730 research outputs found

    XPL the Extensible Presentation Language

    Get PDF
    The last decade has witnessed a growing interest in the development of web interfaces enabling both multiple ways to access contents and, at the same time, fruition by multiple modalities of interaction (point-and-click, contents reading, voice commands, gestures, etc.). In this paper we describe a framework aimed at streamlining the design process of multi-channel, multimodal interfaces enabling full reuse of software components. This framework is called the eXtensible Presentation architecture and Language (XPL), a presentation language based on design pattern paradigm that keeps separated the presentation layer from the underlying programming logic. The language supplies a methodology to expedite multimodal interface development and to reduce the effort to implement interfaces for multiple access devices, by means of using the same code. This paper describes a methodology approach based on Visual Design Pattern (ViDP) and Verbal Design Pattern (VeDP), offering examples of multimodal and multichannel interfaces created with the XPL Editor

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    The current approaches in pattern recognition

    Get PDF

    Multimedia Fusion for Public Security in Heterogeneous Sensor Networks

    Get PDF
    Public security is a widespread disastrous phenomenon that constitutes a grave threat. Although information fusion of video sensor networks for public security has been studied extensively, multimedia fusion in heterogeneous sensor networks or its application in public security remains a challenge and central goal in the field of information fusion. In this study, to realize the detection, monitoring, and intelligent alarm of such hazards, we develop a graph-based real-time schema for studying the dynamic structure of heterogeneous sensors for public security. In the proposed schema, data fusion algorithms based on data-driven aspects of fusion are explored to locate the optimal sensing ranges of sensor nodes in a network with heterogeneous targets. In addition, we propose a framework incorporating useful contextual and temporal cues for public security alarm, explore its conceptualizations, benefits, and challenges, and analyze the correlations of the target motion elements in the multimedia sensor stream. The experimental results show that the new method offers a better way of intelligent alarm that cannot be achieved by existing schemes

    Designing and manufacturing assemblies

    Get PDF

    Survey on Instruction Selection: An Extensive and Modern Literature Review

    Full text link
    Instruction selection is one of three optimisation problems involved in the code generator backend of a compiler. The instruction selector is responsible of transforming an input program from its target-independent representation into a target-specific form by making best use of the available machine instructions. Hence instruction selection is a crucial part of efficient code generation. Despite on-going research since the late 1960s, the last, comprehensive survey on the field was written more than 30 years ago. As new approaches and techniques have appeared since its publication, this brings forth a need for a new, up-to-date review of the current body of literature. This report addresses that need by performing an extensive review and categorisation of existing research. The report therefore supersedes and extends the previous surveys, and also attempts to identify where future research should be directed.Comment: Major changes: - Merged simulation chapter with macro expansion chapter - Addressed misunderstandings of several approaches - Completely rewrote many parts of the chapters; strengthened the discussion of many approaches - Revised the drawing of all trees and graphs to put the root at the top instead of at the bottom - Added appendix for listing the approaches in a table See doc for more inf

    Image Understanding by Hierarchical Symbolic Representation and Inexact Matching of Attributed Graphs

    Get PDF
    We study the symbolic representation of imagery information by a powerful global representation scheme in the form of Attributed Relational Graph (ARG), and propose new techniques for the extraction of such representation from spatial-domain images, and for performing the task of image understanding through the analysis of the extracted ARG representation. To achieve practical image understanding tasks, the system needs to comprehend the imagery information in a global form. Therefore, we propose a multi-layer hierarchical scheme for the extraction of global symbolic representation from spatial-domain images. The proposed scheme produces a symbolic mapping of the input data in terms of an output alphabet, whose elements are defined over global subimages. The proposed scheme uses a combination of model-driven and data-driven concepts. The model- driven principle is represented by a graph transducer, which is used to specify the alphabet at each layer in the scheme. A symbolic mapping is driven by the input data to map the input local alphabet into the output global alphabet. Through the iterative application of the symbolic transformational mapping at different levels of hierarchy, the system extracts a global representation from the image in the form of attributed relational graphs. Further processing and interpretation of the imagery information can, then, be performed on their ARG representation. We also propose an efficient approach for calculating a distance measure and finding the best inexact matching configuration between attributed relational graphs. For two ARGs, we define sequences of weighted error-transformations which when performed on one ARG (or a subgraph of it), will produce the other ARG. A distance measure between two ARGs is defined as the weight of the sequence which possesses minimum total-weight. Moreover, this minimum-total weight sequence defines the best inexact matching configuration between the two ARGs. The global minimization over the possible sequences is performed by a dynamic programming technique, the approach shows good results for ARGs of practical sizes. The proposed system possesses the capability to inference the alphabets of the ARG representation which it uses. In the inference phase, the hierarchical scheme is usually driven by the input data only, which normally consist of images of model objects. It extracts the global alphabet of the ARG representation of the models. The extracted model representation is then used in the operation phase of the system to: perform the mapping in the multi-layer scheme. We present our experimental results for utilizing the proposed system for locating objects in complex scenes
    corecore