr) of unique

solutions. Based on that we can have density d of the population, which is represented

by the ratio of duplicated solutions. Next, the current mutation rate will be increased if

the density is greater than the predefined diversity threshold and the current mutation

rate is less than the maximum mutation rate. If the current mutation rate is greater

than the maximum mutation rate, it will be decreased.

Algorithm 6 Diversity Protection

pop-a list of all individuals; size-size of pop; threshold-predefined threshold of diver-
sity; rate-the current mutation rate; Minrate-minimum mutation rate; Maxrate-
maximum mutation rate.
. function removeDup removes the duplications of pop
and then copy it to rpop
rpop ← removeDup(pop)
sr ← size of rpop
d ← 1− sr

size

if d > threshold AND rate < Maxrate then
increase rate

else if rate > Minrate then
decrease rate

end if

5.3.2.3 Adapting to the Framework

The adaptation of a genetic algorithm (AdaGA) is divided into five phases: coding,

generating a candidate list, initialising individuals, selection, crossover and mutation.

In general, all possible combinations should be coded into a single string or list, and

those codings must represent all solutions. So we coded our deployment solution

as a vector [si1, s
j
2....s

k
n], where sji means that service si is deployed on cloud cj. In

order to reduce the possibility of generating an insecure solution, we chose the clouds

from “Candidate List”, assigned them to the corresponding objects, and then coded

them as above. However, the application of these operations will not be able to avoid

producing a few new coded solutions which may not meet the security requirements.
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In such cases, rule SIC is used to verify the security of those solutions. If an insecure

code is detected, the algorithm will generate a new one to replace it.

After generating the initialised individuals, selection, crossover and mutation opera-

tions are applied on the individuals to produce new generations. During this process,

Algorithm 5 is used to prevent elitist individuals, and two methods are applied to per-

form selection: one is a fitness function that can transfer the fitness of a coding into

a numeric representation to select superior solutions. The other is a diversity analysis

that does not affect the selection results, but influence the crossover and mutation

rate. Both methods are defined as follows:

• Fitness Function: as discussed above, our problem is reduced to finding a solution

that minimises the cost by iterating through several generations. Therefore,

the Fitness Function can be defined in the same way as in equation 5.4, i.e:

F (X) = COST (λ).

• Selection strategy: we use roulette wheel selection. The solutions of a population

are placed on the roulette wheel based on fitness [72] [73]. The size of each

segment in the roulette wheel is inversely proportional to the fitness of each

solution. For instance, the probability of selecting solution j for a generation is

Pj =
F (Xj)∑M
i=1 F (Xi)

, where M is the population size of the generation to which the

individual j belongs. Now we spin the wheel M times to generate M random

numbers between 0 and 1.

Crossover is a process of taking part of the features from two chromosomes and com-

bining them to generate a new chromosome. The new child chromosome inherits

the features from its parents, so it has a higher possibility of being a good solution.

However, the crossover operation occurs with a defined probability P for each pair

of chromosomes. The technique that we used in the crossover is one-point crossover

(replacing string from position fifth to eighth, as shown in Table 5.1)

After applying crossover, some new chromosomes are produced and the others are

directly copied.

In order to enhance the search range, mutation is added to the algorithm. This is im-

plemented by randomly selecting chromosomes in the current generation and changing
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[3, 2, 3, 1, 4, 1, 2, 2] → [3, 2, 3, 1, 1, 1, 3, 2]

[1, 2, 3, 2, 1, 1, 3, 2] → [1, 2, 3, 2, 4, 1, 2, 2]

Table 5.1: example of crossover

them to new secure chromosomes. Further, this operation only happens in very low

probability, for example 1%. A few chromosomes of the current generation are selected

randomly. The three processes, i.e. selection, crossover and mutation, are repeated

until the results reach convergence.

In Section 5.4 the evaluation of our algorithm will be presented and compared with

HUGA (Hybrid Utility-based Genetic Algorithm) [89] which was used to optimise

the deployment of workflow over a federated cloud, considering QoS requirements.

However, we adapt it into our framework.

5.3.3 Greedy Algorithm

The greedy algorithm is an iterative algorithm that incrementally finds better solu-

tions. Unlike the Genetic algorithms that need to finish executing before returning

a solution, the greedy algorithm generates a valid and improved solution in each it-

eration. This is a desirable characteristic for systems where the parameters change

frequently and the available time for calculating an improved deployment varies sig-

nificantly.

Therefore, we employ NCF algorithm [145] which is an extended version of greedy

algorithm, to adapt it to our framework. The NCF algorithm has been introduced in

the chapter 4, so the details are not described again.

5.3.4 Adaptive Rescheduling Algorithm

In this section, we introduce a heuristic algorithm which has been adapted to the

DoFCF framework and dynamically generated a new solution for handling cloud avail-

ability changes.

The generic adaptive rescheduling algorithm for handling the change of cloud avail-

ability works as follows: when a change in cloud availability is detected, the planner
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estimates the monetary cost for each service based on the available clouds and infor-

mation (e.g. execution time) of each service. For our case, the estimation heuristic

algorithm can be applied to generate a new deployment solution for the services in Se-

lected over available clouds to meet the security requirements as well as minimising the

monetary cost. Therefore, services are distributed based on the new solution and then

executed. In addition, the execution is monitored until the workflow has been fully

executed. Alongside this, a new deployment must be generated in polynomial time,

because the time is accounted for in the makespan of the workflow execution, which

may bring extra cost. In extreme cases, if it takes considerable time, the available

clouds may change again.

We designed and developed a dynamic rescheduling algorithm to be adapted to our

framework, which is summarised in Algorithms 7 and 8. In this algorithm, we assume

that a workflow W is executed with the deployment DEP0. The ”Cloud monitor” is

used to monitor the workflow execution status and cloud status. Once the monitor

has detected any changes in cloud status, function REDEPLOY SERV ICES will be

invoked to find the services which require redeployment. These actions are summarised

in Algorithm 8. Firstly, the availability of input data for services in set UP is checked,

which means that all inputs data must be stored in the available clouds. Otherwise,

the elements in set UP will be copied to the Selected set and added to the services

which have been completely executed but their outputs are not available to Selected.

Then, the function tracks back and repeats the same action until the available inputs

are found. In this case, Selected will include the services in UP as well as the added

services. Otherwise, Selected is equal to UP .

Based on the selected services and the available clouds, a new deployment DEP1 can

be generated by applying a NCF algorithm. If the cloud change is caused by the failure

of some clouds, DEP1 is used to deploy the services in Selected directly. Otherwise,

if the change is caused by a new cloud becoming available, then the cost of DEP1 and

DEP0 will be compared (only considering the unfinished services). If DEP1 is cheaper,

the workflow will be scheduled to a new deployment solution, otherwise the execution

status and cloud status are monitored until the workflow is completely executed.
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Algorithm 7 Dynamic rescheduling

UP- set of unprocessed services; C-set of all available clouds; DEP0- deployment
set initial UP = all services of W
while W not finished do

. C is updated via the communication with
CloudMonitor
update C
. UP is updated via removing the finished services
update UP
if cloud status has changed in C then

Selected=REDEPLOY SERV ICES(UP,C)
DEP1 = NCF (Selected, C)
if clouds have failed in C then

. submit current execution information to
generate a new deployment.
if DEP1 is not found then

. not valid deployment
break;

else
submit DEP1

DEP0 ← DEP1

end if
. new cloud resources become available

else
. if the new deployment is cheaper than the
present one.
if DEP0.cost > DEP1.cost then

submit DEP1

DEP0 ← DEP1

else
do nothing

end if
end if

end if
end while
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Algorithm 8 Redeploy Services

DEP0 the original deployment; Selected-set of services for redeploying; parents(si)-
set of si’s parents services
function redeployservices(UP ,C)

Selected← UP ;
for si ∈ UP do

FINDNODES(parents(si), C, Selected)
end for
return Selected

end function
function FindNodes(parents(si),C,Selected)

if parents(si) == ∅ then
return

else
for sj ∈ parents(si) do

if sj 6∈ UP then
. DEP0(sj) indicates the cloud on which
sj was deployed
if DEP0(sj) ∈ C then
else

add sj to Selected if not included
FINDNODES(parents(sj), C, Selected)

end if
end if

end for
end if

end function
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5.4 Experiments and Evaluation

To evaluate the performance of our proposed framework, we conducted a series of sim-

ulation experiments on a number of real scientific workflow applications. In addition,

we applied our framework to dynamically deploy a scientific workflow over a set of

e-Science Centrals instances on multiple clouds. The experimental setting, and results

are presented in the following sections.

5.4.1 Cloud Service Broker

For the purpose of evaluation, we developed a Cloud Service Broker to identify suitable

cloud service providers. The Broker performs cloud exchange and negotiates with

each available cloud to allocate resources that meet the users’ specific requirements.

Figure 5.1 shows the architecture of the Cloud Service Broker for workflow application

along with other components as illustrated below:

The Client can be a platform for workflow management, such as e-Science Central

or Pegasus[46], which allows users to describe and submit their workflow application

through platform components. The Workflow Engine delivers the workflow tasks (or

services in this chapter) to the underlying Cloud Service Broker, including execution

requirements, task descriptions, and the desired security requirements.

T he Cloud Service Broker enables the functions of resource allocation, workflow schedul-

ing and software deployment. Our framework includes a Planner component that

performs a matching process to select the target clouds for deployment, based on the

information passed from Global Cloud Market. Further, the workflow tasks are

assigned by the Scheduler, and the Data Manager maintains the data transfer dur-

ing workflow execution. The planned tasks are distributed to the underlying cloud

providers via Deployment APIs. These APIs can also be used to interact with the

underlying clouds to monitor workflow execution and cloud availability.

A Federated cloud is a cloud resource pool that provisions computation and storage

resources, as well as specific non-functional capabilities (referring to different security

levels in this chapter) and functional capabilities such as the execution environment

of each task.
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Figure 5.1: Architecture of Cloud Service Broker for Scientific Workflow

5.4.2 Simulation Environment

In this work, the experiments must be repeatable in order to easily compare and

analyse different types of algorithms. Therefore, to ensure repeatability, we evaluated

our framework by using CloudSim to investigate the deployment and scheduling of

workflows in federated cloud environments.

5.4.2.1 Experiment Setup

In the evaluation of our framework, we consider four common types of workflow ap-

plications: CyberShake (earthquake risk characterisation), Montage (generation of

sky mosaics), LIGO (detection of gravitational waves) and Epigenomics (bioinformat-

ics).1 The full characterisation of these workflow applications can be found eslewhere

[90], however, we only consider the execution time, and the input and output data of

each service. Table 5.2 lists the four workflow types with different numbers of tasks:

1The XML description files of the workflows are available via the Pegasus project:
https://confluence.pegasus.isi.edu/display/pegasus/ WorkflowGenerator
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Workflow Medium Large Very large

CyberShake 30 100 1000
Montage 25 100 1000
LIGO 30 100 1000
Epigenomics 24 100 995

Table 5.2: Number of Tasks of each Workflow for Each of the Three Scales

Type Location Exec Store In Out
(/hour) (/hour/GB) (/GB) (/GB)

C1 0 0.40 0.10 0 0.02
C2 2 2.20 0.60 0.03 0.01
C3 1 1.23 0.30 0.14 0.07
C4 2 3.70 0.60 0.10 0.05
C5 3 4.50 0.90 0.14 0.05
C6 4 5.5 1.30 0.14 0.13

Table 5.3: Cloud Pricing and Security Levels

medium, large and very large.

The data privacy information for the workflows is unavailable to be used for assigning

the security levels of each object. Therefore, we randomly generated the security levels

for each object in these workflows.

Six virtual machines (VMs) have been created, representing workflow execution envi-

ronments, in six different data centres to represent six types of cloud (with different

security levels). Additionally, each VM can run several services at the same time.

Table 5.3 details the numbers of clouds with location security levels, computation

cost, storage cost and communications cost, where In and Out represent the cost of

incoming and outgoing data respectively.

The experiment results, presented below, show the average values of observing 1000

executions of each algorithm for each type of workflow. For each of the 1000 repeti-

tions, the same random number generation seeds for each execution, which guarantees

each algorithm is exactly running over the same infrastructure. The observed outputs

metrics are execution time normalised with the corresponding value obtained from the

NCF algorithm.
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5.4.2.2 Monetary Cost Evaluation

As discussed earlier, the total cost includes execution cost, running time storage cost

and communication cost. The pricing of each cloud listed in Table 5.3 shows that a

more secure cloud is generally more expensive. Our cost calculation does not consider

additional costs like license and VM image costs which are charged by some cloud

providers.

Figures 5.2a, 5.2b and 5.2c depict the normalised cost for the four types and three sizes

of workflow applications mentioned previously using three algorithms: NCF, HUGA,

and adaGA. Each figure represents cost calculations for a specific workflow size to

show the variations in cost according to size.

The results show that the algorithm AdaGA can always generate the cheapest deploy-

ment solution. For example, in a case with medium size of the“Montage”workflow, the

solution generated by AdaGA can save up with 35% compared to the NCF solution.

The types of workflow significantly affect the solutions generated by NCF. The cost

of deployment solutions which are generated by the three algorithms, applying to the

medium size of LIGO and Epigenomics workflow (see Figure 5.2a) very close. However,

for the other two types of workflow, the solutions generated by NCF are much more

costly than those of the AdaGA. Furthermore, the differences are reduced with the

increase in workflow size. This is because NCF is not influenced by the search space

(larger workflow indicates more deployment solutions). In addition, the search space

significantly affects the results generated by AdaGA and HUGA. However, the Elitist

Prevent and Diversity Protection methods were used in AdaGA to avoid the algorithm

visiting less desirable solutions.

5.4.2.3 Time Complexity Evaluation

In order to evaluate the time complexity of each algorithm, we measured the time

consumed by each to find the optimised deployment for the four types of workflow

on the given clouds. According to our evaluation, Figure 5.3 shows that algorithm

NCF is significantly faster than the other algorithms. Further, AdaGA has better

performance than HUGA with medium size workflows. The reason for this is that the
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Figure 5.2: Cost for Different Workflows
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search will be terminated if no better solution has been found after repeating the pre-

defined generations. Nevertheless, as workflow size increases, AdaGA consumes more

time than HUGA to find the deployment solution. However, the deployment solution

for a very large size of the “CyberShake” workflow can be generated by AdaGA in less

than one minute. Consequently, by considering cost savings, AdaGA can be the better

choice.

Figure 5.3 also indicates that the time complexity of each algorithm not only depends

on the number of o (data and services) and the available clouds, but also on the

structure of the target workflows and the security levels for each o and cloud.

The time complexity of each algorithm is formalised as follows:

HUGA algorithm can be split into three phases in order to analyse the time complexity:

selection, crossover and mutation. Therefore, the time complexity of the selection

phase is O(|P | × |G| × |O|) where P is the size of population and G is the generations

numbers7-8. For crossover and mutation phases, we need to operate on the whole

chromosome, and so the complexity of both is O(|P |× |G|). Thus the time complexity

of HUGA is O(|P | × |G| × |O|).

Comparing AdaGA with HuGA, AdaGA contains an additional Elitist phase for each

generation which slightly increases the time complexity. In each Elitist phase, the

algorithm observes the chromosomes for each population and saves the best one. Thus,

the complexity of this phase is O(|P | × |G| × |O|) and the time complexity of AdaGa

is O(|P | × |G| × |O|) as well.

In the NCF algorithm, we have already analysed the time complexity in previous

chapter. It is significantly impacted by the structure of the workflow. If the workflow

is linear, the complexity in the worst case becomes O(|O| × |C|). Conversely, for a

star-shaped workflow, the best case complexity is O(|D| × |C|).

5.4.2.4 Cloud Availability Change Evaluation

In this part of the experiments, we simulated the change in cloud availability by pre-

defining the times when each cloud was available. To do this we set the start time and

termination time for each cloud before starting the simulation. A Cloud Monitor was
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Figure 5.3: The execution of each algorithm

implemented to monitor cloud status, i.e. detect changes in cloud environments. If a

changed status is detected, a notification will sent to the broker. Thus, the broker can

reschedule the running workflow to the available clouds based on the cost of the new

deployment. This was evaluated for two types of change: Clouds fail and Availability

of new clouds.

Cloud fail was simulated by setting the terminal time for the randomly selected clouds

as uniformly distributed between 0 and the makespan. In another words, during the

workflow execution, the number of cloud fail is randomly set from 0 to 6. Furthermore,

we performed 1000 simulations, each with different cloud fail settings, and recorded

each execution statue, including how many clouds fail, the makespan, completion

of workflow execution. Consequently, we can have the average of the cost and the

makespan based on the recording.

In this evaluation, we used “Epigenomic ” workflow with medium, large and very large

size. As an example of the setting for the medium workflow size, we randomly selected

the clouds and set their termination time as uniformly distributed over [0,makespan]

where the makespan is the execution time of the selected workflow running as the

deployment generated by NCF. For the clouds that were not selected, the terminate

time was set as infinite.

Thus, we can have three types of executions: (1) Success: in this type, the workflow

is completely executed without rescheduling (noted as Success in Table 5.4). The
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reason is that the selected clouds finished executing the assigned tasks before their

terminated time, therefore failures do not affect task execution. (2) SBR: a type in

which the workflow is successfully executed by rescheduling to the currently available

clouds after a cloud has become unavailable. (3) Fail: the workflow execution cannot

be completed as no alternative deployments were available for it after a cloud failure

– this could be because of cloud unavailability or because the available clouds do not

meet the security requirements.

Table 5.4 depicts the results of cloud failure. These demonstrate that the failures

occur more frequently with the increasing sizes of workflow and execution time. We

normalise the results by using the ratio of value of the outputs of the SBR executions

with that from the Success executions, recording SBR/Success. In the case of very

large workflow, we only have to pay an extra 2% money and 33% time to avoid re-

running the workflow from the beginning when a failure happens during workflow

execution.

Workflows Execution status (%) Cost Time

Medium

Success:74 1 1
SBR:16 1.14 2.36
Fail:10 none none

Large
Success: 70 1 1
SBR: 20 1.1 1.15
Fail:10 none none

Very Large
Success: 54 1 1
SBR: 22 1.02 1.33
Fail: 24 none none

Table 5.4: Experiment results for cloud failure

To simulate Availability of new clouds, the workflow has to be already running over

a set of clouds with a deployment. Thus, we pre-set clouds C6 and C5 as available

for the initial deployment. Furthermore, we randomly selected clouds and set the

start time of them as uniformly distributed over [0,∞]. We generated 1000 settings

and repeated the executions of the rescheduled workflow to new clouds based on the

monetary cost savings. This resulted in the execution types shown in Table 5.5: (1)

Success represents no new clouds becoming available or the new clouds not offering

cheaper deployment than the currently running one. (2) SBR denotes the running

workflow can be rescheduled to the new available clouds to save execution costs.
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Table 5.5 shows that the fluctuations of the saving cost are very significant, depending

on the types of the workflow and available clouds. (In Table 5.5, we used the same

normalisation rule as Table 5.4). Therefore, when new clouds become available, users

should participate in making the decision to use a new deployment based on the

estimated cost and makespan saving.

Moreover, Table 5.5 shows that the makespan increases , while the monetary cost goes

down. The reason is that when a running task is shifted to a new cloud which is

cheaper, the running task has to be killed, and then be redeployed and re-executed in

the new cloud. If the new cloud is faster than the current host cloud, the makespan

might be reduced. However, in this work we do not consider the performance of the

clouds̈ıijŇand assume that clouds’ performance are the same.

Workflows Execution status (%) Cost Time

Medium
Success:92 1 1
SBR:8 0.98 1.46

Large
Success: 88 1 1
SBR: 12 0.90 1.21

Very Large
Success: 70 1 1
SBR: 30 0.99 1.33

Table 5.5: Experimental results for new clouds becoming available

5.4.3 Realistic System Evaluation

To evaluate our algorithm in conditions closer to a real-world scenorio use, we applied

it to schedule scientific workflows in e-Science Central(e-SC). We used the e-SC APIs

to create a Cloud Services Broker that can orchestrate invocations of a single workflow

partitioned over a number of e-SC instances.

5.4.3.1 Design and Setup

According to the architecture of the cloud services broker, shown in Figure 5.1, our

tool consists of three components: Client, Cloud Services Broker and Federated Cloud.

The Client includes a user interface (UI) which allows users to create workflows for

the e-Science Central workflow engine. The description of the created workflow can

then be passed to the Broker.
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Figure 5.4: A selected workflow from the cloud e-Genome project

Cloud Services Broker is the core part of our tool and includes a planner to assign the

workflow to a federated cloud using the algorithms discussed earlier. e-SC APIs are

used to dispatch tasks to corresponding clouds and monitor the execution. A Failure

Generator is used to simulate failures by turning on or shutting down e-SC instances.

Federated Cloud is a set of e-SC instances which can interact with the broker and other

e-SC instances through e-SC APIs, and process the tasks which are scheduled.

To evaluate our tool we selected one of the workflows used in the cloud e-Genome

project [31] (as shown in Figure 5.4).

The workflow was implemented to process an exome sequenced by using e-SC deployed

on Microsoft Azure cloud.

While in the e-Genome project security aspects are not a primary concern, guarantee-

ing that human genomic data can be securely processed on the cloud is very important.

Therefore, we modelled the security requirements of the selected e-Genome workflow

by assigning security levels as shown in Tables 5.6 and 5.7. Note that the data size

transferred among blocks and the execution time of each block are real values taken

from logs collected by e-SC. Table 5.6 shows data sizes in GB, where 0 denotes less

than 1 MB of data. The pricing of Clouds C1, C2 and C3 in Table 5.3 was applied to
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Service Name Clearance Location Time(/h)
Sample Name S1 1 0 1
ImportF ile S2 1 0 1.5

Sample V aule Info S3 1 0 3
HG19 S4 1 0 0.1
Filter S5 2 0 10

Exome−Regions S6 1 0 7
Intervalpadding S7 0 0 20
ColumnJoin S8 2 0 0.1

AnnotateSample S9 2 0 5
Export S10 1 0 0.3

Table 5.6: Services representation and se-
curity and execution time

Data Location Size (GB)
S1,8 1 0
S2,5 0 1.1
S3,8 2 0.01
S4,5 0 0.005
S4,7 0 0.005
S5,7 0 6.2
S6,7 0 10.3
S7,9 1 3.6
S8,9 0 0
S9,10 0 0.05

Table 5.7: Data security

calculate the deployment cost.

To simulate this environment we set up three virtual machines, each running a single

instance of e-SC system. VM1 was hosted on a personal PC and represented the

private cloud. Two other VMs were hosted in our University virtualised environment

and played the role of public cloud providers C2 and C3.

Our evaluations included three steps: the first step tests the static deployment al-

gorithm. We kept all three e-SC instance running and applied adaGA to make the

deployment plan. The second step shows how to handle a cloud failing, by shutting

down one of the running e-SC instances when the workflow was running. The setting

of this step is similar to that of CloudSim. Finally, we tested the availability of a

new cloud by deploying the given workflow on two clouds, and then turning on a new

instance which offers price advantage. Also, for the purpose of the experiment we

reduced the execution time of the given workflow to about 30 seconds by scaling down

the amount of input data shown in Table 5.7 by a factor of 6000.

5.4.3.2 Results and Analysis

Based on the presented experiment setup, all of the three steps of the deployments

are illustrated in Table 5.8. Precisely, “Static” refers to first step, and “Cloud fail” and

“New Cloud” correspond to steps two and three respectively.

Static, shown in Table 5.8, represents the cheapest solution which was generated using

the adaGA algorithm by deploying the workflow over cloud C1, C2 and C3 to meet

the security requirements. Services S1 S7 and S8 were deployed on C2 and others were

allocated on C1.
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For the Cloud Fail, we used the deployment of Static as the initial deployment (INI).

However, cloud C1 failed (shown as blue in Table 5.8) when service S9 was ready to

execute.

The available clouds are C2 and C3, and the inputs of S9 are stored in C2 (the out-

puts of S7 and S8), therefore, S9 can be rescheduled to C3 to continue the execution

(indicated in “Cloud fail”, SBR). If S7 is deployed on C1 with the same failure, S2, S4,

S5, S6 and S7 should be re-executed in C3. Thus S9 and S10 can be completed in C3.

In the third step, C2 and C3 were available for the initial deployment (see Table 5.8

New Cloud, INI). After the workflow was executed for one second , C1 became avail-

able. S1 and S4 were completely executed on C2 and C3 respectively, but S2, S6 and

S3 were still running. Based on the status information, a cheaper deployment solution

(see New Cloud SBR in Table 5.8) became available, which required termination of S2

and S6, and then re-running them on C1, as shown in green in Table 5.8.

Service Static Cloud Fail New Cloud
INI SBR INI SBR

S1 C2 C2 C2 C2 C2
S2 C1 C1 C1 C3 C1
S3 C2 C2 C2 C2 C2
S4 C1 C1 C1 C3 C3
S5 C1 C1 C1 C3 C1
S6 C1 C1 C1 C3 C1
S7 C2 C2 C2 C2 C2
S8 C2 C2 C2 C2 C2
S9 C1 C1 C3 C3 C1
S10 C1 C1 C3 C3 C1

Table 5.8: Two deployments

Table 5.9 shows average values of the cost and makespan of each deployment by re-

peating the executions 10 times. Where SBRF represents the situation of handling C1

fail (see Table 5.8 Cloud Fail SBR). Similarly, ININ and SBRN are the experimental

results of new cloud available. Where the makespan of SBRN is approximate one

second more than others (it will take one hour more by using the original inputs). It

because of the C1 has to re-execute S2 and S6 from the beginning.
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Deployment Time (seconds) Cost
Static 28.93 64.44
SBRF 28.94 67.23
ININ 28.92 84.62
SBRN 29.90 65.17

Table 5.9: The cost of different deployments

5.5 Conclusion

In this chapter, we have presented a framework to improve the security of workflow

applications while they are distributed on a federated cloud. The cost model was

designed to optimise the cost of each deployment option. Furthermore, we added a

unique dynamic rescheduling method to handle changes in cloud availability to our

framework. This supports execution continuing on other clouds when a cloud fail,

and can save the cost when new clouds become available. Additionally, we designed

and implemented three algorithms for static deployment planning. These algorithms

have been applied to different types of workflows to demonstrate different cases, and

then their performance was discussed and analysed. We evaluated the performance of

our framework by conducting a series of experiments on various types of real scientific

workflows. The experiments have been performed using a simulation environment as

well as on a real workflow management system. The results show that our framework

is suitable for deploying and handling the failures of universal scientific workflows over

federated clouds. Moreover, we provide some suggestions for deployment optimisation

through analysing state-of-the-art optimisation algorithms. Reliability is a key consid-

eration for users moving their applications to the cloud. Although our framework can

continue workflow execution when clouds fail, extra cost for rescheduling is incurred

in terms of both time and money. This has been discussed with reference to the ex-

perimental results. Therefore, in the next chapter a method is proposed which can

improve the reliability of executing scientific workflows over a federated clouds while

guaranteeing security requirements are met and also the monetary costs are minimised.

- 114 -



6
Cost Effective, Reliable and

Secure Workflow Deployment
over Federated Clouds

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.2 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 The Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.1 Multi-Objective Optimisation Problem . . . . . . . . . . . . . 122

6.3.2 Trade-off Problem . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4 Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4.1 Initial Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.2 Deployment Optimisation . . . . . . . . . . . . . . . . . . . . . 126

6.5 Results of the Experiments and Evaluation . . . . . . . . . . . 128

6.5.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . 128

6.5.2 Realistic System . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

- 115 -



Chapter 6: Cost Effective, Reliable and Secure Workflow Deployment over Federated
Clouds

Summary

In the previous chapter, we proposed a framework for workflow deployment over a

federated cloud, while meeting the security requirements and minimising the monetary

cost. However, cloud federation offers applications a variety of clouds, which differ in

terms of reliability, as well as security. This chapter presents a novel algorithm to

deploy workflow applications on federated clouds. Firstly, we introduce an entropy-

based method to quantify the most reliable workflow deployments. Secondly, we apply

an extension of the Bell-LaPadula Multi-Level security model to address application

security requirements. Finally, we optimise deployment in terms of its entropy and

also its monetary cost, taking into account the cost of computing power, data storage

and inter-cloud communication.

6.1 Introduction

Previous chapters have focussed on exploiting clouds that differ in security and price,

allowing applications to optimise their deployment over a set of clouds, both initially,

and after a failure. In this chapter we focus further on reliability.

Despite the fact that the SLA (service-level agreement) for clouds are usually at the

level of 99.95% availability for the compute service, cloud providers are not always

able to achieve this. In practice, this level of availability means that the service can

only be offline for about 20 minutes in a month, or for only about 250 minutes per

year. However, in early 2011 several high-profile technical companies were landed in

trouble when Amazon’s EC2 service suffered an outage [2] which lasted for almost 11

hours. In a month this gives only 98.47% of availability and in a year only 99.87%.

Similarly, an outage at the GoDaddy cloud provider took down millions of web sites.1

With all the variety and uncertainty involved, application developers who decide to

host their systems in the cloud face the issue of which cloud to choose to get the best

operational conditions in terms of price, reliability and security. And the decision

becomes even more complicated if their application consists of a number of distributed

1 K. Finley, “Godaddy outage takes down millions of sites, anonymous member claims responsi-
bility,” http://techcrunch.com/2012 /09/10/godaddy-outage-takes-down-millions-of-sites.
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components, each with slightly different requirements. In such contexts, a combination

of different cloud providers might be best.

As has been described, cloud federation offers the ability to distribute a single appli-

cation on two or more cloud platforms, so that the application can benefit from the

advantages of each [116]. The key challenge in attempting to exploit this opportunity

is how to find the best distribution (or deployment) of application components, which

can yield the greatest benefits.

Previous research has addressed scheduling with other objectives such as security, reli-

ability and performance. The authors of paper [52] minimise the makespan and failure

probability by combining both objectives into a single cost function to form a new

matching and scheduling algorithm. In paper[54], the authors distinguish the relia-

bility maximisation and execution time minimisation mappings and then provide a

method for converting workflow scheduling heuristics on heterogeneous clusters into

heuristics that take reliability into account. The work in [55] presents two algorithms

to address the trade-off between makespan and reliability. One is based on a dy-

namic level scheduling algorithm and the other is a version of a genetic algorithm. A

framework was introduced in [58] has been demonstrated to address four objectives:

makespan, economic cost, energy consumption and reliability. These works consider

reliability and multi-objective optimisation, especially [58] which was related to single

cloud. However, our work uses a model-based technique on federated clouds where

the monetary cost also plays a crucial role, and none of the previously mentioned

algorithms have been considered of this.

In this chapter we tackle this problem and propose an algorithm to deploy workflow-

based applications over federated clouds in order to exploit the strengths of each cloud.

Our algorithm schedules an application structured as a workflow such that require-

ments for each block (services and data) against security and reliability are met whilst

the cost of execution is minimised.

The algorithm considers the security model we have discussed in chapter 3, and adapts

it to the new multi-criteria requirements. The security model is based on the Bell-

LaPadula [21] Multi-Level Security model [36] and was designed to partition a workflow

over a federated cloud to meet certain security requirements. This security model is
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used to address confidentiality, i.e. the absence of unauthorised disclosure of informa-

tion [17].

The basis for the algorithm is a new method to quantify the most reliable workflow

deployments which applies Shannon’s information theory [128]. Using reliability infor-

mation for each application component and the underlying cloud platform, the method

calculates entropy of a workflow deployment. This value is then used as a constraint

in the optimisation problem. We argue that using entropy can reduce the overall risk

of workflow failures caused by a small number of components being deployed on less

reliable clouds. Reliability is understood to mean the readiness for correct service; for

example, the amount of time a device or service is actually operating as the percentage

of total time it should be operating.

Furthermore, as there may be a number of deployments that meet our security and

reliability requirements, we search for the option that minimises the monetary cost.

Finding the optimal deployment is, however, an NP-hard problem [65], thus we need

an approximate algorithm to solve it. The two most common approaches are: (1)

to linearise the problem by assigning weights to the criteria and then optimise the

weighted sum [96], (2) to optimise one criterion and keep the others constrained within

predefined thresholds. In the first approach the difficulty is not only in defining the

weights properly but also in the limitation of the simple, linear model which may not

be able to accurately represent the complexity of the problem. Hence in this work we

use the second approach.

To handle this multi-criteria and NP-hard problem we generate a valid initial solution

and then apply a set of refinement methods to approach the optimum. At the same

time we want to guarantee that the time complexity of the algorithm is polynomial.

The rest of the chapter is structured as follows. We first introduce the notation and

models used to represent the reliability and security requirements and to calculate the

monetary cost of deployment. Next, in Section III we show the optimisation problem

as described by the models. Then a scheduling algorithm to search efficiently for a

suitable deployment option is presented. In Section V we discuss the evaluation of our

work. Finally, future work is outlined and conclusions are drawn.

- 118 -



Chapter 6: Cost Effective, Reliable and Secure Workflow Deployment over Federated
Clouds

6.2 Problem Description

With the increasing availability of public and private cloud resources it is easy to deploy

instances of the same service in multiple places. We have observed this tendency with

our e-Science Central data analysis system [81] which, depending on the use case, has

been deployed in a variety of locations including private clouds at universities in Spain

and Brazil and public cloud resources such as Amazon AWS and Microsoft Azure.

Each of these clouds has its own advantages and thus our focus in this chapter is on

how a single workflow application might be deployed over a federated cloud. By a

federated cloud we consider in this chapter a set of workflow execution environments

(such a e-Science Central) running in different clouds, which we can manage and use

to run applications. Our goal is to partition a workflow application in such a way that

it can benefit from the “best” combination of these environments.

Below we introduce the notation used through the rest of the chapter and define the

three concepts that form the basis of our algorithm: the measure of reliability, the

security rules and the cost model.

6.2.1 Reliability

The target clouds consist of a set of PMs (physical machines), and can be geograph-

ically distributed. A single physical machine is able to contain a set of VMs (virtual

machines). Each VM can run 0 or more instances of WP (workflow execution plat-

form). Lastly, a WP can run a number of services/workflow tasks (to put it simply, we

use service in the rest of chapter) concurrently. We are not considering fault tolerance

[159] as a means for improving reliability in this chapter.

6.2.1.1 Reliability of Computing

By reliability we mean the readiness for correct service, for example, the amount of

time a device or service is actually operating as the percentage of total time it should

be operating. Therefore, reliability can be defined as: REL = Fault-Free Time
Total Time

.

We assume that a service itself is implemented fault-free [125] and it is executed

completely and reliably on a workflow execution platform, iff the physical machine,
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VM and WP which the service is running on are fault-free during the service execution

time.

Let t be a random variable which represents a point in time when a failure hap-

pens, while f denotes the probability density function of t. We assume that failures

are occurring randomly in time and can be modelled by an exponential distribution.

Therefore, the exponential probability density function of WP is fwp(t) = λwpe
−λwpt,

where λwp is the failure rate of workflow platform wp. Then, following [125], we can

define the reliability function of wp as:

Rwp(t) = 1−
∫ t

0

fwp(t)dt = e−λwpt (6.1)

We assume that the execution time of service si is ti and Twpi is the time since wpi is

available but just before si is launched. Thus we can have the following corollary.

Corollary. The reliability of execution of si in wpi is Ri(ti) = Rwpi(ti + Twpi).

Proof. From the discussion above, reliability Rvmi
(t) of vmi at time t depends on the

reliability of the VM instance itself, R′vmi
(t), and the reliability of its host machine

Rpmi
(t+Tpmi

), where Tpmi
is the time since pmi has been available but just before vmi

is started. We can denote that as: Rvmi
(t) = R′vmi

(t) · Rpmi
(t + Tpmi

). Similarly, the

reliability of wpi is Rwpi(t) = R′wpi(t) ·Rvmi
(t+Tvmi

), where Tvmi
is the time since vmi

has been available but just before wpi is started. Consequently, we can state that the

reliability of running service si in the Cloud is Ri(t) = R′i(t) ·Rwpi(t+Twpi). However,

earlier we assume that service si is implemented fault-free and so Ri(t) = Rwpi(t+Twpi).

6.2.1.2 Measure of Workflow Reliability

We assume that workflow w consists of n services s1, . . . , sn, and the reliability of each

service is Ri. Moreover, the communication between related WPs and services are

fault-free. Therefore, the possibility that w is failure-free is:

RP (φ) =
n∏
i=1

Ri = e
∑n

i=1−λwpi (ti+Twpi ) (6.2)
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where φ is a deployment of w, λwpi is the failure rate of the workflow platform which

is used to deploy si (we assume that λwpi already includes the failure rate of the

underlying layers), and ti + Twpi is the execution time of the WP since it was started

and until si finished. RP (power method thereafter) is the most common way to

measure the reliability of the execution of a workflow application [78] and [52].

However, in this work we propose an entropy-based method to measure workflow reli-

ability. Entropy [128] is a widely used approach to capture the degree of dispersal or

concentration of values of a random variable. For a discrete random variable X with

probabilities p(xi) it is defined as:

H(X) = −
n∑
i=1

p(xi) log p(xi) (6.3)

We deem p(xi) as reliability of service si and use the entropy value as a measure of

workflow reliability. Thus, the reliability of workflow w can be calculated as:

RE(φ) = −
n∑
i=1

Ri logRi (6.4)

In Appendix A, we illustrate that entropy method has advantages over the traditional

power method. Furthermore, we propose a constraint on the entropy value which can

not only guarantee the reliability of a workflow deployment, but also reduces the risk

that a workflow includes a service with relatively low reliability. If we assume that the

required reliability of deploying workflow w isR, then using the power method we need

RP (φ) ≥ R. However, the corresponding entropy constraint is: RE(φ) ≤ −RM logR,

where RM = MAX(Ri) is the maximum reliability of the workflow services.

6.2.2 Security Model

A security model is needed to determine whether a deployment of services and data

to a set of clouds meets the organisation’s security requirements. In this chapter we

apply the same security model in chapter 3 as an hard constraint.
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6.3 The Challenges

6.3.1 Multi-Objective Optimisation Problem

For a given φ which is a secure deployment of workflow w over federated clouds WP ,

we propose to optimise two parameters: 1) minimise the value of entropy H(φ) which

results in a distribution that maximises the reliability of the workflow, 2) minimise the

value of COST (φ) to obtain deployments with low cost of execution. We express this

problem as:

minimise (COST (φ), (H(φ))

subject to∃φ ∈
∑

(Φ,W )

Φ = D × S ×WP × L

Finding a solution which optimises both COST (φ) and H(φ) is challenging. Note that

if we simplify our problem to only one objective optimisation, e.g. finding deployment

φ which minimises cost, it can be directly mapped to the skewed graph partitioning [80]

which is a variant of classic NP-complete graph partitioning [65].

In the skewed graph partitioning each vertex i has a desire to be in set k denoted by

dk(i). Given that, the problem tries to minimise the cut edges (flow of data between

sets) and maximise the desires. If w(eij) is the weight associated to the edge between

vertices i and j and s(i) is the set to which the vertex i is assigned, the problem tries

to find mapping s which minimises objective function:

minimise
∑
eij

w(eij), if s(i) 6= s(j)

0, otherwise

−
n∑
i=1

ds(i)(i)

In our case vertices denote workflow services, weights associated with edges represent

the cost of data transfer between services, set s(i) = wpi is the workflow platform

assigned to execute service si and, finally, desire ds(i)(i) is the negative value of the

execution and data storage cost associated with running service si on platform wpi.
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6.3.2 Trade-off Problem

To have a better understanding of the trade-off between entropy and the monetary cost

of workflow deployments we ran two sets of experiments. First we used the NCF (Not

Cheapest First) algorithm from our previous work [145] to optimise deployment by

cost. NCF is an approximate greedy algorithm which can quickly find deployments of

workflows with security constraints. Then we implemented another greedy algorithm

to optimise deployment by its entropy value. Finally, we ran these two algorithms

to deploy 300 different randomly generated workflows which included from 2 to 30

services. Figure 6.1 shows the result.

Triangles represent the deployments which minimise the monetary cost, whereas circles

are deployments with minimal entropy. Colours are related to axes with blue showing

the monetary cost of a deployment and red showing its entropy. Clearly, the cost

optimised deployments are cheaper than the entropy optimal ones. However, they

have also greater entropy value. Conversely, the entropy optimal deployments have

lower entropy but result in more expensive deployments. Also, as may be seen, the gap

between cost optimal and entropy optimal deployments increases with the increasing

number of services in a workflow, which clearly indicates the trade-off between these

values.

6.4 Scheduling Algorithm

The scheduling algorithm we propose can optimise the deployment of a workflow over a

set of clouds. It takes into account user requirements against multiple criteria, namely

security, reliability and cost. The optimisation part of the algorithm is an extension

of the multiple-choice knapsack problem (MCKP) [93].

Overall, our algorithm is executed following the three steps: 1) setting a boundary on

one of the two objectives, 2) searching for a deployment which minimises the other

objective while the first objective is within the boundary set and 3) traversing the

available options to optimise the deployment found in step 2.
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Figure 6.1: Cost and entropy optimal workflow deployments.

In the first step we set a bound C on entropy such that:

RE(φ) ≤ −nRmax log
n

√
RP (φL) +RP (φM)

2

= −Rmax log
RP (φL) +RP (φM)

2
= C

(6.5)

where φM is the deployment which has the maximum reliability rate (see equation 6.2),

and φL is the lower bound deployment of monetary cost without considering the relia-

bility constraint. Therefore, RP (φL) and RP (φM) are the values of the power method,

where Rmax is the service which has the maximum reliability rate, deploying over fed-

erated clouds and also meet the security requirements. The n denotes that the target

workflow includes n number of services. We could also make a bound on cost, however,

we need to guarantee that the reliability rate is acceptable. We also do not set the

boundary on security because all candidate solutions we generated meet the security

requirements W .

As mentioned above, our optimisation is an extension of MCKP. MCKP is used to

optimise a set of decisions SET = {set1, . . . , setn} within a defined constraint. In our
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scenario, SET represents the set of deployments Φ, where seti is a mapping of each

workflow object e onto a cloud platform wp, seti = {ewpi1 , . . . , e
wpj
m }. Our algorithm

aims to find the optimised seti.

To realise this goal, firstly, we generate the φL (lower bound) and φM (most reliable)

deployments that both satisfy security requirements. Then, we set C as the reliability

constraints and invoke a set of optimisation mechanisms to improve φM . Thus, our

algorithm consists of two phases: initial deployment and deployment optimisation.

6.4.1 Initial Deployment

The goal of the initial deployment is to generate quickly, in linear time, a solution which

can be a seed to find the optimal deployment. First, we produce the cost optimised

deployment φL by applying the NCF algorithm from our previous work [158]. That

algorithm works as follows: (1) a greedy-based function determines a deployment which

accounts for the costs related to running on a cloud, with each service considered in

isolation; (2) the algorithm then takes into account direct links between services and

redeploys services such that the influence of the data transfer costs is minimised. In

both steps services’ security requirements are guaranteed.

Given φL generated by NCF, we compare its entropy value with constraint C. If

RE(φL) < C, φL will be the optimal solution returned by our algorithm. Otherwise,

we apply a greedy algorithm to ı̈ň ↪And the most reliable solution φM using the power

method. The algorithm takes a list of the work̈ıňĆow services and assigns each service

to the most reliable cloud that meets the security constraints of that service. Once all

services are assigned, φM becomes the seed for the next phase.

Note that φM is optimal, and can be generated by a greedy algorithm because calculat-

ing the reliability of a workflow using the power method has the optimal substructure

property if we assume fault-free connections between services; by maximising the reli-

ability of a single service we obtain the optimal solution if the reliability of remaining

services is also maximised. For the proof please see Appendix B.
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6.4.2 Deployment Optimisation

When φL is not a valid deployment, we use φM as the seed to find available options.

We limit the search to find t deployment options and store the result in descending

order of the cost. The optimal solution is the last on the list; the pseudocode is shown

in Algorithm 9.

Algorithm 9 Deployment Optimisation

W – workflow; φM – the power method optimal deployment; C – entropy constraint;
t – maximum number of deployments; Cloud – valid clouds for each service; M –
valid deployments;
M [0]← φM

φ← φM

for i ∈ 1...t do
. generate a new deployment from φ

φNEW ← CHANGE(φ,Cloud);
φ← φNEW

M [i]← φNEW

end for
sort M by cost return M [t]

Finding t valid options was the key challenge in designing the algorithm due to the

huge search space. To solve it, we observe the contribution of each cloud for each

service, also taking into account its predecessors. To calculate the cost of deploying a

service on a specific cloud we use the COD function. COD is calculated by adding

the computing cost of service si to the transmission cost and storage cost of data sent

from all of its immediate predecessor services that are not in the same cloud.

COD(spi ) =SCOST (spi ) + CCOST (spi )

+ ECOST (spi )

Each si may have more than one valid cloud; therefore, the ranking of the valid clouds

can be created by ascending order of COD value. This is described by the ranking

algorithm (Algorithm 10).

As Algorithm 11 shows, the ranking is used to find an alternative cloud for si, which

is chosen randomly by using the Benford function.
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Algorithm 10 Rank

W – workflow;
function Rank(φ)

. Topsort returns a topological order of W
for si ∈ topsort(W) do

for p ∈ Cloud[si] do
Tmp[p]← COD(spi )

end for
sort Tmp in the ascending order
. update the order of the clouds in Cloud[si] by following the corresponding

order of cache
Cloud[si]← Tmp

end for
end function

Algorithm 11 Change

function Change(φ,Cloud)
. Sort the cloud list by COD in the ascending order and update the Cloud list

for the Benford function
Cloud← RANK(φ)
while true do

Randomly choose a service si
φNEW ⇐ Cloud[Benford(si)]; . Apply Benford function to select a replace

the cloud for si
if φNEW 6∈M and is secure and H(φNEW ) ≤ C then return φNEW

end if
end while

end function
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We used randomisation because the optimal option is not always composed of the

clouds which minimise the COD. By applying the function, the clouds at the head

of the ranking have a higher chance of being selected but we also avoid the situation

that some clouds are never chosen.

The Benford function is a transformation of Benford’s law [86], which is defined as:

Benford(si) = b 1

10b − 1
c

b = random(log10(1 +
1

len(Cloud[si])
), log102)

6.5 Results of the Experiments and Evaluation

In order to evaluate our algorithm we set up two experiments. First, we conducted a

series of simulation experiments on a number of real scientific workflow applications.

In the second experiment we applied our algorithm over federated clouds to deploy a

scientific workflow from one of the projects that we have been involved in. Note that

workflows in this work are defined as directed acyclic graphs where vertices represent

tasks and arcs between them represent data dependencies.

6.5.1 Simulation Environment

In this work, the experiments are required to be repeatable in order to compare and

analyse different types of algorithms. Therefore, to evaluate our algorithm we com-

bined together two simulation environments WorkflowSim and DynamicCloudSim.

WorkflowSim can simulate the execution of workflows of the Pegasus workflow man-

agement system [48], whereas DynamicCloudSim operates for the cloud simulation

instability and task failures. This combination can more realistically simulate work-

flow execution in dynamic cloud environments.

6.5.1.1 Experimental Setup

To evaluate our algorithm we consider four workflow applications available in the Pe-

gasus project and in WorkflowSim: CyberShake (earthquake risk characterisation),
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Workflow app. Medium Large Very large

CyberShake 30 100 1000
Montage 25 100 1000
LIGO 30 100 1000
Epigenomics 24 100 997

Table 6.1: Number of tasks in each Pegasus workflow for the three different sizes.

VM Loc. Exec Store In Out Start-up Time
(/hour) (/hour/GB) (/GB) (/GB) (hour)

C1 0 0.40 0.10 0 0.02 5.0
C2 2 2.20 0.60 0.03 0.01 3.0
C3 1 1.23 0.30 0.14 0.07 4.5
C4 2 3.70 0.60 0.10 0.05 2.5
C5 3 4.50 0.90 0.14 0.05 1.5
C6 4 5.50 1.30 0.14 0.13 0.5

Table 6.2: Cloud Pricing and Security Levels

Montage (generation of sky mosaics), LIGO (detection of gravitational waves), and

Epigenomics (bioinformatics).2 For each of these applications we selected three sizes:

medium, large and very large, which determine the number of tasks within the work-

flows (Table 6.1). The full characterisation of these workflow applications can be found

in [90]. In our simulation, however, we only need to consider the execution time, input

and output data, and security level of each service. As the data privacy information

for the workflows is unavailable, we randomly generated the security levels for the

services.

To represent a federation of workflow platforms we created six VMs in six different

data centres each with a random security level in range 0–4. Note that more secure

clouds are usually more expensive. Table 6.2 shows details of the platform setup with

the cloud security level (Location) and cost of computation, storage, and incoming and

outgoing communication. Additionally, Start-up Time indicates a randomly generated

time when each WP has become available.

We compare our algorithm EMCK (extended multiple-choice knapsack) with DCA

[121] and BDLS [52] which represent two existing and widely used multi-criteria

scheduling algorithms. DCA and EMCK are both extensions of MCKP. However,

DCA is focused on a single computing resource, and does not take into account the

cost of data transfer and storage, so we adapted DCA to our security model and

2The XML description files of the workflows are available via the Pegasus project pages at
‘https://confluence.pegasus.isi.edu/display/ pegasus/WorkflowGenerator’.
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called the extended version EDCA. BDLS is a list scheduling algorithm that sched-

ules services according to a priority list of service–resource pairs. For the purpose of

the experiment, we had to extend and adapt BDLS as follows: (1) we applied the

ranking mechanism similar to Algorithm 10 to build a cost list; (2) we added another

list with entropy constraint for each service. As a result the services using extended

BDLS (EBDLS) were assigned to the cloud which minimised the cost and also met the

entropy requirement.

The experimental results presented below are the average values of 1000 deployments

generated by each algorithm. The observed outputs are normalised against the results

of the EMCK algorithm.

6.5.1.2 Monetary Cost and Time Complexity Evaluation

Figure 6.2, 6.3 and 6.4 depict the normalised monetary costs for all twelve application

settings with four types of workflows in three sizes as mentioned previously. There are

five different deployment solutions: EMCK, EBDLS, EDCA, lowerBound and mRe-

liable. EMCK, EBDLS and EDCA represent the deployment solutions generated by

the corresponding algorithms, whereas lowerBound (λL) and mReliable (λM) are the

cost optimised and most reliable deployments, respectively.

The results show that EMCK almost always generates the cheapest deployment when

compared with the other two algorithms. As for the case of large CyberShake work-

flow, it even produced deployments which were cheaper than our lowerBound result.

The reason is that NCF, the algorithm used to generate the lowerBound solutions,

is a heuristic-based algorithm [129] that can generate deployments based on cost and

security yet it cannot guarantee the cheapest solution.

The performance of EBDLS is significantly influenced by the type and size of the work-

flow. For small and medium size workflows the cost of deployment solutions generated

by EMCK and EBDLS is very close. However, for large CyberShare and Epigenomics

workflows EMCK can save nearly 10% of cost when compared with EBDLS. Further-

more, for the very large Montage workflow EMCK yields 18% cost savings.

Figure 6.5 shows the normalised time consumption of generating a deployment solution
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Figure 6.2: Cost for the medium size workflows.

for different algorithms. EBDLS is hundreds times faster than EMCK and with the

increasing size of the workflow the gap is also increasing. Similarly, EDCA is ten

times faster. Although our algorithm is much slower than the two others, the time to

generate a deployment, even for very large workflows, is less than one minute, which

is acceptable for our use.

6.5.1.3 Reliability evaluation

In order to simulate failures during workflow execution we combined WorkflowSim

with DynamicCloudSim. DynamicCloudSim introduces a basic failure model which

simulates the task fail during task execution. Whenever a task is assigned to a VM

and its execution time is computed, DynamicCloudSim determines whether the task is

bound to succeed or fail. This decision is based on the average rate of failure specified

by the user [26].

Our experiment was set up as follows. Firstly, we set the initial reliability rate of each
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Figure 6.3: Cost for the large size workflows.
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Figure 6.4: Cost for the very large size workflows.
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Figure 6.5: Time ratio of EMCK to the other two algorithms
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Figure 6.6: Comparing successful executions between two types of deployments of
workflows for different size

- 135 -



Chapter 6: Cost Effective, Reliable and Secure Workflow Deployment over Federated
Clouds

cloud to 99.95% (The authors in [66] observed that a large proportion of fail events

occur within 2 days in Google Cloud environment). Next, the VMs were initialised

with security and cost parameters as shown in Table 6.2. The table also includes the

start-up time of each VM, which is the time when a platform was started and is needed

to calculate its reliability value at the moment when a workflow deployment occurs.

Regarding the start-up time, the reliability rate of service si (or task in Dynamic-

CloudSim) was e−0.0005·t, where t was the start-up time of the VM assigned to execute

si plus the execution time of si.

In this experiment we ran 1000 executions of the Pegasus workflows deployed using

EMCK and NCF which generates cost optimised deployments (“lowerBound”). The

results are presented in Figure 6.6 as the ratio of successful executions between these

two algorithms. As shown, deployments generated by EMCK are always more reliable

than the cost optimised ones. Furthermore, as workflows with more tasks suffer from

more probability of failure, the ratio is more in favour of EMCK with the increasing size

of the workflows. For example, for the very large size of the “Epigenomics” workflow,

EMCK avoided 80% of failures when compared with deployments generated by NCF.

Importantly, workflow reliability is also influenced by the structure of the workflow.

The “LIGO” workflow includes mostly short running services executed in parallel,

whereas “Epigenomics” consists of chains of long running tasks. As a result, “Epige-

nomics” has much more chance to fail and so for this workflow the benefits of using

EMCK are the most prominent.

6.5.2 Realistic System

To evaluate our algorithm in conditions closer to a production use we applied it to

schedule scientific workflows in e-SC.

6.5.2.1 Tool Design

Figure 6.7 shows the architecture of our deployment tool. It consists of four core com-

ponents: Planner assigns workflow partitions to Federated Clouds using the algorithm

discussed above. The Federated Clouds consists of a set of e-Science Central instances
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Figure 6.7: The Architecture of the Deployment Tool

running in different clouds. Monitor observes the status of each instance, detects fail-

ures, and provides the information about available instances to the Planner. Finally,

Failure Generator is used to simulate failures by shutting down the e-SC instances

with a predefined probability.

6.5.2.2 Experiment Setup

To verify our algorithm we selected one of the workflows used in the Cloud e-Genome

project (the same workflow as previous chapter).

Guaranteeing that human genomic data can be securely processed on the cloud is

very important. Therefore, we modelled the security requirements of a selected Cloud

e-Genome workflow by assigning security levels as shown in Tables 6.3 and 6.4; note

that the size of data transferred between blocks and the execution time of each block

are actual values taken from logs collected by e-SC. Table 6.4 shows data sizes in GB,

where 0 denotes less than 1 MB of data. The pricing shown in Table 6.5 is collected
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Service Name Clearance Location Time(/h)
Sample Name S1 1 0 1
ImportF ile S2 1 0 1.5

Sample V aule Info S3 1 0 3
HG19 S4 1 0 0.1
Filter S5 2 0 10

Exome−Regions S6 1 0 7
Intervalpadding S7 0 0 20
ColumnJoin S8 2 0 0.1

AnnotateSample S9 2 0 5
Export S10 1 0 0.3

Table 6.3: Services representation and se-
curity and execution time

Data Location Size (GB)
S1,8 1 0
S2,5 0 1.1
S3,8 2 0.01
S4,5 0 0.005
S4,7 0 0.005
S5,7 0 6.2
S6,7 0 10.3
S7,9 1 3.6
S8,9 0 0
S9,10 0 0.05

Table 6.4: Data security and size.

Cloud Pr1 Pu1 Pu2
Security 2 1 0
CPU 3.41(/h) 2.40(/h) 1.28(/h)
Pr1 0 0.1 0.11
Pu1 0.13 0 0.09
Pu2 0.07 0.02 0

Table 6.5: Basic attributes of the three
clouds used in the experiment: security
level, cost of computing resources, cost of
data transfer between clouds (e.g. Pr1 →
Pu1 = 0.1)

Service lowerBound EMCK
S1 Pr1 Pu1
S2 Pu2 Pu2
S3 Pr1 Pr1
S4 Pu2 Pu2
S5 Pu2 Pu1
S6 Pu2 Pu2
S7 Pu2 Pu2
S8 Pr1 Pr1
S9 Pu2 Pu2
S10 Pu2 Pr1

Table 6.6: Two deployments

from two major cloud providers and is based on the equivalent VM configurations.

Also one of the providers offered a private cloud service and we include its pricing in

the table.

To simulate this environment, we set up three virtual machines and each of which

runs a single instance of the e-SC system. VM1 was hosted on a personal PC and

represented the private cloud. Two other VMs were hosted in our University virtualised

environment and played the role of public cloud providers Pu1 and Pu2.

As previously, to test our algorithm the platform’s start-up time must be defined. We

set 1.7h, 2.4h and 3.5h for VM1, VM2 and VM3, and their initial reliability as 0.95,

0.93 and 0.90, respectively. Our working hypothesis was that: failure rates had to

be unrealistically high in this experiment; demonstrating workflows fail frequently, as

it was aimed. If not, we would need to run the longitudinal experiments for a pro-

hibitively long time. For the purpose of the experiment, we also reduced the execution

time of the given workflow by 30 seconds by scaling down the amount of input data

shown in Table 6.3 by a factor of 6000.
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Figure 6.8: The execution results of two deployments

6.5.2.3 Results and Discussion

Based on the presented experiment setup we generated two deployments: “lowerBound”

produced by the NCF algorithm and one generated by EMCK (Table 6.6). The cost

of the workflow execution was 69.832 for the “lowerBound” and 128.897 for EMCK.

Although this is nearly twice as costly as the cost optimised solution, the deployment

produced by our algorithm improved reliability by about 25% (Figure 6.8).

One may challenge that the failure rate for both deployments were too high (about

40%). This is, however, the result of the high initial failure rate set for each VM. If the

initial rate of each VM was set as the realistic value, there are lack of failures during

the execution of the given workflow. This is not only because of the size of workflow

is too small, but also the start-up time of each VM is just a few hours. However, the

experiment in which we simulate more realistic reliability conditions were presented in

the previous section, whereas in this experiment we show that our algorithm can be

adapted to the real system and can generate correct deployments.
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6.6 Conclusion

Driven by the popularity of moving to cloud, increasing numbers of workflow based

applications are hosted in cloud. However, the variety and dynamics of cloud environ-

ments with security, reliability and price, lead users to struggle the users struggle in

choosing a best cloud for deploying their applications. In this chapter, we presented

a new algorithm to address the problem of deploying workflow applications over fed-

erated clouds meeting the reliability, security and monetary cost requirements. We

have shown the trade-off between reliability and cost, and identified that the optimi-

sation problem is NP-hardness problem. Our algorithm guarantees that the security

and reliability constraints are met while optimising the monetary cost. The algorithm

has been evaluated using realistic scientific workflows on both simulated environment

and a real world cloud based platform. Experimental results show that our solutions

can guarantee the security and reduce failures by 25% while generating the cheapest

solution compared with other algorithms.
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Summary

In this chapter, we firstly summarise the research work presented in this thesis. We

then outline the contributions, and discuss open research problems in the field that

could inform future work.

7.1 Thesis Summary

In this thesis, we have explored the algorithms and framework for partitioning a sci-

entific workflow over federated clouds to meet different non-functional requirements.

In this work, we design and implement a set of algorithms to allow a cloud work-

flow broker to distribute a scientific workflow over a federated cloud, in order to meet

non-functional requirements, such as security, reliability and monetary cost.

Chapter 2 first gave an overview of scientific workflow deployment on clouds. Next,

the state-of-the-art methods were classified into six categories: Financial Cost

Driven, Security Driven, Reliability Driven, Performance Driven, Data Driven

and Multi-Objective optimisation. In addition, the diversity of cloud environ-

ments offers the possibility of distributing a single workflow application to a set

of clouds to satisfy the requirements of each component of the workflow. How-

ever, we showed that there is scarcity of research that has considered planning

and deploying a workflow over federated clouds to meet different non-functional

requirements. To bridge this gap, in this thesis we proposed a set of algorithms

and a framework addressing these problems.

Chapter 3 described an implementation that adapts Watson’s multi security level

partition method [143] to distribute a workflow application over a federated

cloud. The cloud federation is represented as a set of e-Science Central cloud

based platform instances which are deployed over different clouds from differ-

ent cloud providers. Moreover, a dynamic exception handling mechanism was

designed and adapted to the tool to handle cloud failure when the workflow is

running over a federated cloud. To this end, the mechanism is triggered when

clouds fail, and it automatically selects the best way to repartition the workflow,
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whilst still meeting security requirements. This avoids the need for developers

to code ad-hoc solutions to address cloud failure, or the alternative of simply

accepting that an application will fail when a cloud fails.

Chapter 4 proposed an algorithm which can be used to partition a large size work-

flow over federated clouds to meet the security requirements while minimising

monetary cost. Partitioning a workflow over a federated cloud is a NP-hard prob-

lem, therefore requiring an algorithm or a method that can efficiently generate

a good-enough deployment solution. Thus, a new cost model was developed to

calculate the monetary cost of workflow execution over a set of clouds. Addition-

ally, the multi-level security model [143] was extended and adapted to the cost

model. To generate a secure and cost optimised deployment solution, NCF (not

cost first) algorithm was developed to efficiently partition a large size scientific

workflow over a set of clouds to meet security requirements and also minimise

the financial cost.

Chapter 5 proposed DoFCF (Deploy on Federated Cloud Framework) to dynami-

cally deploy scientific workflow over a federated cloud to meet security require-

ments while minimising the monetary cost. As a framework, DoFCF can be eas-

ily adapted to any security model as well as other non-functional requirements

models to partition scientific workflow over a set of clouds, while minimising the

financial cost. In addition, a cloud federation can be dynamic, with the avail-

ability of clouds may change frequently. To this end, DoFCF also considers how

to handle changes in cloud availability.

Chapter 6 different cloud providers offer various clouds with different levels of se-

curity, reliability and monetary cost. At the same, time user applications have

become more and more complex. Often, they consist of a diverse collection of

software components, and need to handle variable workloads, thereby posing

different requirements on the infrastructure. Therefore, many organisations are

considering using a combination of different clouds to satisfy these needs. This

raises, however, a non-trivial issue of how to select the best combination of clouds

to meet the application requirements. Therefore, a novel algorithm was devel-

- 143 -



Chapter 7: Conclusion

oped to address the problem of deploying workflow applications over federated

clouds to meet the reliability, security and monetary cost requirements. We have

shown the trade-off between reliability and cost, and the optimisation problem is

NP-hard. Our algorithm guarantees that the security and reliability constraints

are met, while optimising the monetary cost.

7.1.1 Contributions on Partitioning Workflow Over Feder-
ated Clouds

In order to partition workflows over a federated clouds, cloud broker is required to

distribute different partitions to different clouds. The broker can interact with the

workflow execution environments, including computing resources and dependencies,

therefore distributing tasks to destination resources, executing tasks in a predefined

order, and monitoring the execution. Moreover, handling exceptions is an essential

function of a cloud broker. In chapter 3 these problems were taken into account to

illustrate a tool which can dynamically partition workflow application over federated

clouds. In addition, we applied a security model to guarantee the security of workflow

deployment in a cloud federation.

Usually, workflow applications are complex consisting of very large numbers of task.

We need a smart algorithm to rapidly partition complex workflow applications. Thus

in Chapter 4 we extended the security model and develop a novel cost model, based

on this we develop an adaptive heuristic algorithm to partition workflow applications

to federated clouds while meeting security requirements and minimising the monetary

cost. However, the generated solutions can be sub-optimal solution.

In addition, the cloud federation is very dynamic and a cloud may leave the federation

without notification, and a new cloud may join the federation when the workflow is

running. In order to adapt to and benefit from this dynamism, we propose an new

algorithm in Chapter 5 to dynamically schedule the running workflow over federated

clouds when the cloud availability change.

Last but not least, we take more attributes into account in cloud federation, considering

security, reliability and monetary cost in Chapter 6. We first develop an entropy

based model to measure the reliability of workflow execution. A new multi-objectives
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optimisation algorithm was designed and implemented to partition workflows over

a federated clouds to meet security and reliability requirements, while minimising

monetary cost.

7.2 Future Research Directions

Here we motivate a number of areas of future research, which are inspired by the work

of the present PhD project.

7.2.1 A Generic Cloud Broker

We implemented a cloud broker to evaluate our algorithms and framework, but that

was based on the eScience Central API and can only execute the workflows over the

eScience Central platform. Future work could address the design of a generic cloud

Broker that can automatically provision the required execution environments (without

installing the whole platform) when existing resources cannot meet the requirements.

Currently, a major issue here is the lack of standard cloud APIs.

7.2.2 Efficient Data Transmission Between Clouds

Existing techniques mainly focus on gathering relevant data on a shared disk file

system at one data centre before starting execution. However, this can be very time

consuming. New data staging methods are therefore desirable; for example, caching

can increase the efficiency of data transmission during scientific workflow execution.

7.2.3 The Truthfulness of Cloud Providers

All of the deployment methods or algorithms are based on trusting the accuracy of the

information received about the status of resources. The cloud federation may contain

a set of selfish cloud providers, hiding or misrepresenting their resource information.

For example, the cloud providers might exaggerate the speed of their resources so as

to charge higher prices fro the users of their resources. Game theory is a mathematical

method used to analyse the decisions of agents in a problem modelled as a game [118],

which could be explored for verifying the truthfulness of the cloud providers.
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8.1 Appendix A

Why entropy?

In the following, we first illustrate the mathematical representation of the entropy and

power methods, and then explain why our entropy method is suitable and has more

advantages than power.

We assume that REL = n
√
RP (w) is the expected reliability of each service. Thus, we

aim to find a deployment φ which meets the requirement of RP (φ) ≥ RELn.

The power method can be defined as follows:

RP (φ) =
n∏
i=1

Ri ≥ RELn

n

√√√√ n∏
i=1

Ri =
n∏
i=1

R
1
n
i ≥ REL

n∑
i=1

logR
1
n
i ≥ logREL

(8.1)

where Ri is the reliability of service si ∈ φ.

Note that the left hand side of Inequality 8.1 shows that the power method is a version

of geometric mean.

Regarding the Entropy method, we can have the following assumption:

RE(φ′) = −
n∑
i=1

R′i logR′i ≤ −nREL logREL (8.2)

where R′i is the reliability of service si ∈ φ′. Given Inequality 8.2, we show that RE is

weighted geometric mean.

Theorem 1. Entropy is a version of weighted geometric mean.

Proof. We assume si ∈ w and |φ′| = n, noting φ′ includes n services. If R′i is the

reliability of service si, we can measure the reliability of φ′ using the entropy method

as shown by Inequality 8.2:

1

n

∑
i∈n

R′i logR′i ≥ REL logREL (8.3)
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And the left hand side of (8.3) can be transformed as:

1

n

n∑
i=1

R′i logR′i =
n∑
i=1

logR
′R

′
i

n
i

= log
n∏
i=1

R
′R

′
i

n
i

(8.4)

Q.E.D

The reason why entropy can avoid the distributions with huge differences in REL be-

tween services when compared to RP is because Theorem 1 shows that RE is a weighted

geometric mean, whereas RP is a geometric mean. Compared with geometric mean,

weighted geometric mean better reflects a situation when a shortage in one element

limits the result and cannot be compensated by other elements [87]. Therefore, in our

case weighted geometric mean can convey more information about service reliability

than simple geometric mean can. Importantly, the characteristic of RP that the lower

value has the higher reliability is still carried on with RE.

However, from Inequality 8.2, we cannot guarantee RP (φ′) ≥ RELn. In other words,

Equation 8.1 and 8.2 are not necessary and sufficient condition. To overcome this

issue, we assume −RE(φ′) = log
∏n

i=1R
′R

′
i

n
i ≥ X, where X is an unknown auxiliary

value. We, therefore, can have:

log
n∏
i=1

R
′R′

i
i ≥ nX (8.5)

Let us set RM = MAX(R′i) as the highest R′i. Thus, the Inequality 8.5 can be

transformed as:

log
n∏
i=1

R
′R′

i
i ≥ log

n∏
i=1

R′RM
i = nX (8.6)

We combine the condition RP (φ′) =
∏n

i=1R
′
i ≥ RELn with Inequality 8.6, as follows:
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nX = RM log
n∏
i=1

R′i ≥ RM logRELn

X ≥ RM logREL

(8.7)

Consequently, the constraint on entropy is:

log
n∏
i=1

R
′R

′
i

n
i ≥ X ≥ RM logREL

RE(φ′) ≤ −nRM logREL

(8.8)

Mathematically, we have discussed that the method based on entropy has the advan-

tage of reflecting a situation when one or a few elements limit the result which cannot

be compensated by other elements. Therefore, by the application of this method, not

only can we quantitatively measure the reliability of deploying a workflow over federated

clouds, but it also has better performance by avoiding the situation in which a deploy-

ment that meets the overall reliability requirement includes a service with significantly

low reliability. We illustrate this with the following experiment.

Let us consider a workflow composed of 6 services with randomly assigned reliabil-

ity Ri ∈ [0.9, 0.99]. And let us assume that expected reliability of each service is

REL = 0.95. We then randomly generate 1000 of such workflows and use entropy and

the arithmetic, power and harmonic mean ( n∑n
i=1

1
Ri

) to measure the overall workflow

reliability; note that the harmonic mean combines characteristic of both the average

(arithmetic mean) and power method. The reliability constraint of each method is:

6·0.95·log0.95; 0.95; 0.956; 6∑6
i=1

1
0.95

for entropy, arithmetic mean, power and harmonic

mean, respectively.

In this experiment, we aim to demonstrate that entropy can better avoid situations

in which a deployment meets the reliability requirements, yet includes a service with

significantly low reliability. Therefore, we apply the same constraint for each method,

instead of Inequality 8.8 (actually, the constraint of Inequality 8.8 is more strict, thus

the set of deployments that would match Inequality 8.8 is a subset of the one used

in this experiment). Figure 8.1 shows that for power and both means nearly half of
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the distributions meet the reliability constraint and so are acceptable. However, only

for 17 workflows (marked as “Target” in Figure 8.1) reliability Ri of each service was

greater than or equal to 0.95. As shown, the number of workflows accepted using the

entropy method was much lower than for the other methods and much closer to the

target.

8.2 Appendix B

Theorem 2. Calculating the reliability of a workflow using the power method has the

optimal substructure property if we assume fault-free connections between services.

Note that the problem is said to have the optimal substructure property if an optimal

solution can be constructed from optimal solutions of its subproblems [41]. We use

induction to prove this theorem.

Base case. Let us consider a workflow with n services and take a single service s1

and assign it to the platform which satis̈ıň ↪Aes the security constraints of s1 and which

has the maximum reliability. Clearly, such assignment is the most reliable solution for

this workflow.

Induction step. Now, let us consider a workflow with n services and assume that

services {s1, . . . , sk} have been assigned such that
∏k

i=1 s
pi
i is maximal and each plat-

form pi satisfies security constraints of service si assigned to it. We then take sk+1 and

assign it to the platform which satisfies its security constraints and has the high-

est reliability M . Since the connections between the services are fault-free, then∏k+1
i=1 s

pi
i =

∏k
i=1 s

pi
i · M is the maximum reliability of the deployment of services

{s1, . . . , sk, sk+1}.

Conclusions. By the principle of induction we showed that the optimal solution to
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calculate reliability can be constructed from optimal solutions to two sub-problems:

finding the optimal solution to deploy the first k workflow services and finding the

optimal solution to deploy service k + 1. Q.E.D.
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