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ARie study the symbolic representation of imagery information by a powerful global
representation scheme in the form of Attributed Relational Graph (ARG},
techniques for the extraction of such representation from spatial-domain images,

and

for performing the task of image understanding through the analysis of the extracted

ARG representation.

To achieve practical image understanding tasks, the system needs to -comprehend

the imagery information in a global form.

images.

an output alphabet, whose elements are defined over global sublmages.
scheme uses a combination of model-driven and data-driven concepts.

Therefore, we propose a multi-layer hierar-
chical scheme for the extraction of global symbolic representation from spatial-domain
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the input local alphabet into the output global alphabet. Through the iterative
application of the symbolic transformational mapping at different levels of hier-
archy, the system extracts a global repreéesentation from the image in the form of
attributed relational graphs. Further processing and interpretation of the
imagery information can, then, be performed on their ARG representation.

We also propose an efficient approach for calculating a distance measure
and finding the best inexact matching configuration between attributed relational
graphs. For two ARGs, we define sequences of weighted error-transformations which
when performed on one ARG (or a subgraph of it), will produce the other ARG. A
-distance measure between two ARGs is defined as the welght of the sequence which
possesses minimum total-weight. Moreover, this minimum-total weight sequence
defines the best inexact matching configuration between the two ARGs. The global
minimization over the possible sequences is performed by a dynamic programming
technique. The approach shows good results for ARGs of practical sizes.

The proposed system possesses the capability to inference the alphabets of
the ARG representation which it uses. In the inference phase, the hierarchical
scheme is usually driven by the input data only, which normally consists of images
of model objects. It extracts the global alphabet of the ARG representation of the
models. The extracted model representation is then used in the multi-layer shceme.
We present our experimental results in utilizing the proposed system for locating
objects in complex scenes.
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ABSTRACT

Eshera, Mohamed A., Ph.D., Purdue University. May 1985. Image
Understanding by Hierarchical Symbolic Representation and Inexact
Matching of Attributed-Graphs. Major Professor: K. S. Fu.

Webstudy the symbolic representation of imagéry inf_ormation by
a powerful global representation scheme in the form of Attributed
Relational Graph (ARG), and propose new techniques for the
extraction of such representation from spatial-domain images, and
for performing the task of image understanding through the anaiysis

of the extracted ARG representation.

To achieve practical image understanding tasks, the ‘system
needs to comprehend the imagery information in a global form.
Therefore, we propose a multi-layer hierafchical scher_né for the
extraction of global symbolic representation from spatial-domain
images. The propbsed scheme produces a symbolic mapping of the
input data in terms of an output alphabet, whose elements are
defined over global subimages. The proposed scheme uses a
combination of model-driven and data-driven concepts. The model-
driven principle is represehted by a graph transducer, which is used
to specify the alphabet at each layer in the scheme. A symbolic
mapping is driven by the input data to map the input local alphabet
into .the output global alphabet. Through the iterative application of
the symbolic transformational mapping at different levels of
hierarchy, the system extracts a global representation from the
image in the form of attributed relational graphs. Further
processing and interpretation of the imagery information can, then,

be performed on their ARG representation.
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We' also propose an efficient. approaCh for calculating a distance
measure and finding - the best inexact 'matchlng conﬁguration
between attributed relationali gr~aphs.’ For two ARGs, we define
sequences of weighted error-transformations which when performed _
on one ARG (or a .subgraph of it)’, will produce "the other ARG. A
,distance measure between two ARGs is defined as the weight of the
sequence which possesses ‘minimum total—we1ght Moreover, this
mlmmum—total we1ght sequence deﬁnes the best inexact matching
' conﬁguratmn between the two ARGs. The global nnmrmzatlon over.
the poss1ble sequences is periormed by a dynamic programmmg
technique. ~ The approach shows good results for ARGs of practical
' sizes. " | ' : |

The proposed system possesses the capablhty to mference the
’alph_ab,ets of the ARG representation Whlch it uses. In the mference
‘phase, the hierarchical scheme ‘isu‘sually driven by the input data
only, Wlnch normally consist of 1mages “of model obJects It extracts
the global alphabet of the ARG representatlon of the models The
v _extracted model representatlon is then ‘used in the operat1on phase

:of the system to perform the mapplng in the mult1 -layer scheme .
- We present our exper1mental results for ut1hzmg the proposed

system for locatmg obJects in complex scenes



'CHAPTER I

~ INTRODUCTION

1.1 General

Throughont "ages hurnan;s amb‘itious to utilize machines in -

vperformmg varieties of tasks has never stoped or slowed down Man
has always been improving machlnes to increase their eﬁlclency and
expand the1r capablhtles Intelligence has been regarded ‘as an
attrlbute of human beings, and sometimes of some other living
.belngs but with much lower degrees Nevertheless w1th the rap1d
development of new generatlons of d1g1ta1 computers,. with their
llghtenlng computatlon speed and Immense memory s1tes the dream
of having intelligent machlnes is getting closer to reahty, if not
already real, at least to some extent. Durlng the past two decades,
there has been rap1d1y growing and widely spreading interest in
'bu11d1ng machines that behave with more and more intelligence,

[fuks83b] [fuks83c:] [m1s80]

~ The versatile capabilities of intelligent macnines will be-"widely
enhanced if equipped with an efficient and powerful computer vision
and image understanding system, [kana79], [kana81b],‘ [mats84],

[tangB0], [wins80]. The mutual interaction, if not overlapping,



between v1s10n and 1nte111gence comes from the need to understand
"What is seen and to see what is to be understood In fact, a
considerable part of the human brain is dedicated to his vision
‘system. Vision is mnot merely rece1v1ng the falling light on the
' retma,. but it is deﬁmtely more 1nto' understandmg ~and
comprehending what the retina receives It is considered to be an
important, if not the most 1mportant way of sensmg and perceiving
knowledge. Therefore a .major d1s01p11ne in the area of machine
f'mte]li‘gence deals with visual information processing through

" computer vision and image understanding systems.

An image understandmg system con31ders the image as a

- ‘quantltatlve descrlptlon of a. set of obJects [fuksBZa] [asad84]

. iv[ba1182]. A class of ob]ects 1s a. group of ob_]ects that share some

common- propertles The system receives the 1mage data through 1ts
imagmg dewces e.g., d1g1ta1 cameras, cameras fo]lowed by dlgltlzers
‘or sohd—state cameras ete., [ba1182] which sense the light on their

. recelvers and converts it 1nto dlgltal s1gnals in the form of an array

= of grey scale values. The mam task of 1mage understandmg is to

: :comprehend analyze, or "understand”, the visual information to'
‘produce a ‘useful descrlptlon of the mput 1mage for de01s1on making
and other automated tasks and operations, [aggaB1], [bhan83],
- [cow183], [fang83], [‘ﬁsc83], [ﬁsh83], [gonz82], [1eeh83], [mart83],
[perk'?ad]ﬁ, [perk80], [shapBS]r, [thor83], [trop83]. 7‘ | : '

. An lmage understandmg system cons1sts | in general of two
"ma_]or stages as shown in Flgure 11 The ﬁrst stage concerns
mamly Wlth the representatlon of the v1sua1 mformatlon of different
.ob_]ects in the 1mage - The ob]ectlve of this stage is to obtain ank

,,eﬁglc1ent,‘ ‘. compact, yet, k, complete ‘ and adequate ~ form of _
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representat1on for - the v1sual knowledge, through which dlgltlzed
‘images can be stored in the computer memory to facilitate the1r :
further analys1s The actual analysis and mterpretatlon of the'

1mages are performed usually on the extracted representat1ons at

the second stage.

1.2 Image v-Representation ,

"There 'have been several forms 'of knowledge representationb'
| Whlch have already been used for representing visual information so

that 1t can be stored in the computer mMeImory. for later processmg

' and analys1s One. of the elementary and ‘most reasonable forms of

image representation is ‘the spatlal domain, ‘which is actually the
representatlon prov1ded by the image d1g1tlz1ng per1pherals ‘In the

" spatlal domam an image is represented by a two- dlmens1onal array

.. of elements, or pixels, [gonz'?a] [rose82] Pixels of the spatial

'domam represent the local gray values at different locations in a
: given -image. A typlcal spatial domam image representa’uon is an
array of 512 by 512 (or 1024 by 1024) elements defined over a O- 255
' gray scale

i The spatlal domam representat1on of 1mages is, usually the
' representat1on in wh1ch most practical vision systems receives thelr
vmput u'nages Nevertheless except ‘for  some malnly image
processmg tasks this representat1on is not used as the main form
-for representmg v1sual 1nformat1on in most computer vision and
Jmage understandlng systems ‘It is clear that the spatial domain
‘image' representatlon is very demandlng on ‘the memory

o reqmrement cons1der1ng the fact that in practlcal unages only very



:small portlons of the 1mage contam some obJects of any useful V

mformatlon Also the strlct locahty of 1nformat10n carrled by the, v'

plxels has requlred most nnage understanding and pattern.
recognltlon techmques "to seek other‘_ forms "_f knowledge :
representatlon usua]ly hlgher level representatlon for storlng the'
_n:nages to facﬂltate their hlgh level analysls The adequate form of

: representatlon usually depends on the task to be performed on the'

_ lmages

Several h1erarchlcal data structures have been used for 1mage '

'representatlon ‘on  the . form of quad—trees ; oct trees [burt80]

*[hunt'?ga] [hunt’?9b] [Jone81] ’ [khn'?B] [roseE}Q]_, [rose83]-
-V[_,sameBOa] [same80b] [same800] [same82] pYraInfds, ‘ [1ch181]v

[1eviB0], [tani76], and cones, [hans80], [uhri72], [uhr176], {uhrl78].

’The bas1c idea- 1s to prov1de several levels of . resolutlon for the

Hnage One: of the advantages of this representatlon is that 1t

'prov1des finer resolutlon for dlfferent parts of the 1mage only if

>~-needed 'i.'-e;-v, for those parts that contaln } 1nformat1ve detalls‘

"Therefore th1s representatlon saves on the memory requ1red to

’store the - image and, consequently,. 1t al_so " saves - Son . the

: »computatlonal cost. - Another advantage of the hier"archical._

[representat1on 1s ‘that 1t prov1des several levels of resolut1on thus it
facﬂ.ltates perforrmng dlﬂ’erent tasks on image, in a more efflclent
gmanner, - since some tasks are - eas1er to perform at certaln

- .resolutions rather than others

: '-Ano‘ther'r '?m-ajor - approach: of Ereprese{ntation is. -’,LO',“ represent
_objects by v‘e.etors of features, -e.g., color, size, ‘etc., which can easily

"b‘e ‘measured from :inp'ut hnag-es,f'['fuku'?'.‘a], Ttoui74]. ’iThi,_s is the basic

form of image representation. used in the . decision-theoretic



e 3 approach to pattern recogn1t1on Th1s approach is ma1nly concerned

fk'w1th the class1ﬁcat1on of certa1n patterns or ob_]ects

A symbohc approach to 1mage analysis and understandmg, whlch |
| 'has demonstrated usefulness in several applications, is the syntact1c
or the structural approach, [fuks82a] [eshe83] [fuks&O] [fuksazc]
‘[fuks83a] [fuks83c] [pavl'?'?] [rose?ga] Basically, - this approach
'uses symbolic . representat1on for the visual structural information.
R There ‘have been several forms of v1sual knowledge representat1on'

' but1hzed w1th1n this approach 1tself namely strings, [fuks82a] trees,

o or graphs [eshe84a] [sanf83a] [slat80], as we will discuss in the

| v'f‘?next chapter Br1eﬂy,:1n this. approach the structural features of

"the 1mage or of. the ob]ects in - 1t are. represented as a set of
ent1t1es ‘or pr11mt1ves These sets are called alphabets of pr1m1t1ves ‘
’The structural relat1on among these features are represented by
‘mutual relat1ons between the pr1m1t1ves of the alphabets through

"some attachment rules o

4‘ A recent approach has been emanatlng from the syntact1cv'
: approach by comb1mng the dec1s10n theoret1c approach into it. vIn
e ~th1s case semant1c 1nformatlon is mcorporated into the syntact1c‘
v_'representa’uon on the form of attrlbuted structural representat1onb
. [fuks83a] [fuks82b] [pyst'?8a] [rad184] [tsa180a] [tsa180b]
- [youk'79] The image . features are represented by attr1buted ent1t1es
c m the alphabet where the attr1butes represent some semantlc
parameter | of the structural features Moreover the semantlc .

"mformat1on of the relat1onsh1ps among the 1mage features is

'represented by the attrlbutes assoc1ted w1th the relat1ons between' -

) the1r correspondmg ent1t1es This approach for image representatlon

) has shown to prov1de compact conc1se and powerful representat1on



that 1s capable of comprehendlng all the 1nformat10n contents of the |

‘ ]_mages as we w111 demonstrate through the course of thls research

In general the attrlbuted structural representatlon of 1mages '

" indicates the tied relat1on between vision - systems . and other

'branches of machlne 1ntelhgence such- as ,datafbase management

- systems; - eXpert v systems ete., [chan82]‘ [chanBO]v [mefe83‘]_

.[tamu84] CIE also fac111tates the exchange of technlques of analys1s .

and conceptual basis of problem formulatlon between these different

,ﬂaspects of machlne 1ntel]1gence For example attrlbuted relatlon

'graphs have demonstrated superlor capab1ht1es in handhng the

‘proper dlmensmnallty of 1mages and accommodatmg all thelr'

o ‘mformatlon contents On the other hand they deem close relatlon‘ ;

» to some other general forms of knowledge representatlon 1n art1fic1al

'lnte]llgence f e.g.,: relatlonal database, semantlc:' networks 'andj o

frames.“ R

1.3 Processing and Analysis of Visual Information =~

The actual processmg and analys1s of mformatlon 1n most 1mage',’ ‘

’understandlng and vision systems as 1t is the case of most other

stage of the system on. the extracted representatlon of 1mages The

’ .,-knowledge process1ng systems usually takes place 1n the second R

‘ch01ce of a part1cular form of representatlon for the ]_mage data o

‘usually depends on ‘the purpose of ‘the system and the tasks

expected to be performed by it. " In- general some tasks can be

sperformed on a part1cular form of representat1on much more“ -
eﬂ'lclently tha_n on other forms._ Moreover some form of

| representations ‘do mot emphas_ls’ “the 1mage global 1nffo_rmation'



convenient availability for the analysis techniques, therefore ’they are
usually 1mpract1cal if not impossible, to be utilized in most image

understandmg tasks.

The spatial domain image representation has been used as the
major f.‘orm of image representation in most image processing
operations, e.g., filtering, loeal edge detection, image enhancement,
etc. * These operations do not need to comprehend the global
information in the image, and they are also required to, keep the
image dimensionality, since their output is usually on the form of
processed images, rather than decisions or certain actions.
Therefore the spat1a1 domam representatlon seems proper for these
type of image processing operations, [chen79], [duda72], [d1am83]
[fros82] [gonz77], [leej83], .[naga81],~ [nevi82], [rose79b], [rose82],
[tam’?’?] '[tsa081‘] [vaidBZ] Although the spatial domain image
"representatlon is the main form of representatlon in Whlch most
machine vision systems receive the ]nput images, but it 1s very
rarely considered to be the adequate form of representatlon for
most unage understandmg tasks, as we discussed in Section 1.2.
Several powerful and global forms of 1mage representatlon were
dlscussed in that sectiom. - The choice of a suitable form of
representatlon often depends on the tasks to be performed on the

unages

‘ The attributed structural (or syntactlc/semanuc) approach to
1mage analysis and understandlng has proven to be a powerful
approach for several apphcat1ons of machine vision systems. ~ This
approach was - orlgmally based on the utilization of the concepts of
formal languages and automata theory for 1mage analysis and
undierstandmg,v [hopc69], [fuks82a], [thom76], [eshe83]. The basic



idea cornrnon to rnost techniques m the' structural approach is the
decomposltlon of visual objects in the image into s1mple sub- obJects
Through a recursive decompos1tlon complex structural obJects can
be’ broken down into se,ts of simple image features, usually called

primitives, which constitute the alphabet of the representation.

In. th1s approach 1mages are represented by relatlonal structures‘
‘whose ent1t1es are defined over an alphabet of image features.
| Three main types of such relational structures have been used in
this approach namely string, tree, and graph, [ahu]81] [eshe84a]
 [pavl?7], [rose'?ga] The relatlonshlps among the image features are
represented by the relatlons between their respectlve ent1t1es in the'
representatlon e.g., left-to- rlght concatenatlon father to ch11dren
relatlon, and branch between nodes for the strlng, tree and graph

representatlons respectlvely

In many techniques Which apply the attributed structural
approach to irnage irecognition and understanding, formal gramrmars
are used to ge-nerate the structural representations of ;irvnages of the
same class, [fuks82a], [pavl?7]. An image class is a set of images
that share some - com_rnon properties, usu)ally some structural
features. - The 1grarnmars are used to provide a systematic and
congise Ine_thodoljogy for generating representations of images of a
‘particular class, which is usually called the language generated by
the grammar, [rose’?Qa] ‘Several types of image grammars have
‘been proposed and utilized for 1mage analys1s in this approach.
String, tree, and graph grammars have been the main tree types of
grammars used in this approach for the main three forms of

representations..
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An advantage of using formal grammars in this approach is to
utilize them in designing systematic recognition algorithms, i.e.,
parsers. A parser is used to decide whether an unknown image is
member of a certain class of images by syntactlcly analyzing its
structural representation with the language generated by a certain
grammar. Parsers have been proposed for most of the grammars
used for image ana1y31s, [ahoa?2]. However, most of these parsing
algorithms require noise-iree, or ideal, representation of images,

which represent an obstacle in their utilization in real applications.

A major requirement of a practical image understanding system
is to be able to handle real-word images which are usually burdened
w1th noise, distortion, and uncertainty. In this case, exact parsing
of the extracted ob]ect representation  with - the‘ language :
representatlon of a class of obJects does not prov1de an adequate

solution to the image recogmtlon problem. Therefore, there have

been proposed some error-correcting parsmg techniques, which are

capable of correctmg some errors. The only problem w1th such
error- correctlng parsmg technlques hes in thelr high cornputatlonal
complexrty, since they mainly test all the combinations that can

p0331bly be used to correct the errors.

- Another Very useful approach to handle n01se and d1stortlon in
real world unage understandlng problems utlhzes sunllarlty or
dlstance measures between image representations. In practical
problems, the more interesting question is how s1n111ar is an ob]ect :
to a prototype of a class of objects, rather than whether two objects
are exactly identical. It ‘is intuitive that a good and efficient
distance rneasurebetween objects (or images) is a main milestone in

any intelligent decision making process, a real-life everyday example



i
R that w1thout a good d1stance measure between two merchandlses

an ln,_,\ ‘1g‘ent dec1s1on on wh1ch is the "Smart” buy cannot be

reached o

14 Research Topic and System Block Diagram

As we d1scussed br1eﬂy 1n Sect1on 11 there are two mam

phases 1n most machlne vision and nnage understandmg systems

- The first phase is concerned w1th the extractlon of an adequate and

,.eﬁ1c1ent form of knowledge representatlon from the 1mage data'

. while the actual analys1s usually is performed in the second’ phase of

the system Several forms of 1mage representatmn have been used

1n 1mage analys1s 1n general and 1n the structural approach 1n‘

'. part1cular
It is a1so_know,rl’that in mbst practical ‘applications, information

~sources,. and  images are no exception, - are - usually‘ noisy. and

~distorted. Needless to say, the more capable the ﬁrst stage in any

“V1$10I1 system of handling such no1se and d1stort1on in real—1mages

v and of comprehendlng all ‘the image 1nformatlon conternts, the easier

and more eﬂ‘lc1ent is the analys1s of the second stage w111 be

For an 1mage understandmg system to be useful in pract1ce it

should be - able to- handle at Jits - 1nput the . real—world 1mages

themselves or at most the output of some s1mp1e preprocessmg'

operations. It should comprehend ‘the 1mage 1n_format10n contents "

and preserve all its useful propert1es such’ as symmetry, closure of



1z
curves connect1v1ty, ete., 'thro‘ug'hout the diﬁeredt stages = of

'nprocessmg It should also be able to handle no1se d1stort1on and

"uncertamty which almost always ex1st in real—world 1mages S

o ‘In'.this thesis, we focus our effort on the utilization of 'Attributedv

RelatiOns’ _Graphs as power'ful " tools _,for ~visual knowledge

.répresentatiOns For the first stage of the system we present a new
hlerarchlcal scheme for the extract1on of global 1mage ‘

Vrepresentatmn from 1mages ~ The: 1nput to this stage are 1mages as

R deﬁned over a set of 1mage pr1mlt1ves whlch are obtained by snnple o

n phys1cal measurements on real 1mages it can be as, simple as the

' ,_,vgray scale values of the 1mage plxels The main component of thls

’ ‘stage is a hlerarclucal multl-layer scheme wh1ch recelves at its

P mput the result of some very elementary preprocessmg operat1ons

ie gy ﬁltermg, edge’ detect1on and thining. The scheme extracts from

o the 1mage the 1nformat1ve global features as deﬁned by the

"v,structural alphabet of a h1erarch1cal graph transducer This.

,transducer is bas1cally a rule based transformatlon anlemented in

b1tw1se operatlons It performs a recurs1ve mapplng of the 1mage

a -mformatlon contents from the 1nput 1mage pr1mlt1ves into a global -

output alphabet The extracted alphabet is then used to produce
the 1mage global representat1on in the form of an Attrlbuted‘
‘ Relatlonal Graph (ARG) o ' AEREERE

We also propose a new approach for calculatlng a graph distance

'1’"?‘measure and 1nexact matchmg between two ARGs to enable the

_system to pursue the 1mage understandlng process and accompllsh
v "some tasks such as locatlng some obJects of 1nterest in the image,
'e Informally, a s1mllar1ty, or a d1stance measure between two -

- ’nnages (or sublmages) 1s deﬁned as the maxnnum number of similar
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~ features that are common between the two 1mages or the m1n1mum

changes that need to be performed on ‘one image 1n order to'

produce the other image.  The important question in practlcal,

apphcatlons is rot whether two 1mages (sublmages or obJects) are

' 1dentlca1, but rather how similar they are to each other. Thus the
‘noise and distortion in real images can be accommodated by .

specifying tolerance in the distance between two images. More‘over '

ar 1nterest1ng issue is to define and calculate a dlstance measure

‘between an 1mage and a part of a blgger 1mage le., how s1m11ar an

_ob;ect is to a sub- ob]ect

V'AV more detailed_ block = diagram of the‘_ proposed image

‘understanding\ system is shown in Figure 1.2.

15 Thesis Organization

The research zp’e’rv_fo'r‘\med in the course of this thesis has two

. majo'r contributio'ns to image understanding systems Each of which

~ lies within one of the two main components ‘of the general system, -

Whlch is shown in Figure 1. 1. The first contrlbutlon ‘deals with the
extraction of a global symbolic representation in the form of
attributed relational graph from real-world images through a new

hierarchical scheme Which_'uses a multi-layer’ graph transducer in

mapping local image primitives into an alphabet of “global features.

Tl'us technique, along with some illustrative examples is presented

in Chapter 4.
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To set up the. background for the luerarch1ca1 scheme presented :

in Chapter 4, we reV1ew the related work on the structural

'techmques for 1mage representat1on in Chapter 2 In that chapter

. wWe d1scuss the conceptual bases -of the structural approach, the

ma1n forms of 1mage representat1on used in it, compare them and

show some - of the advantages and d1sadvantages of each of them on_ -

vthe others The powerful capab1l1t1es whlch are offered by ARG are

‘also d1scussed to demonstrate the need and usefulness of such

1mage representat1ons for 1mage understandlng systems We w1ll

also discuss how these approaches are related to other mach1ne-

1ntell1gence systems rather than only vision systems.

In Section 1.3, we d1scussed the 1mportance and the pract1cal_

need for some d1stance or s1nnlar1ty measures between images, or

between their respect1ve ' r_epresentatlons. In Chapter 3; ‘“wé;
investig'ate the d]fferent techniques for calculatlng “distance
measures - between image structural representat1ons as a background__'

material to introduce the second major contr1but1on of our research..

' ‘This contr1but1on deals with a new dynamic programmmg approach

for calculatmg a sglobal distance ‘measure and- finding - the b‘est

‘inexact matchmg conﬁgu_ratmn between attributed relat1onal graphs _

it is presented in detail in Chapter 5 of this thes1s

In Chapter 6, we present our- experimental:jresults and.

,demonstrate the ‘capabilities and the usefulness of the proposed

techniques in , pe_rforming image understanding‘ tasks. The

concluding remarks of our research, some problems which are still

open for further investigation, and some new directions of machine -

'mtelhgence for which our approaches may also be useful are all

, vpresented in Chapter- '7
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»CHICAL REPRESEN TATION

| STRUcTURAL AND HIERAF
 OF VISUAL INFORMATION

: \2.-:1 ‘General

v The syntactlc approach to 1mage analy51s was_ 1n1t1ated in the
early 1960 s, and was malnly based on concepts from the theory of
, f'formal languages and automata ‘In" formal languages [hcpcﬁg]
sentences are descrlbed in terms of concatenated phrases wh1ch are -
formed from the concatenatlon of words. Slmllarly in image
-analysis, ‘comp.lex objects ‘.can ‘be described in :terms of .slmple sub-
, obvjects,’(o'r‘ primitives) which are easier to -analyze thanthe ’cfiginal '
'i_rnages o Nevertheless' ‘this smnlarlty between formal language
‘analysis and ‘image understandmg did not hold for Very far. ThlS is
‘because of the dlfference in dlmensmnahty and the dlfference in the 3
;natur,e of information contents between formal languages - and
nnages and also due “to the »proble_rn of noise and di‘stcrticn thatt'
:‘al'most alWaYs- has to be considered in pr.act_ical appli_cations" to

Image analysis..
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Therefore generalization' and " /extension of - the" concepts of
' ‘formal languages and automata theory has - been mandated along
‘three major d1rect1ons in the syntact1c approach to image analys1s

: First, hlgh d1mens1onal forms of representauon have been

mtroduced to coup w1th the. dlmensmnallty of images, as we will

d1scuss in Sections 2. 2 3 and 2. 2 4 as well as in Chapter 4. Second
~‘a]" mean to 1ncorporate semant1c ‘information - into  image

'vrepresentatlon has® been prov1ded ’ through . attribnted
'representatmns as will be 1nvest1gated in Sect1on 2.4 and in Chapter
4. Lastly, error correctmg pars1ng and measures of similarity have
' "been proposed to prov1de this approach with necessary tools, so it
Cwill be capable of handlmg real-world vision problems, which we

fd1scuss in Chapters 3 and 5 Nevertheless before we. d1scuss these

.techmques - we ) br1eﬂy rev1ew the - most commonly used

_representatlon forms 1n the syntact1c approach

N 22 “ The: Syntactie Approach ‘tol Image Representation o

221 String Representation

Several of the early techmques in - the syntactic approach

_‘ut1hzed phrase structural or str1ng grammars ‘as rule-based systems

- fer 1magery knowledge representatmn [fuks82a] [kamb'?Q] [eshe83].

An element or a sentence, of ‘the language generated by a phrase- :

| 'structural grammar takes the form of one-dimensional strmg formed

by concatenatmg symbols of the grammar alphabet i.e., the set of

‘ lmage pr1m1t1ves , These symbols are ' ent1t1es that have two

\' attachment po1nts namely the head and the ta1l A string is an



ordered set of symbols Where the left—most symbol is ﬁrst and the- |

'_rlght—most symbol s last Symbols v of the strlng represent

structural features of the 1mage usually the features of the contour'

- of obJects in the 1mage A class of ob]ects can be represented by a

set of strlngs of some common syntact1c propertles Therefore.

g usually a grammar can - be des1gned to generate the strmg
- _representauon of an 1mage class. Further 1mage analys1s tasks can
be’ performed elther on the strmgs themselves : e. g, through

= distance or s1mllar1ty measures or on thelr grammars e. g through

'_bmldmg automata or parsers for class1ﬁcatlon and recogn1t1on

‘purposes [dav1'76] [dav1’78] [ch1a83]

Image representatlon by means of str1ngs ‘has been w1dely used.

‘m the syntact1c approach and ‘has “beeén " very .successful -and

',adequate for some applications, "[fuks’82] -[lusy82] 'Nevertheless, :

‘strmgs are’ cons1dered to be one- d1mens1onal encod]ng of the 1mages.’

,_ _:Whlch are usually of hlgher d1men31onal nature. Therefore other

"lngh dlmens1onal types of representat1ons have ‘been demanded in

order to preserve the 1mage 1nformat1on contents and to overcomey :

the elaborate preprocessmg wh1ch is usually reqmred for extractlng ’

- the strmgs from real—world 1mages

222 Tree _Representati’on -

Another popular form'of image. repre’se‘ntatlon in the ~syntactic

approach to image analysis utilizes trees ‘as h1erarch1ca1 structures-

for 1mage representatmn [ba1181] [faug83] [sanf83b] [lusy’?8b]

[slatBO] In thls -case, classes of 1mages are represented by sets of»
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trees. Usuaily_, every image in the class is represented by a tree in

that set.

Unliké the string case, where the only relation between
primitives is the one-dimensional left-right concatenation,‘ a tree is
formed as a hierarchical structure of nodes. A designated node is
considered to be the root of the tree. Every node in the tree is
lab'elevdvby a ranked symbol that has two parts, the first répresents
the rank of the node and the second part is a labeling element frorh
the primitive set. Similar to ‘the‘ string case, to perform the task of

image analysis and understanding, further analysis is carried on the

- tree representation of images rather than on the 1mages themselves,

[chan’?g] [pyst78b].

- The tree representatlon of images has been shown to be

'spemally suitable for representmg Hnages of hlerarchlcal nature. A

wide class of images do not possess that h1erarchlca1 nature,
therefore the third and the more general form of image
representatlon in the syntactlc approach utilizes graphs to represent

complex images.

223 Graph Representation

A more general form of repfesentation for visual information is
on the form of graphs, where the basic entities are symbols with
more than two attachment points and can be concatenated in an
arbitrary way, according to their respectlve relations. In general, a

graph H, is defined as:
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H = (N, B)
where N is a ﬁnlte non—empty set of nodes and B is a set of node
pairs, or branches [bond76], ,[chan’?g], [even’?g], [horo'?_Bb], [lova79],
[nare81] [neva82] ‘[paVITQ] Graphs are usually “used for | the
representatlon of collect1on of objects and the re1atlons arnong pairs
of these objects In the syntactlc approach to machlne v1s1on and
| lmage _ analys1s nodes are usually used to represent the local
mformatlon of sub-images, while the branches are representlng the

' syntactlc relatlonshlp between dlﬁ'erent parts of the 1rnage

'S'everalbgrap'h languages and’gram‘mars haVe' beenprop'osed in

this _ap_proaeh as similar to the string case, 'but" on 'highen

- dimensional bases " Plex languages are cons1dered the stra1ght

Hforward multl-dlmensmnal generahzatlon of str1ng languages The

pr1m1t1ve alphabet of plex languages cons1sts of N—Attachrnent Points

Ent1t1es,r commonly called NAPEs, of arbltrary number of attachrnent .

- points- rather than tail and head as in the string case. Sentences of

plex languages are generated by the concatenatlon of NAPES at their -

attachment pomts

Web grarnmars have, also been proposed to provide: descrlptlon ,

'of 1mages by means of undirected labeled graphs called webs: If a

' web grammar has a singleton alphabet, then the labels canbe

i_gnored and the web can be identified with its underling graph, in
‘Such--:cases it is usually called graph grammmar. Sonie two-
dirnensional graph - grammars have been introdncedv for the
ge'neration and '»r-ecogm'tion of ideal images, [bunkﬁl] [eshe80],
[nagl83], [schl?6], [vigr78], [wong80]. | |
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: 2.3 }Hie'_rarchical Data-Structures for Image Representation

231 ‘General |

There have been several h1erarch1cal data structure schemes
N used for image representation and analys1s [burt81], [hall’?6],
[hans'_?G] [hans78], [hend81], [hong80], [hong82a], [klin73], [klin79],
[krus81];, [moor81] [tahi75], [tani_'?B],v [ta’rviiSO]..“ Most  of these
) -techniques concern: Wrth the utilization of those data structures to

,-perferrn_spme image processing'tasks.. The concept of planning was
,: first introduced, [kell'?l], to speed the edge detection by applying an

‘oﬁ'erator"'te' a cross-resolution digitization and use the result tod
- guide the further procr'essing as where a fine-resolution digitization
should be applied to minimize. the wasted effort, [ma1k80] In the
‘remaining parts of this sectlon we rev1ew some of those hierarchical

' _tda_ta structures.
'2.3.2  Quad-Trees and Oct-Trees

' Quad—trees are region representations for. iInages based on the
successive subd1v1s1on of the image array into quadrants [rose80],
[sarneBOb] An image block is d1v1ded into four: blocks. If the block
is. not -homogeneous, then}_ its cﬁorrespondmg, node is given four
children to repr,e.seritthe_ 'four quadrants. Th‘is'prdcess is repeated
" as ~many times as needed 'until .\on.l'y‘ homogeneous ‘blo'c‘ks are
represented by the leaf nodes of the quad-tree. Theses blocks could
be as small as single pixels | Oct-trees follow the same ‘prineiples as
‘quad-trees except that 1mage - blocks are - divided into eight sub-

blocks 1nstead of four:
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»‘ The c‘1uad tree image representation has shown to be parti'cular.l-y'_ )
" efficient for several s1mp1e 1mage processing operations, such as
scaling the 1mages by power of 2, edge detection and enhancement '

threshold]ng, image super- posmon component countmg, connected'

reglons countlng, computatlon of genus moments, perlmeters llnear

transformation of images, etc.,  [dyer80], [hunt’?ga] [hunt’?_g_b],'
[jackso], [rana82], [rose83], [sameB2b], [limiB2], [shne’8a],‘[shne8b];'
[shne8c] Nevertheless, the disadvantage of the 'quad tree image -
representatlon ‘namely that it is not shift- mvarlant makes ‘this
representatlon very 1neff1c1ent and troublesome for many other

important - image operatlons such as shape analysls and 1mage_

understandmg in general.

233 Pyramld and Cone Structures e

Pyrarfnd data structures, [tani80], [luca84], [merig4], 'provid‘e_'

several levels of resolution for the image. A very simple pyr_amid

struc.ture' for image representation is the pyramid_ in which the

linear -resolution doubles with each successive layer. In this kind of

pyramids, the relationship between a level and the Ievel_‘directl'y

berieath it is such that the value of a cell is the average of the

values of its four 1m_med1ate descendant cells. This type is. ICalied'_- .

the M-pyram1d and is usually defined as a sequence [M(L), M(L 1),

M(0)] of arrays, where M(L) represents an original 1mage M(l—l)__ - L

is a version of M(l) at half the resolution of M(i), and so on, w1th;

M(0) is usually a single cell, [ahu184], [burt80] [dyer’?ﬁ} [dyer’?g] B

lichiB1], [1eviB0], [rose83], [sloadl], [ster81], [tani76].
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More generally, pyramid image data representations can be
constructed using any desired interval resolution-change factor, or
weighted average over neighborhood configurations of .any desired
éize. - These mneighborhood configurations are allowed to overlap
forming what referred to as overlapped pyramids, as opposed tb
non-overlapped pyramids in which the neighborhood ,conﬁguratiohs

do not overlap, [rose83].

An advantage of using overlapped pyramids, as compared with
the non-overlapped pyramids, is that when local feature detectors
are applied at various levels of a non-overlapped pyramid, their
- ability to detect large patterns in the image depends strongly on the
positions of these patterns. For example, if we try to detect an
object of certain -size, it will make diﬁérence, when uéing non-
overlapped pyfamids, whether the object is located in the ‘cen.ter of
a subimage or is shared among sev‘eral subimages. This 'ppsitio:rl
dependency could be greatly reduced if we use an overlapped

pyramid structure, [dyer77a], [dyer77b].

Several image processing operations have been suggested
utilizing pyramid data representations, [anto82], [dyer81a], [hall76],
[hong82b], [hong82c], [hong82d], [meri84], [mill84], [piet81],
[piet82a), [piet82b], [shne?9], [shne80]. An image "se_'g.r_nentati_'on
techmique is presented in [rose79b], which apply a local fea:tui"‘e
detection operators at‘ each level of the pyramid, or at cerfain levels
only in case if we know the appi"ozclmate size of the objects. 'I'he
res‘ﬁltmg information extracted by this operator is used to guide the
segmentation process. A technique for 'region extraction and
smoothing by ‘block clustering using pyramid daia representation is

presented in [levi80] and [shne79]. In that work the idea used for
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some known image smoothing algorithms is generalized'frOm _arrayl

-data structures into pyrarnid data structures " For example, they
have extended the nelghborhood performed upon from belng deﬁned

on blocks in the same array (1n case of array. data structures) ‘in

order to 1nclude ne1ghbor1ng blocks conta1ned 1n d1ﬁerent layers of.

the pyrarmd ' The smoothing process was shown to be performed
faster on the pyramld Hnage data structures in comparlson with

the array data structures.

Another ma_]or h1erarch1cal sche:me for 1mage analysis 1s called
"Recogmtmn and Processmg Cone lt consists of layered structures

of processors Wh1ch are 1nterconnected in. regular pattern w1th1n

each layer as well as between different layers Uhr [uhrl’?G]'

proposed the - "Recogmtlon Cones in which the processmg within

each layer takes a serial form, -while the processmg over the .

d1ﬂerent layers is conducted in parallel Uhrs recogmtmn cone
consist of a ‘structure ‘of many layers each layer cons1sts of an
array of processors. The size of the layer gets smaller as the layer

gets higher‘in the cone, [uhrl78].

' Hanson and Riseman, [hans80], suggested what is called

"Processing Cones". A processing cone is ba‘sically a parallel array

computer which is organized hierarchically into layers of decreasing

spatial resolution, so that the information extracted from increasing
sizes of image windows can be ' stored in the cone and further
processed, The structure of these procesSing cOnés has "been
described in [hans80]; they bear a great relation to the recogmuon

‘cones and Kelly S plann1ng algor1thms
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In [hans’?S] and [hans80], the processing cones are used to
perform some pre-recognition operations. Some prmntwe operations

for edge enhancement and data pro;ectlon using these cones are

descrlbed in that work.

Image h1erarchy is one of the basic concepts in the syntactic
approach to computer vision and unage understandlng, smce this
approach is usually based on the recursive decomp031t10n of the
J.mage into sublmages Wthh are easier to analyze than the original
image. Nevertheless, the ‘utilization - of hierarchical representation
| techm‘ques have not 're_celvedb proper attention in this approach. In

Chapter 4, we present a new hierarchical scheme for the extraction

of global attributed»'representation from spatial—dornain images. It is

.a rule—based system that utilizes a graph transducer, which we will
 present in Section- 4.2, in performing multi-layer symbolic mapping
- of the image 1nformat10n contents from local input alphabet into

| global output alphabet.
24 ‘Syntaoti(’:/ S_emantic Representation of Visual Information
241 ' General

' The representation of visual information is a very challenging

task, since images are considered to be of the richest sources of

- vinforrnation due to the variety of their information contents, e.g.,

statlst1ca1 and syntactlc and the generality of their dlmensmnahty
Therefore some new dtrectlons of expanslon of the syntactic
representation models have been proposed in order to achieve an

'adequate_ representation that is capable of efficiently carrying all the
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inf’orrnatmn v'contents of the imagery data. One fo'rm of -expan'sion is
through including both  the syntactic and ‘semantic irnag_'e

information in the same representation.

In sectlon 23 we brleﬁy rev1ewed the three major types of
representatlon that have been used to represent syntactlc
information in 1Inages [fuks82b], [tsa180a] [ta1_‘|80] namely, string,
tree, and graph representatlons Corresponding to those three types
of syntactlc (or structural) representation, there have been proposed
three types ol syntactlc/semantlc (or attrlbuted structural)

’rrepresentatlon The idea is to incorporate semantic 1nformat10n into

the syntactic representatlon in- order to form more general

.attributed structural forms of representation. In this -case,
attributes are assigned to elements of the primitive alphabets in
order to glve them more informative’ meaning. Attrlbuted strlngs
and attrlbuted ‘tree representations have been utilized in some
image ,analysis_ applications, [brau84], [fuks82b], [shig82], [b,unk‘84].'

However, in this thesis we vutilize attributed relational graphs for

Hnage representation, since they are the more general and powerful

form of representatlon In- Sectlon- 2.4.2 below, we discuss their
*conceptual bases and 1n Chapter 4 we discuss the extraction of

- attributed relational graph representation from the spat1a1 domain

unages

242 Attributed Relational Graph (ARG) Representation |

An Attributed Relatlonal Graph (ARG) is a relational structure

~which cons1sts of a set of riodes and the relations between these

nodes on the form of branches. Both nodes and branches. may have
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some attributes assigned to them. Usually, nodes are used to
represent some objects or parts of objects in the image, while their
properties are assigned as attributes to their respective nodes. The
relations between two objects are represented by attributed
branches between the corresponding nodes. A formal general

definition of Attributed Relational Graph (ARG) is given in Definition
2.1.

Deﬁnjtion 2.1 : Formally, an ARG is defined as:
G = (N,B,A.E,GN.GB)

where: ,
N: (N={n,ng....ny(}) is a finite set of nodes,
with |N| is the number of nodes in N.
B (B={bybe.....bp3}) is a set of ordered node pairs (or
directed branches),‘ ie., b=(mmn;) for sorhe 1<i,j=<|N|
denotes the branch emanating from node =»; to node n;,

and ]B]‘is the number of branches in 5.

A: is an alphabet of node attributes.

_F: is an alphabet of branch attributes.

C—}Q: is a function (or a set of functions) for generating the
node attributes. ' |

Gg: is a function (or a set of funCtions) for generating the

branch attributes.

Figure 2.1 illustrates the representation of a three-dimensional
object (an industrial I‘Jart)’ by an ARG. In this example , nodes
represent three-dimensional primitives, namely Rectangular Blocks
(R) and Cylindrical Blocks (C). The attributes of R are the length
(D), the width (w), and the height (h) of the rectangular block, while
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the attributes of C are the radius (r), and the height (h) of the
cylindrical block. There are five relations between primitives in this
example. - The relation between two primitives, say a and b, is
represented by a directed branch between their corresponding nodes
n; and n;. The relations Inside (I), Above (V), to the Right (T), and
Behind (H) with attributes d between two primitives, 'a’ and 'b’,
denote ”that 'a’ is inside, above, to the right of, or behind 'b’,
respecﬁvely, with distanée d between their center lines. The

Relation Joint (J) denotes that two primitives are joint.
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(a) A Machine Part |

Fig. 2.1 Example of ARG Representation. of a Machine Part
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Node Set: N = {ny.ng,....n40)
Branch Set:R = {b1.ba....bye)

Node Attribute Alphabet: ﬁranch Attribute Alphabet:
ENTITY Attributes RELATION Attributes
Rectangnlar Block: R | length : Inside: [ distance: d

width : w | Joint: none
height : h Above: V distance: d
| Cylindrical Block: C | radius : ¢ To the Right of: T distance: d
height : h. Behind: 1 distancw
A= {(R4,w,h), (C:i, b)) E = ((Ld)(3),{V-d),(T-d},(H:d))
Gy oy = Refy,wy by Gp: by = (ayn,y) — V4,
8z ~ Ribpwa by : by = (ngny) — V:d,
Ny — Cirg,hy by = (ng,m)) — Id,
ng — Cirg,hy bg = (ng,n,) — I:d,
g — Cirg by by = (ng,ng) — 1d,
ng — Cirghy by = (ngng) — H:d,
n7 — Rifly,wy,hy . by = (npng) — Vid,,
ng — R:fg,wg,hy - byg = (g, o) ~ Tidyg
ng ~ Rifg,wy,hy
Njo = Ciryp,hyg. by = (ngmy), by = {ng,n,), by = (ng.ny),

big = (ne27),byz = (ng,1g), by = (ng.nyoh,
iy = (ngg), byg = (my9,ng) — J

(b) Attributed Relational Graph for Object (a)

‘Fig. 21 (Continued)
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(Ciry,hy) (Cregihg)

(Rilyowyohy) (Cirohe)

T (Ritgenhy)

(R:ly,wy,

b
(C"‘wv"to) J ar (v“‘,ll '

| '(R"'v"ov"o) |

(c) Graph Representation for ARG of Object (a)

.Fig. 21 (Continued)



3

CHAPTER 1Il

DISTANCE, MEASURES AND INEXACT MATCHING
- BETWEEN IMAGE
* ATTRIBUTED STRUCTURAL REPRESENTATIONS

3.1 General

The need for éome ‘informative distance measures is extremely
important in image analysis, as in other flelds of functicnal analysis,
decision theory and intelligent deciéion making _procésse,s. In rﬁost
practical applicationshqf cémpufner vision and ‘i‘mége 'understanding, ‘
image_s‘ are usLi.ally burdened with noise, distortion, and uncertainity.
Ima_gés of the saxﬁécl,ass could be ideal, noisy, or defected.” Some
of these noise and distortion are r_éndom in naturé, but some others
are controlled noise, -and distortion. As we discussed before in
Section 1.3, one of the important directioné of generalization yand
expansion of the formél language concepts in the syntactibc approach
to image analysis is to iné.o,rpbrate the capability to handle noise

and distortion in this approach.
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To handle cases of random noise and distortion, some extensive
preprocessing, e.g., filtering, will usually help in improving the
' performance of the image analysis techniques. In addition,
stochastic languages and stochastic grammars have been proposed
in the syntactic approach for modeling the randomneés of image
classes. However, the more interesting case, with equally wide
applications, is the analysis of vimages with controlled noise and
distortion. In this case, extensive preprocessing does not usually
help very much, therefore, the need for some similarity or distance
measures betlween images, or their respective representations,

seems to be a must, [lusy82], [youk80].

A sirhilarity or distance measure between two objects can be
defined as the maximum number of similar features which are
common - between the two objects, or the minimum changes needed
to be p'erformed orn one of the objects in order to make it identical

to the other object.

»In the remaining part of this chapter, we briefly review some
related work on distance measures and inexact‘ matching between
different types of (usually  attributed) stru_ctural representation of
visual information, namely, strings, trees, and graphs. In Chapter 5,
.~ we propose a new dynamic programming approach for calculating a
global distance measure and ﬁnding the best inexact matching

conﬁguratioh between arbitraryattributed relational graphs.
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3.2 String-to-String Distance

Strmgs have been commonly ‘used for image representatlon in

the syntactlc approach A string is formed by concatenating

elements of a set of primitives, where the left-most primitive is

considered to be the first and the rlght-most prlmltlve is the last.
For two strings, say X and Y over a primitive set E we can define

~ the followmg three transformatlons [lusy78a] : :

1. Substitution . 8w '—), wbwg ,)VLa,b €Z, a#b ,‘
- 8. Deletion D wawe —>  AN ,"VLaFE z

3. Inmsertion DoWp W8 ,)V‘a el |,

Where w, and wp; are some substrings over I. Levenstein, [leve66]

defined a ‘metric dlstance between two strmgs X and Y, d(XY) as

the smallest number of transformations requlred to derive the strmg

Y from the string X.

If some "non—nega,tive weights (or costs) are assigned to these

three transformations, e.g., w,, wg, and w; as. the costs of

Substitution deletion, and insertion, reSpectively, then the distance

between two strings X and Y is the cost of the transformatlon
sequence of minimum total cost and which are needed to transform
X into Y LetQ = E g; | 7=1,2,3,...,J 1 be the set of all p0331ble
sequences of transformations that can be used to derive Y from X.
A sequence g;, 9; € Q, has S; substitutions, D;  deletions, [
insertions. The weighted distance between the two strings X and Y

is

d¥(X, ¥) = min (ws.S; + we.D; + w.; )
| jeJ -
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In order to ‘make the string-to-string distance Tneasure more
v]‘n,formative and useful for image analysis applications, Lu and Fu, in
[lusy78a], suggested a modified weighted string-to-string distance, in
.,whieh vthe. 'eosts associated with ‘the substitution, deletion,' and
insertion transformations are functions of the primitives on which
~ they are applied. In this case, a sequence g; in the set _of all
‘possible sequences of transformations that can be used to derive a
string Y from a string X, g; € Q, has total cost of W; wh1ch is the
sum of the costs as3001ated W1th the transformatmns in g;. Thus, |

the mod1ﬁed weighted distance between X and Y is defined as :

D¥ (X, ¥) = min ER/E
.' The modlﬁed welghted strlng-to strmg dlstance has ‘bee'n
: formulated as a shortest path problem between two specific nodes
'(namely the two oppos1te corner nodes) in a rectangular acycllc.
directed 1attlce, [fuks82a]. : Eaeh path in the lattice correspon_ds to
a" seqUence of transtrmations that can be used to derive string"Y
from string X. The: d1fferent types of error-transformations have
been represented by branches in the lattice. The costs of these
- transformations have been ass1gned to the corresponding branches.
Thus,. the optimization aspect of the modified weighted str]ng :
- distance problem’ is converted into a shortest path problem over an 7

_ acyclic”'vdirected rectangular lattice.

The general shortest path problem over acychc d1rected graph 1s
‘a popular prototype problem in dynam1c programming. Wagner and
" Fischer, [wagn74], proposed an algorithm for the solution of this

‘prOblem‘_, which was utilized in [lusy78a), for calculating the
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modified weighted string-to-string distance. The time complexity of
this algorithm is of order ([X . [Y] ), where |X| and [Y] are the number

of elements in the X and Y strings, respectively.

3.3 - TreetoTree Distance

Tree-structures as defined over sets of primitives, have been

cormnmonly used for imagé' representation in the syntactic app'roach.

Unlike the string case, where the only relation between primitives is
the left-to-right concatenation, a tree is formed a8 a 'hiverar’chical
structure of nodes. Every node in the tree is labeled by a ranked
symbol that has two parts, the first represents the rank of the node
(ie., the number of the children descending from this node) and the

second part is a labeling element from the primitive set, [fuks82a].

For any two trees, say X and Y, over a primitive alphabet I, we
-~ define some weighted transformations, similar to the string case,

which enable us to derive ome tree from the other through the

repeated application of these transformations. The weighted

distance between X and Y, d(X)Y), is the minimum cost sequence of

transformations that are needed to derive X from Y. Let x and y be.

two arbitrary subtrees of X and Y, respectively; then the following

three transformations can Be defined:

1. Substitution : oly) » x , w(xy) ,
2. Deletion : o oe(y) > A, wly)

3. Insertion : e(A) » x , w(x)
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where A is a null subtree, and ws(x,y) is the cost of substituting

subtree y by subtree x, wy(y) is the cost of ‘deleting subtree y, and

w;(x) is the cost of inserting subtree x.

If Q= E |3 =1, 2. .., Jf defines the set of all possible

- sequences of transformatlons that can be applied on subtrees from

Y in order to derive X and g; is an arbitrary sequence in this set,

» gj € Q then the weighted distance between the strmgs Xand Y

d(X.Y) = min { W}
jeJ '

where W; is the total cost of the transformations used in the
sequence gj. The very important issue to be noted here, is that the
set Q for the tree case is expected to be very large in comparison
with the equivalent set for the string case. This is due to the

difference in the way trees and strings are constructed.

“Lu, : [1usy'?9], has r‘estricted the range of transformations used to
derive the tree X from tree Y, in an attempt to reduce the set of all
possible sequences of transformations for deriving X from Y. She

imposed three conditions on these transformations, namely :

1. the predecessor-descendant relations of nodes in Y do

" not change,
2. modesinY do not split or merge‘
3. the sequernce of postﬁx ordering does not change after

'applymg the sequence of transformations.
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In other words, the transposition or rotation between subtrees are
prohibited; the transposition of two subtrees is achieved by a
number of deletions, insertions, and substitutions. Based on these
conditions, Lu proposed an algorithm to compute the tree-to-tree
distance using dynamic programming for computing the elements of
a distance matrix D(i,j), where i and j are indices of postfix ordering
of trees Y and X, respectively. If node x, of postfix ordering i, and
node y, of postfix ordering j, are nodes in the trees X and Y,
respectively, then D(i,j) is the minimum cost necessary to derive
subtree X/x from subtree Y/y. Therefore, the distance between the

trees X and Y is:
d(X,Y)=D(m,n)

where m and n are the number of nodes in trees X and Y,
respectively. Lu also showed that, under the above mentioned
conditions, the algorithm has time as well as space complexity of

O(m.n).

3.4 Silnilari_ty Measures and Inexact Matching Between Graphs

3.4.1 General

Graphs have shown to be kvery useful and powerful tools for

image ’representation. Image representation by means of graphs |

constitutes the core of a major class of high-dimensional image
analysis techniques. Graphs are very adequate to properly handle
the high dimensional and/or hierarchical nature of the visual

information; they are also topologically invariant. Moreover, we can
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have labels or attributes assigned to their nodes and branches on
the form of attributed relational graphs, as we discussed in Section

2.4.2.

For the past few decades, the general theoretical aspects of
graphs have been studied extensively, [carr78], [bond76].
Unfortunately, several of the problems concerned with gi'aph.
analysis have been shown to have very high order of computational
cofnplexity and are classified as NP problems, [papa82], [gare79],
[even?9], [read?7], [ullm?76]. Nevertheless, many of these problems
do have some good heuristic solutions with reasonable computational

 complexity, [horo78a].

Due to the interesting capabilities and descriptive power
exhibited by graphs as tools for image representation, operations on
graph have been studied by many researchers in the structural
approach to image -analysis, [chen81a], [chen81b], [chen84], [fuks8R],
[ghahB80a], [ghah80b], [tana77]. Several interesting graph grammars, '
[bunk81],  [vigr78], graph language transformations, and some
parsing techniques have been studied, [aul83], [shiq83a], [sanf81].
The problem of finding an informative global graph-to-graph distance
measure is very important in most applications utilizing graphs in
practical machine vision and image understanding systems, or other
knowledge processing systems, so that the systevm can handle real-

world images, or other sources of information, in general, [khan84].

In Chapter 5, we present a new. approach for calculating the
distance and finding the best inexact matching configuration

between two attributed relational graphs, in their general form.
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- However, as a background material to that approach, in the

remaining part of this section, we review the work published in the

literature on some related problems.

3.4.2 Review of Related Work on Graph Distance

and Inexact Matching

Sanfeliu, [sanf83a], presehted a distance measure between two
attributed relational graphs. He assumed that the graphs have
bijection labeling functions for both the nodes aﬂd the branches,
ie., the nodes and branches have unique labels. 'He also requires

three conditions to be fﬁlﬁlled in order for his approach to be valid,

namely:

* Both graphs must be generated by the same -"Desériptive
Graph Grammar'". » }

* At least one node of one of the graphs (called it the input
Graph) must be pre-recognized as a certain node in the other
graph (reference graph), otherwise, hisbapproach'is invalid.

* At least ong label matching configuration between nodes of
the two graphs should be feasibie from | the attribute

matching point of view.

If the above three conditions are satisfied, then the technique in
[sanf80] considers the nodes of both graphs to form matched pairs,
according to their labels. FEach pair containsvone- node from each
graph. By forming configurations of matched-pair of nodes over all

nodes of both graphs, the distance between two graphs is defined as:
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min { WprCpr + WniCpi + WndCnd + WpiCki + WpaCea )

where the minimization is to be performed over all possible
configurations of matched-pairs of nodes; wp, Wn, Wag, Wy, and wWyg
are weights of node recognition, node insertion, node deletion,
branch insertion, and branch deletion respectively, they sum
together to 1; c,,,,.; Cri» sz.- ¢y and cpg are costs of node recognition,
node insertion, node deletion, branch insertion and branch deletion,

respectively.

The shortcoming of Sanfeliu’s techhique can be summarized in

the following:

+  The method is only concerned with the distance between two
graphs that are generated by the same '"Descriptive Graph
Grammar”, which make it incapable of handling general case

of Attributed Relational Graph representation of images.

*  The method totally fails, if it is not provided with at least one

pre?recogniZed matched-pair of nodes.

*  The attribute information of the graphs are only used in the
- last step of the method to check whether the two graphs, in
a particular mét_ching configuration, fulfill the attributes of
one another. If ,noi, the configuration is rejected. Thus the
method does not incorporate the attribute information in the

actﬁal calculation (or definition) of the distance measure.
*  The method considers the insertion and deletion of nodes and
~ branches but does not consider- the ‘substitution error-
transformatiens. |
+  The most serioué drawback of Sanfeliu’s work is that he
handle the optimization part of the problem, which is the

major issue in the distance measure, by enumerating all the
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possible matching configurations and performing exhaustive
search. It is well known that this problem is of very high

exponential complexity.

In [sanf83a] and [sanf81], Sanfeliu applied his method on two
examples, namely character recognition, and the analysis of muscle
tissue patterns. ‘In both cases the size of th‘e‘ graphs were very
limited. The preprocessing was done manually . and vhadv to be
modified in order to obtain graphs of fewer nodes, since the method

faced the expected exponential time complexity problem.

An approach for error-correcting parsing of attributed and
stochastic tree languages has been proposed in [shiq8R]. That
approach is based on converting the tree into a pair of related
strings, namely the node string and the rank string. By 'usmg'thes‘e
two strings, it becomes possible to construct either a minimum
distance error—correcting parSer (MDECP) or a maximum likelihood
error-co_rrecting‘ parser (MLECP) since the proialem becomes similar
to the string parsing problem. The MDECP is for the deterministic
languages while the MLECP is designed for the stochastic case.

In [shiq83], an approach for parsing graph languages via the
extraction of their basis graphs has been proposed. That approach
focuses on the class of labeled acyclic digraphs where the basis
graph is a tree. The approach for error-correcting tree parsing,
[shiqB82], was extended to cover the parsing of graph languages for
some graphs of this class. Four related strings are extracted from
the graph, namely a node label string, a rank string, a branch label
string, and an index string. The last two strings are used to specify

the branch relations among the nodes. Thus the graph parsing task,
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for this class of graphs, was converted into a string pbarsing
problem. This approach to the parsing of trees and graphs is a
good simplification of the problem, omly for that class of graphs.

In [hara79], Haralick and Shapiro investigated the "Consistent
Labeling Problem" as a general case for several related p‘roblems,
e.g., graph homomorphism, subgraph isomorphism, graph coloring,
and scene and edge labeling prbblems. This problem -involves a set
of objects to be given names, or labels; a set of possible labels for
the objects; and a world model of compatibility containing ordered

groups of object-label pairs which are compatible. The objective is

- to find a label for each object such that the resulting set of object-

label pairs is consistent with the constraints of the world model.
Their approach to thls : problem is basically a depth-first
backtracking search with a look-ahead operator to make the search

more efficient.

A rpoor choice of object-label pairvearly in the search tree can
cause failure of all paths stemming from that ch01ce To help speed
up the search, those paths must be eliminated as early as possible,
since they are not contained in any consistent labeling conﬁg_uratlon.
The look—ahead op“erator is used in attempting to reduce the world
mo_del of compatibility by eliminating >the pbor choices of object-
labbevl ' pairé. Consequently, that sho_uld reduce the size of the

backtracking search tree. -

: As é_ontinuation of the above work, Haralick and Shapiro,
[hara80a], defined a 1minimal compatibility model as the
compatlblhty model that contams only the ordered groups of

object-label palrs which contribute to a consistent labeling, i.e., the
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removal of aIiy one group of objeét-label pairs will eliminate at least
one consistent labeling with respect to that model. Only if we have
minimal compatibility model, then the tree search procedure for

finding the consistent labeling is very efficient.

The problem of feducing a world model of compatibility into the
mjnimval form, is itself shown by Montanari, [mont74], to be NP-
complete. Nevertheless, Haralick and Shapiro, [hara80a], presented
supportive argument that although the worst case complexity is
exponential but it occurs very rarely and in practical cases thé
complexity is far from being that bad. They also argued that even
that sometimes we can only achieve near mihimal (but not minimal)
in reducing the compatibility model, but the closer the model is to
the minimal, the less work the tree search demands. The reduction
of world compatibility model into minimal form is achieved via look-
ahead operator. Thus the complexity of consistent labeling problems
depends on how much look-ahead work is required to reduce the

compatibility models into minimal form.

In [shap81], Shapiro and Haralick investigated the structural
description of an object and the concepts of exact and inexact
matching of two structural descriptions. They defined a weighted
structural description of an object to consist of the weighted
descriptions of its  primitive parts and the - weighted
interrelationships among them. They considered the one-Way

matching as whether a candidate structural description matches a

prototype weighted structural description.

- An exact matching gives the correspondenée from the primitives
of the candidate structural description to the primitives of the

prototype description. The correspondence from the relations of the
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first description to the relations of the second description forms a
relational homomorphism. The problem of inexact matching is
basically to find the best match for a candidate description over a
set of prototype weighted structural descriptions.‘ The best match is
usually defined as the match with minimum inexactness. The
inexactness is defined by assuming some thresholds for the
matching of different primitives; a threshold for the unmatched
primitives from the prototype description, and other threshold
associated with the homomorphism between the relations of the two

descriptions.

The matching of structural descriptions, [shap81], is formulated
as a consistent labeling problem, therefore it can be solved by
backtracking tree search. The idea of look-ahead operator can be
incorpbra‘ted in order to reduce the search tree. Shapiro and
Haralick, [shap81], investigated such tree search with backtracking
alone, and 'With'backtracking and look-ahead. They presented their
results which showed that locking-ahead searches less number of

nodes of the tree than the other method. -

Another very interesting Work is due to Tsai and Fu, [tsai79b].
They extended the conventional graph isomorphism to include
error-correcting capability and apply it on attributed relational

graphs for iniage analysis. The attributed relational graph is

‘considered to consist of an underlying unlabeled graph to represent

the global ‘structureiof the image. The labels for the nodes and the

‘branches are assumed to spe'»cify the local information of the

primitives and the relations between them. The labels are
considered to have two separate parts, namely a syntactic symbol

and a semantic vector.
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The error-transformations are defined in local form and called
structure-preserved graph deformations, in other words some nodes
and branches may be locally corrupted without changing the global
topology of the graph. Error probabilities were aSsig‘ned to both
syntactic and semantic primitive and branch deformations. For
each entity, i.e.,, a node or a branch, in the glraph they defined a set
of entities whick represent all the possible deformations of it. The
error-correcting isomorphism between two graphs is a one-to-one
mapping Which maps all the nodes and branches of one of the

graphs into the other, based on the sets of deformations of each

node or branch.

In this case, both graphs must have the same number of nodes
and the same number of branches, thus the error-transformations
are on the form of node or branch relabeling but not deletion or
insertion. The goodness of the isomorphism could be measured by
maximum likelihood, by minimum distance, or by least-square error
measure. The problem of finding an error-correcting isomorphism
between two atiributed relational graphs was handled, in [tsai79b],
by an ordered search algorithm which expands a search tree using a

heuristic func_tion to assist in reducing the size of the tree.

In {tsai83], Tsai and Fu further extented the ‘concep.ts of error-
correcting of graph isomorphisms, as in [tsai?9], for finding
subgréph error-correcting isomorphisms. The problem set up for
the subgraph case is exactly similar to the former case except for-
relaxing the constraint requiring that both graphs to have the same
number of nodes and the same number of branches. Therefore, the

error-transformations on the form of node or branch deletion are
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cbnsidered, along with relabeling, but not the insertion error of

‘nodes or branches. It is also assumed thai the deformations are

independent of one another.

Similar to the graph isomorphism case, the problem here is to
find a one-to-one mapping which maps all nodes and branches of one
of two graphs into a subgraph of the other graph. The remaining
nodes and branches of the later graph is mapped to nulls, ie.,
deleted. The goodness of the mapping between two graphs can be
measured by the likelihood measure of each matched pair of nodes
and branches in this mapping. The actual problem is to find the
isomorphism of maximum likelihood between two attributed
relational graphs. This problem is formulated as an ordered search

p_roble‘m over a state-space tree.

An efficient algorithm for the above problem was proposed, in
[tsaiB3], using sdme heuristic function and validity conditions in
order to contract the search tree and speed up the search. The
heuristic function is basically a local function Without any look-aheéd
capability. Al each state the function is evaluated on the sets of
nodes which are directly connected to the the mapped nodes at this
state. Nodes in the search tree is expanded according to the
heuristic function. The generated tree contains one path from the
root node to a goal node. This path represents the sum of local

optimums but not necessarily the required global optimum.



CHAPTER IV

EXTRACTION OF
ATTRIBUTED STRUCT URAL REPRESENTATION OoF IMAGES
BY A HIERARCHICAL GRAPH TRANSDUCER |

4.1 General

As we d1scussed betore in - Section 11 the ﬁrst phase of an

. unage understandmg system concerns, mamly, with the extractlon of

adequate representation of the 1mages or the different objects in
“vvthe ]Inages s0 that images can be stored in the computer memory
in'a compact yet complete form to facilitate their further anaIys1s
‘The actual analysis ar_ld interpretation of the 1mage are performed in
“the second pha'se - of - the system, usually: on the | extracted
repr‘esehtation. In almost all practical applications, ‘images, like

most other information sources, are usually burdened with noise,

distortion, and,un'c'er_tainity. ‘It is clear that the rnore capable is the |

’ ﬁrst phase of handling the noise and distortion in reaI d'ata and of

’comprehendmg all 'the input mIormatlon contents the better 1t is,

and -the easier and more eﬁ'1c1ent the later analys1s would be
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The most poWe‘rful and useful general form of representation
utilizes graphs, or more specifically attributed relational graphs, for
representing the images.. An attributed relational graph is a
relational structure consisting of a set of nodes and - the relations
between these nodes on the form of branches. Both nodes and
branches may have aftributes associated with them. Usually, nodes

are used' to represent some objects or parts of objects (or features)

in the image, while their characterizing measurements are assigned

- as attributes to those nodes. Relations between two features are

represented by attributed branches between the corresponding

nodes.

In this Chapter,vwe present a hew approach for the extraction of
attribute'd relational graph representation from images. The input
to f,his System are images as defined over a set of image primitives
which are obtained by vsimple physical measurements on ‘real-World

iInages The image primitives can be as simple as the gray scale

‘values of s1ng1e pixels in ‘the 1mage The main component of the

system is a hierarchical multi-layer scheme for the extraction of a
global alphabet from the 1mage The input to this scheme is the

result of some very elementary preprocessmg operatlons eg.,

ﬁltermg, edge detection, and edge thinning.. A simple block diagram

is shown in Figure 4.1. The proposed scheme utilizes a  graph

transducer to perform a symbolic mapping of the image primitives
into the global alphabet. The mapping is ‘pervform_ed from one layer
to the other in a hierarchical fashion. The scheme extracts the
image re.p:fesentation according to some alphabets of global features.
The extracted features are used to produce the attributed relational

graph representation for the image under consideration. -
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In  Section 4.2, we preSent the concepts cof the graph
transducers which are used in our scheme. The basic concepts of

usmg h1erarch1ca1 schema in image representation Were discussed

" before in Sectlon 23 In Sectlon 4.3, we explore the utilization of

these concepts for the extrac_tlon‘ of alphabets of zlobal features

from spa‘tial-dt)main images. “In Section 4.4, we present the .

hierarchical graph transducer which is used in the multi-layer

scheme for extracting global -features. ‘While in Section 4.5, we

~ discuss the extraction of the - attributed relational graph

represéntation from ‘the"schem‘e. The preprocessing techniques are

not discussed in this thesis, since we only use some standard edge

detection and 'thinning techniques.

4.2 ‘Extrélction of Sym_bolié Representation for Images
42.1 Gener'él

Graphs are a hlgher dlmensmnal generahzatlon of other forms of

- “unage representatlon e.g. strmgs trees, etc. The Graph
| 7 representatmn of images prov1des several powerful capabilities which
",are very -useful for image ana1y81s and understandmg Therefore,

"operatlons on graphs and their. utilization in pattern representation

and  analysis deserve a great deal of attention, especially in the
structural approach to computer vision and image understanding.

Several ' interesting graph grammars [bunk81], [schl76], graph

,1anguage transformation, and some parsing techniques have been
- proposed [shiq82]. A very important-issue in’ image analysis by
B graph concerns with the ‘extraction of the graph representation from

re al—world 1mages
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In this section we present‘ a- graphwtransduc“er for mapping the

’unage 1nformat10n contents from low-level representat1on into h1gh—-

level | representat1on .Formal definition of ,.thl_s- .transducer is

presented; in Section 4.2.2 al_ong'wit_h..the 'algorithrnwfylihich;',_‘u\tilizes

this 'transducer to 'per._form‘ the mapping. We ,ﬂalso _show _some

B examples for its 'util_iz‘ation{ :in,perf,orrning one,—level featur_.e_extraction "

from images. .

4. 2 2 Graph Transducer for the Extractmn of
Image Symbohc Representat;lon L

The proposed transducer hke almost any other transformat1on .

, has a field,. domaln and range alphabets and a mappmg functlon_

: The alphabet over wh1ch the 1nput 1mage is deﬁned represents the
domaln “of the transforma’uon Elements of this 1nput alphabet is

defined over some local areas in the image. A more global alphabet

_1s the. output alphabet whose elements are deﬁned over larger areas |

in - the . 1mage The output alphabet represents the range of the

transformation. Elements of the output alphabet are composed of

’some ne1ghbor1ng elements from the input alphabet accordlng to a

certain ne1ghborhood conﬁguratmn as will" be -defined by the

- transducer eg., four-nearest nelghbors e1ght—nearest nelghbors etc.

The mappmg algor1thm of th1s transducer is bas1cally a rule based
vtechmque wh1ch maps the ﬁeld cells from being deﬁned over. the
input alphabet (ie., .the set of image prlmltlves) 1nto the output
falphabet (i.e., the set of relatively more global - features) "according

~to some ne1ghborhood and compatlblhty rules, as we w1ll 1llustrate 1n .

th1s sectlon N
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‘:'kAn‘ image can be c_onsidered as a field of cells on which we

' define ‘a function that takes ‘on values in a set of local image

primitives. Figure 4.2 shows an example of an image field of cells

_arranged: in an eight-neighbor 'conﬁguration ln low level image

"representat1on elements of such an alphabet are in the form of

- some’ phys1cal measurements taken over local areas in the image,

eg., the color of 1mage plxels the gray scale value of a s1ngle pixel

in a gray scale 1mage or 0 and 1 for binary images. On the other

hand, in high level representat1on, elements of the alphabet are
defined over larger subimages and they represent features which are

‘much 1more global in .,nature,' in comparison with the primitives

represented by lower - level‘ alphabets Consequently, the features '

represented by alphabets of a high level representat1on are more
'meanmgful and 1nformat1ve than those 1mage pr1m1t1ves represented

: by alphabets of a lower level representat1on )

rr‘he output of th1s graph transducer cons1sts of a symbohc .

representat1on of the 1mage as defined in terms of an output

alphabet Wh1ch is relat1vely more global than the 1nput alphabet

-"I‘he transformatlon from the mput to the output alphabets is defined

by a mappmg functlon Q and will be lllustrated by Algorlthm 41,

"whlch is shown below. The formal deﬁn1t10n of the transformat1on as
We]l as the algor1thm Wh1ch performs the mapplng are presented
later on in th1s sectlon but ﬁrst we d1scuss the motlvatlon and the
ut1l1zatlon of such a transducer 1n a scheme for the extractlon of

global symbohc representatlon from spat1al-doma1n ]mages

The proposed graph transducer is used to map the 1nput 1mage |

data as deﬁned over a spec1ﬁed ne1ghborhood conﬁguratlons of cells

m the 1mage ﬁeld and places the resultant 1nto certa1n central cells
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Fig. 4.2 A Graph Transducer Field in an Eight'N,eighBOi" anﬁgurAﬁbn
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of the respective -‘conﬁgurati_ons. ‘The number of cells in the

ne'ighborhood as well as their topological conﬁguration are both ’

° deﬁned by the transducer This graph transducer' can be utilized in

fa smgle layer system or in a “hierarchical mult1—layer scheme

In a'single layer. system, the transducer is used to extract some
image features, 'each of which is composed of a set of image
,pr1m1t1ves as’ defined by the nelghborhood conﬁguratlon of the graph

transducer an example w111 be shown below

In a hier,archical multi-layer- scheme,vthe' graph transducer
performs the mapping of i’the 1mage frorn the set of image primitives
into a set of global f_eature_s‘.' ..vAt>'anvarbitrary layer in the scheme,
theinput alphabet bof the' graph. transducer at this layer is taken as
the output . alphabet of the layer ‘beneath it, while its . -output
,alphabet is fed as input to the transducer at. the layer above it. In
: Sect1on 4. 3 we d1scuss the proposed mult1-layer h1erarchlcal scheme

: 1n more deta1ls
: ",v‘_l?‘ormally, we deﬁne:‘th_e gr.aph: transducer T \of ‘the, form :

T =§% 50 F, R, Q.8

s an"input alphabet’
B is an output alphabet ,
- F' is a field of’ cells representlng the 1mage ﬁeld
R is ‘a symimetric predicate- deﬁmng the ‘adjacency between -
o L every two cells 1n F let S denotes the set of cell pairs as
; ﬁdeﬁned by R
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"f‘ Q 1s a’ .lUIlCthIl that deﬁnes pa1rs of alphabet symbols forﬁ‘ ‘_ ;

every pa1r of adJacent cells in S,

' tli;l‘ (8(c;) c o) is a funct1on that deﬁnes a subset of output

| symbols for every 1nput symbol

The 1nput alphabet 21, is chosen as the set of all 1mage |
'pr1m1t1ves 1n Wh1ch the d1g1tlzed mput 1mage 1s presented to ‘the
‘ system It 1s usua]ly cons1dered to represent some quant1zed'
. phys1cal measurements taken over. local areas 1n the 1mage e.g. the :

color or the gray scale Values of 1mage p1xels In some sense Zr 1s:

dec1ded Very much based on the g1ven 1nput 1mage On the other

hand, the output alphabet Eg,,1s chosen to represent more global_

| 'features 1n the 1mage Each symbol in thls alphabet 1s composed of"

a group of 1mage pr1m1t1ves from s, such that each element in that' '

} group occuples a cell in a ne1ghborhood conﬁguratmn as deﬁned by»‘ -

the predlct R of the transducer

The selectlon of . elements of Zg does usually depend on the class -

‘of obJects sought in the 1mage If the transducer 1s des1gned for

o the extractlon of the features of a certain class of obJects thenf

:elements of 20 ‘are selected as the 1nformat1ve features of that__

class,, ie., . the d1scr1m1nat1ye features possessed by that class ‘vof

'.objects On the other hand, if no vparticu'lar ‘Class of . objects is o

- under consideration by the system ‘then elements of Z‘o are selected -

to represent all features that can be formed by groups of 1mage

‘primitives from Z; as deﬁned over the nelghborhood conﬁguratmn of

cells spec1ﬁed by the predicate }? The more restrlcted the set 20
is, the faster the mapplng would be.- In other Words 1f general pre-

knowledge about the -class of obJects sought by .the system» is

"ayailable,. then we restrict the alphabet £, to contain only the |
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mformétive and discriminative features of this particular object
class. In this case, the mapping process will be much faster. ¥ no
pre-knowledge about' the obje‘ct class is available, which is usually
the case in the inference or learning stage, then the proposed
scheme will need to consider a large alphabet of symbols, and then
the system will be slower. ‘Nevertheléss, this is only fair, since even
for human, if no previous knowledge is available, the learning

process will be slow.

The field F is a field vof cells where the transducer pperates and
the mapping takes place. It is usually, but not necessarily, taken as
MxN array of cells. The interconnections between cells of F are
defined by the adjacency predicaié R, 'as will be explained below.
Two cells in the fleld ‘are directly connected if and oniy if they are
deﬁned by the pred‘icate R to be adjacent, ie., néighbors.

. The predicate R is a symmetbric predicate. which defines the
neighborhood configuration of cells in the transducer field F. In
dther words, it specifies whether two cells in the field are adjacent
of direct neighbors of each dther. In general, the neighborhood
~relations among cells of the transducer field can be defined in any
arbitrary.‘ conﬁgufétion required, or the best suitable for
charactérizihg a certain class bf inﬁages. However, in our work here,
and also in most ‘practica‘d éases, we’ restriét the _neighborho'od
félations between field cells into simple, e.g.,‘ four-neighbor or eight-
neighbor, c‘ohﬁgura’t‘ion.' We will discuss this issue further in the

following two paragra’phs.v
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The main ‘advantage of 'using a -genera'l neighborhOod
_ conﬁguration is to enable the transducer to perform the mapping to
~extract 'arbitrary complex features or more global 1mage.
: representat1on 1n a s1ngle layer fashlon However, the dlsadvantages.
_of usmg such a general ne1ghborhood configuration are malnly due
‘to the 1ncreas1ng complex1ty of the mapping rules which are needed
to describe the complex features, and. al_so due to the problem
arising from' interconnecting‘ the field 'cells in an arbitrary-_
configuration. The mterconnectmn problem is bas1cal_ly a hardware-
anlementatlon problem. This problem does ot actually arise in
our software simulation of the system, nevertheless we take it 1nto.

cons1derat1on so that the proposed transducer will be adequate for_

hardware 1mplementat1on

Therefor, the “‘ main reason for usingg a simple »reg_ular
, neighborhood configuration, as shown in our figures, is to reduce the -
Jnterconnectlon uetworklng problem in the single-layer transducer
- Yet, the powerful capabll1t1es of our system to extract complex
'features or global representatlon from 1mages is still ach1eved
l, through the proposed mult1—layer scheme which will be presented in
Section 4.3 and 4.4. In that scheme, global features are recursively
decomposed into simpler features. The transducer then performs
an iterative mapping at different layers ut11121ng a - simple
neighborhood,conﬁguration -between the field cells and'a simple
mapping function at each layer, as -We will show in an example later

on in this section.

The function Q defines pairs of alphabet symbols for every‘ pair
of adjacent cells in the field of the transducer. It is mainly a rule-

based function to define the consistency of the features to lie in a
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certain neighboring cells in the field in order to form a certain
symbol in the output alphabet Z,. The function ¢ defines a subset
of possible output symbols, ie., subsets of Zp, for each input symbol
in %;, which represents the possible mappings of that image
primitive into those output features. Both functions, @ and ¢, define
a set of rules for Algorithm 4.1 to perform the symbolic mapping of
the input image into the output representation. The input image is
defined over the set of local image primitives represented by the
input alphabet, Z;, while the output representation is represented by
the cells of the transducer field. Cells of the field, after the
mapping ' is performed, are defined over the set of more global

features represented by the the output alphabet Z,.

~ Algorithm 4.I operates on the field of the tr‘ansducer to perform
the mapping of an input image representation. It maps the image
representatlon from being defined in terms of symbols of the input
alphabet, Z;, to be defined in terms of entities from the output
alphabet, Zp. As,we. discussed before, elements of Z; are basically
image primitives defined over local subimages, while elements of Zo
rep"resen‘t the image features, which are defined over more global
subimages.‘” Consequently, the image fepresentation in terms of Ip
is more informative and more useful for further high level image
anaiysis‘ than the imag‘e representation in terms of Z;. .The
algorithm presented bélow performs this mapping by constructing,
in the transducer field, a graph representation of the élements of
the output alphabet, Yo, as well as the mappi{lg rules Which are
defined by the tWo functions @ and &, as showﬁ in Step [ in the
algorithm. -This graph representétion is constructed by inserting in
every cell in the field a labeled node to ‘repres'ent each symbol of
Zo. Then, for every two néighboring cells in the field, say cells f;

and f;, if o, is a node in f; and o; is a node in f;, and if (og,0;) is
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defined by the function Q as consistent pair of'néighboring’ cells,

then we connect the two nodes o and g by a branch.

The graph configuration constructed in the transducer field
actually contains representation of the transducer alphabet as

labeled nodes and the consistency rules as branches between nodes

in the mneighboring cells. This is basically why the proposed

technique is called a graph transducer.

When an image is presented to the transduc‘er, the algorithm
assigns to every pixel in the input image a cell in the transducer
field, (Step II-i). Moreovef, it performs the mappmg on the 'in_put
image by executing two major elimination steps on the graph
conﬁguration‘in'the transducer field. In the first elimiriation step, it
eliminates from each cell in the field, say cell f;, all nodes of the
set {8,-8(0;)}, where o; is the input symbol of the image pixel p; to
which f; is assigned, (Step Il-ii). The second elimination step is to
repeatedly remove from the field all those nodes which have lost all
their neighboring nodes from any of the cells adjacent to their own
cell, (Step III and IV). Algorithm 4.I is presented later on in this

section along with an illustrative experimental example.

In Figure 4.3, we illustrate by a simple example how the
different components of the graph transducer are defined. In this
example, the input alphabet is defined over single pixels of the
irnage and take a binary value of 1, if the pixel is on the boundary
of an object, and a value of 0, otherwise. The cell adjacency
predicate (R), for this example, is chosen such that the field cells
are configured in the form of eight-nearest neighbors, where the

eight surrounding cells are considered to be adjacent to their center
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cell, as shown in part (b) of the Figure. A more complete picture of
such field configuration was shown in Figure 4.2. The output
alphabet is defined over windows of 3%3 pixels, where some of the
structural features on such windows are shown in Figure 4.3-c. The
functions 0 and # are shown in parts (d) and (e) of the same Figure,

respectively.

Algorithm 4.1 was implemented on a VAX-11/780, on a bitwise
manipulation: form. The input and output alphabets, the
neighborhood vpredicate, and the mapping functions are shown in
Figure 4.3. A run on 64x64 test image is shown in Figures 4.4
through 4.7. The original image is shown in Figure 4.4. Figure 4.5
shows the result of applying the’ Sobol edge-operator on the image.
In Figure 4.6, Wé show fahe result of thinning the edges . The

thinned edge is then‘pr(’)cessed by Algorithm 4.1, and the output is

shown in Figuré 4.7.
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ALGORITHM 41:

Purpose : Tovmép image information contents from a set of image
primitives defined over local subimages into a set of

global features defined over larger subimages. .

Imput : 1. A graph transducer T- » ‘
o 2. ‘A low level image representatibn defined by entities
| from the input alphabet ¥; over an input iniage field
of cells P. ' »
Qutput 'A global descrlptlon of. the 1nput 1mage defined by the
output alpnabet o over the transducer field F.

Method
‘\ L vConstruct:ivon of thée graph representation in the transducer
fleld - .
(i) FOR all § € F DO
FOR all 0o € £o DO §

Insert a labeled node o, in cell f

5,
- (i) FOR all (f;, f_.,) €S DO ¢ ,
FOR (o}, in cell f;, .AND. o, in cell Ji) DO E
IF (gx.0,) € O(f;.f;) THEN v
Conmect nodes ¢, and o by a- branch

B(Uk -Ul). ‘E B
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II. Input image into the transducer field
(i) FOR all p, € P DO {
Designate a cell f; € F
j
(i) FOR all f; € F DO {
Eliminate all nodes of the subset {Zp~®(0;)3

from f;, where 0;€Z; is the input symbol in p;

III. FOR all f € F DO { ;
FOR all (f;.f;) € § DO {
FOR o; in cell f; DO ¢
IF (f; contains more than one node, and there
does not exist at least one; node o; such that
- B(o;,0;) € B) THEN

Eliminate node g;

IV. Repeat Step III until no more nodes can be eliminated

from the field F

IV. END ALGORITHM 4.1
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- (b) The Neighborhood Configuration as Devﬁnéd’byv
' _ Predicate R for the Field Cell f; ’

Fig. 43 An Example of a Graph Transducer
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(c) The Ouﬁput Alphabet, Zo = {a, b, c, . . .}

Fig. 4.3 (Continlied) |

~
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Fig. 4.5 ‘The Result of Sobol’s Local Edge-Ope_rator' .
on the Image of Fig. 4.4 .
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Fig. 4.6. Thinned Edges of the Image of Fig. 4.4
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4 3 Irherarchlcal Scheme for the Extractlon
of Image Global Representatlon '

The hlerarchlcal nature of image- data is usually an 1rnportant

* property of v1sua1 1nformat10n One of the bas1c concepts in the
vsyntactlc approach to computer vision and image understandmg
- systems is based on the ut111zat1on of this property, through the -
: - recursive decompos1t1on of complex images into relatlvely sirmple
. ‘sub1mages which are eas1er to analyze than ‘the or1g1nal images.
’Nevertheless the utilization of h1erarch1ca1 image data structures in
the. extract1on of image structural representatlons have not received

L proper attentlon of research in th1s ﬁeld

_An important ‘property of"the graph transducer 'presente.d in

o _Sectlon 4. 2 is the ﬂex1b111ty in choosmg both the 1nput and output
halphabets The s1ze of subn'nages on wh1ch these alphabets are ‘
:‘: deﬁned rnay be in any arb1trary size, actually 1t could be as 'small

'_ as one p1xe1 1n the nnage or as b1g as the whole 1mage

ln this 'section, we propose a new scheme for the extraétion 'of

1mage global representatlon Whlch utilizes the graph transducer

) ,presented 1n Sectlon 422 in a hierarchical mu1t1-°tage fashion.

Bas1cly, _1t 1s a multl-layer parallel scheme that consists of several

5stages each of ‘them uses the graph transducer to perform a
‘ symbohc mappmg of image 1nIorrnat1on from a local alphabet 1nto a
: relatlvely more global alphabet In other Words the sublmages over

'.Whlch the alphabets are deﬁned grow 1n slze from one layer to the -

other In the first layer ‘the “input alphabet (i.e., the set of 1rnage

, ,pr1m1t1ves) 1s deﬁned on. some very s1rnple sub1mages wh1ch could be

‘;‘as s1mp1e as s1ng1e p1xels e g as shown in Sectlon 42, At this
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stage the scheme maps those pr1m1t1ve elements 1nto a relatlvely»

o : more global output alphabet Each’ element of the output alphabet

is deﬁned over a group of neighboring 1nput elements e. g four-

nelghbor or eight—nelghbor conﬁgurations An example of tlus

: process was shown 1n Sectlon 4. 2

In general at an arb1trary layer in the scheme We perform the '

’ ,‘mappmg of the 1mage 1nformat10n contents from an 1nput alphabet .

| -to an- output alphabet The 1nput alphabet of the transducer at any
layer in the scheme are the output alphabet of the layer at the 2

- ,precedmg lower-level Elements of the output alphabet are deﬁned o

"as the compos1tlon of a group of elements from the 1nput alphabet
therefore they carry relatlvely more global miormation The 1nput
. symbols that compose an element of the output alphabet occupy
_'some ne1ghbor1ng cells in the ﬁeld as deﬁned by the nelghborhood '
pred1cate (R) of the transducer at this layer The formulatlon of
Voutput symbols from groups of 1nput symbols 1s deﬁned by the'
mapplng functlon (Q) A more formal descrlptlon of the proposed

scheme is presented below

-~ We assume that the 1nput 1mage cons1sts of a ﬁeld of cells whlch -

take values over a pr1m1t1ve alphabet and are. arranged as an. MxN " .

array._ A typical example s shown in Figure 4.6, which is a thinned:
edge image of an object. The _objective is to extract the global
‘features ifr'.om" the image ‘ We utilize the graph transducer, of
Sectlon 4.2, at d1ﬁ‘erent layers in the . scheme Each'layerin this -
scheme cons1sts ‘of a field of cells on which' the graph transducer_
| operates An explicit representatlon for an example conﬁguration of -
| the ﬁeld of the mult1-layer scheme is shown in F1gure 4 8. It can be

cons1dered as similar to an overlappmg pyramid st_ructu_re. It has in
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Fig 4.8 HierafChiC;ll" Scheﬁe: foi* the ;Extraction ,
of Image 'Glgbal'Repr‘esentation B
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- common W1th the pyram1d structures that the h1gher the level of a
. layer the more global reg1ons its cells cover ' On the other hand 1t
differs from pyram_ld structures since, 1n pyrarmd structures the
‘ 'number of cells in the layers decreases as we move up the pyram1d
‘but the layers of the proposed scheme is assumed to have the same
number of cells such tHat the scheme would not be sens1t1ve to the'

'locat1on of the extracted ﬂeatures in the image.

_ The structure shown in Fi‘gu're 48 is. explicitvin the 'sense 'that
when the scheme is 1mplemented only two - layers of arrays are |
needed ‘where the 1mage representat1on iterates from one array to
~the other at each layer ‘of processmg Through the graph
transducer each cell in a layer 1s assigned a symbol from the
| output alphabet of the transducer. A symbol of an output alphabet'
is composed from a group of symbols from the 1nput alphabet that

'res1de in a certain nelghborhood as defined. by the ne1ghborhood -

'predlcate of the transducer €8 e1ght—nearest ne1ghbors The :
’mult1—layer graph transducer Wh1ch 1s ut1l1zed in. thls scheme is

descr1bed in Sectlon 4. 4

4 4 Multl—Layer Graph Transducer for the Extractmn
of Attrlbuted St:ructural Representatwn Lo

The lﬂideabehindl the ‘proposed, sc-heme is essentially 'b,_a_‘sed on the
simplification of ‘a complex object-; _' or a ; global . feature;' by
~decomposing it into ‘simpler sub-objects, or more local features. The,; ,
.decomposition is made by cons1der1ng that a complex object cons1sts
| of a set of simpler sub-obJects w1th certain nelghborhood relat1ons |

between them. In other words, complex »objects are decomposed,
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recurs'ively',» in a top-down fashion into sets of sub-objects (or image

- features)' The - 1nput alphabets, the output alphabets, and the
 mapping performed by the graph transducer which are used at
: vdlfferent layers in the proposed scheme are des1gned accordmg to

- this recursive decompos1t1on ' F1gure 4.9 shows ' the recursive

decompos1tlon of a machine tool into s1mple 1mage features It is

~clear that the boundary of any complex object can be. decomposed

down into a set of global features.  These global features " are -
composed of some local features which are in turn. composed of

some relat1vely more local features and ﬁnally of some very bas1c :

: 1mage pr1nnt1ves e.g., b1nary 1mage pixels s1rmlar to the one shown

Cin F1gure 4.5.

The output alphabet Eo of the mult1-layer graph transducer

E cons1sts '-'of. ‘ subsets B of feature | alphabets ie, Zp=

iZo ng v \', ‘,‘1 UEo ; each of which denotes the subset of the. -

) alphabet at one of the layers of the scheme )30 is the subset at ‘the

l’th layer Elements of. the alphabet at. layer l is formed from

| ’groups of elements of the alphabet at layer 1-1, “such that members
" -of that group occupy a certaln nelghborhood conﬁgurat1on as deﬁned'

o -by the predlcate R of the graph transducer at thls layer

The input "alphabet z,, which is the input to the first layer of

| the scheme cons1sts of a set of symbols in which the 1nput images

_' are presented Tlus alphabet is usually chosen to be easily
. _'measurable An 1nput 1mage is presented to the scheme as a field

: of cells that take values over this- 1nput alphabet At the ﬁrst layer

-of the scheme the transducer performs a mappmg of the image

mput symbols 1rito symbols of Z}o , whlch represents the alphabet of

;the transformatlon at the ﬁrst layer Each element of 201 is
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Fig. 4.9 Hierarchical Dt_acomposition of an Object‘into,
Alphabets of Symbolic ~Features and Image

Primitives
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composed of a group of elements from I; which are arranged

vaccordmg to the nelghborhood predicate R at this layer The image

~is now represented by the array of cells at this layer of the scheme,

which. are assigned symbols from the subset of alphabet at thls

layer, Zo , as shown by the example in Figure 4.3.

,The output of the first layer is taken as input to the second

- layer of the scheme. In the second layer, L, the scheme maps

elements of Zgll into elements of the subset £,7, which represent the

output' alphabet of the transducer at this layer. Elements of To® are

’composed of elements from ZI,!, according to the ne1ghborhood

predlcate R. In other words, relatlvely more global features are

extracted from the field of the first layer mto cells of the field of

“the second layerv. The symbohc mapping at this layer is performed

' ,in‘a similar manner as the mapping at the pre\nous layer.

In general, at any 'lay'er ! of the scheme the transducer

vperforms a mappmg of elements of the output alphabet of the
- precedmg layer - (1e  subset Zo‘ 1) into the subset ot Lot Iy,

“whose elements are formed from those elements of 20‘ 1 that are

lylng in a certaln nelghborhood configuration as deﬁned by the
ad_]acency predlcate R at this layer Thus, the relatlvely local
symbols of the cells of layer (l—l) are mapped 1nto more global

features deﬁned over cells of the l'th layer of- the scheme

- This hlerarchlcal mapping contlnues in the scheme w1th growing

'31ze alphabet until it satisfies the size of the global features which

are sought to be e‘xtracted from the 1mage, or theoretlcally until the

size of the‘, alphabet covers'thebwhole image. It is clear that the

-size of ‘the subimages covered by the transducer alphabets grows
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very rap1dly with the order of the processmg layer 1n the scheme

(m sore cases 1t grows exponentlally, ‘as We wﬂl show in the.

experlmental results) Also the obJectlve of thls scheme is not to

‘ attempt to. recognlze whole complex obJects but rather to extract

“the global symbohc representatlon which can then be represented B

by an Attrlbuted Relatlonal Graph (ARG) for some further lugher

level v__analys1s such as the matchmg Wlth some | prototype ob]ect

- models thrfoughv defining the dlstanc_e between images by _calcul_atmg‘

a distance measure and inexact matching between their respective

ARG representations, as we will derudnstrate' in the commmg v

chapters of this thesis.

The alphabet of the vdiff‘erentqlayers of the trans‘duc'er,, namely,

201 2% ..., and 25 ' are defined to describe the featu‘res of a

certain class of objects through the decompos1t1on of these obJects .

into sub- ob]ects and the recurs1ve decompos1t10n of global features

_mto local features Each element in the alphabet of a certam layer

 repreésents & feature contalned in the sublmage covered by the

cells of that layer.

’ Formally, we - deﬁne ‘the mult1-layer graph transducer r of thev

form
P TR R D)

where‘:v i _ o
' EI is an input alphabet

B . Eg is. an output alphabet Eo.— on‘L)EO"’U"' S ,U'EOL”;,V

' where L is the number of layers in the scheme

F is a multl-layer ﬁeld of. cells F= Flquuf'ﬁi cL UFE,



_',:WhereF‘ 1<l<L is the I'th layer in the ﬁeld
o 'R is: a symmetr1c pred1cate that defines the ad]acency
‘_ . between’ every two cells in F; let S denotes the set of cell
@_'palrs as deﬁned by E, ’
Q 1s a funct1on that defines pa1rs of alphabet symbols for
v » every palr of adJacent cells in §, o
v ¢ (@(a,) C 20) is a funct1on that defines the correspondence
E between- subset_s of ot for every input ,symbol, and
between - alphabet symbols. of different layers . of the

~scheme.

i 45 i E)itraction ‘of'Attr'ibu_ted”Relational Graph RepresentaﬁOn

The - multi-layer v’hierarchical scheme presented in’ the last

sectlon performs mappmg of the 1mage 1nformat10n contents from

“the 1nput alphabet ZI, e.g., the spat1al domain representat1on into.

' '_the output alphabet of global features Zo. - The output field of the

- scheme is a two- d1mens1ona1 array of cells which take values over

: Eo. Nevertheless the same 1nIormatlon conta]_ned in that array -can

~be better represented by an Attributed Relational Graph.  The

fattr1buted .nodes of the graph represent the’ different - features
-jfextracted from the 1mage W1th the parameters of the features as
attr1butes attached to- the- nodes e.g., the length of a stra1ght line
‘ segment as reﬂected by the order of the layer in Wh1ch it appears,
or the length and curvature of a curve segment etc - The relat1ons
;-between these global features eg., the1r relative pos1t1ons are
represented by attr1buted branches between the respect1ve nodes in

E the ARG representatlon '
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In Fig. 4.10-(a), we show the features extracted from the image

of Fig. 4.4, where we uge the linear ‘approximation of the edge

'_féatures of the v‘ob‘j'ect és the_ image features. The lerig'th of the Iiile.

segments represent the attribute-of the respective nédes. If two -

I' lines are joint or are Iiaérall'el,, thevrelr’ations‘ Joint (J: 19) or Parallel

(P: q), "respec‘ti‘}ely,» ‘are represented by bi";:inchés bef,Weeh ‘the

respective nodes, where ¥ is the joint afigle and d i the distance

. between the two line segmerits. Fig. 4.10-(b) shows the relations

between féétiires for the image of Fig. 4.4. The ARG representation -

_:Qf the ‘same image is shown in Flg 4. 1. Somev mriore examples will

~ be shown with the experimental results in Chapter 6. -
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 GLOBAL FEATURES EXTRACTED FROM THE TRANSFORMATION FIELD :
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' RELATIONS BETWEEN THE EXTRACTED FEATURES
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Fig. 4.11  Attributed Relational Graph Representation
o for the Image of Fig. 4.4 | :
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CHAPTER V

A DYNAMIC PROGRAMMING APPROACH
FOR DISTANCE MEASURE AND INEXACT MATCHING
BETWEEN ATTRIBUTED RELATIONAL GRAPHS

5.1 General

In Chapier 4, we presented a powerful hierarchical scheme for
the extraction of Attributed Relational Graph Representatioﬁ, (ARG)
from images, which, as we discussed before in Section 1.1, represent
the first phase of most computer vision and image understanding
systems. On the othe:f hand, the actual analysis and interpretation
of the image is usually performed on the extracted representation

and it takes place in the second phase of the system.

One of the very important concepts in information processing

and analysis is the concept of distance or similarity measures

 between different entities, In this Chapter, we present a new

approach for calculating distance or similarity measures between
pairs of attributed relational graphs, in their general form. The

graphs may possess arbitrary relative size. The importance of this



problem in computer v1s1on and. 1mage understand]ng ar1ses due to

the followmg three main Teasons:

' »”(1)"'Graphs= are very»dpowerful_represen_tation tools for ‘several

p_ractical_ applications in image analysis and understanding. -

©(2) The need for a useful d1stance measure. is very essential in

-handhng any real lmages

(3) The results are /applicable to several interesting image'

_dunderstanding and pattern recognition problems, such as

..._locating.‘ object_s in -nvoisy ‘and defected images, error-
= correcting” parsing ‘of ARGs, multi-resolution analysis of

images ' high-level image segmentation, etc., The approach

' s also apphcable to other apphcatlon problems in mach]_ne ‘

.1ntell1gence and knowledge representatlon where. relatlonal v

structures are chosen ~asf the mean of knowledge

representation.

'In“Section 5. 2‘ we state some formal definitions and terminology
'based on. Whlch we present our formulat1on to the problem of
calculatlng a d1stance measure and ﬁnd1ng the best lnexact
‘matchmg conﬁguratlon between pa1rs of attr1buted relat1onal graphs

“In Sect1on 5 3 a detalled Word descr1ptlon formal formulatlon and

the underlymg concepts of -our approach to thlS problem are g1ven'

' along W1th formal algorlthms for the main skeleton of the approach
The approach basmally, d1v1des the problem 1nto a set ~of

- subproblems and constructs a state- space scheme us1ng subgraphs
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to serve as handlers to govern the transition from a state to
another, and to define a dominance criterion. In Se}ction 54, we

analyze the computational complexity of the approach.

- 5.2 Basic Deﬁni_tion‘s and Term"ln,ologyv

As we .discu_ssed earlier 1n Chapter 2, vthe type of graphs which
‘best serfres in vision systems is the attri_bnted relational graphs.
The formal definition of an' Attrib_uted Relational Graph, which, from
now on, we may denote as ARG or simply. Graph, was given in
Section 2.4.2. For the simplicity' of notation, we may denote lthe’
node ‘and’ branch’ attribute vectors by labels, which can take any
bform generated by the attrlbute functlons Moreover we assume
that the node as well as the branch attributes are generated by
general (many—to one) functions, i.e., allowing more than one node in
the graph to have the same attribute (or label) - and more than one
branch to have the same ‘attribute (or 1abe1) Thlsappears to be an
’ unportant requirement, in graph representatlon of images in order to
reduce the pr eprocessmg Wthh should be performed on the images

before and dur]ng extractlng their graph representatlon

For the purpose of representatlon and for the - ease of notatlon '

an: ARG is represented by a doublet of the form

G = (N%,B9)
Where |

N€: denotes the set of attrlbuted-nodes of graph G, with the
attribute alphabet A% and defined as:
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NG = {(i,a) | 1=i<|NC|, acAf® ]

BE: denotes the set of directed attributed-branches of graph
G, with attribute alphabet £¢ and defined as,

B¢ = {(’i,j,e) | 1=i j<|NE], QEEG}

also, (i,a)ENG denotes node i with ‘a’ as an attribute and
(i.je)eB¢ denotes the directed branch from node i to node j

" with ‘e’ as its attribute.

Definition 5.1 : A BASIC Attributed Relational Graph (BARG or
Basic graph) is a graph on the form of one level tree, ie., it
consists of a root node, the branches emanating from it, and the

nodes on which these branches terminate.

Although, as we defined before, a BARG is just a special case of
ARG, we would like to represent it in a slightly different way. Usually
in our work, we define BARGs as subgraphs of .an ARG. If G is a
basic graph in an ARG G, GCG=(N¢BY), we denote the BARG G as

follows:
G = (r%B% 1%

where:
r% r%=(i,a)eNC is the root node of G,

B% Bc‘zi(i,j,e)l(i,j,e)EBcg is the set of branches emanating

G

from =, and
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% _Lﬁz'g(j,;;"),e‘-jvﬂ |(4.4.)€B) is the set of leaf nodes of G. =

We adopt the deﬁmtlon of the dlstance between two ARGs as 1n

its basic - form the m1n1mum number of changes (or error-

7 transformatlons) which need to be performed on one graph in order :

to produce the other graph These changes are usually in the form
of node or branch deletlon 1nsertlon or ‘substitution - (i.e.,
: relabehng) In add1tlon we ass001ate a certain cost w1th each. of

these transformatlons For example let wm,' 'wnd, and 'wns be the

costs of node insertion, deletlon and relabeling respectlvely, and let

‘ w,,,, Wy, and Wy ‘be the costs assomated w1th branch 1nsert10n

deletion and relabelmg, resgpectively.

: Deﬁnltlon 52 The d1stance between two ARGs say U and v, 1s“f

deﬁned as. the cost of the sequence of transformatlons Whlch

possesses mlnlmum total cost and whlch must be performed on one

‘of the two ARGs, say graph v (or on a subgraph of U) in order to
produce the other ARG, i.e., graph V. ‘

In general the cost of error- transformatlons may depend on the

nodes or the branches on which they are performed (ie., a functlon

.of the attributes of the nodes or the branches). For srmp‘licity of

notation i this ch’apter, we assume that these costs are constant

with respect to the same type of transformation. However, our

formulation and approach to the problem are ‘desi‘gnedto handle the

case of modified costs, in which costs are functions of the nodes or

branches In th1s case, these costs will encompass the dlﬁerence 1n

attrlbutes (or labels) of different nodes or branches L
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v Deﬁj]jtion' 5.3 : The Empty Graph (denoted by A) is the graph of

-'zero nodes (and no branches) ie., A*((I) <I>)

Deﬁmtlon 5.4 : For an ARG G= (NG BG) we deﬁne G as the set of

Do all BARGS contalned in G

o Deﬁmtibn 55 : The set of core nodes Co, of an ARG G is
‘defined as the set of root nodes ‘of the. BARGs in G i.e.,’

bG:{fQ.f»("" ,B__ I év)EG ] |

Deﬁmtmn 56 The set of termlnal nodes To, of an ARG G is

deﬁned as all nodes of G Wthh are not core nodes ie., TG—N? Ce.

' 5 3 Dlstance Calculation and Inexact Matchlng
for Attnbuted Relatlonal Graphs e

531 General =

The calculatlon of a dlstance measure- between two ARGs 1nvolves
~ not only ﬁndlng a sequence -of - error transformatlons for producmg

f one ARG (or a subgraph of 1t) from the other, but also ﬁndlng such

. a sequence which possesses the minimum total cost Therefore an

essent1a1 part of the problem 1nvolves opt1rmzatlon over all valid
sequences of transformatlons to find the one w1th r'nn1mum total
cost For the dlstance measure to be 1nformat1ve the ‘cost of error

k tansformatlons should depend on the nodes and branches on which
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these transformations' are app'lied For any two given" ARGs, U and

-V, the approach for dlstance ‘calculation between U and V or their

subgraphs can be outhned by the three ma_]or steps as shown 1n

Flgure 5. 1

Flrst we decompose U and ¥V into two sets of BARGs denoted as o

UA:EUIV,Ug',’..‘.,..‘,UH%' and V—EVI Vg,...v.‘.';.,V]w;, where M, and N are. the

number of nodes in U and V, respectlvely The dlstance between

- two BARGs is- defined as in Sectlon 5.2, since BARGs are Just . a

spe01al case of ARGs. This distance can be’ eas11y calculated because

of the s1mple structure of the BARGs

Second we 'reconstruct U ande.s'tarting fro’m' a .p'air 'of’.v empty

’graphs and 1terat1ve1y embed ‘into them matched pairs- of Baslc_

graphs trom the two sets EUui A} and VAL, accordlng to some

: feas1b1hty cr1ter10n as we will d1scuss in Sectlon 5.3. 4 unt11 no more

"._palrs can ‘be added. ThlS reconstructlon process generates the -'

' state—space representatlon of the problem in wh1ch each state

J denotes the reconstructlon of a palr of subgraphs from U and V.

The In1t1a1 State in this representatlon scheme denotes thev .

startmg of the matchlng process and the final states are those

states denotlng the successful completlon of reconstructlng graph U,

graph V, or both. The transltlon from a state to another state

represents the embeddlng of a pair of matched bas1c graphs into -

the already reconstructed subgraphs ‘the welght on this branch

| denotes the 1ncremental cost due to th1s embeddlng operatlon A

‘heurlstlc cr1ter10n is defined "to govern the possible next matched :

palrs of basic graphs which can be embedded at each state in the

represen_tatlon scheme. The ‘concepts and the details of this
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.. Decom positi'oh of

>

| ARG’s into BARG's|

'Statv.e*Space

| Shortest—Path

Representation

Problem -

' F'ig 51 General Flowchart for the Proposed Approach to ,
el .. the: Graphi Distance and Inexact Matching Problem
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cr1terlon are presented in Sectlon 534 Usua]ly, the 1ncrementa1f
.cost is not only a functlon of the nodes and branches on which an
| error transformatlon is apphed but it also depends on the matchlng
‘conﬁguratlon of the already reconstructed subgraphs Therefore it
is clear that the resulting state-space representation scheme Iis, in

general, on the form of a Directed Branch-weighted Lattice..

-The,third and‘ the last step of the approaeh 1s 'to '-ﬁnd"ithe“l
Shortest-Path over the Directed Acyelic Branch-weighted Lattice
from the jnitial‘ state to a state in the set of final st:ates.i This
optimization problern, for the type of lattice that the approach
generates, can be solved in linear time ;by Dynamic Programnnng.‘
The total weight of the shortest—pathdenotes the distan’ce measure .
between the two ARGs, while its final state denotes the best inexact

matching configuration between the two graphs.

5.3.2 kDecomPOSjitiO‘_n of ARGs into Sets of Basic Graphs (BARGs)

'Suppos'e that two ARGs, U and V, of M and N nodes
res'pectix)ely, are represented by: U=(NY,BY), and y=(NY,BY); AY
and AV denote the alphabets of node attributes, and EY and EV
denote the alphabets of branch attributes for graph U and graph 7,
respectively. The first main step in the approach is to decompose
each of the two graphs, U and ¥, into a set of basic graphs (BARGS),
namely sets U= {U, Ugivoos Ugd, and V= {V,,Va......, Vs, respectively.
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In F1gure 5. <, we show an example of two  ARGs; their
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correspondmg sets of Basm graphs are shown in Figure 53 It is

clear that the decomposmon of graphs into sets of BARGs is unique.

It is achieved by Algorithm 5.1, as given below.

‘Purpose :.

Input-

'Output

Method

 ALGORITHM 5. :

To decompose an ARG into a set of Basic ARGs.
An ARG, graph G, representéd by

] N? = {(z‘,a)lie{l,z ,,,,, .]NGI;, aEAG] and

BS = {('L] b)i&icfl.2,...., lNG béE‘G}.

A set G= EGI Ga,....., Gmcli' such that, GeGis a Basic ARG

represented as G=(r%58%1%), where:

rG‘ is the root node of G;,
B% is the set of branches émanating from 'rG‘; and

L,G‘ is the §et'_qfi leaf nodes of G;. .

“FOR i:=1 to |N¢] DO
BEGIN
(1) 7% « (i)
- (®) B% « {(ijb)|(Lib)eBY
@ 2% « (GeNGEN, (i, b)en®)
"(4) G « (TG‘B L%
END "ALGORITHM 5.1



‘Fig. 5.3 The Sets of Basic Graphs for the ARG's Shown in Fig. 5.2
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533 Construction of State—Space Representation

‘The‘state space’representation used in this approach is in the

: v'form of a Directed Acychc Labeled Lattlce - Such a lattice consists

of a set of labeled states say set S= {50,51.82051, where L+1 is the

total number Aof states, and a set of directed labeled branches R, of

o the form RC{(sp.sy)iss&s,€8) where (s;s;) denotes a  branch
: g -emanating ‘from state s; to ,states,;, For two AGRs U and V, each
: state dinthis lattice de-notes the reconstruction of a subgraph from
- graph U and a,snbgraphvfrom' graph V, as well as the matclﬁng of
: theirrespective"basic _graphs, ‘according to the feasibility criterion
b which is shown in Se'ction‘_.5.3.4.; For’ example, ‘a state; . s, .deno't_e_s

~ the reconstruction of subgraphs‘ Xj and Y; from graphs U and V,

respectlvely Each of X; and Y is composed of a set of  BARGs,

. namely ){,- EUU{ f; and Y_,CEVUEAE{ The bas1c graphs 1n ,X} and %
‘are matched 1n pa1rs 1n the form ()Q.Y,,) Where XE)Q and Ye}f

Therefore each state 1n the 1att1ce is. labeled Wlth a set of matched
| :kpalrs of basm graphs in the form SJ XI YI) ()Q,K)IJQE& YEIG ~ On

_the other hand each »' branch- in the 1att1c.e,- say ‘branch (s7.55)

between state s;=(X, Y_;) and state sJV—(’XJ YJ)F is labeled by w(s;,s;),

_ whlch represents the cost of the transntlon between the two states,

‘ '1 e, state s; and state s5.

In the reconstructlon process the tran51t10n from state sy 1nto

'state sy represents the embeddlng of a pa1r of BARGs Xk and Y, into

: _-the already reconstructed subgraphs X[ and YI 1n ‘order to produce
.psubgraphs XJ and YJ, where Xke[ﬁﬁ—)’égum;], ,}’ke[{V—'}ﬁuiA;]_ and

(Xk Yk);t(A,A) The new subgraphs XJ and YJ are composed of the two



sets of BARGs % )guzxk; and %= s +3. The embeddmg of Xk on X, ,
‘ and Yo on }} is performed 1n a stralght forward fashlon accordlng to a

the conﬁgurat1on of the or1g1nal ARGs U and V

The  new pair of snbgraphs X; ‘and YJ is represented in the
state-space’. lattice by'a state 5. The trans1t1on from state s; to
state sy is represented by a branch (s7, s;) with an assoc1ated cost‘-

sI s5)= d(X, m(Xk Y,c) whlch denotes the 1ncremental d1stance due to

‘the embedd1ng of X,, and l@ 1nto subgraphs X] and YI to produce the
_ new subgraphs X, and Y;, respect1vely Th1s 1ncremental dlstance is,
‘in general a functlon of the matched nodes and branches of X and'
K,, as well as of the matchlng conﬁguratlon of subgraphs XI and YI
- The evaluat1on of this 1ncremental distance depends on the the ‘
apphcatlon problem ]n hand ie. the practlcal s1gn1ﬁcance of . each
. node and branch in both ARGs, the1r attribute alphabets ete; as it

is the case for strlng and tree dlstance measures

A des1gnated state in the lattlce is the "In1t1al State" whfch 1s
denoted as SQES labeled as (A A) and represent1ng the start1ng pomt '
of the graph reconstructlon process where both subgraphs ‘are
empty A formal algorithm  for reconstructmg the graphs- ‘and
generatmg the lattice will be given below, and referred to  as

. Algor1thm 5. II

’Before presenting Algorithm 511, we 'describe' it informally.
Flrst for UE and EV we generate states labeled as sf= XI',YI):,
where X;= U; and’ =Y. The welght of a branch (so,s,-). from'vthe
initial state so to state s;- is w(sgs)=d(l,.¥;), i the distance
between the two basic graphs U~ and . In Flgure 5.4, we show.the

state space representatlon generated via reconstructmg the two
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ARGs U and V which are shown in Figure 5.2 from the sets of BARGs
shown in Figure 5.3. The significance and the information

represented by each state are explained below and are shown in

Figure 5.5.

At any arbitrary state s;=(X;,%)€S, we define the following:

@) Clss): c<sI>={<r’?r"")1 )@ez?f.ne%.m.quz.m] as the set

of matched pairs of core nodes in subgraphs X; and Y7,

(ii) Cy(sp): CX(sI)=[rX‘[(TX‘,TY';)EC(SI)] as the set of core nodes of

subgraph X;,

(iil) Cylsy): cy(sf)={r"t1(»r’~‘i,r'”t)ec(sf)] as the set of core nodes of

subgraph 77,

(iv) Tx(sy): TX(sI)=[LX"|Xi€2NX’—CX(sf);] as the set 6f terminal

nodes of subgraph X;,

(v) Ty(sy): Ty(sl)={L7;]}Q€§NY1—Cy(sI)§} as the set of terminal

nodes of subgraph Y;.

At any state s;=(X;,¥;)€S, we have the set of core nodes of X;
and the set of core nodes of ¥ in the form of matched pairs, as
represented by C(s;). The approach proceeds by expanding state ‘s]
through the embedding of a new pair of Basic graphs into X; and ¥;
and adding a new pair of matched nodes into Cy and Cy. This new

matched pair is chosen from the terminal-node sets 7y and Ty
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Subgraph X, : PRI : Subgraph Y

Clsy) = {mml)

CCxls) =) Tals) = {ngeg)
Cels) = (0} Tlsi) = (agh

© Plsy) = (UnVaMUs Vo)
Qlsy = (UsVa)Us.Val}

At state sg:

' ‘(! Q

Subgraph X; . - . " Subgraph f,_
Clsy) = {(many)} ‘
Cxfoa) = () Tlsa) = (ay0,)
Cyisa) = 18 Tylsa) = o)
Pl = (U, Va0, Val)
Qisa) = UV

Fig. 5.5 Information Represented by States in the State-Space

Representation
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At state sy

‘ Subgraph Y,
Subgraph X, .

Cisa = (i)
. 'cx“s) =(n,) " Tisy) = {njmg)
Oyl =) Tylsy) = (g}
Pls)) = {(Up VU Val}
Qsa) = (U Va))

At ét:&@e s¢

Sibgraph X, - v ' Subérapﬁ Y, -

Clsy) = memi) -

Cxlsed = 10} - Tlsd) = (u)

Citsd =m)  Tlsd) = tng)

Plsy) = {UsV3)) '
Q) =)

Fig. 55 (Continued)
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At state sg:

Subgraph )Q Subgreph Y5
Clss) = {npmyh{nzna)}
Cylsg) = {ngmgd  Txlss} = {nang)
Cylss) = {nyngl Tilss) = {2}
Piss) = {(Us.Val{UgVal) )
Qlss) = {{Us,Va)}

At state s

Subgraph Xg Subgraph Y,

Clsg) = {(nynilnyna)}

Cylse) = fnn-ﬂ:) © Tylse) = {ng}
Cylsg) = (npna} Tylsg) = {03}
Pleg) = (UzVs))

Qo) = (9}

Fig. 5.5 (Continued)
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At state s,:

Subgraph X, Subgraph Y,

Cle) = {(ny.no)ngmy)).
Cxls1) = {nyns)  Tylsr) = {ngny)
Cylsz) = {ny,ny) Ty(s;) = {ng)
Pls) = {(Up V) (U, Vy)

Qsr) = (U, V)

At state sy

Subgraph X, Subgraph Y,

Clen) = {{nyng)ngny)

Cxlte) = {nyng)  Tifsg) = (ng)
Cyiss) = {ny,n,} Tylss) = {ng}
Plea) = (U, Vy))

Qlse) = {8}

Fig. 5.5 (Continued)
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At state sg:

T Subgraph X ' : -+ Subgraph Ye

Clsg) = {{mpny)(ngn;)f05,n5)}

Cxls) = {ny.ngn3} _' Txisp) = {n,}
Cyisy) = {n,0gms} - Tylse) = {4}
Plsg) = {(UgA)}

Qs = (W)}

© Al state sy

Clsio) = {(n,,ny).(n3,0,),(ny,04}

Cxisil = (00205} Tfsia) = {0}
Cylsis) = {0905} Tylsio) = {8}
Pls;o) = {{UgA)}

Qlsig) = {(UgA)}

Fig. 5.5 (Continued)
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At state 53

:Subgraph X3 ' Subgraph Y5

Clsgg) = {(npna)

“Cxlsw) = (0} Tlsig) = (aymg)
Cytsns) = o) Tvlona) = (ay09)
Plsig) = ((UpViM(UpV3h{Us, V) Us Vo)
Qsya) = (U2 LU V3 Us Vi (Us V)

Fig. 5.5 (Continued)
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accofding to some heuristic criterion which we call "Feasibility

Condition" that has -to be satisfied; we will explain this criterion,

‘discuss its justification and validity, and give its algorithin in Section

5.3.4.

At any state s;=(X;,%) in the lattice, let t, and t, denote two

nodes in the terminal-node sets of the subgraphs X; and Y

| respectively, ie., t, € Ty(sy) and tyéTY(SI). Let X; and %, be the two

X, X
BARGs for which £, and t, are the root nodes, i.e., X = (.5 = I, t”),
and Y, = (4.8 % 1%). We formulate a set, P(s;), as the set of
possible pairs of (X,x,.Yty), of the form:

Pl = (X,, i RURCKe, MIVRA Y, )} | €T () by €T (s1)]

P(sr) denotes the set of candidate pairs of basic graphs to be

‘matched; if they satisfy the feasibility criterion. We augment the set

P(s;) to include E(Xt 'A)}' and {(A, Y,, )} in order to encormpass the fact
that the two graphs U and V are not necessarily of the same size,

and thus some modes’ may be deleted.

Next, we check the feasibility of pairs (th,Yty)eP(é;) and let set

" Q(s;) be the set of oilly those pairs which satisfy the "Feasibility

Condition", i.e.,

Qs = 0, 7)< (5 PBASIZLE, ). Cx(o) Crr). T Tt
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Then, Webexpar}'d the state s; by creating new states, e.g., state

s;, which corresponds to the embedding of a pair of ()Qz,)@y)EQ(éI)

into the already reconstructed subgraphs X; and ¥; of graphs U and
V, respectively. We also label the branch (s;s;) to denote- the

incremental distance resulting from the 'embelddiri‘g of (X, %, ) into

(X7,Y7) to cfeate (X;,Y;7). The formal algorithm is given below.

ALGORITHM 5.1 :

Purpose :

To generate the state-space representation for the

distance calculation and inexact matching between two

- ARGs. -

Input

Output

Method
1. Let -

Two ARGs U and ¥, each of which is decomposed into a
set- of BARGs given as U={U,,Us,.... ,UHS and

A Directed Labeled Lattice of states S={sqs,...51},

where the states are labeled as s;=(X;,Y;), XCU, Y;CV,

‘and the branches are labeled as w(s;,s;).

so « (AA)

Il FOR i:=1 to M DO
FOR j:=1 to N DO
BEGIN
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s e 0. X=Uel, n=veh,
2 S‘- SUfsli-"k |
8 w(ses) © fan(O 7).

4. sx « 51

: B 5 Let C(sg) denote {('rX"'r'Y")[ (X, Y;,)E{(X;(;.Yx)f }

Cx(sx) denote { | (% ")EC Sk) }
sK) denote {'rY"I r®)eC(sk) }
Tx(sg) denote [ "l X €N K~ Cy(sk)} }

, (SK) denote { ’°| Y €§N K"CY(SK) ]

Pls = { (X, % UE0K, AV UK )3 | € Ty (s, ty € Trlsx) } |

6. Q(SK) &~ |

{oa %, )eP<sK) |FEAS!BLE<(& ¥,).Cilsx), Cr{sn). Tx(si), Ty(sx»].

T For all (Xz Y)EQ(SX) DO
M) X e Kual
- (i) %« BUtn | |
(iil) w(sg.ss) « dugr(X. 1)
" (iv) IF NOT((X;.¥,)eS) THEN DO
LS e SUlxL )

CSg < &g
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GO TO STEP (IL5)
8. END FOR |
L END  ALGORITHM 6.1

5.3.4 The Feasibility Criterion

At any state (sI) in the Lattlce we view each of the

reconstructed subgraphs XIQU and YIQV as cons1st1ng of two norn-

overlapping sets of nodes namely the core-node set and the

terminal-node set, i.e., CX(SI) and TX(SI) for subgraph X;, and. Cy(s;)

and TY(S[) for subgraph YI The nodes in the core-node sets are
matched in palrs fornnng the set Clsy), Where c= (fr T ‘)EC(SI) as
- shown in Section 5.3. 3 ‘

e define a Feasibility Criterion based on the following idea:

At a state (s]) along a certain path in the Lattice, We consider

the core parts as matched pairs, and thus any new matched

‘ palrs to be added to the cores at this state must comply with
this fact. In other Words, the core parts are already matched in
vp’airs and the approach p'roceeds to match the rest of the nodes
by checklng every pair of the termlnal riodes, at this state, to
determine whether they are a feas1b1e next matched pa1r ie.,
~ whether considering them as a matched pair will require any
‘changes to be made on the matching configuration of the core

- parts at this state. This is done by checking that their
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‘respective neighbor nodes are matched in accordancewith‘the
‘matching configuration of - the core parts at the state .

- considered.

If a pair of terminal nodes does not satisfy this criterion, it is
called an infeasible pair. If a candidate pair 1s infeasible, the
expansion of the state by adding this pair of terminal nodes into
the core parts is d1sregarded and the remaining candidate palrs

are cons1dered

Th1s criterion is presented below by Algorlthm 5.III. "In brief, the
algor1thm checks the leaf nodes of both X and Y. If a leal node of
X, is in Cy(s;) then there ‘has to be a leaf node in ¥ that is

- matched already with it according to the set C(s;), and vice versa.

Otherwise the pair (X, Y%) is considered infeasible.

" ALGORITHM 5.1 :

| Purpbse : :i To ‘check the fveasibilityi of embedding a pair of Basic

graphs (Xk Y.) into the a]ready reconstructed subgraphs
‘ XICU and YIQV, at state s;

Itnput , ,:v 5
1 The two reconstructed subgraphs of state s7, ie., (X.Y1),
| Whlch is represented by the sets C(s_f) Cx(s7), Cy{sr), Tx(s1)
and Ty(s;).
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2 A pair of cz—indidate BARGs (Xt,.Y:g)« |

Qutput True - _if‘the émbeddihg of (thl},tv)-mtp (X;,Y;) is
- feasible, | -

False - otherwise.

‘Method

Ly <L, and
FEASIBLE « TRUE .

II. WHILE Ly is NOT empty DO
1. L« an arbitrary node in Ly.

2. IF l,cCy(s) THEN = S
IF there exists l €Ly such that (Iz.L,)€C(s;) THEN

Ly « Ix~{L} ,

ijY < Ly=th3
GO TO Step I1.3
ELSE o
 FEASIBLE « FALSE,
GO TO Step IV
ELSE
IF I,eTy(s;) THEN | |
IF there exists l,€Ly such that b niatches Ly
THEN | o -
Ly « Ly={i;3 ,
Ly « Ly—{ , § ,
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GO TO Step 113
ELSE
| FEASIBLE « FALSE,
GO TO Step IV
ELSE |
Ly ¢ Ly={.4
GO TO Step IL3

3. END- while
- III. WHILE Ly is NOT empty DO

1. 4 « an arbitrary node. in Ly .
2. IF 4,€Cy(s;) THEN
" FEASIBLE « FALSE ,
GO TO Step IV~
ELSE o
IF 1, Ty(s;) THEN
FEASIBLE « FALSE
| RN GO TO Step IV
: o | Ly « LY*‘%?,:
GO TO Step IIL.3
3. END while "
V. END  ALGORITHM 51



116

' 5.3.5 The Optimization Problem

The problem now is fo find the Shortest-Path over the state
Lattice, which consists of a set S of states and a set R of directed
branches, from the Initial State (so€S) to a Final State (sr€Sr),
where Sp is a set of Final States. Formally, the Shortest-Path
Problem over a Acyclic Directed Lattice has a solufion by Dynamic
Programming which has linear time complexity in the number of
states in the lattice. The Dynamic Programining (DP)‘ technique,

[deha82], [dena’?Qa], [dena79b], performs an intelligent search over

all, but only, the feasible paths in order to find the shortest path.
This techniqﬁe divides the problem into stages at which decisions
take place; it finds a recursive relation which moves backward from
one stage to the previous stage, i.e., it decomposes the problem into
a sequence pf smaller problems which can be $solved recui“sively one

at a time.

Fortunately, the state lattice generated by our approach is
already divided into stages from stage 0 up to stage H. The order
of the stage represents the number of matched-pair nodes in the
core parts of subgraphs X; and ¥;. The DP technique starts from
the last stage in the lattice andv proceeds backward one stage at a
time until it reaches the initial state of the lattice. The general
subproblem for this problem is :

Suppose we are at some arbitrary state S_;ES,"What state should

we go to next so that the path from state s; to a final state will

have the shortest possible length?
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This state is chosen in the best possible manner; thus it is a

- state (say sy;) in a path from sj to a final state, and it achieves the

following:

where (0

D{(s;) = ming,syen {w(sps;) + D(sy)

is the set of all branches emanating from state sy, such

that (sf;s_,) is on the path from s; to a final state . The algorithm

for this problem is given below.

ALGORITHM 5.IV:

I.nput

,Pu.rpbse‘ i

To find the Shortest-Path from an> Initial State to a state

‘ina set of Final States, qvef an Acyclic Lattice.

| " Acyclic Directed - Branch-weighted Lattice represented

by

S={s0.5,.52 . . . Sz} & set of states , divided into H stages

of the form S={s%ystys?y. .. S}, where S*cS is the

“subset consists of all the states at stage h; S%={sgleS is

~the Initial State; SpCS is a set of Final States.

RCiRy=(sr,ss)|s1&s;eS4: a set of directed branches; for all

Ry€R, if s;€S™ then s;€5™*! for O<h<H.

- . 'The Total Distance of the ‘S_hor,test-P.éth from the Initial

State to a'F‘inaIS»t’ate, denoted- as D(sq). -



* The Final State of the Shortest-Path, denoted as F(so).
Method |
L .FORI- OtoLDO
' IF sfesF THEN DO
D(s;) < 0,

F(SI) esp
ELSE Do D(sl) -

ii‘. H‘FOR hi=H-1 to 0 DO | o
N ' FOR all 57 € sh Do DR ; .
‘ D(Sz) “ mln(s,s,)eR i‘w(sz SJ)+D(SJ)
, | . F(SI) < F(SJ)
I END'[,ALGORITHM 5IV.

. 54 Computational Complexity Analysis -

It1s a- well known tact, unfortunatel'y, that the graph-to-graph .
: distance probl'ern belongs to the ’ciass of NP-complete problems‘
" This dlstance is deﬁned as the cost of the mnumum total-cost -
sequence of error transformatlons which should ‘be performed on one
graph to_ pro;duce the, other grap;h}_ Any conventlonal search
algorithm e.g., backtrack’ing,' T‘/vill' ' reqmre expone_ntral ‘.tirne.
Moreover several mtelhgent search technlques eg “branch and
bound, forward- checklng,.or look—ahead search, even though. thelr
average performance may not be that bad but the1r worst case
,complemty will stlll be exponentlal In tms sectlon we 1nvest1gate "‘
the computational complex1ty of our approach as presented by the |

algorlthms 1n Section 5. 3
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Suppose that our 1nput are two ARGs, U and V of ¥ and N
nodes respect1vely ‘Let 8, a constant denote the max1mum number
- of’ branches emanatmg from- any node in' U or V. The first part of
~ the approach is to decompose both U and V into Basic ARGs. It is
clear that this is done in l1near time for each of the two graphs ie,

' .'has time complexity of order »(M +N).

» The second part of the approach is to generate the mult1-stage
s state-space lattice Wh1ch descr1bes the states of reconstructing the
decomposed graphs. - The 1n1t1al,:state of the process composes stage
10 of the lattice. A state s; in a stage J of the lattice, if the set of
' matched-palr of core nodes at th1s state consists of J elements ~We
, expand the state s; in stage J 1nto a subset of states in stage J+1
,_each of them denotes the add1t1on of a new pa1r from the set of
termlnal nodes at sy 1nto the core. nodes ‘For the general case of
o calculatlng the dlstance between U and V the Worst case for the
number of stages in the latt1ce is M+N. For some more spec1ﬁc
cases such as’ cons1der1ng one graph as a reference graph and use
- the approach to determine the best matclung subgraph of the other
_: graph ‘the number of stages w111 be less as we wﬂl discuss later in

' ,fth1s sect1on o

, The subgraph 1somorph1sm problem and 1ts related versions have _
exponentlal worst—case complex1ty But in practlce most subgraph
'isomorplnsm algorlthms behave far better than that for real‘ |
apphcat1ons In [hara’?B] and’ [tsa18dl it is assumed that a typ1cal
search tree w1ll reduce to Just a s1ngle line W1th few branches at
» each tree level and Wlll contam total number of states of order omz ,
_Where n 1s the nu1nber of nodes in the graph and o is a constant

',taklng care of the branches 1n the graph In our approach we
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cons1der a reasonable assumptlon Whlch is Justlﬁed by the. result of.

. -our 1mp1ementatlon that each stage of the state—space 1att1ce

‘contams number of states in the order of GMN where 5 M, and N.

are as ‘defined before (or SN? if M= N) Since the worst case for the
number of stages 1s M+N thus the . total number of states 1n the

1att1ce is of the order of 6MN (M+N)

Now we d1scuss in detall the complex1ty analys1s of the second

- part of our approach whlch generate the state- space lattlce ‘The

generatlon of stage 1»requ1res tirme T,= (cl+02)M where ¢, is a

constant for assigning the state label, and ¢g is a. .constant for

’ calculatmg the 1ncrementa1 d1stance between twa Baslc ARGs, thus it =

depends on 6% At state sy in stage j, since lC(sI)I—], thus the sets

of core nodes of subgraphs X and Y; contalns at most j nodes each,

!CX(SI)1<J and ]Cy(S])]<j Therefore the upper-bound for the-»

number of nodes 1n the termmal node sets at thlS state is 36 for

each subgraph ie., ]TX(31)1<36 and |Ty(SI)]<]5 A more - accurate -

estlmate for | Ty(ss)| and ITy(S[)l can be obtamed if we assume that
the branches in both U and v are evenly d1str1buted over the nodes
t’here'fsore ]TX(Sj)|S_75 1’—;-1,—) and ]Ty(sf)[s__q 6(1—;,7.\[—). The quant1t1es

) _7(1—-1—) and _7(1-—-7——) have ' upper hmlts at j=£2{‘ and _7=.[2_V_;,

vrespectlv‘ely Therefore ITX(sI)|<—-2i and ]Ty(sI)|<%‘5—’ Thus, the

‘Tupper hm1t for the total number of validity check of condltlon
&% MN

_FEASIBLE at state 7 in the lattlce is

reqmred by the feas1b111ty checking algorlthm, then the upper limit -

GMN

of tlme for feas1b111ty checkmg at th1s state is 7—— 7y

If T is the t1me
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It can be easily seen that, with proper implementation: of the
heuristic .algorithm : FEASIBLE, it needs time T=cg6? where c3 is a
. constant time”needed' to -make a izariable assignment. Therefore,

‘the worst case t1me required-,forvfeasibi‘lity.checking at state s; in

the lattice iscsa MN - Usually only a fraction of the checked pair of

4

~ Basic ARGs will - satisfy “the . feasibility criterion and will produce
- states in the next stage of the lattice, thus the time required for
| .feaSibility checking ‘represent a dominating factor in the analysis of
lour 'approach as we Will Seev The total time needed as a Worst case

' estlmate at state s, in the lattlce is:

tg = 036 MN + 6MN(cl+cg+c4) = O(MN)

jWhere c4 1s the constant tlme requlred to compare two states all
the other - parameters are -as defined before, . and since. § is a
.constant The max:mum number of states in  the lattice is
5MN(M+N) therefore the upper . bound estlmate of tlme needed to

'vgenerate the lattlce is given by

7o = (cl+02+cs%— +c4)6M2N2(M+N) = O(MBNZ(M+N))

. The thlrd part of our approach is to ﬁnd the shortest—path over
the multl-stage state space lattice from the des1gnated initial state
: to a ﬁnal state. As we dlscussed before with the. presentatlon of our
' algorlthm th1s problem is solved by dynamlc programm.mg in- linear
time. Therefore it is dommated by the complex1ty of the second

part of the approach as 1nvest1gated above

In summary ‘the upper—bound of the overall complex1ty of our
approach for the general case of calculatmg the distance between
any two _ARGs U and V is of the order 85 M2 N?( M+N),» Where- M and N
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are the number of nodes 1n U and V, fes,peotively, and 5 is’a
constant representing the maximum number of branches stemming
from any node in U or V. In the remaining part of this section we
eonsider some specific version of this problem and investigate how

their complexity differ from the general case.

_ One special version of the problem is to conslder V as a
prototype ARG of N nodes and U to be deformed version of V. The
obJectwe is to find the minimum total cost sequence of error-
transformatlons whlch must be performed on U to produce V. In
th1s case the maximum number of states in any stage in the lattice
will be of order 6N?, the number of stages is N, with all the final
states are located in stage N. Therefore, the total number of states
in the lattice is of order N3, and following similar steps as show
above, the upper bound of the overall computational complexity of

the approach in this case will be 6°N° (i.e., O(N®)).

Another speci'alvversion, we assume that there is a node of U
and a node in V which are used as a registration matched-pair, as
was assumed by Sanfeliu, [sanf83a]. In this case, this matched-pair
will denote the initial state in the lattice and thus the upper-bound
on the total nUmbei‘ of states in the lattice will be of order N? (or
N(M+N) for the general case), thus the overall complexity in this
case reduces to §*N* (i.e., O(N%)).
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CHAPTER VI

APPLICATION TO IMAGE. UNDERSTANDING
AND EXPERIMENTAL RESULTS

6.1 Generalv

The hierarchical scheme presented in Chapter 4 of this thesis, is
a powerful scheme for the extraction of high-level (or global) image
representation from low-level (or local) input images. It combines
both the model-driven and the data-driven concepts. The model-
driven principle is basically the top-down deconiposition of object
models, that are used to configure the graph transducer utilized in
the scheme, eg., to decide the choice of the alphabetsv, the
neighborhood configurations, and the adjacency relations between
the primitives. Thus, the model information is represented by the

hierarchical graph transformation of the scheme.

On the other hand, the data-driven concept is basically a
bottom-up procesé which is performed in that scheme by the
mapping ‘of the ‘thev input local alphabets of the bottom layers into
the more global alphabets of the upper layers. The scheme is shown

to be powerful and very useful for a wide variety of machine
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intelligence applications, in which a global knowiedge representation

is required to facilitate the further processing. As we discussed in

Chapter 1, the extraction of an adequate representation is the main
objective of the first phase of most knowledge processing systerms,

to which image understanding systems belong.

Further processing of the information takes place in the second
phase of the system. Such processing is usually performed on the
extracted representatmn In a wide variety of applications, the
concept of defining some. distance or similarity measures has been
shown to be very useful in several decision makln,g processes, in fact

it is a very 1mportant concept in the fields of de01s1on theory,

function analys1s mference procedures learning, ete.

_Some of :the very useful forms of knowledge representation
utilize = relational structures to 'represent sets of interrelated
concepts, evidences, or objects. In Chapter 5, we have presented a
new efficient approach for computing a distance measure and finding
the best inexact matchlng configuration between general purpose
relatlonal structures of the form of attributed relational graphs.
Attrlbuted relational graphs ‘are shown to be a powerful
representatlon tool Whlch cornblnes both the syntactlc and the

semantic mformatlon 1nto sets of attrlbuted nodes and branches

In this chapter, we discuss the application of the concepts and
techniques presented in Chapters 4 and 5 in an image understand'mg
system. The experlmental work reported in this chapter cons1sts of
two 'maJor application experiments. Experiment [ concerns W1th
locating‘ objects in a scene composed of complex overlapped objects,

while Experiment I deals with target detection in highly noisy and
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distorted images, speciﬁcally, we apply our techniques on Synthetic

Aperture Radar (SAR) images. In the remaining parts of this
chapter, we briefly comment on the concepts of our techniques and

explain in details how they apply to each of the two experiments.

Figure 6.1 shows the general block diagram of the system which
we use in our application experiments. The input data to this
system is in the form of raw images defined as arrays of elerrienis
(or pixels) which take values over a gray scale. In Section 6.2, we
comment briefly on the input image data and the preprocessing
performed by the system. Due to some particular characteristics of
SAR images, we devote Section 6.2.1 for discussing the nature of SAR
images and the preprocessing performed in Experirﬁent II, which

deals with the SAR images. The utilization of the multi-layer

hierarchical scheme, of Chapter 4, for the extraction of image global

representation is discussed in Section 6.3. In the same section, we

also present the hierarchical graph transformations which are used

in our experiments.

The extraction of an attributed relational graph representation

from the output field of the hierarchical scheme is discussed in .

Section 6.4. In Section 8.5, we comment on the application of the
graph distance and inexact matching approach which is proposed in
Chapter 5, into our ‘experiments. This is basically done by
measuring the distance, or similarity, between the attributed
relational graph representations of the input image and of some
object models; and extracting the matching subgraphs of minimum

distance, or maximum similarity, between the two attributed
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Fig. 6.1 Block Diagram of the Proposed Image Understanding System
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relational graphs. In Section 6.6 and 6.7, we present the results of
Experiment I, for locating objects in multi-object scene, and

Experiment II, for target detection in SAR images, respectively. -

5.2 Input Data and Preprocessing

6.2.1 General

Imaging peripherals usually deliver images on the form .of two-
dimensional digitized arrays for the signal falling on their receivers.
This form of raw representation 1is called the spatial domain
repfesentation of images. A typical'raw imagev consists of a 2566x256
array of cells (or pixels), that take values over a 0-255 gray scale.
The value of each cell represent the darkness of a very local
element area in the image. Figures 6.2, 6.3, and 6.4 show examples
of typical images which are used in our experiments. Images, as
well as most other information sources, are usually burdened with
noise, distortion, and uncertainty. Moreover, the data entities in the
spatial domain image representation possess a very strict local
nature. This is usually the case in most knowledge processing
. systems, where the input information is usually on the form of local
entitiés, while the analysis and decision must be made based on

some global meaningful configuration of these local entities.

The construction of some meaningful global representation from
the input imagery data is presented below in Section 6.3.
Nevertheless, some very simple preprocessing is needed to prepare

the input raw images for the hierarchical scheme used in Section
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‘ | . Fig 62 An Image of a Model Object
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of vSan’E.a Barbara Area
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6.3. In Section 6.2.2, we present the preprocessing techniques which

" are utilized in Experiment I. In Section 6.2.3, we discuss the SAR

image data and the preprocessing techniques which we propose to

handle the noisy nature of SAR images wfhich‘ are used in

Experiment L.

6”.2-,2:' Preprocessing of Multi-Object Soenes

In EXperiment I, we use very simple pre‘p‘rocessing on the form
of a conventional edge operator, namely, “the Sobol edge-operator
over 3'x3 windowi,s ‘This operator is available on. hardware chips and
is relatively fast.  Figures 6. 5 and 6 6 show the result of applymg
that operator to the 1Inages of Flgures 6.2 and 6.3, respectlvely

The edge image is then thresholded and th1nned using some simple

standard techmques to extract the contours of the different regions
in the unages. The results of these operatlons on the images of
- Figures 6.5 and 8.6 are shown in Figures 6.7 and 6.8, respectively.
‘The thinned image vis now given as input to the hierarchical scheme,

which is presented’ in Chapter 4, as shown in Section 6.3.

6.2.3  Preprocessing of SAR Images

The processing of aerial images, vin"general, and the Synthetic
Aperture Radar (SAR) images in particular, is a challenging task.
This is not only due to their low signal-to-noise ratlo but also due to

the vast diversion of the shape, the relative size, ‘the nature, and
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’

Fig. 6.6  The Result of Applying Sobol Edge-Operator
to the Image in Fig. 6.2
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Fig. 6.6  The Result of Applying Sobol Edge-Operator
to the Image in Fig. 6.3



in Fig. 6.5
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Fig. 6.8 Thinned Edges of the Image in Fig. 6.6
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the informative features of the interesting objects in these images,
[eshe83], [leej81]. Therefore, a relatively sophisticated preprocessing

technique is needed for the analysis of this type of images.

The multi-résblution concept seems very appealing in the
processmg of aerial images, since one of the major characteristics of
these images is the vast dlver31ty of the objects that may exist in
them. Some different objects may have the same shape but
different sizes or different relative dimensions. A clear example of
such a case is the difference between highways and airport runways,
where the size and the ratio of width-to-length become major
discriminative features. In this experiment, Experiment II, we use
a mu]ti-resol}ition technique in performing preliminary region-based

seg_nientation using split-and-merge approach.

In ordef to efficiently perform the preliminary segmentation on
the SAR | images of Figure 6.4, »We» utilize ‘th.e mﬁlti—feéolution
technique‘ ‘in a Split-and-merge region-based segmentation and
combiﬁe it with edge-based segmentation This is basically the form
of preprocessmg which we utlhze in this experiment, as we explain

in more. details in the remalmng part of t].’]lS sectlon

We assume that only the approximate size of objects in terms of
the area represented by each pixel is known. Starting from the
image with a suitable low resolution, we use a simple thresholding,
e.g., thresholding over the gray scale or the variance of the
sublmages to obtam a low segmentation of the image. The results
of this rough segmentatlon is then used for further segmentation at
ne -2 ﬁner levels of resolution. The formal algorithm for this

technique is given below.



ALGORITHM

Purpose :
Input :
Output :
Method :
L.
I
1.
Iv.
VL.
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6.1 : Multi-Resolution Region-Based Segmentation

To perform split-and-merge - multi-resolution region-

based preliminary segmentation
A gray scale image

Segmented image containing the candidate objects

Obtain a suitable rough resolution image based on

the approximate size of the interesting objects.
Obtain a segmented image I, using some simple
criterion, e.g., simple thresholding of the gray
scale values. |
Obtain a finer resolution image.

Obtain a segmented image /5.

Mask 7, by 7, in 7.

From 7., pick up the pixels which are adjacent to

object pixels in /3 and move them into /s.

VII. Repeat Step VI, until no more pixels can be added

to Is.

VIII. END ALGORITHM 6.1

The objective of this experiment is to detect some targets of

interest in Lhe SAR images. Specifically, in this experiment we alm

at detecting airports in the SAR image of the Santa Barbara area.
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In general, airports are characterized, from their region-based
features as relatively large and uniform flat regions which exhibit
high reflectance. From their shape, ie., edge-based features, they
are characterized as consisting of some runways, usually two or
more, that take the form of relatively long but not too narrow fat

areas.

The results of applying our technique and Algorithm 6.I to the
Santa Bafbara SAR image of Figure 6.4 are shown in Figures 6.9
through 6.12. The resﬁlting image contains the candidate objects
‘based on the region preliminary segmentation. Then the system
focuses the attention on some mask areas around the candidate
objects, and concentrates the edge-based segmentation within these
areas. Figure 6.13 shows the extracted edges within the focus of
attention areas, usihgybthe Sobol local edge-operator. It can be
easily seen from that figure that the extracted edges of the
candidate targets are very noisy and distorted. Nevertheless, we
utilize this preproces'sing results to perfofm higher level analysis of
" the SAR images, where we extract an attributed relational graph
representation from the image and perform the inexact matching of
minimum global distance between the extracted ARG representation
of the image and that ARG representation of the target model as

shown in the block diagram in Figure 6.1 and explained in the

following sections.



139

Fig.
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Fig. 6.11 Mask Areas Around Candidaic Targels in the

Santa Barbara SAR Image - o
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Fig. 6.12 'Edg:e-"baSed Sggmeni

at‘io;;(\i for Image in Fig. 6.11
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6.3 . The Ex_traction of '}mage’Glﬁbal Re;presentation
8.3.1 General

One of the major difficulties in computer vision and image
understanding, as well as most knowledge processing, systems is due
to the very sﬂrict locality of the input image entities, or the input
knoWle’dge in general, which carry very little useful information, if
taken individually. To achieire, meaningful image understanding
tasks, the system needs to comprehend the input information in a
global form, similarly in other knowledge processing systems,
coinplex relations among the input information entities, (or
evidence) are usually required by the decision (or conclusion)

making stage in the system.

In ‘thj.s section, we investigaté the utilization of the multi-layer
hierarchical scheme of Chapter 4 for the extraction of a global
attributed symbolic representation from the input ‘images. The
input to the scheme is on the form of two-dimensional array of cells
which take values over a very local input alphabét, as Wﬂl be shown
in Section 6.3.2. A transformation mapping' is driven by the input
data and performed over the cells of the scheme field to map these

cells from the input local alphabet into a global alphabet.

- The output alphabet of the hierarchical transformation at
diﬁérent layers in the scheme is designed according to the
decomposition of the candidate complex objects into relatively
simpier features (or image primitives). The ‘image alphabets of this

experiment are discussed in Section 6.3.3. The neighborhobd
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configuration ;among* cells of. the scheme field, the adjacency
predicate between output symbols, and the mapping function of the

hierarchical graph transducer are presented in Section. 6.3.4. ' The

extraction of ARG representation from the field of the scheme is

discussed in Section 6.4 and the results of Experimentsfl and II.are

presented in Sections 6.6 and 6.7, respectively. -

6.3.2 The Input Alphabet

- Images are presented ’to the multi-layer scheme in the form of

two-dimensional arrays of cells which are assigned values from a set

of local symbols, which are measured from real scenes by some

other available means. The set of input symbols is usually taken as

the input alphabet of "the“, hierarchical graph transducer. In both

' Expériment 1 and Expériment II, the input to this scheme is in the )

erm of thinned edge image, th‘erefore','we choose the input alphabet
. to be the simple binary set of black and white image pixels, as was
shown in Chapter 4, Figure 4.3-(a).

6.3.3 The Global Output Alphabet

Usually in the structural appr‘oach' to inia'gé anaily:éis‘ "and

understanding, objects in the images‘ are décorhp'osed. into sets of

_sub—objeéts, (or features). In turn, coﬁipiléx‘_féaturés'_' are-

deco'mp_c')se,d into sets of simpler features, (or primitives), in a
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recursive manner. Therefore, complex objects are decomposed into
sets of primitives, which are easily measured by some conventional
vision peripherals, or obtained by some simple preprocessing

operations from the raw images.

As we discussed in Section 6.3.1, we extract thinned image edges
from the raw images through some preprocessing. The output of
the preprocessing operations takes the form :of two-dimensional
binary array of local image pixels. In this section, we present the
design of a hierarchical feature alphabet which is used by the
multi-layer scheme for the extraction of global image representation.
In both experiments, we select to reprgsént complex objects by

their contours.

In this case, elements of the output alphabets of the
hierarchical graph transformation are defined as line segments.
Symbols of the alphabet at low levels in the scheme represent short
]ines; since the ﬁeld cells at those levels cover relatively small areas
in the image. On the other hand, symbols of the alphabet at higher
levels represent relatively longer line segments, since cells of the

schéme field at higher levels cover larger areas in the image.

In general, the - hierarchical output alphabet is on the form:
Yo = iuz}bi.| i<i=<l}, where [ 1is the number of layers in the
scheme, and Z,% is -the alphabet at the #'th layer of the scheme.
Each element of the alphabet at the ¢th layer, ¥o', is composed of a
_group of elements of the alphabet at the (i-1)th layer, oY, such

that an element of: that group -oécupy a cell in a certain
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néighborhood configuration. The neighbofrhood ‘configurations are
defined by the neighborhood predicate K, as will be shown in Section
6.3.4. |

In our work here, the output alphabet of the first layer of the
transformation, Zgl, is taken to represen’la the digitized line
segments over 3x3—pixel windows, as shown in IF/igure 8.14. While,
elements of the alphabet of the second layer, Z,% are composed of
those elements of Zp' which are laying in a’group of neighkbo’rihg
cells as defined by the predicate K of the transducer. Elements of
Io° represent arbitrary line segments over 7x7—pizel (221-1x2%+1-1)
windows, as shown-in Figure 6.15. FEach 7x7-pizel window is formed
from a central 3x3-—pixel window and its contour-surrounding
3x3—pizel windows, as shown in that figure. That configuration
provides overlapping among low level elements that form the same

higher hierarchy element.

Similarly, elements of ng are composed of those elements of o?
that are laying in a group of neighboring cells and forming longer
lines, that are defined over 1arger windows, namely 15x15—pizxel
(28+1—1x2%*1-1) windows. In general, elements of the alphabet of the
ith layer, %%, are composed of elements of the alphabet of the
(i—1)'th layer, Zo*77, which lie in cells of the same neighborhood. A
symbol e; € Z,° represents, in this case, a line segment that passes

through the center cell of a (2t*!-1x2i*!1-1)—pizel window.

The digitization noise is handled by the proposed approach
through specification of the function Q@ which defines pairs of
alphabet symbols for every pair of adjacent cells in the

neighborhood configuration. Moreover, the proposed hierarchical
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Fig. 6.14 Image Features of Zo! € o
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Fig. 6.15 Image Features of Zo° C Zg
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o each center cell to form nine cells nelghborhood conﬁguratmns '

150

the transformatmn mapping, as we will show later in this chapter

" how the scheme can handle broken line segments 1n the images.

The detailed deﬁmtlon of O for both experlments is given in the next

section.

6.3.‘4 The Adjacency Predicate and Mappjng .E‘unction

The adjacency predicate R is used to deﬁne. _groups' of
_neighboring cells at different layers of the scheme. In these

expenmen’ts at the first layer we use the eight-nearest ne1ghbors of-':'

"Each of those e1ght cells is said to be ad]acent" to the center cell

~graph transducer can handle other noise and distortion by modifying -

and vice versa. The mapplng function Q at this layer defines pa1rs' '

of p0331b1e adjacent output symbols for every pair of ad]acent cells

while the func’uon & defines the correspondence between input and'

output symbols. Both 0 and &; for these. exper1ments are deﬁned in

F1gure 6.16. At this layer, ‘the graph transformatmn maps the 1mage .

‘. from ‘the 1nput alphabet, which is the binary set as defined over
: 'smgle_ pixels, into elements of Zp!, Wh1ch is shown in F1gure 6.14,
- and déﬁned over BXS—p?xel Wmdows Each cell in this layer of the-'

scheme represents a poss1b1e l1ne segment which passes through:

'»,t.hls cell and lies in its surroundmg 3x3—pizel Wmdow Thus, the

‘,'transformatlon of the first layer maps the scope of the ﬁeld cells :

o from s1ngle pixel mto Bxs—pwel W‘ll’ldOW
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In the second layer, the adjacency predicate R defines the 16
cells surrounding every 3x3 window of cells as the neighbors of the
center cell of that window, forming a neighborhood configuration

which has scope of 7x7-pizel window, as ‘shown in Figure 6.17. Each

~of those cells is said to be "adjacent” to the center cell and vice

versa. The mapping function @ at this layer defines pairs of possible
adjacent symbols, from Z,? for every pair of adjacent cells. The

function ¢ defines the correspondence between symbols of Zp' and

- Ip® for the center cells of every neighborhood configuration. The

transformation at this layer -maps the image features from IZ,!,
whose elements are defined over 3x3 windows of image pixels, into

To% whose elements are d‘eﬁned‘over 7x7—pu:el windows.

In general at ihe ith layer, the .transform'ation performs
mappmg of the scope of the field cells from (2"—1)x(2‘—1) windows of
image. plxels into (2‘“—1)x(2‘“—1) Wmdows of image plxels The
adjacency predlcate R within the ith layer defines the 4xRt cells

surroundmg every (‘2"—1)x(2‘—1) window as the nelghbors of the

~center cell of that window, where each of these cells is called

"ad]acent” to the center cell of the wmdow The transformation at

this layer maps the image features from elements of Iy, which

are defined over (2‘—1)x(2‘-—1) window of plxels into more global

’symbols of PHAS which are ~defined on larger windows of

(2‘“—1)x(2”‘“—1) image pixels. -
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o i1 X o
o (<)

Fig. 6.17 A Neighborhood Configuration of the Second Layer
in the Hierarchical Scheme

X : The Center Cell

o : A Neighboring Cell
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6.4 The Extraction of ARG Representation

The Multi-layer Hierarchical Scheme, proposed in Chapter 4 and
utilized here in this experimental work, performs mapping of the
image information contents from the spatial domain into the
alphabet Zp of hierarchical iinage symbolic representation, which are
digitized line segments of different length and orientatiorn. Elements
of the alphabet at layer 1, Yot C Zp, which is the subset of the
global alphabet at the 7'th layer, demotes line segments of different
length, while elements of the same layer denote line segments of
different orientation. The output’% field of the scheme is a iwo-

dimensional array of cells which take values over $5. Nevertheless,

‘the same information containedi in that array can be better

represented by an Attributed Relational Graph (ARG) of the form
presented in Section 2.4.2. | '
- The extraction of an ARG from the field of the hierarchical
scheme is a straight forward conversion of the image representation
from the ﬁeld_ of the hierarchical scheme into a graph form. An
ARG consists of a set of attributed nodes and a set of attributed
branches. The nodes represeht different features in the image with
aitributes representing the properties of the corresponding features.
The attributed branches represent the relations between the
diiﬁ’erent‘featuresv in the image. In Sections 6.6 and 6.7 below, we
present the ARG representations which are extracted from both of
our experiments, namely, Experiment I which deals with multi-object
sceﬁes, and Experiment II which is concerned with the SAR image

data, respectively.
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6.5 DistancevMeasure and Inexact Matching between ARGs

In Chapter 5, we presented a new eﬁ'lclent approach for
calculatlng a dlstance measure between two ARGs, 1n the general
form, and finding the best inexact matching conﬁguratlon between
components of the two ARGs. The best inexact matching between
the two ARGs 1s the matching configuration between cornponents of
the ARGs such that the distance measure between the two ARGs
~ possesses a global minimum. The overall distance measure between
two ARGs is defined in terms of the incremental distance (or Jocal
W‘eightS) between their respective comp’onents, ie., between the
nodes and the branches of the two A_RCs. The loczﬂ Weights between
| nodes or branches are assigned as functions of the respective
features or relatlons which are represented by those nodes or
branches respectlvely It is needless to say that these Welghts of
the. local error-transformations of node or branch 1nsert10n deletion,
or substltutlon are basically des1gn parameters that are problem
dependent we wﬂl 1]lustrate in Sectlon 6.6 and 6.7 for both of our

experlrnents

'Iéhe technique presented in Chapter 5 is ut_iliied for ﬁnding the
matcbin’g configuration of minimum global distance'. between two
attributed relational graphs for locating objects in an overlapped
multij—object scene, in Experiment I, and for target detection in SAR
images, in Experirnent II. In Section 6.4, we commented on the

extraiction of ARG representation from images. The attributed nodes

in thie; ARGs represent different image features in the images with
their attributes representing some properties of these features, such

as the length of line segments or the span of curve segments. The

branches - between nodes in the ARG represent the attributed



160

relations between the respective features represented by ‘those

nodes, as will be seen in Sections 8.8 and 8.7 for both Experiment I

- and Experiment II, respectively.

6.6 Locating Objects in Multi-Object Scenes

In Experiment [, we choose node and branch alphabets as shown
in Figure 6.18. The nodes are chosen to represent straight Line
segment (L) with length (I) as an attribute, Arc segment (A) with
length (1) and span (d) as attributes, and closed Curves (C) with
contour length ,(D as an attﬁbute, A branch between two nodes in
the ARG represents the relationship between the two features
represented by these two nodes. Branches are taken to correspond
to Joint relation (J) with attribute as the joint angle (¥), Intersection
relation (I) with the angle of intersection (¥) as an attribute, and
the relation between non-joint and non-intersecting, ie. apart or
Facing (F), features with attribute (d) represents the  distance

between the two center points of the two entities.

The set of image global features extracted from the single
object model image of Figure 6.2 is shown in Figure 6.19-(a), while
the set of relations between those features are shown in Figure

6.19-(b). The ARG representation of that image ‘is shown in Figure

, 6.20. Similarly, the set of image global features extracted from the

multi-object image of Figure 6.3, and the set of relations between
those features of that image are shown in Figure 6.21-(a) and 6.21-
(b), respectively. The ARG representation of the multi-object image

is shown in Figure 6.22.
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Node Attribute Alphabet : |

Entity

Attributes

Straight Line Segment : L Length :

I
Length : 1
Arc Segment : A
Span : d
Closed Curve : C Contour : 1

A={{L:1D,A:L 4, (C:D}

Branch Attribute Alphabet :

Relation Attributes
Joint : J Angle : 9

Intersect : I Angle : ¥
Facing : F Distance : d

E=§{@:9),0:9), (F:d}

Fig. 6.18 Node and Branch Attribute Alphabets
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GLOBAL FEATURES EXTRACTED FROM THE TRANSFORMATION FIELD :

| feature no. i  type ! attributes :
: 1 TR ; 144 ‘
: 2 foa - ! 54, 18 :
o 3 fod : 136 £
3 4 i a S 33, 24 H
i 2 HE - 39, i8 H
o 6 ! a : 36, 27 :
! 7 i c : s ‘

RELATIONS BETWEEN THE‘EXTRACTEDYFEATURES .

—— - - s . e o i e M M et B e Jore S T o S o T . . s

! relation i type i attributes ¢
i - HE - — H
! 1,2 T : 130 !
! 2, 3 S 1 165 ‘
H 3, 4 . : 140 H
! 4 5 Py ! 50 ‘
: 5, 6 g ' 40 :
: b 1ty : 150 §
i 1, 3 H £ H i2 H
] 2, 7 I ' 3 H
H 7y 5 H £ H 153 H
H 4, & H 4 { 33 {

vFig. 6.19 Global Features and Relations for the Sjngle—Object
| ~ Dmage of Fig. 6.2 | » |
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Fig. 6.20 Attributed Relational Graph Repres”entatioﬁ for the
’ Single-Object Image of Fig. 6.2 | ' '
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 GLOBAL FEATURES EXTRACTED FROM THE TRANSFORMATION FIELD :

‘feature no.

H H t. attributes {
! - e § o e i ] e - - =i
e 1 HE | ; iz2 i
. 2. - B .36 24 ;
4 3 {a 1 39, 18 :
: 4 ! oa EE 33, 24 H
v 5 - i1 ! 136 o !
{ & ‘. a ' 51, 15 H
4 7 foe ! 12 o :
! 8 ! a ! 90, 84 H
! 9 ! a3 A 87, 81 :
P 10 - ‘: 93, 84 [
ki 11 ! a y 39, 36 ;
! 12 | ¢! a i 45, 21 H
0 13 - ! 42, 39 {
4 14 I a 4 93, B4 /
: 15 ! a H 39, 36 ;
1 16 - I H 60 - . .
4 17 R | ' 27 .
i 18 LR & ! 57 }
+ 19 HE | H i8 !
] 20 ! a ! 21, 18 : ¢
! 21 i a . 4 21, 18 H
i az HE 1 : 21 :
! as f a - ! 24, 21 H
- 24 { a ! 30, 27 :
: 25 ¢ 1 ! 18- : :
f ) 1 S 45 . {
P 27 HER ' 24 H
£ [} 1 [4

_ Fig. 621 Global Features and Relations for the Multi-Object
| . Image of Fig. 63 :
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RELATIONS BETWEEN THE EXTRACTED FEATURES :

M MM WM Ne M e we e e M e e W M W e v W N e we . : .
™ TV Ve R Ye e e MM he wE e me we we Ge e W ME M wew e e e wver
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attributes
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Fig. 6.21 (Continued)
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Fig .22 Attnbuted ‘Relational Graph Representatlon for the !
B Multl-Object Image of Flgu_re 6.3 ' .
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Table 6.1 Asﬂg’ned Weights of Node Insertion and Deletion
for Experiment I | ’ '

o Node - ‘ ] Insertion Del‘eti’on |

wL:1) f L, | L

©: 1) EIE IR A

Table 6.2 Assigned Weights of Branch Insertion and Deletion
for Experiment I o -

Cpeasch Insertion | Deletion

(J : 731) ‘ 191. 1 '61 ‘

C(F : 4y) | 4 | 4




»Table 6.3 Assigned Weights of Nede Substitution for EXperiment I

(L : L)
(A 12 dz)

(o 12)

‘Table 6.4 vAssigned Weights of Branch Substitution for Experiment I

168

L:l) (a:1, d) ©:1)
lll"’lg‘ !11—121 +d1 11+12
-] dz A P P I '| N
et 1 s . 11—'}2 +do
| : |d;—do| . .
11"*12 =lgf+d, l‘ll_lzl

191+d2

.‘ ,(J‘:4191)‘ o (I: ) (F : 4j)
BCRE AR T R R BT e i)
a: 192‘) 1‘81“‘32{ 19 Vz+dy

O (F:dY) ¥y+dy |di—da|
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For this experiment in hand, we choose the weights of insert.ion
and deletion of different nodes and branches of the attributed
relational graphs, as shown in Tables 6.1 and 6.2,» for the insertion
and deletion, respectively. While, Tables 6.3 and 6.4 show the
weights of substitution (or relabeling) of nodes and branches,
respectively. The physical meaning of these weights of error-
transformations can be clearly seen from the physical meaning of
the attributes of the different entities of the attributed relational
graphs. The approach proposed in Chapter 5 is used to locate the

object of Figure 6.2 in the multi-object overlapped scene of Figure

6.3, by calculating the graph distance measure between their

respective ARGs, which are shown in Figures 6.20 and 6.22, and
finding the best inexact matching configuration which possesses
minimum global distance between the two attributed relational

graphs. The results of this experiment are shown by the matching

configuration shown in Figure 6.23.

8.7 Target Detection in SAR Images

In this experiment, Experiment 1I, we choose node alphabet to
represent arbitrary straight line segments (L), with the length (1) as
their attributes. Branches of the ARG re‘presentation in this
experiment represent the relationships between the line segments
which are represented by the nodes. The branches are taken to
correspond to the {following possible relations: Parallel (P) with
attribute as the distance (d) between the two line segments, Joint
(J) with attribute as the joint angle (), and Intersection (I) with the

angle of intersection (¥) as an attribute.



170

. THE BEST INEXACT MATCHING BETWEEN THE TWO ARGs U and V

“NODE-PAIRS
! GRAPH V i GRAPH U 1
; nt ! ns :
' na ! né ‘
! n3 : ni :
H n4 H on2 H
: no. . H n3 . i
! né’ . n& H
' n7 b n7 ]
BRANCH-PAIRS '
! GRAPH V ! GRAPH U '
! b1 ! b33 ‘i
! b2 ' b31 '
! b3 ! b1 ]
' ba ' b2 !
x b5 i b3 :
¢ bé : b4 :
' b7 ! b32 !
' b8 - ] b36 '
: b9 ] b35 ]

b10 b34"

THE MINIMUM DISTANCE = 84

- Fig. 6.23 Hatching Con'ﬁguratidn and Minimum Distance for
the Two ARGs of Figures 6.20 and 6.22 _ '
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The set of image global features extracted from the SAR imagé
of the Santa Barbara area is shown in Figure 6.24-(a), while the‘ set
of relations betweben thesé features are shown in Figure 6.24-(b).
The ARG representation of that image is shown in Figure 6.25. The
sets of attributed features and relations of a model 6f an airport are

shown in Tables 6.5 and 6.6, while its ARG representation is shown in

Figure 6.26.

The weights of insertion and deletion of different nodes and
branches of the attributed relational graphs, in this experiments are
shown in Table 6.7 and Table 6.8, for insertion and deletion,
respectively. Tables 6.9 and 6.10 show the weights of substitutions
(or relabeling) of nodes and branches, respectively. The techmique
proposed in Chapter 5 is, then, utilized to find the best inexact
matching configuration between the ARG representation of the SAR
image and that of a model target airport, and calculating the global
distance measure between the two ARGs. The results of this

experiment are shown in Figures 6.27 and 6.28.
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GLOBAL FEATURES EXTRACTED FROM THE TRANSFORMATION FIELD

attributes

H feature no.
[}
)

o oo

{
]

type

13
€

R L

40
i2 .
i0
iz

[ e B B |

o imar e wm wm

> ams e

- 0

-

30
20

-

—

o i e e i W W MW M M e 0 Gw e W S ew BD S0 Ee We W ve S

CoCO0VOL NN eNeRGE- ol RNy Ne eRuBy R Ro N«
364113813111%&11318211121

ot mae M o @@ TE e e W Me WE e e ®mS MG MW Ge 6e we We ms S0 o= Se =

o od gl pel e o mod s eed P pid ol el pod el pod e el el et 4 et ol et

Cw s mw wm mE e B0 Ve we Gw e Be SG @e PO C@ e wE S B8 S0 9 e e we

Q=N DOND OO ANDTEIQ
IN OO O ot ot ot vt vt vt vt et o e (0 Ol Cd G € 00 Cd Cd Cd Cd OO

e mer i M mm wE W mG Gw e e mE K MO WO MO GMe e W8 we e Ee s o= e

i G o S P O ey S e A S S A S i

Fig. 6.24 Global Features and Relations for the SAR Image

of Santa Barbara Area
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RELATIONS BETWEEN THE EXTRACTED FEATURES -

i rTelation ¢ type | attributes ¢
' 1,2 oy ! 70 e
' 2, 3 fop e 8, 12 4
! 3. 4 i p ' 16, 10 !
' 1, 5 i p ' 24, 10 xR
' 1, 6 o : - 30 4
' 17 i e ' 70, 75 '
! 7,.8 o ' 75 !
! 7, 10t . p ' 10, 10 !
! 8 9 by ] 80 4
' 8, 11 ! p ¥ 16, '8 H
' %, 12 fopo ' i2, 4 |
' 12,13t p ! 0, &0 o
' 13, 14 ¢+ i 75 - 4
' 14, 15 ¢+ g ! 90 ;
' 15, 16 ¢+ ' 45 4
' 16 17 | ¢ : 20, O H
' 16, 18 { p ! 22, 4 =
: 17, 18 ¢ ' 135 {
! 12, 19 | o ' 54, 90 !
' 13, 19 { @ ' 60, 110 :
! 11, 21 & p X 72, 0 S
! 21, 22 ! 90 !
! 22, 23 g ! 90 §
! 23, 24 ¢ g ' ?0 '
' 22, 24 | p ! 16, 8 o
' 25 26 | g 4 75 '
' 26, 27 + g i 75 :
' 27, 28 ! o ' 10, 45 :
' 28, 29 1+ ' 90 '
! 29, 30 + 3 ‘ 90 ]
' 21, 29 ¢ ' 20, 0 !
! 21, 30 { o ' 12, ‘50 ‘

Fig. 6.24 (Continued)-
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" Fig. 6 25 Attnbuted Relatlonal Graph Representatlon for SAR
= "'ImageofSantaBarbaraArea'u' AR
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Table 6.5  Attributed Features for a Wodel of an Atrport

Feature No. . Type ' ‘Attribilte‘s

N T
I " 0
n4 N 10
| 1| w
n | i
g | 1 | 10
n9 R 20
L. T . )
n‘u' T . 20

m | ot |8
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" Table 6.6 ’Attribut.ed Relaﬁons between Image
 Features for a Model of an Airport

@

N e o o»
- S DU S U N RN S I

R

[y

. Attributes

120
90
90
80
90
.90
90
90
90
90
50, 0
90
10, 0
10, 0
40, 30
16,'0
10, ©
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2 (n.

Fig. 6.26 Attributed Relational Graph Repreéentétibn for
a Model of an Airport '
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Table 6.7 Assigned Weights of Node Insertion andDelétion
'  for Experiment I '

qué - : Insertion Deletion

. (L N ll) .11 ) 11

Table 6.8 Assignedv\Weights of Branch Insertion and D_el_etjoﬁ .
| v for‘Ekpeﬁment 1 S ' '

Branch Ihsértion Deletion
( :_191) | ’191 ‘ R
{0 : d,, 5) | di+wy d;+3;

: (P : dl’ dg) . - dl +d2 . ‘dl '+,d2
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‘Table 6.9 Assigned Weights of Node Substitution for Experiment I

L : 1) L =1

Table 6.10 A‘ssigﬁed Weight.s’ of Branch Substitution for Expériment I

@) 0 0dy 9y P dy d2)
J '!9 . : t ‘ | . ‘
( 2) 1"31'—'02I . ]ﬂl_’OZI +d1 1.92+d11+d]2
o | 9, —8,| + 190 — 85|+
{0 : do, Uy} |9, -9z +do e ’
‘ S S ldi—del | |d;—ds]
|90 -9, + o dyy—dg | +

(P : dyy, dpy) | T1tdartdee

»‘,dZI'_dll’ : ld22—612l
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THE BEST INEXACT MATCHING BETNEEN THE TWO ARGs U and V

NODE-PAIRS
! GRAPH V i GRAPH U o4
H ni ; ned H
H n2 : n24 :
H n3 H #* H
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Approximate Location of an Airport in
the SAR Image of Fig. 6.4 '
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CHAPTER VII

CONCLUSIONS AND SUGGESTIONS

7.1  Summary of Results and Contributions

Our research contributions in the course of this thesis are
concentrated basically in two new techniques. First is the
hierarchical graph transducer for the extraction of image global
| representation in the form of attributed relational graph from raw
input images. The second technique is the dynamic programiming
approach to distance computation between two attributed relational
graphs and the extraction of the best inexact matching configuration
between the two graphs. In Sections 7.1.1 and 7.1.2, we state some
concluding remarks on each of these techniques and on their
utilization in image understanding, as investigated in this thesis, as
"well as in other applications of knowledge representation and

machine intelligence in general.
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7.1.1 Concludjng Remarks on the Hierarchical Graph Transducer

Traditionally, there have been two major ai",eas of research in
the field of machine vision and computer image analysis, ngmely,

the "Low-Level” image processing and the "High-Level” image

vunderstanding. In the area of image processing, the main emphasis

lies on some image processing operations o\f very local nature. The
objective of most image processing techniques is tc improve the
quality of the images or to extract some local information from the
images, e.g., filtering, enhancement, local edge operators, etc.
Usually, the media of image representation in this area, not only as
input but also ‘throughout the operations,. is basically the spatial
domain representation. In most cases, the output of an image
processing system is a processed image, or a better quahty image,

but still in the spatlal domam representation.

- On the other haiid, in the area of image undersianding, even
though input images are usually given in the spatial domain form,
but the main media of image representatioh used in most
techniques is usually of more global naiure, such as (attributed)
strings, trees, or graphs. Such global representations must be

extracted from the input spatial domain images. The major task of

Image understandlng is usually performed on the extracted global

representatlon. The output of these techmques is the result of
some decision},makmg processes and concluswe decisions about the

contents of the images, ,e.g., locating objects, or recognizing some

| pattermns, etc.
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The problem of extractlng a global representatlon from input
data is an nnportant problem in the field of maclnne 1ntell1gence
and knowledge engineering, in general and in computer vision and

image understandmg in particular.

The hierarchical graph transducer described in Chapter 4 is

proposed as ' a systematic technique for extractmg general global‘

representatlon scheme in the form of attributed relatlonal graph
from the input images that are given in the spatial ‘domain
representation. The proposed technique p,ossesses several

advantages‘ which we state them briéefly as follows:

* Tt prov1des a systematlc recursive technique to br1dge the gap

between Jow-level irmage processing and l'ugh-level image

understanding techniques.

*+ It utilizes both model—drlveh and data-driven concepts, as shown

in Chapter 4. The model information are used in the design of

the different components of _the graph transformation-used in

~ the transducer, while the symbolic mapping from the input

.’alphabet to the output global alphabet is performed on the
input data. '

* The proposed transducer operates in an arbitrary configurable
ﬁeld of cells, e.g., two dimensional array of cells, thus it
preserves ‘all useful 1njormat1on and propertles of the imagery

data, e.g., symmetry, closure of curves, eonnectmty, ete.
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The number of 1ayers used in the transducer is actually very

small, since the s1ze of sub1mages covered by the cells of

- different layers of the .ﬁeld grows exponent1ally, as shown in

Chapter 4.

The technique is suitable for hardware implementation from two
points of view, both can be seen from the mapping algorithm
 which is- given in Chapter 4. First, the graph transformation
mapping can be perfo_rrned in parallel over all cells of any layer.
~Second, all mapping operations are modeled as simple bit-wise
manipulation. Both aspects are very helpful for high-speed and
easy nnplementable hardware. The details of the hardware
‘aspect of the proposed scheme is beyond the scope of our

' research in th1s thes1s

The rnain disadvantage of the proposed technique is the large
size of the output alphabet, however this only happens When the
‘class of interesting ob]ects is not known. ln such cases the
graph transducer will need to include a large set of features in
the output alphabet. This is usually the case of learning or
inferencing of prototype model representations, where the
transducer mapping is ‘mainly driven by the ’input data only.
Th'e large size of output alphabet usually represents a

dlsadvantage of the proposed techmque since it 1ncreases the

processm,g time requ1red by hlerarclucal graph transducer’

' mapping.
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7 1 2 Concluding Remarks on the Graph Distance
" and Inexact Matchlng Approach .

,Inv Chapter 5, we proposed a new approach for calculating a

distarice measure between two attributed relational graphs, in their

general form as defined in Section 2.4.2, as well as finding the best

inexact matching configuration between the féspective componernts

of the two graphs. Such an ihexact matching configuration

possesses minimum global distance between the two attributed
relational graphs. In this section, we discuss some advantages of

our approach to this combinatorial optimization problem.

* >The proposed approach handles the problem of distance

measure and inexact matching between two attributed relatlonal‘

graphs in general form.

~*  The state-space representation generated by the approach
 contains several feasible paths between the initial node and the

final nodes, and then the approach utilizes a dynamic

: programmmg techmque with linear computatlonal complexity, to

searc.h for the global optimum, i.e., the shortest path in the

state-space representation from the 1n1t1al state to any of the

final states.

*  The approach .ean handle global as well as local defovrma_tions' in

 the attributed relational graphs, as shown in Chaptef 5.
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The computational complexity of the proposed approach is
O(MPN®(M+N)), where M and N are the number of nodes in the
two attributed relational graphs. This complexity is far better

than most approaches for similar problems, [esheB4a].

Thé proposed approach performs, in its general Version, a two-

way matching process.

The costs of ‘different error-transformations, as defined locally
on nodes or branches, can take either deterministic or
stochastic form. They are not required to be independent since
they are used to calculate the incremental cost, and the global
search is performed by the shortest-path dynamic programrning
algorithm. As we discussed in Section 8.5, the choice of these
costs is problem dependent, ie., they are actually design

parameters.

The approach is amenable to parallel architecture
implefnentatidn in generating the state-space representation, as
well as in performing the shortest-path search. A clear reason
for this is the multi-stage nature of the state-space

represe»ntatiobn, [éhiaﬂ 1], [kana81ia].

In the proposed approach, we assumed that the upper bound for
the number of directly connected, or adjacent, nodes in either
of the two attributed relational graphs is a constant, which is
small in compaﬁson with the total number of nodes in the
graphs. The case of a complete graph, ie., a graph in which

every node is directly connected to all the other nodes, will

vcause the computational complexity of the proposed approach to
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increase. This is basically the only handicap of the technique.
Nevertheless, complete graphs are very seldomly needed in

practical applications.

7.2 Suggestions for Future Research

There are several interesting topics of research which emanate

from our work in the course of this thesis. In the remaining part of

this section, we discuss some of these topies.

(1)

The hierarchical graph transducer presented in Chapter 4,
uses the model-object information to restrict the alphabet of
image features into omly those features which are obtained
from the recursive decomposition of complex objects into sub-
objects and finally into image primitives. The inferencing of
such an alphabet of features can be domne manually or
automatically by a training procedure. The graph transducer,
as presented in Chapter 4, is capable of performing the
required inference in a straight forward fashion by first
considering the set of all image features over the different
sub-images. In this case, the mapping is mainly driven by the
input data only. The extracted image features are then
considered as the required alphabet to be used later in the
technique. However, the set of all features might be large and
therefore, the technique will be slow in performing the
learning task. A faster, or more intelligent, learning technique
might be needed to infer the alphabet of image {features,
which the teéhm’que uses during the operation stage.
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(3)
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The inference procedure suggested above can be incorporated
with the rest of our system in a more general vision system,
as shown in Figure 7.1. The system possesses the learning
capability through the inference procedure to build up the

alphabet of imnage features and primitives. It uses attributed

relational graphs as the media of Iimage knowledge

representation. Both the image feature alphabet and the
attributed relational graph representation of the model-objects
are extracted from the model images during the learning
phase. During the operation phase, the system utilizes the
alphabet of image features inferred from the model images to
extract the attributed relational graph representation of any

given image, as shown in Chapter 4.

The two new approaches proposed in Chapters 4 and 5 of this
thesis, are also useful in several other applications of machine

inte]ligence. Each of the proposed techniques provide an

efficient solution to an essential problem in the field of

machine intelligence. The hierarchical graph transducer
provides a systematic methodology ifor learning and inference
of a global knowledge representation frofn given input data
that is deﬁne_d in terms of local entities (or evidence). This is
ﬁsually an im’por‘tant issue in artificial intelligence. and
knowledge engineering that need to be investigated further.
Also, the utilization of the dynamic programming approach for
distance measure and inexact matching between two general
attributed relational graphs in other application areas of
machine intelligence need to be studied 'imore, e.g., its usage
for deﬁning certeinty measures between collective information
representation, or for inexact information retrieval from

databases, ete.
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