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Public security is a widespread disastrous phenomenon that constitutes a grave threat. Although information fusion of video sensor
networks for public security has been studied extensively, multimedia fusion in heterogeneous sensor networks or its application
in public security remains a challenge and central goal in the field of information fusion. In this study, to realize the detection,
monitoring, and intelligent alarm of such hazards, we develop a graph-based real-time schema for studying the dynamic structure
of heterogeneous sensors for public security. In the proposed schema, data fusion algorithms based on data-driven aspects of fusion
are explored to locate the optimal sensing ranges of sensor nodes in a network with heterogeneous targets. In addition, we propose
a framework incorporating useful contextual and temporal cues for public security alarm, explore its conceptualizations, benefits,
and challenges, and analyze the correlations of the target motion elements in the multimedia sensor stream. The experimental
results show that the new method offers a better way of intelligent alarm that cannot be achieved by existing schemes.

1. Introduction

Public security is a thorny issue concealed almost every-
where and threatens our physical safety at any time. The
threats are influenced by some unpredicted reasons, such
as unruly crowd aroused by emergencies or natural hazards
from nowhere. Unfortunately, the most tragic catastrophes
are allegedly due to humans, and the entrenched invisible
terrorists always find a way to break the social regulatory
life. In such case, any leak may lead to various tangible and
intangible losses. Accordingly, there is a critical need for
offering early detection and alarm, and such guarantee may
enable instant reaction to winning most time for evacuation
and deployment and will also reduce the possibility of loss.

Information fusion, since born in 1970s as a military
requirement, shows considerable potential, and later multi-
sensor data fusion (MSDF) arises at the historic moment [1].
The past experience of MSDF shows that it contributes to
integration and analysis of sensors data and to more accurate
understanding of the situation and how to react to it [2, 3],

which makes the disaster prevention possible. Mostly, it was
restricted to combine vast correlation sensor data in some
particular detection, and some of the topics of interest are
fire detection [4, 5], surveillance of transportation situation
[6, 7], and novel for the specialty as data management [8, 9].
On the other side, approaches are devoted to elimination
of redundancy in the sensor networks [10]. Considering the
complicacy of public security, maximizing relevant multime-
dia sensors data as well as exclusion of redundancy should
be involved in this case. That means strong spatial-temporal
correlation multimedia sensor data are needed to effectively
redeploy a multiview and multisense monitor system [11]. As
the equivalent intention, a coordinated scheduling method
[12] was presented following the divisible load theory (DLT)
to minimize both finish time and consumption in sensors
network. Also topology rebuilding algorithm (TRA) [13] is
addressed as the solution to data dissemination, in which the
workloads meet the specified requirements.

Vision sensors that afford successive video frames conceal
some correlation semantic knowledge transferred by series



interactional target motion elements [14, 15]. Besides, the
series multimedia sensors could be used to detect much
associated information, such as the noise caused by the
crowd, the smell which may be the clue of some toxic gas, and
even some detected suspicious words captured by the sound
sensor. As a result, the fusion of these levels of environmental
data may feasibly be responsive to any situation that happens
to the region without actually being here. Moreover, an alarm
is made ifany hidden danger is included. Hence, to pursue the
goal, technologies are required to achieve immediate intelli-
gent alarm, including the following: (1) capture multisense
environmental data in one scene from different perspectives;
(2) dig the spatial relations and interaction underlying the
multimedia sensors; (3) achieve the decision of multimedia
sensors data fusion.

2. Related Works

Recent information fusion researching shows the expressive
activity and is highlighted. Most of them concentrate on mak-
ing the utmost use of the comprehensive sensor resources,
which are based on the reasonable disposal of multiple
sensors information, and includes several distinctive uses of
the correlation and independence, contextual information,
and modality selection between different sensors [16, 17]. The
methods are required for robust and parallel processing abil-
ity. Furthermore, complementary and redundant informa-
tion from different sensors which vary in the modalities and
spatiality asks for an optimizing description on consistency
of aimed objects.

The fusion of various modalities is generally performed at
the feature level (early fusion) and decision level (late fusion)
[16]. The feature level fusion [18, 19] extracts the features
from the original information referred by sensors and then
analyzes and processes the extracted modality information
which in our case may include visual feature (Color, Shape, or
Texture), audio feature (frequencies or Texture), and motion
features (motion trace or motion pattern). The feature level
fusion achieves impressive compression for real-time pro-
cessing and also provides considerable feature information
for the decision analysis, but it may not perform well in
the time synchronization between multimodal features. The
decision level fusion [20, 21] employs numerous sensors
to observe one object, and each sensor finishes its own
local processing (e.g., pretreatment, feature extraction, and
recognition), and then the local decisions are combined to
a fused decision based on the correlation. This approach is
advantageous in that it utilizes unique representations for the
diverse modality features. Besides great scalability in fusion
process rather than at the feature level, it costs extra time
caused by obtaining the local decisions.

Based on diverse specific application background, there
are many widely used fusion approaches involved in or
concerned with relevant studies. In the information retrieval
domain, data fusion is provided for the A rank/score function
[22, 23]. In the application of current tendency, several
approaches employ temperature, infrared, and smoke sensors
for environmental data detection [24, 25] and video sen-
sor network (VSN) is utilized by intelligent transportation
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systems or surveillance systems [26, 27], while information
fusion is widely used in the fields of robotics, image process-
ing, or some interconnected fields [28, 29]. For instance, the
environmental data (temperature and humidity) are adopted
as in-field lower-level data, in which the change at each sensor
node can be observed by a chosen threshold, and then the
probability of fire is confirmed by using Dempster-Shafer
evidential reasoning (D-S) to fuse VSN data [5]. However,
the supply of the vision sensors is limited to corroborate the
assumption proposed as the first step; much associated video
semantic knowledge was barely effective in timely warning
and thus was wasted. In addition, the combination of the
Kalman filtering (KF) with D-S [30] conquers the insuffi-
ciency of both algorithms and results in a matching model.
A strategy of camera topology estimation was proposed to
prevent the probability of the overlap that occurs in the
reality, and also the fusion of dynamic features of the targets
between successive video frames was still excluded in the
theory. Moreover, an information fusion model devoted to
tracking and locating materials was adopted into automated
identification and location estimation [31]. The author pro-
vided a multilevel data fusion model based on the modified
JDL model which joined D-S theory and weighted mean.
The hybrid fusion method succeeded in fusing data from
disparate sensor nodes in a noisy and dynamic environment
and was advanced in uncertainty and imprecision.

Recent information fusion research shows the expressive
activity and is highlighted. The research concentrates on
making the utmost use of comprehensive sensor resources,
based on reasonable disposal of multisensor information,
and also focuses on distinctive uses of the correlation, inde-
pendence, contextual information, and modality selection
between sensors [16, 17]. Methods are required to improve
the robust and parallel processing ability. Furthermore, the
complementary and redundant information from different
sensors which vary in the modality and spatiality asks for an
optimized description with consistency of aimed objects.

3. Multisensors Network and Directed Graph

As far as concerned, we will begin by looking at some minimal
models of public security in crowds. Regardless of how data
from different sensors are organized, the underlying fusion
algorithms must ultimately fuse the input data. The aim of
public security-oriented fusion applications is to deal with
several data-related challenges. As a result, we will explore
data fusion algorithms from the data-driven aspects and seek
the optimal sensing ranges of sensor nodes in a network with
some targets. It is assumed that a sensor is able to dynamically
adjust its sensing data by the arbitrary amount.

In general, a varying circumstance will diversify the work
condition of each sensor and may cause many sensors to
directly respond to the change. This means, under the scope
of the effected sensors, it captures considerable correlative
information about the detected environment. Meanwhile,
considering the spatial relations, as one sensor detects the
environmental factors and some other factors vary in time,
the corporate sensors also respond to the instant scene.
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FIGURE 1: Overlapping relationship.

In this paper, we define it as the interaction between two
sensors that interprets the probability when one sensor is
triggered while the other responds to the same initiator. And
a quantization method is used to dynamically define the
interaction relationship, and directed graph is adopted to
describe this related tendency, which leads to the maximum
correlation information from diverse sensors, and eventually
sensor data are adaptively dispatched for optimal fusion
aimed at the dynamic environment.

3.1. Multisensor Attribute Node. Multisensor attribute mainly
represents the perceived multimodal data, such as the image
information captured by video sensors. The aims of uniform
description of the interaction are to seek for the state analysis
and quantization of multimodal sensor data. Besides the
effects from temporal and spatial factors, we also define and
illustrate the related notions of involved elements and thus
write the problem below.

Definition 1 (sensor state). The state of sensor is the diverse
modal sensor data, that multi-sensors perceive one scene and
is to give one description of the condition from one sensing
method at some point. In this paper, the multisensor state is
defined as follows: state = {Decibel, Smokescope, Cohesion},
which separately indicates the results that the audio sensor,
odor sensor, and video sensor quantify the basic state of the
detection range. Specifically, Decibel and Smokescope quan-
tify the real-time environment, while Cohesion measures the
compactness index of motion elements in the video images.

Definition 2 (spatial dependence). Measurement of spatial
relationship aims to measure the spatial scale between two
entity elements. In this case, the spatial dependence is asso-
ciated with the range distribution of the sensors’ coverages,
rather than the linear distance between them, and in physics,
it may refer to the overlapping area of any two sensors
(Figure 1). Apparently, the overlapping area directly reveals
the dependence of one sensor on the other, as targets can
be detected by both in the overlapping area. Thus, the
proportion of coverage overlap accounts for the range of one
sensor’s coverage that indicates the probability that the other
sensor can detect the target at the same time. Therefore, the
dependence can be described by scaling the proportion of the
overlapping area in one sensor’s geometric coverage under

the unified geographic space. Hence, we assume any two
sensors coverages as two nonempty sets of spatial elements,
and based upon that, we utilize mathematical methods to
describe the spatial dependence degree as follows.

The overlapping area of sensors A and B is D,,, and
the sensor coverages of A and B, respectively, are D,, D,.
Pursuant to the definition we make for spatial dependence
(SD), we can measure the SD between A and B as value h:

D
hab = D_Zb

b (1)
by, = =2,

Dy,

Among them h,, denotes the spatial dependence sensor A to
B; likewise hy,, is the spatial relationship in which B affects
A. In this case, as the proportion of the two sensors’ coverage
overlapping area is considerable to the sensor coverage, which
equals the SD that is high in value, it represents the strong
spatial dependence between them.

Accordingly any multisensor attribute node can be
defined as follows: S; = (Time, State, SD), which indicates that
at temporal space Time the sensor S; is at State and the SD
(h; ;) refers to the spatial relationship with another sensor §;.

3.2. Interaction of Multisensors. According to the definition
of sensor attribution, the interaction between two sensors is
mainly affected by the State and SD. Therefore, the values P
as the probability of sensor B relating to sensor A at Time can
be computed on the basis of the real-time multisensor node
attribute.

Considering the rate of State change and SD as a two-
dimension random variable (S, SD), when the value of
the quantized State approaches the infinity, the interaction
probability P only limits to SD (3) and also is a linear
relationship. Similarly, as the two spatial element sets entirely
match each other as i approaches the infinity, P only depends
on State (4). The expressions can be formulized as follows:

Py, () = P{SD < h} = P{SD < h, S < co} = P (SD, c0)

Pg(S)=P{S<s}=P{S<sSD < 0o} =P(S,00).
(2)

Accordingly we can define the interaction probability P
as a two-dimension distribution function P(S,SD), and
P(00,00) = 1, as random parameters S and SD are mutually
independent, and thus the probability function P(s,h) is
expressed as follows:

P (s,h) = ps(s) psp (h) » ©)

where pgp(h) and pg(s), respectively, denote the marginal
function based on SD and S, respectively, and the relevant
probability formulas are expressed as follows:

Ps(s)zl—exp<—ai>, a>0,s>0 (4)
1

Py (h)=h, h>0. 5)
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Thus, (3) equals

P(s,h):h[l—exp(—i>]. (6)
4
Ands > 0,h > 0and g, > 0. Hence it can be achieved that,
at any time, if the SD between sensors A and B stays constant
hy, and the State of sensor B change is Sy, then the probability
sensor B related to A is Py, = P(Sg, higy).

3.3. Directed Graph

3.3.1. Graph Evolution Rules. Graph G is defined as G =
(V,E, Q), where V is a vertex set, E is an edge set, and Q is the
probabilistic space. Any two sensors connect with probability
P, ; while sensor §; relates to sensor S; which means P(e;; €
E) = pij» p;j € (0,1). As P, ; varies in time, at time T" the graph
evolution rule can be expressed as as Figure 2.

3.3.2. Graph Syntax. Like the graph evolution rule mentioned
above, the multisensor network may be diagrammatized as
the graph. In the graph, the sensor nodes act as the vertexes,
and any two sensors construct an interaction relationship
connecting with the independent directed edge, and the edges
perform at probability p;;. Since p;; is affected by sensor state
and also dynamically varies with time factor, the graph syntax
based on multisensor network and the interaction among
sensor nodes can be defined as five meshes:

G = (Ng,N,, P,Cy, N,), 7)

where N, is the initial vertex which is the node trigger of the
event, and the initial one is exclusive; the vertex set N, =
{N,N,,Nj,...} represents all the sensor nodes involved
in the multisensors network; P = {Py, Py, ..., P;} is the
quantized interaction between two sensors (N;, N j) and is
also the probability that two nodes can construct incidence
relation; C, in the random graph indicates the clustering
coeflicient of the initial node N, which means the amount of
the sensor nodes that the initial node related to; N, denotes
the clustering vertex set starting from node N,,.

4. Multisensor Data Processing Framework

The framework incorporates useful contextual and temporal
cues for public security alarm, which constitute an integrated
platform of associated sensors and compute infrastructure
with capability of delivering valuable real-time information
regarding the natural hazards to public security. In this
case, each involved sensor acts as an independent local data
processing unit, and each output of them represents a set
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of individual decisions and is reported to the fusion center,
which contributes to self-interaction or cooperates with oth-
ers during the fusion process. There are two parts during this
process: the first is local fusion center, which is in charge of
fusing the single modality data so as to judge the surrounding
change in identity-sensor. The output can utilize the other
local fusion center’s capabilities of confirming the result or
cooperating with others to achieve the final judgments in the
results in the next part, the fusion center. This part is capable
of global estimation based on multimodalities data, which
finally give a comprehensive review of the environment.

Before the data fusion process, the information of all
the sensors requires a unified expression, which means the
decision from each other can be obtained between the
homogeneous or heterogeneous sensors. In this case, all the
sensor data are first quantized and then transferred to the
information for decision-making that acquires the semantics
from various media sources. With the public monitor system,
the quantization of correlation Cohesion between motion
elements can express the semantic knowledge underlying the
video stream from each video sensor node. In our case, the
data of acoustic sensor and odor sensor are fused to detect the
same scene from different aspects. Figure 3 depicts the fusion
process and the multisensor data flow, and each modality
node owns an exclusive judgment standard.

4.1. Audio Sensor. The sensor senses the voice occurring
in the detection region and mainly aims to capture the
strange noise or irregular sound change and capture the
optimal data to deploy these sensors in a decentralized
pattern. Meanwhile, feature redundancy for robustness and
simultaneous elimination of data redundancy are required
during the voice capturing process, in case of data blocking
or energy limitation [32].

The audio information performs as temporal variation
analog signal, because the diversity of the sounds is to change
with the circumstances. For instance, at the same spot, the
voice at10:00 a.m. differs from that at10:00 p.m., since the first
one in the rush hour may contain the noise of busy crowd,
while the other is usually a peaceful night and any isolated
voice can be easily caught by sensors. Thus, measuring the
voice in one region is designed to collect the mean per
hour Ty (N = 1,2,...,24) and then compare it with the
real-time value T, and the unusual case can be excluded if
the difference does not exceed a reasonable range D. which
denotes the mean of the ambient voice 12 per hour. Therefore,
the disparity of the two values landing in the range indicates
a normal situation, which is formularized as |T,, — Ty| € D,
and otherwise the node would send a warning.

Additionally, the voice also transmits fertile underlying
semantics. Thus, recognizing the hidden semantics in the
ambient sounds can realize the acquaintance of the scenarios.
With this purpose, the processing includes two steps at each
sensor node: eliminate the background noise and proceed
to speech recognition. In particular, speech denoising as a
mature technology has considerable academic results [33, 34]
and also is used in diverse realms. In comparison, speech
recognition as a raising one is proposed to analyze associated
semantics. The speech consists of brain-made phoneme
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FIGURE 3: The fusion process.

flow parameters and is actually a double stochastic process.
Meanwhile, the voice signal is an observable time-varying
sequence. The statistical model HMM is founded by the
structure of time series that well simulates this process. It is a
suitable model for speech recognition by vector quantization
(VQ) speech signal and abundantly training the model and
ultimately achieves the process of speech recognition.

As we intend to capture those particular words that may
cause unwanted results, the process of speed recognition
mainly contributes to their extraction from the background
sounds. Considering the indeterminacy of the daily language,
somehow, the speech semantics analysis may not be a decisive
attribute of the event detected but plays a role of coefficient
attribute with other features to intensify the judgment.

4.2. Odor Sensor. The odor sensors as environment data
monitoring devices are deployed as well as the audio sensors
to work as the smoke scope detection and observe the real-
time ambient data. Since the odor in specific confines of an
environment mostly stays at one level, from the abundant
statistic data and research on the unknown environmental
change, it can approach exception events information by ana-
lyzing normal distribution of sensed periodic output, which
assumes that it obeys normal distribution. The probability
density function is described as follows:

2 2
e_(xi_."lo) /20 , (8)

I (xs tgr0) =
2no

where y is the average of the given odor value and o is
standard deviation indicated as N(y,0,), and then the test
statistics shows the law of probability distribution of the
odor state. The absence of emergencies occupies the most
probability, whereas the rare events are the matters that
should be paid attention to. If the sensor captures odor sample
X, the value drifts from the normal event region in the
probability distribution, leading to the judgment whether X;
triggers the target event.

4.3. Video Sensor. Video sensors set at different angles for
surveillance of one observation region can transfer succes-
sive video frames affording video stream data and analyze
associated semantic knowledge. Such information instantly
supplies the potential for detecting the unsafe issue and with

el j)

FIGURE 4: Dynamic spatial topology relationship.

substantive stochastic factors, the whole motion elements can
be ascribed to an analyzable model. In this case, Cohesion is
adopted to measure the compactness of motion elements [35],
as the intense activity directs higher Cohesion that shows the
active movement of the crowd.

Motorial entity objects shown in the video monitor
system are described as video motion element (VME), such
as pedestrians appearing in the observation regions. They
usually consist of relevant states (Appear, Disappear, Stop,
and Move), spatial relationships (Measure, Direction, and
Topology), visual features (Color, Texture, Shape, and Size),
and behavior attributes (Location and Velocity Vector) in
a series. In particular, Appear, Disappear, Stop, and Move
represent the four basic states of a motion element. We
observe the relation that correlative effects on the interactive
objects acquire this interaction as the clue to express the
intrinsically link among these elements and finally estimate
the possibility of changing the motion states.

In this case, we use the vertex set to describe motion
entities and define the independent edge as the relation of
any two vertexes connected by probability P. Hence, the
interactive spatial relationship in the motor process that
dynamically changes with time can be approached in a united
representation model in the particular region. The vertex set
Vy ={V1,V,, Vs, ..., V, } denotes all the objects in the region;
V; and V; connect with each other via P(V,,V;) = P(t). To
bring in these correlative coefficients, relevant information
of these motion elements in the observation region can
be extracted from the video stream and then specified as
some particular description. The two objects (shown as a
vertex) V; and V; indicate their dynamic topology relationship
as in Figure 4, and [P(i,j) = P(e,-j € E)] € [0,1]
represents the interaction probability, and the value relates
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to the compactness between the two objects controlled by
the distance(i, j) and other behavior attributes. We define the
initial value as P(0) = p;x distance(i, j) + p, x 0(i, j) and
Y P(i, j) in the improbability space Q. The P(i, j) contained
by V; and V; varies with Time.

The intensification of linking between motion elements
shows the activity and disorder degree of the elements in
the frames and is indicated by Cohesion (C,). Let N(i) =
YL P(V, V) and &() N(@)/ ¥, N(j), and then the
Cohesion of G can be expressed as

n
Cohesion (G) = —Z

i=1

NG  §@)In3)
n  Inn ©)

The value of Cohesion ranges from 0 to 1.

5. Simulations

In this section, we will propose a concrete implementation
scheme based on the conceptual model and analyze the sim-
ulation results from the hypothetical scenarios. We assume
that all targets within the node sensing ranges are sampled at
an equal rate, independent of their distance to sensor nodes.
The progress frame diagram is indicated in Figure 5.

The scenarios are based on the assumption that there
is a known scene deployed with ordered multisensors N;
including audio, odor, and video sensors, and among them,

N, N, N, N, Ny Ny
N, [ 10000 00259 00160 0.0994 02556 0.0568
N, | 00259 1.0000 0 0 0 0
N; | 0.0160 0 1.0000 0 0 0.2294
N, | 0.0994 0 0 1.0000  0.2294 0
Ns | 03993 0 0 0.3584  1.0000 0
Ny | 0.0888 0 0.3584 0 0 1.0000
N, 0 0.3206 0 0 0 0
Ng 0 0.1295  0.2327 0 0 0
N, | 03593  0.5448 0 0 0 0
N, | 06185 0 0 02753 1.0000 0
N, 0 0.4357 0 0 0 0
N, | 03593 0 0 0 02349  0.1722
N, L o 0 1.0000 0 0 0.0477

the sensors detect target events constitutingaset N;, N; € N;.
In scenarios, we map the range of the sensor coverage onto
a two-dimensional coordinate plane, and thus the coverage
of sensors can be regarded as the closed bounded points set.
Meanwhile, we consider the sampling period of each sensor
as T, and consequently S can be expressed as the average rate
of State change in period time nT' (n > 2), which is calculated

[

n-1

>

n=1

AState,,
n

S

) = (|StatenT - State(n,l)Tl

+ |State(n_1)T — State(n_z)Tl

++++ + |State,y. — Statey| ) x (nT) ™"
(10)

5.1 Simulation. In this simulation, we assume that the effect
coverages of the audio, odor, and video sensors can be
diagramed as circles with radius of 4, 3, and 5, respectively,
and deploy the parameters of N, in the coordinate plane listed
in Table 1.

Known as Definition 2, we can approach the spatial
dependence between any two sensors from their pixel propor-
tion and overlapping proportion based on (1); accordingly,
we can obtain the spatial dependence measuring value h; ; of
entire N; listed as the matrix m:

Ny Ny Ny Ny Ny Ny, N3

0 0 0.1293  0.2226 0 0.1293 0 7
0.2052  0.0829  0.1961 0 0.1569 0 0

0 0.1490 0 0 0 0 0.3600

0 0 0 0.0991 0 0 0

0 0 0 0.5625 0 0.1321 0

0 0 0 0 0 0.0969  0.0268
1.0000 0 0.0479 0 0 0 0

0 1.0000 0 0 0 0 0.0422
0.0852 0 1.0000 0 0 0 0

0 0 0 1.0000 0 0.1482 0

0 0 0 0 1.0000 0 0

0 0 0 0.1482 0 1.0000 0

0 0.0750 0 0 0 0 1.0000

()
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TABLE 1: The coordinate of sensors.
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FIGURE 6: Spatial dependence.

TaBLE 2: The index of sensors.

Odor
u, =83
0,=1

Audio
fo =45
o,=1

Video

1z U, =0.5
o o,=15

The m;; in the matrix equals value of h;;, also the entire spatial
relationship among sensors can be diagramed in general as in
Figure 6.

In this situation, we assume the data of the sensors
are subject to normal distribution and the simulation can
correspond to the status of the sensors change, which we
define as the expectation and variance of each kind of sensors
based on actual circumstances as in Table 2.

And particularly as the example shown in Figure 7, on the
top of the fig pictures the simulation results which denote the
Decibel value detected by audio sensors in a certain period
time (equal to 200 ms, and in which T = 2 ms, n = 10) besides
the outgo discrete points on the bottom half show the average
rate values of its State change in every sampling period.

Based on the measurable parameters S; and h;j, the
established incidence relation between two sensors (N;, N j)
probability p; {Poo> Po1>---> pij} at time nT can be
approached by (6), and Figure 8 shows this kind of incidence
relation at a certain time point.

49
48t 1
47t |
46 | A

45 . . . A . . | .
0 20 40 60 80 100 120 140 160

0.7
0.6 . 1
0.5 g
0.4 * k
03} *

0.2 : : : : : : : :

0.50 -
0.45 -
0.40 -
0.35 -
0.30 -
0.25 1
0.20 -
0.15 -
0.10 -
0.05 -
0.00

1 2 3 4 5 6 7 8 9 10 11 12 13

FIGURE 8: Incidence relational time point t.

Each continuous line in Figure 8 denotes the connection
probability of one sensor relating to the others (also including
itself). According to the graph evolution rule defined before,
this mutual incidence relation can be expressed as graph G
(Figure 9(a)). On the other side, we can easily estimate the
average cluster coefficient (ACC) of a network node set, and
at time ¢, it is equal to 0.1625, and the clustering coeflicient of
each sensor is demonstrated in Figure 9(b).

5.2. Scenario

5.2.1. Scenario 1. In this scenario we create a target event E
that occurs in the spheres of the sensors, whose coordinate
locates at (7, 17) in the mapping two-dimension coordinate.
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FIGURE 9: (a) Generated directed graph at time ¢. (b) Clustering coefficient at time ¢.
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FIGURE 10: The process event E works.

Meanwhile the effect coverage of the event varies over time
which expands then gradually narrows down, apparently as
it invasions the spheres of sensors that will change the state
parameters of these sensors, and the process works like what
Figure 10 shows.
Hence we define the event E radius of effect coverage
T<t

R- rT,
“lret-1), T>t, (12)
0<t<T);

r denotes the initial effect radius and T means the effecting
time as event E works. Accordingly the expectation of sensors
y varies with R and can be expressed as

_{%ﬂ T<t
U2t =T), T=>t, (13)
0<t<T),

where g, is the initial expectation and the event E will affect
the sensors N,, N,, and N, during its affecting time, and
Figure 11 shows the incidence relation among 13 sensors at the
sampling time point of this period. Also Figure 12 refers to the
clustering coeflicient of each sensor at the sampling time T,
and the corresponding ACC of the sensor node set (Nn) and
the clustering affected nodes set (N ) are listed in Table 3.

5.2.2. Scenario 2. This scenario simulates the target event E'
as an effective point moves across the spheres of sensors with
a constant velocity; the movement shows as in Figure 13.

Equally, as we defined the event E’, it works on the
expectation of the affected sensor y. The effective point will
move across the sensors N, Ny and N3, N, 5 successively, and
the working status of these correlative sensors will change
correspondingly as the event works. Thus, the value of y floats
during the period, which can be expressed as function (14),
and the period from T, to T, is when the event works on the
sensor. Consider

| #o» t € other
¢ wo Ty <t<Ty, (14)
0<t<T.
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TaBLE 3: The ACC of the sensor nodes set and affected nodes set.
ACC T, T, T, T, T, T, T, T, T, T,
N, 0.1768 0.1853 0.1800 0.1874 0.1907 0.1848 0.1944 0.1885 0.1558 0.1794
Ng 0.2096 0.2062 0.2421 0.2209 0.2507 0.2318 0.2413 0.2049 0.1762 0.1982
TABLE 4: The ACC of the sensor nodes set and affected nodes set.
ACC T, T, T, T, T, T, T, T, T, T,
N, 0.1640 0.1761 0.1680 0.1845 0.1725 0.1688 0.1912 0.1560 0.1763 0.1696
Ng 0.2228 0.2262 0.2274 0.2407 0.2223 0.2126 0.2697 0.2130 0.2557 0.2166
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During this process, the incidence relation of the sensor
network can be demonstrated as in Figure 14 at the sampling
time T, and meanwhile at each time point in this period, we
can approach the clustering coefficient of each sensor and the
results are showed in Figure 15.

With the method we proposed, the acquired clustering
vertex set (N,_) and the whole sensor network set (N,,)
can be computed with the corresponding ACC. Table 4
demonstrates the results that the ACC index has a particular
enhancement compared with the original complete graph N,,.

FIGURE 14: Incidence relation at affecting time point.

5.3. Analysis. The results shown in the figures and the
recoded data demonstrate that the incidence relation index
and directed graph parameters significantly change during
the event acting period. The interactive relationship among
the sensors reveals diversities that compared to the general
case depicted by Figure 8, especially in the affected sensor
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FIGURE 16: The comparison indexes in scenarios.

node set. ACC generally increases from 0.1625 to about 0.18,
which points to the intense interaction influence among
sensors. However, in the clustering affected node set N,
the ACC (around 0.22) shows the more intense interaction
compared to the whole sensor network node set N,,, which
also means the method excluded the excess redundancy
nodes and obtained maximum correlation information.

The authors in [36] highlight the spatial correlation
of sensor nodes and measure the correlation between a
sensor and its neighboring sensor nodes to approach the
data aggregation. The usage of topology is to diagram the
distribution of sensors, and thus in this graph, we can acquire

the correlative graph parameters recorded as D,, and compare
with the indexes acquired by our method from scenarios 1
and 2 (shown in Figure 16). Due to the exclusion of real-
time sensor state, the spatial correlation remains unchanged;
we can deduce that the involved sensor state would develop
the affirmative function to better analyze the interaction of
multiple sensors.

In Figure 16, the G,, and N,, lines denote the ACC index
of the whole sensor network in the general condition and in
the event acting condition, respectively. The figure indicates
that the indexes are resemblant except in the effective process
of the event; the N, line clearly shows that the index of the
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clustering affected nodes increases compared to the index of
the whole network, which means the nodes we approach are
in a close correlation. Besides, all the indexes indicate the
real-time change of the interactive relation among sensors
except D, and also show certain growth compared with this
constant.

Thus, based on the incidence relation, it makes it feasible
to approach the optimal associated sensors which are derived
by the events. Moreover, the spatial range of sensors enhances
the dependence on sensed data, which raises the feasibility
value of the final fusion process.

6. Conclusions and Future Work

We introduced a new sensor data fusion method of a het-
erogeneous multimedia sensor network, explored the asso-
ciated frameworks and algorithms for incorporating useful
contextual and temporal cues for public security alarm, and
thereby analyzed the correlations among the target motion
elements in the multimedia sensor stream. We investigate a
multimedia intelligent processing method based on spatial
relations of heterogeneous sensors, which is able to achieve
scalable recognition. We also develop a dynamic structure
of multimedia sensor representation and thereby realize the
fast generation of multimedia stream, highly heterogeneous
networks, and complicated alarm needs in public safety.

We further propose establishing a general framework
for incorporating useful contextual and temporal cues for
public security alarm and thereby analyze the correlations
of the target motion elements in the multimedia sensor
stream. The graph-based framework will serve as a useful tool
for designing multimedia in-network processing schemes in
MSNs. Simulation results verify the analysis of the proposed
techniques.

This new multisensor data fusion scheme will inspire a
number of interesting topics in this field for future research.
For instance, fuzzy set theory is widely recognized as a
critical issue for public security with multisensor fusion, but
in the present paper, we have a light touch on this. In the
future, we aim to advance implemented fusion algorithms
by integrating alternative combination rules. We also attempt
to deal with public events of alarm that are conducted to
be optimized to multimedia sensed data and set appropriate
fusion parameters as alarm thresholds, fusion weights, and
others. Also, further validation through real data is of extreme
importance and will also be conducted in future work
validation.
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