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An example of proving attribute grammars correct: 
the representation of arithmetical expressions by DAGs 

A.J.J.M. Marcelis 

Department of Mathematics and Computing Science 
Eindhoven University of Technology 
P.O.Box 513, 5600 MB Eindhoven 

The Netherlands 

Abstract 

The proof system for one-pass attribute grammars is employed to prove the correctness 
of an example AG in a modular fashion. The AG concerns the translation of arithmetical 
expressions - as they are produced by the underlying CFG - into directed acyclic graphs 
(which are a suitable basis for the generation of efficient code for arithmetical expressions). 

The entities needed to specify the problem formally are provided within the framework 
of typed inference systems and relevant properties of these entities are investigated. Such 
a formalisation is a prerequisite for the application of the proof system. 

The emphasis is on the proof of the AG, rather than on its derivation. In particular, 
the exercise exemplifies how the remaining proof obligations for a non-trivial AG, yielded 
by the proof system, take the shape of a number of clear, logical formulae per production, 
the proofs of which can be conducted entirely by formal manipulation. The example 
also shows how such proof obligations can be further split up into elementary parts. This 
enhances a separation of concerns and results in a number of small proofs to be conducted, 
most of which are fairly simple and proceed on a "nothing else you can do" basis. 



Preface: the relation to earlier work 

The present paper embodies an application of the proof system for one-pass attribute gram
mars, as described - in the first instance - in volume 90/07 of this series of Computing 
Science Notes; see [Mar90]. 

Since the publication of the latter note, new insights have led to a slight modification of 
the theory, viz. the explicit inclusion of a reference to derivation trees in the specifications. 
As a result, the correctness condition for a one-pass AG w.r.t. Q and R - cf. section 2.4 of 
[Mar90] - now reads 

IJd:PTz, i:itz. (Q.d.i => R·d.j·(Fz·d.i» 

where the types ofQ and Rare PTz --+ itz --+ booC and PTz -> itz --+ stz -> booC, respectively. 
This correctness condition then generalises in a straightforward way to nonterminals other than 
start symbol Z, as described in [MargO]. Also the inference rule concerning a production pr 
of the form 

Ao(io, so) -> Wo AI(iI,SI) WI",Wn-1 An(in,sn) Wn 
So = eo , it == el , ... , in :::: en 

changes slightly, so as to become (cf. [MargO], p. 10) 

r, f' , d j : PTA, , ... , dn : PTA. , do: PTA, , do =, [Ao --> Ct, (dl , ... ,dn)] 

I> 

io : itAo , So : stAo ) ... 1 in : itA .. 1 Sn : stA .. , 

So =e eO , i1 =e el , ... 1 in =e en 

qAo·do·io 1\ 1'J~:(qAi·d;.i; I\TAjdj .ij'sj) => qA.·d •• i. for all k: 1:S k:S n 

qAo·do·io 1\ AJ=l(qAj·dr ij ATAj·dj.ij.$j) ~ TAo·do·io,sQ 

r , f' I> (pr correct) 

It is the premiss of this rule that will be used in this paper to serve as a remaining proof 
obligation for production pro The consistency proof for this inference rule rnns completely 
analogous to the proof of theorem 4.4 in [Mar90]. 

The change in the theory described above is the result of still continuing research into the 
development of proof rules for AGs; as such it will be covered in future work. In the same 
vein the example dealt with in this paper is to be processed as a part of a more comprehensive 
treatise later on. 

Eindhoven, August 1991 Jos MarceJis 
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1 Introduction 

The proof system for one-pass attribute grammars allows us to prove the correctness of such 
AGs in a modular fashion, viz. by showing a number of conditions local to the productions. In 
this paper the use of the proof system is demonstrated by showing the correctness of an AG 
that translates arithmetical expressions - consisting of constants, variables and operators -
into directed acyclic graphs (DAGs). 

Such graph representations allow of the identification of the common sub-expressions of 
an expression, and are hence a suitable starting-point for a (back-end) code generator: they 
enable the code for evaluating common sub-expressions to be generated only once, instead of 
multiple times. The actual organisation of such a code generator is outside the scope of this 
note1; see e.g. [ASU86], [Hem85]. 

DAGs are usually related to an abstract form of parse trees (called syntax trees in the 
more general setting of [ASU86]), instead of the parse trees themselves, because the latter 
often contain disturbing irregularities, motivated by parsing considerations. Although this 
aspect only plays a minor role in our example grammar, in order to make the example more 
realistic we shall follow the common practice and view DAGs in relation with expression trees. 
(With regard to the usual production trees2, expression trees will tum out to eliminate chain 
productions.) 

In expression trees, an operator-labelled node is the father of the root nodes of the trees 
representing the operator's operands, instead of being a brother among the latter nodes (as in 
the usual parse trees). For example, an expression tree for an expression like (a * b) + (a * b) 
may be depicted as 

+ 
/~ 

* • 
/\ /\ 

a b a b 

whereas its parse tree may look like 

E .------1-------
E + E 

/I~ /I~ 
E * E E * E 
I I I I 
V V V V 
I I I 1 
a b a b 

Then again, a DAG for the expression (a * b) + (a * b) may be depicted 

1 The use of an intermediate language in the process of language translation is intended to separate the 
(back-end) code generation from specific features of the source language. It is therefore not appropriate to 
express this code generation by means of an AG on the structure of the source language. 

2Within the scope of this informal introduction, the notions production tree and par/Je tree are identified. 
From section 2 onwards, we adopt a more rigorous view and only talk about production trees - in the forma} 
meaning of the word, viz. as expressions of a. certain recursively defined type. 
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+ 

U 
/\ 

a b 

This DAG bears to the expression tree above the relationship that the two occurrences of the 
sub-expression (a * b) are identified. Taking it as a starting-point for a code generator, code 
for evaluating (a * b) may be generated only once, instead of twice. 

Based on a CFG producing arithmetical expressions, this paper noW presents a one-pass AG 
that delivers a DAG for each complete production tree. Utilising the proof rules for one-pass 
AGs, it is then shown that the AG meets its specification, which means notably that the DAG 
delivered - for each production tree - indeed represents the expression tree corresponding 
to that production tree, and that it identifies common sub-expressions. 

Of course, in order to express and reason about this problem in a precise way, the notions 
occurring in it must be defined formally. The framework of typed inference systems is employed 
to serve this goal; it is the topic of sections 3 and 4. 

Rather than the development of the AG, the main purpose of the paper is to see the proof 
rules for one-pass AGs at work in connection with a fairly realistic example. In the same vein, 
the specific example is of minor importance, but only serves as a vehicle for this purpose. 

In more detail, the paper is organised as follows. Section 2 introduces a simple CFG 
producing arithmetical expressions. Section 3 defines the expression trees corresponding to 
such expressions - or rather: to the production trees of the CFG. Next, in section 4 it is 
shown how such expression trees can be represented by acyclic pointer-like structures (DAGs). 
In section 5 we list a number of properties satisfied by the notions introduced in the preceding 
sections; these will be useful when proving (and deriving, for that matter) the AG to follow. 
In section 6 the CFG is turned into a one-pass AG, as described above. Section 7 contains an 
elaborate proof of the fact that the AG meets its specification. In section 8, then, we discuss a 
(correctness preserving) transformation of particular evaluation rules, aimed at improving the 
efficiency of attribute evaluation. This section is somewhat outside the original scope of the 
paper; it anticipates a future treatment of this example in a transformational context. Finally, 
section 9 contains some concluding remarks and addresses some questions about this example 
that have not been answered satisfactorily up to date. 

2 Context-free grammar 

We consider the following (part of a) CFG G, producing typical arithmetical expressions. 

l. Z ...... E 

2. E ...... (E+E) 
3. E ...... (E* E) 

4. E ...... V 

5. E ...... C 

Z is the grammar's start symbol. Terminals + and * should be considered as representatives 
of a wider scale of binary operators. V and C are lexical nonterminals. Terminal productions 
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of V are the elements of a (finite) type VAR; if needed, a production tree issued from V is 
denoted [V ---+ v, 0], where v is a constant of type VAR. Likewise, C produces elements of a 
type CON and a production tree issued from C is denoted [C ---+ c, 0]. 

3 Expression trees 

Expression trees (implicit: corresponding to CFG G above) are elements of type ET, as follows 

ree (ET =, sum ( plus: prod( ET, ET) , 

times: prod(ET, ET) , 

var:VAR, 

con: CON) 

The following function f associates expression trees with the production trees of G; thus 
f : PT ---+ ET: 

ree (f =e )"d:PT 

.(eased:PTof 

) ) 

[Z ---+ E, (dl )] then f·d l , 

[E ---+ (E + E), (db dz)] then [plus, (f·d l , f.d z)] , 

[E ---+ (E * E), (dl , dz)] then [times, (f.dl , f .dz)] , 

[E ---+ V, (dl )] then f·d, , 
[E ---+ C, (d, )] then t:.d, , 

[V ---+ v, 0] then [var, v] , 

[C ---+ c, 0] then [con,c] 

The last two alternatives in the case-expression actually represent the classes of production 
trees issued from V and C, respectively. Notice that f shortcuts chain productions appearing 
in a production tree. 

Example: We consider the production tree for the expression (a*b) + (a*b) and its image 
under f, viz. 

[Z ---+ E, ( [E ---+ (E + E), { [E ---+ (E * E) , ( [E ---+ V, ([V ---+ a, 0]) ] 
,[E---+V, ([V---+b, ()])] 

) ] 

) ] 

,[E---+ (E*E),([E---+ V, ([V---+a, ()])] 

, [E ---+ V, ( [V ---+ b, ()])] 

) ] 
) 
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and 

[plus, { [times, ([var, a], [var, b]) ] 

, [times, ([var,a], [var,b])] 

respectively. 
As such expressions tend to get unwieldy very quickly, it is more appropriate to use a 

graphical representation for them, for instance 

Z--.E plus 

I ~~ 
E--.(E+E) times times ---- ------- /"--., /"--., 

E--.(E*E) E--.(E*E) var var var var 

/~ /~ I I 
E--.V E-->V E-->V E-->V a b a b 

I I I I 
V--'a V -->b V -->a V --.b 

o 

4 Representing expression trees by pointer-like structures 

An expression tree (Le., an object of type ET) can be represented conveniently by a pointer-like 
structure. This representation also allows of the identification of identical sub-trees. Because 
of the tree-like structure of the objects to be represented, no cycles are needed in the pointer 
representation. With this in mind, consider the definition of the type PN of the, so-called, 
pointer nodes and an acyclicity condition on a sequence of such nodes: 

PN =, sum ( plus' : prod(Nat, Nat) , 

times' : prod(Nat, Nat) , 

var':VAR, 

can': CON) 

and the function acyc : Seq( PN) ---+ baal, with 

acyc =e ,\ s : Seq(PN) 

. (/\ k 11 $ k $ #·s 
I case "k.S : PN of 

[plus', (n1,n2)] then (1 $ nl < k /\ 1 $ n2 < k) , 

[times', (n1, n2)] then (1 $ nl < k /\ 1 $ n2 < k) , 

[var' , v] then true , 

[can' , c] then true 

) 
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If for a sequence g : &q(PN) of pointer nodes acyc·g holds, then we simply say that g is 
acyclic. Interpreting the numbers nl and n2 in an element (plus', (nl, n2)] or [times', (nl, n2)] 
as references to positions in s, clearly the acyclicity condition expresses that only "backward" 
references should be made. In the sequel, only acyclic sequences of pointer nodes are consid
ered, as these are the only ones of interest to us. 

An acyclic sequence s can be employed to represent a collection of expression trees. More 
precisely, an expression tree is represented by a pair (s, n) of type prod(&q(PN), Nat), ac
cording to the following representation function3 n : &q(PN) -> Nat -> ET 

For s : &q(PN) satisfying acyc·s and n : Nat with 1 :::: n :::: #.s 

n·s.n =e case" n's: PN of 

(plus', (ni, n2)] then (plus, (n·s.ni, n.s.n2)] , 

[times', (nl, n2)] then [times, (n·s.ni, n·s.n2)] , 

[vaT', v] then [vaT, v] , 

[con', c] then [con, c] 

Example: Letting s denote the following sequence of pointer nodes 

([var',a]' [var',b], [time8',(1,2)]' [var',b]' [var',a], [times', (5,4)]' (Plu8',(3,6)]) 

8 is acyclic, #.8 = 7, and n·8·7 is the expression tree corresponding to expression (a*b)+(a*b). 
o 

An acyclic sequence s of pointer nodes thus represents #.s expression trees. We take 
interest in those sequences that satisfy a uniqueness-property, viz. that no tree is represented 
more than once. This is expressed by the predicate uniq : &q(PN) -> bool: 

For s : Seq(PN) satisfying acyc·s 

uniq.s =e \;Ini, n2 : Nat 

. (i ~ nl :::: #.s II 1 :::: n2 :::: #·s II nl f n2 => n·s·nl f n·s.n2) 

Notice that uniq.s expresses that n·s is an injection. 

5 Some theory of attribute domains (and the like) 

In view of the AG to follow, it is worthwhile to consider some properties of the entities in
troduced up till now4 • In these properties, universal quantification over all free variables is 
implicit, on the understanding that 

d,di,d2: PT 

8, 8i, 82 : &q(PN) 

e,el,e2: ET 

n, nl, n2 : Nat 

3 Actually, this is a recursive definition, which should be denoted rec en.. =e A ... ) . 
4 Here, and in the sequel, ~PT and ~ET denote the standard orderings on the elements of the free types 

PT and ET, respectively, as they come with the construction of the types. ~PT (resp. !;ET) is the reflexive 
and transitive closure of CPT (resp. LET) "is a direct subtree of"; it is a well-founded partial order on PT 
(resp. ET), and as such the basis for structural induction. 
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Additional demands on such variables are given separately for each of the properties. 
Full proofs are not provided. We only remark that PI, P2 and P3 are fundamental; their 

proofs require induction on [;;PT, [;;ET and #.s, respectively, together with case analysis on the 
possible forms of (production- or expression-) trees. For the rest, P4 follows from P2 and the 
uniqueness of s, P5 follows from P4 and monotonlcity of E - i.e., PI -, and P6 is implied 
by P5. Finally, P7 is an easy consequence of the definition of acyclicity. 

PI. & is monotonic, i.e., 

dl !;;PT d2 '* &·dl !;;ET &·d2 

P2. If acyc·s and 1 :0; n :0; #.s 

n·s·n = e '* 'Ie': ET 
. (e' !;;ET e '* :In': Nat. (1 :0; n' :0; n " n·s·n' = e') ) 

P3. If acyc·s 

uniq.s ¢> Vnl, n2 : Nat 

. (1:0; nl :0; #·s " 1 :0; n2 :0; #·s " nl f- n2 '* 7r nl'S f- 7r n2.S) 

P4. If acyc·s " uniq·s, I :0; nl :0; #.s and 1 :0; n2 :0; #.s 

n·s·n! = el " n·s·n2 = e2 " el !;;ET e2 '* nl:O; n2 

P5. Under the same conditions as P4 

n·s·n! = &·dl " n·s·n2 = &.d2 " dl [;;PT d2 =0- n1:O; n2 

P6. If acyc·s " uniq·s 

{k\I:O;k:O;#.s\n.s.k}={d'\d'!;;PTd\£.d'} =0- n·s.(#.s)=E.d 

P7. For the determination of n·s·n the elements in s beyond index n play no role: 

1:0; n1 :0; #.s1 " acyc.(sl ++s2) '* n·s1·nl = n,(sl ++s2).nl 

6 Attribute grammar 

The CFG given earlier is now extended to a one-pass AG. The goal of the attribute structure is 
to produce, for each complete production tree d, a pointer representation of the expression tree 
£·d corresponding to d, in such a way that common sub-trees are identified. This is expressed 
by the following specification for start symbol Z: 

Z{+s: Seq(PN)) 

Rz·d.s : acyc.s" umq·s" {kiIS:k:O;#.s\n.s.k}={d'\d'!;;PTd\E·d'} 

6 



The first two conjuncts in Rz·d.s need no explanation. Concerning the third one, observe that, 
by property P2, a representation of [·d cannot be provided without giving representations of 
all of d's sub-trees (in the sense of ~PT) also. Hence the set of expression trees represented 
in s must at least contain {d' I d' ~PT d I [.d'}. Now the third conjunct in Rz·d.s additionally 
expresses that - conversely - nothing more is represented in s, which seems in every respect 
a reasonable demand. On account of P6, then, the required expression [·d can be found as 
n.s.(#.s). 

Taking the specification for Z as a starting-point, a purely synthesized AG is obtained 
by providing nonterminal E with the same attribute and specification as Z. However, the 
synthesis of So from 8, and 82 - in each of the productions E -> (E + E) and E -> (E * E) 
- would bring about operations of an unacceptable complexity, in order to establish the 
uniqueness of So. 

A much more attractive solution is obtained by a bucket brigade-like attribute structure. 
Herein, a sequence 8 is passed around the nodes of the production tree in a depth-first fashion, 
adding representations of the sub-trees in question whenever appropriate. Upon detecting the 
existence of a sub-tree's representation, however, the sequence is left unaltered and an index in 
the sequence is produced, indicating where the representation of that sub-tree is to be found. 

The following choice of a specification for E seems to be in support of this idea: 

E( -si : Seq(PN), +ss : Seq(PN), +n : Nat) 

QE·d.si acyc·si II uniq·si 

RE·d'8i,s8·n : aCYC'8S II uniq'8s II 1::; n ::; #.ss II n·ss·n = [·d II 
{k 11 S k S #.ss In.ss.k} = {k 11 S k ::; #.si In.si.k} 

u {d' I d' ~PT d I [.d'} 

Note: This specification for E can be regarded as a typical bucket brigade-like generali
sation of Z's specification; namely, the latter could also be written 

Z(+s: Seq(PN),+n: Nat) 

Rz·d.s.n : acyc·s 1\ uniq·s 1\ 1 S n ::; #.s 1\ n·s·n = [.d 1\ 

{k 11 ::; k S #.s I n.s.k} = {d' I d' ~PT d I [.d'} 

As indicated before, however, the last conjunct implies n = #.s, on account of which the 
n-attribute can be left out. 
o 

However acceptable E's specification - as a generalisation of the one for Z - seems to 
be, unfortunately it turns out not to be sufficient. Imposing the obvious bucket brigade-like 
evaluation rules to either of the productions E -> (E+E) or E -> (E*E), the proof obligations 
cannot be met. Technically, this is caused by the fact that RE is too weak; the remaining gap 
in the proof gives a good indication where to search for improvement. The phenomenon has 
an operational interpretation also; we shall discuss it on the basis of production E -> (E + E): 

sit = sio , Si2 = SSt , sSo = . .. , no = ... 

7 



Evaluation rule Si2 = SSl shows that the result-sequence emanating from the left sub-tree is 
passed to the right sub-tree. Next the result BB2 of the latter should be used to determine BSo 
and no, where n1 and n2 are to be employed as the indices in BB2 at which [.d1 and [.d2 can 
be found. Now from R2 we indeed have 

whereas R1 expresses 

That is where the snag is: as BBO is composed on the basis of BB2, we would like to be able 
to assert R·SB2.n1 = [.d1 instead. On account of property P7, this is allowed if BB2 were an 
extension of BBl' The latter statement, in itself, concerns attributes of different nonterminals 
and hence cannot be expressed in a specification. Fortunately we have the equation Bi2 = SB1, 
so the same effect can be obtained by asserting that BB2 extends Bi2. In general, we should 
add to RE the conjunct 

3Ba: Seq(PN). BB = si ++sa 

As far as the passing of result sequences is concerned, the evaluation rules to be added 
to the various productions directly follow the bucket brigade idea. In addition, property P3 
is employed to prevent the addition of an element to such sequences from disturbing the 
uniqueness (this plays a role in productions 2 through 5). All in all, we arrive at the following 

attribute grammar: 

Specifications: 

Z(+B: Seq(PN)) 

Rz·d·B : aCYC'B 1\ uniq'B 1\ {k 11 ::; k ::; #'B I R·B.k} = {d' I d' !;;PT d I [.d'} 

E( -Bi : Seq(PN), +BB : Seq(PN), +n : Nat) 

QE·d'Bi acyc.Bi 1\ uniq·si 

RE·d·8i·B8·n : aCYC·88 1\ uniq·s8 1\ 1::; n ::; #'88 1\ R·88·n = [·d 1\ 

38a : Seq(PN). 88 = 8i ++8a 1\ {k 11::; k ::; #'881 R'88·k} = 

V(+v: VAR) 

Rv·d·v : v = yield·d 

C(+c : CON) 

Rc·d·c : C = yield.d 

Production rules: 

1. Z (+so) -> E( -8i1, +8S1> +n1) 

si1 = () , So = 881 

{kll::; k::; #.siIR'8i.k} U {d'ld'!;;PT dl[·d'} 

2. E(-8io,+sso,+no) -> (E(-8i1,+ssl,+n1) + E(-si2,+882,+n2)) 

8 



o 

sit = sio , Si2 = SSt , 

([Plus', (nl, n2)] E rng·ss2 
-+ sSo = SS2 , no = (Ln 11 :::: n :::: #'SS2 1\ 1l"n.ss2 = [plus', (nl, n2)] I n) 

U [plus', (nl,n2)] rtrng,ss2 
-+ sSo = SS2 -1+ ([Plus', (nl,n2)]) , no = #'SS2 + 1 

) 

3. analogous to 2., replacing plus' by times' 

4. E(-sio,+sso,+no) -+ V(+Vl) 
([var', Vt] E rngosio ~ sSo == SZo , 

no = (L n 11 :::: n :::: #·sio 1\ 1l"n.siO = [var', Vl]1 n) 
U [var', vd rt rng.sio -+ sSo = sio -1+ ([var', VI]) , no = #.sio + 1 
) 

5. analogous to 4. 

7 Correctness proofs 

Using the proof rules for one-pass AGs, we now show that the AG above meets its specification. 
The remaining proof obligations, resulting from our proof system, are organised per produc

tion. This section reflects that organisation by devoting one subsection to each production5 • 

Then again, the correctness proof for an individual production p requires #p+ 1 implications 
to be proven. Within each subsection, the proof parts corresponding to these implications are 
numbered consecutively, and a hierarchical numbering is employed to further subdivide each 
proof part. For example, if (2) denotes the proof part corresponding to the second implication, 
then (2.1) and (2.2) denote two sub-parts of this proof, etc. Such subdivisions are based on a 
couple of simple logical rules, e.g. that a conjunction of a number of terms can be proven by 
proving each conjunct separately. 

In order to save writing, throughout this section we adopt the following 

Notational convention: In connection with the attributes of nonterminal E, we use 
55,51 and D to denote the following sets: 

55 = {k 11:::: k:::: #.sslR.·ss.k} 
S1 = {kll:::: k:::: #.siIR.si.k} 
D ={d'ld'(;;prdl[·d'} 

and this notation carries over to the subscripted forms in the obvious manner, e.g. 550.551 . 

o 

7.1 Ad production 1 

Proof obligation: 

5 Because of the resemblance between productions 2/3 and 4/5, only productions 1, 2 and 4 will be treated. 
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t> 

1\ 

so, si" SSI : Seq(PN), nl : Nat, d1 : PTE, do: PTz , do =e [Z -;. E, (d1 )] , 

Sil = () , So = SSI 

true => aeye-sit 1\ uniq-sit 

R E-d1 -si1 -ss1-nl 

=> 

(1) 

acye-so 1\ uniq-so 1\ {k 11 ::::: k ::::: #-so I n-so-k} = {d' I d' ~PT do 1[; -d'} (2) 

(1): proof of aeye-sit 1\ uniq-si1 : trivial 

(2.1): proof of aeye-so 1\ uniq-so: trivial 

(2.2): proof of {k 11 ::::: k ::::: #-so I n-so-k} = {d'i d' ~PT do I [;-d'}: 

{k 11 ~ k ~ #-so I n-so-k} 

<1: So = SSt 1> 
{k 11::::: k ::::: #-ssll n-ss1 -k} 

<1: R E-d1 -Sil -SSt-n l 1> 
{k 11 ::::: k ::::: #-Sil I n-si1 -k} u {d'i d' ~PT dt I [;-d'} 

= <1: Sil = () 1> 
{d'i d' ~PT dtl [;-d'} 

<1: def. [; 1> 
{d'ld'~PTdll[;-d'} U {[;-[Z--;E,(d1 )]} 

= <1: do =e [Z --; E, (dt)l , def. !;;PT} 

{d'i d' ~PT do I [;-d'} 

7.2 Ad production 2 

Proof obligation: 

t> 

sio,sso,sil,SSl,si2,sS2: Seq(PN), nO,nl,n2: Nat, 
do, d1 , d2 : PTE, do =e [E --; (E + E), (d1 , d2)] , Sil = SiD, Si2 = sSI , 

([Plus', (nt. n2)] E rng-ss2 --; ... 0 [plus', (nl, n2)] !f. rng-SS2 --; ... ) 

Q E-do-sio => aeye-sit 1\ uniq-sit 
1\ 

QE-do-sio 1\ R E-d1 -sit -sst -nl => aeye-si2 1\ uniq-si2 
1\ 

QE-do-sio 1\ RE-dt-sit-sst-nt 1\ RE-d2-si2-ss2-n2 
=> 
aeye-sso 1\ uniq-sso 1\ 1::::: no ::::: #-S80 1\ n-sso-no = [; -do 1\ 

SSo = SID U Do 1\ 3sa: Seq(PN). sSo = SiD ++sa 
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(1): proof of acyc.si1 /\ uniq·si1: trivial 

(2): proof of acyc.si2 /\ uniq.si2: trivial 

(3): the prooffollows the case-analysis used to define synthesized attributes sSo and no. We 
consider the cases in turn 

(3.1): first case, i.e., [plus', (n1, n2)] E rng,ss2 

(3.1.1): acyc·sso: immediately from sSo = SS2 /\ acyc,ss2 

(3.1.2): uniq.sso: immediately from sSo = SS2 /\ uniq,ss2 

(3.1.3): 1 ::::: no ::::: #,sso: immediately from sSo = SS2 /\ no = (t n I ... In) 
(3.1.4): proof of n·sso·no = £.do: 

n·sso·no 

= 1 sSo = sS2 , no = (t n I ... In) :I-
n·ss2• (t n 11 ::::: n ::::: #'SS2 /\ 1fn .ss2 = [plus', (n1, n2)] I n) 

1 def. n , acyc,ss2 - hence 1 ::::: n1 < n /\ 1 ::::: n2 < n :I
[plus, (n·ss2·nt, n'Ss2·n2)] 

= 13sa : Seq(PN) . SS2 = Si2 ++ sa - say sa2 :I-
[plus, (n·(si2 ++sa2)·nt, n'Ss2·n2)] 

= 1 Si2 = sS1 :I-
[plus, (n'(SS1 ++ sa2)·nt, n'Ss2·n2)] 

= 11 ::::: n1 ::::: #'SS1 , acyc,(sS1 ++ sa2) , prop. P7 :I-
[plus, (n·Ss,.n1, n'8s2·n2)] 

= 1 n'88"n1 = £.d1 , n'882·n2 = [.d2 :I
[plus, ([.d" [.d2 )] 

= 1 def. [ , do =e [E -+ (E + E), (d" d2)] :I
[.do 

(3.1.5): proof of SSo = Slo U Do: 

SSo 

= 1 880 = 8S2 :I
SS2 

1 [Plu8',(n1,n2)] E rng'882:1-

SS2 U {n,s82·(tnll::::: n::::: #'882/\ 1fn-SS2 = [Plu8',(n"n2}] In)} 
1 proof of (3.1.4) :I-

SS2 U {£.do} 

1 SS2 = S12 U D2 , U associative:l
Sh U D2 u {£.do} 

= 1 8i2 = 88, :l-
SS, U D2 U {[.do} 

1 SS, = SI, U D, :l
Sh U D, U D2 U {[.do} 

= 1 si, =8io , do =e [E-+ (E+E),(d"d2)], def. !;:;PT:I-
Slo U Do 
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(3.1.6): proof of 3sa: Seq(PN). sSo = sio -H-sa: 

sSo 
= 1: sSo = SS2 :j> 

SS2 
= 1: 3sa : Seq(PN) . SS2 = si2 -H- sa - say sa2 :j> 

Si2 -H- sa2 
1: si2 = SSI :j> 

SSI -H- sa2 
= 1: 3sa : Seq(PN) . SSI = sil -H- sa - say sal, -H- associative :j> 

sil -H- sal -H- sa2 
1: sil = sio :j> 

sio -H- sal -H- sa2 
hence 3sa : Seq(PN) . sSo = sio -H- sa 

(3.2): second case, Le., [plus', (nl, n2)] 1. mg·S82 

(3.2.1): proof of acyc·sso: 

acyc·sso 
= 1: sSo = SS2 -H- ([Plus', (nb n2)]) :j> 

acyc.(sS2 -H- ([Plus', (nl, n2)])) 
= 1: def. acyc, acyc.ss2:j> 

1 ::; nl ::; #·SS2 " 1::; n2 ::; #.SS2 
1: 3sa : Seq(PN) . 882 = Si2 -H- sa - say sa2 :j> 

1 ::; nl ::; #.( si2 -H- sa2) " 1 ~ n2 ::; #·8S2 
<j: si, = SS, :j> 

1 ::; nl ::; #. (SSI -H- sa2) " 1 ~ n2 ::; #·SS2 
-$= <j::j> 

1 ::; nl ~ #.8Sl " 1::; n2 ::; #·S82 
= 1: Rl , R2 :j> 

true 

(3.2.2): proof of uniq·8so: 

uniq.sso 

= 1: sSo = SS2 -H- ([Plus', (nll n2)]) :j> 
uniq.(ss2 -H- ([Plus', (nl, n2)])) 

= 1: prop. P3 , uniq·ss2 :j> 
"In : Nat. (1 ::; n ::; #.S82 =} 11" n·ss2 f. [plus', (nl, n2)]) 

= 1: [plus', (nl, n2)) ¢ mg·ss2 :j> 
true 

(3.2.3): 1::; no ::; #.sso: trivial 

(3.2.4): proof of n.sso·no = [.do: 

n·sso·no 
= 1: sSo = SS2 -H- ([Plus', (nl, n2))) , no = #·S82 + 1 :j> 
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R'(SS2 ++ ([Plus', (nt, n2)]) H#'SS2 + 1) 
= <j: def. R, 1::; nt ::; #.SS2 , 1::; n2 ::; #'SS2 , prop. P7 :j> 

[plus, (R.ss2·nt, R.ss2·n2)) 
= <j: proof of (3.1.4) :j>' 

[·do 

(3.2.5): proof of SSo = SID U Do: 

SSo 

= <j: sSo = SS2 ++ ([Plus', (nt, n2)]) :j> 
{k 11 ::; k ::; #'SS2 + 11 R'(SS2 ++ ([Plus', (nt, n2)]) ).k} 

<j: def. S S , prop. P7 :j> 
SS2 u {R,(ss2++([plus',{nt,fi2)))),(#,ss2+1)} 

= <j: proof of (3.2.4) :j> 
SS2 u {[.do} 

= <j: proof of (3.1.5) :j> 
SID U Do 

(3.2.6): proof of 3sa : Seq(PN) . sSo = SiD ++ sa: 
completely analogous to the proof of (3.1.6); in fact, in the terminology of (3.1.6), 

SSo = SiD ++ sat ++ sa2 ++ ([Plus', (nt, n2)]) 

7.3 Ad production 4 

Proof obligation: 

[> 

sio,sso: Seq(PN), no: Nat, v,: VAR, d,: PTv , do: PTE, 

do =e [E ...... V, (d,)) , ([val", v,) E rng·sio ......... 0 [val", v,] f/. rng·sio ......... ) 

QE·do·sio /\ Rv·d,.v, 
=} 

acye·sso /\ uniq.sso /\ 1::; no ::; #.sso /\ R.sso·no = [.do /\ 

SSo = SID U Do /\ 3sa: Seq(PN). SSo = SiD ++sa 

(1) 

(1): the proof follows the case-analysis used to define synthesized attributes sSo and no. We 
consider the cases in turn 

(1.1): first case, Le., [var', v,] E rng·sio 

(1.1.1): aeye·sso: immediately from SSo = SiD /\ acye·sio 

(1.1.2): uniq.sso: immediately from sSo = SiD /\ uniq.sio 

(1.1.3): 1::; no::; #.sso: immediately from sSo = SiD /\ no = (tnl ... In) 

(1.1.4): proof of R·sso·no = [·do: 
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R·sso·no 
= <1: sSo = sio , no = (tnl ···In) :j> 

R·sio·( t n 11 S n S #.sio /\ 1l'n.siO = [var', vtll n) 
= <1: def. R :j> 

[var, VI] 
<1: VI = yield.dI :j> 

[var, yield.dI] 
= <1: def. t: :j> 

t: .[V --+ yield.db ()] 

= <1: dI : PTv , def. yield :j> 
t:·dI 

t:.do 

(1.1.5): proof of SSo = S10 u Do: 

SSo 
= <1: sSo = sio :j> 

S10 

<1: [var', VI] E rng·sio :j> 
S10 U {R.sio·(tnll S n S #·sio /\ 1l'n.siO = [var',vIln)} 

<1: proof of (1.1.4) :j> 
S10 u {t:.do} 

= <1: def. t: , do =e [E --+ V, (dI )] :j> 
S10 u {t:.do} u {t:.dtl 

<1: dI : PTv , def. !;;:PT, do =e [E --+ V, (dI )] :j> 
S10 u Do 

(1.1.6): 3sa : Seq(PN) . sso = sio -1+ sa: trivial 

(1.2): second case, Le., [var', VI] f/. rng.sio 
(1.2.1): acyc·sso: immediately from acyc.sio, sSo = sio -1+ ([var', VI]) and def. of acyc 

(1.2.2): proof of uniq.sso: 

umq·sso 
= <1: sSo = sio -1+ ([var', vtl) :j> 

uniq.(sio -1+ ([var', VI])) 
= <1: prop. P3 , uniq·sio :j> 

lin: Nat. (1 S n S #.sio =? 7l'n-sio # [vaT', VI]) 
= <\: [var', VI] rf. mg·sio :j> 

true 

(1.2.3): 1 S no S #.sso: trivial 

(1.2.4): proof of R·sso·no = t:.do: 

R.sso·no 
= <1: sso = sio -1+ ([var', VI]) , no = #.sio + 1 :j> 
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= 

Ro(sio -t+ ([var', VI]))-(#osio + 1) 
1: def. R :j> 

[var, VI] 
1: proof of (1.1.4) :j> 

[odD 

(1.205): proof of SSo = SID U Do: 

SSo 
= 1: sSo = SiD -t+ ([var', VI]) :j> 

SID U {Ro(sio-t+([var',vl]))-(#osio+l)} 
= 1: proof of (1.2.4) :j> 

SID U {[odD} 
= 1: proof of (1.105) :j> 

SID U Do 

(1.2.6): 3sa: Seq(PN). sSo = SiD -t+sa: trivial 

8 Improving the efficiency of attribute evaluation 

Up till now we have adhered to the bucket brigade idea in a straightforward way. Notably 
with production E -+ (E+E) - and something similar holds for E -+ (E*E) - the idea has 
been to visit the left and right subtrees in strict succession, and to form the ultimate result 
- the pair sSo, no - on the basis of the outcome SS2 of the right tree, via the evaluation rule 

([Plus', (nl' n2)] E rngoss2 
-+ sSo = sSz , no = (Ln 11 :<:: n:<:: #08S2 A "n.s82 = [plus', (nl' n2)] I n) 

~ [plus', (nJ' n2)] Ii rngoss2 H 
-> sSo = SS2 -t+ ([Plus', (nl' n2)]) , no = #oSS2 + 1 

) 

This evaluation takes place under the assumption of 

while additionally Sil = SiD and si2 = SSI' On the basis of this knowledge it is possible 
to modify the selection criterion in (*), thereby improving the efficiency of the evaluation of 
attributes sSo and no' We shall discuss two ways to do so; first, however, two more properties 
are stated. 

The properties are biased towards their specific use with production 2 (see also item 1 
of subsection 9.2); within them, universal quantification over free variables is implicit again, 
where variables are of the obvious types. 

P8. If acycos A uniqos 

[plus, (Rosonl, Roson2)] E {k 11:<:: k :<:: #os I Rosok} {} [plus', (nl, n2)] E rngos 
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P9. If 

acyc·ss f\ uniqoss f\ 1 :S n :S #.ss f\ n·ss·n = £ od f\ 
SS=SIUD f\ ss=si-t+sa 

(Le., RE·d.si.ss.n, with sa made explicit), 
we have - letting SA denote {k I #osi < k :S #oss I n·ssok}: 

(i) SIUSA=SS 
(ii) SInSA=0 

(iii) SA <; D 

proof of (iii): SA 

(immediately from ss = si -t+ sa) 

(from uniqoss f\ ss = si -t+ sa) 

= <j: (i) f\ (ii), i.e, SA = SS\SI :j> 
SS\SI 

= <j:SS=SIUD:j> 

(SIUD)\SI 
<; <j: :j> 

D 

Now consider again the setting of evaluation rule (*) in production 2. Recall that we have 

QEodoosio f\ Rwd1osi1oss1·n1 f\ RE·dz·sizossz·nz 1\ si1 = sio 1\ siz = sSl 

We show that [plus', (nr, nz)] E rng·ssz ~ [plus', (n1, nz)] E rng.sio: 

[plus', (nr, nz)] E rng·ssz 
= <j: prop. P8 :j> 

[plus, (n.sszonr, n.sszonz») E {k 11 :S k :S #.sszln·sszok} 

<j: n·SSZ·n1 = £od1 , nosszonz = £odz :j> 
[plus, (£odr,£.dz)] E {kll:S k S #.sszln·ssz·k} 

<j: 3sa : Seq(PN) . sSz = siz -t+ sa - say saz :j> 
[plus, (£.dr,£·dz)] E {kll:S k S #.(siz-t+saz)ln.(siz-t+saz)·k} 

= <j: P9 - hence {k I #.si2 < k:S #.(siz -t+ sa2) I n·(siz -t+ sa2)·k} <; D2 , 

£.d2 CET [plus, (£.d1, £.d2)] - hence [plus, (£.dr, £.dz)] rt D2 , prop. P7 :j> 
[plus, (£.dr,t:·d2)] E {k 11 S k :S #.si2 1 n.si2·k} 

<j: si2 = SSl , repeat the two preceding steps for d1 , sir = sio :j> 
[plus, (£.d1, £.dz)] E {kll:S k:S #.sioln.sio·k} 

<j: n'Ss2·n1 = t:.d1 , n.Ss2·n2 = t:·d2 :j> 
[plus, (n.ssz·nr, n.ss2·nz)] E {k 11 :S k :S #.sio I n·sio·k} 

= <j: (~) : P2 - hence {n.SsZ·n1, n.ssz·nz} <; {k 11 :S k:S #·sio In.sio·k} , 
furthermore sSz extends sio and uniq,ss2 (i.e., n·ssz is an injection 

on dom·ssz) - hence 1 :S n1 :S #.sio 1\ 1 S nz S #.sio , prop. P7 
( *') : SS2 extends sio , prop. P7 :j> 

[plus, (n.sio·nr, n'SiO·n2)] E {k 11 :S k $ #.sio I n.sio·k} 
= <j: prop. P8 :j> 

[plus', (nr, nz)] E rng.sio 
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By this equivalence, the selection criterion in (*) can be modified so as to obtain 

{[Plus', (nl' n2)] E rng·sio ---t 

o [plus', (nl' n2)] f/: rng·sio ---t 

) 

However, the situation can be improved even further. Recall that ss2 extends sio. We 
show that if this extension is not empty, i.e., #.SS2 of- #.sio, then [plus', (nl' n2)] f/: rng·ss2: 

#.SS2 of- #.sio 
= 1: {k 1 #·sio < k :s #.ss21 R·ss2·k} <;; Dl U D2 :I> 

3d' : PT. ( (d' [;;;PT dl V d' [;;;PT d2) A [·d' E {k 1 #.sio < k :s #.8821 R.ss2·k} ) 

=> 1: uniq·ss2 , prop. P5 :I> 
[.do E SS2 => [.do E {k 1 #.8io < k :s #·S82 1 R.SS2·k} 

1:{kl···IR.ss2·k} <;; Dl UD2 , [.do f/: Dl UD2:1> 
[.do f/: SS2 

1: def. [ , do =e [E ---t (E + E), (dl , d2)] :I> 
[plus, ([.dt, [.d2)] f/: SS2 

= 1: R.ss2·nl = [.dl , R·8s2·n2 = [·d2 :I> 
[plus, (R·ss2·nl, R·ss2·n2)] f/: SS2 

=> 1: prop. P8 - ¢o -part only :I> 
[plus', (nl' n2)] f/: rng·ss2 

On account of this, (*) can be changed into 

(#.SS2 of- #·sio ---t sSo = SS2 ++ ([Plus', (nl' n2)]) , no = #·SS2 + 1 
o #.SS2 = #.sio ---t ([Plus', (nl' n2)] E rng·SS2 

) 

--+ sSo = SS2 , no = (L n 1 .•. 1 n) 
o [plus', (nl' n2)] f/: rng·SS2 

--+ sSo = SS2 ++ ([Plus', (nl' n2)]) , no = #.SS2 + 1 
) 

The outermost selection criterion is attractive because it does not involve inspection of the 
elements of a{ny) sequence. For that reason the latter solution is to be preferred to the earlier 
ones; in particular it will be profitable if common sub-expressions do not occur very frequently. 

9 Conclusions, questions and remarks 

This final section consists of two parts. In the first part we state the main conclusions to be 
drawn from the example under consideration, in the second we list a number of remaining 
questions and remarks. Some of the latter are specifically related to this example, while others 
have a more general scope; all of them are meant to be processed in future work. 
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9.1 Conclusions 

Taking the problem of representing arithmetical expressions by DAGs as a vehicle, in tills paper 
it is shown how the proof system for one-pass AGs can be employed to show the correctness 
of a non-trivial, fairly realistic AG in a modular fashion. 

A prerequisite for being able to reason about such a problem in a precise way is the for
malisation of the notions constituting the problem. The example presented here demonstrates 
that typed inference systems are an appropriate formalism to serve this purpose. 

Then again, it is of vital importance to pinpoint the relevant properties of the attribute 
domains (and related notions), as they playa substantial role during the whole trajectory of 
developing and proving the AG. One could easily devote a separate paper to the study of such 
a theory. However, the theory per se is not the subject of this note, therefore it is condensed 
into properties PI through P9 (sections 5 and 8). 

By the nature of our proof system for one-pass AGs, the overall correctness proof for such 
an AG requires the proof of a number of implications per production. At all times, the context 
embodies the environment in which these proofs must be conducted and - provided the theory 
of the attribute domains has been developed satisfactorily - the latter can be done entirely by 
formal means. For a production p, #P + 1 implications need to be proven; hence, the burden 
of proof increases with the number of right-hand side non terminals of p. 

The proof of an implication can in general be split up into a number of small parts. The 
current example demonstrates two occasions to do so. First, if attributes are defined with 
case-analysis, the cases may be dealt with separately. The proofs corresponding to such cases 
tend to share substantial parts and, hence, do not have to be elaborated fully. For an example 
of tills phenomenon, observe in subsection 7.2 how the proof of (3.2.4) imports a large part 
of that of (3.1.4). Second, if the consequent (i.e., a Q- or R-term) of some implication to be 
proven consists of a number of conjuncts, the proof of this implication can be subdivided in 
equally many smaller proofs. Typically, such a subdivision yields a large number of rather 
isolated proofs; as far as they are not isolated, the proofs again tend to share considerable 
parts, e.g. notice how the proof of (3.1.5) in subsection 7.2 uses a large part of that of (3.1.4). 

In general we can say that the subdivision of proof obligations enhances a separation of 
concerns and results in a number of small proofs to be conducted. Most of these proofs are 
fairly straightforward and can be omitted in a practical situation; this is true in particular for 
productions involving copy rules and/or multiple occurrences of the same nonterminal (these 
occurrences all have similar specifications). By an adequate numbering of the proofs - as in 
section 7 ~ the relations between them may be kept sufficiently clear; observe for instance in 
subsection 7.2 how for all x the proofs of (3.1.x) relate to those of (3.2.x). Then, sharing of 
proof parts will most likely occur between proofs with related numbers. 

It can be observed from section 7 that the proofs for a production p are indeed local: apart 
from the general (axiomatic) properties of attribute domains - which are supposed to appear 
in r -, the only kinds of terms appealed to are 

• specification parts appearing as antecedents of the implication in question 

• equations (mainly evaluation rules) appearing in the context; even subject to a one-pass 
evaluation order. 

The only exception to this rule occurs when p's right-hand side involves lexical nonterminals 
(see item 5 of subsection 9.2). This exception is not regarded disastrous to the modularity of 
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the proof system, however, as its consequences are not far-reaching; it is the price we have to 
pay for not wanting to deal extensively with lexical matters. 

Another typical feature of the proofs, which is even enhanced with a bucket brigade-like 
attribute structure, is the strictly alternating appeal to specification parts and evaluation 
rules for the justification of proof steps. This is especially apparent in the proof of (3.1.6) in 
subsection 7.2. 

9.2 Questions and remarks 

1. (on the nature of the additional properties P8 and P9) 

(i) Property P8 is biased towards the specific treatment of production E .... (E + E) in 
section 8. In fact, it should be possible to formulate a more general property - P8', say 
- instead, dealing with expression trees in general, not just those of the form [plus, .. . ]. 
Property P8', then, would be an important key to the (transformational) derivation of 
the AG: it is the justification of the fact that a condition like 

[plus, (['.d" r.d2)] E {k 11 :::: k :::: #.ss21 n.ss2·k} 

- which may act as a selection criterion for production 2 in an early version of the 
grammar - can be refined to 

[plus', (nl' n2)] E rng·ss2 

(and something similar in productions 3, 4 and 5). 

(ii) There is a difference in spirit between properties PI through P8 (or rather: P8') and 
P9. Whereas PI through P8 can be considered as general domain properties, this is 
not true for P9. The latter is a derived property that is made explicit only to facilitate 
the reasoning about a certain local transformation. This is reflected by the fact that the 
premisses of P9 specifically concern a number of conrutions that together constitute a 
specification for nonterminal E. 

2. (concerning the transformations of section 8) 
In section 8 it is shown how a particular evaluation rule in production 2 can be modified, while 
maintaining the local correctness of the production (and hence the overall correctness of the 
grammar). 

The rule to be morufied is the one for the evaluation of attributes sSo and no. The 
correctness of the transformation is shown under the assumption of 

which are (qua topology of a one-pass eValuation) all relevant conditions that have been es
tablished upon performing the aforementioned evaluation. A close inspection of the proofs 
reveals that indeed all of these conditions are needed - the RE-terms are notably used to 
instantiate P9. (Note: conditions QE"d1·sil and QE·d2 ·si2 play no role. As appears from the 
proof obligation for production 2, they are implied by the other conditions.) 
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A couple of questions have not been answered yet. First, how do transformations like 
the ones in section 8 (that do not modify the attribute structure) relate to "Jonkers-like" 
AG-transformations, involving addition and removal of attributes? Second, can the optimised 
solutions be proven correct in isolation without making a detour as in section 8 (and does this 
bring about a change of specifications)? 

3. (meaningfulness of evaluation expressions) 
Up till now we have not considered the meaningfulness of the expressions occurring in the 
evaluation rules, notably 

in production 2. The use of the .-operator is allowed (meaningful) here on account of uniq,ss2 
(from R2), property P3 and the selection criterion [plus', (nl, n2)] E rng,sS2, which precedes 
the evaluation of the .-expression. 

In general, it is clear that such expressions have to be viewed in the right context, Le., the 
topology of attribute evaluation has to be taken into account; in the case of the .-expression, 
we have the validity of 

at our disposal. (Note: the equations si l = sio and si2 = SSl are not needed for this purpose: 
an evaluation expression is concerned solely with outside attributes.) 

Quite another point is the well-formedness of evaluation expressions, which has to do with 
the occurrence of certain attribute variables in evaluation expressions; this is compelled by the 
syntax of (one-pass) AGs. This allows us, for example, to write 

in the selection criterion of production 2, as nl, n2 and SS2 are well-defined at that point. 

4. (on a pure bucket brigade solution) 
The first proposal for a specification for E (section 6) seems to lead to a fairly straightforward 
bucket brigade solution. It turns out, however, that the proof obligations emerging from the 
"obvious" evaluation rules cannot be met. Hence, specification and implementation do not 
match. As explained in section 6, addition of 

3sa : Seq(PN) . ss = si -H- sa 

to RE fixes the deficiency. Operationally, this term prevents the determination of SS2 and n2 
(from si2) in a rule like 

from shaking up si2 in such a way that nl would no longer be reliable, Le., satisfy R·ss2·nl = 

r·dl · 

As a consequence, the term (*) disables some other implementations, e.g. one that requires 
all "minimal terms" [vaT', v] and [con', c] to be in the beginning of the result sequence. Indeed, 
under such an implementation nl would not be reliable. (Note: if a demand like that would 
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be "user required", a condition expressing the demand would have to be added to Rz. This 
condition then generalises to RE and there effectively prevents the term (*) to occur, as the 
two are incompatible.) 

It is still an open question how a more pure bucket brigade solution, Le., one that does not 
exclude obvious implementations, would have to be specified. 

At first it seems that the invalidation of nl in (**) can be abolished by passing it to the 
right-most E-occurrence, alongside with SSI' Via its specification, E would then be responsible 
for updating this value if necessary, and it would deliver two synthesized natural numbers, 
providing the indices in SSz where representations of both sub-trees can be found. However, 
all E-occurrences must be treated alike - notably: have the same specification -, so also the 
left E-occurrence would have to deliver two naturals; it is not clear at all what they would 
stand for. Continuing this reasoning, one may end up with a (variable sized) sequence of 
naturals to be passed around the tree in a depth-first fashion, alongside the result-sequence s. 

5. (on lexical nonterminals) 
The proof of production 4 (section 7.3) is on strained terms with the asserted modularity 
of our proof system, which can be expressed roughly as "proofs are local to the individual 
productions" . 

Consider notably the proof of (1.1.4), where a production tree do : PTE of the form 
[E -+ V, (dl )] is in force. As the proof proceeds, we are led to consider the internal structure 
of dl , which - on account of the fact that d l : PTv and V is a lexical non terminal - is of 
the form [V -+ yield.d l , ()]. 

Now the latter property is actually the only thing about dl that plays a role in the proof, 
and as it is true for all production trees d l issued from V, no radical case-analysis emerges 
from the considering of d l 's structure. 

This slight deviation from the modularity of the system is an immediate consequence of 
V's being a lexical nonterminal, as we shall explain now. 

Recall that the choice to regard a non terminal like Vasa lexical nonterminal is inspired by 
the fact that we do not want to bother about the precise shape of the production trees issued 
from V. The only thing of interest about such a tree is its terminal production; therefore a 
lexical non terminal is provided with a single synthesized attribute of the appropriate type and 
a specification expressing our intentions. For example 

V(+v: VAR) 
Rv·d.v v = yield.d 

On the other hand, however, the shape of the production trees of a lexical non terminal 
cannot be neglected altogether, notably if an AG's problem specification is expressed in terms 
of a function on the production trees of the underlying CFG. In order for such a function - [; 
in our example - to be well-defined (or: totally defined) there must be a clause expressing the 
function's result upon application to a tree issued from a lexical nonterminal. Again, this result 
will only involve the terminal production of such a tree, therefore it suffices to represent the 
tree in an abbreviated way, suggesting that a lexical nonterminal derives its terminal strings 
in one step; e.g. [V -+ v, ()]. 

It is the discrepancy between these two views on lexical nonterminals - the attributed 
and the functional one - that causes the observed deviation from a purely modular proof 
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system. The deviation occurs when the two views clash, viz. with all productions involving 
lexical nonterminals at their right-hand sides. 

A number of possibilities to abolish the discrepancy emerge; none of them seems acceptable, 
however: 

Considering lexical non terminals as terminal symbols leads to an exhaustive spelling out 
of the "lexical types" (VAR and CON in our example). Instead, we want to express 
that such symbols derive a variety of terminal strings - all with a common structure 
-, without going into the details of this structure (type). 

Ignoring the production trees issued from lexical nonterminals when defining functions 
on production trees causes such functions not to be totally defined anymore. (Nb: in 
our current example, this option would lead to 

and the omission of the clause for e.[V - v, 0].) 

Not providing lexical nonterminals with a default attribute (and specification) anymore 
has the disadvantage that each of them must be considered separately, which may lead 
to quite di vergen t specifications. Moreover, we lose the expression of the fact that the 
only thing of interest about a lexical non terminal is the terminal string derived. 

In our current example, this option leads to V and C receiving the same attributes and 
specification as E. For productions E _ V and E _ C, all evaluation rules would be 
copy rules. 

Considering all aspects, it seems that the current solution - Le., allowing a slight deviation 
from a purely modular proof structure when lexical nonterminals are involved - may be by all 
means the most acceptable one. It should however be recognised that the discrepancy exists. 

References 

[ASU86] Aho, A.V., R. Sethi, J.D. Ullman; Compilers - Principles, Techniques and Tools, 
Addison-Wesley (1986) 

[Hem85] Hemerik, C.; Notes on Compiler Construction 5: Common Subexpression Elimina· 
tion, internal note CH24/NCC5, Eindhoven University of Technology (1985) 

[Mar90] Marcells, A.J.J.M.; A Logic for One-pass Attribute Grammars, Computing Science 
Note 90/07, Eindhoven University of Technology, Dept. of Math. and Compo Sci., The 
Netherlands (1990) 

22 



In this series appeared: 

89/1 E.Zs.Lepoeter-Molnar 

89/2 R.H. Mak 
P.Struik 

89/3 H.MM. Ten Eikelder 
C. Hemerik 

89/4 J.Zwiers 
W.P. de Roever 

89/5 Wei Chen 
T.Verhoeff 
J.T.Udding 

89/6 T.Verhoeff 

89fl P.Struik 

89/8 E.H.L.Aans 
A.E.Eiben 
K.M. van Hee 

89/9 K.M. van Hee 
P.M.P. Rambags 

89/10 S.Ramesh 

89/11 S.Ramesh 

89/12 A.T.M.Aerts 
K.M. van Hee 

89/13 A.T.M.Aerts 
K.M. van Hee 
M.W.H. Hesen 

89/14 H.C.Haesen 

89/15 J.S.C.P. van 
der Woude 

89/16 A.T.M.Aerts 
K.M. van Hee 

89/17 MJ. van Diepen 
K.M. van Hee 

Reconstruction of a 3-D surface from its normal vectors. 

A systolic design for dynamic programming. 

Some category theoretical properties related to 
a model for a polymorphic lambda-calculus. 

Compositionality and modularity in process 
speCification and design: A trace-state based 
approach. 

Networks of Communicating Processes and their 
(De-)Composition. 

Characterizations of Delay-Insensitive 
Communication Protocols. 

A systematic design of a parallel program for 
Dirichlet convolution. 

A general theory of genetic algorithms. 

Discrete event systems: Dynamic versus static 
topology. 

A new efficient implementation of CSP with output 
guards. 

Algebraic specification and implementation of infinite 
processes. 

A concise formal framework for data modeling. 

A program generator for simulated annealing 
problems. 

ELDA, data manipulatie taal. 

Optimal segmentations. 

Towards a framework for comparing data models. 

A formal semantics for Z and the link between 
Z and the relational algebra. 



90/1 W.P.de Roever-
H.Barringer-
C.Courcoubetis-D.Gabbay 
R.Gerth-B.Jonsson-A.Pnueli 
M.Reed-J .Sifakis-J. Vytopil 
P.Wo1per 

90/2 K.M. van Hee 
P M.P. Rambags 

90/3 R. Gerth 

90/4 A Peeters 

90/5 J.A Brzozowski 
J.C. Ebergen 

90/6 AJ.l.M. Marcelis 

90n AJ.J.M. Marcelis 

90/8 M.B. Josephs 

90/9 A.T.M. Aerts 
P.M.E. De Bra 
K.M. van Hee 

90/10 M.J. van Diepen 
K.M. van Hee 

90/11 P. America 
F.S. de Boer 

90/12 P.America 
F.S. de Boer 

90/13 K.R. Apt 
F.S. de Boer 
E.R. 01derog 

90/14 F.S. de Boer 

90/15 F.S. de Boer 

90/16 F.S. de Boer 
C. Palamidessi 

90/17 F.S. de Boer 
C. Palamidessi 

Fonnal metbods and tools for tbe development of 
distributed and real time systems, p. 17. 

Dynamic process creation in high-level Petri nets, 
pp. 19. 

Foundations of Compositional Program Refinement 
- safety properties - , p. 38. 

Decomposition of delay-insensitive circuits, p. 25. 

On tbe delay-sensitivity of gate networks, p. 23. 

Typed inference systems : a reference document, p. 17. 

A logic for one-pass, one-attributed grammars, p. 14. 

Receptive Process Theory, p. 16. 

Combining tbe functional and tbe relational model, 
p. 15. 

A fonnal semantics for Z and tbe link between Z and tbe 
relational algebra, p. 30. (Revised version of CSNotes 
89/17). 

A proof system for process creation, p. 84. 

A proof tbeory for a sequential version of POOL, p. 11 O. 

Proving tennination of Parallel Programs, p. 7. 

A proof system for tbe language POOL, p. 70. 

Compositionality in tbe temporal logic of concurrent 
systems, p. 17. 

A fully abstract model for concurrent logic languages, p. 
p.23. 

On tbe asynchronous nature of communication in logic 
languages: a fully abstract model based on sequences, p. 
29. 

; 



90/18 ]. Coenen 
E.v.d.Sluis 
E.v.d.Velden 

90/19 M.M. de Brouwer 
P.A.C. Verkoulen 

90/20 M.Rem 

90/21 K.M. van Hee 
P.A.C. Verkoulen 

91/01 D. Alstein 

91/02 R.P. Nederpelt 
H.C.M. de Swart 

91/03 J.P. Katoen 
L.A.M. Schoenmakers 

91/04 E. v.d. Sluis 
A.F. v.d. Stappen 

91/05 D. de Reus 

91/06 K.M. van Hee 

91/07 E.Poll 

91/08 H. Schepers 

91/09 W.M.P.v.d.Aalst 

91/10 R.C.Backhouse 
P.]. de Bruin 
P. Hoogendijk 
G. Malcolm 
E. Voennans 
J. v.d. Woude 

91/11 R.C. Backhouse 
P.I. de Bruin 
G.Malcolm 
E.Voermans 
J. van der Woude 

91/12 E. van der Sluis 

91/13 F. Rietman 

91/14 P. Lernmens 

Design and implementation aspects of remote procedure 
calls, p. 15. 

Two Case Studies in ExSpect, p. 24. 

The Nature of Delay-Insensitive Computing, p.18. 

Data, Process and Behaviour Modelling in an integrated 
specification framework, p. 37. 

Dynamic Reconfiguration in Distributed Hard Real-Time 
Systems, p. 14. 

Implication. A survey of the different logical analyses 
"if ... ,then ... ", p. 26. 

Parallel Programs for the Recognition of P-invariant 
Segments, p. 16. 

Performance Analysis of VLSI Programs, p. 31. 

An Implementation Model for GOOD, p. 18. 

SPECIFICATIEMETHODEN, een overzicht, p. 20. 

CPO-models for second order lambda calculus with 
recursive types and subtyping, p. 

Terminology and Paradigms for Fault Tolerance, p. 25. 

Interval Timed Petri Nets and their analysis, p.53. 

POLYNOMIAL RELATORS, p. 52. 

Relational Catamorphism, p. 31. 

A parallel local search algorithm for the travelling 
salesman problem, p. 12. 

A note on Extensionality, p. 21. 

The PDB Hypermedia Package. Why and how it was 
built, p. 63. 



91/15 A.T.M. Aerts 
KM. van Hee 

91/16 A.l.l.M. Marcelis 

91/17 A.T.M. Aerts 
P.M.E. de Bra 
KM. van Hee 

91/18 Rik van Gcldrop 

91/19 Erik Poll 

91/20 A.E. Eiben 
R.V. Schuwer 

91/21 1. Coenen 
W.-P. de Roever 
I.Zwiers 

91/22 G. Wolf 

91/23 KM. van Hee 
L.J. Somers 
M. Voorhoeve 

91/24 A.T.M. Aerts 
D. de Reus 

91/25 P. Zhou 
1. Hooman 
R. Kuiper 

91/26 P. de Bra 
G.l. Houben 
J. Paredaens 

91/27 F. de Boer 
C. Palamidessi 

91/28 F. de Boer 

Eldorado: Architecture of a Functional Database 
Management System, p. 19. 

An example of proving attribute grammars correct: 
the representation of arithmetical expressions by DAGs, 
p.25. 

Transforming Functional Database Schemes to Relational 
Representations, p. 21. 

.' 

Transformational Query .solving, p. 35. 

Som~ categorical properties for a model for second order 
lambda calculus with subtyping, p. 21. 

Knowledge Base Systems, a' Formal Model. p. 21. 

Assertional Data Reification Proofs: Survey and 
Perspective, p. 18. 

Schedule Management: an Object Oriented Approach, p. 
26. 

Z and high level Petri nets, p. 16. 

Formal semantics for BRM with examples, p. 

, 
A compositional proof system for real-time systems based 
on explicit clock temporal logic; soundness and complete 
ness, p. 52. 

The GOOD based hypertext reference model, p. 12. 

Embedding as a tool for language comparison: On the 
CSP hierarchy, p. 17. 

A compositional proof system for dynamic proces 
creation, p. 24. 


	Abstract
	Contents
	1. Introduction
	2. Context-free grammar
	3. Expressions trees
	4. Representing expression trees by pointer-like structures
	5. Some theory of attribute domains (and the like)
	6. Attribute grammar
	7. Correctness proofs
	7.1 Ad production 1
	7.2 Ad production 2
	7.3 Ad production 4
	8. Improving the efficiency of attribute evaluation
	9. Conclusions, questions and remarks
	9.1 Conclusions
	9.2 Questions and remarks
	References

