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0. De formele en gestruktureerde wijze waarop vertragingsongevoelige circuits 
ontworpen kunnen worden zal hun testbaarheid verhogen. 

I. De vraag of een willekeurig programma -waarin algemene recursie is toe­
gestaan - vrij is van deadlock of livelock is onbeslisbaar. 

Literatuur: Communicating Sequential Processes, C.A.R. HOARE, Prentice­
Hall, 1985. 

2. Meervoudige staartrecursie kan het dupliceren van code voorkomen en leent 
zich voor een formele programmeermethode. 

3. De in dit proefschrift voorgestelde programmanotatie biedt een goede basis 
voor het analyseren van de structurele complexiteit van problemen. 

4. Er wordt nog te weinig aandacht besteed aan het ontwikkelen van ontwerp­
methoden voor parallelle processen. 

5. Schakeltheorie is minder geschikt voor het ontwerpen van ver­
tragingsongevoelige circuits dan voor het ontwerpen van synchrone circuits. 

6. Indien een component gespecificeerd door Et wordt gedecomponeerd vol­
gens de in dit proefschrift beschreven methode en E heeft de eigenschap 

(At: tEtE: Suc(t,E)noE = Suc(ttextE,Et)noE ), 

dan is de decompositie vrij van deadlock. 

Literatuur: Dit proefschrift. 

7. Laat de funktie /: 58➔58 gedefinieerd zijn door 

f.R = (S II s.R)t B, 

waarbij voor S en B geldt SE GC 4, B = extS en waarin s is een her­
benoemingsfunktie is zodanig dat a(_s.R)=coS. Dan bestaat µ../ en er geldt 
µ../EC4. 

Literatuur: Dit proefschrift en 
A Formalism for Concurrent Processes, A. KALDEWAIJ, Proefschrift, Tech­
nische Universiteit Eindhoven, 1986. 



8. Een herkenner voor reguliere expressies zonder i-cycli kan op een een­
voudige manier met vertragingsongevoelige componenten worden gereali­
seerd. 

Literatuur: Recognize Regular Languages with Programmable Building 
Blocks, M.J. FOSTER en H.T. KUNG, in: VLSI 81 (JOHN P. GRAY, ed.), 
Academic Press, 1981, pp. 75-84. 
The Compilation of Regular Expressions into Integrated Circuits, ROBERT 
W. FLOYD en JEFFREY D. ULLMAN, Journal of the ACM, 29 (1982), pp. 603-
622. 

9. Drachtigheidsdiagnostiek bij schapen door middel van real-time echografie is 
economisch onrendabel. 

Literatuur: Accuracy of pregnancy diagnosis and prediction of foetal num­
bers in sheep with linear-array real-time ultrasound scanning, M.A.M. 
TAVERNE, M.C. LAVOIR, R. VAN OoRD, en G.C. VAN DER WEYDEN, The 
Veterinary Quaterly, 7, no. 4 (1985). 

10.Een interdisciplinaire samenwerking tussen informatica en diergeneeskunde 
zal een vruchtbare toekomst tegemoet gaan. 

Literatuur: Register van de burgelijke stand te Amsterdam. 
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Chapter 0 

Introduction 

In 1938 Claude E. Shannon wrote his seminal article [41] entitled 'A Symbolic 
Analysis of Relay and Switching Circuits'. He demonstrated that Boolean 
algebra could be used elegantly in the design of switching circuits. The idea 
was to specify a circuit by a set of Boolean equations, to manipulate these 
equations by means of a calculus, and to realize this specification by a connec­
tion of basic elements. The result was that only a few basic elements, or even 
one element such as the 2-input NAND gate, suffice to synthesize any switch­
ing function specified by a set of Boolean equations. Shannon's idea proved to 
be very fertile and out of it grew a complete theory, called switching theory. 

In this thesis we present a method for designing delay-insensitive circuits. 
The principal idea of this method is similar to that of Shannon's article: to 
design a circuit as a connection of basic elements and to construct this connec­
tion with the aid of a formalism. We construct such a circuit by translating 
programs satisfying a certain syntax. The result of such a translation is a con­
nection of elements chosen from a finite set of basic elements. Moreover, this 
translation can be carried out in such a way that the number of basic elements 
in the connection is proportional to the length of the program. We formalize 
what it means that such a connection is a delay-insensitive connection. 

Delay-insensitive circuits are a special type of circuits. We briefly describe 
their origins and how they are related to other types of circuits and design 
techniques. The most common distinction usually made between types of cir­
cuits is the distinction between synchronous circuits and asynchronous circuits. 
Synchronous circuits are circuits that perform their (sequential) computations 
based on the successive pulses of the clock. For the design of these circuits 
many techniques have been developed and are described by means of switch­
ing theory [29, 23]. The correctness of synchronous systems relies on the 
boundedness of delays in elements and wires. The satisfaction of these delay 
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requirements cannot be guaranteed under all circumstances, and for this rea­
son problems can crop up in the design of synchronous systems. In order to 
avoid these problems interest arose in the design of circuits without a clock. 
Such circuits have generally been called asynchronous circuits. 

The design of asynchronous circuits has always been and still is a difficult 
subject. Several techniques for the design of such circuits have been developed 
and are discussed in, for example, [29, 23, 47). For special types of such cir­
cuits formalizations and other design techniques have been proposed and dis­
cussed. David E. Muller has given a formalization of a type of circuits which 
he coined by the name of speed-independent circuits. An account of this for­
malization is given in [30). 

From a design discipline that was applied in the Macromodules project [4, 
5) at Washington University in St. Louis the concept of a special type of cir­
cuit evolved which was given the name delay-insensitive circuit. It was realized 
that a proper formalization of this concept was needed in order to specify and 
design such circuits in a well-defined manner. A formalization of the concept 
of a delay-insensitive circuit was later given by Jan Tijmen Udding in [45). 
For the design and specification of delay-insensitive circuits several methods 
have been developed based on, for example, Petri Nets and techniques derived 
from switching theory [13, 33). 

Recently, Alain Martin has proposed some interesting design techniques for 
circuits of which the functional operation is unaffected by delays in elements 
or wires [25, 26). The techniques are based on the compilation of CSP-like 
programs into connections of basic elements. It is, however, not yet clear 
whether these techniques can be completely automated and to which type of 
programs they can be applied and which not. The techniques presented in this 
thesis exhibit a similarity with the techniques applied by Alain Martin. 

Another name that is frequently used in the design of asynchronous circuits 
is self-timed systems. This name has been introduced by Charles L. Seitz in 
[40) in order to describe a method of system design without making any refer­
ence to timing except in the design of the self-timed elements. Other tech­
niques and formalisms applied in the design and verification of (special types 
of) asynchronous circuits, but less related to the work presented in this thesis, 
are described in [10, 31, 22, 15). 

The reasons to design delay-insensitive systems are manifold. Before we 
explain each of these reasons, we briefly sketch some of the motives of the first 
computer designers to incorporate a clock in their design. For them this was 
not an obvious decision, since most mechanical calculating machinery before 
the use of electronic devices was designed without a clock. The first widely 
disseminated reports on computer design that advocated the use of a clock are 
the reports on the EDVAC [34, 27, 1). These reports have had a large 
influence on the design of computers. The basic logical organization of most 
computers nowadays has not changed much from the organization that was 
advocated then by Von Neumann and his associates. 

The motives for incorporating a clock in their design were twofold. The first 
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and most important reason was that all computations had to be done in purely 
sequential fashion: parallelism was explicitly forbidden (both to avoid the high 
cost of additional circuitry and to avoid complexity in the design). It turned 
out that for the realization of such computations the use of a clock had consid­
erable advantages: the clock could, for example, be used to dictate the succes­
sive steps of the computations. The second reason was that various memory 
devices used at that time were dynamic devices, i.e. memory elements whose 
contents had to be refreshed regularly. Refreshing was usually done by means 
of clock pulses. Since, for this reason, a clock was already present for those 
devices, it could be used for other purposes as well. 

In the report on the ACE [43], written shortly after the first report on the 
EDY AC, Alan Turing is more explicit about the use of a clock in the design 
and mentions it as one of twelve essential components. In [44] he motivates 
this choice as follows. 

We might say that the clock enables us to introduce a discreteness 
into time, so that time for some purposes can be regarded as a suc­
cession of instants instead of a continuous flow. A digital machine 
must essentially deal with discrete objects, and in the case of the 
ACE this is made possible by the use of a clock. All other digital 
computing machines except for human and other brains that I 
know of do the same. One can think up ways of avoiding it, but 
they are very awkward. 

REMARK. Here, we also remark that at the time of the reports on the EDY AC 
and the ACE, i.e. in 1945-47, Boolean algebra was still considered of little use 
in the design of computer circuits [12]. It took more than ten years after 
Shannon's article before Boolean algebra was accepted and proved to be a use­
ful formalism in the practical design of synchronous systems. 

□ 

One reason why there has always been an interest in asynchronous systems is 
that synchronous systems tend to reflect a worst-case behavior, while asynchro­
nous systems tend to reflect an average-case behavior. A synchronous system 
is divided into several parts, each of which performs a specific computation. 
At a certain clock pulse, input data are sent to each of these parts and at the 
next clock pulse the output data, i.e. the results of the computations, are sam­
pled and sent to the next parts. The correct operation of such an organization 
is established by making the clock period larger than the worst-case delay for 
any subcomputation. Accordingly, this worst-case behavior may be disadvan­
tageous in comparison with the average-case behavior of asynchronous sys­
tems. 

Another more important reason for designing delay-insensitive systems is the 
so-called glitch phenomenon. A glitch is the occurrence of metastable behavior 
in circuits. Any computer circuit that has a number of stable states also has 
metastable states. When such a circuit gets into a metastable state, it can 
remain there for an indefinite period of time before it resolves into a stable 
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state. For example, it may stay in the metastable state for a period larger than 
the clock period. Consequently, when a glitch occurs in a synchronous system, 
erroneous data may be sampled at the time of the clock pulses. In a delay­
insensitive system it does not matter whether a glitch occurs: the computation 
is delayed until the metastable behavior has disappeared and the element has 
resolved into a stable state. Among the frequent causes for glitches are, for 
example, the asynchronous communications between independently clocked 
parts of a system. 

The first mention of the glitch problem appears to date back to 1952 (cf. 
[21). The first publication of experimental results of the glitch problem and a 
broad recognition of the fundamental nature of the problem came only after 
1973 [3, 19] due to the pioneering work on this phenomenon at the Washing­
ton University in St. Louis. 

A third reason is due to the effects of scaling. This phenomenon became 
prominent with the advent of integrated circuit technology. Because of the 
improvements of this technology, circuits could be made smaller and smaller. 
It turned out, however, that if all characteristic dimensions of a circuit are 
scaled down by a certain factor, including the clock period, delays in long 
wires do not scale down proportional to the clock period [28, 40]. As a conse­
quence, some VLSI designs when scaled down may no longer work properly 
anymore, because delays for some computations have become larger than the 
clock period. Delay-insensitive systems do not have to suffer from this 
phenomenon if the basic elements are chosen small enough so that the effects 
of scaling are negligible with respect to the functional behavior of these ele­
ments [42]. 

The fourth reason is the clear separation between functional and physical 
correctness concerns that can be applied in the design of delay-insensitive sys­
tems. The correctness of the behavior of basic elements is proved by means of 
physical principles only. The correctness of the behavior of connections of 
basic elements is proved by mathematical principles only. Thus, it is in the 
design of the basic elements only that considerations with respect to delays in 
wires play a role. In the design of a connection of basic elements no reference 
to delays in wires or elements is made. This does not hold for synchronous 
systems where the functional correctness of a circuit also depends on timing 
considerations. For example, for a synchronous system one has to calculate 
the worst-case delay for each part of the system and for any computation in 
order to satisfy the requirement that this delay must be smaller than the clock 
period. 

As a last reason, we believe that the translation of parallel programs into 
delay-insensitive circuits offers a number of advantages compared to the trans­
lation of parallel programs into synchronous systems. In this thesis a method 
is presented with which the synchronization and communication between 
parallel parts of a system can be programmed and realized in a natural way. 

The method presented in this thesis for designing delay-insensitive circuits is 
briefly described as follows. We call an abstraction of a circuit a component; 
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components are specified by programs written in a notation based on trace 
theory. These programs are called commands and can be considered as an 
extension of the notation for regular expressions. Any component represented 
by a command can also be represented by a regular expression, i.e. it is also a 
regular component. The notation for commands, however, allows for a more 
concise representation of a component due to the additional programming 
primitives in this notation. These extra programming primitives include opera­
tions to express parallelism, tail recursion (for representing finite state 
machines), and projection (for introducing internal symbols). 

Based on trace theory we formalize the concepts of decomposition of a com­
ponent and of delay-insensitivity. The decomposition of a component is 
intended to represent the realization of that component by means of a connec­
tion of circuits. Delay-insensitivity is formalized in the definitions of DI 
decomposition and of DI component. A DI decomposition represents a realiza­
tion of a component by means of a delay-insensitive connection of circuits. A 
DI component represents a circuit that communicates in a delay-insensitive 
way with its environment. It turns out that the definition of DI component is 
equivalent with Udding's formalization of a delay-insensitive circuit. One of 
the fundamental theorems in this thesis is that DI decomposition and decom­
position are equivalent if all components involved are DI components. We 
also present some theorems that are helpful in finding decompositions of a 
component. 

Based on the definition of DI component, we develop a number of so-called 
DI grammars, i.e. grammars for which any command generated by these gram­
mars represents a (regular) DI component. With these grammars the language 
f.i of commands is defined. We show that any regular DI component 
represented by a command in the language f.i can be decomposed in a syntax­
directed way into a finite set B of basic DI components and so-called CAL 
components. CAL components are also DI components. Consequently, the 
decomposition into these components is, by the above mentioned theorem, also 
a DI decomposition. 

The set of all CAL components is, however, not finite. In order to show that 
a decomposition into a finite basis of components exists, we discuss two 
decompositions of CAL components: one decomposition into the finite basis 
BO and one decomposition into the finite basis B 1. The decomposition of CAL 
components into the finite basis B 1 is in general not a DI decomposition, since 
not every component in B 1 is a DI component. This decomposition can, how­
ever, be realized in a simple way if so-called isochronic forks are used in the 
realization. The decomposition of CAL components into the basis BO is an 
interesting but difficult subject. Since every component in BO is a DI com­
ponent, every decomposition into BO is therefore also a DI decomposition. 
We briefly describe a general procedure, which we conjecture to be correct, for 
the decomposition of CAL components into the basis 80. 

The decomposition method can be described as a syntax-directed translation 
of commands in f.i into commands of the basic components in BO or B 1. 
Consequently, the decomposition method is a constructive method and can be 



6 Introduction 

completely automated. Moreover, we show that the result of the complete 
decomposition of any component expressed in f:.i can be linear in the length of 
the command, i.e. the number of basic elements in the resulting connection is 
proportional to the length of the command. 

Although many regular DI components can be expressed in the language f:.i , 
which is the starting point of the translation method, probably not every regu­
lar DI component can be expressed in this way. We indicate, however, that for 
any regular DI component there exists a decomposition into components 
expressed in f:.i, which can then each be translated by the method presented. 

Toe formalism we use in this thesis is called trace theory. Trace theory was 
inspired by Hoare's CSP [17, 18] and developed by a number of people at the 
University of Technology in Eindhoven. It has proven to be a good tool in 
reasoning about parallel computations [36, 37, 42, 20] and, in particular, about 
delay-insensitive circuits [45, 46, 38, 39, 16, 21]. 

This thesis is organized as follows. In Chapter 1 the basic notions of trace 
theory are briefly presented. In Chapter 2 we present the program notation 
for commands and give a number of examples in which we illustrate the 
specification of a component by means of a command. In Chapter 3 the fun­
damental concepts of decomposition and delay-insensitivity are defined. The 
recognition of DI components is the subject of Chapter 4 in which several 
attribute grammars are presented, all of which generate commands represent­
ing DI components. Toe proofs of this chapter are given in the appendices. 
By means of these grammars, we subsequently describe a syntax-directed 
decomposition method in Chapters 5 and 6. Chapter 7 contains a number of 
examples and suggestions about optimizing the general decomposition method 
of Chapters 5 and 6. In Chapter 7 we also discuss the issues involved in the 
decomposition of any regular DI component into a finite basis of components. 
We conclude with some remarks. Each chapter has many examples to illus­
trate the subject matter in a simple way. 

In this thesis we have tried to pursue the aim of delay-insensitive design as 
far as possible, i.e. to postpone correctness arguments based on delay­
assumptions as long as possible, in order to see what sort of designs such a 
pursuit would lead to. In this approach our first concern has been the correct­
ness of the designs and only in the second place have we addressed their 
efficiency. 

0.1. NOTATIONAL CONVENTIONS 

The following notational conventions are used in the thesis. 
Universal quantification is denoted by 

(Ax: D(x ): P (x )). 

It is read as 'for all x satisfying D(x), P(x) holds'. The expression D(x) 
denotes the domain over which the quantified identifier x ranges. Instead of 
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one quantified identifier, we may also take two or more quantified identifiers. 
Existential quantification is denoted by 

(Ex: D(x ) : P(x )). 

It is read as 'there exists an x satisfying D(x) for which P(x) holds'. 
The notations R(i : O~i<n) and E(i,j: O~i,j<n) denote arrays of elements 

R.i, O~i <n, and E.i.j, O~i <n I\ O~j <n, respectively. Sometimes these 
arrays are referred to as vector R(i:O~i<n) and matrix (Ei,j:O~i,j<n) 
respectively. 

In some cases functional application is denoted by the period, it is left­
associative, and it has highest priority of all binary operations. For example, 
the function f applied to the argument a is denoted by f .a. The array 
E(i,j:O~i,j<n) can be considered as a function E defined on the domain 
O~i <n I\ O~j <n. The function E applied to i, O~i <n, yields the array 
E.i(j: O:,;;;;,_j <n ); subsequent application to j, O:,;;;;,_j <n, yields the element E.i.j. 
Since function application is left-associative, we have E.i.j =(E.i)j. The nota­
tion for functional application is taken from [9]. 

Let op denote an associative binary operation with identity element id. Con­
tinued application of the operation op over all elements a.i satisfying the 
domain restrictions D (i) is denoted by 

(op i: D(i): a.i). 

For example, we have 

(+i:O:,;;;;,_i<4:a.i.) = a. O+a. l+a. 2+a.3. 

If domain D(i) is empty, then 

(opi:D(i):a.i) = id 

For example, we have (+i: O~i<O: a.i)=O. 
(Notice that universal and existential quantification can also be expressed as 
( /\ x: D (x ): P(x )) and (v x: D (x ): P(x )) respectively.) The notation 
(Ni: D (i): P(i)) denotes the number of i's satisfying D (i) for which P (i) holds. 

Most proofs in the thesis have a special notational layout. For example, if 
we prove PO~ P 2 by first showing PO~ P 1 and then P 1 P 2, this is 
denoted by 

PO 

~{hint why PO~ P 1} 

Pl 

= {hint why P 1 =P2} 

P2. 

This notation is taken from [7]. 
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1.0. INTRODUCTION 

Chapter 1 

Trace Theory 

In this chapter we present a brief introduction to trace theory. It contains the 
definitions and properties relevant to the rest of this thesis. 

The first part summarizes previous results from trace theory. For a more 
thorough exposition on this part the reader is referred to (42, 36, 20]. In Sec­
tions 1.1.0 and 1.1.1 we define trace structures and the basic operations on 
them. Section 1.1.2 contains a number of properties of these operations. In 
Section 1.1.3 we define a program notation for expressing commands. Com­
mands specify trace structures, and can be considered as generalizations of reg­
ular expressions. 

The second part contains new material. In Section 1.2 we give a detailed 
presentation of tail recursion. Tail recursion can be used to express finite state 
machines in a concise and simple way. Moreover, tail recursion can be used 
conveniently to prove properties about programs. For these reasons the com­
mand language is extended with tail recursion. 

We conclude with Section 1.3 in which we show a number of programs writ­
ten in the command language. 



1. 1. Trace structures and commands 

1.1. TRACE STRUCTURES AND COMMANDS 

1.1. 0. Trace structures 

9 

A trace structure is a pair <B,X>, where B is a finite set of symbols and 
xr;;;n•. The set n• is the set of all finite-length sequences of symbols from B. 
A finite sequence of symbols is called a trace. The empty trace is denoted by t:. 
Notice that 0•={t:}. For a trace structure R=<B,X>, the set Bis called 
the alphabet of Rand denoted by aR; the set Xis called the trace set of Rand 
denoted by tR. 

NOTATIONAL CONVENTION. In the following, trace structures are denoted by 
the capitals R,S, and T; traces are denoted by the lower-case letters r, s, t, u, 
and v; alphabets are denoted by the capitals A and B; symbols are usually 
denoted by the lower-case letters with exception of r, s, t, u, and v. 

□ 

1.1.1. Operations on trace structures 

The definitions and notations for the operations concatenation, union, repetition, 
(taking the) prefix-closure, projection, and weaving of trace structures are as fol­
lows. 

R;S = <aRUaS, tRtS> 

RIS = <aR UaS' tR UtS> 

[R] = <aR, (tR)* > 

pref R = <aR, {sl (Et::stEtR)}> 

RtA = <aRnA, {ttAltEtR}> 

RIIS= <aRUaS' {tE(aRUaS)°lttaREtR /\ ttaSEtS}>, 

where tt A denotes the trace t projected on A, i.e. the trace t from which all 
symbols not in A have been deleted. Concatenation of sets is denoted by jux­
taposition and (tR)* denotes the set of all finite-length concatenations of traces 
in tR. 

The operations concatenation, union, and repetition are familiar operations 
from formal language theory. We have added three operations: (talcing the) 
prefix-closure, projection, and weaving. 

The pref operator constructs prefix-closed trace structures. A trace structure 
R is called prefix-closed if pref R = R holds. Later, we use prefix-closed and 
non-empty trace structures for the specification of components. We call a 
trace structure R prefixfree if 

(As,t:sEtR I\ stEtR: t=t:) 
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holds, i.e. no trace in tR is a proper prefix of another trace in tR. 
The projection operator allows us to introduce internal symbols which are 

abstracted away by means of projection. These internal symbols can be used 
conveniently for a number of purposes, as we will see in the subsequent 
chapters. 

The weave operation constructs trace structures whose traces are weaves of 
traces from the constituent trace structures. Notice that common symbols must 
match, and, accordingly, weaving expresses instantaneous synchronization. 
The set of symbols on which this synchronization takes place is the intersec­
tion of the alphabets. 

The successor set of t with respect to trace structure R, denoted by Sue (t,R), 
is defined by 

Sue (t,R) = {b I tbEtprefR}. 

Finally we define a partial order ~ on trace structures by 

R~S = aR=aS /\ tR ~tS. 

1.1.2. Some properties 

Below, a number of properties are given for the operations just defined. The 
proofs can be found in [42, 20). 

PROPERTY 1.1.2.0. For the operations on trace structures we have: 
Concatenation is associative and has < 0, { £} > as identity. 
Union is commutative, associative, and has < 0, 0 > as identity. 
Weaving is commutative, associative, and has < 0, { £} > as identity. 
If we consider prefix-closed non-empty trace structures only, union has < 0, { £} > 
as identity. 
□ 

PROPERTY 1.1.2.1. Union and weaving are idempotent, i.e. for any R we have 
RIR=R and RIIR=R. 
□ 

PROPERTY 1.1.2.2. (Distribution properties of ; and 1-) 
For any R,S and T we have 

□ 

R;<s1n = (R;s)l<R;n 
(SID;R = (S ;R)l(T;R) 
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PROPERTY 1.1.2.3. (Distribution properties of t .) 
For any R,S,B, and A we have 

□ 

(R ;S) t B = (Rt B);(St B) 

(RIS)t B = (Rt B)l(St B) 

[R]t B = [Rt B] 

(pref R)t B = pref(Rt B) 

R tAt B = Rt(A nB) 

(RIIS) t B = (Rt B)ll(St B) if aR n aS CB. 

PROPERTY 1.1.2.4. (Distribution properties of pref.) 

pref(RIS) = (pref R)l(pref S) 

pref (R ;S) = pref (R ;(pref S)). 

□ 

11 

PROPERTY 1.1.2.5. A weave of non-empty prefix-closed trace structures is non­
empty and prefix-closed 

□ 

PROPERTY 1.1.2.6. For any R. S, A, and B with aR naS CB and A CaR we 
have 

(RIIS)tA = (Rll(St B))tA. 

PROOF. We observe 

(RIIS)tA 

= {Prop. 1.1.2.3, calc.} 

(RIIS)t(A UB)tA 

= {Prop. 1.1.2.3, aR naS CB} 

((Rt(A UB)) II (St(A UB)))tA 

= {def. of projection} 

((Rt(A UB)) II (StaSt(A UB)))tA 

= {aRnaScB /\ A CaR, Prop. 1.1.2.3., calc.} 

((Rt(A UB)) II (St Bt(A UB)))t A 

= {Prop. 1.1.2.3, aR naS CB, calc.} 
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□ 

(Rll(St B))t(A UB)tA 

= {Prop. 1.1.2.3, calc.} 

(R ll(St B)) t A. 

Trace Theory 

PROPERTY 1.1.2.7. Let the trace structures Rk, O~k<n, satisfy 
a(Rk)na(Rl)~B for k=,=l I\ O~k,l<n. We have 

(Ilk: O~k<n: Rk)t B = (Ilk: O~k<n: (Rk)t B). 

□ 

Property 1.1.2.7 is a generalization of the last law of property 1.1.2.3. 

1.1.3. Commands and state graphs 

A trace structure is called a regular trace structure if its trace set is a regular 
set, i.e. a set generated by some regular expression. A command is a notation 
similar to regular expressions for representing a regular trace structure. 

Let U be a sufficiently large set of symbols. The characters b, with b E U, t:, 

and 0 are called atomic commands. They represent the atomic trace structures 
<{b},{b}>, <0,{t:}>, and <0,0> respectively. Every atomic command 
and every expression for a trace structure constructed from the atomic com­
mands and operations defined in Section 1.1.1 is called a command. In this 
expression parentheses are allowed. For example, the expression (a llb );c is a 
command and represents the trace structure < { a, b, c}, { abc, bac} >. 

NOTATIONAL CONVENTION. In the following, commands are denoted by the 
capital Es. The alphabet and the trace set of the trace structure represented 
by command E are denoted by aE and tE respectively. In order to save on 
parentheses, we stipulate the following priority rules for the operations just 
defined. Unary operators have highest priority. Of the binary operators in 
Section 1.1.1, weaving has highest priority, then concatenation, then union, 
and finally projection. 
□ 

PROPERTY 1.1.3.0. Every command represents a regular trace structure. 

□ 

A command of the form pref(E), where Eis an atomic command different 
from 0, or E is constructed from atomic commands different from 0 and the 
operations concatenation (;), union (I), or repetition ([ ]) is called a sequential 
command 
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PROPERTY 1.1.3.1. Every sequential command represents a prefix-closed non­
empty regular trace structure. 

□ 

Syntactically different commands can express the same trace structure. We 
have, for example, 

pref[a ;c] 11 pref[b ;c ] = pref[allb ;c ] 

pref[a;c] II pref[c ;b] = pref(a ;c;[allb;c]). 

In this thesis, every directed graph of which the arcs are labelled with non­
empty trace structures or commands and that has one node denoting the initial 
state is called a state graph. The nodes are called the states of the state graph 
and are usually labelled with lower-case ifs. The initial state is denoted by an 
encircled node. An example of a state graph is given in Figure 1. 1.0. 

c;d 

c;dcG)~•q, 
q~ 

a;b 

FIGURE 1.1.0. A state graph. 

With each state graph we associate a trace structure in the following way. 
Let the state transition from state q; to state qj be labelled with non-empty 
trace structure S.i.j, 0~i,j <n. If there is no state transition between state q; 
and state qj then S.i.j = < 0, 0 >. State q0 is the initial state. The trace struc­
ture that corresponds to this state graph is given by pref <B,X>, where 

B = (Ui,j: 0~i,J<n : a(_S.i.J)) and 

X = {tit is a finite concatenation of traces of successive trace 

structures in the state graph starting in q O } • 

More precisely, let the trace structures Rk.i, 0~k I\ 0~i <n, be defined by 

R 0.i = <B, {t}>, and 

R (k + l).i = (IJ: 0~j <n: S.i.j ;Rk.j), for all i, 0~i <n. 

The trace structure corresponding to the state graph is defined by 

pref(jk: k~0: Rk. 0). 

Notice that t(Rk.i) contains all traces of concatenations of k successive trace 



14 Trace Theory 

structures in the state graph starting in state q;. The trace structure 
corresponding to the state graph of Figure 1.1.0, for example, can be 
represented by pref[c ;d I a ;b ;c ;d]. 

Above we defined for each state graph the trace structure that corresponds 
to this state graph. For a given structure we can also construct a specific state 
graph in which the states of the state graph match the states of the trace struc­
ture. For this purpose, we first define the states of a trace structure. 

For a trace structure R we define the relation ~Ron traces of tpref R by 

t~Rs = (Ar :: trEtR _srEtR). 

The relation ~ R is an equivalence relation and the equivalence classes are 
called the states of trace structure R. The state containing t is denoted by [t]. 
For example, for R=pref[allb;c] the states are given by [d, [a], [b], and 
[ab]. In this thesis we keep to prefix-closed non-empty trace structures. Every 
state of these trace structures is also a so-called final state. 

The relation ~ R is also a right congruence, i.e. for all r, s, and t with 
trEtpref Rand srEtpref R we have 

s~Rt ~ sr~Rtr. 

Because ~ R is a congruence relation, we can represent a trace structure by a 
state graph in which the nodes are labelled with the states of R and the arcs 
are labelled with the atomic commands of the symbols of R. There is an arc 
labelled x, with x EaR, from state [t] to state [r] of Riff [tx] = [rl The state 
graph obtained in this way for trace structure R = pref[a lib ;c] is given in Fig­
ure 1.1.1 . 

[b] 

FIGURE 1.1.1. State graph for pref[a llb;c]. 
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1.2. TAIL RECURSION 

1.2.0. Introduction 
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From formal language theory we know that every finite state machine can be 
represented by a regular expression, and thus also by a command. In the 
language of commands that we have defined thus far, finite state machines can­
not always be expressed as succinctly as we would like. This is one of the rea­
sons to introduce tail recursion. We show that there is a simple correspon­
dence between a finite state machine and a tail-recursive expression. More­
over, tail recursion can be used conveniently to prove properties about pro­
grams by means of fixpoint induction. 

In the following sections, we first convey the idea of tail recursion by means 
of an introductory example. Then we briefly summarize some results of lattice 
theory. In the subsequent sections these results are used to define the semantics 
of tail recursion. We conclude by extending our command language with tail 
recursion. 

1.2.1. An introductory example 

Consider the finite state machine given by the state graph of Figure 1.2.0. 

FIGURE 1.2.0. A state graph. 

The states of this state graph are labeled with q 0, q 1, q 2, and q 3, where q 0 is 
the initial state. The state transitions are labeled with the non-empty com­
mands E 0, E 1, E 2, E 3, and E 4. With this state graph the trace structure 
pref <B,X> is associated, where 

B = aE0UaE 1 UaE2UaE3UaE4 and 

X = {ti t is a finite concatenation of traces of 

successive commands in the state graph starting in q0} 

Possible commands representing this trace structure are 

pref(E0;E l;[(E2 I E3;E0);E l];E 4) and 
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pref(EO;[E l;(E2 I E3;E0)];E l;E4). 

The trace structure pref <B,X> can also be expressed as a least fixpoint of 
a so-called tail function. The tail function tailf corresponding to the state 
graph of Figure 1.2.0 is defined on a vector R(i: O~i <n) of prefix-closed 
non-empty trace structures with alphabet B by 

tailf.R O = pref(EO;R. I) 

tailf.R 1 = pref(E l;R. 2) 

tailf.R2 = pref(E2;R IIE3;R.OIE4;R4) 

tailf.R 3 = pref (R. 3). 

(Recall that functional application is denoted by a period. The period has 
highest priority of all binary operations and is left-associative.) The least 
fixpoint of this tail function exists and is denoted by µ.tailf. This fixpoint is a 
vector of trace structures for which component O satisfies 

µ.tailf.O = pref <B,X>. 

We prove this in Section 1.2.4. 
Since the tail function tailf is defined by commands, we call µ.tailf. 0 a com­

mand as well. The conditions under which µ.tailf. 0 is called a command, for 
an arbitrary tail function tailf, are given Section 1.2.5. 

In the above we have given three commands for pref <B,X>, i.e. two 
without tail recursion and one with tail recursion. Notice that in the two com­
mands without tail recursion E O and E 1 occur twice, while in the tail function 
tailf, with which the third command µ.tailf. 0 is given, each command of the 
state graph occurs exactly once. 

1.2.2. Lattice theory 

The following definitions and theorems summarize some results from lattice 
theory. No proofs are given. For a more thorough introduction to lattice 
theory we refer to [O]. 

Let (L, ~) be a partially ordered set and V a subset of L. Element R of L is 
called the greatest lower bound of V, denoted by ( n S: SE V: S), if 

(AS: SE V: R ~S) /\ (AT: TEL I\ (AS: SE V: T~S) : T~R). 

Element R of L called the least upper bound of V, denoted by (LJS: SE V: S), 
if 

(AS:SEV:S~R) /\ (AT:TEL /\ (AS:SEV:S~T): R~T). 

We call (L, ~) a complete lattice if each subset of L has a greatest lower bound 
and a least upper bound. A complete lattice has a least element, denoted by 
..l, for which we have ..l =(UR: RE 0: R). 
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A sequence R(k: k ;;;;,,Q) of elements of L is called an ascending chain if 
(Ale k;;;;,,O: R.k~R. (k + 1)). 

Let f be a function from L to L. An element R of L is called a fixpoint off 
if f.R =R . The function/ is called upward continuous if for each ascending 
chain R(k: k;;;;,,O) in L we have 

/ .(Uk: k;;;;,,O: R.k) = (uk: k;;;;,,O:f. (R.k)). 

The function .f, k ;;;;,,o, from L to L is defined by 

f.R = R and.f +1.R=f(f.R) for k;;;;,,O and REL. 

A predicate P defined on L is called inductive, if for each ascending chain 
R(k: k;;;;,,O) in L we have 

(Ak: k;;;;,,O: P(R.k)) ~ P(uk: k;;;;,,O: R.k). 

THEOREM 1.2.2.0. (Knaster-Tarski) 
An upward continuous function f defined on a complete lattice (L, ~) with least 
element ..l has a leastfixpoint, denoted by µ..f, and µ..f= (Uk: k;;;;,,O:.f . ..L). 
□ 

THEOREM 1.2.2.1. (Fix.point induction) 
Let f be an upward continuous function on the complete lattice (L, ~) with least 
element ..l. If P is an inductive predicate defined on L for which P ( .l) holds 
and P (R) ~ P(J.R) for any R EL, i.e. f maintains P, then P(JJ. /) holds. 

□ 

1.2.3. Tail functions 

We call a function, tailf say, a tail function if it is defined by 

tailf.R.i = pref([j: O~j <n: S.i.j;R.j) 

for vectors R(i:O~i<n) of trace structures, where S(i,j:O~i,j<n) is a matrix 
of trace structures. Consequently, a tail function is uniquely determined by the 
matrix S(i,j: O~i,j <n) of trace structures. Let this matrix S be fixed for the 
next sections and let A =(Ui,j: O~i,j<n: a(_S.i.J)). 

We define ~(A) as the set of all vectors R(i:O~i<n) of prefix-closed non­
empty trace structures with alphabet A. For elements R and T of ~(A) we 
define the partial order ~ by 

R~T = (Ai :O~i<n: t(R.i)<.:t(T.i)). 

Furthermore we define the vector .ln(A) by 

..ln(A).i = <A,{£}>, for all i, O~i<n. 



18 Trace Theory 

THEOREM 1.2.3.0. ('!i"(A),~) is a complete lattice with least element ..Ln(A). 

PROOF. For each non-empty subset Vof '!i"(A) we have 

(UR:REV:R).i = (IR : REV:R.i) 

(nR:REV:R).i = <A,(nR:REV:t(R.i))>, 

for O~i <n. For V = 0 we have 

(UR: RE 0: R) = ..Ln(A) and 

(nR:RE0:R).i = <A,A*>, foralli, O~i<n. 

D 

By definition, the function tailf is defined on '!i"(A). Furthermore, we define 
condition PO by 

PO: (Ai: O~i <n: (EJ: O~J<n: t(S.i.J) ::,6:0)). 

We have 

THEOREM 1.2.3.1. ut PO hold. The function tailf is a function from '!i"(A) to 
'!i" (A) and is upward continuous. 

PROOF. From the definition of tailf and PO follows that tailj.RE'!i"(A), for 
any RE'!i"(A). 

Let R(k:k;;;a,O) be an ascending chain of elements from '!i"(A). We observe 
for all i, O~i <n, 

tai/f.(Uk: k;;;a,O: R.k).i 

= {def. tailf} 

pref(I/: O~J<n: S.i.J;(LJk: k;;;a,O: R.k).J) 

= {def. LJ} 

pref(I/: O~J<n: S.i.J;(lk: k;;;a,O: R.k.J)) 

= { distribution Prop. 1.1.2.2} 

pref(lk,j: O~J<n I\ k;;;a,O: S.i.J;R.k.J) 

= { distribution Prop. 1.1.2.4} 

(lk: k;;;a,O: pref(I/ : O~j<n: S.i.J;R.k.J)) 

= {def. tailf} 

(lk: k;;;a,O: tailf.(R.k).i) 

= {def. LJ} 

(Uk: k;;;a,O: tailj.(R.k)).i. 
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Consequently, tai/f.(LJk: k~O: R.k)=(Uk: k~O: tai/f.(R.k)). 

(Notice that in the above proof we did not use the property that the chain 
R(k: k~O) was ascending.) 

□ 

1.2.4. Least fixpoints of tail functions 

From Theorems 1.2.2.0, 1.2.3.0, and 1.2.3.1 we derive 

THEOREM 1.2.4.0. If PO holds, then tailf has a least fixpoint, denoted by µ.tai/f, 
and 

µ.tailf = (Uk: k~O: tai!f'. l.n(A)). 

□ 

The least fixpoint µ.tailf can be related to the trace structure corresponding 
to a state graph as follows. Consider a state graph with n states q;, O..;;i<n. If 
t(S.i.J)=I= 0, then there is a state transition from state q; to state q1 labeled 
S.i.j. Let the trace structures R.k.i for O..;;i<n A k~O be defined by 

R. O.i = <A,{£}>, and 

R. (k + l).i = ([j: O..;;J <n: S.i.j ;R.k.J) for all i, O~i <n. 

In other words, tpref(R.k.i) is the prefix-closure of all trace structures that can 
be formed by concatenating k successive trace structures starting from state q;. 
The trace structure corresponding to the state graph is defined by 
pref(ik: k~O: R.k. 0). We prove that µ.tai/f.i =pref(lk: k~O: R.k.i), i.e. 
µ.tailf.i is the prefix-closure of all finite concatenations of successive trace 
structures starting in state qi. 

THEOREM 1.2.4.1. Let PO hold For all i, O~i<n, 

µ.tailf.i = pref(lk: k~O: R.k.i). 

PROOF. By Theorem 1.2.4.0 we infer that µ.tailf exists and can be written as 
(Uk : k~O: tai!f'. l.n(A)). 

We first prove that tai!f'.l.n(A).i=pref(R.k.i), O..;;i<n, by induction to k. 

Base. Fork =Owe have by definition 

tai!f°.l.n(A).i = <A,{£}>, O~i<n. 



20 

Step. We observe for O~i<n, 

tai!f + 1• l..n(A ).i 

= {def. of tai!f + 1 } 

tailf. (taiif".l..n(A)).i 

= {def. of tai/f} 

pref(I/: O~J<n: S.i.j ;taiif". l..n(A).J) 

= { induction hypothesis for k} 

pref(I/: O~j <n: S.i.J; pref(R.k.J)) 

= { distribution Prop. 1.1.2.4} 

pref(I/: O~J<n: S.i.J;R.k.J) 

= {def.R.(k+l).i} 

pref(R. (k + 1).i) . 

Subsequently, we derive for all i, O~i <n, 

µ.tailf.i 

□ 

= {Theorem 1.2.4.0} 

(U: k~O: taiif". l..n(A)).i 

= {def. u} 

(lk: k ~O: taiif". l..n(A ).i) 

= { see above} 

(lk: k~O: pref(R.k.i)) 

= { distribution Prop. 1.1.2.4} 

pref(lk: k~O: R.k.i). 

1.2.5. Commands extended 

Trace Theory 

We extend the definition of commands with tail recursion. We stipulate that a 
tail function can also be specified by a matrix E(i,j: O~i,j <n) of commands. 
When we write such a tail function, as we did in Section 1.2.1, we adopt the 
convention to omit alternatives 0 ;R. J and to abbreviate alternatives £.;R.j to 
R.j, for O~J<n. The condition PO is now formulated by 

P 1: (Ai: O~i<n: (EJ: O~J<n: tf..E.i.J) =I= 0)). 
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Every atomic command and every expression for a trace structure constructed 
with atomic commands and operations defined in Section I. 1.1 or tail recur­
sion, i.e. with µ..tailf. 0 where P 1 holds for tailf, is called an extended command. 

If a tail function tailfis defined by a matrix E(i,j:0~i,J<n) of commands 
for which P 1 holds, and the commands of this matrix E are constructed with 
the operations concatenations (;), union (I), or repetition ([ ]) and the atomic 
commands, then we call µ..tailf.i, 0~i <n, an extended sequential command. 
Every sequential command is also an extended sequential command. With these 
definitions of extended commands Property 1.1.3.0 and 1.1.3.1 also hold, i.e. 
we have 

PROPERTY 1.2.5.0. Every extended command represents a regular trace structure. 
D 

PROPERTY 1.2.5.1. Every extended sequential command represents a prefix-closed 
non-empty regular trace structure. 
D 

Whenever in the remainder of this thesis we refer to commands or sequential 
commands we mean from now on extended commands or extended sequential 
commands respectively. 

In the following, we also adopt the convention to define a tail function 
corresponding to a state graph in such a way that µ..tailf. 0 represents the trace 
structure associated with this state graph. 

REMARK. For later purposes, we remark that every prefix-closed non-empty 
regular trace structure R can also be represented by a sequential command, 
even when the alphabet is larger than the set of symbols that occur in the trace 
set. To construct this command we first take a finite state machine that 
represents the regular trace set. Then we add state transitions and states that 
are unreachable from the initial state. We label these state transitions with 
symbols that occur in the alphabet but do not occur in the trace set. The tail 
function corresponding to this finite state machine satisfies µ..tailf.0=R. For 
example, the trace structure < {a}, { t:} > can be represented by µ..tailf. 0, where 

D 

tailf.R. 0 = pref (R. 0) 

tailf.R. 1 = pref(a ;R. 0). 
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1.3. ExAMl>LES 

The following examples illustrate that a trace structure can be expressed by 
many syntactically different commands. Sometimes a command can be rewrit­
ten, using rules from a calculus, into a different command that represents the 
same trace structure. Sometimes more complicated techniques are necessary to 
show that two commands express the same trace structure. For both cases we 
give examples. The freedom in manipulating the syntax of commands will 
become important later for two reasons. First, we will then be interested in 
trace structures that satisfy properties which can be verified syntactically and, 
second, in Chapters 5 and 6 we present a translation method for commands 
which is syntax-directed. Accordingly, by manipulating the syntax of a com­
mand we can influence the result of the syntactical check and the translation 
in a way that suits our purposes best. 

ExAMPLE 1.3.0. Every sequential command can be rewritten into the form 
JLlailf. 0, where the tail function tailf is defined with atomic commands only. 
For example, the command pref (a ;[b ;(c I d;e )];f) can be rewritten into 
JLlailf. 0, where 

□ 

tailf.R O = pref(a ;R 1) 

tailf.R 1 = pref (b ;R. 2 lf;R 4) 

tailf.R 2 = pref(c ;R. l I d;R. 3) 

tailf.R 3 = pref(e ;R 1) 

tailf.R 4 = pref (R 4). 

ExAMPLE 1.3.1. The trace structure countn(a,b ), n >0, is specified by 

<{a,b }, {tE{a,b }°I (Ar,s: t=rs: O~rNa-rNb~n)}>, 

where sNx denotes the number of x's ins. Symbol a can be interpreted as an 
increment and symbol b as a decrement for a counter. The value tNa - tNb 
denotes the count of this counter after trace t. Any trace of a's and b's for 
which the count stays within the bounds 0 and n is a trace of countn(a,b ). 

There exist many commands for countn(a,b). For n = 1, we have 
countn(a,b)=pref[a;b]. For n~l, we give three equations from which a 
number of commands for countn(a,b) can be derived 

(i) countn(a,b) = JLlailf,,.O, 

where tailf,,.R 0 = pref(a ;R 1) 

tailf,,.R.i = pref(a ;R (i + 1) I b;R. (i -1)), for O<i <n, 

tailf,,.Rn = pref(b ;R (n -1)). 
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(ii) countn+ 1(a,b) = pref[a;x] II countn(x,b) t{a,b}. 

(iii) count2n+ 1(a,b) = pref[(a ly;b);(x;a I b)] II countn(x,y) t{a,b}. 

Techniques to prove these equations can be found in [36, 42, 20, 11 ]. As far as 
we know there are no simple transformations from one equation to the other. 

With the first equation we can express countn(a,b) by a sequential command 
of length e(n). With (ii) we can express countn(a,b) by a weave of n sequential 
commands of constant length. With (iii), however, we can express countn(a,b) 
by a weave of e(log n) sequential commands of constant length. 

□ 

ExAMPLE 1.3.2. Ann-place I-bit buffer, denoted by bbuf,,(a,b) is specified by 

<{aO,a l,bO,b l} 

,{ti (Ar,s: rs =t: O~rN{aO,a 1 }-rN{bO,b 1 }~n 

/\ rt{b0,bl}~rt{a0,al} )} 

>, 
where s ~ t denotes that s is a prefix of t apart from a renaming of b into a. 
For bbuJJ(a,b) we have 

bbu!J(a,b) = ( pref[a0;x0 I a l;x 1] 

II pref[x0,y0 Ix l;y 1] 

II pref[y0;b0 I y l;b I] 

)t {aO,a l,bO,b 1 }. 

A proof for this equation can be found in [11]. 

□ 

REMARK. It has been argued in [14] that regular expressions would be incon­
venient for expressing counter-like components such as counters and buffers. 
As we have seen, the extension of regular expressions with a weave operator 
and projection effectively eliminates any such inconveniences. 

□ 
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2.0. INTRODUCTION 

Chapter 2 

Specifying Components 

This chapter adresses the specification of components, which may be viewed as 
abstractions of circuits. Components are specified by prefix-closed, non-empty 
directed trace structures. In this thesis we shall keep to regular components, i.e. 
to regular directed trace structures. In a directed trace structure four types of 
symbols are distinghuished: inputs, outputs, internal symbols of the component, 
and internal symbols of the environment. In Section 2.1 we define directed trace 
structures and generalize the results of the previous chapter. Directed trace 
structures can be represented by directed commands. In Section 2.2 we explain 
how a directed trace structure prescribes all possible communication behaviors 
between a component and its environment at their mutual boundary. A 
number of basic components are then specified by means of directed com­
mands. Section 2.3 contains a number of examples of specifications that will 
be used in later chapters. 

2.1. DIRECTED TRACE STRUCTURES AND COMMANDS 

A directed trace structure is a quintuple <BO,Bl,B2,B3,X>, where BO, Bl, 
B 2, and B 3 are sets of symbols and X <;;;;,(BOU B 1 U B 2 U B 3)°. For a directed 
trace structure R = <BO,B l,B2,B 3,X> we give below the names and nota­
tions for the various alphabets and the trace set of R. 
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set 
BO 
Bl 
B2 
B3 
BOUBl 
B2UB3 
BOUB1UB2UB3 
X 

name 
input alphabet of R 
output alphabet of R 
environment's internal alphabet of R 
component's internal alphabet of R 
external alphabet of R 
internal alphabet of R 
alphabet of R 
trace set of R 

notation 
iR 
oR 
enR 
coR 
extR 
intR 
aR 
tR 
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The operations defined on (undirected) trace structures are extended to 
directed trace structures as follows. For the input alphabet we have 

i(R ;S) = iR UiS 

i(RJS) = iR UiS 

i[R] = iR 

iprefR = iR 

i(RtA) = iR nA 

i(R IIS) = iR u iS. 

The other alphabets are defined similarly. The definitions for the trace sets 
remain the same as in Section 1.1.1. All properties of Section 1.1.2 are also 
valid for directed trace structures, where < 0 , 0 > and < 0, { £} > are 
replaced by < 0, 0, 0, 0, 0 > and < 0, 0, 0, 0, { £} > respectively. 

For a tail function tai!fdefined by matrix S(i,j:O~i,j<n) of directed trace 
structures we define A 0, A 1, A 2 and A 3 by 

AO = (Ui,j: O~i,j<n: i(S.i.J)) 

A 1 = (Ui,j: O~i,j~n: o(S.i.J)) 

A 2 = (Ui,j: O~i,j<n: en(S.i.J)) 

A 3 = (Ui,j: O~i,j<n: co(S.i.J)). 

Let ':Y'(A O,A 1,A 2,A 3) be the set of all prefix-closed non-empty directed trace 
structures R, with iR =A 0, oR =A 1, enR =A 2, and coR =A 3. By definition, 
the function tai!f is defined on ':Y'(A O,A l,A 2,A 3). All results of Sections 1.2.3 
and 1.2.4, with the appropriate replacements, hold for directed trace structures 
as well. 

Directed commands are defined similar to (undirected) commands, with one 
exception for projection. There are six types of directed atomic commands; 
they are listed below together with the directed trace structure they represent. 
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directed atomic command 
b? 
b! 
?b! 
!b? 

£ 

0 

Specifying Components 

directed trace structure 
<{b},0,0,0,{b}> 
<0,{b},0,0,{b}> 
<0,0,{b},0,{b}> 
<0,0,0,{b},{b}> 
<0,0,0,0,{£}> 
<0,0,0,0,0>, 

Here b E U, and U is a sufficiently large set of symbols. Every directed atomic 
command and every expression for a directed trace structure constructed from 
directed atomic commands and the operations concatenation (;), union (I), 
repetition ([ ]), prefix-closure (pref), weaving (II), or tail recursion (p..tailf. 0, 
where P 1 holds for tai/f) is called a directed command. In a directed command 
parentheses are allowed. Any directed command of the form pref(£) where E 
is a directed atomic command different from 0, or E is constructed with the 
operations concatenation (;), union (I), or repetition ([ ]) and directed atomic 
commands different from 0 is called a directed sequential command. If a tail 
function tailfis defined by matrix E(i,j:O~i,J<n) of directed commands, for 
which P 1 holds, and if every directed command in this matrix E is a directed 
atomic command or is constructed with the operations concatenation (;), union 
(I), or repetition ([ ]) and directed atomic commands, then µ.tailf.i, O~i <n, is 
also called a directed sequential command. 

Projection is used as follows in directed commands. If E is a directed com­
mand representing the directed trace structure R, then Et is a directed com­
mand representing the directed trace structure Rt extR. For example, we have 

( pref[a ?; !x ?;b !] 

11 pref[c?;!x?;d!] 

)t 

= pref (a ?llc?;[(b ! ;a?)ll(d ! ;c?)]), 

where = denotes equality of directed trace structures. 

2.2. SPECIFICATIONS 

2.2.0. Introduction 

A component is specified by a prefix-closed, non-empty, directed trace struc­
ture R with intR = 0 and iR noR = 0. The external alphabet of R contains 
all terminals of the component by which it can communicate with the environ­
ment. A communication action at a terminal is represented by the name of 
that terminal. The trace set R contains all communication behaviors that may 
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take place between the component and its environment. 
A communication behavior evolves by the production of communication 

actions. A communication action may be produced either by the component or 
by the environment. The sets iR, oR, and tR specify when which communica­
tion action may be produced and by whom. Let the current communication 
behavior be given by the trace t EtR, and let tb EtR, i.e. b E Sue (t,R). If 
b EiR, then the environment may produce a next communication action b; if 
bEoR, then the component may produce a next communication action b. 
These are also the only rules for the production of inputs and outputs for 
environment and component respectively. 

Because the directed trace structure R specifies the behavior of both com­
ponent and its environment, we speak of component R and environment R. 
The role of component and environment can be interchanged by reflecting R: 

DEFINITION 2.2.0.1. The reflection of R, denoted by R, is defined by 

R = <oR, iR, coR, enR, tR>. 

□ 

Operationally speaking, each external symbol b of R corresponds to a termi­
nal of a circuit, and each occurrence of b in a trace of R corresponds to a vol­
tage transition at that terminal. By convention we shall assume in this thesis 
that initially the voltage levels at the terminals are low, unless stated otherwise. 
The set of terminals constitutes the boundary between circuit and environment, 
which, for most components, is considered to be fixed. In the next chapter we 
discuss a special class of components, the so-called DI components, whose 
boundaries may be considered to be flexible. 

In the following subsections, a number of components are specified by 
directed commands. For each of these components we also give a pictorial 
representation, called a schematic. 

2.2.1. WIRE components 

There are two WIRE components. The specifications and schematics of these 
components are given in Figure 2.0. 

pref[a ?;b !] 

pref[b !;a?] 

a?•.-----~•~ b! 

a? ••----1D►--1•• b ! 

FIGURE 2.2.0. Two WIRE components. 

A WIRE component describes the transmission of a signal from terminal to 
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terminal, i.e. from boundary to boundary. We consider the boundaries of 
WIRE components to be flexible. All other components are considered to have 
a fixed boundary (for the time being). 

Notice that both WIRE components have the same behavior except for a 
difference in initial states. For the WIRE component pref[a?;b !] the environ­
ment initially produces a transition. For the WIRE component pref[b !;a?] ini­
tially the component produces a transition. This difference in initial states ( or 
the production of initial transitions) is depicted by an open arrow head in a 
schematic. We shall use this convention also in some of the following 
schematics. The components are, apart from a renaming, each other's 
reflection. 

Operationally speaking, a WIRE component corresponds to a physical wire. 
Notice that there is always at most one transition propagating along this wire 
according to our interpretation of a specification. 

2.2.2. CEL components 

A k-CEL component, k >0, is specified by 

(Iii: O~i <k: E.i), where 

either E.i = pref[a.i?;b !] or E.i = pref(b !;a.i?], O~i <n. 

Notice that fork= 1 a k-CEL component boils down to a WIRE component. 
A specification and schematic of a 4-CEL component are given in Figure 2.2.1. 

pref[b!;a. O?] a. O? .,_--c::>---.. 

II pref[a. I?;b !] a. I?..,.... ___ _; 

11 pref[b !;a. 2?] a. 2? ..,_--c>--~ 

II pref[a. 3?;b !] a. 3? ..,.... __ ___, 

FIGURE 2.2.1. A CEL component. 

Notice that here we have drawn open arrow heads on the inputs a. 0 and a. 2 
of the CEL component denoting that initially a transition has already occurred 
on these inputs. 

Schematics for other k-CEL components, k > 1, are given similarly. A CEL 
component performs the primitive operation of synchronization. It can be 
represented by several directed commands: recall that 

pref[a?;c !] II pref[b?;c !] = pref[a ?llb?;c!] 

pref[a?;c!] II pref[c!;b?] = pref(a?;c!;[a?llb?;c!]). 
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REMARK. The CEL components are generalizations of the Muller C-element 
named after D.E. Muller [32). 

□ 

2.2.3. RCEL and NCEL components 

The specification and schematic of the RCEL component with 2 replicated 
inputs are given in Figure 2.2.2. 

pref [ ( a ?;d !)2 

I (b?;e!)2 

I (a ?;d ! lie !)2 II (b ?;e ! lie !)2 

1 

J------t~ C ! 
b? .,_ _ __,,,.,.__.......,__~ e ! 

FIGURE 2.2.2. An RCEL component. 

Here, E 2 denotes E ;E. The specification of the RCEL component with one 
replicated input is given by pref[(a?;d!)2 I (a?;d!llc!}2ll(b?;c!}2] and depicted 
similarly. 

The specification and schematic of the NCEL component is given in Figure 
2.2.3. 

pref[(a?)2 I (b?)2 I (a?llb?;c!}2] 

b?---J 
FIGURE 2.2.3. An NCEL component. 

A component specified by pref[(b?)2 I (a?llb?;c!}2] is also called an NCEL 
component and depicted analogously. (The letter N originates from the pro­
perty that an NCEL component is not a DI component, as we will see later.) 

2.2.4. FORK components 

The k-FORK components, k >0, are specified by the reflections of the k-CEL 
components. A specification and schematic of a 4-FORK component are given 
in Figure 2.2.4. 
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pref[a?;b. O!] 

11 pref[b. l!;a?] 

II pref[a ?;b. 2!] 

11 pref[b. 3!;a?] 
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-------1~b.O! 

.,,,.--C>---i~ b. l ! 
a? ... ----tai:::::.__ ______ _. b. 2! 

'-----1=>--t► b. 3 ! 
FIGURE 2.2.4. A FORK component. 

Schematics for other k-FORK components, k > l , are given similarly. A 
FORK component performs the primitive operation of duplication. 

2.2.5. XOR components 

A k-XOR component, k >0, is specified by 

(i) pref[E] or (ii) pref(b!;[E]), 

where E = (Ji: O,s;;;i <k: a.i?;b !). 

Notice that I-XOR components are WIRE components. In Figure 2.2.5 the 
two schematics for the two 4-XOR components are given. 

a.O?~ 
a. I? D--- 1 

2? b. a. . 

a. 3? 

: ~;.~~ I 
a.2? ~b. 

a. 3? 

FIGURE 2.2.5. Two 4-XOR components. 

Schematics for other k-XOR components, k > 1, are depicted similarly. 

2.2.6. TOGGLE component 

The specification and schematic of the TOGGLE component are depicted in 
Figure 2.2.6. 
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pref[a ?;b ! ;a ?;c !] 

FIGURE 2.2.6. The TOGGLE component. 

The TOGGLE component determines the parity of the input occurrences. 

2.2. 7. SEQ components 

A k-SEQ component, k>O, is specified by 

(Iii: O~i <k: pref[a.i?;p.i !]) 

II pref[n? ;(Ii: O~i <k: p.i !)]. 
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The specification and schematic of a 2-SEQ component are shown in Figure 
2.2.7. 

pref[a?;p !] 

11 pref[b?;q !] 

11 pref[n ?;(p !jq!)] 

a?~p! 

b?-y--q! 

n? 

FIGURE 2.2.7. The 2-SEQ component. 

Schematics fork-SEQ components, with k >2, are depicted similarly. Notice 
that a I-SEQ component is a 2-CEL component. 

For a k-SEQ component, k >0, we use the following terminology. Output 
p.i, O~i <k, is called the grant of request a.i. We say that a request a.i, 
O~i <k, is pending after trace t if tNa.i - tNp.i. = l. (Recall that tNx denotes 
the number of x's in trace t.) A SEQ component grants one request for each 
occurrence of input n. We also say that the SEQ component sequences the 
grants. In sequencing the grants it may have to arbitrate among several pend­
ing requests. 
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2.2.8. ARB components 

The specification and schematic of a 2-ARB component is given in Figure 
2.2.8. 

pref[a l?;p l!;aO?;p0!] 

II pref[b l?;q l!;b0?;q0!] 

11 pref[p l!;a0? I q l!;b0?] 

aO? 

a 1? 

b 1? 

bO? 

r---,...-•P 0! 
t--~pl! 

1-----41► q 1 ! 

i--_. q0! --
FIGURE 2.2.8. The 2-ARB component. 

The 2-ARB component performs an operation similar to the 2-SEQ com­
ponent, though it has a slightly more complicated communication protocol. 
The following names can be associated with the symbols 

a 1? request p 1! grant 

a 0? release p 0! confirm of release, 

and similarly for the b and q symbols. 
Generalizing the 2-ARB component to k-ARB components, k >0, is done 

similarly to the k-SEQ components. 

2.2.9. SINK, SOURCE, and EMPTY components 

Specifications for the SINK and SOURCE components are given in Figure 
2.2.9. 

pref(a ?) 

< 0,{a}, 0, 0,{£}> 

pref(a !) 

□""',......_ __ ,.,. a? 

0~-----t•• a! 

FIGURE 2.2.9. A SINK and two SOURCE components. 

A SINK component has only one input terminal and can accept at most one 
transition at this terminal. A SOURCE component has only one output termi­
nal and either does not produce any output transition at this terminal or it 
produces only one output transition. In the latter case, it is called an active 
SOURCE component. In the former case, it is called a passive SOURCE com­
ponent. (Later, dangling inputs or outputs are connected to SOURCE or 
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SINK components, respectively.) 
The component represented by the command £ is called the EMPTY com­

ponent. 

2.3. ExAMPLES 

2.3.0. A conjunction component 

Consider the component specified by the command 

pref[a0?llb0?;c0! I a0?llb l?;c0! I a l?llb0?;c0! I a l?llb l?;cl!]. 

We call this component a conjunction component for two binary variables, 
here a and b, encoded by a two-rail scheme in a 2-cycle signaling version [40]. A 
two-rail scheme signifies that each binary variable is encoded by two symbols, 
one for each value. For the binary variable a we have the symbols aO and a 1, 
which correspond to two input terminals. A 2-cycle signaling protocol signifies 
that each communication cycle consists of the communication of an input 
value and an output value. A value is communicated by one transition at the 
terminal corresponding to that value. In 4-cycle signaling, each 2-cycle signal­
ing is immediately followed by another 2-cycle signaling of the same values. 
Instead of the alternative a0?llb0?;c0!, we have aO?llb0?;c0!; a0?llb0?;c0!, 
and similarly for the other alternatives. Since after each two voltage transitions 
the voltage has returned to its initial value, which is zero here, one also calls 
4-cycle signaling return-to-zero signaling and 2-cycle signaling nonreturn-to­
zero signaling [40]. 

Components specifying the disjunction, equivalence, negation, or combina­
tions of these logical operators are similarly expressed by commands. Other 
ways of encoding data in delay-insensitive communications are given in [48]. 

2.3.1. A sequence detector 

The specification of the following component demonstrates how a finite state 
machine with inputs and outputs can be specified by a directed command. The 
example is taken from [23]. 

A sequence detector has input alphabet {aO,al} and output alphabet 
{y,n }. The communication behavior of this component is described as follows. 
Inputs and outputs alternate, and if the last four inputs form the sequence 
aOa 1 a 1 aO, output y is produced; otherwise, output n is produced. Initially, 
the sequence detector receives an input. 

The sequence detector can be specified by the state graph of Figure 2.3.0. 
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FIGURE 2.3.0. State graph for the sequence detector. 

Consequently, the directed command for this component can be given by 
µ.tailf. 0, where tailf is defined by 

tailf.R. 0 = pref(aO?;n !;R. 1 I a l?;n !;R. 0) 

tailf.R. 1 = pref(aO?;n !;R. 1 I a l?;n !;R. 2) 

tailf.R. 2 = pref(aO?;n !;R. 1 I a l?;n!;R. 3) 

tailf.R. 3 = pref(aO?;y !;R. 1 I a l?;n !;R. 0). 

2.3.2. A token-ring interface (0) 

Consider a number of machines. For each machine we introduce a component, 
and all components are connected in a ring. Through this ring a so-called 
token is propagated from component to component. The ring-wise connection 
is called a token ring, and the components are called token-ring interfaces. 
Each machine communicates with the token ring through its token-ring inter­
face. 

Token rings can be used for many purposes. They are used, for example, to 
achieve mutual exclusion among machines entering a critical section [25) or to 
detect the termination of a distributed computation [8). For each purpose a 
particular communication protocol is specified for the token-ring interfaces. In 
this and in the next section, we discuss two of these communication protocols, 
and we show how they can be specified by directed commands. 

In order to achieve mutual exclusion among machines entering a critical sec­
tion, the following protocol is described for a token-ring interface. The 
schematic of the token-ring interface is given in Figure 2.3.1. 
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a 1? aO? p 1! pO! 

I l I J 
b? .. I .. q! 

FIGURE 2.3.1. A token-ring interface. 

The communication actions between token-ring interface and machine are 
interpreted as follows. 

a 1? request for the token 

pl! grant of the token 

aO? release of the token 

pO! confirm of release. 

With respect to these actions the protocol satisfies the specification 
pref[a l?;p l!;aO?;pO!]. 

The communication actions between token-ring interface and the rest of the 
token ring are interpreted as follows. 

b? receipt of the token 

q ! sending of the token. 

With respect to these actions the protocol satisfies the specification pref[b?;q !]. 
The synchronization between the two protocols must satisfy the following 

requirements. After each receipt of the token, the token can either be sent on 
to the next token-ring interface or, if there is also a request from the machine, 
the token can be granted to the machine. If the machine releases the token, it 
is sent on to the next token-ring interface. From the definition of weaving and 
the above we infer that the complete communication protocol can be specified 
by the directed command 

pref[a l?;p l!;aO?;pO!] 

II pref[b?;(q ! Ip l!;aO?;q !)]. 
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2.3.3. A token-ring interface (1) 

The following specification for a communication protocol is inspired by [8]. 
We characterize the state of a machine by either black or white. A machine 

can change its color from black to white and vice versa. The token can also be 
black or white. The color of the token can be changed by the token-ring inter­
face from white to black only. We are asked to design a communication pro­
tocol for the token-ring interface that satisfies the following requirements. 
(i) Tokens are transmitted only if the machine is white. 
(ii) A token is transmitted black only if after the previous transmission of a 

token the machine has become black at least once. Otherwise, the token is 
transmitted unchanged. 

For the derivation of a communication protocol we introduce the symbols 
b, w, tb, and tu with the following interpretations. 

b machine changes to black 

w machine changes to white 

tb transmit black token 

tu transmit token unchanged. 

These symbols represent the actual moments of change of color or of transmis­
sion. (Notice that we have not assigned a type to these symbols yet.) Design­
ing a protocol with these symbols only, yields the command 

pref[[tu ];b ;w ;[b ;w ];tb ], 

where we assume that the machine is white initially. Condition (i) is obviously 
satisfied: between equally numbered occurrences of b and w, i.e. when the 
machine is black, symbols tu and tb do not occur. Further, the command 
b ;w ;[b ;w] contains all traces in which the machine has become black (and 
changed to white) at least once. From this observation follows that (ii) is also 
satisfied. 

We use the symbols b, w, tu, and tb to introduce the communication sym­
bols. We introduce one set of symbols for the communication between 
machine and token-ring interface and one set of symbols for the communica­
tion between the rest of the token ring and the token-ring interface. We con­
sider the symbols b, w, tu, and tb as internal symbols of the component. Con­
sequently, the token-ring interface is considered an extension of the machine: 
the change of color of the machine takes place internally in the token-ring 
interface. 

For the communication between the token-ring interface and (the rest of) 
the machine we introduce the symbols 

rb? request to become black 

gb ! machine has become black 
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rw? request to become white 

gw ! machine has become white. 

The protocol with respect to these symbols only and the internal symbols b 
and w is described by 

pref[rb ?; !b ?;gb ! ;rw ?; !w ?;gw !]. 

For the communication between token-ring interface and the rest of the 
token ring we introduce the symbols 

btr? receipt of black token 

wtr? receipt of white token 

bts ! sending of black token 

wts ! sending of white token. 

The protocol with respect to these symbols only and the internal symbols tu an 
tb is specified by 

pref[wtr?;(!tu?;wts! I !tb?;bts!) 

lbtr ?;(!tu ?ptb ?);bts ! 

]. 

The proper synchronization of these protocols is described by their weave. 
Projecting this weave on the external symbols gives the desired protocol, i.e. 

(pref[rb?;!b?;gb !;rw?;!w?;gw !] 

II pref[wtr?;(!tu?;wts ! I !tb?;bts !) 

lbtr?;(!tu?l!tb?);bts ! 

II pref[[!tu?];!b?;!w?;[!b?;!w?]; !tb?] 

) t. 

Finally, we remark that the last sequential command of the above weave can 
also be written as µ.tailf. 0, where tailf is defined by 

tailf.R. 0 = pref(!tu?;R. 0 I !b?;!w?;R. I) 

tailf.R. 1 = pref(!tb?;R. 0 I !b?;!w?;R. I). 

It will tum out that this last sequential command is better suited for the syn­
tactical check to be developed in Chapter 4 and the syntax-directed translation 
of Chapters 5 and 6. 
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2.3.4. The dining philosophers 

A canonical example of a mutual exclusion problem is the paradigm of the 
dining philosophers [6]. In the following we derive a communication protocol 
for the dining philosophers expressed in a command. 

Consider N dining philosophers, N >0, whose lives consist of alternations of 
thinking and eating. The N philosophers are seated at a round table with N 
plates, one for each philosopher. Between any two successive plates lies one 
fork. A philosopher can start eating if he has got hold of both forks lying next 
to his plate. When a philosopher finishes eating, he releases both forks. A 
fork can be occupied by at most one philosopher. We are asked to design a 
communication protocol for the N dining philosophers such that no philoso­
pher is kept from eating unnecessarily, i.e. no deadlock occurs (Notice that if 
all N philosophers pick up their right forks simultaneously, nobody can pick 
up his left fork as well, and thus they may keep each other from eating for­
ever.) 

Let the component with which the N philosophers communicate be called 
TABLE. We design a communication protocol for the component TABLE. 
The communication actions between philosopher i, Q:s;;,_i <N, and TABLE are 
given by 

p.i ! start thinking 

a.i? request to eat, i.e. finish thinking 

q.i ! start eating 

b.i? request to think, i.e. finish eating 

With respect to philosopher i, Q:s;;;_i <N, the protocol satisfies 

PHIL . - f[p"I• "?• ·t·b"?] 1 - pre .1.,a.1 .,q.1., .1 •. 

The synchronization among all N protocols PH/Li, Q:s;;,_i<N, must be such 
that each fork is occupied by at most one philosopher, i.e. no two neighbors 
are eating simultaneously. These restrictions are expressed by the commands · 

FORK.i = pref[q.i !;b.i? I q. (i + l)!;b.(i + I)?], for Q:s;;;_; <N, 

where addition is modulo N. 
The protocols PH/Li and FORK.i, Q:s;;,_i <N, are the only restrictions that 

the communications must satisfy. Consequently, TABLE can be specified by 

TABLE= (lli:0:s;;;_i<N:PH/Li) 

II (Iii: Q:s;;,_i <N: FORK.i). 

Notice that when philosopher i, Q:s;;;_i <N, starts eating, he picks up both forks 
'at the same time', since q.i ! occurs in the commands FORK.(i -1), FORK.i, 
and PH/Li. From this observation it follows that no philosopher is kept from 
eating unnecessarily, i.e. there is no deadlock. 



Chapter 3 

Decomposition and Delay-Insensitivity 

3.0. INTRODUCTION 
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The idea of this thesis is to realize a component by means of a delay­
insensitive connection of basic components. In this chapter we formalize this 
idea by means of three definitions and derive some theorems based on these 
definitions. 

First, we define what we mean by 'a component can be realized by a con­
nection of (other) components'. This is formulated in the definition of decom­
position. Decomposition is defined as a relation holding between the com­
ponent to be decomposed and the components in which it is decomposed. We 
stipulate that a component S. 0 can be decomposed into the components S.i, 
J ,s;;;_; <n, if the connection of components S.i, J ,s;;;_; <n, realizes the prescribed 
behavior of component S. 0, where it is assumed that the environment of this 
connection behaves as specified for environment S. 0. (Recall from Section 
2.2.0 that a directed trace structure prescribes both the behavior of a com­
ponent and its environment.) 

From the definition of decomposition we derive two theorems: the Substitu­
tion Theorem, which enables us to decompose a component in a hierarchical 
way, and the Separation Theorem, which enables us to decompose parts of a 
specification separately. 

The realization of a component by means of a delay-insensitive connection 
of components is formalized by the definition of DI decomposition. We then 
consider connections of components in which corresponding input and output 
terminals are connected by WIRE components. WIRE components introduce, 
operationally speaking, a delay in the communications between the terminals. 
In the definition of DI decomposition it is required that these delays do not 
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influence the functional behavior of the connection. 
In order to link decomposition and DI decomposition we introduce DI com­

ponents. A DI component may be interpreted as a component whose 
specification is valid at a flexible boundary, or, operationally speaking, a DI 
component communicates in a delay-insensitive way with its environment. By 
means of DI components we can formulate the fundamental theorem of this 
chapter: DI decomposition is equivalent to decomposition if all components 
involved are DI components. Because of the theorems that apply for decom­
position, it is easier to work with decompositions than with DI decomposi­
tions. For this reason, we mostly discuss decompositions and DI components 
in the following chapters. 

3.1. DECOMPOSITION 

3.1. 0. The definition 

Below, we first present the definition of decomposition and then give a brief 
motivation for it. 

DEFINITION 3.1.0.0. We say that component S. 0 can be decomposed into com­
ponents S.i, } ,s;;;i <n for a fixed n > 1, denoted by 

S.0 ➔ (i: J,s;;;i<n:S.i), 

if the following conditions are satisfied. 
Let R. 0=S. 0, R.i =S.ifor I,s;;;i<n, and W=(lli: 0,s;;;i<n: R.i). 

(i) (Closed connection) 
( U i: 0,s;;;i <n: o(_R.i)) = ( U i: 0,s;;;i <n: i(R.i)). 

(ii) (No output interference) 
o(_R.i)no(_R.J)= 0 for O,s;;;i,j<n I\ i=pj. 

(iii) (Connection behaves as specified at boundary a(S. 0)) 
tWta(R. 0) = t(R. 0). 

(iv) (Connection is free of computation interference) 

D 

For all traces t, symbols x, and indexes i, 0,s;;;i <n, we have 
tEtW I\ xEo(_R.i) I\ txta(R.i)Et(R.i) ~ txEtW 

NOTATIONAL REMARK. The notation (i: 0,s;;;i <n: S.i) can be interpreted as an 
enumeration of the components S.i, 0,s;;;i <n. Notice, however, that the order 
of this enumeration is not important, as can be deduced from the specification. 
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Instead of, for example, S.0 ➔ (i: l:os;;;;i<4:S.i) we sometimes write 
S. 0 ➔ S. 1, S. 2, S. 3 or S. 0 ➔ (i: 0:os;;;;i <3: S.i), S. 3. Here, the comma separates 
the components or lists of components. 

□ 

In Section 2.2.0, we stipulated that a directed trace structure S. 0 prescribes the 
behavior of component and environment: it specifies when the component may 
produce outputs and when the environment may produce inputs. In a decom­
position of component S. 0 we require that the production of outputs of com­
ponent S. 0 are realized by a connection of components. We assume that the 
environment of this connection produces the inputs as specified for environ­
ment S. 0. This environment can also be seen as component S. 0. Accord­
ingly, in order to comprise all components that produce outputs relevant to the 
decomposition, we consider the connection of components S. 0 and S.i, 
1:os;;;;i<n. 

Condition (i) says that there are no dangling inputs and outputs in the con­
nection: every output is connected to an input, and every input is connected to 
an output. We call such a connection a closed connection. 

Condition (ii) requires that outputs of distinct components are not con­
nected with each other. If (ii) holds we say that the connection is free of out­
put interference. 

Condition (iii) requires that the behavior of the connection at the boundary 
a(S. 0) behaves as specified by t(S. 0). The behavior of the connection is given 
by tW=t(lli: 0:os;;;;i <n: Ri). Restriction to the boundary a(S. 0) (=a(R 0)) is 
expressed by t wt a(R. 0). 

Condition (iv) requires that the connection is free of computation interfer­
ence. We say that the connection has danger of computation interference, if 
there exists a trace t, symbol x, and index i, 0:os;;;;i <n, such that 

tEtW I\ xEo(_Ri) I\ txta(Ri)Et(Ri) I\ tx~tW 

In words, if after a mutually agreed behavior a component can produce an 
output that is not in accordance with the prescribed behavior of other com­
ponents, then we say that the connection has danger of computation interfer­
ence. 

Since a specification may be interpreted as a boundary prescription for the 
behavior of component and environment, computation interference may also 
be interpreted as a boundary violation. For example, if WIRE component 
pref[a ?;b !] receives two inputs a without producing an output b, we have a 
boundary violation for the WIRE component. Operationally speaking, in the 
case of this boundary violation more than one transition is propagating along 
a wire, which can cause hazardous behavior and must, therefore, be avoided. A 
boundary violation for a WIRE component is also called transmission interfer­
ence [42]. (Consequently, transmission interference is a special case of compu­
tation interference.) In the following, a connection that satisfies conditions (i), 
(ii), and (iv) is briefly called a closed connection, free of interference. 
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REMARK. Some misbehaviors of circuits that are characterized in classical 
switching theory by hazards or critical races [23,29] can be seen as special 
cases of computation interference. Absence of interference in a decomposition 
guarantees that the thus synthesized circuit is free of hazards and critical races, 
if the components satisfy their specifications. 
D 

Notice that we have described decomposition as a goal-directed activity: we 
start with a component S. 0 and try to find components S.i, I ~i <n, such that 
the relation S.0 ➔ (i: l~i<n:S.i) holds. Thus, we explicitly use the assump­
tion that the environment of the connection of components behaves as 
specified for environment S. 0. We did not start with components S.i, I ~i <n, 
to find out what could be made of them without requiring anything from the 
environment. This is also the reason why this method is called decomposition 
instead of composition. 

3.1.1. Examples 

ExAMPLE 3.1.1.0. We demonstrate that WIRE component pref[a?;d!] can be 
decomposed into FORK component pref[ a?; b ! lie!] and CEL component 
pref[b?llc? ;d!]. A schematic of this decomposition is given in Figure 3.1.0. 

Let 

b 

FIGURE 3.1.0. A decomposition of a WIRE component. 

RO = pref[a !;d?], 

R l = pref[a?; b !lie!], and 

R 2 = pref[b?llc? ;d!]. 

By inspection, we infer that the connection of components R 0, R 1, and R. 2 
is closed and free of output interference. The behavior of this connection is 
represented by 

tW = t(R0IIR l llR2) 

= tpref[a; bile ;d]. 
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From this we derive tWta(R 0)=tpref[a ;d]. Accordingly, we conclude that 
the connection behaves as specified at the boundary a(R 0). 

For absence of computation interference we have to prove for all 
t, x, i, O~i <3, that 

tEtW I\ xEo(_Ri) I\ txta(Ri)Et(_Ri) ~ txEtW 

Instead of proving this for all triples (t,x,i), we take for all states of tW a 
representative t and consider all x and i, O~i <3, such that 

tEtW I\ xEo(_Ri) I\ txta(Ri)Et(_R.i). 

It suffices to prove for these triples (t, x, i) that tx EtW. By inspection, we find 
that for the triples 

(£, a, 0), (a, b, 1), (a, c, 1), (ab, c, 1), (ac, b, 1), and (abc, d, 2) 

indeed tx EtW. Consequently, we conclude that R. 0 can be decomposed into 
R. land R2. 
□ 

ExAMPLE 3.1.1.1. We examine whether WIRE component pref[a?;d!] can be 
decomposed into FORK component pref[a?;b !) II pref[a?;c !] and CEL com­
ponent pref[b?;d!] II pref[d!;c?]. Notice that this CEL component starts in a 
different initial state than the CEL component of the previous example. The 
tentative decomposition is given in Figure 3.1.1. 

Let 

b 

t------1~ d ! 

C 

FIGURE 3.1.1. A tentative decomposition of a WIRE component. 

RO = pref[a !;d?], 

R 1 = pref [ a ?;b !] II pref{ a ?;c !] , and 

R 2 = pref[b?;d!] II pref[d!;c?]. 

Analogously to the previous example, we inf er that the components R 0, R 1 
and R 3 form a closed connection free of output interference. The behavior of 
this connection is given by 

tW = t(_R0IIR 1 IIR2) 

= t pref[a ;b ;d ;c ], 
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from which we readily derive twta(R. 0)=t(R. 0). We conclude that this con­
nection behaves as specified at the boundary a(R. 0). 

There is, however, danger of computation interference in this connection: for 
t,x,i: =a,c, 1 we have 

adW I\ cEo(_R 1) A acta(R l)Et{R. 1) I\ acij!:tW 

After the environment has produced an a, the FORK component can produce 
a c, which is not in accordance with the boundary prescription for the CEL 
component. Consequently, the tentative decomposition is not a decomposi­
tion. 

□ 

Ex.AMPLE 3.1.1.2. We demonstrate that a 3-XOR component can be decom­
posed into two 2-XOR components, according to the schematic given in Figure 
3.1.2. 

Let 

a?~~ 

b? ~ L./ c? .,__}~ e ! 

FIGURE 3.1.2. A decomposition for a 3-XOR component. 

R. 0 = pref[a !;e? I b !;e? I c !;e?], 

R. 1 = pref[a?;d! jb?;d!] ,and 

R. 2 = pref[d?;e ! I c?;e !]. 

By inspection, we find that the components R 0, R 1, and R. 3 form a closed 
connection free of output interference. For the behavior of this connection we 
obtain 

tW = t(R0IIR I IIR2) 

= tpref[a ;d ;e I b ;d ;e I c;e). 

Accordingly, we derive tWta(R. 0)=t(R 0), i.e. the connection behaves as 
specified at the boundary a(R 0). Applying the same approach as in Example 
3.1.1.0, we find for each of the triples (t,x,i) from 

{t:, a, 0), {t:, b, 0), {t:, c, 0), (a, d, 1), and (c, e, 2), that 

tEtW I\ xEo(_Ri) I\ txta(Ri) I\ txEtW 

Consequently, the connection is also free of computation interference, and we 
conclude that R O can be decomposed into R. 1 and R. 2. 
□ 
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ExAMPLE 3.1.1.3. Similarly to the above example, we can prove that 3-CEL 
component pref[a?llb?llc? ; e!] can be decomposed into 2-CEL components 
pref[a?llb?; d!] and pref[d?llc? ;e!]. This decomposition is depicted in Figure 
3.1.3. 

a?--... 
d 

b?---✓ t-----t• e ! 

c? 

FIGURE 3.1.3. A decomposition of a 3-CEL component. 
D 

ExAMPLE 3.1.1.4. Also in the same fashion as the previous examples we can 
prove that the 2-CEL component pref[c !;a?] II pref[b?;c !] can be decomposed 
into the 2-CEL component pref[d?;c !] II pref[b ?;c !] and the WIRE com­
ponent pref[d!;a?]. This decomposition is depicted in Figure 3.1.4. 

t-----t• C ! 

b? 

FIGURE 3.1.4. Decoupling an initial transition. 

In general, any CEL component with initial transitions on some of its inputs 
can be decomposed into a CEL component without initial transitions on its 
inputs and WIRE components with initial transitions. A similar reasoning 
holds for XOR components. 
D 

ExAMPLE 3.1.1.5. We examine some decompositions of the form S. o ➔ s. 1, 
i.e. decompositions into one component only. First, we have S ➔ S for any 
component S. 

Second, for components S. 0 and S. 1 defined by 

S. 0 = pref[a?;b !;c?;d!] and 

S. 1 = pref[a ?;b ! I c ?;d!], 
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for example, we have S. 0-+ S. I. 
Component S. I can be decomposed further: let 

S. 2 = pref[a ?;b !] II pref[c ?;d!], 

then we infer S. I -+ S. 2. 
Given the decompositions S. 0-+ S. I and S. I -+ S. 2, we may wonder 

whether S. 0 -+ S. 2 holds as well. This is indeed so; in the next section we 
derive this decomposition by application of the Substitution Theorem. 

We can still go one step further in the decomposition of S. I, since we have 

S. 2-+ pref[a?;b !] , pref[c?;d!). 

This last decomposition is a special case of the Separation Theorem, which is 
also discussed in the next section. 

□ 

3.1.2. The Substitution Theorem 

A theorem that may be helpful in finding decompositions of a component is 
the Substitution Theorem. This theorem applies to problems of the following 
kind. Suppose that component S. 0 can be decomposed into a number of com­
ponents of which Tis one such component. Suppose, moreover, that T can be 
decomposed further into a number of components. Under what conditions can 
the decomposition of T be substituted in the decomposition of S. O? 

We have 

THEOREM 3.1.2.0. (Substitution Theorem) 
Let components S.i, O~i <m, and T satisfy for 1 ~n <m 

We have 

(Ui:O~i<n:a(S.i))n(Ui:n~i<m:a(S.i)) = aT. (3.1) 

S.0--+ (i: J,s;;;i<n:S.i), T 

I\ T-+ (i: n~i<m: S.i) 

~ S.0--+ (i: J,s;;;i<m:S.i). 

□ 

Condition (3.1) of the above theorem is essentially a void condition, since, by 
an appropriate renaming of the internal symbols in the decomposition of T, 
this condition can always be satisfied. The internal symbols of the decomposi­
tion of Tare given by ( U: n ~i <m: a(S.i)) \ aT. 
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PRooF (of Theorem 3.1.2.0). Let 

R. 0 = S. 0, R.i = S.i for l,s;;i<m, 

WO = (Iii: O~i<m: R.i), 

Wl = (lli:O~i<n:Ri)II T, and 

W2 = (Iii: n ~i <m: Ri) II T. 
(i) We observe 

S.O ➔ (i: l,s;;i<n:S.i), T 

I\ T ➔ (i:n~i<m:S.i) 

~{ condition (i) of decomposition} 

• 

( U i: O,s;;i <n: o(Ri)) U oT = ( U i: O~i <n: i(R.i)) U iT 

I\ (Ui:n,s;;i<m:o(Ri)) U iT = (Ui:n,s;;i<m:i(Ri)) U oT 

~{calc. ,oTniT= 0} 

( U i: Q,s;;; <m: o(Ri)) = ( U i: O~i <m: i(Ri)). 

(ii) Since 

S.O ➔ (i:l,s;;i<n:S.i),T and 

T ➔ (i:n,s;;i<m:S.i), 

we have, by condition (ii) of decomposition, for i':f=J 

o(R.i)no(Rj) = 0 , for O~i,J<n v n~i,J<m, and 

o(Ri)noT = 0 /\ o(R.J)niT = 0 for O,s;;i<n I\ n,s;;J<m. 

From condition (3.1) in the theorem follows 

o(R.i)no(RJ) ~ aT for O~i<n I\ n,s;;J<m. 
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For component T, we have iTnoT= 0. This combined with the above 
yields 

o(R.i) n o(RJ) = 0 for O~i,j <m I\ i:f=J. 

(iv) (We first prove (iv) and then (iii) of the definition of decomposition.) 
We show that for all t, b, i, O,s;;i <m, 

t Et(Wl II W2) /\ b Eo(Ri) I\ tbta(Ri)Et(Ri) 

~ tbEt(WlllW2). (3.2) 

and that t(Wl II W2)=t(WO). From these two properties condition (iv) of 
decomposition can then be concluded. 
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Let O,s;;;,i<n. We observe 

tEt(WIIIW2) A bEo(_R.i) A tbta(Ri)Et(Ri) 

=> { def. of weaving} 

ttaWlEtWl /\ bEo(_Ri) I\ tbta(R.i)Et(Ri) 

=> { S. 0 ➔ (i: I ,;;;;,i <n: S.i), T ,condition (iv) of decomposition, calc.} 

tbtaWI Et WI. (3.3) 

To prove also that tbtaW2EtW2 for O,s;;;,i<n, we consider two cases: 
bllaW2 and bEaW2. For bllaW2 we have, by the definition of weaving, 

tEt(WIIIW2) A bllaW2 => tbtaW2EtW2. 

For bEaW2, we derive 

tEt(WlllW2) /\ bEo(_R.i) I\ tbta(Ri)Et(R.i) I\ bEaW2 

=> { (3.3), Q,s;;;,i <n} 

tEt(WIIIW2) /\ bEo(_Ri) I\ bE(aW2naWl) /\ tbtaWlEtWl 

=> { condition (3.1), def. of weaving} 

tEt(WlllW2) /\ bEo(_R.i) I\ bEaT I\ tbtaTEtT 

=> { S. 0 ➔ (i: I ,;;;;,i <n: S.i), T ,condition (ii) of decomposition} 

tEt(WlllW2) /\ bEiT /\ tbtaTEtT 

=> { def. of reflection, def. of weaving} 

ttaW2EtW2 /\ bEoT I\ tbtaTEtT 

=> { T ➔ (i: n ,;;;;,i <m: S.i), condition (iv) of decomposition, calc.} 

tbtaW2EtW2 

Since tbE(aWI UaW2)°, we derive with (3.3) and the definition of weav­
ing that tbEt(WIIIW2). 

For n ,;;;;,i <m, we derive similarly that (3.2) holds. 

Subsequently, we show that t(WlllW2)=tWO. We observe 
a(WIIIW2)=aWO and t(WIIIW2)=t(WOIID. By definition of weaving, 
we derive t(WIIIW2)~tWO. We prove tEtWO => tEt(WIIIW2) by 
induction to the length oft. 

Base: WO and WI II W2 are prefix-closed and non-empty, hence 
(EtWO A (Et(WIIIW2). 
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Step: We observe 

tbEtWO 

~ { WO is prefix-closed} 

tEtWO I\ tbEtWO 

~ { induction hypothesis for t} 

tEt(WIIIW2) I\ tbEtWO 

~ {by (i) in this proof and def. of weaving} 

(Ei :O~i<m:tEt(WIIIW2) I\ bEo(Ri) I\ tMa(Ri)Et(R.i)) 

~ {(3.2)} 

tbEt(Wl II W2). 
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(iii) To prove tWOta(R O)=t(R 0), we use a result of (iv), i.e. 
tWO=t(Wl II W2). We observe 

□ 

tWOta(R. 0) 

= { see (iv)} 

t(Wl II W2)ta(R 0) 

= {a(R O)c;aWI, by (3.1): aWI naW2 =aT, Prop. 1.1.2.6} 

t(Wl II (W2taT))ta(R 0) 

= { T ➔ (i : n ~i <m: S.i), condition (iii) of decomposition, calc.} 

t(WI II T)ta(R 0) 

= {calc.} 

tWI ta(R 0) 

= { S. 0 ➔ (i: I ~i <n: S.i), T , condition (iii) of decomposition} 

t(R 0). 

In (i), (ii), and (iv) of the above proof we did not use condition (iii) of decom­
position. Consequently, we conclude 
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'THEOREM 3.1.2.1. 

(3.4) A (3.5) A (3.1) 

~ (3.6)A (lli:O~i<m:Ri) = (lli:O~i<m:Ri)II T, 

where 

D 

(3.4) - the components Ri, O~i <n, and T form 

a closed connection, free of interference. 

(3.5) = the components Ri, n ~i <m, and T form 

a closed connection, free of interference. 

(3.6) = the components Ri, O~i <m, form 

a closed connection, free of interference. 

ExAMPLE 3.1.2.2. Consider the components S. 0, S. I, and S. 2 of Example 
3.1.1.5 again. We have 

S. 0 - S. I /\ S. I - S. 2 /\ 

(a(S.O)Ua(S.l))n(a(S.l)Ua(S.2)) = a(S.l). 

By the Substitution Theorem we conclude S. o- S. 2. Moreover, we also have 

S. 2-pref[a?;b !] , pref[c?;d!]. 

Here as well the condition for the Substitution Theorem is satisfied, and we 
conclude 

S.O-pref[a?;b!], pref[c?;d!]. 

Consequently, S. 0 can be decomposed into two WIRE components. 
D 

NOTATIONAL REMARK. In the derivation for a decomposition of a component 
we sometimes use a notation similar to the proofs in this thesis. For example, 
for the derivation of a decomposition S. o- S. 1, S. 2, S. 3 we may write 

s.o 
-{hint why S. o-s. I, S. 2} 

S. l,S. 2 

-{hint why S. I - S. 3, S. 4} 

S. 3, s. 4, s. 2 

Such a derivation is then based on the Substitution Theorem, and it is 
assumed that the condition for its application holds. 
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D 

3.1. 3. T'he Separation Theorem 

Another theorem that may be convenient in finding decompositions of a com­
ponent is the Separation Theorem. It pertains to problems of the following 
kind. Suppose that for the components SO, S 1, S2, TO, Tl , and T2 we have 
SO ➔ S 1, S2 and TO ➔ Tl, T2. Can we derive from these decompositions a 
decomposition for component S0IIT0? For example, does 
SOIITO ➔ SlllTl, S2IIT2 hold? 

We have 

THEOREM 3.1.3.0. (Separation Theorem) Let components S.k.i, 
O~k <n I\ O~i <m, satisfy S.k. 0 ➔ (i: 1 ~i <m: S.k.i). We have 

(llk:O~k<n:S.k.O) ➔ (i: l~i<m:(llk:O~k<n:S.k.i)) 

if the following conditions are satisfied 

A.k nA.I ~ a(S.k. 0) for 0~k,l<n I\ k=/=I, 

Out.inOut.j= 0 for 0~i,j<n I\ i=/=j, 

where 

D 

A.k = ( U i: 0~i <m: a(S.k.i)) for 0~k <n, 
Out.i = (Uk: 0~k <n: o(S.k.i)) for 1~i<m, and 
Out. 0 =(Uk: 0~k<n: o(S.k. 0)). 

(3.7) 

(3.8) 

Condition (3.7) can be interpreted as 'the internal symbols of the decomposi­
tions are row-wise disjoint', where the internal symbols of the decomposition 
of S.k. 0, 0~k <n, (i.e. row k) are given by A.k \ a(S.k. 0). Condition (3.8) 
can be interpreted as 'the outputs are column-wise disjoint', where the outputs 
of column k, 0~i <m, are given by Out.i . (Notice that Out. 0 represents the 
outputs of the components S.k. 0, 0~k <n.) 

PROOF (of Theorem 3.1.3.0). 
Let Rk. 0=S.k. 0 and Rk.i =S.k.i for 1~i<m and 0~k<n. 
(i) We observe 

(Ui: O~i<m : o(llk : 0~k<n: Rk.i)) 

={calc.} 

(Uk: 0~k<n: (Ui : O~i<m: o(Rk.i)) 

= {S.k. O ➔ (i : 0~i<m: S.k.i), calc.} 

(Uk: 0~k<n : (Ui : 0~i<m: i(Rk.i)) 



52 Decomposition and Delay-Insensitivity 

= {calc.} 

(Ui: 0~i<m: i(llk: 0~k<n: R.k.i)). 

(ii) The property o(llk: 0..;;k<n: R.k.i) n o(llk: 0~k <n: R.k.J) = 0, for 
0~i,j <m I\ i=:/=j, follows directly from condition (3.8) in the theorem. 

(iii) Let B=a(llk:0~k<n:R.k.0). We observe 

(iv) Let 

t(lli: 0~i <m: (Ilk: 0~k <n: R.k.i)) t B 

= {calc.} 

t(llk: 0~k<n: (Iii: 0~i <m: R.k.i))t B 

= { condition (3. 7), Prop. 1.1.2. 7, calc.} 

t(llk: 0~k<n: (Iii: 0..;;i<m: R.k.i)t B) 

= { calc., condition (3. 7)} 

t(llk: 0~k<n: (Iii: 0..;;i<m: R.k.i)ta(R.k. 0)) 

= {S.k.0 ➔ (i: l~i<m:S.k.i), calc.} 

t(llk: 0~k <n: R.k. 0). 

WC.i = (Ilk: 0~k <n: R.k.i), 

WR.k = (Iii: 0~i <m: R.k.i), and 

W = (lli:0..;;i<m: WC.i). 

Notice that we also have W=(llk: 0~k<n: WR.k). We first prove that 
under condition (3.8 ) we have 

bEo(WC.i) 

~ (Ak:0~k<n:b~a(WR.k) V bEo(R.k.i)). (3.9) 

Let bEo(WC.i), i.e. bEOut.i. Let k satisfy 0~k<n. If bEa(WR.k), then 
bEo(R.k.j) for some}, 0..;;J<m, since the components (i:0~i<m:R.k.i) 
form a closed connection. By condition (3.8) then follows i = j . 
Second, we derive for arbitrary k, 0~k <n, 

tEtW I\ bEo(WC.i) I\ tbta(WC.i)Et(WC.i) 

~ { definition of weaving, (3.9)} 

tta(WR.k)Et(WR.k) I\ (b ~a(WR.k) Vb Eo(R.k.i)) 

I\ tbt a(R.k.i) Et(R.k.i) 

~ {S.k. 0 ➔ (i: l~i<m: S.k.i), calc.} 

tbta(WR.k)Et(WR.k). 
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By the definition of weaving, we consequently deduce tbEtW. 
□ 

In the proof of the Separation Theorem condition (3.7) is only used in (iv). 
For this reason, we conclude 

THEOREM 3.1.3.1. For the components S.k.i, O~k <n I\ Oo;;;;i <m, we have 

S.k. o-(i: I o;;;;i <m: S.k.i) for all k, O~k <n, 

□ 

A (3.8) 

~ (Ilk: O~k <n: S.k. 0), (i: Oo;;;;i <m: (Ilk :O~k <n : S.k.i)) 

forms a closed connection, free of interference. 

From the Separation Theorem two corollaries can be derived. 

COROLLARY 3.1.3.2. If for components S 0, S 1, and S OIi T we have So- S 1, 
then S0IIT -s 1 IIT. 

PROOF. Take 

S.0.0 =SO, S. 0.1 = SI, 

S. 1.0 = T , S. 1.1 = T, 

and let SO - S I. Then we have S. 0.0 - S. 0.1 and S. 1.0 - S. 1.1 . Since there 
are no internal symbols for these decompositions, condition (3.7) of the 
Separation Theorem is satisfied. For component S OIi T we have 

iS0noT= 0 A oS0niT= 0 . 

By so-s I, we also have iS0=iS I A oS0=oS 1. Since SO, SI and Tare 
components, we inf er from the above 

(iS0UiD n (oSI UoD= 0. 

Consequently, Out. 0 n Out. 1 = 0 and condition (3.8) holds. Application of 
the Separation Theorem yields the desired result. 

□ 

COROLLARY 3.1.3.3. If for component (Ilk: O~k<n: T.k) we have 
o(T.k) n o(T./) = 0 for O~k, I <n A k=fol, then 

(Ilk: Oo;;;;k<n: T.k) - (k: Oo;;;;k<n: T.k). 

PROOF. Take S.k. O=T.k for O~k<n, S.k.(k+l)=T.k, and S.k.i=E for 
l~i<(n + I) A (k + 1)-=foi. We have S.k. o-(i: l~i<(n + I): S.k.i). Here as 
well there are no internal symbols for the decompositions, and condition (3.7) 
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of the Separation Theorem is satisfied. Since (Ilk: O.;;;;k < n: T.k) is a com­
ponent, we have 

i(T.k)no(_T./)= 0 for O.;;;;k,l<n I\ k=/=l, 

i.e. Out. 0 and Out.i are disjoint for O<i <(n + 1). If 

o(_T.k)no(_T./)= 0 for O.;;;;k,l<n I\ k=/=l, 

then Out.in Out.j = 0 for all O<i,j <(n + 1) /\ i=/=j. Accordingly, the outputs 
are column-wise disjoint, and condition (3.8) of the Separation Theorem can 
be concluded. Application of this theorem gives the desired result. 
D 

ExAMPLE 3.1.3.4. We demonstrate how a decomposition for component 
SO=pref[a?;b !;c?d!] II pref[b !;e?] can be derived with the above theorems. 
We observe 

pref[a ?;b !;c?;d !] II pref[b !;e?] 

➔ {Ex. 3.1.1.5 , Cor. 3.1.3.2} 

pref[a?;b !] II pref[c?;d!] II pref[b !;e?] 

➔ {Cor. 3.1.3.3, calc.} 

pref [a?;b !] II pref [b !;e?] 

, pref [c?;d!]. 

From these last lines (and the Substitution Theorem) we infer that component 
SO can be decomposed into a 2-CEL component and a WIRE component. 
The decomposition is depicted in Figure 3.1.5. 

c? •----------t•~ d ! 

a?------.. 

FIGURE 3.1.5. A decomposition of S 0. 
D 

More applications of the above theorems and corollaries, and some suggestions 
for other theorems on decomposition, are given in Chapters 5, 6 and 7. 
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55 

In Chapter 2 we stipulated that the behavior of a non-WIRE component (and 
its environment) is specified at a fixed boundary. For a connection of such 
components it seems highly unlikely that their fixed boundaries would fit 
exactly at the connection points. Therefore, in order to connect corresponding 
input and output terminals in this connection, we introduce WIRE com­
ponents. The terminals are connected via an intermediate boundary as 
exemplified in Figure 3.2.0. Since WIRE components have flexible boundaries, 
this intermediate boundary can be placed anywhere between the fixed boun­
daries of the components. 

_ intermediate boundary 

FIGURE 3.2.0. DI decomposition. 

Operationally speaking, the WIRE components introduce delays in the com­
munications between components and the intermediate boundary. Thus, they 
may affect the functional behavior of the connection of components at the 
intermediate boundaries. If this closed connection operates as specified, 
irrespective of delays, and the connection is free of interference, then we call 
such a connection a delay-insensitive connection. 

The formalization of a delay-insensitive connection of components is done 
as follows. For the components S.k, O~k<n, we define R O=S. 0 and 
Rk=S.k, l~k<n. Let a(_R.k), O~k<n, stand for an intermediate boundary 
and define the enclosure enc(Rk) of this boundary by 

enc(Rk) is the trace structure obtained by replacing 

each output a in R.k by oak and 

each input a in Rk by iak. 

(We assume that the characters i and o do not occur in R.k). For each k, 
O~k<n and aEa(R.k) we introduce the WIRE component Wire(k,a) between 
the boundary of the enclosure and the intermediate boundary by 

Wire(k,a) = pref[oak ?;a!] if a Eo(Rk) 

= pref[a?;iak!] if aEi(Rk). 



56 Decomposition and Delay-Insensitivity 

The collection of WIRE components for Rk, 0~k<n, and its weave are 
defined by 

Wires(Rk) = (a : a Ea(R.k): Wire(k,a)) 

WWires(R.k) = (lla:aEa(R.k): Wire(k,a)). 

With these definitions we can formulate 

DEFINITION 3.2.0.0. We say that the components S.k, l~k<n form a DI 
decomposition of component S. 0, denoted by 

DI 
S. 0 ➔ (k: l~k<n: S.k), 

if all components enc(Rk) and Wires(Rk), 0~k<n, form a closed connection, 
free of interference, and 

t(llk: 0~k<n: enc(Rk) II WWires(Rk))ta(R 0) = t(R. 0). 

□ 

Notice that the last condition requires that the connection behaves as specified 
at the intermediate boundary a(R 0). Thus, we incorporate the delays in the 
communications not only with the components S.k, 1 ~k <n, but also with 
environment S. 0. 

ExAMPLE 3.2.0.1. We have the relations 
DI 

pref[a?;b!llc!] ➔ pref[a?;b!llc!], and 
DI 

pref[a?;b!llc!] ➔ pref[a?;b!;c!]. 

Notice that the ordering between outputs b and c for component 
pref[a?;b!;c!] is lost at the intermediate boundary due to the 'delays' intro­
duce by the WIRE components. Consequently, there does not exist a DI 
decomposition of this component that can realize this ordering between out­
puts b and c, i.e. we do not have, 

DI 
pref[a?;b !;c !] ➔ pref[a?;b !;c !]. 

□ 

3.2.1. DI components 

In this thesis we are interested in DI decompositions of a component. In gen­
eral, DI decompositions are more difficult to verify or derive than decomposi­
tions. The two decompositions are equivalent, however, if all components 
involved are so-called DI components. DI components are defined by 
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DEFINITION 3.2.1.0. Component S is called a DI component, if 

S ➔ Wires(S), enc(S). 

□ 
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Since WIRE components have flexible boundaries, it follows from Definition 
3.2.1.0 that a DI component can be characterized as a component whose 
specification is valid at a flexible boundary. 

We have 

THEOREM 3.2.1.1. If all components S.i, 0~i <n, are DI components, then 
DI 

S.0 ➔ (i: l~i<n:S.i) S.0 ➔ (i: l~i<n:S.i). 

PROOF. Let R.0=S.0 and Ri=S.i, l~i<n. First, we make two observa­
tions. We inf er 

components Ri, 0~i <n, form a 

closed connection, free of interference 

~ {Th. 3.1.2.1, Ri ➔ Wires(R.i), enc(R.i) for 0~i <n} (3.10) 

components enc(R.i) and Wires(R.i), 0~i <n, form a 

closed connection, free of interference 

A (3.11), 

where (3.11) stands for the equality 

(Iii: 0~i <n: enc(Ri) II WWires(Ri)) 

= (Iii: 0~i <n: enc(R.i) II WWires(R.i) II R.i). 

Second, we derive 

(Iii: 0~i <n: enc(Ri) II WWires(R.i)) t a(R. 0) 

= {(3.11)} 

(Iii: 0~i <n: enc(R.i) II WWires(R.i) II R.i) t a(R. 0) 

(3.11) 

= {Prop. 1.1.2.7 with A,B : = a(R. 0), a(R.i) for 0~i <n} (3.12) 

(Iii: 0~i <n: (enc(Ri) 11 WWires(Ri) 11 R.i) t a(R.i))ta(R. 0) 

= { R.i ➔ Wires(R.i), enc(R.i) ,calc.} 

(Iii: 0~i <n: R.i)ta(R. 0). 

With these observations the proof goes as follows. 

Let S. O ➔ (i: l~i<n: S.i) hold. By (3.10) we infer that the components 
enc(R.i) and Wires(R.i), 0~i <n, form a closed connection, free of interference 
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and (3.11) holds. With (3.12) we infer 

S. 0-+(i: l~i<n: S.i) 

~ {def. of decomposition} 

t(lli: 0~i<n: R.i)ta(R. 0) = t(R. 0) 

~ { (3.12), (3.11)} 

Decomposition and Delay-Insensitivity 

t(lli: 0~i <n: enc(R.i) II WWires(R.i)) t a(R. 0) = t(R. 0). 
DI 

Consequently, S. 0-+(i: l~i<n: S.i). 
DI 

Let S. 0-+ (i: 1 ~i <n: S.i) hold. By definition of enc(R.i) and WWires(R.i) 
we derive 

components enc(R.i) and Wires(R.i), 0~i <n, 

form a closed connection, free of output interference 

~ {calc.} 

components R.i, 0~i <n, 

form a closed connection, free of output interference 

Consider the special behavior in the closed connection of components enc(R.i) 
and Wires(R.i), 0~i <n, where each output oa;, 0~i <n I\ a Eo(_R.i), is 
immediately followed by a and all ia1, 0~J<n I\ aEi(R.J). Operationally 
speaking, we assume that the commumcations by the WIRE components are 
instantaneous communications. Since in this special behavior computation 
interference does not occur, there is no computation interference in the con­
nection of components R.i, 0~i <n, either. Accordingly, we have that the com­
ponents R.i, 0~i <n, form a closed connection, free of interference. By (3.10) 
and (3.12) we then infer 

DI 
S. 0-+ (i: 1 ~i <n: S.i) 

~ { def. of DI decomposition} 

t(lli: 0~i <n: enc(R.i) II WWires(R.i)) ta(R. 0) = t(R. 0) 

~ {(3.10), (3.12)} 

t(lli: 0~i <n: R.i) t a(R. 0) = t(R. 0). 

Consequently, S. 0 -+(i: l~i<n: S.i). 
D 

From now on, we mostly restrict ourselves to DI components and decomposi­
tions. By Theorem 3.2.1.1, it then follows that such decompositions are DI 
decompositions. 

We say that a component S. 0 is DI decomposable if there exists a collection 



3.2 Delay-Insensitivity 59 

of components S.i, 0.;;;;i <n, that form a DI decomposition of S. 0. 

REMARK. It can happen that for a given component decompositions exist in 
which not every component is a DI component. If this component is realized 
by a circuit according to such a decomposition but with the use of connection 
wires, then this circuit may malfunction: some delays can cause incorrect 
behavior. In order for this circuit to operate correctly, delay requirements must 
be met. We try to avoid such requirements as long as possible. 

□ 

The following two theorems can be used to infer whether a component is 
DI. From the definition of DI decomposition and DI component we derive 

THEOREM 3.2.1.2. If a component is DI decomposable, then it is a DI com­
ponent. 

DI 
PROOF. Let S. 0 ➔ (i: 0os;;;i <n: S.i). Take R. 0 = S. 0, Ri = S.i, 1 os;;;i <n, and 
define T by iT = i(S. 0), oT = o(S. 0), 

tT = t(i: 0os;;;i <n: enc(R.i) II WWires(R.i)) t a(R. 0). 

Since the components enc(Ri) and Wires(Ri), 0os;;;i <n, form a closed connec­
tion, free of interference, we infer that the connection enc(R. 0), Wires(R. 0), 
and T is closed and free of interference as well. By definition of DI decompo­
sition we have T = S. 0. Accordingly, also S. 0, Wires(S. 0), enc(S. 0) is a 
closed connection, free of interference. Moreover, for any S. 0 we have 

(enc(S. 0) 11 WWires(S. 0) 11 S. O)ta(S. 0) = t(S. 0). 

Accordingly, we conclude S. 0 ➔ enc(S. 0), Wires(S. 0). 

□ 

Consequently, if a component is not a DI component, then it is not DI decom­
posable. 

THEOREM 3.2.1.3. For a component S we have 
DI 

Sis DI_ S ➔ S. 

PROOF. From Theorem 3.2.1.1 and the property S➔S, we infer 
DI DI 

Sis DI~ S ➔ S. From Theorem 3.2.1.2, we derive S➔S ~Sis DI. 

□ 

The characterization of a DI component S by the property 
S ➔ Wires(S), enc(S) can be considered as a formalization of the so-called 
Foam Rubber Wrapper (FRW) principle. Formally speaking, the FRW princi­
ple states that the specification of a component is invariant under the 
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extension by WIRE components. Operationally speaking, the FRW metaphor 
expresses that the circuit specified by S is embedded in a 'Foam Rubber 
Wrapper' formed by the connection wires. The boundaries of the FRW are 
constituted by aenc(S) and aS, as depicted in Figure 3.2.1. 

aS 11 
aenc(S) 

Wires(S) 

FIGURE 3.2.1. The Foam Rubber Wrapper principle S ➔ Wires(S), enc(S). 

The idea of formalizing delay-insensitivity by means of the FR W principle 
originates from Charles E. Molnar [33]. Jan Tijmen Udding was the first to 
give a rigorous formulation of this principle in terms of trace structures. In 
[45] he postulates a number of rules which a component must satisfy in order 
to meet the FRW principle. It turns out that Udding's definition of a DI com­
ponent is equivalent to Definition 3.2.1.0 (cf. Theorem 4.1.0). T.P. Fang had 
earlier expressed the FRW principle - though less completely- by means of 
Petri Net rules. In [38] another formalization of the FRW principle is given by 
Huub Schols. For a proof of the equivalence of Udding's and Schols's formali­
zation we ref er to [38, 39]. 
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In order to apply Theorem 3.2.1.1 we have to know whether a component is a 
DI component or not. The recognition of DI components is the subject of this 
chapter. We present two methods for recognizing a DI component: DI gram­
mars, which make up most of this chapter, and Udding's classification. 

In (45) Jan Tijmen Udding postulates a number of rules with which the 
classes C 1, C2, C3, and C4 of trace structures are defined. A class consists of 
all trace structures that satisfy a specific set of rules. It turns out that the larg­
est class, i.e. class C 4, is the class of all DI components. Udding's 
classification is briefly presented in Section 4.1. 

The remaining sections of this chapter concern the definitions of so-called 
DI grammars. A grammar is called a DI grammar if it generates commands 
that represent DI components. Commands that represent DI components are 
called DI commands. DI grammars are attractive for two reasons. First, they 
enable a syntactical verification of the DI property, and, second, they can be 
used as a starting point for a syntax-directed decomposition method. At the 
end of this chapter, we show in a number of examples how a DI grammar can 
be used to verify whether a command is a DI command and to derive a DI 
command from a non-DI command. In the next chapters, a hierarchy of DI 
grammars is used to develop a syntax-directed decomposition method. 

With the DI grammars of this chapter a large class of DI commands can be 
derived, although we conjecture that not every DI command can be derived 
with these grammars. Accordingly, the DI grammars may be used to prove 
that a command is a DI command, but in order to prove that a command is 
not DI we have to resort to other means such as Definition 3.2.1.0 or Udding's 
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classification. The recognition of a DI command by means of a DI grammar is 
simple and straightforward, whereas the recognition of a DI component by 
means of Definition 3.2.1.0 or Udding's classification can be tedious. 

The grammars defined in this chapter are attribute grammars. Attribute 
grammars are briefly explained in Section 4.2. The largest DI grammar, i.e. 
grammar G4, is then defined in Sections 4.3 to 4.7. In Sections 4.7 and 4.8 the 
grammars G4', G3', G2', G l', and GCL' are defined, which are all derived 
from grammar G4. 

4.1 UDDING'S CLASSIFICATION 

We briefly summarize Udding's classification. For a more extensive discussion 
of this classification the reader is referred to [45). 

In the following rules, the letter R denotes a directed trace structure with 
intR = 0, sand t denote arbitrary traces, and a,b, and c denote arbitrary sym­
bols from aR. 

rule 1: (R is a component) 
R is prefix-closed, non-empty, and iR noR = 0. 

rule 2: (Absence of transmission interference) 
saa!itR. 

rule 3: (Symbols of the same type commute) 
If a and b are symbols of the same type, then sabt EtR sbat EtR. 

rule 4': (Symbols of distinct type commute (0)) 
If a and b are symbols of distinct type, then 
sabt EtR /\ sb EtR ~ sbat EtR. 

rule 4": (Symbols of distinct type commute (1)) 
If a and b are symbols of distinct type and symbol c is of the same 
type as a, then sabtc EtR /\ sbat EtR ~ sbatc EtR. 

rule 5': (No disabling) 
If a and b are distinct symbols, then sa EtR /\ sb EtR ~ sab EtR. 

rule 5 ": (Possible disabling of inputs) 
If a and b are distinct symbols, not both inputs of R, then 
sa EtR /\ sb EtR ~ sab EtR. 

rule 5"': (Possible disabling of inputs or outputs) 
If a and b are distinct symbols of different type, then 
sa EtR /\ sb EtR ~ sab EtR. 
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A class is defined by the collection of all trace structures R that satisfy a cer­
tain subset of the above rules. All trace structures R that satisfy 

rule I, 2, 3, 4', and 5' form class CI, 

rule I, 2, 3, 4', and 5" form class C2, 

rule I, 2, 3, 4', and 5"' form class C 3, 

rule I, 2, 3, 4", and 5"' form class C 4. 

There exists a subset relation between these classes, viz. C I CC 2 CC 3 CC 4. 
We have 

THEOREM 4.1.0. R is DI - REC4. 

PROOF. See Appendix A. 
D 

ExAMPLE 4.1.1. Consider the following components. 

R. 0 = pref (a ?;b ?;c !) , 

R. 1 = pref[a?llb?;c!], 

R. 2 = pref [a?;c ! I b? ;c!], 

R. 3 = pref [n ?;(a lib!)] , 

R.4 = pref(a!llb? I b?;a!llc!), 

R. 5 = pref((a?;d!)2 I (b?;e!)2 I (a?;d!llc!)2 ll(b?;e!llc!}2), and 

R. 6 = pref [(a?)2 I (b?)2 I (a?llb?;c!)2]. 

By inspection, we inf er that R. 0 ~ C 4, since rule 3 is not satisfied. Similarly, 
R. 6 ~ C 4, since rule 2 is not satisfied. For the other trace structures we have 

R. 1EC1,R.2EC2,R.3EC3,R.4EC4, andR.5EC2. 

Notice that in R. 1 there is no disabling of symbols; in R. 2 there is a disabling 
between inputs; and in R. 3 there is a disabling between outputs. For R. 4 we 
observe that rule 4' is not satisfied, though rule 4" is satisfied, as well as rules 
I, 2, 3, and 5'. 
D 

As the reader may have noticed in Example 4.1.1, verifying whether a com­
ponent is DI by means of the rules for C 4, C 3, C 2 or CI can be tedious. 
For many components, represented by a command, a simple syntactical 
verification can also be applied, as is shown in the next sections. 
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4.2. ATTRIBUTE GRAMMARS 

The DI grammars defined in this chapter are attribute grammars. We briefly 
explain those properties of an attribute grammar that are needed to under­
stand the next sections. 

An attribute grammar consists of 
a contextfree grammar 
a set of attributes for each grammar symbol 
a condition for each production rule, and 
a set of evaluation rules for each production rule. 

In the attribute grammars of the next sections, the attributes, the conditions, 
and the evaluation rules are used to restrict the derivations of the context-free 
grammar. We explain how these restrictions are formulated. 

Each derivation in the context-free grammar has a parse tree, and each node 
in that parse tree corresponds to a grammar symbol. The attributes of this 
grammar symbol are also associated with this node. For each attribute in the 
parse tree, its value is calculated according to the conditions and the evalua­
tion rules of the grammar as follows. 

The values of the attributes of each internal node are calculated from the 
values of its children. These calculations are specified in the evaluation rules 
which are associated with the production rule that is applied in that node. 
Attributes thus calculated are called synthesized attributes (as opposed to inher­
ited attributes). The values of the attributes of the leaves are assumed to be 
given. 

The values of the attributes in a node are calculated only if the condition for 
the production rule holds. The condition is formulated in terms of the attri­
butes of the children of that node. If in all nodes the condition for the produc­
tion rule holds, then the derivation is called a derivation of the attribute gram­
mar. Thus, derivations of the context-free grammar are restricted to deriva­
tions of the attribute grammar. 

In the following sections, the context-free grammar, the attributes, the condi­
tions, and the evaluation rules for grammar G4 are defined. We then show that 
any derivable command of this grammar is a DI command. 

4.3. THE CONTEXT-FREE GRAMMAR OF G4 

Below, the context-free grammar of the attribute grammar G4 is defined. In 
Table 4.3.0 the production rules are listed. The symbol □ is a meta symbol of 
the grammar; it separates the alternative productions. The prefixes pc and pf 
stand for prefix-closed and prefix-free respectively. 
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<dicom> ::= <pccom> 
□ (<pccom >)t 

<pccom> ::= £ 

a µ. <tailf > .0 
a <pccom > 11 <pccom > 
a pref ( <pf com>) 

a pref [ <pf com>] 

<pfcom> ::= <marked syms > 
a <pfcom > ; <pfcom > 
a <pfcom > I <pfcom > 
a (<pfcom>) 

<marked syms > : : = <sym>? □ <sym >? 11 <sym >? 
a <sym>! □ <sym>! II <sym>! 

a !<sym>? 

a ?<sym>! 

TABLE 4.3.0. The production rules of grammar G4. 

(a0) 
(a 1) 

(b0) 
(b 1) 
(b2) 
(b3) 

(c0) 
(c 1) 
(c2) 
(c 3) 
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The symbols <sym >, <tailf>, and all characters in the above table not 
enclosed by the < > brackets are terminal symbols of the grammar. All 
other symbols in Table 4.3.0 are non-terminals. The start symbol is <dicom >. 
The terminal <sym > represents a symbol from a sufficiently large alphabet. 
The terminal <tailf> represents a tail function defined by an array of com­
mands E(i,j:0~i,j<n), i.e. if µ.tailf.0 is an instance of <pccom>, then the 
tail function tailf is defined by 

tailf.R.i = pref(l/:0~j<n:E.i.j;R.j), 0~i<n. 

Later, when we define the conditions for production rule (b 0), these conditions 
are formulated for array E. For example, we require E.i.j E <pfcom > for all 
i,j with 0~i,j<n I\ E.i.j=/=0 I\ E.i.j=/=£. Thus, implicitly, commands of type 
<pfcom > are used in the application of rule (b0). 

With the above context-free grammar, commands of the form E or Et can 
be derived, where Eis expressed as a weave of (special) sequential commands. 

4.4. THE ATTRIBUTES OF G4 

At most eight attributes are associated with each grammar symbol. The attri­
butes are represented by the names 

0, I, EN, CO, HD, TL, FIRST, and FIRSTEXT. 

All eight attributes are associated with the grammar symbols <marked syms > 
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and <pfcom >. With the grammar symbol <pccom > only the attributes 0, I, 
EN, and CO are associated. The grammar symbol <dicom > has no attributes. 

The evaluation rules and conditions are defined in such a way that the fol­
lowing semantics can be attached to the attributes. (This is proven in Appen­
dix B.) For a command E derivable in (attribute) grammar G4 we have 

l(E) = iE, 
O(E) = oE, 
EN(E) = enE, 
CO(E) = coE. 

The attributes HD and TL indicate with what kind of marks a command E 
starts and ends respectively. For a command E derivable in grammar G4 we 
have 

HD(E) = empty 
HD(E) = in 
HD(E) = out 
HD(E) = mixed 

TL(E) = empty 
TL(E) = in 
TL(E) = out 
TL(E) = mixed 

if E=E, 
if E=1=EAhdECiEUenE, 
if E=1=E A hdE CoE UcoE, 
otherwise, 

if E=E, 
if E=1=E A tlECiEUcoE, 
if E=1=E A tlE CoE UenE, 
otherwise, 

where hdE={blEt::btEtE)}, and tlE={blEt::tbEtE)}. For example, for the 
command E =a?llb?;c ! I ?d!;e?, we have HD(E)=in and TL(E)=mixed. 

The attributes FIRST and FIRSTEXT represent a kind of I-lookahead sets 
for a command. The type of these attributes is a set of sets of symbols (instead 
of a set of symbols for usual I-lookahead sets). In the case of FIRSTEXT 
these sets of symbols consist of external symbols only. For a derivable com­
mand E in grammar G4 we have 

FIRST(£) = { 0} A FIRSTEXT(E) = { 0 }. 

If HD(E) = out, then 

FIRST(E) 

= {set(t) i tE(oE)' A tEtprefE A t=1=E A (Suc(t,E) \ oE=l=,0 V Suc(t,E)= 0)} 

U{{b}lbEcoE AbEtprefE}, 

and 

FIRSTEXT(E) 

= {set(ttextE)itE(oEUcoE)° A tEtprefE 

A (Suc(t,E) \ (oE UcoE)=l=,0 V Sue (t,E)= 0)}. 
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Here, set(t) denotes the set of symbols occurring in t. If HD(E)=in, then 
FIRST(E) and FIRSTEXT(E) are defined similarly, except that oE and co£ 
are replaced by iE and enE respectively. Notice that for int£= 0 we have 
FIRST(E)=FIRSTEXT(E). The elements of FIRST(E) are sets of (con­
current) external symbols or singletons of internal symbols. The set 
FIRSTEXT(E) contains sets of (concurrent) external symbols only. For exam­
ple, for the command E = a?llb?;c! I ?d!;e?, we obtain 
FIRST(E)={ {a,b },{d}} and FIRSTEXT(E)= { {a,b },{e} }. 

4.5 THE CONDITIONS FOR G 4 

The conditions for the production rules are formulated with five predicates. 
These predicates are ALFCOND, PROCOND, SEQCOND, ALTCOND, and 
TAILCOND. They correspond to a condition for the alphabets, a condition 
expressing whether projection has to be applied, a condition for the sequential 
construct, a condition for the alternative construct, and a condition for the 
tail-recursive construct respectively. 

ALFCOND(EO,E1) , PROCOND(E) , SEQCOND(EO,El), and 
ALTCOND(EO,E 1) are defined on commands derivable in G4 by 

ALFCOND(EO,E 1) _ (A ATTO,ATT1 
:ATTO,ATTl E {1,0,EN,CO} I\ ATTO=/=ATT1 
:ATTO(EO)nATT1(E l)= 0 
), 

PROCOND(E) EN(E)= 0 /\ CO(E)= 0, 
SEQCOND(EO,E 1) _ (TL(EO)=in I\ HD(E l)=out) 

V (TL(EO)=out I\ HD(E l)=in) 
v (TL(EO)=empty I\ HD(E l)=/=mixed) 
v (TL(EO)=/=mixed I\ HD(E 1)=enpty), 

ALTCOND(EO,E I) HD(EO)=/=mixed I\ HD(EO)=HD(E I) 
I\ LLCOND(EO,E I) 
I\ LLCONDEXT(EO,E I), where 

LLCOND(EO,El) = (FIRST(E0)={0} I\ FIRST(E1)={0}) 
v (A A,B :A EFIRST(EO) I\ BEFIRST(E I) 

: -,(A CB) I\ ,(B CA)) 

and LLCONDEXT(EO,E I) is defined analogously with FIRST replaced by 
FIRSTEXT. 

The condition ALTCOND(EO,E I) requires that EO and E 1 start with 
marks of the same type and that the LL- I conditions, both with respect to all 
types of symbols and with respect to external symbols only, are satisfied. 
These LL-1 conditions are a kind of generalized LL-I conditions for LL- I 
grammars. Notice that when the FIRST sets are non-empty and consist of sin­
gletons only we have 

LLCOND(EO,E I) _ FIRST(EO) n FIRST(E I)= 0. 
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The condition TAILCOND(tailf) consists of seven conditions defined on 
array E(i,j: O~i,j <n) that determines the tail function tailf. Some of the con­
ditions defined above appear in a more general form in these seven conditions. 
In the conditions defined below, the domain restrictions D (i,j) stand for 
O~i,j <n I\ E.i.j=/= 0 /\ E.i.J=?-; by EE <pfcom > we denote that E is a pro­
duction of <pfcom > in the attribute grammar. We have 

TAILCOND(tailf) _ (0) /\ (1) /\ (2) /\ (3) /\ (4) /\ (5) /\ (6), where 

(0) = (Ai: O,s;;;i<n: (Ej: O~j <n: E.i.j=/=0)) 

(1) _ (Ai,}: O~i,j <n I\ i=/=j: E.i.j=/=£) 
/\ (Ai: O~i <n: E.i.i=£ ~ (Aj: O,s;;;J<n I\ i=/=j: E.i.j = 0)) 

(2) = ALFCOND(i,j: D(i,j): E.i.j) 

(3) = (Ai,}: D(i,j): E.i.j E <pfcom >) 

(4) = (Ai,j,k: O~i,j,k <n I\ E.i.j=/=0 I\ E.j.k=/=0: SEQCOND(E.i.j, E.j.k)) 

(5) = (Ai: 0~i <n: ALTCOND(j: D (i,j): E.i.j)) 

(6) _ (Ai,j: D(i,j): FIRSTEXT(E.i.j)=/= { 0}) 
V (Ai,}: D(i,j): FIRSTEXT(E.i.j)= { 0 }), 

where 

ALFCOND (i,j: D(i,j): E.i.j) 

= (Ai,j,k,l: D(i,j) I\ D(k,/): ALFCOND(E.i.j, E.k.l)) 

and, for O~i<n, if (Nj::D(i,j))~l, then ALTCOND(j: D(i,j): E.i.J)-true; 
otherwise, 

ALTCOND(j: D (i,j): E.i.j) 

- ((Aj: D(i,j): HD(E.i.j)=in) v (Aj: D(i,j): HD(E.i.j)=out)) 

I\ LLCOND(j: D(i,j): E.i.j) I\ LLCONDEXT(j: D(i,j): E.i.j) 

LLCON D(j: D (i,j): E.i.j) 

_ (Aj: D(i,j): FIRST(E.i.j)= { 0}) 

v (Aj,k,A,B: D(i,j) I\ D(i,k) Aj=/=k I\ 

A EFIRST(E.i.j) I\ B EFIRST(E.i.k) 

: ,(A ~B)) 

and analogously for LLCONDEXT (j: D(i,j): E.i.j) with FIRST replaced by 
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FIRSTEXT. 
Condition 3 requires that every command E.i.j, with i,j satisfying D.i.j , is of 

type <pfcom >. Condition 2, 4, and 5 are generalizations of the alphabet con­
dition, the condition for the sequential construct, and the condition for the 
alternative construct respectively. The conditions 1 and 6 only are new condi­
tions. 

In Table 4.5.0 the conditions for the production rules of attribute grammar 
G4 are listed. Those production rules that are not listed do not have a condi­
tion. 

Production rule 

(a0) 
(bO) 
(b 1) 
(b3) 
(cl) 

(c2) 

Production 

E 
µ..tailf. 0 
E0IIEl 
pref [E] 
E0;El 

E0IEI 

Condition 

PROCOND(E) 
TAILCOND(tailf) 
ALFOND(E0,E 1) 
SEQCOND(E,E) 
SEQCOND(E0,E 1) /\ 
ALFCOND(E0,E 1) 
ALTCOND(E0,E 1) A 
ALFCOND(E0,E I) 

TABLE 4.5.0. The conditions for grammar G4. 

Combined, the conditions may be summarized as follows. 
(i) (The alphabet condition) 

For any symbol used, all atomic commands in which it occurs are of the 
same type. 

(ii) (The semicolon condition) 
Input and output marks alternate. (This also holds for the repetitive con­
struct and between state transitions in a tail function.) 

(iii) (The bar condition) 
In every alternative construct (also in a tail function) the alternatives start 
with marks of the same type and both LL-1 conditions are satisfied. 

(iv) (The tail-function condition) 
The array of each tail function satisfies three additional conditions: 
- Each row contains a non-empty command 
- Only a command at the diagonal can be £, and if a diagonal element is 

£, then all other commands in that row are 0 . 
- Either all commands different from£ and 0 contain external symbols, 

or all of them do not. 
(v) (The non-projection condition) 

If a command does not contain projection, then it does not contain inter­
nal symbols. 
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4.6. THE EVALUATION RULES FOR G4 

If the condition for a production rule in a node of the parse tree holds, then 
the values of the attributes in that node can be calculated. The values of the 
attributes in the leaves, i.e. for commands of type <marked syms > and £, are 
given in Table 4.6.0. These values are used to start the evaluation process. 

Command E Values for attributes of E 

a? J(E)=(a}, O(E)= 0 , EN(E)= 0, CO(E)= 0, 
HD(E)=in , TL(E)=in, 
FIRST(E)= { {a}} , FIRSTEXT(E)= { {a}}. 

a! /(E)= 0, O(E)={a} , EN(E)= 0, CO(E)= 0, 
HD(E)=out , TL(E)=out, 
FIRST(E)= { {a}} , FIRSTEXT(E)=( {a}}. 

?a! /(E)= 0, O(E)= 0 , EN(E)=(a}, CO(E)= 0, 
HD(E)=in , TL(E)=out, 
FIRST(E)= { {a}} , FIRSTEXT(E)= { 0 }. 

!a? /(E)= 0, O(E)= 0 , EN(E)= 0, CO(E)={a}, 
HD(E)=out , TL(E)=in, 
FIRST(E)= { {a}} , FIRSTEXT(E)= { 0 }. 

a?llb? J(E)=(a,b}, O(E)= 0 , EN(E)= 0, CO(E)= 0, 
HD(E)=in , TL(E)=in, 
FIRST(E) = { { a,b}} , FIRSTEXT(E)=( (a,b} }. 

a!llb! /(E)= 0, O(E)=(a,b} ,EN(E)=0 ,CO(E)=0, 
HD(E)=out, ,TL(E)=out, 
FIRST(E)= { { a,b}} , FIRSTEXT(E)= { { a,b} }. 

/(E)= 0, O(E)= 0 ,EN(E)= 0, CO(E)= 0, 
HD(E)=empty , TL(E)=empty, 
FIRST(E)= { 0} , FJRSTEXT(E)= { 0 }. 

TABLE 4.6.0. Values of attributes for EE < marked syms >. 

(Recall that EIIE=E for a?lla?, etc.) 
The evaluation rules corresponding to production rules (bO), (b I), (c I), and 

( c 2) are given in Table 4.6.1. The evaluation rules for (b 2) and (b 3) consist of 
copying the values of /, 0, EN, and CO; the evaluation rules for (c3) (and 
(c0)) consist of copying the values of all eight attributes. The domain restric­
tions D(i,J) for the array of commands E(i,j:O~i,J<n) stand for 
D(i,J) = O~i,J<n I\E.i.f=/=0 I\E.i.J=p.. 
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Rule Production Evaluation of attributes 

(b0) µ..tailf. 0 I(µ..tailf. 0) = (Ui,j:D(i,j): I(E.i.J)), 
O(µ..tailf. 0) = (Ui,j:D(i,j): O(E.i.J)), 
EN(p.tailf. 0) = (Ui,j:D(i,j): EN(E.i.J)), 
CO(µ..tailf.0) = (Ui,j:D(i,j): CO(E.i.J)). 

(b 1) E0IIE 1 J(E0IIE 1) = I(E0)Ul(E 1), 
0(£011£1) = O(E0)UO(El), 
EN(E0IIE 1) = EN(E0)UEN(E 1), 
CO(E0IIE 1) = CO(E0) UCO(£ 1). 

(c 1) E0;E 1 I(E0;E 1) = J(E0)UJ(E 1), 
O(E0;El) = O(E0)UO(El), 
EN(E0;E 1) = EN(E0)UEN(E 1), 
CO(E0;E 1) = CO(E0)U CO(E 1), 
HD(E0;E 1) = HD(E0), TL(E0;E 1) = TL(E 1), 
FIRST(E0;E 1) = FIRST(EO), 
if FIRSTEXT(E0)=/={ 0 }, 
FIRSTEXT(E0;E 1) = FIRSTEXT(E0) 
otherwise 
FIRSTEXT(E0;E 1) = FIRSTEXT(E 1). 

(c2) E0IE 1 J(E0IE 1) = I(E0)Ul(E 1), 
O(E0IE 1) = O(E0)U O(E 1), 
EN(E0IE 1) = EN(E0)UEN(E 1), 
CO(E OIE 1) = CO(E 0) U CO(E 1 ), 
HD(E0IE 1) = HD(E0), 
TL(E0IE 1) = TL(E0) if TL(E0)= TL(E 1) 

= mixed otherwise, 
FIRST(E0IEl) = FIRST(EO)UFJRST(El), 
FIRSTEXT(E0IE 1) = FIRSTEXT(E0) 

UFIRSTEXT(E 1). 

TABLE 4.6.1. The evaluation rules of grammar G 4. 

4.7. SOME DI GRAMMARS 
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Let the set of all commands derivable with attribute grammar G 4 be denoted 
by i:(G4). Grammar G4 is a DI grammar, i.e. 

THEOREM 4.7.0. EE!:(G4) ~Eis DJ. 

PROOF. See Appendix B. □ 
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We conjecture that there exist regular DI components that cannot be 
expressed as a command E Ee(G4). For example, we did not succeed in 
expressing the RCEL component as a command from e(G4). (This com­
ponent is a DI component as is shown in Example 4.9.1.) 

REMARK. Grammar G4 may be extended in such a way that more concurrent 
inputs, outputs, and internal symbols are allowed. The production rules for 
<marked syms > then become 

<marked syms> ::= <sym>!{II <sym>!} 

□ <sym >?{II <sym>?} 

□ ?<sym >!{II ?<sym >!} 

□ !<sym >?{II !<sym >?}, 

where { } are meta symbols denoting a finite replication of the enclosed. Since 
in the remainder of this thesis no use is made of this extension, we have not 
included it in the grammar G4. 

□ 

The attribute grammars G4', G3', G2', and G 1' are defined similarly to 
grammar G4. Each grammar has its specific restrictions with respect to G4. 

The restriction for grammar G 4' is the reduction of the production rules for 
<marked syms > to 

<marked sym> ::= <sym>? □ <sym>! □ !<sym>?, 

i.e. no parallel inputs or outputs are allowed, and there are no internal sym­
bols of the environment. 

Grammar G3' is obtained from grammar G4' by removing the alternative 
! <sym >? from the production rules for <marked syms > as well, i.e. G 3' 
has no internal symbols. 

Grammar G 2' is obtained from grammar G 3' by strengthening the condition 
ALTCOND(E0,E I) to ALTCOND2(E0,E I), where 

ALTCOND2(E0,E I) 

= ALTCOND(E0,E 1) /\ HD(E0)=in I\ HD(E l)=in. 

A similar strengthening is applied in the conditions of TAILCOND. 
Grammar G 1' is obtained from grammar G 4' by removal of the production 

rules for tail recursion (bO) and for the alternative construct (c2). 
Obviously, we have e(Gi')ke(G4) for l:s;;;i<5. Accordingly, any command 

derivable with one of the grammars G4', G3' G2', or Gl' represents a DI 
component. 

It is furthermore conjectured that e(Gi')kCi, for 1:s;;;; <4. 
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4.8. DI GRAMMAR GCL' 

The grammar GCL' produces so-called combinational commands. Combina­
tional commands represent components for which the outputs uniquely depend 
on the current inputs. 

REMARK. Components represented by combinational commands bear a resem­
blance to combinational circuits, as used in switching theory. There, these cir­
cuits are also called combinational logic and denoted by the acronym CL. 
D 

The production rules for the attribute grammar GCL' are given in Table 4.8.0. 

<dicom > ::= <pccom> (a2) 

<pccom> ::= £ 

□ pref(<sym >?) (b4) 

□ pref ( <sym > !) (b5) 

□ pref [ <pf com >] (b6) 

□ pref ( <parout >; [ <pfcom >]) (b7) 

□ <pccom > II <pccom > (b8) 

<pfcom> ::= <parin >; <parout > (c4) 

□ <pfcom > I <pfcom > (c5) 

<parin> ::= <sym >? □ <sym >? II <sym>? 
<parout >:: = <sym >! □ <sym >! II <sym >! 

TABLE 4.8.0. The production rules for grammar GCL'. 

The conditions for these production rules are listed in Table 4.8.1. 

Production rule 

(b7) 
(b8) 
(c4) 
(c5) 

Production 

pref(E0;[E I]) 
E0IIEI 
E0;El 
E0IEI 

Condition 

ALFCOND(E0,E 1) 
ALFCOND(E0,E 1) 
ALFCOND(E0,E 1) 
ALTCOND(E0,E I)/\ 
ALFCOND(E0,E I) 

TABLE 4.8.1. The conditions for grammar GCL'. 

The evaluation rules for (b4), (b5), (b6), (b8), (c4), and (c5) are analogous to 
those of (b2), (b2), (b3), (b I), (c I) and (c2) respectively. The evaluation rules 
for production rule (b 7) are analogous to the evaluation rules for (b I) where 
E0IIE I is replaced by pref(E0;[E I]). 
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Any combinational command of type £, pref ( <sym > ?), pref ( <sym > !), 
pref[ <pfcom > ], or pref( <parout >;[ <pfcom >]) is called a semi-sequential 
command From the above, we infer that any combinational command is 
expressed as a weave of semi-sequential commands. 

We have 

THEOREM 4.8.0. E E£(GCL') ~Eis DI. 

PROOF (Sketch). We indicate that any command E0E£(GCL') can be rewritten 
into a semantically equivalent command E 1 E £( G 4'). 

We observe that each production rule in GCL' also occurs in G4' except for 
production rule (b 7). With this production rule semi-sequential commands of 
the form pref(E0;[E 1)) are produced. These commands can be rewritten into 
commands µ.tailf. 0, where 

tailf.R O = pref(E0;R I) 

tailf.R 1 = pref(£ l;R I). 

Let each command of the form pref(E0;[El]) occurring in EE£(GCL') be 
rewritten as above. The result of this rewriting is derivable with the attribute 
grammar G4' (even G2'). Notice that the SEQCOND conditions are always 
satisfied for commands in £(GCL'). 
D 

4.9. ExAMPLES 

ExAMPLE 4.9.0. We give a few examples of combinational commands. The 
only conditions that have to be checked for combinational commands are the 
alphabet condition and the bar condition, which are easily verified. For the fol­
lowing commands of a 2-XOR, WIRE, and 2-CEL component we have 

pref[a ?;c ! I b ?;c!] E £( GCL'), 

pref(b !;[a?;b !])E£(GCL'), and 

pref[a?;c !] II pref(c !;[b?;c !]) Ef:(GCL') 

respectively. For the conjunction component of Section 2.3.0 we have 

pref[a0?llb0?;c0! I a0?llb l?;c0! I a l?llb0?;c0! I a l?llb l?;cl !] Ef:(GCL'). 

The bar condition for this command amounts to ,(A c;;,,B), for 
A,BE{ {a0,b0},{a0,b 1 },{a 1,b0},{a l,b 1}} and A::/=B. 
D 



4.9. Examples 75 

ExAMPLE 4.9.1. For the commands of the basic components given in Section 
2.2 we observe 

pref[a?;c !] II pref[b?;c !] E e(G I'), 

pref[a?;b !] II pref[a?;c !] E e(G I'), 

pref[a?;b!;a?;c!] E e(Gl'), 

pref[(a?lb?);c!] E e(G2'), 

pref[a?;p!]llpref[b?;q!]llpref[n?;(p!lq!)] E e(G3'), 

and 

pref[a l?;p l!;a0?;p0!] 

II pref[b I ?;q I !;b0?;q0!] 

llpref[pl!;a0?lql!;b0?] E e(G3'). 

From this we conclude that the 2-CEL, 2-FORK, TOGGLE, 2-XOR, 2-SEQ, 
and 2-ARB component(s) are DI components. 

For the RCEL component pref[£], where 

E = (a ?;d !)2 I (b?;e !)2 I (a?; d !lie !}2 ll(b?; e !lie !)2, 

we observe 

pref EEC 2 I\ hdE C iE I\ tlE C oE I\ E is prefix-free. 

As a special case of Theorem B.4 on tail recursion in Appendix B, we inf er 
pref[E]EC4, i.e. also the RCEL component is a DI component. 

Obviously, the WIRE, SINK, SOURCE, and EMPTY components are also 
DI components. 
D 

ExAMPLE 4.9.2. In Section 2.3.1 the sequence detector is specified by µ..tailf.0, 
where 

tailf.R 0 = pref (a0?;n !;R. 1 I a l?;n !;R 0) 

tailf.R 1 = pref(a0?;n!;R I I al?;n! ;R2) 

tailf.R 2 = pref (a0?;n !;RI I a l?;n !;R 3) 

tailf.R 3 = pref (a0?;y !;R. I I a l?;n !;R. 0). 

Command µ..tailf.0 can be derived with the context-free grammar of G2'. 
We verify for this command the conditions of grammar G2'. For the alphabet 
condition we observe that for any symbol used all atomic commands in which 
this symbol occurs are of the same type. For the semicolon condition we 
observe that input marks and output marks alternate. For the bar condition 
we observe that each alternative of an alternative construct starts with input 
marks, and that the LL- I conditions are satisfied, since { { a 0}} n { { a 1}} = 0 . 
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For the tail-function condition we observe for the array of commands of tailf, 
- each row contains a non-empty command, 
- no command is equal to t:, and 
- all non-empty commands consist of external symbols only. 
Consequently, the tail-function condition is satisfied. The non-projection con­
dition is also satisfied, since f.L.tailf. 0 contains no internal symbols. Accord­
ingly, we conclude µ..tailf.O E e.(G2'). 

□ 

ExAMPLE 4.9.3. In Section 2.3.2 the token-ring interface is specified by 

E = pref [a l?;p l!;aO?;pO!] 

II pref [b?;(q! IP l!;aO?;q l!)]. 

This command can be derived with the context-free grammar of G3'. For 
the conditions of G 3' we observe that the alphabet condition is satisfied. 
Furthermore, input and output marks alternate; the semicolon is satisfied as 
well. For the only alternative construct in E, i.e. q ! IP l!;aO?;q l!, we observe 
that the alternatives start with output marks and that { { q}} n { {p I}} = 0 . 
Consequently, the bar condition is satisfied. The non-projection condition is 
also satisfied, and we conclude that EE e.( G 3'). 

□ 

ExAMPLE 4.9.4. In Section 2.3.3 another token-ring interface is specified by 

E = (pref[rb?;!b?;gb !;rw?;!w?;gw !] 

II pref[wtr?;(!tu?;wts ! I !tb?;bts !) 

lbtr?;(!tu ?ptb ?);bts ! 

II µ..tailf.O 

) t' 
where tailf.R O = pref(!tu?;R O I !b?;!w?;R 1) 

tailf.R 1 = pref(!tb?;R O I !b?;!w?;R 1). 

This command can be derived with the context-free grammar of G4'. We 
observe that the alphabet condition is satisfied and that input marks and out­
put marks alternate. There are four alternative constructs to be considered for 
the bar condition, viz., 

!tu?;wts ! I !tb?;bts!, 

!tu? I !tb?, 

!tu? I !b?;!w?, and 

!tb? I !b ?; !w?. 
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Each of the above alternatives starts with output marks. For the first two con­
structs we observe 

{{tu}} n { { tb}} = 0 A { { wts}} n { { bts}} = 0 

and 

{ {tu } } n { { tb } } = 0 A 

FIRSTEXT(!tu?)= 0 A FIRSTEXT(!tb?)= 0 

respectively, i.e. both LL-I conditions are satisfied. Consequently, the bar con­
dition is satisfied for the first two constructs. A similar reasoning applies to the 
other two alternative constructs. For the tail-function condition we observe 
that all commands in the matrix of tailf differ from 0 and t: and consist of 
internal symbols only. Accordingly, the tail-function condition is satisfied. 
Since all conditions are satisfied, we conclude EE e ( G 4'). 

□ 

ExAMPLE 4.9.5. We derive for component count 3(a,b) of Example 1.3.1 a com­
mand satisfying grammar G4'. The component count 3(a,b) can be specified by 
the command 

(pref[a ;x] 11 pref[x ;y] II pref[y ;b]) t { a,b }. 

We assign to the external symbol a, i.e. the increment, and to the external 
symbol b, i.e. the decrement, the direction of input. Symbols x and y are given 
the type of internal symbols of the component. We then obtain 

EO = (pref[a?;!x?] II pref[!x?;!y?] II pref[!y?;b?])t. 

This command cannot be derived with grammar G4': input and output marks 
do not alternate in the first and last sequential command. But these conditions 
are easily met, if we introduce two fresh symbols p ! and q ! and write 

E 1 = (pref[a ?; !x ?;p !] II pref[!x ?; !y ?] 11 pref[!y ?;q ! ;b ?]) t. 

This command can be derived with grammar G 4' ( even with grammar G I'). 
Moreover, we have tE It { a,b} = tE 0. 

We remark that the position at which to insert p ! is not unique. We could 
also have changed the first sequential command into pref fp ! ;a?; !x ?]. 

By the introduction of symbols p ! and q ! we have introduced a communica­
tion protocol between component and environment in order to ensure proper 
delay-insensitive operation. Communication protocols like the one introduced 
here, i.e. with a? and p ! alternating and q ! and b? alternating, can be called 
handshake protocols. Various handshake protocols exist; in the next examples 
more of them are given. By using a DI grammar one can quickly and con­
veniently discover such handshake protocols. 

The introduction of a handshake protocol imposes behavioral restrictions on 
the environment and on the component. For protocol EI, for example, the 
environment has to take care of the alternations of a's and p's and of b's and 
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q's only. The component, however, has to ensure proper internal synchroniza­
tion as well. Therefore, designing a communication protocol always requires a 
balancing of restrictions put on the component and restrictions put on the 
environment. 

In Example 1.3. l several commands, which all have the same structure, were 
given for component countn(a,b ). With some calculus these commands can be 
rewritten into 

(pref[a ;x] II E II pref[y ;b ])t {a,b }, 

where command Eis expressed as a weave of sequential commands. We can 
apply to this command the same procedure as above to obtain a DI command. 
Thus, we may get many commands from f.( G 4') that have all the same trace 
structure. 

□ 

ExAMPLE 4.9.6. The 3-place binary buffer of Example l.3.2 is specified by 

(pref[a0;x0 I a l;x l] 

11 pref[x0;y0 Ix l;y l] 

II pref[y0;b0 I y 1 ;b I] 

) t { aO,a 1,bO,b I}. 

We derive a DI command for this component in the same fashion as we did in 
the previous example. This time, we assign to the external symbols a O and a 1 
the direction of inputs and to the external symbols b O and b 1 the direction of 
outputs (as opposed to the previous example where b was assigned the direc­
tion of input). Symbols xO, x 1, yO and y 1 are internal symbols of the com­
ponent. We obtain 

(pref[a0?;!x0? I a l?;!x I?] 

II pref[!x0?;!y0? I !x l?;!y I?] 

II pref [!y O?;b 0! I !y I ?;b I!] 

)t. 

Again, the semicolon condition is not satisfied. To repair this, we introduce 
symbols p ! and q? and write 

(pref [a 0?; !x O?;p ! I a 1 ?; !x I ?;p !] 

11 pref[!x0?;!y0? I !x l?;!y I?] 

II pref[q?;(!y0?;b0! I !Y I?;b I!)] 

) t. 

This command can be derived with grammar G4'. 
□ 
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ExAMPLE 4.9.7. In this example we demonstrate how a DI command may be 
obtained from an undirected command by the so-called four-phase handshake 
expansion. This expansion was introduced by Alain Martin [25, 26]. The for­
malization given below was inspired by a note of Rob Hoogerwoord [ 16]. 

The construction of the expansion is described as follows. Let E be an 
undirected command. Rewrite E, if possible, into a form E O t, where E O is 
expressed as a weave of sequential commands. Each symbol b E ext E O can be 
either passive or active. For each passive symbol bE extEO we introduce the 
four-phase handshake protocol 

pref[bO?;b l!;b2?;b3!], 

which indicates that the environment initiates this protocol. For each active 
symbol b E extEO we introduce the four-phase handshake protocol 

pref[b I !;b 2?;b 3!;b0?], 

which indicates that the component initiates the protocol for this symbol. The 
command E is expanded as follows. Replace each atomic command b in E 0, 
with bEextEO, by b l!;b2? and replace each atomic command bin EO, with 
bEintEO, by !b?. The projection (on extEO) of the weave of the four-phase 
handshake protocols and the expansion of EO forms the four-phase handshake 
expansion of E. 

For example, for the command 

(pref[a ;x] II pref[x ;y] II pref[y ;b]) t { a,b }. 

of countJ(a,b) we obtain for passive a and b 

(pref[aO?;a l!;a2?;a3!] 

11 pref[bO?;b l!;b2?;b3!] 

II pref[a l!;a2?;!x?] 

II pref[!x?;!y?] 

11 pref[!y?;b l!;b2?] 

) t. 

Notice that for an expansion thus obtained, the projection on all symbols 
bl, or all symbols b2, with bE extEO yields, after an appropriate renaming, 
the original command. 

The four-phase handshake expansion gives rise to a command that satisfies 
the alphabet condition, the semicolon condition and the non-projection condi­
tion. The other conditions do not always have to be satisfied, however. We 
observe that the expansion for count 3(a,b) is derivable with grammar GI'. 

An advantage of this handshake expansion is that the only restrictions put 
on the environments are the four-phase handshake protocols for the external 
symbols. These protocols are independent of each other. A disadvantage is 
that this expansion can introduce many synchronizations between outputs 
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which may yield more complex decompositions, as we shall see in the next 
chapters. 

□ 
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A Decomposition Method I 
Syntax-Directed Translation of Combinational Commands 

5.0. INTRODUCTION 

81 

In this and the next chapter we present a method to decompose components 
expressed in e( G 4') U e( GCL') into a finite set of basic components. The 
decomposition method can be described as a syntax-directed translation of 
commands from e(G4')Ue(GCL') into commands of basic components. More­
over, we show that the decomposition can be carried out such that the result is 
linear in the length of the command, i.e. the total number of basic components 
in the decomposition of command E is proportional to the length of E. 

In order to make the presentation of the decomposition method more digest­
ible, we have split it into two chapters. In this chapter we discuss the decom­
position of components expressed in ef...GCL') into basic components, i.e. the 
decomposition of components represented by combinational commands into 
basic components. In the next chapter we discuss the decomposition of com­
ponents expressed in e(G4') \ e(GCL') into components expressed in e(GCL'), 
i.e. the decomposition of components represented by non-combinational com­
mands in e( G 4') into components represented by combinational commands. 
(This division in the decomposition method exhibits a similarity with the divi­
sion in the synthesis method of synchronous circuits usually applied in switch­
ing theory, i.e. a division into the synthesis of combinational circuits and 
sequential circuits.) The techniques applied in Chapter 5 illustrate in a simple 
way the techniques that are also applied in Chapter 6. The remainder of this 
section is devoted to a general introduction to the complete decomposition 
method. 

The method consists of a hierarchy of decomposition steps, each of which is 
described by means of DI grammars. In order to describe the decomposition 
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steps on the highest level in the hierarchical decomposition we use grammars 
G4', G3', G2', and GCL' of the previous chapter. By means of these grammars 
we define the hierarchy of languages 

f:o C!:i C~ ce3 C~, where 

~ = e(G4')ue3, 

eg = e(G3')ue2, 

~ = e(G2')Ui:i, 

ei = e(GCL')Uf:o, and 

f:o = { all commands of basic components}. 

The method can be divided into four steps. In step k, 0:s;;;k<4, for each com­
mand E. 0E~-k a collection of commands E.i, 1 :s;;;i <n, is constructed in such 
a way that the following properties hold. 

- E.O ➔ (i: 1:s;;;i<n:E.i). 

- E.iE~-k-l , for all i, 1:s;;;i<n, and 

- The decomposition can be described 

as a syntax-directed translation. 

(5.0) 

(5.1) 

(5.2) 

From the properties (5.0), (5.1), and (5.2) and the Substitution Theorem, we 
conclude that any component represented by a command in ~ can be decom­
posed in a syntax-directed way into basic components expressed in f:o. Similar 
to the division of the decomposition of ~ into f:o into four steps, each of these 
decomposition steps is, in its turn, divided into a number of substeps. Thus, 
by stepwise refinement, we obtain a hierarchical decomposition method based 
on the Substitution Theorem. 

The language f:o is defined as the set of all commands of the basic com­
ponents. In this thesis, we show that for the finite set of basic components we 
may take the set BO = Bu {RCEL} or the set B 1 = BU {NCEL }, where 

B = {2-FORK, 2-CEL, 2-XOR, TOGGLE, 2-SEQ, 

WIRE, SINK, SOURCE, EMPTY}. 

Each basis has its particular advantages and disadvantages. For example, for 
the basis BO we observe that every component in BO is a DI component (cf. 
Example 4.9.1). Accordingly, by Theorem 3.2.1.1, any decomposition of a DI 
component into the basis BO is a DI decomposition. The basis B 1, however, 
contains one component that is not a DI component, viz. the NCEL com­
ponent. For this reason, the decomposition of a DI component into the basis 
B 1 does not have to be a DI decomposition. Although the decomposition into 
the basis B 1 is not DI, it is simpler than the decomposition into BO and has 
some practical advantages. Realizations of this decomposition with connection 
wires still operate properly if certain (physical) forks behave as so-called 



5.0. Introduction 83 

isochronic forks. In this thesis an isochronic fork is a fork for which the 
differences between the delays in the branches are less than the delay in a 
basic NCEL component. 

The choice of basis BO or B 1 has to be taken in one of the last decomposi­
tion steps only, viz. in the decomposition of so-called CAL components. CAL 
components are DI components. The decomposition of CAL components into 
the basis B 1 is presented in Section 5.6.2. The decomposition of CAL com­
ponents into the basis BO, which is more complicated, is only briefly discussed 
in Section 5.6.3. This section may be skipped at first reading. 

The decomposition of a component EE~ according to the method 
described in this and the next chapter can be carried out such that the result is 
linear in the length of E. We prove this by showing that each decomposition 

El.0 ➔ (i: l~i<n: EU) 

in the hierarchy of decomposition steps satisfies the property 

(+i: l~i<n : IEU I)= e(!El.01). (5.3) 

Here, IEI denotes the length of command E and is defined as the number of 
atomic commands occurring in E. (For a command µ..tailf. 0 it is defined as 
the number of atomic commands in the tail function tailf different from 0 .) 
In this thesis, the expression lfEI = fXIEI) for a function f defined on com­
mands from a particular language e signifies 

(EK:K>O: (AE:EEE: lfEl<KIEI)). 

The linear complexity of the complete decomposition method can be derived 
from property (5.3) as follows. Let 

E.O ➔ (i: l~i<m :E.i) 

denote the complete decomposition of DI component E. OE~ into eo. Because 
the number of decomposition steps is bounded and each step satisfies pro­
perty (5.3), we infer 

(+i: l~i<m: JE.i I) = e(JE. 01). 

Since there exists an upper bound for the lengths of the commands from eo, 
we deduce that m is proportional to JE. OJ. 

The above properties of the decomposition method emphasize the impor­
tance of the task of the programmer. First, the programmer must express a 
component in the language ~ . Second, if there are several programs possible 
for a component, he has to choose that program that suits his purposes best 
with respect to the decomposition of that program. For example, he may 
choose a short program to obtain a decomposition with a few basic elements, 
or he may choose a program whose decomposition according to the syntax of 
the program exhibits more parallelism, but which may be a larger program. 

A more detailed overview of the hierarchy of all decomposition steps and 
languages can be described as follows. The decomposition steps from E3 to e2 
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and from ei to fo are divided into several substeps. Most of these substeps are 
also described by means of DI grammars which will be defined as the need 
arises. For example, we will define the grammars GSEL, GCIJJ, GCLl, and 
GCAL Grammars GCL0 and GCL 1 will be derived from grammar GCL', 
grammar GCAL will be derived from grammar GCL 1, and grammar GSEL 
will be derived from grammar G 3'. The hierarchy among all languages is 
displayed in Figure 5.0.0. 

/ /c, ,' // 
E(G4) ~• / ~ / ~ / ~ ,,- / Et 

/ / 

/ E(G4') 

1

/ / , E(GCL ') 

/ // // ////~ 

/ E(G3') / / / "'-~ /Ll. / ·, E(GCL I) E(GCLO) / 
/ // / 

E(GSEL) • / / E(G2'). / / • e(GCAL} / 
/ / 

/ 

FIGURE 5.0.0. The hierarchy among the languages. 

/ 

/ 
/ ~ 

/ 

/ 

From Figure 5.0.0 we read, for example, that e(GCL 1) C e(GCL') and 
e(GCL') C f_(G4). 

In order to give a concise overview of the hierarchy among all the decompo­
sition steps we have displayed these steps symbolically in Table 5.0.0 together 
with the section in which these steps are presented. 

Section Decomposition step 

6.3 e(G4') ➔ e(G 3'), fo 
6.2.3 e(G3') ➔ f_(GSEL), f_(GCL'), fo 
6.2.(4+5) f_(GSEL) ➔ SEQ, f_(G2'), e(GCL') 
6.2.6 SEQ ➔ fo 
6.1 e(G2') ➔ e(GCL'), fo 
5.2 f_(GCL') ➔ e( GCL 0), e( GCL 1) 
5.3 e(GCL0) ➔ XOR, CEL, FORK 
5.4 XOR ➔ fo 
5.4 CEL ➔ fo 
5.4 FORK ➔ fo 
5.5 f_(GCLI) ➔ e( GCAL ), fo 
5.6 f_(GCAL) ➔ fo 

TABLE 5.0.0. The hierarchy of decomposition steps. 

From this table we read, for example, that in Section 6.2 the decomposition 
step from e3 to l:z, which is divided into three substeps, is discussed. First, 
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components expressed in e( G 3') are decomposed into components expressed 
in e( GSEL ), e( GCL'), and eo. Second, each component expressed in 
e(GSEL) is decomposed into SEQ components and components expressed in 
e(G2') and e(GCL'). Finally, each SEQ component is decomposed into basic 
components. 

Many of the above displayed decomposition steps follow a similar pattern. 
For example, if we have to decompose components E, where Eis expressed as 
a weave of (semi-) sequential commands, then we first consider the decomposi­
tion of such components expressed by (semi-) sequential commands. Subse­
quently, we construct a decomposition for the weave of these commands by 
applying the Separation Theorem. 

Since each decomposition step is precisely defined by means of the gram­
mars, we can study the properties of each step in isolation. For each decom­
position step of Table 5.0.0 we verify whether the decomposition can be car­
ried out in a syntax-directed way and whether the decomposition is linear in 
the length of the command. For almost every step these properties are readily 
verified. 

Most decomposition steps are introduced by means of an example from 
which the general decomposition procedure for that step easily follows. The 
discussions on the correctness of each decomposition are less formal than in 
Chapter 3. The simple decompositions are given by a schematic only. For the 
decomposition of CAL components into the basis BO we give a decomposition 
procedure which we conjecture to be correct. 

Finally, we remark that the decomposition method presented in these two 
chapters is not the most efficient method. In these chapters, we are interested 
mainly in the existence of a syntax-directed (linear) decomposition method. 
Potential optimizations and decomposition techniques that can be applied to 
special commands are discussed in Chapter 7. 

5.1. DECOMPOSITION OF i:i INTO eo. 

In the decomposition step from e1 to eo each component E Ee(GCL') is 
decomposed into components expressed in eo . This decomposition step is 
divided into five substeps, and, in order to describe these steps, we first intro­
duce the grammars GCL 0, GCL 1, and GCAL. 

Grammar GCLO is defined as grammar GCL' (see Section 4.8) except for 
one restriction: the production rule for <parin > is reduced to 
<parin >:: = <sym > ?, i.e. parallel inputs are not allowed. Grammar GCL 1 
is also defined as grammar GCL' except for two restrictions: the production 
rule for <parout > is reduced to <parout >:: = <sym > !, i.e. parallel outputs 
are not allowed, and the other restriction is that all outputs differ. For exam­
ple, we have 

pref(e!llg!;[a?;e!llf. I b?;e!llg! I c?;/!D 

11 pref [ c ?;g ! I d?;g !] E e(GCLO) 
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pref[a0?lla l?;b0! I a0?lla2?;b 1! I a3?;b2! I a4?;b3!] E E(GCL 1). 

The grammar GCAL is defined analogously to grammar GCL 1 except for two 
restrictions. The production rules for <pccom > and <parin > reduce to 

<pccom > : : = pref[ <pfcom >] and 

<parin> ::= <sym>?ll<sym>?, 

where for the last production rule both inputs must differ. In words, any com­
mand for a CAL component is of the form pref[£], where each alternative in 
Eis of the form <sym >? ll<sym >? ;<sym>!. The command E satisfies the 
LL-1 conditions and all outputs in E differ. For example, we have 

pref[a0?llb?;c0! I a l?llb?;c 1 !] E E(GCAL) and 

pref[a0?lla l?;b0! I a0?lla2?;b l! I a l?lla2?;b2!] E E(GCAL). 

A component expressed by a command in E(GCAL) is called a CAL com­
ponent, which can be viewed as a 2-CEL component with alternatives. 

The decomposition step is subdivided into five parts. First, we show how 
any component E EE(GCL') is decomposed into a component E0EE(GCL0) 
and a component E 1 EE( GCL 1 ). Second, we show how components 
EEE(GCL0) can be decomposed into XOR, CEL, and FORK components. 
Third, we discuss the decomposition of XOR, CEL, and FORK components 
into the basis B. Fourth, we present a method to decompose components 
EE e( GCL 1) into CAL components and components expressed in fo. Finally, 
we discuss the decomposition of CAL components into fo. 

5.2. DECOMPOSITION OF E(GCL') 

In this section, we show that for any command E0EE(GCL') there exist com­
mands E 1 EE( GCL 1) and E 2 EE( GCL 0) such that E o- E 1,E 2. The com­
mands E 1 and E 2 are constructed from the syntax of E 0. Moreover, we have 
IE l I + IE 21 = e(IE 01). Before we explain the decomposition we briefly recall 
that any command E0EE(GCL') is expressed as a weave of semi-sequential 
commands of the form£, pref(a?), pref(a!), pref[£], or pref(<parout>;[E]). 
Command E is an alternative construct, where each alternative is of the form 
<parin >;<parout > (see Section 4.8). 

First, we consider an example. Let E. 0.0 and E. 1.0 be defined by 

E. 0.0 = pref[a0?lla l?;b0!llb l! I a0?lla2?;b0!llb2! I a3?;b l!] 

E. 1.0 = pref(b3! ; [a4?;b0!llb3! I a0?;b4!]). 

We observe that E. 0.0IIE. 1.0EE(GCL'). Let E. 0.1, E. 0.2, E. 1.1, and E. 1.2 be 
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defined by 

E.0.1 = pref[a0?llal?;q.0.0! I a0?lla2?;q.O.l! I a3?;q.0.2!], 

E. 0.2 = pref[q. 0.0?;b0!llb l! I q. 0.l?;b0!llb2! I q. 0.2?;b 1!], 

E. 1.1 = pref[a4?;q. 1.0! I a0?;q. 1.1!], and 

E. 1.2 = pref(b3!; [q. l.0?;b0!llb3! I q. l.l?;b4!]). 

By definition of decomposition, we derive 

E. 0.0 ➔ E. 0.1, E. 0.2 and 

E. 1.0 ➔ E. 1.1 , E. 1.2 . 
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In order to apply the Separation Theorem we check conditions (3.7) and (3.8) 
for the above decompositions. We infer that the internal symbols of the 
decompositions are row-wise disjoint and that the outputs are column-wise dis­
joint. Consequently, application of the Separation Theorem yields 

E. 0.0IIE. 1.0 ➔ E. 0.1 IIE. 1.1 , E. 0.2IIE. 1.2 . 

Moreover, we observe that in E. 0.1 II E. 1.1 parallel outputs do not occur and 
all outputs differ, i.e. E. 0.1 IIE. 1.1 EI:{ GCL 1 ). In E. 0.211 E. 1.2 parallel inputs 
do not occur, and consequently E. 0.2IIE. l.2El:{GCL0). 

The above decomposition procedure can be applied to any combinational 
command E0El:{GCL'). By definition of grammar GCL', command E0 is 
expressed as a weave (Iii: 0~i <n: E.i. 0) of semi-sequential commands 
E.i. 0El:{GCL'). Let command E.i. 0 have m(i) alternatives, m(i)~0. We 
introduce the internal symbol q.i.j for the semicolon in alternative J, 
0~j <m(i), of semi-sequential command E.i. 0, 0~i <n. Subsequently, we split 
command E.i. 0 into E.i. 1 and E.i. 2 such that E.i. 0 ➔ E.i. l,E.i. 2 holds, simi­
larly to the example above. For the semi-sequential commands c and pref(a !) 
and pref (a?) we take c ➔ c, c and pref (a!) ➔ c, pref (a!) and 
pref(a ?) ➔ pref(a ?), c respectively. For the decompositions 
E.i. 0 ➔ E.i. 1, E.i. 2, O~i <n, it follows that the internal symbols are row-wise 
disjoint and that the outputs are column-wise disjoint. Consequently, by the 
Separation Theorem, we derive E 0 ➔ E 1, E 2, where 

E0 = (Iii: 0~i<n: E.i. 0), 

El= (lli:0~i<n:E.i. l), and 

E 2 = (Iii: 0~i <n: E.i. 2). 

Moreover, from the construction of E 1 and E 2 follows E 1 EI:{ GCL 1 ), 
E 2 Ee( GCL 0), and IE 1 I + IE 21 = e(JE 01). 
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5.3. DECOMPOSITION OF f(GCL0) 

5.3.0. Decomposition of semi-sequential commands 

Consider the component E, with 

E = pref(e!llg!;[a?;e!llf! I b?;e!llg! I c?;f!]). 

We observe that E is a semi-sequential command and EE e ( GCL 0). By 
definition of decomposition, component E can be decomposed into the XOR 
components 

XOR0 = pref(e!;[a?;e! I b?;e!]), 

XOR I = pref[a?;f! I c?;f !], and 

XOR2 = pref(g!;[b?;g!]). 

Notice that XOR0=E t aXOR0, and that similar properties hold for XORI 
and XOR2. The decomposition is depicted in Figure 5.3.0. 

a?~~• 
b? D----;·, 
C? ---,0---- g ! 

FIGURE 5.3.0. Decomposition of semi-sequential command EE f(GCL0). 

In general, any semi-sequential command EE e( GCL 0) can be decomposed 
in the same way. The procedure for this decomposition is described as fol­
lows. Each semi-sequential command EE e ( GCL 0) is of the form £, pref (a?), 
pref(a !), pref[E I], or pref(E0;[E I]). Component£ is the EMPTY component, 
and the components specified by pref (a?) or pref (a!) are a SINK or an active 
SOURCE component respectively. A component specified by pref(E0;[E I]) or 
pref[E I] can be decomposed into XOR and active SOURCE components as 
follows. We take for each output in EI a k-XOR component, where k equals 
the number of alternatives in which this output occurs. The input that occurs 
in each such alternative is connected to this XOR component. (By definition 
of GCL0 there is exactly one input in each alternative.) If an input is con­
nected to more than one XOR component, then a FORK component is used 
to duplicate this input. If the output occurs in E0 as well, then the XOR com­
ponent initially starts with producing an output. For each output that occurs 
in E0 but not in EI we take an active SOURCE component. 

The above described procedure yields a syntax-directed decomposition of 
semi-sequential commands EE e ( GCL 0) that is linear in the length of the com­
mand E. 
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The general decomposition of a component E Ee(GCLO), where E is a weave 
of semi-sequential commands, is obtained by application of the Separation 
Theorem. We consider an example first. 

Let E. 0.0 and E. 1.0 be defined by 

E.0.0 = pref(e!llg!;[a?;e!II/! I b?;e!llg! I c?;f!]), and 

E. 1.0 = pref[c?;g! I d?;g!]. 

We observe that E. 0.0 and E. 1.0 are semi-sequential commands from 
e(GCL0) and E.0.0IIE. 1.0 E e(GCL0). Let E.i.j, with 0~i<2 and l~j<S, 
be defined by 

E. 0.1 = pref(e0!llg0!; [a?;e0!ll/0! I b?;e0!llg0! I c?;/0!]), 

E. 1.1 = pref[c?;gl! I d?;gl!], 

E. 0.2 = pref[e0?;e !], 

E. 1.2 = c, 

E. 0.3 = pref[f 0?;f !], 

E. 1.3 = c, 

E. 0.4 = pref[g0?;g !], and 

E. 1.4 = pref[g 1 ?;g !]. 

Components E. 0.1 and E. 1.1 are similar to E. 0.0 and E. 1.0. Components 
E. 0.2, E. 0.3, E. 0.4, and E. 1.4 are WIRE components. Since E. 0.0 and E. 1.0 
are DI commands, we have (see also Definition 3.2.1.0) 

E. 0.0 ➔ E. 0.1, E. 0.2, E. 0.3, E. 0.4 

E. 1.0 ➔ E. 1.1, E. 1.2, E. 1.3, E. 1.4. 

In order to apply the Separation Theorem, we check conditions (3.7) and (3.8) 
for the above decompositions. We observe that the internal symbols of these 
decompositions are row-wise disjoint and that the outputs are column-wise dis­
joint. Consequently, 

E. O.0IIE. 1.0 ➔ E. 0.111£. 1.1, E. 0.211£. 1.2, E. 0.311£. 1.3, E. 0.411£. 1.4 . 

Since we also have o(E. 0.1) n o(E. 1.1) = 0, we can apply Corollary 3.1.3.3 
yielding E. 0.111£. 1.1 ➔E. 0.1, E. 1.1. From the preceding subsection, we know 
how to decompose the semi-sequential commands E. 0.1 and E. 1.1. Com­
ponents E. 0.211£. 1.2, E. 0.311£. 1.3, and E. 0.411£. 1.4 are CEL components of 
which E. 0.311£. 1.3 and E. 0.211£. 1.2 reduce to WIRE components. The com­
plete decomposition of E. 0.0IIE. 1.0 is depicted in Figure 5.3.1. 

The above procedure can be applied to any component E0Ee(GCL0). By 
definition of grammar GCL0, the command E0 is expressed as a weave 
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a?---"""'~ ' ~ e . 

D !2 .. J, 
gO 

b? 

c? 
g! 

FIGURE 5.3.1. Decomposition of E. 0.0IIE. 1.0. 

(lli:0~i<n:E.i.0) of semi-sequential commands E.i.OEe(GCLO), O~i<n. 
Similarly to the example above, component E 0 can be decomposed into a col­
lection (i: O~i <n: E.i. 1) of components expressed as semi-sequential com­
mands E.i.1Ee(GCLO) and a collection (i:0~i<m:CELi) of CEL com­
ponents, where m equals the number of outputs in EO. For the commands 
E.i. 1, O~i <n, and CELi, O~i <m, we derive 

(+i:O~i<n: IE.i. ll = e(IE0I) 

A(+i:0~i<m: ICELil) = e(IE0I) 

~ {calc.} 

(+i:O~i<n: IE.i. 11) + (+i:0~i<m: ICEL.il) = e(IE0l)­

Observe that this decomposition can also be described as a syntax-directed 
translation. 

From Sections 5.3.0 and 5.3.1 we conclude that components EE e(GCL0) 
can be decomposed into XOR, CEL, FORK, SINK, SOURCE and EMP'IY 
components. The SINK, SOURCE, and EMP'IY components are basic com­
ponents. The decomposition of XOR, CEL, and FORK components into 
basic components is discussed in the next section. 

5.4. DECOMPOSITION OF XOR, CEL, AND FORK COMPONENTS 

There are several ways to decompose a k-XOR component, k > 1, into 2-XOR 
components. In Example 3.1.1.2 we decomposed a 3-XOR component into 
two 2-XOR components. The 4-XOR component E, with 

E = pref[aO?;b! I al?;b! I a2?;b! I a3?;b!], 

can be decomposed in two ways into 2-XOR components as depicted in Figure 
5.4.0. 
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FIGURE 5.4.0. Two decompositions of 4-XOR component E. 

In general, any k-XOR component, k > 1, can be decomposed into (k -1) 
2-XOR components. These decompositions can be described as syntax-directed 
translations. 

A k-CEL component, k > 1, can be decomposed into 2-CEL components in 
several ways as well. In Example 3.1.1.3 a 3-CEL component is decomposed 
into two 2-CEL components. In Figure 5.4.1 two ways are shown to decom­
pose the 4-CEL component E, with 

E = pref[b!;aO?] II pref[al?;b!] II pref[b!;a2?] II pref[a3?;b!]. 

aO? aO? 

al? al? 

a2? b! 

b! 

a3? 

FIGURE 5.4.1. Two decompositions of 4-CEL component E. 

In general, any k-CEL component, k > 1, can be decomposed into (k -1) 2-
CEL components. These decompositions can be described as syntax-directed 
translations as well. 

For the k-FORK. components, k > 1, a similar reasoning holds as for the k­
XOR and k-CEL components. 

5.5. DECOMPOSITION OF e(GCL 1) 

Any component expressed in e(GCL 1) can be decomposed into CAL, WIRE, 
SINK, SOURCE and EMPTY components. Before we explain this decomposi­
tion, we briefly recall the definition of grammar GCL 1. Any command 
EOEe(GCL 1) is expressed as a weave of semi-sequential commands of the 
form £, pref(a?), pref(a !), pref[E], or pref(a !;[E]). The command E is an 
alternative construct, where the alternatives are of the form 
<sym>?ll<.sym>?;<sym>! or <.sym>?;<.sym>!. All outputs in EO 
differ. 
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First we consider the decomposition of components E, where E is a semi­
sequential command from e ( GCL 1 ). Component £ is the EMP1Y component, 
and components pref (a?) and pref (a!) are a SINK and an active SOURCE 
component respectively. For a component specified by pref(a !;[ED we have, 
by definition of grammar GCL 1, that all outputs differ and that E begins with 
inputs. Consequently, pref(a !;[E]) ➔ pref(a !), pref[E). Finally, we show that 
any component pref[E)Ee(GCL 1) can be decomposed into a CAL component 
and a collection of WIRE components. 

An example of a command pref[E]Ee(CLCl) is given by 

EO = pref[aO?lla l?;bO! I aO?lla2?;b 1! I a3?;b2! I a4?;b3!). 

We observe 

EO 

~{ def. of decomposition} 

pref[aO?lla l?;bO! I aO?lla2?;b l!], pref[a3?;b2!], pref[a4?;b3!]. 

Consequently, component EO can be decomposed into a CAL component and 
two WIRE components. 

In general, any component pref[E]Ee(GCL 1) can be decomposed similarly. 
The command pref[E] can be rewritten as pref[E 1 I E2], where E 1 contains 
all alternatives with two parallel inputs and E 2 contains all alternatives with 
one input only. Since pref[E 1 I E2)Ee(GCL 1), we infer from the LL-1 condi­
tions that iE 1 niE2= 0 and that all inputs in E2 differ. Moreover, by 
definition of grammar GCL 1, all outputs in E 1IE2 differ. From these observa­
tions it follows that pref[E 1 I E2] can be decomposed into pref[E 1), which is 
a CAL component, and a collection of WIRE components, one for each alter­
native in E 2. If E does not contain alternatives with one input only, then 
pref[E] is already a CAL component, and if E does not contain alternatives 
with parallel inputs, then pref[E] can be decomposed into WIRE components. 

The decomposition of any component EOEe(GCLl) is obtained by applica­
tion of Corollary 3.1.3.3. Any command EOEe(GCL 1) is expressed as a weave 
(Iii: o.;;;;; <: E.i) of semi-sequential commands E.i Ee(GCL 1). By definition of 
GCL 1, we have o(E.i)no(E.j)= 0 for i=/=-j. Accordingly, we observe 

(Iii: o.;;;;; <n: E.i) 

➔ {Cor. 3.1.3.3, o(E.i)no(E.j)= 0 for i=/=-j} 

(i: o.;;;;; <n: E.i). 

From the above, we know how to decompose the semi-sequential commands 
E.i Ee(GCL 1). Consequently, by the Substitution Theorem, we infer that any 
component EOE e( GCL 1) can be decomposed into a collection 
(i:O.;;;;i<m:El.i) of CAL, WIRE, SOURCE, SINK, and EMP1Y com­
ponents. Notice that (+i:Oo;;;;i<m: IE1.il)=0(1EOI) and that the decomposi­
tion into these components can be described as a syntax-directed translation. 
The WIRE, SOURCE, SINK, and EMP1Y component are basic components. 
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The decomposition of CAL components into basic components is discussed in 
the next section. 

5.6. DECOMPOSITION OF f(GCAL) 

5. 6. 0. Introduction 

The decomposition of components expressed in E( GCAL ), i.e. the so-called 
CAL components, into ~ is divided into two steps. First, we present a 
method for decomposing CAL components into their so-called 4-cycle version 
and their 2-to-4 cycle converter. A 2-to-4 cycle converter is a connection of 
components from the basis 8. Subsequently, we show how the 4-cycle version 
of a CAL component can be decomposed into the basis B 1. Finally, we 
briefly discuss the existence of a method that decomposes the 4-cycle version 
of a CAL component into the basis BO. 

5.6.1 Conversion to 4-cycle signaling 

The decomposition of CAL component E, where 

E = pref[aO?llb?;cO! I a l?llb?;c 1!], 

into its 4-cycle version E 4, where 

E 4 = pref[a O'?llb'? ;c O'!; a O'?llb'? ;c 0'! 

la l'?llb'? ;c 1'!; a l'?llb'? ;c 1'! 

], 

and its 2-to-4 cycle converter is depicted in Figure 5.6.0. 

al? b? aO? 

FIGURE 5.6.0. The 2-to-4 cycle conversion for E. 

(Notice that E 4 is also a DI command.) The connection of XOR and 
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TOGGLE components constitutes the 2-to-4 cycle converter for E. 
In general any CAL component is converted into its 4-cycle version simi­

larly. The 4-cycle CAL component is also a DI component. In each 4-cycle 
communication the 2-to-4 cycle converter feeds back the first output of the 4-
cycle component to reset the inputs of the corresponding alternative to zero. 
In other words, the feedback initiates the return-to-zero phase. The second 
output of the 4-cycle component produces the output of the 2-cycle com­
ponent. 

A 2-to-4 cycle converter for a CAL component consists of k TOGGLE, k 
2-FORK, and 2k 2-XOR components, where k is the number of alternatives in 
the command for the CAL component. The conversion to 4-cycle signaling can 
be described as a syntax-directed translation. 

5.6.2. Decomposition of 4-cycle CAL components into BI 

We proceed with the decomposition of the 4-cycle CAL component E 4 as 
specified in the previous subsection. Let the NCEL components E 1 and E2 
be defined by 

E 1 = pref[aO'?llb'?; cO'!; aO'?llb'?; cO'! I b'?; b'?] 

E2 = pref[a l'?llb'?; c I'!; a l'?llb'?; c I'! I b'?; b'?]. 

Notice that E 4 t aE I = E 1 and E 4 t aE 2 = E 2. By definition of decomposition, 
we derive that E 4 ➔ E 1,£2. The decomposition is shown in Figure 5.6.1 
(, where an isochronic fork is used for reasons explained below). 

aO'?---... 

FIGURE 5.6.1. Decomposition of E 4 into BI. 

Components E 1 and £2 are not DI components, however. For this reason, 
the decomposition is not a DI decomposition. In order to ensure proper 
operation in a realization with connection wires, delay assumptions must be 
met. The delay assumptions that we make for this decomposition are the fol­
lowing: the differences between the delays in the branches of a (physical) fork 
are less than the delay in an NCEL component. In this thesis, we call a fork 
that meets this assumption an isochronic fork. A FORK component that must 
be realized by an isochronic fork is denoted in a schematic by an equality sign 
next to the fat dot denoting the FORK component. Notice that isochronic 
forks guarantee that all inputs of an NCEL component have returned to zero 
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before a next 4-cycle communication begins. 
In general, any 4-cycle CAL component pref[£] can be decomposed into k 

NCEL components, where k is the number of alternatives in E. The realization 
of this decomposition with connection wires operates properly if isochronic 
forks are used to connect common inputs of NCEL components. Such a reali­
zation contains at most k isochronic forks. Notice that this general decomposi­
tion of 4-cycle CAL components into BI can be described as a syntax-directed 
translation. 

5.6.3. Decomposition of 4-cycle CAL components into BO 

(This section may be skipped at first reading.) The decomposition of 4-cycle 
CAL components into a finite basis of DI components is one of the most 
difficult parts of the complete decomposition method. In this section we 
describe a method to decompose 4-cycle CAL components into the basis BO. 
We conjecture that this decomposition is correct. The method is described 
merely to indicate the existence of a linear DI decomposition of CAL com­
ponents. We first give a few examples of decompositions and then describe the 
general procedure. 

Decompositions of components EO and E 1, where 

EO = pref[(aO?llb?;cO!)2 I (a l?llb?;c 1!}2], 

E 1 = pref[(aO?lla l?;bO!)2 I (aO?lla2?;b 1!)2 I (a l?lla2?;b2!}2], 

are given in Figure 5.6.2 and 5.6.3 respectively. 

aO? a 1? 

b? 

cO! cl! 

FIGURE 5.6.2. Decomposition of EO into BO. 

The general decomposition procedure for a 4-cycle CAL component E is as 
follows. For each alternative in E we take a column of at most three (R)CEL 
components according to the following rules: 

if both inputs of the alternative do not occur in other alternatives, then we 
take one 2-CEL component; 
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a2? al? aO? 

bO! bl! b2! 

FIGURE 5.6.3. Decomposition of E 1 into BO. 

if one input only occurs in another alternative, then we take two RCEL 
components; 
if both inputs occur in other alternatives, then we take three RCEL com­
ponents. 

Per column, the output of the RCEL component in the i-th row is connected 
to an input of the RCEL component in the i + 1st row, I ~i <3, if present. 
The output of the last (R)CEL component in the column is the output 
corresponding to the output in the alternative. Each input of E is connected to 
the decomposition according to the following rules. 

if the input occurs in one alternative only it is connected to an input of 
the (R)CEL component in the first row and the column corresponding to 
that alternative. 
if the input occurs in more than one alternative it is connected to a so­
called interferencefree loop, as depicted in Figure 5.6.4. 

FIGURE 5.6.4. An interference-free loop. 

This loop is first fed through the RCEL components in the first row and 
the columns that correspond to the alternatives in which this input occurs. 
Subsequently, the loop is fed back through a remaining RCEL component 
in each of the same columns. 

This decomposition procedure yields the decompositions as given in Figures 
5.6.2 and 5.6.3. 
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We make two remarks with respect to the behavior of the decompositions. 
First, in any interference-free loop transmission interference does not occur, 
i.e. for any behavior of the decomposition at most one transition is propagat­
ing along the loop. Second, when in any 4-cycle communication the second 
output is produced, all inputs of the RCEL components in the first row are 
still zero or have returned to zero. Consequently, neither of the RCEL com­
ponents in the first row will produce a next output until both its inputs have 
changed again. 

The above described procedure yields for any 4-cycle CAL component E a 
decomposition with e(IEI) components from BO. Also this procedure can be 
described as a syntax-directed translation. 

5.7. SCHEMATICS OF DECOMPOSITIONS 

Decompositions obtained by the methods described in previous sections can be 
depicted in schematics that exhibit a regular structure. As an example we con­
sider the decomposition of component E specified by 

E = pref[aO?lla l?;bO!llb I! I aO?lla 2?;b0! llb 2! I a 3?;b I!] 

II pref(b3!; [a4?;bO!llb3! I aO?;b4!]). 

From the preceding sections, it follows that the complete decomposition of this 
component into the basis Bl can be depicted as in Figure 5.7.0. 

q. 0.2 
a3?---------.c.---~ 

a I? 
a2?--~ 

~------b2! 
-----bl! 

bO! 

a O?---------------,,,£.-------b4! 
a4? b3! 

q. 1.0 

FIGURE 5.7.0. Decomposition of E. 

The layout of this schematic can be rearranged in such a way that it exhibits a 
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more regular pattern. This is done in Figure 5.7.1. The XOR components are 
shifted into one plane, the so-called XOR-plane; the NCEL (or CEL) and 
TOGGLE components are shifted into one plane, the so-called CT plane; and 
the remaining CEL components are shifted into one plane, the so-called CEL 
plane. FORK components are depicted in the CT plane and the XOR plane, 
where the FORK components in the CT plane must be realized by isochronic 
forks. 

The decomposition of any component E Ef,,(GCL') can be depicted similarly 
to Figure 5.7.1. 

I 
I 

-----
1 

I I 
L ____ ~ 

a0? a 1? a2? a3? a4? 

-i 

XOR plane 
I 

'- -

b4! b3! b2! b 1! b0! 

FIGURE 5.7.1. A regular schematic of decomposition of E. 
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In this chapter we present the decomposition from f(G4') \ f(GCL') into 
f( GCL'), i.e. the decomposition of components represented by non­
combinational commands in f(G4') into components represented by combina­
tional commands. This decomposition is divided into three steps, viz. the 
decomposition from ~ into e3, the decomposition from e3 into e2, and the 
decomposition from ~ into e1• For the definition of the languages ~. e3, e2, 

and f1 and a general introduction to the decomposition presented in this 
chapter we refer to Section 5.0. 

Each decomposition step is discussed similarly to the decompositions 
presented in the previous chapter. We describe each step by means of some 
grammars and study the properties of this step with respect to the syntax­
directedness and linearity of the decomposition in the length of the command. 
Mostly these properties are readily verified. There is one step, however, that 
renders some difficulties in maintaining the linearity of the decomposition. 
This is the decomposition of components expressed in e ( GSEL ). In Section 
6.2.4 a non-linear decomposition is discussed, and in Section 6.2.5 we show 
that a linear decomposition is also possible - though more difficult than the 
non-linear decomposition. The latter section may be skipped at first reading. 

One could say that the decomposition steps presented in this chapter differ 
from the one presented in the previous chapter in the sense that here an 
encoding of state information is involved in the decomposition of a com­
ponent. For the decomposition steps from ez to e1 and from e3 to e2 we apply 
a so-called state assignment to each sequential command which is part of the 
complete command representing the component. For reasons of simplicity we 
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use the one-hot assignment only, i.e. we introduce one symbol per state. For 
the decomposition step from f.i to e3 we change internal symbols into external 
symbols by applying a technique called expansion of internal symbols. For 
each internal symbol x of the component we introduce symbols ox and ix and 
expand each atomic command !x? into ox!;ix?. The terminals ox and ix are 
then connected by a WIRE component. 

6.1. DECOMPOSITION OF~ INTO e1 

6.1.0. Introduction 

In the decomposition step from ~ to e1 each component 
EOE e( G 2') \ e( GCL') is decomposed into components E 1, E 2, and E 3 such 
that EIEe(GCL'), E2Ee(GCL'), and the command E3 is a weave of 
SOURCE and SINK components with disjoint alphabets. Consequently, by 
Corollary 3.1.3.3, component E 3 can be decomposed further into a collection 
of SOURCE and SINK components. The commands E 1, E2, and E3 are con­
structed form the syntax of E 0, and we have IE I I+ IE 21 + IE 31 = e(IE 01). The 
general connection pattern between the components E 1, E 2, and E 3 is given 
in Figure 6. 1.0. 

iEO El E3 E2 oE 

FIGURE 6.1.0. General connection pattern of decomposition of EE~. 

Notice that for any command E it can be determined in a constructive way 
whether E Ee(G2') \ e(GCL') by means of the grammars G2' and GCL'. 
Before we describe the general decomposition procedure for this step, we give 
an example. 

6.1.1. An example 

Let the commands E. 0.0 and E. 1.0 be defined by 

E. 0.0 = pref[(a?lb?);d0!;(a?;e ! I b?;d0!)] 

E. 1.0 = µ.tailf1.0, 

where tailf I is specified by 
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tailf1.R 0 = pref(e !;R. 1) 

tailf1.R 1 = pref(c?;R O I b?;R. 2) 

tailf1.R. 2 = pref(R 2) 

tailf1.R. 3 = pref(dl!;R 1). 

The state graph corresponding to µ.. tailf1. 0 is given in Figure 6.1 .1. 

,q3 

,, !di! b1 
q0Q · ----------· q2 

'-..___/ q 1 

c? 

FIGURE 6.1.1. State graph corresponding to tailf1. 

We observe that E. 0.0IIE. 1.0 E e(G2') \ e(GCL'). 
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The decomposition of E. 0.0IIE. 1.0 consists of two steps. In the first step we 
rewrite E. 0.0 and E. 1.0 into commands of the form µ.tailf. 0Ee(G2'), where 
tailf is defined by an array of atomic commands only. The sequential com­
mand E. 1.0 is already written in this way. For E. 0.0 we obtain the command 
µ..tailf0.0, where tailfo is specified by 

tailf0.R. 0 = pref(a?;R. 1 I b?;R. 1) 

tailf0.R. 1 = pref(d0!;R 2) 

tailf0.R. 2 = pref(a?;R 3 I b?;R. 4) 

tailf0.R. 3 = pref(e !;R. 0) 

tailf0.R 4 = pref(d0!;R 0). 

Rewriting a sequential command in such a form can be done in a syntax­
directed way. 

In the second step we apply a state assignment to each sequential command 
E.k. 0, 0,s;;k <2. For reasons of simplicity, we take the so-called one-hot 
assignment, i.e. we introduce one internal symbol per state. For state i of 
sequential command E.k. 0 we introduce the internal symbol q.k.i. Next, we 
split each sequential command into an input part and an output part. The 
input parts E. 0.1 and E. 1.1 and output parts E. 0.2 and E. 1.2 are defined by 

E. 0.1 = pref[a ?llq. 0.0?;q. 0.1! I b ?llq. 0.0?;q. 0.1 ! 

la?llq. 0.2?;q. 0.3! I b?llq. 0.2?;q. 0.4! 

] 

E. 0.2 = pref(q. 0.0!; [q. 0.l?;d0!llq. 0.2! I q. 0.3?;e!llq. 0.0!]) 
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E. 1.1 = pref(q. 1.0!; [q. l.l?llc?;q. 1.0! I q. l.l?llb?;q. 1.2!]) 

E. 1.2 = pref[q. 1.0?;e ! liq. 1.1 ! I q. I.3?;d l! liq. 1.1 !]. 

Operationally speaking, an input part receives the current local state and an 
input and then produces the next local state. The output part receives the 
current local state upon which it produces the output and the next local state. 
Depending on whether an input or an output is produced initially, the input 
part or the output part starts with producing the initial state. 

Not every internal symbol occurs both as an input and as an output in the 
above commands: there is a dangling input q. 1.3 and a dangling output q. 1.2. 
To connect this dangling input and output to an output and an input respec­
tively, we introduce the passive SOURCE(q. 1.3) component and the 
SINK(q. 1.2) component. Let E. 0.3 and E. 1.3 be defined by 

E.0.3 = £ and 

E. 1.3 = SOURCE(q. 1.3) II SINK(q. 1.2). 

By definition of decomposition, we derive 

E. 0.0 ➔ E. 0.1, E. 0.2, E. 0.3 and 

E. 1.0 ➔ E. 1.1 , E. 1.2 , E. 1.3 . 

We check condition (3.7) and (3.8) for the application of the Separation 
Theorem and inf er that the internal symbols of the decompositions are row­
wise disjoint and that the outputs are column-wise disjoint. Consequently, by 
the Separation Theorem, we deduce 

E0 ➔ El, E2, E3, where 

E0=E. 0.0 II E. 1.0, 

E 1 = E. 0.1 II E. 1.1 , 

E2=E. 0.2 IIE. 1.2 ,and 

E3=E. 0.311 E. 1.3. 

Furthermore, we observe E. 1 Ee(GCL'), E. 2Ee(GCL'), and 

IEll+IE2l+IE31 = 0(1£01). 

6.1.2. The general decomposition 

The general decomposition method for any component E0Ee(G2') \ e(GCL') 
is carried out similarly to the previous example. By definition of grammar G2', 
command E0Ee(G2') is expressed as a weave (Ilk: 0~k<N: E.k. 0) of sequen­
tial commands E.k. 0Ee(G2'). First, each sequential command E.k. 0, 
0~k<N, is rewritten into a command µ..tai!{k.0Ee(G2'), where tai!{k is a tail 
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function defined by an array of atomic commands only . Let 
e.k(i,j: O~i,J<n(k)) denote an array of atomic commands for tai/fic, O~k<N. 
Rewriting sequential command E.k. 0 into µ.tai/fic.O can be done in a syntax­
directed way such that 

(Nk,i,j: O~k<N I\ O~i,j <n(k): e.k.i.J-=/=0) = 0<IE0I)- (6.0) 

In the second step we introduce the internal symbols q.k.i and split each 
sequential command in an input part and an output part. First, we define for 
each k, O~k<N, the commands PI.k and PO.k as follows. If e.k contains 
inputs, 

PI.k = (I i,j: e.k.i.j is an input: e.k.i.jllq.k.i? ;q.k.j !), 

otherwise PI.k =t:. If e.k contains outputs, 

PO.k = (I i,j: e.k.i.j is an output: q.k.i?; q.k.J !lle.k.i.J), 

otherwise PO.k = t:. Since µ.tai/fic .0Ef,(G2'), O~k<N, it follows that PI.k and 
PO.k satisfy the LL-lconditions. (Notice that for each i, O~i<n(k), there 
exists at most one J, O~j<n(k), such that e.k.i.j is an output.) Subsequently, 
input part E.k. 1 and output part E.k. 2, O~k<N, are defined by 

E.k. 1 = pref(q. 0.0! ;[P/.k]) if Pl.k=?- I\ Q.k 
= pref(q. 0.0!) if PI.k =t: A Q.k 
= pref[PJ.k] if Pl.k=?- I\ ,(Q.k) 
= t: if PI.k = t: A ,(Q.k) 

E.k. 2 = pref(q. 0.0!;[PO.k]) if PO.k=?- A ,(Q.k) 
= pref(q. 0.0!) if PO.k=t: 1\ -,(Q.k) 
= pref[PO.k] if PO.k=?- I\ Q.k 
= t: if PO.k =t: A Q.k , 

where Q.k = 'E.k. 0 starts with an output', for all O~k <N. 
SOURCE and SINK components are introduced for dangling inputs or out­

puts as follows. For each k , O~k<N, Out.k and In.k are defined by 

Out.k = o(E.k. l)Uo(E.k. 2)U {q. 0.0} and 

In.k = i(E.k. l)Ui(E.k. 2). 

For each q.k.i E Out.k \ In.k we introduce a SINK(q.k.i) component, and for 
each q.k.i E In.k \ Out.k we introduce a passive SOURCE(q.k.i) component, 
where O~i<n(k) I\ O~k<N. Command E.k. 3 is defined as the weave of 
these SINK and SOURCE components. 

With the above definitions we derive for all k , O~k <N, 

E.k. 0 ➔ E.k. 1, E.k. 2 , E.k. 3. 

Since for these decompositions the internal symbols are row-wise disjoint and 
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the outputs are column-wise disjoint, we deduce, by the Separation Theorem, 

E 0 ➔ E 1 , E 2, E 3, where 

EO = (llk:0~k<N:E.k.0), 

El= (llk:O~k<N:E.k. 1), 

E2 = (Ilk: O~k<N: E.k. 2), and 

E3 = (llk:O~k<N :E.k. 3). 

Because PI.k and PO.k, O~k<N, satisfy the LL-I conditions, we infer that 
ElE!:.(GCL'), E2E!:.(GCL'), and £3 is a weave of SOURCE and SINK com­
ponents with disjoint alphabets. Finally, we observe that E 1, E2, and E 3 are 
constructed from the syntax of EO and that, by (6.0), 

IEil+IE2l+IE31 = e(jE0I). 

6.1.3. Schematics of decompositions 

Recall the specification of component E0IIE I of Section 6.1.1, where 

EO = pref[(a?jb?);d0!;(a?;e ! I b?;d0!)] , 

E 1 = µ..tailf1.0, 

and tailf I is specified by 

tailf1.R O = pref(e!;R. I) 

tailf1.R 1 = pref(c?;R O I b?;R. 2) 

tailf1.R. 2 = pref(R. 2) 

tailf1.R 3 = pref(dl!;R 1). 

A schematic of the complete decomposition of component E0IIE I according 
to the methods described in the previous sections is given in Figure 6.1.2. The 
schematic of this decomposition can also be rearranged into a connection of a 
CT, XOR, and a CEL plane. 

The decomposition of the sequence detector of Section 2.3.1 according to the 
methods of the preceding sections yields the schematic of Figure 6.1.3. 
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FIGURE 6.1.2. Decomposition of EOIIE 1. 
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FIGURE 6.1.3. Decomposition of sequence detector. 
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6.2. DECOMPOSITION OF !:3 INTO !:2 

6.2.0. Introduction 

A Decomposition Method II 

In the decomposition step from es to e2 each component E. OE!:3 \ e2 
( = !:( G 3') \ !:( G 2')) is decomposed in a syntax-directed way into a collection 
of components E.iESi,, l~i<n. (Notice that for each command E it can also 
be determined in a constructive way whether E E e( G 3') \ !:( G 2') by means of 
the grammars G 3' and G2'.) The decomposition can be carried out in such a 
way that the result is linear in the length of the commands, i.e. 
( + i: I ~i <n: IE.il)=e(]E. 01). The step is divided into three substeps each of 
which is discussed briefly below before they are presented in the following sec­
tions. 

In the first step each component EOE !:3 \ e2 is decomposed into four com­
ponents E 1, E 2, E 3, and E 4. Apart from component E 4, this step is similar 
to the decomposition step from Si, to !:i . The connection pattern between 
components E 1, E 2, E 3, and E 4 is given in Figure 6.2.0. 

-if: E4 

iE El £2 .' oE0 

E3 

FIGURE 6.2.0. Decomposition of EOE es \ Si,. 

Components E 1 and E 2 are called the input part and output part respectively. 
We have EIE!:(GCL'), E2E!:(GCL'), and component £3 is a weave of SINK 
and (passive) SOURCE components with disjoint alphabets. Consequently, by 
Corollary 3.1.3.3, E3 can be decomposed further into SINK and SOURCE 
components. Component E 4 is called the selection part, and command E 4 
satisfies a special syntax: we have E4E!:(GSEL). Grammar GSEL is presented 
in the next section. The commands E 1, E 2, E 3, and E 4 are constructed from 
the syntax of E0 in such a way that IEil+IE2l+IE3l+IE4l=e(IE0I). 

In the second step each selection part E0E!:(GSEL) is decomposed into 
components E 1, £2, and £3. The general connection pattern of this decom­
position is depicted in Figure 6.2.1. 
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iEO E2 

FIGURE 6.2.1. Decomposition of EOE l:( GSEL) 

Component El is a SEQ component, E2El:(G2'), and E3El:(GCL'). With 
respect to the length of these commands we have IE 11 = 0<:IE 01) and 
IE 31 = 0<:IEOI), but in general, however, we do not have IE 21 = 0<:IE 01). Conse­
quently, if E2 is decomposed according to methods discussed in previous sec­
tions, the decomposition of components E0E!:(GSEL) is in general not linear 
in the length of E0. Nevertheless, we show that it is possible -though more 
difficult- to obtain a linear decomposition of E0. For this purpose we decom­
pose E2 further into a component MASTER El:(G2') and components 
SLAVE.i El:(G2'), 0~i<m. The commands MASTER and SLAVE.i, 
0~i<m, are constructed from the syntax of E0 and satisfy 

IMASTERI +(+i:0~i<m:jSLAVE.il) = 0<:IEOI). 

Because the complete linear decomposition of a component E0E!:(GSEL) can 
become rather complicated, the non-linear decomposition is to be preferred in 
many cases to the linear decomposition. The decomposition into MASTER 
and SLA VE components is discussed in Section 6.2.5 and may be skipped at 
first reading. 

In the third and final step each SEQ component is decomposed in a syntax­
directed way into the basis B. We demonstrate that a k-SEQ component, 
k >0, can be decomposed into e(k) basic components from B. 

If the three steps are combined, we conclude, from the Substitution Theorem 
and from the properties that each step satisfies, that each component 
E. 0Efg \ £2 can be decomposed in a syntax-directed way into a collection of 
components E.iEBi,, l~i<n. Moreover, if in the second step the linear decom­
position is applied, we have ( +i: 1 ~i <n: jE.ij)=e(jE. 01). 

In each of the following sections a decomposition step is explained. We start 
with the definition of grammar GSEL, and subsequently, in Section 6.2.2, we 
discuss an example of the first decomposition step. 
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6.2.1. DI grammar GSEL 

The grammar GSEL is an attribute grammar similar to GCL'. The production 
rules for its context-free grammar are defined as follows. 

<dicom>::= <pccom> 
<pccom>::= £ 

□ pref [ <pf com>] 
□ <com>ll<com> (b9) 

<pfcom>::= <sym>?;(<altout>) (c6) 
□ <pfcom > I <pfcom > (c 7) 

<a/tout>::= <sym > ! 
□ <altout>l<altout > (d0) 

The conditions for the production rules (b9), (c6), (c7), and (d0) are as fol­
lows. For each of the rules we have the condition 

ALFCOND(E0,El) A (iE0niE1)=0, 

where E0IIE 1, E0;E 1, E0IE 1, and E0IE 1 are productions of the production 
rules (b9), (c6), (c7), and (d0) respectively. Consequently, all inputs in a com­
mand EEf,(GSEL) differ. For the production rules (c7) and (d0) we have the 
additional condition ALTCOND(E0,E 1). For example, we have 

pref[a?;(b!lc!)] E f,(GSEL), and 

pref[d?;a ! I e?;(a !lb!)] II pref[f?;(a !le!) I g?;a!] E f.(GSEL). 

Notice that e(GSEL)C.:1:(G4). Consequently, the attribute grammar GSEL is 
also a DI grammar. 

6.2.2. An example 

Let the commands E. 0.0 and E. 1.0 be specified by 

E. 0.0 = pref[a?;c!;a?;(c!ld!)] and 

E. 1.0 = pref[b?;(c! I e!;b?;c!)]. 

We observe that E. 0.0IIE. 1.0 E 1:( G 3') \ 1:( G 2'). In the following, we construct 
a decomposition for component E.0.0IIE. 1.0 from the syntax of E. 0.0 and 
E.1.0. 

First, the commands E. 0.0 and E. 1.0 are rewritten in a syntax-directed way 
into the commands µ..tailf0.0El:(G3') and µ..tailf1.0El:(G3') respectively, where 
tailfo and tailf1 are defined by arrays of atomic commands only. We obtain for 
tailf o and tailf 1 , 

tailfo.R. 0 = pref(a?;R. 1) 

tailfo,R. 1 = pref(c !;R. 2) 
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and 

tailf0.R. 2 = pref(a?;R. 3) 

tailf0.R. 3 = pref(c !;R. 0 I d!;R. 0) 

tailf1.R. 0 = pref(b?;R. 1) 

tailf1.R. 1 = pref(c !;R. 0 I e!;R. 2) 

tailf1.R. 2 = pref(b?;R. 3) 

tailf1.R. 3 = pref(c!;R. 0). 
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Second, we apply a one-hot assignment to each sequential command. For 
state i of sequential command k we introduce the internal symbol q.k.i. Furth­
ermore, for each sequential command E.k. 0, 0-s;;;k <2, we introduce the inter­
nal symbols x' for each x Eo(E.k. 0). The commands E.k.i, 0-s;;;k <2 A J ,s;;;; <5, 
are defined as follows. 

E. 0.1 = pref[q. 0.0?lla?;q.0.1! I q. 0.2?lla?;q. 0.3!], 

E. 0.2 = pref[q. 0.I?llc'?;q. 0.2!llc! 

lq. 0.3?llc'?;q. 0.0! lie! I q. 0.3?lld'?;q. 0.0! lld ! 

], 

E.0.3 = £, 

E. 0.4 = pref[q. 0.l?;c'! I q. 0.3?;(c'!ld'!)], 

E. 1.1 = pref[q. l.0?llb?;q. 1.1! I q. 1.2?llb?;q. 1.3!], 

E. 1.2 = pref [ q. 1.1 ?llc'?;q. 1.0! lie! I q. 1.1 ?lle'?;q. 1.2! lie! 

lq. 1.3?llc'?;q. I.0!llc! 

], 

E. 1.3 = £ , and 

E. 1.4 = pref[q. l.l?;(c'!le'!) I q. l.3?;c'!]. 

Components E. 0.1 and E. 1.1 are the input parts of components E. 0.0 and 
E. 1.0 respectively. Components E. 0.2 and E. 1.2 are the output parts of com­
ponents E. 0.0 and E. 1.0 respectively. E. 0.3 and E. 1.3 represent the weaves of 
the SOURCE and SINK components (of which there are none here). Com­
ponents E. 0.4 and E. 1.4 are the selection parts of E. 0.0 and E. 1.0 respec­
tively. The input parts determine from a current local state and an input the 
next local state. The output parts determine from the current local state and 
an internal symbol x' the next local state and the next output. (Notice that the 
output parts h~re differ from the output parts introduced in the decomposition 
from ~ to f:t .) The selection part selects for a local state a next internal sym­
bol x'. 

By definition of decomposition, we have 
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E. 0.0 ➔ E. 0.1, E. 0.2, E. 0.3, E. 0.4 and 

E. 1.0 ➔ E. 1.1, E. 1.2, E. 1.3, E. 1.4 . 

A Decomposition Method II 

In order to apply the Separation Theorem to the command E. 0.0IIE. 1.0 , we 
verify conditions (3.7) and (3.8). We observe that the outputs of the decompo­
sitions are column-wise disjoint, but the internal symbols of the decomposi­
tions, however, are not row-wise disjoint because of the symbols x'. Conse­
quently, we can only conclude, by Theorem 3.1.3.1, that the connection of 
components E 0, E 1, E 2, E 3 and E 4, where 

E0 = E. 0.0IIE. 1.0 , 

E 1 = E. 0.IIIE. 1.1 , 

E2 = E. 0.211£. 1.2, 

E3 = E. 0.3IIE. 1.3 ,and 

E 4 = E. 0.4IIE. 1.4, 

is closed and free of interference. We still have to show that tWtaE0=tE0, 
where W=E0IIE lllE2IIE3IIE4. By definition of weaving, we derive 
tWtaE0CtE0. Furthermore, for the above kind of decomposition we can 
also show that any trace tEtE0 can be expanded with internal symbols into a 
trace in tW. For example, the trace ab c bad can be expanded into 

q. 0.0 a q. 0.1 q. 1.0 b q. 1.1 c' q. 0.2 q. 1.0 c b q. 1.1 a q. 0.3 d' q. 0.0 d E tW. 

In general, the expansion consists of inserting the symbols for the local states 
and the internal symbols x' at the appropriate places. Consequently, we derive 

E0 ➔ El, E2, E3, E4. 

Subsequently, from the definition of these commands, we observe 
ElEf,(GCL'), E2Ef,(GCL'), and E4Ef,(GSEL). (Notice that in E4 all inputs 
differ.) The commands are constructed from the syntax of E. 0.0 and E. 1.0, 
and 

IEll+IE2i+IE3i+IE41 = e(IE0I)-

6.2.3. The general decomposition 

The general decomposition of a component EOE e3 \ e2 into components 
El E f,(GCL'), E2 E f,(GCL'), a weave E3 of SINK and SOURCE com­
ponents, and E 4 E e( GSEL) is performed in two steps as follows. 

Let the command EOE e( G 3') \ e( G 2') be expressed as a weave of sequen­
tial commands E.k. 0Ef,(G3'), 0~k<N. First, we rewrite each sequential 
command E.k. 0 into a command µ..tai![k.0Ee(G3'), 0~k<N, where tai![k is 
defined by an array of atomic commands only. Let for each k, 0~k<N, array 
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e.k(i,j: O~i,j <n(k)) denote the array of atomic commands for tai/fk. Each 
sequential command E.k. 0 can be rewritten in a syntax-directed way into a 
command µ..tai/fk.0Ee(G3') such that 

(Nk,i,j: O~k<N I\ O~i,j<n(k): e.k.i.j=/=0) = e(IEOI)- (6.1) 

Second, we define the input part E.k. 1, the output part E.k. 2, the weave 
E.k. 3 of SOURCE and SINK components, and the selection part E.k. 4 by 
means of array e.k(i,j: O~i,j<n(k)) for each k, O~k<N. The commands 
E.k. 1, O~k<N, are defined analogously to Section 6.1.2. The commands 
E.k. 2, O~k <N, are also defined analogously to Section 6.1.2, apart from the 
definition of PO.k, which is defined as follows. Let array e'.k(i,j: O~i,j<n) 
denote array e.k(i,j: O~i,j<n) in which each atomic command x ! and x? is 
replaced by x', for O~k<N. If array e.k contains outputs for O~k<N, then 

PO.k = (li,j: e.k.i.j is an output: q.k.i ?lle'.k.i.j? ; q.k.j ! lle.k.i.j), 

otherwise PO.k =£. Notice that, since µ..tailfk .OEe(G 3'), PO.k satisfies the 
LL-1 conditions. 

The selection part E.k. 4 is defined as follows for O~k<N. If array e.k con­
tains outputs, 

E.k. 4 = pref[(li: e.k.i contains an output 

k . ? (U k . . . t t I k . . ') : q .. l . ; : e .. l.J lS an OU pu : e .. l.J. 

)], 

otherwise E.k. 4=£. Since µ..tai/fk.0Ee(G3'), it follows that each E.k. 4, 
O~k <N, satisfies the LL-1 conditions. 

Finally, we determine, with these definitions of E.k. 1, E.k. 2, and E.k. 4, 
which internal symbols are a dangling input or output. For each such symbol 
we introduce a passive SOURCE or a SINK component respectively, and the 
weave of these components for each k, O~k<N, is denoted by E.k. 3. 

Subsequently, by these definitions and the definition of decomposition, we 
conclude for all k, O~k<N, 

E.k. 0 ➔ E.k. 1, E.k. 2, E.k. 3, E.k. 4 . 

For these decompositions we check conditions (3.7) and (3.8) of the Separation 
Theorem. We observe that the outputs of these components are column-wise 
disjoint. In general, the internal symbols of these decompositions, however, do 
not have to be row-wise disjoint. By Theorem 3.1.3.1 we can, therefore, only 
conclude that the connection of components E 0, E 1, E 2, E 3, and E 4 is 
closed and free of interference, where 

EO = (Ilk: O~k<N: E.k.O), 

E 1 = (Ilk: O~k<N: E.k. 1), 

E2 = (Ilk: O~k<N: E.k. 2), 

E3 = (llk:O~k<N:E.k. 3), and 
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E4 = (llk:0~k<N:E.k.4). 

We prove that tWtaEO=tEO holds as well, where W=E0IIElllE2IIE3IIE4. 
By definition of weaving, we have tWtaEO~tEO. Furthermore, from the 
definitions of E.k.i, O~k<N I\ 1 ~i <5, we derive that any trace in tEO can 
be expanded into a trace in t W by inserting the symbols for the local states 
and internal symbols x' at the appropriate places. Consequently, we have 
tWtaEO=tEO, and we infer by definition of decomposition 

EO ➔ El, E2, E3, E4. 

Moreover, we observe E 1 Ee( GCL'), E 2 Ee( GCL'), E 3 is a weave of 
SOURCE and SINK components with disjoint alphabets, E4Ee(GSEL), and 
by (6.1) 

IEil+IE2l+IE3l+IE41 = e(IE0I). 

6.2.4. Decomposition of e(GSEL) 

Components expressed by commands in e( GSEL) have to perform some kind 
of a selection. For example, the component E=pref[a?;(b!lc!)] has to select 
after receipt of input a an output from the set { b,c }, i.e. from the outputs in 
Suc(a,E). The component E, where 

E = pref[d?;a ! I e?;(a !lb!)] II pref[f ?;(a !le!) I g?;a !], 

has to select after receipt of input f an output from the set { c}, i.e. from the 
outputs in Suc(f,E). (Notice that a f/.Suc(f,E) .) After receipt of inputs f and 
e, however, this component has to select an output from the set { a,b,c }, i.e. 
from the outputs in Suc(fe,E). 

In the decomposition of components expressed in e(GSEL) the selections of 
outputs are realized by a connection of a SEQ component and components 
expressed in ~. Which output is selected is determined by the order in which 
requests are sequenced by the SEQ component. It is because of this sequencing 
of requests that the selection of a next output can be computed in a deter­
ministic way, i.e. by components expressed in e.2. 

Let EOEe(GSEL). We show how to construct a decomposition for com­
ponent EO. The construction of this decomposition can briefly be described as 
follows. First, we introduce so-called auxiliary symbols and construct the com­
mand E' from EO. Subsequently, we construct the commands E 1, E2, and 
E 3 from the command E'. Component E 1 is a SEQ component with 
IE I I= e(IE 01), E 2 is a sequential command from e( G 2'), and E 3 Ee( GCL') 
with IE31 =e(IE0I). In the following, we first give the definition of the com­
mands E', E 1, E2, and E3 and then present an example. The connection pat­
tern between these components is given in Figure 6.2.1. Finally, we prove 
EO➔E 1,E2,E3 and devote a few remarks to this decomposition. 
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The command E' is defined by 

E' = E O II (llx: x EOE 0: pref[hx ?;x !]). 

For example, for EO=pref[a?;(b!le!)] we have 

E' = EO II pref[hb?;b !] II pref[he?;c!]. 

The symbols hx, for x EoEO, are called auxiliary symbols. (We assume that 
hx ~aEO for x EoEO.) Notice that IE'I =e(IEOI). 

From command E' the commands EI, £2, and E3 are constructed. E 1 is a 
k-SEQ component, where k equals the number of inputs of E'. E 1 is defined 
by 

E 1 = (llx: x EiE': pref[x ?;x"!]) 

II pref[n?; (Ix: xEiE': x"!)]. 

The command E 3 is defined by 

E3 = (llx:xEoE':pref(hx!;[x"?;hx!llx!]) 

llpref(n!;[(lx:xEoE':x"?;n!) I np?;n!]). 

Command £2 is defined by E2=µ.tailf.O, where tailf is defined below. For 
the definition of tailf we use the command E" which is the command E' in 
which every symbol y is replaced by y". The sequential behavior of com­
ponent £2 is an alternation of inputs of E" and outputs from {np}UoE", 
starting with an input. The output is determined by the inputs as follows. Let 
t be the current trace and let x" be the next input. If Sue (tx"taE",E") con­
tains an output, then the first one is produced. (For the time being we assume 
that Sue(tx"taE",E") is represented as a list of symbols.) If Sue (tx"taE",E") 
does not contain an output, then output np is produced. In order to formalize 
this specification we introduce some notation. Let q.i, O~i <n 1, denote the 
states of E". By t.i we denote a trace from state q.i, O~i <n 1. Let 

V = {i I O~i<nl I\ Sue(t.i,E")noE"=0}, 

i.e. the set Vis the set of all (indexes of the) states of E" in which no output 
can be produced. The initial state is denoted by q. 0, and, since E" starts with 
inputs, we have OE V. For all i EV, tailf.R.i is defined by 

where 

tailf.R.i = pref ((Ix": D O(i,x"): x"? ; p (i,x")!; R. 8O(i,x")) 

l(lx": D l(i,x"): x"?; np ! ; R. 81(i,x")) 

) 

= pref(R.i) 

DO(i,x") = Sue (t.i x",E") noE"=/= 0, 

D l(i,x") = t.i x" EtE" I\ -,DO(i,x"), 

if Sue (t.i, E")=/=0 

otherwise, 
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81(i,x") = j, where t.i x" Eq.j, 

80(i,x") = j, where t.i x"p(i,x")Eq.j, and 

p(i,x") = first output in Sue (t.i x",E"). 

A Decomposition Method II 

We assume that Sue (r,E") and Sue (s,E"), for r and s traces of the same state 
of E", represent the same list of symbols. Furthermore, we stipulate that if one 
of the domains DO or D 1 is empty, the corresponding quantified union is 
omitted. (Notice that only one domain can be empty.) We observe that tailf is 
well-defined, since for E" Ee( GSEL) we have 

i EV I\ DO(i,x") ~ 80(.i,x")E V and 

i EV I\ D l(i,x") ~ 81(i,x")E V. 

ExAMPLE 6.2.4.0. Let EO be defined by EO = pref[a?;(b lie l)]. We construct 
the commands E',E",El,E2, and E3 according to the definitions given above. 
We obtain 

E' = pref[a?: (b lie l)] II pref[hb?;b l] II pref[he?;e !] 

E" = pref[a"?;(b"!le"!)] II pref[hb"?;b"!] II pref[he"?;e"!] 

E 1 = pref[a?;a"!] 11 pref[hb?;hb"!] 11 pref[he?;he"!] 

II pref[n ?;(a"!lhb"!lhe"!)], 

E2 = µ.tailf.O, where 

tailf.R. 0 = pref(a"?;np !;R. I I hb"?;np !;R. 2 I he"?;np!;R. 3) 

tailf.R. 1 = pref(hb"?;b"!;R. 0 I he"?;e"!;R. 0) 

tailf.R. 2 = pref(a"?;b"!;R. 0 I he"?;np !;R. 4) 

tailf.R. 3 = pref(a"?;e"l;R. 0 I hb"?;np !;R. 4) 

tailf.R. 4 = pref (a"?;b"!;R. 3), and 

E3 = pref(hb!; [b"?;b !llhb!]) 11 pref(he !; [e"?; c!llhc!]) 

II pref(n !; [b"?;n! I e"?;n ! I np?;n!]). 

The connection pattern between the components E 1, E2, and E3 is given in 
Figure 6.2.2. 
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a? a" 

El hb" 
he" 

n 

£2 

he 

hb 

np 

b" 

e" 

.,..._ __ b! 

---e! 

FIGURE 6.2.2. Decomposition of EO into El, E2, and £3. 

□ 
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From the definition of El, E2, and £3 we derive E2Ef.(G2'), E3Ef.(GCL'), 
IE I I= e(]E 01), and E 3 = e(IE 01). For E 2 we have E 2 = e(n 2), where n 2 equals 
the product of the numbers of states of the sequential commands in E". Con­
sequently, in general we do not have £2 = e(IE"l)-

We prove EO ➔ El,E2,E3. First, we demonstrate that 
t(EOIIE IIIE2IIE3)taEO=tEO. We show that any~ace tEtEO can be expan­
ded with internal symbols into a trace of t(E OIi£ l llE 211£ 3). Since, by 
definition of weaving, we also have t(EOIIEIIIE2IIE3)taE0CtE0, we then 
conclude t(EOIIE lllE2IIE3)taEO=tEO. Define the expansion /(t) for tEtEO 
by 

/(!) = ( 
f(tx) = f(t) x n x" np 

f(tx) = f(t) hx n hx" x" x 

if X EiEO 

if xEoEO. 

We observe that /(t) is an expansion oft, for any t EtEO. By definition of E 1 
and £3 we observe /(t)taE 1 EtE 1 and /(t)taE3EtE3 respectively. Further­
more, we have /(t)taE"EtE", and for any prefix r of /(t) we infer by 
definition of E" ( and £'), 

if rtaE" ends with hx", xEoEO, then Sue(rtaE",E")={x"} 
if rtaE" does not end with hx", x EoEO, then Sue (rtaE",E")= 0. 

From this we conclude, by definition of E2, that /(t)taE2EtE2. Accordingly, 
by definition of weaving, /(t)Et(EOIIE IIIE 211£ 3). 

Second, we observe that the connection EO, E 1, E2, and E3 is closed and 
free of output interference. Since, by the introduction of the SEQ component, 
the internal computation performed by E 2 is purely sequential, it follows that 
the connection is also free of computation interference, and we derive 
EO➔El , E2,E3. 

We conclude with a few remarks on the decomposition described in this sec­
tion. First, we observe that the selection of an output is based on the order in 
which the inputs and auxiliary symbols are sequenced by the SEQ component. 
Component E 2 computes in a deterministic way the next output from the 
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order in which it receives the inputs from the SEQ component. Second, we 
remark that the internal computation is performed in a purely sequential 
fashion. We have chosen this approach for reasons of simplicity. Under cer­
tain conditions techniques may be applied that yield decompositions with a 
higher degree of parallelism. For example, it may well be that EO is expressed 
as a weave E5IIE6, for which oE5noE6= 0. By Corollary 3.1.3.3, E5IIE6 
can be decomposed into E 5 and E 6. Both components E 5 and E 6 can then 
perform their computations in parallel. More optimization techniques are given 
in Chapter 7. 

6.2.5. A linear decomposition of e(GSEL) 

(1bis section may be skipped at first reading.) In the previous section we gave 
for any component EOEe(GSEL) a decomposition EO➔ E1,E2,E3. The 
decomposition was not a linear decomposition, since in general E 2 = e(JE OJ) 
does not hold. In this section we define components MASTER and SLA VE.i, 
O~i<m, such that 

E2 ➔ MASTER, (i:O~i<m:SLAVE.i), where 

MASTERE f.,(G2') I\ SLAVE.iE f.,(G2'), for O~i<m, and 

JMASTERI + (+i:O~i<m : JSLAVE.il) = e(JEOI). 

By the Substitution Theorem and the above decompositions, we can then con­
clude that there exists a linear decomposition of any component EOEe(GSEL) 
into components expressed in~ and SEQ components. The commands MAS­
TER and SLA VE.i, O~i <m, are constructed from the command E", which in 
its tum is constructed from EO (see previous section). 

Component E 2 determines for a current trace t E tE 2 and next input x E iE 2 
whether Sue (txtaE",E") contains an output or not. If it contains an output, 
the first one is produced, otherwise np is produced. We construct a decomposi­
tion of E2 in which the successor set of outputs with respect to E" is recorded 
by a number of SLA VE components. First, we explain the idea behind the 
decomposition by means of an example. Consider the command 

El" = pref[d"?;a"! I e"?;(a"!Jb"!)] 

11 pref[f'?;(a"!Jc"!) I g"?;a"!] 

II pref[ha"?;a"!] 

II pref[hb"?;b"!] 

II pref[hc"?;c"!]. 

From this command we construct Table 6.2.0. 
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a" b" c" 

0 00 
I 0 0 
2 0 
3 0 
4 0 

TABLE 6.2.0. 

In general, for a command E" the corresponding table is constructed as fol­
lows. Let E" be expressed as a weave (Ilk: Q,s;;;;_k<N: E.k) of sequential com­
mands E.kEf-(GSEL). For each yEoE" and k, Q,s;;;;_k<N, we place a cell at 
entry (k,y) of the table i1f y Eo(E.k ). Each cell can be in one of two states: it is 
either black or white. Initially all cells are white. The state of the cells is in 
accordance with the following rules. Let tEtE2 be the current trace. For each 
yEo(E.k) and k, Q,s;;;;_k<N, we have 

P : yESuc(tta(E.k),E.k) cell(k,y)isblack. 

For example, if E"=E l" and t =hb" np ha" np f' np d", then the cells (O,a"), 
(l,a"), (l,c"), (2,a"), and (3,b") are black. If P holds, then the successor set of 
outputs of E" is determined by 

y E Suc(tt aE",E") _ all cells in column y are black, 

for allyEoE". For example, if E"=El" and t=hb"npha"npf'npd", then 
all cells in column a" are black. Consequently, a" E Sue (ttaE l", El"). 

The computation of component E 2 can be expressed as a sequential algo­
rithm that performs operations on a table of cells as defined above. The algo­
rithm has P as an invariant. First, we present the algorithm and then we 
encode it in a communication protocol between a MASTER component and a 
number of SLAVE components. The algorithm is given below. 'Set cell (k,y )' 
means 'make cell (k,y) black'; resetting a cell means making the cell white. 
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where 

r(x) = k 
firstk(tx) 
nextk(tx,y) 

A Decomposition Method II 

t:=£;{P} 
do true ➔ x?;k:=r(x);y:=firstk(tx); sue :=false 

;do -, sue v y=/=nil 

od, 

➔ set cell (k,y) 
; test if column y is black 
; if column y is not black ➔ y : = nextk(tx,y) 

0 column y is black ➔ reset cells in column 
and adjacent cells 

fi 
od 
;if sue ➔y!;t:=txy 

a -,SUe ➔ np!;t:=txnp 
fi{P} 

; sue: =true 

if xEi(E.k), O~k<N. 
is the first symbol in Sue(txta(E.k), E.k). 
is the next symbol in Sue(txta(E.k), E.k) after y , if y is not the 
last symbol. Otherwise, it is nil. 

Because E"Ee(GSEL), all inputs are different in E". Consequently, for each 
x E iE" there is exactly one k such that r (x) = k, and r (x) can be determined 
directly from the syntax of E". Furthermore, we infer for O~k<N, 

tx EtE" I\ x Ei(E.k) 

~{E"Ee(GSEL), calc.} 

Sue(txta(E.k), E.k) = Sue(x,E.k). 

The set Sue(x,E.k) can be determined directly from the syntax of E" as well. 
For example, for E"=E l" we have r(d")=O, r(e")=O, Sue(d",E. O)= {a"}, 
and Sue(e",E. O)= { a",b"}. 

We make one remark with respect to the resetting of cells. If all cells in 
column y, say, are black, then a number of cells must be reset such that P can 
be concluded after output y is produced. The cells that must be reset are not 
only the cells in column y but also those cells in each row that has a non­
empty intersection with column y. For example, after trace 
t =hb" np ha" np f' np d" all cells in column a" are black. Before output a" is 
produced the cells in column a" are reset, but also cell (l,e") must be reset! 

The algorithm is encoded in a communication protocol between a MASTER 
component and a number of SLAVE components. For each cell (k,y ), 
O~k <N I\ yEo(E.k), we have a component SLA VE.k.y, which records the 
state of cell (k,y ). The set, test, and reset procedures of the algorithm are 
encoded in the protocols for communication between the SLA VE components. 
For this purpose, the SLAVE components are connected both column-wise 
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and row-wise in a ring. A test or reset procedure is initiated by one SLAVE 
component which starts a signal either in the column-wise ring or in the row­
wise ring. The other SLA VE components participate in the procedure by pro­
pagating the signal according to a specific protocol. Each SLAVE component 
is also connected to the MASTER component. The MASTER component 
determines for every receipt of input xEiE2(=iE") which components 
SLA VE.k.y, with k =r(x) and yEo(E.k), must be set and in what order. The 
answer that component SLA VE.k.y returns to the MASTER , by means of 
msuc.k.y or mfail.k.y, determines whether output y or output np, respectively, is 
produced. 

The component MASTER is defined by MASTER= µ.tailjM. 0, where 

tailfM.R. 0 = pref(lx: x EiE": x?; R.first(x)) 

tailjM.R. I = pref(np !;R. 0) 

and for all pairs (x,y) with x EiE" /\ y ESuc(x, E.r(x)) 

tailjM. R. ( x,y) = pref ( set. r ( x ).y ! 

;(msuc.r(x):Y?;y!; R. 0 

I mfai/.r(x):}'?; R.next(x,y) 

)). 

Here, for the definition of tailjM a collection of states have been labeled with 
pairs of symbols (x,y), x EiE" /\ JE Suc(x, E.r(x)), and two states with 0 and 
1. The functions first(x) and next(x,y) are defined by 

- first(x) = (x,y) , if y is the first symbol in Suc(x, E.r (x )) 
- next(x,y) =(x,z) , if z is the next symbol in Suc(x, E.r(x)) after y 

=1, ify is the last symbol in Suc(x, E.r(x)). 

Below, in Figure 6.2.3 a schematic of a SLAVE component is depicted with 
the terminals with which it is connected to other SLAVE components only. 
(The terminals msuc and mfail with which it is connected to the MASTER 
component are missing.) The actual names of the terminals for component 
SLA VE.k.y can be derived from the connection pattern. We will not do so 
here. 
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suco! fai/0 ! rco/0 ! 

rrow 1? ---1 SLAVE 
___ rrow

0
! 

sue 1 ? fail 1 ? rcol 1 ? 

FIGURE 6.2.3. A SLAVE component with some of its terminals. 

The SLAVE component is defined by SLAVE=µ. tailjS. 0, where 

tailjS.R. 0 = pref (set?;{PO}suco!;(fail 1 ?;{ P 1 }mfail !;R. 1 

lsuc1 ?; {P2}rrowo !;rrow 1? 

;rco/0 !;rco/ 1 ?; { P 3} ;ms'uc! ;R. 0 

) 

lsuc 1 ?;fai/0 !;R. 0 

lfail 1 ?;failo !;R. 0 

lrrow 1 ?;rrow O ! ;R. 0 

) 

tailjS.R. l = pref(suc1?;suc0 !;R. l 

lfail 1 ?;fai/0 ! ;R. 1 

lrco/ 1 ?;rrowo ! ;rrow 1 ?;rco/0 ! ;R. 0 

lrrow1 ?;rrow0 !;R. 0 

). 

The following interpretations can be attached to the symbols used above and 
to PO, P 1, P2, and P3. 

PO initialize test procedure 
P 1 test failed 
P 2 test succeeded, initialize reset procedure 
P 3 completion of reset procedure 
set order of MASTER to set cell 
mfail answer to MASTER that test for this column failed 
ms'uc answer to MASTER that test and reset procedure were successful 
sue test procedure has been successful so far 
fail test procedure failed 
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rrow reset all cells in this row 
rco/ reset all rows that have a cell in this column. 

Finally, we show 

E2 ➔ MASTER, (k,y:O~k<N AyEo(E.k): SLAVE.k.y). (6.2) 

First, we observe that the connection is closed and free of output interference. 
Because the computation is performed sequentially, it follows that the connec­
tion is free of computation interference as well. Moreover, since the connection 
realizes the algorithm described above, we derive that the connection behaves 
as specified by tE2 at the boundary aE2. Consequently, by definition of 
decomposition, we conclude (6.2). Furthermore, from the definitions of these 
components we observe that MASTER Ee( G 2'), SLA VE.k.y Ee( G 2') for 
O~k<N AyEo(E.k), and 

IMASTERI = e(IE"I) I\ 

(Ak,y: O~k<N AyEo(E.k): ISLA VE.k.yJ=e(l)) 

~{IE"I = e(IEOI), calc.} 

!MASTER J + ( + k,y: O~k <N A y Eo(E.k ): JSLA VE.k.y I) = e(JEOJ). 

Finally, we observe that the commands MASTER and SLA VE.k.y, 
O~k<N A y Eo(E.k), are constructed from the syntax of E", i.e. from EO. 

6.2.6. Decomposition of SEQ components 

Any k-SEQ component, k > 1, can be decomposed into the basis 8. The 
decomposition is linear in k and can be described as a syntax-directed transla­
tion. The following is a discussion of a decomposition of the k-SEQ com­
ponent, k > 1, specified by 

(Iii: O~i <k: pref[a.i?;b.i !]) 

11 pref[n ?;(Ji: O~i <k: b.i!)]. 

As an example, we consider the decomposition of the 4-SEQ component 
depicted in Figure 6.2.4. The 4-SEQ component selects one out of at most 
four pending requests for each occurrence of input n. It then produces a grant 
for the selected request. In the decomposition, this function is realized in two 
steps by means of 2-SEQ components. In the first step two independent selec­
tions are made: one between the pending requests of inputs a. 0 and a. 1, and 
one between the pending requests of inputs a. 2 and a. 3. In the second step a 
selection is made between the grants of the first step. The selection in the 
second step determines the final grant and is made for each receipt of input n 
only. The selections in the first steps are made initially and each time when 
one of its pending requests has become the final grant. 



122 A Decomposition Method II 

a.O? a.I? a. 2? a. 3? 

b. 0! b. I! b. 2! b. 3! 

FIGURE 6.2.4. Decomposition of 4-SEQ component. 

REMARK. The lower two SEQ components in Figure 6.2.4 may be replaced by 
CAL components of the form pref[a0?llb?;c0! I a l?llb?;c I!]. Notice that 
there is always at most one pending request for the lower two SEQ com­
ponents. 
D 

In general, the selection process performed by a k-SEQ component can be dis­
tributed over a binary tree. Each node in this tree consists of 2-SEQ, 2-XOR, 
and 2-FORK components. For k =7, the decomposition of the k-SEQ com­
ponent is depicted in Figure 6.2.5. The corresponding binary tree is given in 
Figure 6.2.6. 

a.O? a. I? a. 2? a. 3? a. 4? a. 5? a. 6? 

b.O! b. l! b.2! b.3! b. 4! b. 5! b. 6! 

FIGURE 6.2.5. Decomposition of 7-SEQ component. 

A pending request becomes a final grant if it is selected once at each node on 
the path from leaf to root. At the root a selection is made for each receipt of 
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a.O a.l a.2 a.3 a.4 a.5 a.6 

\/ '\/ '\/ ;· -~ . . 
./ ~-
--------------

FIGURE 6.2.6. Binary tree corresponding to the distributed selection. 

input n only. At any other node a selection is made initially and each time 
when one of its pending request has become a final grant. The decomposition 
of a k-SEQ component according to the above procedure consists of less than 
2k 2-XOR, 2k 2-SEQ, and 4k 2-FORK components. Consequently, the 
decomposition is linear in k. Finally, we remark that the decomposition can be 
described as a syntax-directed translation. 

6.3. DECOMPOSITION OF f.i INTO~ 

. In the decomposition step from f.i to e3 each component E O E e( G 4') \ e( G 3') 
is decomposed into a component E 1 E e( G 3') and a collection of WIRE com­
ponents. This step is summarized in the following Expansion Theorem. Let 
/ 0 .E and Wires(E) for a command Ebe defined by 

/ 0.E is the command E in which each atomic command !x ?, 
with x EcoE, is replaced by ox !;ix?. 
(We assume that ixf/.aE and oxf/.aE.) 

Wires(E) = (x: x EcoE: pref[ox ?;ix!]). 

We say that command / 0.E is constructed from Eby expansion of each atomic 
command !x? into ox !;ix?. We have 

THEOREM 6.3.0. (Expansion Theorem) 
If E Ee(G4'1 then E ➔ / 0.E, Wires(E) and / 0.E Ee(G 3'). 
□ 

From the definition of / 0.E and Wires(E) it follows immediately that the 
decomposition described by the Expansion Theorem is syntax-directed and 
linear in the length of the command E. Notice also that, since / 0.E E e(G3'), 
any projection operator in the command / 0.E may be removed. 

ExAMPLE 6.3.1. Let E be defined by 

E = (pref[a ?;!x ?;p !] II pref[!x?;!y?] II pref[!y ?;q !;b?])t. 
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From Example 4.9.5 we know E Ee(G4'). Consequently, by the Expansion 
Theorem, we inf er 

E 

➔ { Expansion Theorem} 

pref[a?;ox !;ix?;p !] II pref[ox !;ix ?;oy !;ry?] II pref[oy !;ry ?;q !;b?] 

, pref[ox ?;ix!] , pref[oy ?;ry !]. 

Moreover, we have f 0.E Ee( G 3'). 
D 

PROOF OF THEOREM 6.3.0. Let WWires(E) be defined by 

WWires(E) = (llx: x Eco£: pref[ox ?;ix!]). 

We prove E ➔ f 0.E, WWires(E). Since WWires(E) is a weave of WIRE com­
ponents with disjoint alphabets, the theorem follows by application of Corol­
lary 3.1.3.3 and the Substitution Theorem. 

First, by definition of f 0.E and WWires(E) we observe that the connection 
of E, f 0.E, and WWires(E) is closed and free of output interference. Second, 
we derive that 

tifo.E) t aE = tE and tifo.E) ta WWires(E) ~ t WWires(E). 

Consequently, by definition of weaving we deduce 

t(Ellfo.EII WWires(E)) = tifo.E). 

Accordingly, we have t(Ell/0.EIIWWires(E))taE=tE, 1.e. the connection 
behaves as specified at the boundary aE. 

Third, we prove that the connectio~ of E, f 0 .E, and WWires(E) is free of 
computation interference. Let W=Ellf0.EIIWWires(E). We have, by the 
above, tW=t(/0.E). We observe 
(i) 

(ii) 

tEtW I\ x Eoif0.E) I\ txta(f0.E)Etif0 .E) 

~{tW = tifo.E)} 

txEtW 

tEtW I\ xEoWWires(E) I\ txtaWWires(E)EtWWires(E) 

~{tW = tifo.E)} 

tEt(/0.E) I\ xEoWWires(E) I\ txtaWWires(E)EtWWires(E) 

~{ def. of / 0.E} 
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tx Etfj0.E) 

~{tW = tf.fo.E)} 

txEtW. 
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Let J0'.E be the command E in which each atomic command !x? is replaced 
by !ox?;!ix?, and in which the projection operator has been deleted. We 
derive from the definition of f 0'.E and the grammar G4' 

tf.fo'E) = tf.fo.E) I\ i(/0 '.E)=iE /\ extf.J0 '.E)=aE and 

EEe(G4') ~ (/0'.E)t Ee(G4'). 

With these properties for J0'.E we deduce 
(iii) 

tEtW I\ xEoE I\ txtaEEtE 

~{tW = t(/0.E), calc.} 

tEtf.Jo.E) /\ xEiE /\ txtaEEtE 

~{!0.E taE = E, calc.} 

(Es :: t Etf.J0.E) /\ x EiE /\ sx Etfj0.E) /\ st aE = tt aE) 

~{def.of fo'.E} 

(Es::tEt(/0 '.E) I\ xEi(/0 '.E) /\ sxEtfj0 '.E) I\ 

stextf.J0'.E)=ttext(f0 '.E)) 

~{EEe(G4') ~ (/o'.E)tEe(G4'), 

i.e. Disin(/0'.E) I\ en(/0 '.E)= 0, See Appendix B} 

tx Etfj0 '.E) 

~{tf.Jo'.E) = tW} 

txEtW. 

From (i), (ii), and (iii) follows that the connection is free of computation 
interference. 

Finally, we remark that the property EEe(G4') ~ fo.EEe(G3') can be 
proved by means of recursion along the syntax of E using the definitions of 
G4' and G3'. 
□ 
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Chapter 7 

Special Decomposition Techniques 

7 .0. INTRODUCTION 

In the previous chapter we presented a decomposition method which is appli­
cable to components represented in f.i. For special commands other decompo­
sition techniques, which may yield decompositions with fewer basic com­
ponents, may be applied as well. Toe purpose of this chapter is to discuss 
some of these techniques and to demonstrate their application by means of 
examples. Toe style of presentation of these techniques, except for the one 
presented in the last section, is informal: no proofs are given, no theorems are 
formulated, and many topics are intended as suggestions for further research. 

In the last section of this chapter we show that there exists a decomposition 
for any regular DI component into components expressed in l:3. This property 
is based on a special decomposition technique for decomposing regular DI 
components that are represented by deterministic commands, i.e. commands in 
which projection does not occur and that satisfy the LL- I conditions irrespec­
tive of the type of the symbols. We believe, however, that this result is more 
of theoretical than of any practical interest. 

7.1. MERGING STATES AND SPLITTING OFF ALTERNATIVES 

Toe techniques discussed in this section are called 'merging states' and 'splitting 
off alternatives'. We explain the idea behind these techniques by means of 
some small examples. Both techniques yield decompositions of the form 
EO ➔ EI. For this reason they can be used conveniently in combination with 
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Corollary 3.1.3.2. We demonstrate this in three examples, where decomposi­
tions for counter and buffer components are derived. 

Consider the following decompositions. 

pref{QO}[a?;b!;{Ql}c?;d!] ➔ pref[a?;b! I c?;d!], 

pref[b !;{Q 1 };c?;d!;{Q2}a?] ➔ pref(b !;[c?;d! I a?;b !]) , 

and 

pref{QO}[aO?;bO!;{Q l}cO?;d! I a I?;b l!;{Q2}c l?;d!] 

➔ pref[a O?;b O! I cO?;d ! I a 1 ?;b I! I c 1 ?;d !]. 

We say that the decompositions for these components are constructed by merg­
ing the states QO and Q 1, Q 1 and Q2, and QO,Q 1, and Q2 respectively. 
Notice that for each component the inputs that are received in the differently 
labeled states differ. Therefore, the different states can be distinguished in the 
decomposition by the difference in inputs. 

By means of merging states, the number of states of a sequential command 
decreases. Thus, also the number of basic components in the final decomposi­
tion may decrease. The technique of merging states, however, can not be 
applied in general. For example, the inputs that are received in the states to be 
merged must differ. But also the resulting command must be a DI command 
. again. Further study is required to formulate general conditions under which 
this technique may be applied. 

The technique of splitting off alternatives is exemplified in the following 
decompositions. 

pref[a ?;b ! I c ?;d !] ➔ pref[a ?;b !] II pref[c ?;d !], 

pref(b !;[c?;d! I a?;b !] ➔ pref(b !;[a?;b !]) 11 pref[c?;d!], 

and 

pref[aO?;bO! I cO?;d! I a l?;b I! I c l?;d!]. 

➔ pref[aO?;bO!] II pref[a l?;b I!] II pref[cO?;d! I c l?;d!]. 

These decompositions suggest a technique for decomposing special commands 
with alternatives. We have called this technique splitting off alternatives. How 
this technique can be formulated is also left as a suggestion for future research. 

Both techniques can be useful in deriving decompositions for components. 
This is illustrated in the following examples. 

ExAMPLE 7.1.0. We give a derivation for a decomposition of the 3-counter 
which is specified in Example 4.9.5. First, by means of merging states and 
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splitting off alternatives we derive (cf. above) 

pref[a?;ox!;ix?;p!] ➔ pref[a?;ox!] II pref[ix?;p!], (0) 

pref[ox !;ix?;oy !;ry?] ➔ pref(ox !;[ry?;ox !]) II pref[ix?;oy !] (I) 

pref[oy!;ry?;q!;b?] ➔ pref(oy!;[b?;oy!]) II pref[ry?;q!]. (2) 

With these decompositions we inf er 

(pref[a?;!x?;p!] II pref[!x?;!}i?] II pref[!y?;q! ;b?])t 

➔ { Expansion Theorem} 

pref[a?;ox !;ix?;p !] II pref[ox !;ix?;oy !;ry?] II pref[oy !;ry ?;q !;b?] 

,pref[ox ?;ix!], pref[oy ?;ry!] 

➔ {(0), (I), and(2), Cor. 3.l.3.2(3X)} 

pref[a?;ox !] II pref[ix?;p !] 

II pref(ox !;[ry?;ox !]) II pref[ix?;oy!] 

llpref(oy!;[b?;oy!]) II pref[ry?;q!] 

,pref[ox ?;ix!], pref[oy ?;ry !] 

➔ {rewriting} 

pref[ix ?;p !] 

II pref[ox !;ry?] 11 pref[a?;ox !] 

II pref[oy ! ;b ?] II pref[ix ?;oy !] 

II pref[ry ?;q !] 

,pref[ox ?;ix!], pref[oy ?;ry !] 

➔ {Cor. 3.1.3.3} 

pref[ix ?;p !] 

,pref[ox !;ry?] II pref[a?;ox !] 

,pref[oy !;b?] II pref[ix?;oy !] 

,pref[ry !;q !] 

,pref[ox ?;ix!], pref[oy ?;ry!] 

Consequently, from this derivation we conclude that the 3-counter can be 
decomposed into four WIRE components and two 2-CEL components. The 
decomposition is depi~ted in Figure 7 .1.0. 
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a? __ ___ q! 

ry 
ox 

oy 
ix 

p! __ .., 
'---<J-_ b? 

FIGURE 7.1.0. Decomposition of 3-counter. 

Because some components have a common input, we may also say that the 3-
counter can be decomposed into two 2-FORK and two 2-CEL components. 
In general, any k-counter, k > 1, can be decomposed similarly into k -1 2-
FORK and k - 1 2-CEL components. 

□ 

ExAMPLE 7.1.1. For the four-phase handshake expansion of count3(a,b) given 
in Example 4.9.7 we derive analogously to the previous example, 

( pref[aO?;a l!;a2?;a3!] II pref[bO?;b l!;b2?;b3!] 

II pref[a I !;a 2?;!x ?] II pref[!x ?; ry?] II pref[ry?;b l!;b 2?]) t 

-+ { Expansion Theorem} 

pref[aO?;a l!;a2?;a3!] II pref[bO?;b l!;b2?;b3!] 

II pref[a l!;a2?;ox !;ix?] 11 pref[ox !;ix?;oy !;ry?] 

II pref[oy !;ry?;b l!;b2?] 

,pref[ox?;ix !] , pref[oy?;ry !] 

-+ {Merging states, splitting off alternatives, Cor. 3.1.3.2} 

pref[aO?;a I!] II pref[a2?;a 3!] II pref[bO?;b I!] II pref[b2?;b 3!] 

II pref[a l!;ix ?] II pref[a 2?;ox !] II pref[ox !;ry ?] II pref[ix ?;oy !] 

11 pref[oy ! ;b 2?] 11 pref[ry ?;b I!] 

,pref[ox ?;ix!], pref[oy ?;ry !] 

-+ {Cor. 3.1.3.3} 
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pref[aO?;a 1!] II pref[a l!;ix?] 

,pref[bO?;b 1!] 11 pref[ry?;b 1!] 

,pref[a2?;ox !] II pref[ox !;ry?] 

,pref[ix?;oy!] II pref[oy!;b2?] 

Special Decomposition Techniques 

,pref[a2?;a 3!], pref[b 2?;b 3!], pref[ox ?;ix!], pref[oy?;ry!]. 

Consequently, this component can be decomposed into four 2-CEL com­
ponents and four WIRE components. The decomposition is depicted in Figure 
7.1.1. 

D 

aO? b2? 
ix 

a 1! oy b3! 

a3! ox bl! 

a2? ry 
bO? 

FIGURE 7.1.1. Decomposition of four-phase handshake expansion 
of countJ(a,b). 

ExAMPLE 7.1.2. Similar to the previous examples we can derive a decomposi­
tion of the 3-place 1-bit buffer which is specified in Example 4.9.6. After a 
number of steps in which we apply the Expansion Theorem, merging states, 
splitting off alternatives, Corollary 3.1.3.2, and Corollary 3.1.3.3 we obtain 

(pref[a0?;!x0?;p ! I a l?;!x l?;p !] 

II pref[!x 0?; !y 0? I !x 1 ?; !y 1 ?] 

II pref[q?;(!y0?;b0! I !y l?;b l!)])t 

➔ { applying above mentioned techniques} 

pref[aO?;ox0!] II pref[a l?;ox 1!] 

II pref((ox0!lox l!);[(ry0?lry l?);(ox0!lox 1!)]) 

,pref[ix0?;oy0!] II pref[ix l?;oy 1!] II pref[q?;(oy0!loy 1!)] 

,pref[ixO?;p! I ix l?;p!] 

,pref[ry0?;bO!], pref[ry l?;b 1 !] 

,pref[ox0?;ix0!], pref[ox l?;ix 1!], pref[oy0?;ry0?], pref[oy l?;ry 1!] 

The component in the first two lines of this list of components can be 
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decomposed into a SEQ component and a XOR component. The other com­
ponents in this list are all familiar components. The complete decomposition 
is depicted in Figure 7.1.2. 

ao?----t 
ox0 ix0 

ry I 

~----q? 

FIGURE 7.1.2. Decomposition of a 3-place 1-bit buffer. 

In general, any n-place 1-bit buff er, n > l, can be decomposed similarly. Other 
decompositions for the above buff er can be derived using properties from trace 
theory. For example, the decomposition where instead of the 2-SEQ com­
ponents CAL components of the form pref[a0?llb?;c0! I a l?llb?;c 1!] are used 
can be derived as well. Finally, we mention that a 3-place n-bit buffer, n >0, 
specified by 

(II · o:s::: · f[ · 0? 1 · 0? 1 J · 1? 1 · 1? ']) l: .....,, <n: pre a.l. • ; .X.l. . ;p. a.1. . ; .X.l. . ;p. 

11(11 i:0~i<n: pref[!x.i.0?;!y.i.0? I !x.i. l?;!y.i.1?]) 

11(11 i:0~i<n:pref[q?;(!y.i.0?;b.i.0! I !y.i. l?;b.i. l!)]), 

can be decomposed into 3-place 1-bit buffers. The decomposition for n =2 is 
depicted in Figure 7 .1.3, where Bf denotes the 3-place 1-bit buffer. 

a. 0.0? b. 0.0! 

a. O.l? b.O.l! 

p' q? 

a. 1.0? b. l.0! 

a. I.I? b. I.I! 

FIGURE 7.1.3. Decomposition of 3-place 2-bit buffer. 

D 
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7 .2. REALIZING LOGIC FUNCTIONS 

In this section we show some techniques to realize logic functions of the form 
c = f. a, where c and a are vectors of binary variables and f is a function 
expressed with logic operations. The techniques are very similar to those 
applied in switching theory. We will even show that the techniques developed 
in switching theory can also be applied in the design of delay-insensitive sys­
tems. The difference with switching theory lies in the encoding of the data and 
in the signaling scheme that is applied. For the specification of logic functions 
by DI commands we apply a two-rail two-cycle signaling scheme in this sec­
tion (cf. Section 2.3.0). 

In Section 2.3.0 the conjunction is specified by a DI command applying a 
two-rail two-cycle signaling scheme. Negation and disjunction are specified 
similarly by the DI commands 

pref[a0?;c 1! I a l?;c0!] and 

pref[a 0?llb 0?;c0! I a 1 ?lib 1 ?;cl! I a 0?llb 1 ?;c 1 ! I a 1 ?llb0?;c 1!]. 

respectively. Equivalence can also be specified in this way. In general, any 
logic function can be specified by a combinational command of the above 
form. Here, we assume that more than two parallel inputs are allowed in a 
combinational command. For a function c = f.a, where a is a vector of binary 
variables and c is one binary variable, we obtain a semi-sequential command 
in which for each set of input values there is one alternative. If f is a vector 
function f(i : Oo;;;;; <n ), we take as the specification for f the weave of the semi­
sequential commands for each f.i, o..;;;; <n. 

A component specified by a logic function can be decomposed in a natural 
way into components for the basic logic operations. For example, if the func­
tion f is specified by f . (a,b)=-,(-,a/\-,b), then the component specified by 
this function can be decomposed into negation and conjunction components as 
depicted in Figure 7 .2.0. 

I\ 

FIGURE 7.2.0. Decomposition corresponding to -,(-,aA-,b). 

We may consider the components for conjunction, disjunction, equivalence, 
and negation as basic components, but we may also decompose them by one 
of the techniques discussed in the previous chapter. For example, the negation 
component is easily decomposed into two WIRE components as shown in Fig­
ure 7.2.1. 
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aO? : : cO! 
a 1? ., ___ __,X ..... __ ..... _., cl! 

FIGURE 7.2.1. Decomposition of negation component. 

Since the expression -,(-,a 1\-,b) is equivalent to av b, it follows that the dis­
junction component can be realized by the conjunction component when the 
terminals in each input and output pair are interchanged. 

As another example of a decomposition, we consider the comparator and 
parity function defined by 

comparator. (a,b) = ( /\ i: O:s;;;i <n: a.i _ b.i) and 

·1y <- . o,;;::: ·< .) pan .a = =l: -1 n: a.1 , 

where a (i: Q:s;;;i <n) and b (i: Q:s;;;i <n) are vectors of binary variables. Each of 
these functions can be specified by a DI command as sketched above. Decom­
positions of these components are shown in Figure 7.2.2 for n =4. 

a.O b.O a. I b. 1 a.2 b. 2a.3 b.3 

a.Oa.l a.2a.3 

comparator. ( a, b) parity.a 

FIGURE 7.2.2. Decompositions for comparator and parity. 

In switching theory a circuit that realizes a logic function is called a combi­
national circuit. Often such a circuit is also referred to as a combinational 
logic block and abbreviated by CL. Analogously, we call a connection of DI 
components that realizes the DI command corresponding to a logic function a 
combinational logic block. 

Logic functions which have a feedback of output values to input values for 
the next application of f are used to describe a kind of finite state machine. 
The values that are fed back can be seen as the state information of the finite 
state machine. Logic functions with feedback of outputs values can be 
specified by DI commands using tail recursion. For example, the parity func­
tion c = f. a for serial inputs a this time can be specified by the command 
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µ..tailf. 0, where 

taiif.R. O= pref(a0?;c0!;R. 0 I a l?;c l!;R. 1) 

taiif.R. 1 = pref(a0?;c l!;R. 1 I a l?;c0!;R. 0). 

The comparator function c = f. (a,b) with serial inputs a and bis specified by 
µ.. taiif. 0, where taiif is now defined by 

taiif.R. O= pref(a0?llb0?;c l!;R. 0 I a l?llb l?;c l!;R. 0 

I a l?llb0?;c0!;R. 1 I a0?llb l?;c0!;R. 1) 

taiif.R. 1 = pref(a0?llb0?;c0!;R. 1 I a l?llb l?;c0!;R. 1 

I a l?llb0?;c0!;R. 1 I a0?llb l?;c0!;R. 1). 

If/ is a vector function f(i: 0~i <n), we specify f by the weave of the DI 
commands for each f.i, 0~i <n. 

Any logic function with a feedback of state information can be expressed by 
a logic function without feedback of state information. For example, if f is 
defined by c = f .a, then there exists a logic function g (without feedback) such 
that (c,xn + 1) = g. (a,xn) where Xn, n ~O, is a vector of binary variables contain­
ing the state information after then-th application off The vector x 0 contains 
the initial state. Based on this expression for f, the component corresponding 
to f can be decomposed as depicted in Figure 7.2.3. 

p 

a 
CL 

FIGURE 7.2.3. Decomposition for f 

The combinational logic block CL realizes the function g. Component Bf is a 
3-place n-bit buffer as specified in Example 7.1.2, where n equals the number 
of outputs of the function g. The purpose of the buff er is to avoid computation 
interference in the feedback of state information to the combinational logic 
block. When all input data is stored in the buffer, output p is produced. This 
output is fed back to input q upon which the stored data is output. Input data 
arriving after the occurrence of output p do not interfere with the retrieval of 
the stored data. 

In switching theory a logic function with feedback of state information is 
realized by a so-called sequential circuit, i.e. a combinational circuit and a 
clocked register. The configuration of Figure 7.2.3 is very similar to such a 
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circuit. Here, the function of the clocked register is performed by the buffer. 
In the case of clocked systems the presence of new data, i.e. the beginning of a 
new cycle, is signaled by clock pulses sent to the clocked registers. In the case 
of delay-insensitive systems the beginning of each new cycle is encoded in the 
data itself, e.g. by applying a two-rail two-cycle signaling scheme. From the 
above observations we conclude that techniques used in switching theory for 
the design of clocked systems can also be applied in the design of delay­
insensitive systems. 

7.3. EFFICIENT DECOMPOSITIONS OF /:(G3') 

The decomposition of a component EE!:( G 3') according to the general 
methods described in the previous chapter can become rather complicated. In 
many cases an ad hoc approach may yield a more efficient decomposition. We 
illustrate this by means of a decomposition for the token-ring interface 
specified in Section 2.3.2. 

First we slightly simplify the command by applying techniques discussed in 
previous sections. We derive 

pref {QO}[a l?;p l!;{Q 1 }a0?;p0!] 

llpref{Q2}[b?;(q! jpl!;{Q3}a0?;q!)] 

- {Merging states QO and Ql, and Q2 and Q3, Cor. 3.1.3.2} 

pref[a l?;p 1! I a0?;p0!] 

II pref[b?;(q !IP l!) I aO?;q !] 

- {Splitting off alternatives, Cor. 3.1.3.2, Cor. 3.1.3.3} 

pref[a0?;p0!] 

,pref[a l?;p l!] II pref[b?;(q!jp l!) I a0?;q!]. 

The last component is specified by a command from i:(GSEL). For the 
decomposition of this component we consider the decomposition of 
E0=pref[al?;pl!]llpref[b?;(q!jpl!)] in isolation first. Component EO is 
decomposed in a similar fashion as discussed in Section 6.2.4. This time, how­
ever, we do not introduce auxiliary symbols. The decomposition is given in 
Figure 7.3.0. 
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a0? 

b? 

EI a0" 

b" 

E2 

np n 

p 1" 
-~---➔E 31----• p I! 

II 

---q! 

FIGURE 7.3.0. Decomposition of E0. 

Components E 1, £2, and £3 are defined by 

EI = pref[a 0?;a 0"!] II pref(b ?;b"!] II pref[n ?;(a 0"!lb"!)] 

E2 = pref(b"?;q"! I a0"?;np !;q"?;p I"!] 

E 3 = pref(q"?;q !] II pref[p l"?;p I!] 

II pref(n !;[q"?;n ! Ip l"?;n ! I np?;n !]). 

The selection between the outputs p I and q is determined by the order in 
which the inputs a 0 and b are sequenced by the SEQ component EI. If com­
ponent £2 first receives input b", output q is produced. If component £2 first 
receives input a 0", then, after input b" is received as well, output p I is pro­
duced. We have E0 ➔E l,E2,E3. 

With the aid of the decomposition for E 0 we can construct a decomposition 
for our original command pref[a I ?;p I!] II pref(b ?;(q !l,d !) I a 0?;q !]. To that 
end we have to take into account the alternative a 0?;q ! only for the produc­
tion of output q. We observe 

pref[a0?;p0!] 

,pref[a I ?;p I!] II pref[b ?;(q !jp I!) I a 0?;q !] 

➔ {decomposition above, calc., Cor. 3.1.3.3} 

El, £2 

,pref[q"?;q! I a0?;q!] 

, pref [p l "?;p I!] 

,pref(n !;[q"?;n ! Ip l"?;n ! I np?;n !]) 

,pref[a 0?;p 0!]. 

Each of these components is either a basic component or can be decomposed 
by techniques explained in the previous chapters. A complete decomposition of 
the token-ring interface is shown in Figure 7 .3.1. 
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b? al? aO? 

q! pl!pO! 

FIGURE 7.3.1. Decomposition of token-ring interface (0). 

7.4. EFFICIENT DECOMPOSITIONS USING TOGGLE COMPONENTS 

In the general decomposition method TOGGLE components were used in 2-
to-4 cycle converters only. For a number special DI commands, TOGGLE 
components can also be used to obtain a more efficient decomposition. This 
holds in particular for components expressed in e(G I'). We briefly illustrate 
how TOGGLE components may optimize decompositions. 

Consider the component specified by the sequential command E, where 

E=pref[a ?;c !;a?;d!;a?;c !] . 

Suppose we had a so-called 3-TOGGLE component specified by 
pref[a?;a l!;a?;a2!;a?;a3!]. Then we derive 

E 

➔ {def. of decomposition} 

pref[a?;a l!;a?;a2!;a?;a3!] 

,pref[a 1 ?;c !;a 2?;d!;a 3?;c !] 

➔ { merging states} 
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pref[a ?;a l!;a ?;a 2!;a ?;a 3!] 

,pref[a 1 ?;c ! I a 2?;d ! I a 3?;c !] 

➔ { splitting off alternatives, Cor. 3.1.3.3} 

pref[a?;a l!;a?;a 2!;a?;a 3!] 

,pref[a 1 ?;c ! I a 3?;c !] 

,pref[a 2?;d !]. 

Special Decomposition Techniques 

The decomposition of component Eis depicted in Figure 7.4.0. A 3-TOGGLE 
component can be decomposed into (2-)TOGGLE components and a 2-XOR 
component. This decomposition is given in Figure 7.4.0 as well. 

a I 

a? ~D-- C ! 

~d! 
a3 

.A---t-_a2! 
~~-a3! 

Decomposition of E. Decomposition of 3-TOGGLE. 
FIGURE 7.4.0. 

In command E there are three states in which an input a is received. Input a 
is also the only input that can be received in those states. By means of a 3-
TOGGLE component we are able to make a distinction between those three 
states. In general, we can use n-TOGGLE components, n > 1, to distinguish 
states in which the same input is received. Then-TOGGLE components, n > 1, 
can be decomposed into 2-TOGGLE and XOR components similarly to the 
decomposition of the 3-TOGGLE component. 

TOGGLE components can also be used to decompose modulo-N counters, 
N >0, in an efficient way. A modulo-N counter, N >0, is specified by 

pref[(a?;q !f-I ;a?;p !], 

where E 1 =E and En+I =En;E for n >0. For N = 3 a decomposition is given 
in Figure 7.4.1. 

a? 

: :
';_ ·c~= 

FIGURE 7.4.1. Decomposition of modulo 3-counter. 

The modulo-3 counter will be drawn as a square box, as shown in Figure 7.4.2. 
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a?-~ p! 
~q! 

FIGURE 7.4.2. A schematic for the modulo 3-counter. 
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A decomposition of the modulo-17 counter into 2-XOR, TOGGLE, and 
modulo-3 counters is given in Figure 7.4.3. 

~qi 
a? 7 ~ •P; od3 od3 , 

FIGURE 7.4.3. Decomposition of modulo-17 counter. 

The decomposition of the modulo-17 counter is based on the calculations 
17= 18-1 and 18=3X3X2. In general, any modulo-N counter, N>O, can be 
decomposed into 0(logN) 2-XOR and TOGGLE components. Notice that in 
the above decompositions there is always at most one transition propagating 
through the connection. The operation of these counters is very similar to the 
operation of so-called ripple counters. 

7.5. BASIS TRANSFORMATIONS 

For the general decomposition method we chose as our basis the set BO. We 
may wonder whether there exist other bases as well. For example, could the 
set 82 serve as a basis, where 82 is defined as BO in which the 2-SEQ com­
ponent is replaced by the 2-ARB component? This could be an interesting 
basis, since we may know how to realize a 2-ARB component but we do not 
know yet how to realize a 2-SEQ component. We indicate that if one set can 
be used as a basis, so can the other. This is demonstrated by showing that 
(i) the 2-SEQ component can be decomposed into 82, and 
(ii) the 2-ARB component can be decomposed into BO. 
Consequently, by the Substitution Theorem, we conclude that we can 
transform decompositions from one basis into the other and vice versa. Since 
we have shown that BO can serve as a basis, it follows that 82 can serve as a 
basis as well. 

We present decompositions for (i) and (ii) by means of schematics. No 
proofs are given. As specifications for the 2-SEQ and the 2-ARB component 
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we take 

pref[a ?;p !] II pref[b ?;q !] II pref[n ?;(p !lq !)] 

and 

pref[a l?;p l!;a0?;p0!] 

II pref[b 1 ?;q 1 !;b0?;q0!] 

II pref[p l!;a0? I q l!;b0?], 

respectively. A decomposition of the 2-SEQ component into the 2-ARB com­
ponent and component Eis given in Figure 7.5.0. 

=~: r~: _::: 
~? 

FIGURE 7.5.0. Decomposition of 2-SEQ component into 82. 

Component E in Figure 7.5.0 is a CAL component specified by 
pref[p 1 ?lln ?;a0! I q l?lln ?;b0!] and can be decomposed further into the basis 
80 \ {2-SEQ} as shown in Section 5.6. A decomposition of the 2-ARB com­
ponent into 80 is given in Figure 7.5.1. 

a0? p0! 
a 1? pl! 
b 1? q 1! 

b0? q0! 

FIGURE 7.5.1. Decomposition of 2-ARB component into 80. 

With the above transformations between the bases 80 and 82 it is not 
difficult to derive a decomposition of a k-ARB component, k > 1, into the 
basis 82. First we decompose the k-ARB component into a k-SEQ com­
ponent, a XOR component, and FORK components, similarly to the decom­
position shown in Figure 7.5.1. Subsequently, the k-SEQ component is 
decomposed into the basis 80 as described in Section 6.2.6. Finally, each 2-
SEQ component in this decomposition is decomposed into 82 as depicted in 
Figure 7.5.0. Thus, we obtain, by the Substitution Theorem, a decomposition 
of the k-ARB component, k > 1, into the basis 82. 
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7.6. DECOMPOSITION OF ANY REGULAR DI COMPONENT 

With the methods described in Chapters 5 and 6 any regular DI component 
expressed in ~ can be decomposed into a finite basis of (DI) components. 
Since there may be regular DI components that cannot be expressed in ~. not 
every regular DI component may be decomposable into a finite basis of com­
ponents. In this section we indicate that for every regular DI component there 
exists a decomposition into basic components. To this end, we present a 
decomposition into components expressed in e3 for any regular DI component 
represented by a deterministic command. Here, a deterministic command is 
defined as a command in which projection does not occur and that satisfies the 
LL-1 conditions irrespective of the types of the symbols. Because there exists 
for every regular component a representation in the form of a deterministic 
command, it follows, with the method discussed in the previous chapters, that 
for every regular DI component there exists a decomposition into eo. 

We believe that the decomposition step discussed in this section is more of 
theoretical interest than of any practical interest. It turns out that decomposi­
tions started with this step can become rather complicated. Whenever a regu­
lar DI component can be expressed in the language ~. this is to be preferred 
to expressing the DI component as a command not in ~- Finding an 
appropriate command in which a DI component can be expressed is a task of 
the programmer. 

We present for each regular DI component represented by a command EO a 
decomposition into a component E 1 Ee( G 3') and a collection of WIRE com­
ponents. The theorem on which the decomposition is based is formulated as 
follows. Let/1.E,fi.E, WW(E), and Wires(E) be defined by 

/ 1 .E is a command that has the same trace structure as E but 1s 
expressed as a weave of deterministic sequential commands. 

fi.E is the command E in which each atomic command x? and x !, for 
xEaE, is replaced by ox!;ix?. 

WW(E) = (llx:xEiE: pref[x?;ox!]) 

II (llx: x EOE: pref[ix ?;x !]). 

Wires(E) = (x: x EaE: pref[ox ?;ix!]). 

We have 

THEOREM 7.6.0. If E is a DI command, then 

E - WW(E) llfi.(fi.E), Wires(E) 

and WW(E) llfi .(f,.E) E e(G3'). 
□ 

We shall not discuss the details of how to obtain command / 1.E. We know 
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that for every command E, i.e. E represents a regular component, there exists a 
command / 1 .E. For / 1 .E we can take a command corresponding to, for exam­
ple, the minimal deterministic finite state machine for E. We conjecture that 
/ 1 .E can be obtained in a constructive way from command E. Although the 
construction may be laborious, the essence is that it can be done. Further­
more, we remark that the linearity of the decomposition may be lost in con­
structing the command / 1.E. If / 1.E and E are sequential commands, then 
[fi.EI can be exponential in IEI in the worst case [49). When weaving between 
sequential commands is allowed there is as yet little known about the relation 
between [fi.EI and IEJ. 

In general, we have E - WW(E)llfi.E, Wires(E) for any DI command E, 
but we do not have fi.EE'E(G3'). The reason for the construction of / 1.E is 
to establishfi.(fi.E)E'E(G3'). We demonstrate this in the following example. 

ExAMPLE 7.6.1. Let command Ebe defined by 

E = pref(a?llb ! I a?; b !lie!). 

In Example 4.1.1 we inferred that EEC4. Consequently, Eis a DI command. 
Command E, however, is not a deterministic neither a sequential command. 
In order to obtain a deterministic sequential command for E, we define 

/ 1.E = pref(b!;a? I a?;(b!;c! I c!;b!)). 

Applying Theorem 7.6.0 with this definition for / 1.E we derive 

E - WW(E)llfi.((i.E), Wires(E), where 

WW(E) = pref[a ?;oa !] II pref[ib?;b !] II pref[ic ?;c !], 

h -lf1 .E) = pref(ob !;ib?;oa!;ia? 

Joa !;ia?;(ob!;ib?;oc!;ic? I oc !;ic?;ob !;ib?) 

), and 

Wires(E) = pref[oa?;ia !], pref[ob?;ib !], pref[oc?;ic!]. 

Moreover, we have WW(E)llfi.(f1.E)E'E(G3'). Notice that fi.E ~e.(G3'). 
As a comparison with the decomposition step from e_. to l:s, we also decom­

pose component E with the Expansion Theorem described in the previous 
chapter. To this end we rewrite E into a command E 1 E'E(G4'). Let E 1 be 
defined by 

E 1 = (pref (a?; !x ?;c !) II pref((~ ?J!x?);b !)) t. 

We observe that E and E 1 have the same trace structure and E 1 E 'E( G 4'). By 
the Expansion Theorem we derive 

El 

-{Expansion Theorem} 

pref(a?;ox !;ix?;c!) II pref((oy !;ry? I ox!;ix?);b !) 
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, pref[ox?;ix!], pref[oy?;ry !]. 

□ 

PROOF OF THEOREM 7.6.0. Let Ebe a DI command. Let, furthermore, com­
mand / 1 .E be denoted by E 1 and 

WWires(E 1) = (llx: x EaE 1: pref[ox ?;ix!]). 

We prove E 1 - WW(E l)llfi.E 1, WWires(E 1). Since E 1 =E, 
WW(E 1)= WW(E), and WWires(E 1)= WWires(E), we consequently con­
clude E - WW(E)llfi.(fi.E), WWires(E). Because WWires(E) is a weave of 
WIRE components with disjoint alphabets, the theorem follows by application 
of Corollary 3.1.3.3 and the Substitution Theorem. 

First, we observe that the connection EI, WW(E l)llfi.E 1, WWires(E 1) is 
closed and free of output interference. Second, we prove 

t(EI II WW(E 1) llfi.E 111 WWires(E l))taE 1 = tE 1. (0) 

To this end, we define 

/J.El as the command El in which, for xEaEl, each atomic command 
x? is replaced by x?;ox!;ix? and each atomic command x! is 
replaced by ox !;ix?;x!, for x EaE 1. 

We derive 

t(frE l)taE 1 = tE 1 

t(frE l)ta(fi.E 1) = t({i.E 1) 

t(/3.E l)taWW(E l)ktWW(E 1) 

t(J'J.E l)taWWires(E l)ktWWires(E 1). 

Consequently, we deduce 

tE 1 

={(1)} 

t(/3.E l)taE 1 

k {def. of weaving, ( 1 ), (2), (3), ( 4), calc.} 

t(E 111 WW(E) llfi.E 111 WWires(E l))taE 1 

k {def. of weaving} 

tEl. 

From which we conclude that (0) holds. 

(1) 

(2) 

(3) 

(4) 

Third, we prove that the connection E 1, WW(E l)llfi.E 1, WWires(E) is 
free of computation interference. For this purpose we define 
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/ 4.E I as the command E 1 in which, for every x EaE I, each atomic 
command x? is replaced by ix? and each atomic command x ! is 
replaced by ox !. 

and 

WO = EI II WW(E I) llfi.E I II WWires(E 1) 

WI = EIII WW(EI)II WWires(E1)llf4.E1 

RO= El 

R 1 = WW(E I) llfi.E I 

R2 = WWires(El). 

In the proof we use the following properties. 

The connection E 1, WW(E I), WWires(E 1),f4.E 1 

is free of computation interference. 

!Etif2.E 1) /\ bEoWWires(E 1) /\ 

tbtaWWires(E l)EtWWires(E I) 

==> tbEtif2 .E 1). 

tEtWO ==> tEtWI. 

(5) 

(6) 

(7) 

(8) 

Property (5) follows from the property that E is a DI command and from 
Theorem 3.2.1.3 with an appropriate renaming. Properties (6) and (7) follow 
from the definitions of fi.E 1, / 4.E 1, and WWires(E 1). Property (8) follows 
from (6) and the definition of weaving. We infer 

tEtWO /\bEo(_R I) /\ tbta(R l)Et(R I) 

==>{(8), def. of WW(E I), fi.E 1, and / 4.E I} 

!Et WI /\ (bEoWW(E 1) V bEo(/4-E 1)) /\ tbta(R l)Et(R 1) 

==>{ def. of R 1, weaving, and (6), calc.} 

(t EtWl /\ b EoWW(E 1) /\ tbt WW(E l)EtWW(E I)) 

V(tEtWl /\ bEo(j4.El) /\ tbta(j4.El)Etif4.El)) 

==>{ (5)} 

tbEtWI. 
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Similarly, we prove for i =0 and i =2 that 

tEtWOAbEo(R.i) A tbta(R.i)Et(R.i) ~ tbEtWl. 

Furthermore, we infer for all i, O~i <3, 

tEtWO I\ bEo(R.i)Atbt(R.i)Et(R.i) 

~{ def. of weaving, for i = 2 use (7), 

for i =0 use bEo(R. 0) ~ bfl.a(j2.E l)} 

tbta(/2.E l)Et(/2.E 1). 

With the last two derivations we deduce for all i, O~i <3, 

t Et WO I\ b Eo(R.i) A tbta(R.i)Et(_R.i) 

~{last two derivations} 

tbEtW1 A tbta(/2.El)Et(/2.El) 

~{ def. of weaving} 

tbEtWO, 

i.e. the connection R. 0, R. 1, R. 2 is free of computation interference. 
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Notice that until now we have not used the property that E 1, i.e. / 1.E, is 
written as a weave of deterministic sequential commands. Consequently, we 
conclude that E ➔ WW(E)llfi .E, WWires(E) holds for any DI command E. 

Since E 1 is a weave of deterministic sequential commands, we infer, by 
definition of grammar G3', that Ji.E 1 El:(G 3'). Hence, we also have 
WW(E l)llfi.E IE l:(G 3'). 

□ 
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Chapter 8 

Concluding Remarks 

In this thesis we have presented a method for designing delay-insensitive cir­
cuits. We have described a decomposition method into a finite basis of com­
ponents for components that could be expressed in the language e_.. The 
language e_. is defined by means of DI grammars, and each command in the 
language e_. represents a DI component, i.e. it is intended to specify a circuit 
that communicates in a delay-insensitive way with its environment. The 
decomposition can be described as a syntax-directed translation and is, there­
fore, a constructive method. Thus, we have shown that designing a circuit can 
be reduced to designing a program. 

The program notation for commands has proved to be a convenient medium 
for expressing parallel computations in a succinct way. In particular, the 
operations weaving, projection, and tail recursion have been rewarding primi­
tives. Weaving turned out to be a fruitful operation both for the design of 
parallel programs and for the decomposition of components: in [36, 20) it has 
been shown that the so-called conjunction-weave rule can be used conveniently 
for the design of parallel programs; in this thesis we have demonstrated that 
for the decomposition of components, specified by a weave of commands, the 
Separation Theorem can be used profitably. By means of projection we can 
introduce internal symbols, a programming primitive akin to declaring local 
variables. Tail recursion has been used both for the concise expression of 
finite state machines and for the description of the decomposition method. 

The formalizations of decomposition and delay-insensitivity turned out to be 
useful as well. The definition of decomposition gave rise to the formulation of 
other definitions and theorems such as the definitions of DI decomposition and 
DI component, the Substitution Theorem, the Separation Theorem, the Expan­
sion Theorem, and Theorem 3.2.1.1 on the equivalence of decomposition and 
DI decomposition. As outlined in Section 7.1, there are more theorems that 
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may be formulated for decomposition, and in the examples of Chapter 7 we 
indicated that these theorems - together with the material discussed in 
Chapter 3, 5, and 6- might provide a calculus for finding decompositions. 

The DI grammars of Chapter 4 have been valuable both for the recognition 
of DI commands and for the description of the decomposition method: the 
recognition of DI commands boils down to checking some simple syntactic 
rules, and the hierarchy in the decomposition method is defined by means of 
the hierarchy of the grammars. Moreover, the DI grammars can be used for 
the derivation of DI commands from non-DI commands as well; in some of 
the examples in Chapter 4 we derived a delay-insensitive communication pro­
tocol from a communication protocol that was not delay-insensitive by means 
of a DI grammar. Furthermore, since these grammars include the operations 
weaving, projection, and tail recursion, they offer great freedom in program­
ming. 

The proofs for Chapter 4, however, are rather long and tedious. Apparently, 
the difficulty of designing delay-insensitive circuits is concentrated in the recog­
nition of DI components. Knowing whether a component is a DI component 
is, however, an important property, since we can resort to decomposition 
instead of DI decomposition if we know that all components involved are DI 
components. Because of all the theorems that apply to decomposition, this 
reduction is indeed a simplification. 

The hierarchical decomposition method is straightforward, apart from the 
decomposition of CAL components into the basis BO and the decomposition 
of components expressed in £( GSEL) into SEQ components and components 
expressible in fz. Moreover, the results of many decompositions can be de­
picted in a regular schematic forming a connection of a CT, XOR, and CEL 
plane. Consequently, since these schematics also represent delay-insensitive 
connections of basic elements, it should not be too difficult to design layouts 
for these circuits. 

We gave two decompositions for CAL components: one decomposition into 
the basis BO and one decomposition into the basis B 1. The decomposition we 
described into the basis BO is conjectured to be correct. The decomposition of 
CAL components into the basis B 1 does not have to be a DI decomposition. 
In order to ensure proper operation in a realization of this decomposition 
delay assumptions must be met. The delay assumptions are simple timing con­
straints and are met by isochronic forks. Notice that this is the only place in 
which we needed to introduce delay assumptions for proper operation. The 
decomposition of CAL components is carried out in one of the last steps only 
of the hierarchical decomposition method. 

The complexity of the decomposition method has been kept under control as 
well: although the simple one-hot assignment has been applied, the decomposi­
tion can be linear in the length of a command, i.e. the total number of basic 
elements in the resulting decomposition is proportional to the length of the 
command. We believe that there exist many more techniques that may pro­
vide even more efficient decompositions; in Chapter 7 a few of them have been 
suggested. In particular, the decomposition of components expressed in 
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e( GSEL ), which may yield a rather large number of components, can be 
optimized if special decomposition techniques are applied. 

In Chapter 5 we have introduced, more or less arbitrarily, the basis Bl. We 
did not motivate our choice there, but postponed the argument of that choice 
until now. The choice for the basis BI has been based on the following cri­
teria: first, the basic elements must be realizable in an area small enough such 
that the necessary internal timing constraints can easily be identified and met, 
and, second, the specification of each basic element must be in good harmony 
with the decomposition method. Most basic elements arose naturally from the 
decomposition strategy applied, except for the 2-SEQ component. The SEQ 
component is a kind of arbitration component, just as the ARB component is. 
Initially, we chose the 2-ARB component as the primitive arbitration com­
ponent, since various realizations for this component exist. We have found, 
however, that the 2-SEQ component fitted better in the formal decomposition 
method. For example, the decomposition of the k-ARB component into 2-
ARB components is more complicated than the decomposition of the k-SEQ 
component into 2-SEQ components. This was one of the reasons we chose the 
2-SEQ component as a basic component. Once one finite basis is found, we 
can change from one basis to the other, by means of simple basis transforma­
tions as shown in Section 7.5. 

A topic we have not discussed yet is the possibility of deadlock and livelock 
in decompositions. How deadlock and livelock can occur is illustrated by the 
following example. Consider the components E O t and E 1 t , where 

EO = pref(a?;!x?;b!) II pref(!x?I !y?) and 

El= pref(a?;!x?;b!) II pref[!x?I ~?]. 

For E0t we observe that 

Suc(ay, E0) = 0 A Suc(ay t extE0, E0t) = {b }. 

In other words, after the receipt of input a, component E0t can produce out­
put b. But, if in the decomposition of component E O t the internal action y is 
selected, output b will never be produced. We say that there is danger of 
deadlock. Component E 1 t has a similar behavior. For this component we 
observe that for all n >0, ayn xb EtE 1. Accordingly, an unbounded number 
of internal y-actions can occur before an output b is produced. This 
phenomenon is called /ivelock. 

Because the decomposition is syntax-directed, deadlock and livelock can also 
occur in the decompositions of E O t and E 1 t . Absence of deadlock and 
livelock are required in a decomposition of a component. The translation 
method of Chapters 5 and 6 is defined such that absence of deadlock and 
livelock in a decomposition of component E t only depends on the trace struc­
tures of E and Et (and not on the syntax of E). In [20) the phenomena of 
deadlock and livelock are defined within the formalism of trace theory. There, 
the notion of transparence is introduced by means of which conditions can be 
formulated such that absence of deadlock and livelock is guaranteed. We 
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believe that this property has also nice prospects for formulating conditions for 
the absence of livelock and deadlock in decompositions of components. 

The general decomposition method we have described is restricted to com­
ponents expressible in f.i. This means that the programmer must try to 
represent a component in the language f.i. In Sections 2.3 and 4.9 we have 
illustrated this programming issue by means of a number of characteristic 
examples. In Section 2.3.3 we showed how a command not in f.i may be 
rewritten into a command that does satisfy the restrictions imposed by the 
language f.i. Although for many components a program can be found in the 
language f.i, for some components this may well be impossible. 

We discuss some of the restrictions of the language f.i and for what reasons 
they have been introduced. Consider the following commands which are not 
contained in f.i: 

pref[aO?lla l? ;b !;aO?lla I? ;c !] and 

pref(a?;[b !;c?;d!;a?; (b !;c?)ll(d!;c?)]). 

The reasons for the absence of these commands in the language f.i is that in 
grammar G 4' a command is not allowed to have two or more parallel inputs 
or outputs, or that a command of type <pfcom > contains a weave. Although 
it is not too difficult to find decompositions for the components expressed by 
the above commands, we believe that in general it can become rather compli­
cated to find decompositions for components expressed by commands that do 
not exhibit the above mentioned restrictions. 

The restrictions imposed by the language f.i evolved from the following two 
requirements. First, we wanted to define a grammar for which any command 
generated by this grammar was a DI command. In the development of this 
grammar we have been led by the theorems that could be formulated on the 
DI property (cf. Appendix B). Allowing weaving in commands of type 
<pfcom > renders a condition, viz. 

pref(EOIIE 1) = prefEO II pref£ I 

for commands E O and E l of type <pfcom >, which was too difficult to check 
mechanically. Second, every component represented by a command in f.i 
should be decomposable in a constructive and simple way. Allowing two or 
more parallel inputs or outputs, or weaving in commands of type <pfcom >, 
yielded too big problems for the description of a simple decomposition method 
that was generally applicable. 

Because of the direct relation between the syntax of a command and its 
decomposition, complexity measures with respect to time and area of decom­
positions can be studied by examining just the syntactic structure of the com­
mand. For the same reason, we may choose a specific decomposition of a 
component by choosing a specific command for that component. Therefore, 
and because of the requirement to express a component in f.i, it is important 
that programming techniques are developed with which commands can be 
derived conveniently from a specification. 
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In this thesis we first formalized, by means of a few basic definitions, the 
fundamental issues relevant to the design of delay-insensitive circuits. Subse­
quently, we built from these definitions a formal framework which provided 
the means to reason about such circuits, and even to derive such circuits, by 
only considering the corresponding programs. Thus, the abstraction offered by 
the formalism has enabled us to design circuits by thinking about the pro­
grams entirely in abstracto. 
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Appendix A 

For the proof of Theorem 4.1.0 we recapitulate some definitions and introduce 
some new notations. 

The rules for class C4 are defined as follows. In these rules, R denotes a 
directed trace structure with intR = 0 ; s and t denote arbitrary traces; a, b, 
and c denote arbitrary symbols; p.c.n.e. stands for prefix-closed and non­
empty. 

rule I: R is p.c.n.e. and iR n oR = 0 . 

rule 2: s a a fl.tR. 

rule 3: If a and b are of the same type, then s ab t EtR = s bat EtR. 

rule 4": If a and b are of different type and a and c are of the same type, then 
sabtcEtR I\ sbatEtR ~ sbatcEtR. 

rule 5 "': If a and b are of distinct type, then s a EtR /\ s b EtR ~ s a b EtR. 

By definition, we have R EC 4 iff R satisfies rule 1, 2, 3, 4", and 5"'. 
For the definition of DI component we introduce the following notations. 

enc(R) is defined as the trace structure R in which each 
occurrence of a symbol b EoR is replaced by ob and 
each occurrence of a symbol b E iR is replaced by 
ib. (We assume that the characters o and i do not 
occur in aR.) 
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Wire(b) = pref[ob?;ib!] for each bEaR 

Wires(R) = (b: b EaR: Wire(b )) 

WWires(R) = (llb: bEaR: Wire(b)) 

Con(R) = enc(R), Wires(R), enc(R) 

W = enc(R) II WWires(R) II enc(R). 

(Con(R) stands for the connection of components enc(R), Wires(R), and 
enc(R).) By definition, component R is DI iff Con(R) is closed, free of 
interference, and tWtaenc(R)=tenc(R). 

We slightly simplify the definition of DI component first. Define the func­
tion f(r) for traces r E tR by 

/(i)=i andf(rb)=f(r)obib for rbEtR. 

For all rEtR we have /(r)EtW. Consequently, we infer 
tWtaenc(R)=tenc(R). Moreover, if Risa component, i.e. iR noR = 0, then 
Con(R) is closed and free of output interference. From these two observations 
follows 

component R is DI 

= R is a component and Con(R) is free of computation 

interference. 

We prove in the following 

R is a component and Con(R) is free of computation 

interference. 

~ R satisfies rule 1, 2, 3, 4", and 5"'. 

and 

R satisfies rule I, 2, 3, 4", and 5"' 

(1) 

~ R is a component and Con(R) is free of computation (2) 

interference. 

From (I) and (2) we then conclude Theorem 4.1.0. 

PROOF OF (1). Let R be a component and Con(R) be free of computation 
interference. Since R is a component, rule I is obviously satisfied. 

For rule 2 we observe 

saaEtR v saa!ltR 

~{ def. off and W, R is p.c., calc.} 

(f(s)EtW I\ saaEtR) v saa!ltR 
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=>{ Con(R) is free of comp. interference, R is p.c., def. of enc(R)} 

f(s)oaoa EtW V saa!itR 

=>{def. of Wire(a), def. of weaving} 

saa!ltR. 

We prove that R satisfies rule 3 by induction to the length oft. 
Base. For a and b of the same type we observe 

sa bEtR 

=>{ def. off and W, R is p.c.} 

f(s)EtW I\ sabEtR 

=>{ Con(R) is free comp. of interference, 

R is p.c, a and b of the same type} 

f(s)oa ob EtW 
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=>{def. of Wire(a) and Wire(b), Con(R) is free of comp. interference} 

f(s)oa ob ib ia EtW 

=>{ def. off and W, a and b of the same type} 

sbaEtR. 

Step. For { a,b} CiR and c EoR we observe 

sabtcEtR 

=>{ induction hypothesis for t, R is p.c} 

s ab t c EtR /\ s bat EtR 

=>{ def. off and W, { a,b} CiR, c EoR} 

f(s)ob oa ia ib f(t)oc EtW 

=>{def. of Wire(c), Con(R) is free of comp. interference} 

f(s)ob oa ia ib f(t)oc ic EtW 

=>{def. of/and W, {a,b}CiR, cEoR} 

sbatcEtR. 

By a similar reasoning, or using symmetry, we prove the induction step also 
for { a,b} CiR I\ C EiR, { a,b} coR I\ C EOR, and { a,b} coR I\ C EiR. 

R satisfies rule 4" can also be proved with a similar reasoning as for the 
proof of the induction step above. 

For rule 5'" we observe for symbols a and b of different type 

saEtR I\ sbEtR 
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□ 

~{ def. off and W, R is p.c} 

f(s)EtW I\ saEtR I\ sbEtR 
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~{ Con(R) is free of comp. interference, a and b are of different type} 

f(s)oa ob EtW 

~{ def. of Wire(b ), Con(R) is free of comp. interference} 

f(s)oa ob ib EtW 

~{ def. off and W, a and b are of different type} 

sabEtR 

For the proof of (2) we introduce a few notations. Let the relation 1-+ on 
(aW)* X(aW)* be defined by 

rxyt 1--+ ryxt 

- (r xy tEtW ~ ryx tEtW) 

I\ --,(xEienc(R) I\ yEoenc(R)) 

I\ --,(xEienc(R) /\yEoenc(R)) 

I\ --,({x,y} ca Wire(b) for some bEaR). 

Let 1-+ • denote the transitive closure of 1-+. In words, if s1-+ • t holds, then s can 
be transformed into t by repeatedly interchanging two contiguous symbols in 
such a way that 

membership of t W is maintained, 
an output symbol is not shifted to the left over an input symbol of the 
same component, and 
symbols of a WIRE component are not interchanged. 

The notations Out, s La, and out(s ), for s Et W and a E aR, are defined by 

Out = {oa laEaR} 

sLa = s ia taWire(a) Et Wire(a) 

out(s) = { t I trace t corresponds to a permutation of { oa Is La}} 

Notice that if R satisfies rule 1, then Wis prefix-closed. In the following 
proofs the hint 'R satisfies rule l' often refers to Wis prefix-closed. 

PROOF OF (2). Let R satisfy rule 1, 2, 3, 4", and 5"'. From rule I follows that 
Risa component. We prove 
(i) s EtW I\ sLa ~ s ia EtW for a EaR, and 
(ii) sEtW I\ oa Eoenc(R) I\ soataenc(R)Etenc(R) ~ soa EtW. 
For reasons of symmetry, we conclude that (ii) also holds if R is replaced by 
R. Consequently, Con(R) is free of computation interference, if (i) and (ii) 
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hold. 
We observe for (i) 

sEtW I\ sLa 

~{Lemma A.O, R satisfies rule 1, 3, 4", and 5"'} 

sEtW I\ sLa I\ (Er: rEtR: (At: tEout(s): si-+f (r)t)) 

~{ def. of out (s ), calc.} 

sEtW I\ (Er,t:rEtR I\ oatEout(s): si-+•f(r)oat) 

~{Lemma A.l, R satisfies rule l and 5"'} 

sEtW I\ 

(Er,t:rEtR I\ oatEout(s): si-+•f(r)oat I\ f(r)oatia EtW) 

~{Lemma A.4, R satisfies rule 1 and 4", calc.} 

Sia EtW. 

For (ii) we observe 
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sEtW I\ oa Eoenc(R) I\ s oa taenc(R)Etenc(R) I\ s oa (;l tW 

~{ def. of W, Wire(a), and weaving} 

sEtW I\ oaEoenc(R) I\ soataenc(R)Etenc(R) I\ sLa 

~ {Lemma A.O, R satisfies rule 1, 3, 4", and 5"', sLa ~ oa E Out} 

sEtW I\ oaEoenc(R) I\ s oa taenc(R)Etenc(R) 

I\ (Er,t:rEtR I\ toaEOut•: si-+•f(r)toa) 

~{Lemma A.3, R satisfies rule 1 and 4"} 

(Er,t::f(r)toaoataenc(R)Etenc(R)) I\ oaEoenc(R) 

~ { R satisfies rule 2} 

false. 

From this derivation we conclude that (ii) holds. 
D 

LEMMA A.O. Let R satisfy rule 1, 3, 4", and 5"'. We have 

(As:sEtW: (Er: rEtR: (At: IE out(s): si-+•f(r)t))). 

PROOF. By induction to the length of s. 

Base. If s = £, then we have r = £ and t = £. 

Step. We observe for a EaR 
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and 

D 
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soa EtW 

~ { R satisfies rule 1, 3, 4", and 5"', induction hypothesis for s} 

s oa EtW I\ (Er: rEtR: (At: tE out(s): si-+•f(r)t)) 

~ {Lemma A.2, R satsfies rule 1 and 4"} 

soa EtW I\ (Er:rEtR:(At:tEout(s):soai-+•f(r)toa)) 

~{Lemma A.6, R satisfies rule 3, def. of out(s) and ➔•, calc.} 

(Er: rEtR: (At: t E out(s oa): s oa 1-+•f(r) t)) 

s ia EtW 

~{induction hypothesis for s, R satisfies rule 1, 3, 4", and 5"'} 

s ia EtW I\ (Er: rEtR: (At: IE out(s): s➔•f(r)t)) 

~{s ia EtW ~ sLa, def. of out(s)} 

sia EtW I\ (Er:rEtR:(At:oatEout(s): si-+* f(r)oat)) 

~{Lemma A.l, R satisfies rule I and 5"'} 

(Er:rEtR:(At:oatEout(s): si-+•f(r)oat I\ f(r)oatia EtW 

I\ f(r)oa t ia 1-+• f(r)oa ia t)) 

~{Lemma A.4, R satisfies rule I and 4"} 

(Er: rEtR: (At: oa IE out(s): s ia 1-+•f(r)oa t ia 

I\ f(r) oat ia 1-+ •f(r) oa ia t)) 

~{ def. of 1-+ •, f, and out(s)} 

(Er: rEtR: (At: tE out(s ia): s ia 1-+•f(ra)t)). 

LEMMA A.I. Let R satisfy rule 1 and 5"' and rEtR. We have 

s EtW I\ s 1-+• f(r) oat I\ oat E out(s) 

~ f(r)oa t ia EtW I\ f(r)oa t ia 1-+•f(r) oa ia t. 

PROOF. We observe 

sEtW I\ si-+•f(r)oat I\ oatEout(s) 

~ { def. of 1-+ • and out(s)} 

f(r)oa tEtW I\ tE(Out \ {oa})• 

~ { R satisfies rule 1, def. of W and/} 
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f(r)oatEtW I\ raEtR I\ tE(Out)\ {oa})° 

=> {Lemma A.5, R satisfies rule 1 and 5"'} 

(Au,v: t =u v:f(r)oa u ia v EtW). 

Since t E ( Out \ { oa} )* and by definition of 1-+ •, we consequently derive 

f(r)oa t ia 1-+• f(r)oa ia t I\ f(r)oa t ia EtW. 

D 

LEMMA A.2. Let R satisfy rule 1 and 4". We have for a EaR 

(s1-+ • s') => (s oa 1-+ • s' oa ). 

PROOF. We observe 

s 1-+s' I\ s oa EtW 

=>{ def. of weaving, W, 1-+, and rule 4"} 

s' oa EtW. 
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Consequently, we infer (s 1-+s') => (s oa 1-+s' oa). Taking the transitive closure 
of 1-+ yields the lemma. 
D 

With a similar reasoning as in the last proof we obtain 

LEMMA A.3. Let R satisfy rule 1 and 4" and aEaR. If s1-+•s 1
, then 

s oa taenc(R)Etenc(R) => s' oa taenc(R)Etenc(R). 
D 

LEMMA A.4. Let R satisfy rule 1 and 4" and a EaR. If s1-+• s' I\ s' ia EtW, 
thens ia 1-+• s' ia I\ (s EtW => s ia EtW). 

PROOF. We observe 

s 1-+S 1 I\ s EtW I\ s' ia EtW 

=>{ def. of weaving, W, 1-+, and rule 4"} 

Sia EtW. 

By definition of 1-+, we also have 

s1-+s 1 I\ s'ia EtW => sia1-+s 1 ia. 

Taking the transitive closure of 1-+ and using that R is prefix-closed (by rule 1), 
we obtain the lemma. 
D 



158 

LEMMA A.5. Let R satisfy rule 1 and 5"' and a EaR We have 

raEtR I\ f(r)oa tEtW I\ tE(Out\ {oa})° 

=> (Au, v: t =u v:f(r)oa u ia v EtW). 

PROOF. By induction to the length oft. 
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Base. If t =t:, then u v =t:. The lemma follows from the definition off and W. 

Step. We observe for b EaR, b-=/=a, 

D 

raEtR I\ f(r)oasob EtW I\ sob E(Out\ {oa})* 

=> {induction hypothesis for s, R satisfies rule 1 and 5"'} 

f(r)oasob EtW I\ (Au,v :s=uv:f(r)oauiavEtW) 

=> { def. of Wand weaving, R satisfies rule 5"'} 

f(r)oasobia EtW I\ f(r)oasiaob EtW 

I\ (Au, v: s = u v: f(r) oa u ia v Et W) 

=> { calc.} 

(Au,v : sob =u v:f(r)oa u ia v EtW). 

LEMMA A.6. Let R satisfy rule 3 and t E Out•. For all permutations t' of t we 
haves t 1--+s t'. 

PROOF. Any permutation t' oft can be obtained by successively swapping two 
contiguous symbols. Using rule 3 and the definition of weaving yields the 
lemma. 
D 
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Appendix B 

B.0. INTRODUCTION 

In this appendix we present the proof of Theorem 4.7.0, i.e. 

E Ef(G4) ~ E is DI. 

The proof is based on a long series of theorems, some of which have tedious 
proofs. 

Before we present these theorems and their proofs, we introduce some new 
definitions. First, we generalize the classes C 3 and C 4, which are given in Sec­
tion 4.1, to the classes GC3 and GC4 respectively. The classes GC3 and GC4 
pertain to directed trace structures for which the set of internal symbols does 
not have to be empty (as opposed to the classes C3 and C4). In the following 
rules, R denotes a directed trace structure, s and t denote traces, and a, b, c, x 
and y denote symbols. Furthermore, the alphabets inR and outR are defined 
by 

inR = iR U enR and outR = oR U coR 

(In words, the atomic commands of symbols from inR start with an input 
mark and the atomic commands of symbols from outR start with an output 
mark.). The abbreviation p.c.n.e. stands for prefix-closed and non-empty 

rule g 1: R is p.c.n.e. and the alphabets of R of distinct type are pairwise 
disjoint. 

rule g2: For any a EextR, saa ~tR. 
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rule g3: For all symbols x andy with 

(xE(iRUcoR) AyE(iRUenR)) 

V (xE(oRUenR) AyE(oRUcoR)) 

we have sxytetR ~ syxtEtR. 

rule g4': For symbols a and b of different type, { a,b} kextR, 

sabt etR A sb etR ~ shat etR. 

rule g4": For symbols a and b of different type, {a,b}kextR and 
{a,c}koutR v {a,c}kinR 

sabtcEtR A sbatEtR ~ sbatcetR. 

rule g 5"': For symbols a and b of different type, { a,b} kextR, 

sa etR A sb etR ~ sba etR. 

The classes GC 3 and GC 4 are defined analogously to the classes C 3 and C 4: 
GC 3 is the class of all trace structures satisfying rules g I, g 2, g 3, g 4', and 
g 5"'; class GC 4 is the class of all trace structures satisfying rules 
gl, g2, g3, g4", andg5"'. 

Notice that from the definitions of these rules follows 

REGC4 A intR= 0 ~ REC4, 

and similarly for GC 3 and C 3. Consequently, GC 4 and GC 3 are indeed gen­
eralizations of C 3 and C 4. 

At this point we would like to emphasize that rule g 3 is used extensively in 
the remainder of this appendix; in many theorems and lemmas it occurs as a 
condition. This is not surprising if we realize that most theorems with respect 
to delay-insensitivity boil down to the shifting of symbols in a trace, and rule 
g 3 is a convenient rule for this purpose. 

The sets firstOR and firstlR for a directed trace structure R are defined as 
follows. Let hdR k outR, where hdR = { b I (Et:: bt etR)}. If tR = { E}, then 
firstOR = { 0 } . Otherwise 

firstOR = {set(t)I tE(oR)* A tetprefR At~ 

A (Suc(t,R) \ oR=l=0 v Suc(t,R)= 0)} 

U{{b}lbecoR A betprefR}. 

Here, set(t) denotes the set of symbols occurring in trace t. For hdR koutR, 
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the set firstlR is defined by 

firstlR = {set(ttextR)l tE(outR)° A tEtprefR 

A (Suc(t,R) \ outR¥=0 V Suc(t,R)= 0)}. 

If hdR C inR, then firstOR and firstlR are defined analogously with oR, coR, 
and outR replaced by iR, enR and inR respectively. Otherwise, firstOR and 
firstlR are not defined. For example, we have for 

E = a !llb !;c? I !d?;e! 

hdE C outE 

firstOE = { { a,b }, { d}} 

firstlE = {{a,b}, {e}}. 

Finally, we define the predicates Disin(R) and Disout(R) for a directed trace 
structure R by 

Disin(R) 

= (Au,v,b: uEtprefR I\ vbEtprefR I\ bEinR 

I\ ut(extR UenR) = vt(extR UenR) 

: ubEtprefR 

) 

and Disout(R) is defined analogously with inR and enR replaced by outR and 
coR respectively. The predicates Disin(R) and Disout(R) concern the possible 
disabling of symbols of a certain type. For example, suppose that Disin(R) 
holds and that two traces from R are equivalent with respect to the external 
symbols and internal symbols of the environment. If one of these traces can be 
extended with a symbol from inR, then the other can be extended as well with 
this symbol, i.e. the symbol is not disabled for the other trace. The predicate 
Disfree(R) is defined by 

Disfree(R) = Disin(R) I\ Disout(R). 

We prove the following theorems for commands E derivable in G4. 

THEOREM B.O. EE <dicom > ~ EEC 4. 
D 

THEOREM B.1. EE<pccom> ~ Pl(E) I\ P2(E). 
D 

THEOREM B.2. EE<pfcom > ~ PO(E) I\ P2(E) I\ P3(E) I\ P4(E). 
D 
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The predicates PO(_E) through P4(_E) are defined by 

PO(_E) = pref£ EGC3 /\ Disfree(E) 

Pl(E) 

P2(E) 

P3(E) 

P4(_E) 

I\ E and EtextE are prefix-free 

/\ tE=F{£} /\ (hdE~inE V hdE~outE) 

EEGC4 I\ Disfree(E) 

J(E)=iE /\ O(E)=oE /\ EN(E)=enE I\ CO(E)=coE 

FIRST(E)=firstOE I\ FIRSTEXT(E)=firstlE 

HD(E)=in iff tR=F{£} /\ hdR ~inR 

=out iff tR=F{£} /\ hdR ~outR 

= empty iff tR = { £} 

= mixed otherwise, 

I\ TL(E)=in iff tR=F{£} /\ tlR ~(iR UcoR) 

=out iff tR=F{£} /\ tlR~(oRUenR) 

=empty iff tR = { £} 

= mixed otherwise. 

The predicates P 0, P 3, and P 4 are defined on commands of type <pfcom > 
in G 4, i.e. EE <pfcom >. The predicate P I is defined on commands of type 
<pccom > and the predicate P 2 is defined on commands of type <pfcom > 
and <pccom >. 

The remainder of this appendix is organized as follows. First, in Section B. l 
we list the theorems on which Theorems B.O, B. l, and B.2 are based. Subse­
quently, we present the proofs of Theorems B.O, B. l, and B.2 in Section B.2. In 
Section B.3 the proofs of Theorems B.3 through B.5 are presented, in Section 
B.4 the proofs of Theorems B.6 through B.9 are presented, and in Section B.5 
the proofs for Theorems B.10 through B.16 are given. Lemmas used in a proof 
directly follow that proof. 

B.l. THE THEOREMS 

The Theorems B.O, B. l and B.3 are based on the theorems listed below. In 
order to formulate the conditions for these theorems, we introduce some nota­
tion first. 

The predicate Alfcond(R,S) is defined by 

Alfcond(R,S) = aphabets of distinct type of R and S 

are pairwise disjoint. 
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The generalization of this condition to trace structures R.j, 0~j <n, is 

Alfcond(j: 0~j <n: Rj) = (Ai,j: 0~i,j <n I\ i=/=-j: Alfcond(Ri, Rj)). 

The predicate Seqcond(R,S) is defined by 

Seqcond(R,S) = (tlR CiR UcoR A hdS cos UcoS) 

v (tlR CoR UenR /\ hdS CiS UenS). 
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In order to define AltcondO(_R,S) and Altcond l(R,S) we first define the 
predicates fpropO(_R) and /prop l(S). The predicate fpropO(_R) is defined by 

fpropO(_R) = (At: t EtprefR /\ t=/=,<: (&: s EtprefR /\ set(s)EfirstOR 

: t=<.s v s=<.t )). 

The notation t=<.s denotes that t is a prefix of s. The property fpropO(_R) 
expresses that for any non-empty trace t in prefR there exists a trace s in prefR 
with set(s)EfirstOR such that t=<,s or s=<,t. For example, we have 

fpropO(_[a?;b?]) _ false but fpropO(_[a?;b !]) = true. 

Notice that firstO[a?;b?]= 0 and firstO[a?;b!]={{a}}. For a non-empty trace 
structure R, with /prop O(_R), we have firstOR=/=- 0. The predicate /prop l(R) is 
defined analogously to /prop l(R) with prefR and firstOR replaced by 
prefRtextR and firstlR respectively. In the remainder we are interested in 
trace structures R for which fpropO(_R) and /prop l(R) hold. 

The predicate AltcondO(_R,S) is, consequently, defined by 

where 

Altcond0(R,S) 

- ((hdR c;outR I\ hdS c;outS) v (hdR CinS A hdS CinS)) 

I\ fprop0(R) I\ fprop0(S) I\ llcondO(_R,S), 

llcondO(_R,S) 

_ (firstOR C { 0 } A firstOS C { 0 }) 

V (AA,B:A EfirstOR /\ BEfirstOS: -,(A CB) I\ ,(B CA)). 

Altcond 1 (R, S) is defined analogously with /prop 0, llcond 0, and firstO replaced 
by /prop 1, llcond 1, and firstl respectively. 

The generalizations of the predicates AltcondO(_R,S) and Altcond l(R,S) to a 
collection of trace structures Rj, 0~j<n, is done as follows. For n =1 we 
have AltcondO(j: 0~j <n: RJ)=true. Otherwise, 

where 

A/tcondO(j: 0~j<n: Rj) 

= ((Aj:0~j<n: hd(RJ)Cout(RJ)) v (Aj:0:,;;;;,j<n: hd(RJ)Cin(RJ))) 

I\ (Aj: 0:,;;;;,j<n: fpropO(_RJ)) I\ llcondO(j: 0:,;;;;,j<n: Rj) 
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1/condO(J: O~J<n: R.J) 

_ (AJ: O:rs;;,_j <n: firstO(R. J) ~ { 0}) 

V (Ai,j,A,B: O~i,j <n I\ i=/=j I\ A EfirstO(R.i) I\ B EfirstO{R.j) 

: -,(A ~B)). 

Altcondl(j:O~J<n:R.J) is defined analogously to AltcondO(J:O~J<n :R.J) 
with firstO, fpropO, and 1/condO replaced by firstl , fprop 1, and 1/condl respec­
tively. 

Finally, we define the predicate Tailcond(tailf) for a tail function tailf 
defined by array S (i,J: Q:rs;;,_i,j <n) of trace structures. Let the tail function 
tailfbe defined by 

tailf.R.i = pref(I/: O:rs;;,_j <n: S.i.J;R.J), (BO) 

for O:rs;;,_i <n. (As usual, tailf is defined on ~(A 0, A 1, A 2, A 3), where 
A 0, A 1,A 2, and A 3 are defined in Section 2.1). The condition Tai/cond (tailf) 
for the function tailf is defined for the array S(i,j: O:rs;;,_i,j <n) of trace struc­
tures by 

Tai/cond(tailf) = (0) A (1) A (2) A (3) A ( 4) A (5) A (6), where 

(0) = (Ai: O:rs;;,_i <n: (EJ: O:rs;;,_J<n: t(S.i.J)=/=0)) 

(1) = (Ai,j: O:rs;;,_j <n I\ i=/=j: t(S.i.J)=I={ t:}) 

A (Ai: Q:rs;;,_i <n: t(S.i.i) = { t:} ~ (Aj: O~j <n I\ i=/=j : t(Si.j)= 0 )) 

(2) = Alfcond (i,j: O:rs;;,_i,j <n : S.i.j) 

(3) - (Ai,j: O:rs;;,_i,j <n I\ t(S.i.J)=I= 0 

: pref ( S.i.J) E GC 3 A Disfree( S.i.J) 

I\ S.i.j and S.i.jtext(S.i.j) are prefix-free 

) 

(4) = (Ai,j,k: Q:rs;;,_i,j,k<n I\ t(S.i.J)=l=0 I\ t(S.J.k)=/=0: Seqcond(S.i.j, S.J.k)) 

(5) = (Ai: O~i<n: AltcondO(J: O:rs;;,_j<n I\ t(S.i.J)=/=0: S.i.j) 

I\ Altcondl(j: O:rs;;,_j<n I\ t(S.i.J)=/=0: S.i.J) 

) 

(6) =(Ai,j:O:rs;;,_i,J<n:ext(S.i.J)=0) v 

(Ai,j:O:rs;;,_i,J<n I\ t(S.i.J)=/=0 I\ t(S.i.J)=/={t:}: t(S.i.J)text(S.i.J)=/={t:}). 

With the above predicates, the theorems are formulated as follows. 
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THEOREM B.3. REGC4 I\ Disfree(R) ~ RtextREC4. 
D 
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THEOREM B.4. Let tailf be defined by (BO). If Tailcond(tailj) holds, then 
µ..tailf. 0 exists and for all i, O:s;;;;i <n, 

µ.. tailf. i E GC 3 /\ Disfree(JJ..tailf. i). 

D 

THEOREM B.5. 

0. REGC4 I\ SEGC4 /\ Alfcond(R,S) ~ RIISEGC4. 

1. If R and S are prefix-closed, then 

Disfree(R) I\ Disfree(S) I\ Alfcond(R,S) ~ Disfree(R 11S). 

D 

THEOREM B.6. Let prefR E GC 3, prefS E GC 3, and Alfcond(R, S) hold. 

0. AltcondO(R,S) ~ pref(RIS)EGC3. 

1. Seqcond(R,S) I\ R is prefix-free ~ pref(R ;S)EGC3. 
D 

The generalization of Theorem B.6.0 is 

THEOREM B.7. For n >0 we have 

D 

(Aj: O:s;;;;J<n: pref(R.j)EGC3) 

I\ Alfcond(j: O:s;;;;J <n: R.J) I\ AltcondO(j: O:s;;;;J <n: R.j) 

~ pref(I/: O:s;;;;J<n: R.J) E GC3. 

THEOREM B.8. Let Rand S be non-empty trace structures for which Disfree(R), 
Disfree(S1 and Alfcond(R,S) hold. 

0. Altcondl(R,S) I\ pref Rand prefS satisfy rule g3 ~ Disfree(RIS). 

1. Seqcond(R,S) I\ Rand RtextR are prefixfree ~ Disfree(R ;S). 
D 

The generalization of Theorem B.8.0 is 
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THEOREM B.9. For n ~0 we have 

D 

(AJ: 0:i;;;,.J<n: Disfree(R.J) I\ pref(R.J) satisfies rule g3) 

I\ Alfcond(j: 0:i;;;,.J<n: R.J) I\ AltcondI(j: 0:i;;;,.J<n: R.J) 

~ Disfree(U: 0~J<n: R.J). 
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THEOREM B. 10. For non-empty prefix-free trace structures R and S we have 

0. AltcondO(R,S) ~ RIS is prefix-free. 

1. A/tcond I(R,S) I\ Alfcond(R,S) 
/\ RtextR and StextS are prefix-free 
/\ prefR and prefS satisfy rule g3 ~ (RIS)text(RIS) is prefix-free. 

D 

THEOREM B.l 1. For n.e. trace structures Rand S we have 

0. Rand Sare prefix-free ~ R ;Sis prefix-free 

1. RtextR and StextS are prefix-free 
I\ Alfcond(R,S) ~ (R ;S)text(R ;S) is prefix-free. 

D 

THEOREM B.12. (Without proof.) For n.e. trace structures Rand S we have 

0. hd(RIS) = hdR UhdS 

1. d(RIS) = dR UdS 
2. hd(R ;S) = hdR 
3. d(R ;S) = dS 

D 

, if tR=#:{(} and R is prefix-free. 
, if tS =#: { (} and S is prefix -free. 

THEOREM B.13. For n.e. trace structures Rand S we have 

Alfcond(R,S) I\ AltcondO(R,S) ~ firstO(RIS) = firstOR U firstOS 

/\ firstl(RIS) = firstlR u firstlS. 

D 

THEOREM B.14. For n.e. trace structures R and S with 
(hd(R ;S) C in(R ;S) v hd(R ;S) C out(R ;S)) /\ Alfcond(R, S) /\ Seqcond(R, S) 
and R is prefix-free, we have 
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0. tR={(} ==> firstO(R;S)=firstOS and 
tR=;e={ (} ==> firstO(R ;S)=firstOR. 

1. If, moreover, RtextR is prefixfree and pre(R satisfies rule g3, then 
tRtextR={(} ==> firstl(R;S)=firstlS and 
tRtextR=;e={ (} ==> firstl(R ;S)=firstlR. 

□ 
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THEOREM B.15. If R is a prefixfree, non-empty trace structure with 
hdR coutR v hdR CinR. then fpropO(R) I\ fprop I(R) holds. 

□ 

THEOREM B.16. For a non-empty prefixfree trace structure R we have 

0. tR={(} _ first0RC{0}. 

1. If, moreover, R satisfies rule g 3, then 
tRtextR = {(} - firstlR C { 0 }. 

□ 

B.2. PROOFS OF THEOREMS B.0 THROUGH B.2 

PROOF OF THEOREM B.0. Let EE<dicom>. By production rules (a0) and 
(al) of Table 4.3.0, we observe EE<pccom> or E=E0t, where 
EOE <pccom >, respectively. From the condition for production rule (a0) we 
have EN(E)= 0 A CO(E)= 0, and we derive 

EE<pccom > A EN(E)= 0 A CO(E)= 0 

==> {Theorem B.l} 

EEGC4 A intE= 0 

==> { calc.} 

EEC4. 

For EOt we observe 

E0E<pccom > 

==> {Theorem B. l} 

EOEGC4 A Disfree(E0) 

==> {Theorem B.3} 

E0tEC4. 

==> {E =EOt} 
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EEC4. 

D 

PROOF OF THEOREM B.l. We prove that for any command EE<pccom> 
obtained by applying production rule (b0), (b2),or (b3) of Table 4.3.0 satisfies 
P l(E) /\ P2(E). Obviously, we have P 1(£) /\ P2(£). Application of produc­
tion rule (b 1) to commands EOE <pccom > and E 1 E <pccom > leaves P 1 
and P 2 invariant, since we have 

P l(E0) /\ P2(E0) I\ P l(E 1) /\ P2(E 1) /\ ALFCOND(E0,E 1) 

~ {Th. B.5, eval. rules of Table 4.6.1, calc.} 

P l(E0IIE 1) /\ P2(E0IIE 1). 

From these properties we then conclude the theorem. 
For the command pref(£) obtained by application of rule (b 2) we have 

EE <pfcom >. Hence, by Theorem B.2, 

pref(E)E GC3 /\ Disfree(E) I\ P2(E). 

Since Disfree(E)=Disfree(pref(E)), we derive P l(pref(E)) /\ P2(pref(E)). 
The command obtained by applying rule (b 3) is a special case of tail recur­

sion, since 

pref[E] = µ..tailf0 .0, where tailf0.R 0 = pref(£ ;R. 0). 

Notice that 

TAILCOND(tailf0 ) _ EE<pfcom> I\ SEQCOND(E,E). 

Consequently, if we prove that every command E obtained by application of 
rule (b0) satisfies P l(E) /\ P2(E), then also every command E obtained by 
application of rule (b3) satisfies P l(E) /\ P2(E). 

For commands µ..tailf. 0 obtained by application of rule (b0) we show for 
the tail function tailf that 

TAILCOND(tailf) ~ Tai/cond(tailf). (0) 

From Theorem B.4 we then conclude P 1(µ..tailf. 0). (Notice that GC 3 ~ GC 4.) 
Furthermore, by definition of the alphabets of µ..tailf. 0 and the evaluation 
rules of Table 4.6.1, we inf er P 2(µ..tailf. 0). 

Let the tail function tailf be defined by array E(i,j: 0~i,j <n) and let 
TAILCOND(tailf) hold. For each command E.i.j, 0~i,J<n, we have, by (3) 
of TAILCOND(tailf), 

E.i.j E <pfcom > v E.i.j = £ V E.i.j = 0. 

Consequently, by Theorem B.2, 

(t(E.i.j)={£} = E.i.j=£) I\ (t(E.i.j)= 0 = E.i.j= 0). (1) 

From (1) we deduce 
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(0), (1), and (3) of TAILCOND(tailf) 

~ (0) and (1) of Tailcond(tailf). 

Subsequently, we derive 

ALFCOND(i,j: O~i,j<n A tf..E.i.j)=/=( A t(E.i.J)=/:0 : E.i.J) 

~ {E.i.Je<pfcom> V E.i.j=f. V E.i.j=0, P2(E.i.J)byTh. B.2} 

Alfcond(i,j: O~i,j <n: E.i.J). 

Hence, (2) and (3) of TAILCOND(tailf) ~ (2) of Tailcond(tailf). 
For condition (3), we observe 

(Ai,j:O~i,j<n A E.i.j=/:0 A E.i.j=/=(: E.i.jE<pfcom>) 

~ {Th. B.2, calc.} 

(Ai,j: O~i,j<n A tf._E.i.j)=/:0 

: pref (E.i.J)eGC3 A Disfree(E.i.J) 

A E.i.j and E.i.jt extf._E.i.j) are prefix-free 

). 

Consequently, (3) of TAILCOND(tailf) ~ (3) of Tailcond(tailf). 
Furthermore, we observe for commands E.i.j=/= 0 and E.j.k=/= 0 , 

O~i,j,k<n, 

SECOND(E.i.j, E.j.k) 

~ {E.i.Je<pfcom> v E.j.k. =£, Th. B.2} 

Seqcond(E.i.j, E.J.k). 

Hence, (3) and (4) of TAILCOND(tailf) ~ (4) of Tailcond(tailf). 
For condition (5), we first observe that for any command EE <pfcom > we 

have firstOE=/: 0 A firstlE=/: 0, because E is prefix-free and non-empty by 
Theorem B.2. Subsequently, we also conclude, by Theorem B.15, 
fpropO(E) A /prop l(E). Accordingly, for a command EE <pfcom > we derive 

firstOE C { 0 } = firstOE = { 0 } A firstlE C { 0 } = firstlE = { 0 } 

A fpropO(E) A /prop l(E) (2) 

We derive for all i, O~i <n, 

ALTCON D(j: O~j <n A E.i.j=/= 0 A E.i.j=/=(: E.i.J) 

= {E.i.Je<pfcom>, Th. B.2, Th. B.15, (2) above, 

(1) of TAILCOND(tailf) in case E.i.i=f.} 

AltcondO(j:O~J<n A tf._E.i.J)=/:0: E.i.J) 

A Altcond 1 (j: O~j <n A tf..E.i.J)=/= 0 : E.i.J). 
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Hence, (3) and (5) of TAILCOND(tailf) ~ (5) of Tailcond(tailf). 
For condition (6) we first observe for any command EE<pfcom>, that, 

by Theorem B.2, FIRSTEXT(E)=firstlE; 
by Theorem B.2, B.16 and (2) above, first IE= { 0 } = tEt extE = { £} ; 
and by the distribution Properties 1.1.2.3, tEt extE = { £} = extE = 0 . 
Consequently, 

EE<pfcom> I\ FIRSTEXT(E)={0} ~ extE=0. 

We derive 

(Ai,j: O~i,J<n I\ E.i.J=/=0 I\ E.i.j=/=£: FIRSTEXT(E.i.J)=/={ 0}) 

v (Ai,j: O~i,J<n I\ E.i.J=/=0 I\ E.i.j=/=£: FIRSTEXT(E.i.J)={0}) 

~ {E.i.JE<pfcom> V E.i.j=£ V E.i.j= 0, Th. B.2, Th. B.16, calc.} 

(Ai,j: O~i,J<n I\ E.i.j=/=0 I\ E.i.j=/=£: (E.i.J)text(E.i.J)=/={£}) 

V (Ai,J: O~i,J<n: ext(E.i.J)= 0 }. 

Hence, (3) and (6) of TA/LCOND(tailf) ~ (6) of Tailcond(tailf). 
This concludes our proof of obligations for (0). 

□ 

PROOF OF THEOREM B.2. First, we observe, by means of the definitions given 
in this appendix and Table 4.6.0, that PF(E) holds for every command 
EE <marked syms >, where 

PF(E) = PO(_E) I\ P2(E) I\ P3(E) I\ P4(E). 

Second, we prove that PF remains invariant under the application of pro­
duction rule (cl), (c2), and (c3) of Table 4.3.0. For rule (c3) this is obvious. 
For rule (cl) we first observe for any EE <pfcom > that firstlE=/= 0. By 
Theorem B.16.1 and PO(_E) we subsequently derive for any EE <pfcom > 

EtextE={£} = firstlE={0}. (0) 

We infer 

PF(EO) I\ PF(E 1) /\ ALFCOND(EO,E 1) /\ SEQCOND(EO,E I) 

~ {def.of PF, calc.} 

PO(_EO) I\ P2(EO) I\ P3(EO) I\ P4(EO) 

I\ PO(_El) I\ P2(E1) I\ P3(E1) I\ P4(E1) 

I\ Alfcond(EO,E I) A Seqcond(EO,E I) 

~ {Th. B.6.1, Th. B.8.1, Th. B.11, calc., Th. B.12} 

PO(_EO) I\ P2(E0) I\ P3(EO) I\ P4(EO) 

I\ PO(_El) I\ P2(E1) I\ P3(E1) I\ P4(E1) 
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I\ Alfcond(E0,E 1) /\ Seqcond(E0,E 1) /\ PO(E0;E 1) 

~ {Th. B.12, eval. rules of Table 4.6.1, calc.} 

PO(E0) I\ P 3(E0) /\ PO(E 1) /\ P 3(E 1) 

I\ PO(E0;E 1) /\ P2(E0;E 1) /\ P4(E0;E 1) 

I\ Alfcond(E0,E 1) /\ Seqcond(E0,E 1) 

~ {Th. B.14, eval. rules of Table 4.6.1, (0) above, calc.} 

PO(E0;E 1) /\ P2(E0;E 1) /\ P3(E0;E 1) /\ P4(E0;E 1) 

= {def. of PF} 

PF(E0;EI). 

For rule (c2) we observe 
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PF(E0) I\ PF(E 1) /\ ALFCOND(E0,E 1) /\ ALTCOND(E0,E 1) 

□ 

~ { def. of PF, calc.} 

PO(E0) I\ P2(E0) I\ P3(E0) I\ P4(E0) 

I\ PO(El) I\ P2(El) /\ P3(El) /\ P4(El) 

I\ Alfcond(E0,E 1) /\ ALTCOND(E0,E 1) 

~ { def. Altcond0 and Altcond 1, Th. B.15, (0) above, calc.} 

PO(E0) I\ P2(E0) I\ P3(E0) I\ P4(E0) 

I\ PO(El) I\ P2(El) /\ P3(El) /\ P4(El) 

I\ Alfcond(EO,E 1) /\ AltcondO(E0,E 1) /\ Altcondl(E0,E 1) 

~ {Th. B.6.0, Th. B.8.0, Th. B.10, Th. B.12, calc.} 

P2(E0) I\ P3(E0) I\ P4(E0) I\ P2(E 1) /\ P3(E 1) /\ P4(E 1) 

I\ Alfcond(E0,E 1) /\ AltcondO(E0,E 1) /\ PO(E0IE 1) 

~ {Th. B.13, Th. B.12, eval. rules of Table 4.6.1, calc.} 

PO(E0IE 1) /\ P2(E0IE 1) /\ P3(E0IE 1) /\ P4(EOIE 1) 

= { def. of PF} 

PF(E0IEl). 

B.3. PROOFS OF THEOREMS B.3 THROUGH B.5 

PROOF OF THEOREM B.3. Let REGC4 I\ Disfree(R) hold. We prove 
RtextREC4. 
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rule 1: Since R satisfies rule g 1, it follows immediately that Rt extR is p.c.n.e. 
and 

i(RtextR)no(RtextR) = 0. 

rule 2: We observe 

saa EtRt extR 

~{ calc., R is p.c.} 

(Eso,s1::soas 1aEtR /\ sotextR=s /\ s 1E(intR)°) 

~{R satisfies ruleg3, aEextR, Lemma B.17} 

(Es2,S3:: S2aas3 EtR) 

~{R satisfies ruleg2, aEextR, R is p.c.} 

false. 

rule 3: For symbols a and b of the same type, { a,b} C:extR, we observe 

sabtEtRtextR 

~{calc.} 

(Eso,s1,to::soas 1btoEtR I\ s0textR=s 

/\ s 1 E(intR)° /\ t0textR=t) 

~{R satisfies ruleg3, {a,b}C:iR v {a,b}C:oR, Lemma B.17, calc.} 

(Es2,t1 :: s2abt1 EtR /\ s2textR =s I\ t 1textR =t) 

~{R satisfies ruleg3, {a,b}C:iR v {a,b}C:oR} 

(Es2,t1 :: s2bat1 EtR /\ s2textR =s I\ t1textR =t) 

~{ calc.} 

sbat EtRtextR. 

rule 5'": For symbols a EoR I\ b EiR, we infer 

saEtRtextR /\ sbEtRtextR 

~{ calc., R is p.c.} 

(Eso,s 1::s0aEtR /\ s 1bEtR /\ s0textR=s /\ s 1textR=s) (I) 

~{Lemma B.18 (i), Disfree(R), R is p.c., 

aEoR I\ bEiR, take u0,u 1,v0,v 1,r0,r1:=t:,t:,t:,t:,s0,si} 

(Eso,s1,r::soaEtR /\ s1bEtR /\ sotextR=s /\ s 1textR=s 
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I\ rEtR I\ rt(extR UcoR)=s0t(extR UcoR) 

/\ rt(extR UenR)=s 1t(extR UenR)) 

==>{ Disout(R) I\ a EoR, Disin(R) I\ b EiR, R is p.c.} 

(&0,s1,r::s0aEtR I\ s1bEtR I\ s0textR=s I\ s 1textR=s 

I\ ra EtR /\ rt(extR UcoR)=s0 t(extR UcoR) 

I\ rbEtR I\ rt(extR UenR)=s 1t(extR UenR)) 

==>{ R satisfies rule g 5"', a EoR /\ b EiR, calc.} 

CEs'o,s1 ,r:: rtextR =s 

I\ rabEtR I\ rt(extR UcoR)=s0t(extR UcoR) 
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I\ rba EtR /\ rt(extR UenR)=s 1t(extR UenR)) (2) 

==> { calc., { a, b} C extR } 

sab EtRtextR. 

For reasons of symmetry, we have for aEiR I\ bEoR an analogous proof. 

rule 4": For symbols a, b, and c with { a,c} CoR I\ b EiR, we observe 

sabtcEtRtextR I\ sbatEtRtextR 

=>{Lemma B.19, R satisfies rule g3, R is p.c.} 

(Es0 ,s 1 ,t0 ,t 1, w0 , w1 :: s0aw0bt0c EtR /\ s1bw 1 at 1 EtR 

I\ s 0textR=s I\ w0 E(enR)* /\ t0textR=t 

/\ s 1textR =s I\ w1 E(coR)* /\ t 1textR =t) 

=>{Cf. (I)==> (2) in proof of rule g5"', Disfree(R), R is p.c., 

a EoR /\ b EiR, taker: =v, R sat. rule 5"', calc.} 

CEs'o,s 1,to,t 1,wo,w1,v:: soawobt0cEtR I\ s1bw 1at 1 EtR 

I\ s 0textR=s I\ w0 E(enR)* /\ t0textR=t 

I\ vtextR=s I\ w 1 E(coR)* /\ t 1textR=t 

I\ vabEtR I\ vt(extR UcoR)=s0 t(extR UcoR) 

I\ vba EtR /\ vt(extR UenR)=s 1t(extR UenR)) 

==> { calc., { a, b } C extR } 

(&0 ,s 1,t0 ,w0 ,w1,v :: s0aw0bt0cEtR I\ s1bw 1at 1 EtR 

/\ vtextR =s I\ w0 E(enR)* /\ t0textR =t /\ s 0textR =s 

/\ t0 textR =t 1textR 
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I\ vabEtR I\ vabt(extR UcoR)=s0aw0bt(extR UcoR) 

I\ vbaEtR I\ vbat(extRUenR)=s 1bw 1at(extRUenR)) 

=>{Lemma B.18(ii), Disfree(R), R is p.c., aEoR I\ bEiR, R satisfies 

rule g4", talce uo,u 1,vo,v 1,r0 ,r1 :=soawob, s,bw 1a, vab, vba, to, t 1} 

(Fso,to, wo, v,r:: s0aw0bt0c EtR 

A vtextR=s A w0 E(enR)° A t0textR=t A s 0textR=s 

I\ vabrEtR I\ vabrt(extR UcoR)=s 0aw0bt0t(extR UcoR) 

I\ vbarEtR) 

=>{cEoR, Disout(R), R is p.c., calc.} 

(Ev,r:: vtextR =s I\ rtextR =t I\ vabrcEtR I\ vbarEtR) 

=> { { a, c} C oR I\ b E iR, R satisfies rule g 4"} 

(Ev,,:: vtextR=s I\ rtextR=t I\ vbarcEtR) 

=>{ calc., { a,b,c} C extR} 

sbatc EtRtextR. 

For reasons of symmetry, a similar reasoning applies if { a,c} CiR I\ b EoR. 
D 

LEMMA B.17. If R satisfies rule g3 and {a,b} CoR v {a,b} CiR, then 

rasbt EtR /\ s E(intR)° 

=>(Er',t':: r'abt' EtR /\ r'textR =rtextR /\ t'textR =ttextR). 

(Symbols a and b may be the same symbols.) 

PROOF (Sketch). Assume a EoR and b EoR. Let rasbt EtR /\ s E(intR)°. 
Since R satisfies rule g 3, symbols from coR in s can be shifted to the left ( over 
symbols in enR and a EoR) into r. Symbols from enR in s can be shifted to 
the right (over symbols in coR and bEoR) into t. For aEiR and bEiR the 
proof is similar(, only the shift-directions change). 
D 

LEMMA B.18. If Disfree(R) and R is prefix-closed, then 

u0r0 EtR /\ v0 EtR /\ u0t(extR UcoR)=v0t(extR UcoR) 

I\ u1r 1 EtR /\ v1 EtR /\ u 1t(extR UenR)=v 1t(extR UenR) 

/\ r 0 textR =r1textR 

=> (Er:: v0rEtR I\ u0r0t(extR UcoR)=v0rt(extR UcoR) 

v 1rEtR I\ u 1r 1t(extR UenR)=v 1rt(extR UenR)), 
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for traces v O and v J such that 
(i) v0 =£ I\ VJ=£ 
or 
(ii) v0 =vab I\ VJ =vba I\ aEoR I\ bEiR I\ R satisfies rule g4". 

PROOF. By induction to the length of r 0 and rJ. 
Base: For r0 =£ I\ r1 =£,taker=£. 
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Step: We consider two cases in order to comply with r 0textR =r1textR and 
the induction step with respect to the length of r0 and rJ. 
(A) ro'=rodo I\ rJ'=rJdJ with /(do)=l /\ dofliR I\ dJ =dotextR. 
(B) ro'=rodo I\ r1'=r1dJ with /(dJ)= 1 /\ dJ floR I\ do=d1textR, 
where / (r) denotes the length of trace r. We have 

(l(ro')+ l(r J ') = /(ro)+ I (rJ )+ 1) 

V (/(ro')+/(rJ') = /(ro)+/(rJ)+2 /\ do=d1). 

Notice that there is always one case that applies. 
First, we consider case (A). 

u0 r0d0 EtR /\ v0 EtR /\ u0t(extR UcoR)=v0t(extR UcoR) 

I\ UJrJd1 EtR /\ VJ EtR /\ u 1t(extR UenR)=vJt(extR UenR) 

I\ r 0d 0textR =rJdJtextR. 

=>{ind. hyp. for r0 and r1, R is p.c., calc., 

Disfree(R), case (A) or (B)} 

(Er:: uor0d0 EtR /\ u1rJdJ EtR /\ dotextR =dJtextR 

I\ v0rEtR I\ u0r 0t(extR UcoR)=v0rt(extR UcoR) 

I\ VJrEtR I\ UJrJt(extR UenR)=vJrt(extR UenR)) 

=>{ calc., case (A)} 

(Er,d':: u0r0d0 EtR I\ d'=d0t(coRUoR) 

I\ v0 rEtR I\ u0r 0d 0t(extR UcoR)=v0rd't(extR UcoR) 

I\ VJrEtR I\ uJrJdJt(extRUenR)=vJrd't(extRUenR)) 

=>{Disout(R), R is p.c., (A) => d'=E V (d' EcoR UoR A d'=d0 )} 

(Er,d':: d'=d0t(coR UoR) (0) 

I\ vord'EtR I\ uorodot(extR UcoR)=vord't(extR UcoR) 

I\ v1rEtR I\ UJridJt(extR UenR)=vJrd't(extR UenR)) 

We distinguish between (i) and (ii) from here. For (i) we observe 

(0) 

=> {vo=f. /\VJ=£, cf. (i)} 
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(Er,d':: rd' EtR /\ u0r 0d0t(extR UcoR)=rd't(extR UcoR) 

I\ rd'EtR I\ u 1r 1d 1t(extR UenR)=rd't(extR UenR)) 

~ {r'=rd', r0'=rodo, r1'=r1d1, vo=£, v1 =£} 

(Er':: v0r' EtR /\ u0r 0 't(extR UcoR)=v0r't(extUcoR) 

I\ v 1r'EtR I\ u 1r 1 't(extR UenR)=v1r't(extR UenR)). 

For (ii) we infer 

(0) 

~{(ii),} 

(Er,d':: d'=d0 t(coR UoR) 

I\ vabrd'EtR I\ u0r 0d0 t(extRUcoR) = vabrd't(extRUcoR) 

/\vbarEtR I\ u 1r 1d 1(extR UenR) = vbard't(extR UenR)) 

~ { R sat. rule g 4", a E oR, case (A) i.e .. 

d' = £ V d'E(coR UoR)} 

(Er,d':: vabrd'EtR I\ u0r 0d0t(extR UcoR)=vabrd't(extR UcoR) 

I\ vbard'EtR I\ u1r 1d 1t(extR UenR)=vbard't(extR UenR)) 

~{r'=rd', r0'=rodo, r 1'=r 1d 1, vo=vab, v1 =vba} 

(Er:: v0r'EtR I\ u0r 0 't(extR UcoR)=v 0r't(extR UcoR) 

I\ v 1r' EtR /\ u1r1't(extR UenR)=v 1r't(extR UenR)). 

Case (B) is proved similarly, with use of d'=d1t(enR U iR) and Disin(R). 
D 

LEMMA B.19. If R is prefix-closed and R satisfies rule g3, then 

sabtcEtRtextR I\ aEoR I\ bEiR 

~(Eso,Wo,to:: s0aw0bt0cEtR 

/\ sotextR =s I\ w0 E(enR)° /\ t0textR =t) 

and 

sbatcEtRtextR I\ aEoR I\ bEiR 

~(Es1,w1,t1 :: s1bw1at1cEtR 

/\ s 1textR=s I\ w 1 E(coR)° /\ t 1textR=t). 

The above properties also hold when symbol c is removed. 

PROOF (Sketch). Let R be prefix-closed, aEoR and bEiR, and s0aw0bt0c be 
an expansion in R of sabtcEtRtextR, i.e. 
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s0aw0bt0cEtR I\ s0textR=s I\ w0 E(intR)* /\ t0 textR=t. 

Since R satisfies rule g3, symbols from coR in w0 can be shifted to the right 
(over symbols from enR and bEiR) into t0 . Because w0 E(intR)*, this shifting 
yields a w0' E(enR)*. 

A similar reasoning applies to the second part of the theorem. 
□ 

PROOF OF THEOREM B.4. Let Tailcond(tai/f) hold, where tai/f is defined by 
(BO). By condition (0) of Tailcond(tailf) and Theorem 1.2.4.0 we derive that 
µ. tailf exists. Let the predicate P on V = 'Y' (A 0, A l, A 2,A 3), where 
A 0, A 1, A 2, and A 3 are defined as in Section 2.1, be defined by 

P(R) = (Ai: O~i<n: Ri EGC3 /\ Disfree(Ri) (Bl) 

/\ hd(Ri) Chd(I/: O~j <n: S.i.J) 

). 

By means of fixpoint induction we prove that P(µ.tailj) holds. The theorem 
then follows from the definition of P. 

First we observe, by Lemma B.20, that P is an inductive predicate on V. 
Second, we infer that P(..ln(AO,A l,A2,A3)) holds. Third, we prove that 
tailf maintains P, i.e. P(R) ~ P(tailf.R) for any REV. By Theorem 1.2.2.1, 
1.2.3.0, and 1.2.3.1 we then conclude P(µ.tailj). 

We observe for all i,j, O~i,j <n and t(S.i.J)=I= 0. 

REV/\P(R) 

~ { t(S.i.J)=I= 0, (2) and (3) of Tai/cond(tailf)} 

Alfcond(S.i.j,Rj) I\ hd(R.J)Chd(Jk: O~k<n :S.j.k) 

/\ pref(S.i.j)EGC3 /\ R.JEGC3 I\ Disfree(S.i.J) I\ Disfree(R.J) 

I\ S.i.j and S.i.Jtext(S.i.J) are prefix-free 

~ {Lemma B.21, (1) and (4) of Tailcond(tailf), t(S.i.J)=/=0} 

Alfcond(S.i.J, RJ) I\ Seqcond(S.i.j, RJ) 

/\ pref(S.i.j)EGC3 /\ RJEGC3 I\ Disfree(S.i.J) I\ Disfree(R.J) 

I\ S.i.J and S.i.jtext(S.i.J) are prefix-free 

~ {Theorem B.6.1, Theorem B.8.1, pref(R.J)=Rj, calc.} 

Alfcond(S.i.j, R.J) I\ Seqcond(S.i.j, RJ) 

I\ pref(S.i.j;Rj)EGC3 I\ Disfree(S.i.J;RJ) 

I\ S.i.j and S.i.Jtext(S.i.J) are prefix-free. 

Furthermore, we observe for all i, o,s;;; <n, 

(6) of Tai/cond(tailf) 
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= { def. of Tailcond} 

(Aj: O~j<n: ext{S.i.J)"F0) 

v (Aj: O~j<n I\ t{S.i.j)=/=0 I\ t{S.i.J)=/={£} 

: t{ S.i.J)t ext{ S.i.J)=I= { £}) 

~ {REV, def. of V, calc.} 

(Aj: O~j<n I\ t(S.i.j)=/=0 

: t(S.i.J)text{S.i.j)= { £} /\ t(R.J)text(R.J)= { £}) 

v (Aj: O~j<n I\ t(S.i.j}=F0 I\ t(S.i.j}=F{£} 

: t(S.i.J) text(S.i.J)=I={ £ }). 

With these observations we derive for all i, O~i <n, 

REV I\ P(R) 

~ { !ai/cond(tailf), see derivations above} 

(Aj: O~j<n I\ t(S.i.J)=/=0 

) 

:Alfcond(S.i.j, R.j) I\ Seqcond(S.i.j, R.J) 

/\ pref(S.i.j;R.j)EGC3 /\ Disfree(S.i.j;R.J) 

I\ S.i.j and S.i.jtext(S.i.J) are prefix-free 

I\ Altcond()(J: O~j <n I\ t{S.i.J)=F 0: S.i.J) 

I\ Altcondl(j:O~J<n I\ t(S.i.j)=/=0:S.i.j) 

/\ ( (Aj: O~j <n I\ t(S.i.j}=F 0 

: t(S.i.J) text(S.i.j)= { £} /\ t(R. J)text(R.J)= { £}) 

v (Aj:O~j<n I\ t{S.i.J)=F0 /\ t(S.i.J)=/={£} 

: t(S.i.J) text(S.i.J)=I={ £}) 
• 

) 
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~ {Lemma B.22, pref(S.i.J) sat. rule g3, (1) of Tai/cond(tailf)} 

(Aj: O~j <n I\ t(S.i.j}=F0 

: pref(S.i.j;R.j)EGC3 /\ Disfree(S.i.j;R.j)) 

I\ Altcond()(J: O~j<n I\ t(S.i.J)=/=0: S.i.j;R.J) 

I\ Altcondl(j: O~j <n I\ t(S.i.j}=F0: S.i.j;R.j) 

~ {Th. B.7, Th. B.9, (0), (2) and (3) of Tailcond(tailf), i.e. 

pref(S.i.j) satisfies rule g 3} 
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pref([j: O~J<n I\ t(_S.i.J)=/=0: S.i.j;R.j)EGC3 

I\ Disfree([i: O~j <n I\ t(_S.i.J)=I= 0 : S.i.J ;R.J) 

~ {(2) of Tailcond(tailf), n>O, calc.} 

pref([j: O~j<n: S.i.J;R.j)EGC3 

I\ Disfree([i: Q:rr;;;,_j <n: S.i.J;R.J) 

~ { def. of tailf.R.i, calc.} 

tailf.R.i EGC3 /\ Disfree(tailf.R.i). 

Finally, we infer for all i, O~i <n, 

hd(_ tailf. R. i) 

= { def. of tailf.R.i} 

hdpref([i: O~J<n: S.i.j;R.J) 

= { (3) of Tailcond(tailf), i.e. S.i.J is prefix-free, calc.} 

hd([i: O~j <n: S.i.J) 

Uhd([j:O~j<n I\ t(_S.i.})={£}:R.J) 

C {(l) of Tailcond(tailf), calc.} 

hd([i: O~j <n: S.i.J) U hd(R.i) 

= {P(R)} 

hd([j: O~j <n: S.i.J). 

Consequently, we conclude P(R) ~ P(tailf.R). 
□ 

LEMMA B.20. The predicate P defined on V by (B 1) is inductive. 
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PROOF. Let R(k:k-;;;,.O) be an ascending chain in V where P(R.k) holds for 
each k, k-;;;,.O. We show that rule g4' of GC3 holds for the greatest lower 
bound (Uk: k-;;;,.O: R.k).i for all i, O~i<n. The other rules for GC3, 
Disfree(R.i), and hd(R.i)Chd([i:O~J<n: S.i.J) are proved to be inductive simi­
larly. 

Let a and b be external symbols of different type and s and t denote traces. 
We observe 

sa Et{(LJk: k-;;;,.O: R.k).i) I\ sbat Et(_(LJk: k-;;;,.O: R.k).i) 

= {def. of LJ, calc.} 

sa Et{jk: k-;;;,.O; R.k.i) I\ sbat Et{jk: k-;;;,.O; R.k.i) 

= {calc.} 
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D 

(Ek,/: k,t;;;i,:O: sa Et(R.k.i) I\ sbat Et(R.l.i)) 

~ (k: = max(k,I), R(k :k ;;;i,:O) is an ascending chain} 

(Ek: k;;;i,:O: sa Et(R.k.i) I\ sbat Et(R.k.i)) 

~ {P(R.k), a and bare external symbols of different type} 

(Ek : k ;;;i,:o: sabt Et(R.k.i)) 

= {calc.} 

sabtEt(jk: k;;;i,:O: R.k.i) 

= {def. of u} 

sabt Et(_Uk : k;;;i,:O: R.k).i . 

AppendixB 

LEMMA B.21. Let tailf be defined by (BO). Let REV, where 
V='5"(AO,A 1,A2,A3), and S.i.j, O~i,j<n, be non-empty. We have for each 
j , O~j<n, 

(1) and (4) of Tai/cond(tai/f) I\ hd(R.J) \:hd(lk: O~k<n: S.j.k) 

~ Seqcond(S.i.j, R.J). 

PROOF. We observe for all i,j with O~i,j <n and t(S.i.J)=/=£ I\ t(S.i.j)=/=0 

(4) of Tailcond(tailf) 

~ { def. of Tai/cond} 

(Ak: O~k <n I\ t(S.J.k)=/= 0 : Seqcond(S.i.j, S.j.k)) 

~ { t( S.i.J)=I= { f.}, calc.} 

Seqcond(S.i.j, (lk: O~k <n I\ t(S.j.k}=/=0: S.J.k)) 

~ {calc.} 

Seqcond(S.i.j , (lk: O~k<n: S.j.k)) 

~ {hd(R.J)~hd(lk: O~k <n: S.J.k), calc.} 

Seqcond(S.i.j, R.j). 

In case t(S.i.))={£}, we derive by (1) of Tai/cond(tailf) that i=j and 
t(lk : O,s;;;k<n: S.i.k)= {£}. Consequently, we observe 

D 

hd(R.i)\:hd(lk: O~k<n: S.i.k) 

~ {calc., t(S.i.J)={f.},(l) of Tailcond(tailf)} 

Seqcond(S.i.j, R. J). 
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LEMMA B.22. Let for the arrays of non-empty trace structures R (j: O,s;;;,j <n) 

(Aj: O,s;;;,j <n: Alfcond(S.j,R.j) I\ Seqcond(S.j, R.j) 

I\ S.j and S.jtext{S.j) are prefix-free 

/\ pref(S.j) satisfies rule g3 

) 

I\ AltcondO(j:O,s;;;,J<n:S.j) I\ Altcondl(j:O,s;;;,J<n:S.j) 

/\ ((AJ: O,s;;;,J<n I\ t{S.J)*{t:}: t{S.J)text{S.J)*{t:}) 

v {Aj: O,s;;;,J <n: t(S.j)text(S.J)= { t:} /\ t(R.J)text(R.j)= { t: }) 

). 

If n > 1 ~ (AJ: O,s;;;,J <n: t{S.J)*{ t: }), then for all n ;;a.Q we have 

AltcondO(j :O,s;;;,J<n: S.J) ~ AltcondO(j:O,s;;;,J<n: S.j;R.j) 

and 

Altcondl(j :O,s;;;,J<n: S.j) ~ A/tcondl(j:O,s;;;,J<n: S.j ;R.j). 

PROOF. Let R(j:O,s;;;,j <n) and S(j:O,s;;;,J<n) be arrays of n.e. trace structures 
for which the above holds. Let furthermore 

n > 1 ~ (AJ :O,s;;;,j <n : t(S.J)*{ t:}) 

hold. We derive for n > 1 
(i) By Theorem B.12.2, hd(S.j)=hd(S.j;R.j). 
(ii) By Lemma B.23 

fpropO(S.j) ~ fpropO(S.J;R.J) 

I\ /prop l(S.J) ~ /prop l(S.J;R.J). 

(iii) If firstO(S.J) is defined for O,s;;;,j <n, then it follows, with (i), that 
bd(S.j;R.J)Cin(S.J;R.J) v hd(S.j;R.J)<;;,out{S.j;R.J). Hence, by Theorem 
B.14.O, firstO( S.J) = firstO(S.j ;R. J). 

(iv) Furthermore, if for all j, O,s;;;,J<n, t{S.J)text{S.J)*{t:}, then we derive by 
Theorem B.14.1, 

firstl(S.j) = firstl(S.j ;R. J). 
If for all J, O,s;;;,J<n, t{S.J)text{S.j)={t:} /\ t(R.J)text{R.J)={t:}, then we 
derive by Theorem B.16.1 and by Theorem B.14.1 , 

firstl(S.j) C { 0} /\ firstl(R. j) C { 0 } /\ firstl(S.j ;R. J) = firstl(R. J). 

Hence, firstl(S.J)<;;,{0} /\ firstl(S.j;R.J)<;;,{0}. 
Consequently, by definition of AltcondO and Altcond 1, we conclude for n > 1 

by (i), (ii), (iii), and (iv) 
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AltcondO(J :O:s;;;_j <n: S.J) ~ AltcondO(j:O:s;;;_j <n: S.j;R.J) 

and 

Altcond l(j :O:s;;;_j <n: S.J) ~ Altcondl(j:O:s;;;_j <n: S.j ;R.J). 

Appendix B 

By definition of AltcondO and Altcond 1, these properties also hold for n ,s;;;_ 1. 
D 

LEMMA B.23. Let R and S be non-empty trace structures for which 
Alfcond(S, R) I\ Seqcond(S, R) holds and Sis prefixfree. We have 

(i) ((tS={t} /\ tR={t}) V tS:;i={t}) 
I\ fpropO(S) ~ fpropO(S;R). 

(ii) ((tStextS = { £} /\ tRtextR = { £}) v tStextS :;i={ £}) 
/\ StextS is prefix-free 
/\ prefS satisfies rule g 3 
I\ /prop l(S) ~ fprop l(S ;R). 

PROOF. Let S and R be 
Alfcond(S,R) I\ Seqcond(S,R) holds. 
lar to the proof of (ii). 

n.e. trace structures for which 
We prove (ii). The proof for (i) is simi-

Let /prop l(S) hold, Sand StextS are prefix-free, and prefS satisfies rule g3. 
We observe 
(i) 

tStextS={t} /\ tRtextR={t} 

= {Alfcond(S,R), calc.} 

t(S ;R)text(S ;R)= { t }. 

Consequently, in case tStextS={t} /\ tRtextR={t} we conclude, by the 
definition of /prop 1, that /prop l(S ;R) holds, because of the empty 
domain in the quantification. 

(ii) If tSt extS:;i={ £} we derive 

tStextS:;i={ £} 

= { St extS is prefix-free} 

£ !l tSt extS. 

Moreover, from /prop l(R) follows that firstlS is defined. Since 
t!ltStextS, we have t!ltS, and by Theorem B.12.2 and S being prefix-free 
we conclude hd(S;R)~in(S;R) v hd(S;R)~out(S;R). Furthermore, we 
infer 

t Etpref(S ;R)text(S ;R) I\ t:;i:=£ 

~ {calc., t!ltStextS see above, Alfcond(S,R)} 
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□ 

(Es,r:: t=sr I\ sEtprefStextS /\ rEtprefRtextR 

/\ (sEtStextS v r=£) I\ s-=/=f. 

) 

~ {!prop l(S)} 

(Es,r,u: uEtpref StextS /\ set(u)EfirstlS 

: (u~s V s~u) I\ (sEtStextS V r =£) 

I\ t=sr I\ sEtprefStextS /\ rEtprefRtextR 

) 

~ {Alfcond(S,R), Seqcond(S,R), Sand StextS are prefix-free, 

prefS satifies rule g3, tStextS=,6:{£}, Theorem B.14.1, calc., 

hd(S;R)~out(S;R) v hd(S;R)~in(S;R), see above} 

(Es,r,u: uEtprefStextS /\ set(u)Efirstl(S;R) 

:(u~s V s~u) I\ (sEtStextS V r=£) 

I\ t =sr I\ s Et pref StextS /\ r Et pref RtextR 

) 

~ { calc., St extS is prefix-free} 

(Eu:uEtpref(S;R) I\ set(u)Efirstl(S;R) 

:u~t v t~u 

). 

By definition of /prop I, we conclude that /prop I(S ;R) holds. 
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PROOF OF THEOREM B.5.0. Let REGC4, SEGC4, and Alfcond(R,S). We 
prove RIISEGC4. 

rule gl: Since Rand Sare p.c.n.e. we have that RIIS is p.c.n.e. as well. Because 
of Alfcond(R,S), it follows that any two alphabets of distinct type of RIIS are 
disjoint. 

rule g2: Let a Eext(R IIS), we observe 

saaEt(RIIS) 

~{ def. of weaving} 

saataR EtR /\ saataS EtS 

~{ R and S satisfy rule g2, Alfcond(R,S), calc.} 
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false. 

rule g3: Let the symbols x and y satisfy 

(x E i(R IIS) U co(_R IIS) A y E i(R IIS) U en(R IIS)) 

v (x E o(R IIS) U en(R IIS) A y E o(R IIS) U co(R IIS)) 

We observe 

sxy t Et(R IIS) 

~{ def. of weaving} 

sxytt aR E tR I\ sxytt aS E tS 

~{ calc., Alfcond(R,S), R and S satisfy rule g3} 

syxttaREtR I\ syxttaSEtS 

~{ def. of weaving, syxt E(aR U aS)*} 

syxt Et(R IIS). 

Appendix B 

rule g4": Let the symbols a and b be of different type, { a,b} !:ext(R IIS). We 
observe 

sabtcEt(RIIS) I\ sbatEt(RIIS) 

~{ def. of weaving} 

sabtctaREtR I\ sbattaREtR 

I\ sabtct aS E tS /\ sbatt aS E tS 

~{ calc., Alfcond(R,S), R and S satisfy rule g4"} 

sbatct aR EtR /\ sbatct aS EtS 

~{ def. of weaving, sbatc E(aR U aS)*} 

sbatc Et(R IIS). 

rule g5'": Similar to rule g4". 
D 

PROOF OF THEOREM B.5.1. Let R and S be n.e.p.c. trace structures for which 
Disfree(R), Disfree(S), and Alfcond(R,S) hold. We prove Disfree(R IIS). 

We observe for arbitrary traces u, v, and symbol b, 

uEtpref(RIIS) /\ vbEtpref(RIIS) /\ bEout(RIIS) 

A ut(ext(R IIS)U co(_R IIS))=vt(ext(R IIS) Uco(R IIS)) 

~{ def. of weaving, Alfcond(R,S), calc.} 
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utaR EtprefR /\ vbtaR EtprefR /\ (btaR EoutR v btaR =£) 

/\ ut(extR UcoR)=vt(extR UcoR) 

=>{If bt aR=;t=-£ we use Disout(R), calc.} 

(utaR)(btaR)EtprefR 

=>{ calc.} 

ubt aR Et prefR. 
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Similarly, with Disout(S), we find ubtaSEtprefS. Since ubE(aRUaS)*, we 
derive, by definition of weaving, 

ub Et(prefR llprefS) 

=>{pref(R 11S) = prefR II prefS for prefix-dosed R and S} 

ub Etpref(R IIS). 

Consequently, Disout(R IIS) holds. 
Similarly, we derive 

Disin(R) I\ Disin(S) I\ Alfcond(R,S) => Disin(R IIS). 

□ 

B.4. PROOFS OF THEOREMS B.6 THROUGH B.9 

PROOF OF THEOREM B.6.0. Let prefREGC3, prefSEGC3, Alfcond(R,S), and 
AltcondO(_R,S) hold. We prove pref(RIS)EGC3. 

rule gl: Obviously, pref(RIS) is also prefix-dosed and non-empty. Because of 
Alfcond(R,S), it readily follows that any two alphabets of distinct type of RIS 
are disjoint. 

rule g2: Let aEext(RIS). We observe 

saa <if tpref(RIS) 

={calc.} 

saa <if t prefR /\ saa <if t prefS 

= {prefR and prefS satisfy rule g 2} 

true. 

rule g3: Let 

(x E i(RIS)Uco(RIS) /\ y E i(RJS)Uen(RIS)) 

v (x E o(R IS) U en(R IS) /\ y E o(R IS) U co(R IS)). 
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We observe 

sxytEtpref(RIS) 

={calc.} 

sxytEtprefR v s.xytEtprefS 

~ {Alfcond(R,S), prefR and prefS satisfy rule g3} 

syxtEtprefR v syxtEtprefS 

={calc.} 

syxt Et pref(R IS). 

Appendix B 

rule g4': Let a and b be of different type, { a,b} ~ext(RIS). 

sabtEtpref(RIS) I\ sbEtpref(RIS) 

= { calc.} 

(sabtEtprefR v sabtEtprefS) I\ (sbEtprefR V sbEtprefS) 

={AltcondO(R,S), Alfcond(R,S), Lemma B. 24, calc.} 

(sabtEtprefR I\ sbEtprefR) v (sabtEtprefS I\ sbEtprefS) 

~{prefR and prefS satisfy rule g4', Alfcond(R,S} 

sbatEtprefR v sbatEtprefS 

={calc.} 

sbat Etpref(RIS). 

rule g5"': Let a and b be of different type {a,b} ~ext(RIS). 

saEtpref(RIS) I\ sbEtpref(RIS) 

□ 

~{Alfcond(R,S), AltcondO(R,S), Lemma B.24, calc.} 

(sa EtprefR /\ sb EtprefR) v (sa EtprefS /\ sb EtprefS) 

~{prefR and prefS satisfy rule g5"', Alfcond(R,S)} 

sabEtprefR v sbaEtprefS 

~{calc.} 

sab Et pref(R IS). 

LEMMA B.24. For a and b of different type, { a,b} ~ ext(R IS), Alfcond(R, S), and 
AltcondO(R,S) we have 

...,(saEtprefR I\ sbEtprefS). 
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PROOF. Let Alfcond(R,S) and AltcondO(R,S) hold. Assume 
a Eo{RIS) /\ b Ei(RIS) and hdR CinR /\ hdS c;;inS. We infer 

sa Et prefR /\ sb Et prefS 

==?{hdR CinR, Alfcond(R,S)==?aEoR, def. of firstOR, calc.} 

(Er : rEtprefR /\ set(r)EfirstOR 

:r~s I\ sbEtprefS /\ r~) 

==?{AltcondO(R,S) ==? fpropO(S), calc.} 

(Er, t : r Et prefR /\ set (r) E firstOR /\ t Et pref S I\ set ( t) E firstOS 

: (r~t V t~r) I\ r=/=() 

==?{AltcondO(R,S) ==? 1/condO(R,S)} 

false. 

For reasons of symmetry, a similar reasoning applies when 
hdR C outR /\ hdS C outS. 
D 

PROOF OF THEOREM B.6.1. 
Let prefREGC3, prefSEGC3, Alfcond(R,S), and Seqcond(R,S) hold and R be 
prefix-free. We prove pref(R ;S)EGC3. 

rule gl: Since prefR and prefS are p.c.n.e. also pref(R ;S) is p.c.n.e .. Because 
of Alfcond(R,S), it follows that any two alphabets of distinct type of pref(R ;S) 
are disjoint. 

For each of the following rules three cases are distinguished corresponding to 
the ways in which a trace can be parsed as a member of pref(R ;S). 

rule g2: Let aEext(R ;S) and saaEtpref(R ;S). We distinguish three cases. 
(i) 

(ii) 

saaEtprefR 

= { pref R satisfies rule g 2} 

false. 

saEtR I\ aEtprefS 

= { def. of d and hd} 

a EtlR /\ a EhdS 
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(iii) 

= {Alfcond(R,S), Seqcond(R,S)} 

false. 

(Eu,v::saa=uvaa I\ uEtR I\ vaaEtprefS) 

= {prefS satisfies rule g2} 

false. 

Hence, from (i), (ii) and (iii) we conclude saa ~tpref(R ;S). 

rule g3: Let the symbols x and y satisfy 

(x E i(R ;S) U co(_R ;S) /\ y E i(R ;S) U en(R ;S)) 

V (x E o(_R ;S) U en(R ;S) /\ y E o(_R ;S) U co(_R ;S)) 

and sxyt Etpref(R ;S). We consider three cases. 
(i) 

(Eu, v: : sxyt = sxyuv I\ sxyu E tR I\ v Et prefS) 

==>{Aifcond(R,S), prefR satisfies ruleg3, calc.} 

(Eu,v:: t=uv I\ syxuEtR I\ vEtprefS) 

=>{ calc.} 

syxt Etpref(R ;S). 

(ii) 

(iii) 

SX EtR I\ yt EtprefS 

=>{ def. of hd and d} 

XEdR /\ yEhdS 

==>{Aifcond(R,S), Seqcond(R,S)} 

false. 

(Eu, v:: sxyt = uvxyt I\ u EtR I\ vxyt EtprefS) 

==>{Aifcond(R,S), prefS satisfies rule g3} 

(Eu,v :: s =uv I\ uEtR I\ vyxtEtprefS) 

=>{ calc.} 

syxtEtpref(R ;S). 

Consequently, (i) v (ii) v (iii) => syxt Et pref(R ;S). 

Appendix B 
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rule g4': Let the symbols a and b be of different type and 
{ a,b} cextR /\ sa Etpref(R ;S) /\ sbat Etpref(R ;S). We distinguish three 
cases 
(i) 

(Eu, v:: sa Etpref(R ;S) /\ sbat =sbauv I\ sbau EtR /\ v EtprefS) 

~ { R is prefix-free, Lemma B.25.0, calc.} 

(Eu,v ::saEtprefR I\ t=uv I\ sbauEtR I\ vEtprefS) 

~{prefR satisfies rule g4', Alfcond(R,S), Lemma B.26, R is prefix-free} 

(Eu, v:: t = uv I\ sabu EtR /\ v Et prefS) 

~{calc.} 

sabt Etpref(R ;S). 

(ii) 

(iii) 

sa Etpref(R ;S) /\ sb EtR /\ at EtprefS 

~{R is prefix-free, Lemma B.25.0} 

saEtprefR I\ sbEtR 

~{Alfcond(R,S), prefR satisfies rule g5"'} 

sba EtprefR /\ sb EtR 

= { R is prefix-free} 

false. 

(Eu, v:: sa Etpref(R ;S) /\ sbat = uvbat I\ u EtR /\ vbat EtprefS) 

~{ R is prefix-free, Lemma B.25.l} 

(Eu,v::s=uv I\ uEtR I\ vaEtprefS /\ vbatEtprefS) 

~{Alfcond(R,S), prefS satisfies rule g4'} 

(Eu, v:: s = uv I\ u EtR /\ vabt Et prefS) 

~{calc.} 

sabt Etpref(R ;S). 

Accordingly, (i) v (ii) v (iii) ~ sabt Etpref(R ;S). 

rule g5"': Similar to proof of rule g4'. 

□ 
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LEMMA B.25. (Without proof) For prefixfree R and non-empty S, we have for 
traces r and s, and symbols a and b, 

0. sbEtprefR /\ saEtpref(R;S) ~ saEtprefR 
I. rEtR I\ rsEtpref(R ;S) ~ sEtprefS. 

□ 

LEMMA B.26. If prefR satisfies rule g4', R is prefixfree, and a and b are of 
different type with { a,b} kextR, then 

saEtprefR /\ sbauEtR ~ sabuEtR 

PROOF. We observe 

sa EtprefR /\ sbau EtR 

~{prefR satisfies rule g4', a and b of dif. type, { a,b} kextR} 

sabu Et prefR. 

Furthermore, for any symbol c we derive 

sabuc Et prefR /\ sbau E tR 

~{prefR satisfies rule g4', a and b of dif. type, { a,b} kextR, calc.} 

sbaucEtprefR I\ sbauEtR 

~{ R is prefix-free} 

false. 

From the above two observations we conclude the lemma. 

□ 

PROOF OF THEOREM B.7. Generalization of proof of Theorem B.6.0 ton trace 
structures, n >0. 

□ 

PROOF OF THEOREM B.8.0. Let R and S be n.e. trace structures for which 
Disfree(R) I\ Disfree(S) I\ Altcond l(R,S) /\ Alfcond(R,S) holds. Further­
more, let prefR and prefS satisfy rule g3. We prove Disfree(RjS). 

We observe 

uEtpref(RjS) /\ vbEtpref(RjS) /\ bEout(RjS) 

/\ ut(ext(RjS)Uco(RjS))=vt(ext(RjS) Uco(RjS)) 

~{Assume vbEtprefR, Alfcond(R,S)} 

uEtpref(RjS) /\ vbEtprefR /\ bEoutR 

/\ ut(ext(RjS) Uco(RjS))=vt(ext(RjS) U co(RjS)) 
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~{Lemma B.27, Alfcond(R,S), Altcondl(R,S), 

prefR and prefS satisfy rule g 3} 

uEtprefR I\ vbEtprefR I\ bEoutR 

/\ ut(ext(RIS)Uco(RIS))=vt(ext(RIS)Uco(RIS)) 

~{calc.} 

uEtprefR I\ vbEtprefR I\ bEoutR 

I\ ut(extR UcoR)=vt(extR UcoR) 

~{Disout(R)} 

ubEtprefR 

~{ calc.} 

ub Etpref(RIS). 
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For vbEtprefS a similar reasoning applies. Consequently, Disout(RIS) holds. 
Similarly, we derive 

Disin(R) I\ Disin(S) I\ Alfcond(R,S) I\ Altcondl(R,S) 

A prefR and prefS satisfy rule g 3 

~ Disin(RIS). 

□ 

LEMMA B.27. For n.e. trace structures R and S with 
Alfcond(R,S) I\ Altcondl(R,S) and prefR and prefS satisfy rule g3, we have 

uEtpref(RIS) /\ vbEtprefR /\ bEoutR 

/\ ut(ext(RIS)Uco(RIS))=vt(ext(RIS)Uco(RIS)) 

~ uEtprefR 

and 

uEtpref(RIS) /\ vbEtprefR /\ bEinR 

I\ ut(ext(RIS) I\ en(RIS))=vt(ext(RIS)Uen(RIS)) 

~ uEtprefR. 

PROOF. Let R and S be n.e. trace structures with 
Alfcond(R,S) I\ Altcondl(R,S) and prefR and prefS satisfy rule g3. We 
observe 

ut(ext(R IS) U co(RIS))=vt (ext(R IS) U co(R IS)) 

~{ calc.} 
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ut ext(R IS)= vt ext(R IS) 

A utout(RIS)=vtout(RIS). 

(0) 

(1) 

We first assume, because of Altcondl(R,S), hd(R)CoutR A hd(S)coutS. We 
infer 

uEtpref(RIS) A vbEtprefR A bEoutR 

= { calc.} 

(uEtpref(RIS) A vbEtprefR A uE(out(RIS))* A vbE(outR)°) 

v (uEtpref(RIS) A vbEtprefR A (utin(RIS)1:£ V vbtinR 1:£)) 

~{Lemma B.28, Alfcond(R,S) A Altcondl(R,S), v, u: = vb, u, 

prefR and prefS satisfy rule g3, hd(R)CoutR A hd(S)CoutS, (O)} 

(uEtpref(RIS) A vbEtprefR A uE(out(RIS))* A vbE(outR)°) 

V UEtprefR 

~{calc., (l)} 

uEtprefR. 

For hdR CinR A hdS CinS we derive 

uEtpref(RIS) A vbEtprefR A bEoutR 

={calc.} 

uEtpref(RIS) A vbEtprefR A (utout(RIS)1:£ V vbtoutR1:£) 

Similarly to the above derivation we then infer u EtprefR. 
The second part of the theorem is proved similarly. 

□ 

LEMMA B.28. For n.e. trace structures R and S, with Alfcond(R,S), 
Altcondl(R,S), hd(R)c;outR A hd(S)c;outS, and prefR and prefS satisfy rule 
g3, we have 

vEtprefR A uEtpref(RIS) 

A (vtinR 1:£ V utin(RIS)1:£) 

A utext(RIS)=vtext(RIS) 

~ uEtprefR 

A similar lemma also holds with out and in replaced by in and out respectively. 

PROOF. Let R and S be n.e. trace structures with 
Alfcond(R,S) A Altcondl(R,S), hd(R)CoutR A hd(S)coutS, prefR and prefS 
satisfy rule g3, and utext(RIS)=vtext(RIS). We prove 



B.4. Proofs of Theorems B.6 through B.9 

(i) vEtprefR I\ uEtprefS /\ vtinR=F£ ~ false. 

For reasons of symmetry, we can then also conclude 

(ii) vEtprefR I\ uEtprefS /\ utinS=F£ ~ false. 

Derivation (i) and (ii) combined with 

(iii) uEtprefS /\ Alfcond(R,S) ~ utin(RIS)=utinS. 

yields 

vEtprefR I\ uEtpref(RIS) 

I\ (vtinR =F£ V utin(RIS)=F£) 

~{ (i), (ii), (iii), calc.} 

uEtprefR. 

We proceed with the proof of (i). 

vEtprefR I\ vtinR=F( I\ hd(R)<;::;outR I\ uEtprefS 

~{Lemma B.29, prefR satisfies rule g3} 

(Er: set(r)EfirstlR 

:r~vtextR I\ rE(oR)* I\ r=F( I\ vEtprefR I\ uEtprefS) 

~{utext(RIS) = vtext(RIS), Alfcond(R,S), calc.} 

(Er: set(r) EfirstlR 
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:r~vtextR I\ rE(oR)* I\ r=F£ I\ vtextR=utextS I\ uEtprefS) 

~{Alfcond(R,S), calc.} 

□ 

(Er: set(r)EfirstlR 

: rEtprefStextS /\ rE(oS)* /\ r=F£) 

~{Altcondl(R,S) ~ /prop l(S)} 

(Er,s: set(r)EfirstlR I\ set(s)EfirstlS 

: (r~s v s~r) I\ r=F£) 

~{Altcondl(R,S) ~ 1/cond l(R,S), calc.} 

false. 

LEMMA B.29. If for a n.e. trace structure R, prefR satisfies rule g3, then 

v Et prefR A v t inR =Ff I\ hd( R) c;::; outR 

~(Er:set(r)EfirstlR: ,~vtextR I\ r E(oR)* I\ r=F£). 
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PROOF. Let R be a n.e. trace structure and prefR satisfies rule g3. We observe 

vEtprefR /\ vtinR~ I\ hd(R)houtR 

~{calc.} 

(Er::rE(outR)* /\ r~v I\ Suc(r,R) \ outR=,=0 I\ vEtprefR) 

~{prefR satisfies rule g3, hd(R)houtR, see below} 

(Er: : rE(outR)* /\ r~v I\ Suc(r,R) \ outR=,=0 I\ vEtprefR 

I\ rtoR=/=£) 

~{hd(R) h outR, def. of firstlR} 

(Er: set(r)EfirstlR: r~vtextR I\ rE(oR)* I\ r~). 

Let rbEtprefR /\ rE(outR)* /\ bfloutR. We have bfloutR ~ bEinR. If 
rE(coR)*, then it follows, with rule g3 for prefR, that brEtprefR as well, con­
tradicting hdR houtR. Consequently, rtoR~. 

□ 

PROOF OF THEOREM B.8.1. Let R and S be n.e. trace structures such that 
Disfree(R), Disfree(S), and Alfcond(R,S) hold. Let, furthermore, 
Seqcond(R,S) hold and R and RtextR be prefix-free. We prove Disfree(R ;S) 
by considering two cases corresponding to how a trace vb can be parsed as a 
member of tpref(R ;S), viz. 
(i) vb EtprefR or 
(ii) vb fltprefR /\ vb Etpref(R ;S). 
We observe 
(i) 

uEtpref(R ;S) /\ vbEtprefR /\ bEout(R;S) 

A ut(ext(R ;S)Uco(R ;S))=vt(ext(R ;S)Uco(R ;S)) 

~{calc.} 

uEtpref(R;S) /\ vEtprefR /\ vbEtprefR /\ bEout(R;S) 

A ut(ext(R ;S)Uco(R ;S))=vt(ext(R ;S)Uco(R ;S)) 

~{Lemma B.30 (i), Disout(R), R and RtextR are prefix-free, 

Alfcond(R,S), take to,t 1:=u,v} 

(Ero ,so: : u=r0s0 I\ vbEtprefR I\ bEout(R;S) 

I\ r0 EtprefR /\ s0 EtprefS /\ (so=£ V r0 EtR) 

/\ r 0t(extR UcoR) = vt(extR UcoR) ) 

~{Disout(R), calc.} 
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(ii) 

(Er0,s0 : : u =r0s0 I\ r0b EtprefR 

I\ s0 EtprefS /\ (so=£ V ro EtR) ) 

~{ R is prefix-free} 

(Ero,so :: u =roso I\ rob EtprefR /\ so EtprefS /\ so=£) 

~{calc.} 

ubEtprefR 

~{calc.} 

ub Etpref(R ;S). 

u Etpref(R ;S) /\ vb ~tprefR /\ vb Etpref(R ;S) /\ b Eout(R ;S) 

/\ ut(ext(R ;S)Uco(R ;S))=vt(ext(R ;S)Uco(R ;S)) 

~{calc.} 

u Etpref(R ;S) /\ v Et(R ;prefS) /\ vb Etpref(R ;S) /\ b Eout(R ;S) 

/\ ut(ext(R ;S)Uco(R ;S))=vt(ext(R ;S)Uco(R ;S)) 

~{Lemma B.30 (ii), Disout(R), R and RtextR are prefix-free, 

Alfcond(R,S), take to,t 1 : =u, v} 

(Er0 ,s0 ,r1,s1:: u=r0so I\ v=r 1s1 

I\ r 0 EtprefR /\ s0 EtprefS /\ (r0 EtR v s0 = £) 

I\ r1 EtR I\ s 1 EtprefS /\ vbEtpref(R;S) /\ bEout(R;S) 

/\ r 0 t(extR UcoR) = r 1t(extR UcoR) 

/\ s0t(extSUcoS)=s 1t(extSUcoS) ) 

~{R is prefix-free, Lemma B.25.1, Alfcond(R,S)} 

(Ero ,so,r 1 ,s1 :: u =roso I\ v =r1s1 

I\ ro EtprefR /\ so EtprefS /\ (ro EtR V so = £) 

I\ r 1 EtR /\ s 1 EtprefS /\ s 1bEtprefS /\ bEoutS 

/\ rot(extR UcoR) = r 1t(extR UcoR) 

/\ s0t(extS UcoS)=s 1t(extS UcoS) ) 

~{ Disout(S)} 

(Ero,so ,r1 ,s1 :: u = roso I\ r1EtR I\ b EoutS 

I\ ro EtprefR /\ s0b EtprefS /\ (r 0 EtR v s0 =£) 
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I\ r0t(extR UcoR)=r 1t(extR UcoR) ) 

=>{ calc.} 

(Ero,so,r1 ,si :: u =r0so I\ r 1 EtR I\ b EoutS 

I\ r0 EtprefR /\ s0b EtprefS /\ (r0 EtR v (ro ~tR I\ so=£)) 

I\ r 0t(extR UcoR) = r 1t(extR UcoR)) 

=>{Lemma B.31, R and RtextR are prefix-free, Disout(R)} 

(Ero,so ,r1 ,si :: u =roso I\ ro EtprefR /\ s0b EtprefS 

I\ (r0 EtR v (tl.RnenR*0 /\ hdSnoutS*0))) 

=>{ Seqcond(R,S)} 

(Ero ,so:: u =r0s0 I\ r0 EtR I\ s0b EtprefS) 

=>{ calc.} 

ubEtpref(R ;S). 

For the proof of Disin(R ;S) a similar reasoning applies. 
□ 

LEMMA B.30. If R and RtextR are prefixfree and Disout(R) and Alfcond(R,S) 
hold, then for arbitrary traces t O and t I we have 

t0 Etpref(R ;S) /\ t 1 Etpref(R ;S) 

I\ t0t(ext(R ;S)Uco(R ;S))=t 1t(ext(R ;S)Uco(R ;S)) 

=>(Er0,s0 ,r 1,s 1:: t0 =r0s0 I\ t 1 = r 1s 1 

Moreover, if 

I\ r 0 EtprefR I\ s0 EtprefS I\ (s 0 =£ V roEtR) 

I\ r 1 EtprefR /\ s 1 EtprefS /\ (s 1 =£ v r 1 EtR) 

I\ r0t(extR UcoR)=r 1t(extR UcoR) 

I\ s0t(extS UcoS)=s 1t(extS UcoS) ). 

(i) t I EtprefR, thens 1 =£ 
(ii) t 1 Et(R;prefS), then r 1 EtR 
A similar lemma holds with co replaced by en and using Disin(R) instead of 
Disout(R) as a condition. 

PRooF. Let R and RtextR be prefix-free and Disout(R) and Alfcond(R,S) 
hold. Let furthermore 

t0 Etpref(R ;S) /\ t 1 Etpref(R ;S) 

I\ t0t(ext(R ;S)Uco(R ;S))=t 1t(ext(R ;S)Uco(R ;S)). 
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By definition of concatenation we deduce 

(Ero,so,r 1,s 1:: t0=r0s0 I\ t 1 =r 1s 1 
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I\ ro EtprefR /\ so EtprefS /\ (so =E v r0 EtR) (0) 

I\ r 1 EtprefR /\ s 1 EtprefS /\ (s 1 =E v r1 EtR)). 

We prove for r0 and r1 in (0) that r 0t(extR UcoR)=r1t(extR UcoR). Then 
we have s 0t(extS UcoS)=s 1t(extS UcoS) as well, since 

r 0t(extR UcoR)=r1t(extR UcoR) 

={r0 EtprefR, r1 EtprefR, Alfcond(R,S), calc.} 

r 0t(ext(R ;S)Uco(R ;S))=r 1t(ext(R ;S)Uco(R ;S)) 

= {r0s0t(ext(R ;S)Uco(R ;S))=r 1s 1t(ext(R ;S)Uco(R ;S)), calc.} 

s0 t(ext(R ;S)Uco(R ;S))=s 1t(ext(R ;S)Uco(R ;S)) 

= {so EtprefS, s1 EtprefS, Alfcond(R,S), calc.} 

s0t(extS UcoS)=s 1t(extS UcoS). 

First, we inf er 

rosot(ext(R ;S) Uco(R ;S))=r1s 1 t(ext(R ;S) U co(R ;S)) 

~{calc.} 

(rot extR)(sot extR) = (r 1 t extRXs I t extR) 

~{ Rt extR is prefix-free, (0)} 

rotextR =r1textR. 

We derive 

r 0t(extR UcoR)-< r 1t(extR UcoR) 

= {r0 EtprefR, r 1 EtprefR, calc.} 

(Eu,b ::r0 EtprefR I\ r 1 EtprefR /\ ub~r 1 I\ bE(extRUcoR) 

/\ r 0t(extR UcoR)=ut(extR UcoR)) 

={r0textR=r 1textR, cf. (1), calc.} 

(Eu,b:: ro EtprefR /\ r 1 EtprefR /\ ub~r1 I\ bEcoR 

/\ r 0t(extR UcoR)=ut(extR UcoR) ) 

~{Disout(R)} 

(Eb:: robEtprefR) 

~{R is prefix-free, to=roso I\ (s0=E v r 0 EtR), cf. (0)} 

to=ro 

(1) 

(2) 
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~{t0 t(ext(R ;S)Uco(R ;S))=t 1t(ext(R ;S)Uco(R ;S)), t 1 =r1s1} 

r0t(ext(R ;S)Uco(R ;S))=r1s 1t(ext(R ;S)Uco(R ;S)) 

~{calc.} 

r0t(extR UcoR)=r 1s 1t(extR UcoR) 

~{calc.} 

r0t(extR UcoR)>r1t(extR UcoR) 

~{(2)} 

false. 

For reasons of symmetry, we conclude 

r0 t(extR UcoR)=r1t(extR UcoR). 

Finally, we observe that the properties (i) and (ii) follow from the property 
that R is prefix-free. 
□ 

LEMMA B.31. If Rand RtextR are prefixfree and Disout(R) holds, then 

r 1 EtR /\ r0 EtprefR /\ r0 etR 

/\ r 0t(extR UcoR)=r 1t(extR UcoR) 

~ tlR nenR¥::0 . 

Similarly, if Disin(R) holds, then 

r 1 EtR /\ r0 EtprefR /\ r0 etR 

I\ r0t(extR UenR)=r 1t(extR UenR) 

~ tlR ncoR¥::0 . 

PROOF. Let Rand RtextR be prefix-free and Disout(R) holds. Let furthermore 
r 1 EtR and r0t(extR UcoR)=r1t(extR UcoR). We observe 

r0 EtprefR /\ r0 etR 

~{calc.} 

(Eu :: r0 uEtR I\ u~) 

~{r0t(extR UcoR)=r 1t(extR UcoR), calc.} 

(Eu::rouEtR I\ u~ I\ r0textR=r 1textR) 

~{r 1 EtR ~ r 1textREtRtextR, RtextR is prefix-free} 

(Eu :: r0uEtR I\ u~ I\ utextR =t). 
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If utcoR=fa t:, let b be the first symbol in utcoR, i.e. for some v we have 

rouEtR I\ rovb~r0u I\ vE(enR)° /\ bEcoR 

==>{r0 t(extR UcoR)=r 1t(extR UcoR), r 1 EtR, calc.} 

r 0vbEtprefR I\ r 1 EtR /\ bEcoR 

/\ r 0vt(extR UcoR)=r 1t(~xtR UcoR) 

==>{ Disout(R)} 

r 1bEtprefR /\ r 1 EtR 

==>{ R is prefix-free} 

false. 

Consequently, utcoR =t:, and we find 

(Eu::r0 uEtR I\ u=/=t: I\ uE(enR)*) 

==>{ calc., def. of d} 

dR nenR=/=0. 

The proof for the second part is done similarly. 

□ 
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PROOF OF THEOREM B.9. Generalization of the proof of Theorem B.8.O to n 
trace structures, n ~O. 
□ 

B.5. PROOFS OF THEOREMS B.10 THROUGH B.16 

PROOF OF THEOREM B.10. We prove Theorem B.1O.1. The proof of Theorem 
B.1O.O is similar. Let R and S be n.e. prefix-free trace structures, prefR and 
prefS satisfy rule g3, RtextR and StextS are prefix-free, and 
Altcond l(R,S) /\ Alfcond(R,S) hold. We prove that (RIS)text(RIS) is prefix.­
free, i.e. 

rsEt(RIS)text(RIS) /\ rEt(RIS)text(RIS) ==> s=t:. 

First we observe for t:!it(RtextR) /\ t:!it(StextS) 

rsEt(RtextR) /\ rEt(StextS) /\ r=/=t: 

==> { R and S are prefix-free, calc.} 

(Ero,so::roEtR I\ rs=r0textR I\ Suc(r0 ,R)=0 I\ r=/=t: 

I\ s0 EtS I\ r=s0textS /\ Suc(so,S)= 0) 
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~ {Altcond l(R,S) ~ firstlR and firstlS are defined, calc., 

prefR and prefS satisfy rule g3, Lem.ma B.32} 

(Eu,v: set(u)EfirstlR I\ set(v)EfirstlS 

: u~rs I\ u=fot_ I\ v~r I\ v=fot.) 

~ {calc.} 

(Eu, v: set(u )EfirstlR A set(v )EfirstlS 

: (u~v V v~u) I\ u=fot. I\ v=fot.) 

~{Altcondl(R,S) ~ llcondl(R,S), calc.} 

false. 

Appendix 8 

Similarly, rEt(RtextR) /\ rs Et(StextS) ~ false. Consequently, we infer 

rsEt(RIS)text(RIS) I\ rEt(RIS)text(RIS) /\ r=fot. 

~ {Alfcond(R,S), calc.} 

(rsEtRtextR v rsEtStextS) /\ (rEtRtextR V rEtStextS) /\ r=/=f. 

~ { see above, calc.} 

(rsEtRtextR I\ sEtRtextR) v (rsEtStextS /\ rEtStextS) /\ r=fot. 

~ { Rt extR and St extS are prefix-free} 

s = £. 

For f.EtStextS v f.EtRtextR, we observe 

f.EtStextS 

= { St extS is prefix-free} 

{f.} =tStextS 

= {prefS satisfies rule g 3, S is prefix-free and n.e., Th. B.16.1, calc.} 

firstlS = { 0 } 

= {Altcondl(R,S), Rand Sare n.e.} 

firstlR = { 0 } 

= {prefR satisfies ruleg3, R is prefix-free and n.e., Th. B.16.1 , calc.} 

{f.} =tRtextR 

= {RtextR is prefix-free} 

f.EtRtextR. 

Accordingly, f.EtStextS v f. EtRtextR ~ t(RIS)text(RIS) ={f.} , and we con­
clude that (RIS)text(RIS) is prefix-free. 
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LEMMA B.32. If, for a n.e. trace structure R, firstlR is defined and prefR 
satisfies rule g 3, then 

rEtR I\ Suc(r,R)= 0 /\ rtextR=f:£ 

⇒ (Eu: set(u)EfirstlR: u~rtextR I\ u=f=t:). 

PR.ooF. Since firstlR is defined, we may assume hd.R coutR. We observe 

rEtR I\ Suc(r,R)= 0 /\ rtextR=f:t: 

⇒ { calc., hd.R coutR} 

(Eu::rEtprefR I\ u~r I\ uE(outR)* 

I\ (Suc(u,R) \ outR=f:0 V Suc(u,R)= 0) 

) /\ rt extR =ft: 

⇒ {hd.R C outR, prefR satisfies rule g 3, see below} 

(Eu:: uEtprefR /\ u~r I\ utextR=f=t: I\ uE(outR)* 

I\ (Suc(u,R) \ outR=f: 0 v Suc(u,R)= 0) 

) 

⇒ { def. of firstlR, calc.} 

(Eu: set(u) EfirstlR : u ~rt extR I\ u=f=t:). 

Step (0) in the above derivation follows from the derivation below. 

u~r I\ uE(outR)* I\ utextR=t: I\ rtextR=f=t: I\ rEtprefR 

⇒ {calc.} 

u~r I\ u E(coR)* I\ utextR =t: I\ rtextR=f=t: I\ rEtprefR 

⇒ { Suc(u,R) \ outR=f: 0 v Suc(u,R)= 0, calc.} 

Suc(u,R) \ outR=f:0 /\ u E(coR)* 

⇒ {calc.} 

(Fh: b EinR: ub Et pref R I\ u E(coR)*) 

⇒ {prefR satisfies rule g 3} 

(Fh:bEinR : buEtprefR) 

⇒ {hd.R coutR} 

false. 

Hence, implication (0) holds. 
For hd.R CinR a similar proof applies. 

□ 

(0) 
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PROOF OF THEOREM B.11.0. Let R and S be n.e. prefix-free trace structures. 
We observe for arbitrary traces r and s 

rs Et(R ;S) /\ r Et(R ;S) 

==> { calc.} 

(Ero,so::r=roso I\ roEtR I\ soEtS /\ rososEt(R;S)) 

==> { R is prefix-free } 

(Fso::soEtS /\ s0sEtS) 

==> { S is prefix-free} 

Consequently, R ;S is prefix-free. 

□ 

PROOF OF THEOREM B.11.1. Let R and S be n.e. trace structures, Rt extR and 
StextS are prefix-free, and Alfcond(R,S) holds. We observe 

(R ;S)text(R ;S) 

= {Alfcond(R,S), calc.} 

(Rt extR);(St extS). 

Subsequently, by Theorem B.11.0 we immediately derive that 
(RtextR);(StextS) is prefix-free, and so (R ;S)text(R ;S) is prefix-free as well. 

□ 

PROOF OF THEOREM B.13. Let R and S be n.e. trace structures with 
Alfcond(R,S) I\ AltcondO(R,S). Since AltcondO(R,S) holds, we may assume 
hdR ~outR I\ hdS ~outS and firstO(RIS) is defined. For 
hdR ~inR I\ hdS ~ins the proof is similar. 
(i) We observe 

tE(o(RIS))° /\ tEtpref(RIS) /\ t-:/=f. 

I\ (Suc(t,RIS) \ o(RIS)*0 V Suc(t,RIS)= 0) 

= {calc., Alfcond(R,S)} 

tE(oRUoS)° /\ tEtpref(RIS) /\ t*f. 

I\ (Suc(t,R) \ oR* 0 V Suc(t,S) \ oS* 0 

v (Suc(t,R)= 0 /\ Suc(t,S)= 0)) 

= {calc.} 

(tE(oR UoS)° /\ tEtpref(RIS) /\ Suc(t,R) \ oR=,=0 /\ t-:/=f.) 

v (tE(oR UoS)° /\ tEtpref(RIS) /\ Suc(t,S) \ oS=,=0 /\ t-:/=f.) 
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v (tE(oRUoS)* /\ tEtpref(RIS) 

I\ Suc(t,R)= 0 /\ Suc(t,S)= 0 /\ t=!,t:} 

= { calc., Alfcond(R,S), Altcond0(R,S), cf. equivalence (0) below} 

(t E(oR)* I\ t Et pref R I\ Suc(t,R) \ oR=!, 0 /\ t=!,t:} 

v (t E(oS}* /\ t Et pref S I\ Suc(t,S) \ oS=!, 0 /\ t=!,t:} 

v (tE(oR)° I\ /Et pref R I\ Suc(t,R)= 0 /\ t=!,t:} 

v (tE(oS)° /\ I Et pref S I\ Suc(t,S)= 0 /\ t=!,t:} 

= {calc.} 

(tE(oR)* I\ tEtprefR I\ t=!,t: 

I\ (Suc(t,R) \ oR=!,0 v Suc(t,R)= 0)) 

V (t E(oS)* I\ t Et pref S I\ t=!,t: 

I\ (Suc(t,S) \ oS=!,0 v Suc(t,S)=0)) 

The equivalence 

tE(oR UoS)* /\ tEtpref(RIS) 

I\ Suc(t,R)= 0 /\ Suc(t,S)= 0 /\ t=!,t: 

= {Alfcond(R,S), Altcond0(R,S)} 

(tE(oR)* I\ tEtprefR I\ Suc(t,R)= 0 /\ t=!,t:) 

v (tE(oS)° /\ I Et pref S I\ Suc(t,S)= 0 /\ t=!,t:) 

follows from 
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(0) 

tE(outR)* I\ tEtprefR I\ Suc(t,R)= 0 /\ Suc(t,S)=!,0 I\ t=!,t: 

~ {hd.R coutR, def. of firstOR, calc.} 

(Er:set(r)EfirstOR:r~t) I\ tEtprefS I\ Suc(t,S)=!,0 I\ t=l,t: 

~ {hdS coutS, def. of firstOS, calc.} 

(Er,s:set(r)EfirstOR I\ set(s)EfirstOS 

: r~t I\ (t~s v s~t) I\ s=!,t:) 

~ {Altcond0(R,S) ~ 1/condO(R,S)} 

false, 

and, similarly, with R and S interchanged. This gives the ¢=-part of (0). 
The ~-part is obvious. 

(ii) Furthermore, we derive 

{{b}lbEco(RIS) I\ bEtpref(RIS)} 
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= { calc., Alfcond(R,S)} 

{{b}lbEcoR A bEtprefR} 

U{{b}lbEcoS A bEtprefS}. 

(iii) Third, we have 

t(RIS)={t} = tR={t} I\ tS={t}. 

From (i), (ii), and (iii), and the definition of firstO we conclude 

firstO(RIS)=firstOR UfirstOS. 

Similarly to (i) we prove for firstl(RIS) 

tE(out(RIS))* A tEtpref(RIS) 

I\ (Suc(t,RIS) \ out(RIS)=j60 V Suc(t,RIS)= 0) 

= {Alfcond(R,S), AltcondO(R,S)} 

Appendix B 

(tE(outR)* I\ /EtprefR I\ (Suc(t,R) \ outR=j60 V Suc(t,R)=0)) 

V(tE(outS)* /\ /EtprefS /\ (Suc(t,S) \ outS=j60 V Suc(t,S)= 0)). 

Consequently, we have by definition of firstl 

firstl(RIS)=firstlR UfirstlS. 

D 

PROOF OF THEOREM B.14.0. Let R and S be n.e. trace structures, with 
hd(R ;S) C in(R ;S) v hd(R ;S) C out(R ;S). Hence, firstO(R ;S) is defined. Let 
furthermore, R be prefix-free and Alfcond(R,S) I\ Seqcond(R,S) hold. 

If tR = { t} , then t(R ;S)=tS and firstO(R ;S)=firstOS, by Alfcond(R,S). 
If tR=j6{t}, then it follows, since R is prefix-free, that tfltR. We observe for 

hd(R ;S)Cout(R ;S) 
(i) 

tE(o(R;S))* I\ tEtpref(R;S) A t~ 

I\ (Suc(t,R ;S) \ o(R ;S) =j6 0 v Suc(t,R ;S) = 0) 

= {Seqcond(R,S), Alfcond(R,S), calc., tfltR, Rand Sare n.e.} 

IE(oR)* I\ tEtprefR I\ I~ 

I\ (Suc(t,R ;S) \ o(R ;S) =j6 0 v Suc(t,R ;S) = 0) 

= { R is prefix-free, Alfcond(R,S) calc.} 

I E(oR)* I\ I Et pref R I\ I~ 

I\ (Suc(t,R) \ oR=j6 0 v Suc(t,R) = 0 ). 
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(ii) Moreover, 

b Eco(_R ;S) /\ b Etpref(R ;S) 

= {Alfcond(R,S), (~tR, calc., R and Sare n.e.} 

b EcoR /\ b Et pref R. 

(iii) Third, we have t(R ;S)={(} tR={(} /\ tS={(}. 

From (i), (ii), and (iii) and the definition of firstO we conclude 

tR=f'{(} ~ firstO(R ;S)=firstOR. 

For reasons of symmetry the theorem also holds for hd(R ;S)Cin(R ;S). 
D 
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PROOF OF 1HEOREM B.14.1. Let R and S be n.e. trace structures with 
hd(R ;S) C in(R ;S) v hd(R ;S) C out(R ;S), prefR satisfies rule g 3, R and 
RrextR are prefix-free, and Alfcond(R,S) I\ Seqcond(R,S) hold. 

First we consider t( Rt extR )=f= { (}. Because Rt extR is prefix-free, it follows 
(~tRtextR. We observe, assuming hd(R ;S)c;out(R ;S), 

tE(out(R;S))° /\ tEtpref(R;S) 

I\ (Suc(t,R;S)\out(R;S)=f:0 v Suc(t,R;S)=0) 

= {Alfcond(R,S), Seqcond(R,S), (~tRtextR, prefR sat. rule g3, 

Lemma B.33} 

tE(outR)° /\ tEtprefR 

I\ (Suc(t,R ;S) \ out(R ;S) =f= 0 v Suc(t,R ;S) = 0) 

= {R is prefix-free, Alfcond(R,S)} 

tE(outR)° /\ tEtprefR 

I\ (Suc(t,R) \ outR=f:0 v Suc(t,R)= 0). 

Since tEtprefR /\ Alfcond(R,S), we have ttext(R;S)=ttextR. Consequently, 
we conclude from the definition of firstl and Alfcond(R,S) 

RtextR=f={(} ~ firstl(R;S)=firstlR. 

For t(RtextR)={(} we derive the following. Assume hd(R;S)c;out(R;S) 
again. Consequently, by Alfcond(R,S), hdR c;outR. We derive 

t(RtextR)={(} 

= {calc.} 

tR C(intR)° 

= {prefR satisfies rule 3, hdR c;outR, 

shift first b EenR in any t EtR, if present, to beginning of t} 
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tR C(coR)° 

~ {Seqcond(R,S), hd(R ;S)Cout(R ;S), Alfcond(R,S), calc.} 

bdS C outS /\ firstlS is defined. 

Subsequently, 

t E(out(R ;S))° /\ t Etpref(R ;S) 

I\ (Suc(t,R ;S) \ out(R ;S)=/=0 v Suc(t,R ;S)= 0) 

= {tR C(coR)°, Alfcond(R,S), calc.} 

Appendix B 

(Er,s:: t=rs I\ rEtR I\ sEtprefS /\ rE(coR)° /\ sE(outS)° 

I\ (Suc(s, S) \ outS=/= 0 v Suc(s, S) = 0) 

I\ ttext(R ;S)=stextS ). 

Hence, from the definition of firstl(R ;S) and firstlS we infer 

t(RtextR)={£} ~ firstl(R;S)=firstlS. 

For bd(R ;S)Cin(R ;S) a similar proof applies. 
D 

LEMMA B.33. For n.e. trace structures R and S with 
Alfcond(R,S) I\ Seqcond(R,S) I\ £~tRtextR /\ pref R satisfies rule g3, we have 

tE(out(R;S))° I\ tEtpref(R;S) 

~ tE(outR)* I\ tEtprefR 

A similar lemma holds for out replaced by in 

PROOF. Let tEtpref(R;S) and tE(out(R;S))°. We have either tEtprefR or 
(Er,s:: t =rs I\ rEtR I\ sEtpref S I\ s=/=£). We observe 

(Er,s:: t =rs I\ rEtR I\ sEtpref SI\ s=/=£) 

~ {tE(out(R ;S))°, Alfcond(R,S), £~tRtextR, calc.} 

(Er,s:: rEtR I\ rE(outR)° /\ rtoR=j=( 

I\ s Et pref S I\ s E(outS)° /\ s=/=£ 

) 

~ {pref R satisfies rule g 3, shift symbol from oR in r to the end of r} 

tlR n oR =I= 0 /\ bdS n outS=/= 0 

~ {Seqcond(R,S)} 

false. 

Consequently, we derive 
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D 

tE(out(R;S))* /\ tEtpref(R;S) 

~ {Alfcond(R,S), Seqcond(R,S), £!ltRtextR, 

pref R satisfies rule g 3, see above} 

t E(outR)° /\ t Et pref R 

PROOF OF THEOREM B.15. Let R be a prefix-free, n.e. trace structure with 
hdR C outR v hdR C inR. We derive 

tEtprefR /\ t-::p. 

~ {R is prefix-free} 

(Er: r EtR: t ~r I\ Suc(r,R) = 0 /\ t=/=£) 

~ { Assume hdR C outR, calc.} 

(Er: rEtpref R 

: (t~r V r~t) 

I\ ((rE(oR)* I\ r=/=£ I\ (Suc(r,R) \ oR=/=0 v Suc(r,R) = 0)) 

v rEcoR 

) 

) 

= { def. of firstOR, which is defined since hdR ~ outR v hdR C inR} 

(Er: set(r)EfirstOR: r~t v t~r). 

Consequently, fpropO(R) holds. For reasons of symmetry fpropO(R) also holds 
for hdR CinR. 

The property fprop l(R) is proved similarly. 
D 

PROOF OF THEOREM B.16. Let R be a n.e. trace structure with 
hdR CinR v hdR coutR, hence firstOR and firstlR are defined. For the proof 
of B.16.1 , we infer tRtextR = { £} ~ firstlR C { 0 }, by definition of firstlR. 
Furthermore, we derive 

tRtextR=,={ £} 

~ { R is prefix-free and n.e.} 

(Er ::rEtR /\ rtextR=/=£ /\ Suc(r,R)= 0) 

~ { Lemma B.32, firstlR is defined, pref R satisifies rule g 3} 

(Eu: : set(u)EfirstlR I\ u-::p.) 
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~ {calc.} 

-,(firstlR ~ { 0 } ). 

For B.16.0 a similar proof applies. 
□ 

Appendix B 
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Samenvatti ng 

In dit proefschrift wordt een methode beschreven voor bet ontwerpen van ver­
tragingsongevoelige circuits. Vertragingsongevoelige circuits zijn circuits waar­
van het funktionele gedrag onafhankelijk is van vertragingen in de elementen 
waaruit het circuit is opgebouwd of in de verbindingsdraden daartussen. Om 
een aantal uiteenlopende redenen, waarop we in deze samenvatting niet verder 
ingaan, is er thans een toenemende belangstelling voor deze circuits. 

We proberen zo'n circuit samen te stellen uit een eindig aantal basiselemen­
ten. We doen dit door een constructiemethode voor zo'n samenstelling te geven 
die is gebaseerd op bet vertalen van programma's. Een programma specificeert 
bet gewenste gedrag van een circuit. Niet elk prograrnma komt in aanmerking 
voor deze vertaling; we gaan uit van programma's die aan een zekere syntax 
voldoen. Het resultaat van zo'n vertaling is dan een vertragingsongevoelige 
samenstelling van basiscomponenten die het gedrag realiseert zoals is 
gespecificeerd in bet programma. Bovendien heeft de vertaling de eigenschap 
dat bet totale aantal aantal basiselementen in de samenstelling evenredig is met 
de lengte van bet prograrnma. 

De methode kan als volgt worden samengevat. We noemen een abstractie 
van een circuit een component; componenten worden gespecificeerd door 
programma's geschreven in een notatie die is gebaseerd op tracetheorie. In 
hoof dstuk 1 geven we een korte inleiding tot de tracetheorie. 

De programma's noemen we commands. Ze kunnen worden beschouwd als 
een uitbreiding van de notatie voor reguliere expressies. Elke component 
gerepresenteerd door een command kan ook worden gerepresenteerd door mid­
del van een reguliere expressie. De notatie voor commands staat echter een 
compactere representatie toe dankzij enkele extra programmeerprimitiva zoals 
operaties om parallellisme uit te drukken, staartrecursie (voor bet representeren 
van eindige automaten), en projectie (voor het introduceren van interne 
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symbolen). In hoof dstuk 2 geven we een aantal voorbeelden hoe een com­
ponent gespecificeerd kan worden door middel van een command. 

Gebaseerd op tracetheorie formaliseren we de begrippen decompositie en ver­
tragingsongevoeligheid in hoofdstuk 3. De decompositie van een component 
representeert een realisatie van een component door een samenstelling van cir­
cuits. Het begrip vertragingsongevoeligheid is geformaliseerd in de definities 
DI decompositie en DI component. Een DI decompositie representeert een rea­
lisatie van een component door middel van een vertragingsongevoelige 
samenstelling van circuits. Een DI component representeert een circuit dat op 
een vertragingsongevoelige wijze met zijn omgeving communiceert. Een van de 
hoofdstellingen in dit proefschrift is dat DI decompositie en decompositie 
equivalent zijn als alle betrokken componenten DI componenten zijn. 

Met behulp van de definitie van DI component ontwikkelen we in hoofdstuk 
4 een aantal DI grammatika's. Dit zijn grammatika's waarvoor geldt dat elke 
command die hiermee gegenereerd kan worden een DI component voorstelt. 
Met behulp van deze grammatika's definieren we de taal f:.i van commands. 

In hoofdstuk 5 en 6 laten we zien dat elke component gerepresenteerd door 
een command uit de taal f:.i gedecomponeerd kan worden in een eindige ver­
zameling van basiscomponenten. Deze decompositie kan worden beschreven 
als een syntax-gerichte vertaling van een command uit f:.i naar commands van 
(DI) basiscomponenten. Bovendien is bet aantal basiscomponenten in deze 
vertaling evenredig met de lengte van de command uit f:.i. Op deze manier 
hebben we op een formele wijze een constructiemethode gegeven voor 
vertragingsongvoelige circuits gerepresenteerd door commands uit f:.i. 

In hoofdstuk 7 worden een aantal suggesties voor optirnalisering van de 
decompositie methode behandeld. 
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