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KYBERNETIKA — VOLUME 30 (1994), NUMBER 2, PAGES 159-176 

THE CURRENT APPROACHES IN 
PATTERN RECOGNITION 

JIRI KEPKA 

The paper presents a brief survey of the current approaches in pattern recognition. In 
this field the classification processes of patterns are the main subject of interest. The most 
conventional techniques used to solve pattern recognition problems may be grouped into 
statistical, structural and hybrid methods of the previous two ones. The artificial intelli
gence approach to pattern recognition is used for such very complex tasks each solution of 
which heavily depends on the knowledge of experts. Recently, several attempts have been 
made to combine pattern recognition system with knowledge-based system so as to build a 
knowledge-based pattern recognition system of much more sophisticated recognition capa
bility. The finks between the structural (syntactic) approach and the artificial intelligence 
one to pattern recognition are given. 

1. INTRODUCTION 

Both advantages and drawbacks of the current approaches in pattern recognition and 
the links between them are described in a very comprehensive and brief form. Their 
knowledge is necessary for understanding the current trends in pattern recognition 
field. From this point of view this survey should bring about the benefit to the 
readers interested in pattern recognition problems. To persons quite new to pattern 
recognition the complete understanding of the text may be difficult but perhaps the 
great number of citations in the paper may be very useful for them in their further 
studies. 

There has been a considerable growth of interest in problems of pattern recog
nition during the past thirty years. Applications of pattern recognition include 
character recognition, speech recognition and understanding, medical diagnosis, 
identification of fingerprints and human faces, remote sensing, machine part rec
ognition, etc. Both the development of the new methods for use in design of pattern 
recognition systems and computer technology advances have made processing of 
more complex patterns possible. The most conventional techniques so far used to 
solve pattern recognition problems are based on the one of the following approach
es— the statistical, the structural or the hybrid one. 

Pattern recognition has been defined by Pavlidis "to involve the identification of 
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the ideal which a given object is made after" [76]. Pattern recognition is mainly 
related to classification. But in many problems, e.g. identification of fingerprints, 
recognition of continuous speech, the patterns are complex and/or the number of 
possible descriptions is very large and therefore, it is usually impossible to regard 
each description as a separate class. In such cases the information about the pattern 
structure can not be omitted and/or the requirment of recognition can be satisfied 
only by founding out a description for each of analyzed patterns rather than by 
simple task of classification. 

One of the necessary conditions for understanding the "signal" which the analyzed 
pattern is measured on is to obtain its description. Clearly, the description should 
make the interpretation of the "signal" in terms of the behavior of mechanism, that 
generate it, possible. In complex tasks the solution heavily depends on the knowledge 
of experts. That is why many attempts have recently been made to combine pattern 
recognition system with knowledge-based system. The goal is to build a knowledge 
based-pattern recognition system of much more sophisticated recognition capability, 
see e.g. [8, 71, 109, 110]. 

In the second part of the paper the conventional approaches, namely the stat
istical, the structural and the hybrid one are briefly reviewed. In the third part 
the artificial intelligence approach to pattern recognition introduced by Nandhaku-
mar and Aggarwal [71] is discussed and its links to the conventional approaches, 
especially to the structural (syntactic) one, are shown. 

2. CONVENTIONAL APPROACHES 

2.1 . T h e Stat is t ical Approach 

In this approach the measurements taken from At features are represented in At-
dimensional pattern space as one point. Its coordinates characterize the original 
"signal". The principle of classification is based on the portion of the pattern space 
into subspaces, each of which corresponds to a particular pattern class. Sometimes, 
the possibility to reject the classification of some patterns may be also desirable, see 
[15, 18, 48]. The techniques used to solve such tasks can be subdivided into: 

a) parametric classification methods; 
b) discriminant functions; 
c) clustering analysis; 
d) fuzzy set reasoning. 

ad a) Each of features is considered to be a random variable. The multivariate 
probability distribution function is assumed to exist for every pattern class. They 
are either known a priori or estimated from a training set of patterns. 

The best known classifiers are based on Bayes' rule. They are designed with the 
criterion of minimizing the Bayesian error probability or a cost measure based on it. 
The input feature vector representing an analyzed pattern is classified into a class 
d, if the likelihood ratio between two pattern classes C, and Cj is greater than the 
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ratio of the probabilities of occurrences of the pattern classes Cj over d . For more 
details about this group of techniques see e.g. [19, 98, 114]. 

These techniques come to trouble for the patterns which require a lot of fea
tures for recognition. In such cases the feature space is not distributed densely and 
uniformly, but sparsely and locally. Sometimes the costs of feature measurements 
and/or their sequential character must be also taken into account. Then it is better 
to process the pattern features sequentially. The principle of sequential processing 
is based on a partial decision making in each step. Step by step pattern features are 
sequentially processed and pattern subcategories are formulated until a subcategory 
contains only one pattern class. In this manner the often desired trade off between 
the costs of measurements and the risk of misclassification can be obtained. 

Both the selection and the ordering of pattern features has a direct influence 
on the efficiency of recognition. The Karhunen-Leeve expansion [49] is the well 
known feature selection technique. It is based on an eigenvector analysis of the 
sample covariance matrix associated with the input representation vectors. As the 
result of this analysis the representation vectors are linearly transformed into a new 
coordinate system in which the coordinate coefficients are mutually uncorrelated. 
The information from the original representation vectors is concentrated in the first 
few axes of the new coordinate system. 

Probably the best known'sequential recognition procedure of parametric clas
sification methods is the Wald's sequential probability ratio test [24]. After each 
measurements the likelihood ratio is computed and with two parallel boundaries 
compared. One hypothesis (pattern class) is tested against another. The crossing of 
each of the boundaries is associated with the acceptance of one of the two hypoth
eses. The urgency to terminate the Wald's sequential procedure becomes necessary 
when the cost of taking measurements is found too high or when the process exceeds 
a certain time limit or when the available measurements are exhausted. Either 
the truncation of the procedure at a given time [9] or, better, a modified Wald's 
sequential procedure using time-varying stopping boundaries [13] can be used. 

A dynamic programming approach to sequential processing was also tested in 
the cases where the feature measurements were assumed to be either statistically 
independent or Markov-dependent, see e.g. [31]. 

Besides the sequential recognition methods multistage decision making based on 
various decision trees has been employed in a number of pattern recognition tasks, 
e.g. [11,86]. 

ad b) The classification problem is formulated in terms of discriminant functions. 
Let X be the feature vector. Then the discriminant function Di(X) associated with 
pattern class d, i = \,...,K, is such that if the input pattern represented by the 
feature vector X is in class Cj, the value of Dj(X) must be the largest one, i.e. 

Dj(X)>Di(X), iJ=l,...,K, i?j. 

The decision boundary between regions associated with class Cj and class d, re
spectively, is given by the equation 
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Dj(X)-Di(X) = 0. 

Many forms can be chosen for Dj(X). The simplest one is the linear discriminant 
function. If a set of reference vectors, each of which corresponds to a particular 
pattern class, is given, then a minimum distance classifier may be used. More general 
situation such that a set of reference vectors, instead of a single one, is given for 
each pattern class leads to the piecewise-linear discriminant functions. In general, 
any non-linear discriminant function can be used. 

The choice of the form of a discriminant function is influenced by the maximal 
complexity and misrecognition rate allowed, by the number of training patterns, by 
the number of features and other a priori knowledge about the given problem. The 
proper values of the coefficients in discriminant functions are usually not available. 
They must be learned during the learning process from the training patterns with 
known classification. For more details see e.g. [114]. 

ad c) Clustering analysis has become an often used tool for data analysis. It can 
be thought to be an independent field of pattern recognition approaches. Clustering 
algorithms may be classified into the hierarchical and the nonhierarchical ones [2]. 

The &-means method and its variants are the most widely used clustering al
gorithms from the nonhierarchical ones. For example let us consider k clusters 
C\,...,Ck and a criterion 

J=І2 E H*'-"" 

where m,- is the mean value of the ?-th cluster. An optimal clustering procedure 
considers all possible k clusters obtainable from all pattern vectors x\, I = 1,. . . , n, 
and evaluates J for each possible combination. In this manner a global minimum of 
J and the corresponding final grouping can be obtained. This technique is not often 
used because it is computationally impractical for moderate or large n of pattern 
vectors. Computationally feasible fc-means method seeks the minimum iteratively. 
To initiate the clustering algorithm the seed points m i ( l ) , m 2 ( l ) , . . . ,mj.(l) have 
to be chosen. At each step of the algorithm pattern vectors are reclassified and 
afterwards the mean vectors are updated. This method can be simply and easily 
implemented, thought, on the other hand, the final grouping computed by it is 
influenced by the accepted choice of the initial seed points and only a local optimal 
grouping may be obtained. 

The hierarchical clustering algorithms are usually divided into agglomerative and 
divisive. The agglomerative algorithms operate by step-by-step merging of small 
clusters into larger ones by the introduction of ultrametric distance criteria. Re
cently, the efficient agglomerative clustering algorithm using a heap has been pro
posed in [56]. Its computation time is at most o(n2log(n)). In contrast to the 
agglomerative techniques, "the division methods not only describe the situation, 
but also find a representation and based on that identify the object" [69]. 
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ad d) If there is no a priori knowledge and therefore, the probabilities can not be 
computed, then the introduction of fuzzy set elements formulated by Zadeh [115] 
may yield more realistic results. Fuzzy set reasoning creates an alternative to the 
probabilistic approach given in a), see e.g. [54]. 

It has to be stressed here that, the statistical approach is also known to have 
some drawbacks. First, many above mentioned techniques are optimal in classifying 
the features but there is nothing optimal about their choice. Secondly, quantify
ing the contribution of a particular feature towards the accuracy of classification is 
ambiguous. "Many measures have been proposed to evaluate it but there is no uni
versally accepted one. This, compounded with the indeterminacy in the statistical 
inter-relationship between features, makes features subset specification an exercise 
in educated guessing" [71]. It should be also noted that, in general, all pattern fea
tures can not be represented well in mathematical expressions and the evaluation of 
the effectiveness of feature ordering largely depends on human subjective judgment. 
Thirdly, the statistical approach do not utilize structural properties (if any exist) 
of analyzed patterns and it is not capable to analyze patterns containing the recur
sion. It does only lead to class descriptions of patterns but it does not provide any 
descriptions of them. 

Nevertheless, the statistical approach is an adequate tool for solutions of many 
pattern recognition problems. Its effectiveness depends on both the problem domain 
and the goal to be solved. 

2 .2 . The Structural Approach 

The main idea of the structural approach is based on the recursive description of 
complex patterns in terms of simpler patterns just as sentences are built up by 
concatenating words, and words are built up by concatenating characters. The 
application of this approach results in both the classification and the structural 
description of an analyzed pattern by means of a set of pattern primitives (simplest 
subpatterns) and their relationships. Of course, the pattern primitives must be much 
easier to recognize than the patterns themselves. 

As the theoretical background formal language theory [35, 40, 85] is usually used 
and that's why the term "syntactic approach" is also used. Chomsky [14] introduced 
four types of phrase - structure grammars, namely unrestricted, context-sensitive, 
context-free and finite-state grammars. They deal only with strings and their rules 
are successively applied only to a given small part of sentence form derived. In 
describing patterns using such a string grammar, the only relation between sub-
patterns and/or primitives is the concatenation. Unfortunately, in many practical 
problems the pattern description in the form of a simple string of primitives can be 
cumbersome. The one-dimensional relation has not been very effective in providing 
efficient structural descriptions of multidimensional patterns such two-dimensional 
images and three-dimensional scenes. That's the reason why the high-dimensional 
pattern grammars, e.g. the tree grammars [26, 77, 78], the plex grammars [21], the 
web grammars [26, 79], etc. are used, although, in principle, any multidimensional 
grammar can be converted into a one-dimensional one [26]. 
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Classification is performed by syntax analysis which decides whether or not pat
tern representation is syntactically correct in accordance with the given grammar. 
In the former case a complete syntactic description - a parsing tree - of the analyzed 
pattern is produced. Provided the pattern can not be successfully parsed on the 
basis of any of the grammars describing possible classes of patterns then it is reject
ed. The parsing tree is constructed either from its root (the starting symbol of the 
given grammar) towards the bottom (the analyzed description) or from the bottom 
towards the top. The former technique is called top-down parsing, the latter bottom-
up parsing. For the most effective algorithms of syntax analysis see [1, 12, 20, 95]. 
In most applications a complete syntactic description according to the given pattern 
class grammar is usually needed. Therefore, only parsing techniques preserving the 
desired structural description can be used, see [44, 57]. The parsing techniques for 
tree grammars can be also used to handle the multidimensional concatenation, cf. 
[27]. 

In order to obtain a grammar representing the structural information about the 
patterns under consideration, a grammatical inference machine is required. A gram
mar inference from a given set of training patterns can be considered to be analogous 
to the learning processes in the statistical approach. The results obtained so far in 
this field are not satisfactory enough. The known methods suppose more or less 
special grammar forms, cf. [4, 26, 30, 42, 53]. It should be also noted that the 
appropriate trade off between the complexity of the recognizer and the descriptive 
power of the language must be chosen. Therefore, pattern grammars are primarily 
determined by the designer or through an interactive procedure in most cases. For 
the good introduction into the syntactic approach see [23, 26]. 

The relational graph is an alternative representation of a pattern structure, see 
[88, 89, 101]. Any useful relation that can be determined from the pattern can 
be incorporated in it. In contrast to a tree, a graph may contain closed loops 
and therefore, a richer description can be obtained.1 The relational model of an 
unknown pattern obtained by preprocessing and segmentation is matched against a 
set of prototypes. The interesting approach is to describe the matching procedure 
of relational structures by means of predicate calculus with the idea to use a logic-
programming language, e.g. Prolog [16]. 

However, serious drawbacks are involved in the pure structural approach. First, 
although the structural approach is powerful enough to describe the details of struc
ture of an analyzed pattern, it is too weak to noise which may cause structural 
deformations to it. The result of parsing is: "recognized" or "rejected" with very 
little tolerance to even small structural changes. Secondly, the structural descrip
tion obtained is not associated with any usually desirable semantics about recognized 
subpatterns and their relationships, which may be necessary for a proper interpret
ation of the analyzed pattern. Thirdly, the pure structural approach is not capable 
to handle numerical semantic information and to use it for recognition. Also, when 
a pattern can be generated by more than one pattern grammar, the problem of 

1 "However, the use of tree structures does provide a direct channel for adapting the techniques of 
formal language theory to the problem of compactly representing and analyzing patterns containing 
a significant structural content" [26]. 
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ambiguity occurs. Therefore, the pure structural approach is for most practical 
applications quite unsatisfactory. 

2 .3 . The Hybrid Approach 

Both the structural and statistical approaches can yield unsatisfactory results if they 
are used for solutions of complex pattern recognition problems alone. The former 
is weak in handling noise patterns and numerical semantic information, the latter is 
unable to utilize information about patterns structures. That's the reason why the 
idea of combining both approaches has attracted so much attention. 

For the cases, when analyzed patterns descriptions are generated by more than 
one pattern grammar,2 the stochastic or fuzzy grammars have been proposed [25, 
93, 97]. Each production has a "probability" associated with its application. The 
analyzed pattern is classified according to the occurrence probabilities of the pattern 
structure within each pattern class computed during parsing by multiplying the 
"probabilities" associated with the applied productions. Productions probabilities 
can be estimated from a given nonstochastic grammar and a sample set which usually 
consists of a set of distinct sample strings and their associated string probabilities 
[26]. 

Another way how to handle noisy and distorted patterns is the use of similarity 
measures. A similarity measure between two strings is usually interpreted as the 
weighted Levenshtein distance [59]. Substitution, insertion and deletion error trans
formations are considered. Each error transformation has a weight associated with 
its application in dependence which terminal (primitivum) the error transformation 
is made on. The distance between two strings is defined as the smallest value of 
the sum of the weights associated with the error transformations required to derive 
one string from the other one. The techniques used for the calculation of this dis
tance are usually based on the algorithm proposed by Wagner & Fisher [104] and its 
modifications [5, 22, 34, 55, 67]. The derivation of one string from the other one is 
often illustrated by an oriented graph (lattice) each path of which corresponds to a 
sequence of error transformations. In the case of a stochastic model for syntax errors 
the deformation probability between two strings is defined as the largest value of the 
product of the deformation probabilities associated with the error transformations, 
see [62]. Sometimes, other similarity coefficients, e.g. Jaccard or Dice coefficient, 
may be also used to compute the similarity measure, cf. [81]. The obtained distances 
between strings can be further processed by an appropriate clustering method. In 
this manner, a distance between a string and a given language can be introduced, 
see [63]. 

If the pattern grammar is given, it can be extended by error productions, each 
of which corresponds to one type of error transformations. Their weights depend on 
which terminal symbol (primitivum) the error transformation is made on. In this 
manner, the deformed structural descriptions can be derived from the nondeformed 
ones and syntactic distortions caused by noise can be modeled. Then the analyzed 
pattern descriptions are parsed by error-correcting parsers [33, 58, 66, 94, 97, 102]. 

2 Such a situation can often occur as a result of grammatical inference. 
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The nondeformed description can be obtained from an analyzed (usually deformed) 
one by eliminating error productions. Likewise, tree error-correcting automata may 
be used for more complex patterns, cf. [64]. 

Perhaps the most popular attempt how to overcome the drawbacks of both ap
proaches is based on the introduction of attributed grammars into this field. The 
introduction of semantics usually reduces the grammar complexity, leads to im
provement of both recognition accuracy and capability of recognition of noisy pat
terns and makes structural guidance of extraction of subpatterns attributes poss
ible. The resulted structural description is associated with the desired semantics, 
see [17, 28, 45, 47, 50, 74, 75, 80, 90, 99, 103, 106, 113]. 

In the end of this section an interesting technique proposed by Goldfarb [36] 
should be mentioned. The two preliminary steps in it are: (1) the choice of an 
appropriate formal pattern representation, (2) the definition of an appropriate dis
tance function. Taking as an input an interdistance matrix of the training samples, 
an efficient algorithm constructs a minimal vector representation of the sample. The 
resulting vector space is no longer a static universal space as in the classical statisti
cal approach, but one determined by the given data. Thus, the space is constructed 
for a specific problem. 

3. THE ARTIFICIAL INTELLIGENCE APPROACH TO PATTERN RECOG
NITION 

The classification of the approaches to pattern recognition into the conventional ap
proach and the artificial intelligence one appeared probably first in [71]. The artificial 
intelligence approach was formulated to involve the description of abstract concepts 
and the recognition of instances of these in "signals". The concept is represented by 
several (hierarchical) levels of abstraction. At each level of abstraction, knowledge 
appropriate to that level is used to identify components of the higher level concept. 
At different levels different sources of knowledge are used to model the mechanism 
that generate and deform patterns. 

The design of an Al-based signal understanding system involves the following 
major interdependent issues, namely knowledge representation, inference mecha
nisms, and the control structure. 

In [71] the conventional approach is considered to be impoverished for automated 
extraction of information from "signals" because the approach does not allow the 
integration of large amounts of diverse information to accurately model the mecha
nisms that generate and deform the "signal" under study. 

The above conclusion seems to be too strict because as it will be shown there, are 
direct links between structural (hybrid) pattern recognition and artificial intelligence. 
It may be in some cases difficult to decide whether still the structural (hybrid) 
approach or the artificial intelligence one was used as the disciplines of pattern 
recognition and artificial intelligence continuously converge. 

In the following, several links between structural (syntactic) pattern recognition 
and artificial intelligence are presented. Some of them already described in [8] are 
only briefly reviewed at first. 



The Current Approaches in Pattern Recognition 167 

Generally, a syntactic pattern recognition system can be considered a particular 
instance of a knowledge based system with a formal grammar as knowledge base and 
a parser as inference engine. 

A prototype graph can be interpreted as a simple version of a semantic net, 
especially when nodes and edges are augmented by attributes. The part-of hierarchy, 
playing an essential role in semantic networks, corresponds in many applications to 
a hierarchical scene description, which may also be built up by a parser during 
syntactic analysis. 

An analogy between the different types of control structures in the area of arti
ficial intelligence and structural pattern recognition control procedures can be also 
observed. Top-down and bottom-up control corresponds to top-down and bottom-
up parsing, respectively. A heterarchical control structure can be interpreted as a 
tree or graph grammar parsers starting at any nonterminal. The blackboard con
trol model corresponds to several grammars which look at a problem using different 
parsers reporting a series of conclusions to an agenda. Then there is another gram
mar which selects which parser to apply [8]. Another viewpoint is to regard parsing 
lists produced by the Earley parsing algorithm [20] as a form of blackboard, where 
current subparsings are recorded and new subparsings are proposed by predictor 
operation. 

There has been some confusion about how a link between the left hand and right 
hand side of a grammar production and the promise and conclusion of the corre
sponding expert's knowledge should be interpreted. A viewpoint that a grammar 
production A —» B represent the knowledge IF A THEN B was presented in 
[7, 8, 29]. But in [109, 110], a context-free grammar production A —• B has been 
shown to represent the knowledge IF B THEN A, where B is the ordered set 
of premises and A is the conclusion. Suppose, there are derivations of n sentences, 
generated by given context-free grammar G 

S => x\, S => X2, . . . , .5' => xn. 

It means, if a sentence x €E L(G) appears, the start symbol S appears surely, i.e. if 
x is true, then S is true. But from the start symbol S a specially designed sentence 
x is not necessarily formed, since S may derive any sentence of L(G) besides x. 
Therefore, there exists the only relation IF x THEN S. 

Note, that if abstract symbols are regarded as primitives (terminals) and sub-
patterns (nonterminals), then the theory of formal languages to syntactic pattern 
recognition can be applied. If the symbols are regarded as phenomena, facts, and 
conceptions, then the grammar production can be regarded as a form of knowl
edge representation. Both production systems and formal grammars are of common 
origin. 

The grammar production is more capable of representing knowledge than the 
production rule because the relation among the symbols on the right side is ordered 
conjunction while in production system the order of propositions is not important. 
Therefore, the derivation tree of language generated by a context-free grammar 
is an ordered AND/OR tree, see also [39]. The relation "OR" exists among the 
derivation trees of each sentence. The ambiguous derivations of a sentence are also 
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"OR" related, and the branches of each node are of an ordered "AND" relation. 
A part of the work reported in [91] is based on this idea. The comparison of this 
work with the previous one of the same authors reported in [92] also supports the 
conclusion about the convergence between the disciplines of pattern recognition and 
artificial intelligence. 

There are also analogies between heuristic inference algorithms and the search 
algorithms in structural (hybrid) pattern recognition. Stochastic, fuzzy grammars 
and attributed grammars may be considered to be the tools by means of which the 
experience heuristic information can be represented. Especially, in the attributed 
grammars there may be many calculations and tests involved in semantic rules to 
guide the inference process (syntax analysis). 

In [109] the knowledge-based pattern recognition system based on the syntactic 
approach has been proposed. The system consists of two parts. In the first basic 
part the syntactic (hybrid) pattern recognition system plays the conventional role, 
in the second inference part it plays the role of knowledge-based system, where 
its function in storing knowledge and in inference is maintained. For the heuristic 
search the author presents a depth-first parsing algorithm; see also [111]. Because 
the strength of the syntactic approach is well founded background from the theory 
of formal languages, and the syntactic approach itself has the basic characteristics 
of knowledge-based systems, the syntactic recognition system can sometimes have 
advantages over some knowledge-based systems. On the other hand, the results 
of research in the field of knowledge-based systems are also valuable for pattern 
recognition. For example, the recognition system based on fuzzy set theory and 
approximate reasoning [68], and methods of combining multiple classifiers based 
on Dempster-Shafer theory [107] have been recently proposed. Combining syntactic 
pattern recognition system and knowledge-based system is valuable for both of them 
[109]. 

Let's turn back to the formulation of the artificial intelligence approach. In gen
eral, on different hierarchical levels of abstraction different sources of knowledge may 
be used. According to the fact that a grammar production is capable of representing 
knowledge there is also a link between the artificial intelligence approach and the 
syntactic (structural) one based on Lindenmayer's systems with interactions and 
tables (TIL-systems) [41], where on each hierarchical level first a table (source of 
knowledge) and then the productions (knowledge) from it are chosen. As an more 
powerful alternative to TIL-systems the hierarchical description systems based on 
sets of context-dependent substitutions, which may differ on each hierarchical level, 
were formulated in [82]. As it has been shown in [43] the experience heuristic in
formation can be expressed by means of control sequences of sets of substitutions 
(tables), stochastic or fuzzy substitutions (productions), or in the best manner, by 
means of semantic tests and computations associated with each syntactic operation. 
In the latter case, attributed hierarchical description systems are used to specify the 
patterns classes under considerations. The patterns are analyzed from the rough 
level towards the more detailed ones. On each hierarchical level the appropriate 
set of substitutions associated with corresponding semantic computations (source 
knowledge) is chosen for next processing of an analyzed pattern according to the 
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results so far obtained. The parallel nature of processing on separate hierarchical 
levels makes the idea of the introduction of parallel algorithms attractive. For more 
details see [43, 46, 82]. 

The results of research in the field of machine learning are also very valuable 
for pattern recognition. The field of machine learning is very diversified and the 
same problems are often studied by artificial intelligence researches, psychologists, 
cognitive scientists and others and treated from many different perspectives. As 
the result attempts to summarize the principles of learning in a unifying learning 
theory are still rare, e.g. [52, 70]. Many various algorithms and mechanisms have 
been found that can be used to assist automatic knowledge acquisition, extraction 
of relevant knowledge from large knowledge bases, and abstraction of higher level 
concepts out of data sets. The results reached in subdisciplines of machine learning, 
namely in learning from samples, learning by analogy, deductive learning, learning by 
observation, etc. can be often utilize (and can be expected to be utilized) in pattern 
recognition, namely in the problems of knowledge acquisition, grammatical inference, 
parameters estimation, abstraction of higher level concepts, inference mechanisms, 
decision trees, etc., see e.g. [65, 83, 96, 105, 112]. 

Especially, many machine learning systems have been proposed for constructive 
decision trees from collection of samples. Such systems can be used besides pattern 
recognition also in taxonomy, decision table programming, and switching theory. 
Four essential elements in a decision tree algorithm are 1) a set of features; 2) a 
feature selection criterion; 3) a stop-splitting rule and 4) a class assigning rule. 
Decision trees as hierarchical classifiers are especially preferred in the cases when 
the pattern classes are multimodel in nature [116]. 

Although treated as an independent discipline of artificial intelligence neural nets 
should be also mentioned in the frame of machine learning. Neural nets are often 
able to provide accurate and reliable classification, see e.g. [3, 6, 10, 32, 37, 38, 51, 
60, 61, 72, 73, 84, 87, 108]. On the other hand, it should be also noted that they do 
not give insight into the inherent logic of the results and, as the result, users can have 
substantial problems with reasonable interpretation of them. Of crucial importance 
to the successful use of artificial neural networks for pattern classification problems 
is how the appropriate network size can be automatically determined [112]. 

The techniques used in the decision-theoretic approach usually involve large 
amounts of numerical computations. As the result the corresponding algorithms 
should be computationally inexpensive. The techniques used in the artificial intel
ligence approach involve intensive numerical computations only in the lowest levels 
of analysis - in the transformation of the digitized "signal" into a string of (hypoth
esized) symbols. The artificial intelligence based "signal" understanding scheme 
involves mainly the making of hypotheses and inferences [71]. Syntactic pattern 
recognition can be considered a link between these approaches. The conventional 
approach and the artificial intelligence one to pattern recognition are usually used 
at different levels of Al-pattern recognition systems. The coupling between the an
alytically formulated low-level "signal" processing and higher-level inference is the 
current trend. It has been proposed that the most effective control strategy (to 
solve difficult pattern recognition problems) would be a combination of top-down 
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and bottom-up processing. The objective of such a control structure in pattern 
analysis is to develop a smart analysis method which can escape a huge amount of 
computation at the lowest levels. Feature extraction should be done only at the 
necessary local parts of the original "signal" with the expected feature extraction 
programs. But if many hierarchical levels for pattern analysis are used, the control 
has to go up and down between the levels. The wide use of such systems in practice 
especially depends on the results of research obtained in the field of machine learning 
and knowledge-based systems. 

4. SUMMARY 

The paper presents an overview of the current approaches in pattern recognition. 
The conventional approaches used so far to solve pattern recognition problems are 
usually divided into the decision-theoretic (statistical), structural (syntactic) and 
hybrid approaches. The artificial intelligence approach to pattern recognition is used 
in such very complex tasks each solution of which heavily depends on the knowledge 
of experts. With the help of some appropriate artificial intelligence techniques this 
approach is capable to integrate large amounts of diverse information and to model 
the mechanisms that generate and deform the signals under study. 

The decision-theoretic approach is for solution of many practical problems sat
isfactory enough. On the other hand, it does not utilize structural properties of 
analyzed patterns and it does only lead to class descriptions of patterns but it does 
not provide any descriptions of them. Also, quantifying the contribution of a par
ticular feature towards the accuracy of classification is ambiguous. 

The structural approach is capable to describe the details of structure of an 
analyzed pattern but it is too week to noise which may cause the structural changes 
to it. It can not handle numerical semantic information and it can not use it for 
recognition. 

The hybrid approach includes various techniques, e. g. stochastic and fuzzy gram
mars, various similarity measures, error transformations, error-correcting parsers. 
The attributed grammars are probably the most effective tool of this approach. 

The artificial intelligence approach was formulated to involve the description of 
abstract concepts and the recognition of instances of these in "signals". The con
cept is represented by several hierarchical levels of abstraction. At each level of 
abstraction, knowledge appropriate to that level is used to identify components of 
the higher level concept. 

The links between the structural (hybrid) approach and the artificial intelligence 
one are reviewed in the paper. It may be in some cases difficult to decide whether 
still the structural approach or the artificial intelligence one was used as the dis
ciplines of pattern recognition and artificial intelligence continuously converge. As 
a nice example the knowledge-based pattern recognition system based on syntactic 
approach proposed in [110] is noticed. Because the strength of syntactic (struc
tural) approach is a well founded background from the theory of formal languages, 
and the syntactic approach itself has the basic characteristics of knowledge-based 
system, the syntactic recognition system can sometimes have advantages over some 
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knowledge-based sys tem. On the o ther hand , the results of research in the field of 
knowledge-based sys tems may be also valuable for p a t t e r n recognit ion. T h e s ame 
conclusion holds in the case of mach ine learning. 

From the recently found new links between the artificial intelligence approach and 
the s t ruc tu ra l (syntact ic) approach the a t t r i bu t ed hierarchical description sys tems 
[43] should be men t ioned . 

T h e convent ional approach and the artificial intelligence one to p a t t e r n recog
nit ion are usually used a t different levels of p a t t e r n recognit ion sys tems. T h e cou
pling between the analyt ical ly formula ted low-level "signal" processing and higher-
level inference is t he current t rend . In pract ice, const ruct ions of the sys tems based 
on a combina t ion of top-down and b o t t o m - u p processing especially depend on the 
progress ob ta ined in t he field of mach ine learning and of knowledge-based sys tems . 

{Received December 8, 1992.) 
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