25,508 research outputs found

    Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners

    Get PDF
    Humans show a remarkable ability to understand continuous speech even under adverse listening conditions. This ability critically relies on dynamically updated predictions of incoming sensory information, but exactly how top-down predictions improve speech processing is still unclear. Brain oscillations are a likely mechanism for these top-down predictions [1 and 2]. Quasi-rhythmic components in speech are known to entrain low-frequency oscillations in auditory areas [3 and 4], and this entrainment increases with intelligibility [5]. We hypothesize that top-down signals from frontal brain areas causally modulate the phase of brain oscillations in auditory cortex. We use magnetoencephalography (MEG) to monitor brain oscillations in 22 participants during continuous speech perception. We characterize prominent spectral components of speech-brain coupling in auditory cortex and use causal connectivity analysis (transfer entropy) to identify the top-down signals driving this coupling more strongly during intelligible speech than during unintelligible speech. We report three main findings. First, frontal and motor cortices significantly modulate the phase of speech-coupled low-frequency oscillations in auditory cortex, and this effect depends on intelligibility of speech. Second, top-down signals are significantly stronger for left auditory cortex than for right auditory cortex. Third, speech-auditory cortex coupling is enhanced as a function of stronger top-down signals. Together, our results suggest that low-frequency brain oscillations play a role in implementing predictive top-down control during continuous speech perception and that top-down control is largely directed at left auditory cortex. This suggests a close relationship between (left-lateralized) speech production areas and the implementation of top-down control in continuous speech perception

    Speech rhythms and multiplexed oscillatory sensory coding in the human brain

    Get PDF
    Cortical oscillations are likely candidates for segmentation and coding of continuous speech. Here, we monitored continuous speech processing with magnetoencephalography (MEG) to unravel the principles of speech segmentation and coding. We demonstrate that speech entrains the phase of low-frequency (delta, theta) and the amplitude of high-frequency (gamma) oscillations in the auditory cortex. Phase entrainment is stronger in the right and amplitude entrainment is stronger in the left auditory cortex. Furthermore, edges in the speech envelope phase reset auditory cortex oscillations thereby enhancing their entrainment to speech. This mechanism adapts to the changing physical features of the speech envelope and enables efficient, stimulus-specific speech sampling. Finally, we show that within the auditory cortex, coupling between delta, theta, and gamma oscillations increases following speech edges. Importantly, all couplings (i.e., brain-speech and also within the cortex) attenuate for backward-presented speech, suggesting top-down control. We conclude that segmentation and coding of speech relies on a nested hierarchy of entrained cortical oscillations

    Differential rates of perinatal maturation of human primary and nonprimary auditory cortex

    Get PDF
    Abstract Primary and nonprimary cerebral cortex mature along different timescales; however, the differences between the rates of maturation of primary and nonprimary cortex are unclear. Cortical maturation can be measured through changes in tissue microstructure detectable by diffusion magnetic resonance imaging (MRI). In this study, diffusion tensor imaging (DTI) was used to characterize the maturation of Heschl’s gyrus (HG), which contains both primary auditory cortex (pAC) and nonprimary auditory cortex (nAC), in 90 preterm infants between 26 and 42 weeks postmenstrual age (PMA). The preterm infants were in different acoustical environments during their hospitalization: 46 in open ward beds and 44 in single rooms. A control group consisted of 15 term-born infants. Diffusion parameters revealed that (1) changes in cortical microstructure that accompany cortical maturation had largely already occurred in pAC by 28 weeks PMA, and (2) rapid changes were taking place in nAC between 26 and 42 weeks PMA. At term equivalent PMA, diffusion parameters for auditory cortex were different between preterm infants and term control infants, reflecting either delayed maturation or injury. No effect of room type was observed. For the preterm group, disturbed maturation of nonprimary (but not primary) auditory cortex was associated with poorer language performance at age two years

    Anatomical identification of primary auditory cortex in the developing gerbil

    Full text link
    Cortical development is an active field of study. The gerbil provides an excellent model for research because at the moment of birth its brain is rather immature, anatomically and functionally. Furthermore, the gerbil auditory cortex is particularly amenable to investigation in that the gerbil\u27s onset of hearing occurs approximately after 14 days of postnatal life. Despite these advantages of the gerbil for auditory cortex development not much is known about the anatomy of the postnatal gerbil auditory cortex. For example, where is the gerbil auditory cortex? Prior to the onset of hearing, sounds cannot be used to localize auditory cortex. Therefore, the localization of the auditory cortex with anatomical landmarks alone during development is necessary. Anatomical and physiological approaches to localize the auditory cortex are published in the literature, but evaluated only in adult gerbils, and many of them are based on the fresh brain slice preparation and not applicable in vivo. The present study compares the anatomical references of the adult gerbil published in the literature with the anatomical references in the developing gerbil. Using specific blood vessel positions as landmarks, the position of the primary auditory cortex was estimated on fixed brains and in vivo. The lipophilic tracer Neurovue was used to confirm whether the position resulting from the anatomical analysis was consistent with the position of the auditory cortex. The results showed that anatomical references present already in the developing gerbil are consistently related to the position of the auditory cortex and they can be reliable used as landmarks to detect the actual position of the auditory cortex

    Neural Mechanisms of Selective Auditory Attention in Rats (Dissertation)

    Get PDF
    How does attention modulate sensory representations? In order to probe the underlying neural mechanisms, we established a simple rodent model of modality-specific attention. Rats were trained to perform distinct auditory two-tone discrimination and olfactory odor discrimination in a two alternative choice (2AC) paradigm. 
To determine auditory cortex’s role in this frequency discrimination task, we used GABA-A receptor agonist muscimol to transiently and reversibly inactivate auditory cortexes bilaterally in rats performing simple interleaved auditory and olfactory discrimination. With olfactory discrimination performance serving as internal control for motivation and decision making capability, we found only auditory two-tone discrimination was selectively impaired in these rats. This shows the auditory cortex is involved in this two-tone discrimination task.
To investigate the neural correlate of modality-specific attention in the auditory cortex, we trained rats to perform interleaved auditory and olfactory blocks (of 50~70 trials each) in a single session. In auditory blocks, pure tones were either presented with or without a neutral odor (caproic acid, n=2 and 3 respectively), and subjects were rewarded for discriminating auditory stimuli. In olfactory blocks, both task odors and pure tones were presented simultaneously, and subjects were rewarded for discriminating olfactory stimuli. We recorded neural responses in primary auditory cortex (area A1) in freely moving rats while subjects performed this behavior. Single unit responses to tones were heterogeneous, and included transient, sustained, and suppressed. We found 205 of 802 units recorded responsive to the stimuli we used. Of these 205 units, 18.5% showed modality-specific attentional modulation of the anticipatory activity before tone onset. In addition, we also observed in smaller proportion of units (11.2%) modality-specific attentional modulation of the tone-evoked responses; in most cases, the responses to a particular auditory stimulus was enhanced in the auditory block (or, equivalently, suppressed in the olfactory block). Attention increased choice probability of the population in the auditory block. We have also observed significant behavior choice probability in small proportions of units. 
Our results suggest that shifting attention between audition to olfaction tasks can modulate the activity of single neurons in primary auditory cortex

    Representation of Reward Feedback in Primate Auditory Cortex

    Get PDF
    It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys’ performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1) the reward expectancy for each trial, (2) the reward-size received, and (3) the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized

    Tinnitus Intensity Dependent Gamma Oscillations of the Contralateral Auditory Cortex

    Get PDF
    Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. In unilateral tinnitus patients (N = 15; 10 right, 5 left) source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p<0.05). Auditory phantom percepts thus show similar sound level dependent activation of the contralateral auditory cortex as observed in normal audition. In view of recent consciousness models and tinnitus network models these results suggest tinnitus loudness is coded by gamma band activity in the contralateral auditory cortex but might not, by itself, be responsible for tinnitus perception

    Functional Imaging Reveals Numerous Fields in the Monkey Auditory Cortex

    Get PDF
    Anatomical studies propose that the primate auditory cortex contains more fields than have actually been functionally confirmed or described. Spatially resolved functional magnetic resonance imaging (fMRI) with carefully designed acoustical stimulation could be ideally suited to extend our understanding of the processing within these fields. However, after numerous experiments in humans, many auditory fields remain poorly characterized. Imaging the macaque monkey is of particular interest as these species have a richer set of anatomical and neurophysiological data to clarify the source of the imaged activity. We functionally mapped the auditory cortex of behaving and of anesthetized macaque monkeys with high resolution fMRI. By optimizing our imaging and stimulation procedures, we obtained robust activity throughout auditory cortex using tonal and band-passed noise sounds. Then, by varying the frequency content of the sounds, spatially specific activity patterns were observed over this region. As a result, the activity patterns could be assigned to many auditory cortical fields, including those whose functional properties were previously undescribed. The results provide an extensive functional tessellation of the macaque auditory cortex and suggest that 11 fields contain neurons tuned for the frequency of sounds. This study provides functional support for a model where three fields in primary auditory cortex are surrounded by eight neighboring “belt” fields in non-primary auditory cortex. The findings can now guide neurophysiological recordings in the monkey to expand our understanding of the processing within these fields. Additionally, this work will improve fMRI investigations of the human auditory cortex
    corecore