165 research outputs found

    Optimisation de la gestion des interférences inter-cellulaires et de l'attachement des mobiles dans les réseaux cellulaires LTE

    Get PDF
    Driven by an exponential growth in mobile broadband-enabled devices and a continue dincrease in individual data consumption, mobile data traffic has grown 4000-fold over the past 10 years and almost 400-million-fold over the past 15 years. Homogeneouscellular networks have been facing limitations to handle soaring mobile data traffic and to meet the growing end-user demand for more bandwidth and betterquality of experience. These limitations are mainly related to the available spectrumand the capacity of the network. Telecommunication industry has to address these challenges and meet exploding demand. At the same time, it has to guarantee a healthy economic model to reduce the carbon footprint which is caused by mobile communications.Heterogeneous Networks (HetNets), composed of macro base stations and low powerbase stations of different types, are seen as the key solution to improve spectral efficiency per unit area and to eliminate coverage holes. In such networks, intelligent user association and interference management schemes are needed to achieve gains in performance. Due to the large imbalance in transmission power between macroand small cells, user association based on strongest signal received is not adapted inHetNets as only few users would attach to low power nodes. A technique based onCell Individual Offset (CIO) is therefore required to perform load balancing and to favor some Small Cell (SC) attraction against Macro Cell (MC). This offset is addedto users’ Reference Signal Received Power (RSRP) measurements and hence inducing handover towards different eNodeBs. As Long Term Evolution (LTE) cellular networks use the same frequency sub-bands, mobile users may experience strong inter-cellxv interference, especially at cell edge. Therefore, there is a need to coordinate resource allocation among the cells and minimize inter-cell interference. To mitigate stronginter-cell interference, the resource, in time, frequency and power domain, should be allocated efficiently. A pattern for each dimension is computed to permit especially for cell edge users to benefit of higher throughput and quality of experience. The optimization of all these parameters can also offer gain in energy use. In this thesis,we propose a concrete versatile dynamic solution performing an optimization of user association and resource allocation in LTE cellular networks maximizing a certainnet work utility function that can be adequately chosen. Our solution, based on gametheory, permits to compute Cell Individual Offset and a pattern of power transmission over frequency and time domain for each cell. We present numerical simulations toillustrate the important performance gain brought by this optimization. We obtain significant benefits in the average throughput and also cell edge user through put of40% and 55% gains respectively. Furthermore, we also obtain a meaningful improvement in energy efficiency. This work addresses industrial research challenges and assuch, a prototype acting on emulated HetNets traffic has been implemented.Conduit par une croissance exponentielle dans les appareils mobiles et une augmentation continue de la consommation individuelle des donnĂ©es, le trafic de donnĂ©es mobiles a augmentĂ© de 4000 fois au cours des 10 derniĂšres annĂ©es et prĂšs de 400millions fois au cours des 15 derniĂšres annĂ©es. Les rĂ©seaux cellulaires homogĂšnes rencontrent de plus en plus de difficultĂ©s Ă  gĂ©rer l’énorme trafic de donnĂ©es mobiles et Ă  assurer un dĂ©bit plus Ă©levĂ© et une meilleure qualitĂ© d’expĂ©rience pour les utilisateurs.Ces difficultĂ©s sont essentiellement liĂ©es au spectre disponible et Ă  la capacitĂ© du rĂ©seau.L’industrie de tĂ©lĂ©communication doit relever ces dĂ©fis et en mĂȘme temps doit garantir un modĂšle Ă©conomique pour les opĂ©rateurs qui leur permettra de continuer Ă  investir pour rĂ©pondre Ă  la demande croissante et rĂ©duire l’empreinte carbone due aux communications mobiles. Les rĂ©seaux cellulaires hĂ©tĂ©rogĂšnes (HetNets), composĂ©s de stations de base macro et de diffĂ©rentes stations de base de faible puissance,sont considĂ©rĂ©s comme la solution clĂ© pour amĂ©liorer l’efficacitĂ© spectrale par unitĂ© de surface et pour Ă©liminer les trous de couverture. Dans de tels rĂ©seaux, il est primordial d’attacher intelligemment les utilisateurs aux stations de base et de bien gĂ©rer les interfĂ©rences afin de gagner en performance. Comme la diffĂ©rence de puissance d’émission est importante entre les grandes et petites cellules, l’association habituelle des mobiles aux stations de bases en se basant sur le signal le plus fort, n’est plus adaptĂ©e dans les HetNets. Une technique basĂ©e sur des offsets individuelles par cellule Offset(CIO) est donc nĂ©cessaire afin d’équilibrer la charge entre les cellules et d’augmenter l’attraction des petites cellules (SC) par rapport aux cellules macro (MC). Cette offset est ajoutĂ©e Ă  la valeur moyenne de la puissance reçue du signal de rĂ©fĂ©rence(RSRP) mesurĂ©e par le mobile et peut donc induire Ă  un changement d’attachement vers diffĂ©rents eNodeB. Comme les stations de bases dans les rĂ©seaux cellulaires LTE utilisent les mĂȘmes sous-bandes de frĂ©quences, les mobiles peuvent connaĂźtre une forte interfĂ©rence intercellulaire, en particulier en bordure de cellules. Par consĂ©quent, il est primordial de coordonner l’allocation des ressources entre les cellules et de minimiser l’interfĂ©rence entre les cellules. Pour attĂ©nuer la forte interfĂ©rence intercellulaire, les ressources, en termes de temps, frĂ©quence et puissance d’émission, devraient ĂȘtre allouĂ©s efficacement. Un modĂšle pour chaque dimension est calculĂ© pour permettre en particulier aux utilisateurs en bordure de cellule de bĂ©nĂ©ficier d’un dĂ©bit plus Ă©levĂ© et d’une meilleure qualitĂ© de l’expĂ©rience. L’optimisation de tous ces paramĂštres peut Ă©galement offrir un gain en consommation d’énergie. Dans cette thĂšse, nous proposons une solution dynamique polyvalente effectuant une optimisation de l’attachement des mobiles aux stations de base et de l’allocation des ressources dans les rĂ©seaux cellulaires LTE maximisant une fonction d’utilitĂ© du rĂ©seau qui peut ĂȘtre choisie de maniĂšre adĂ©quate.Notre solution, basĂ©e sur la thĂ©orie des jeux, permet de calculer les meilleures valeurs pour l’offset individuelle par cellule (CIO) et pour les niveaux de puissance Ă  appliquer au niveau temporel et frĂ©quentiel pour chaque cellule. Nous prĂ©sentons des rĂ©sultats des simulations effectuĂ©es pour illustrer le gain de performance important apportĂ© par cette optimisation. Nous obtenons une significative hausse dans le dĂ©bit moyen et le dĂ©bit des utilisateurs en bordure de cellule avec 40 % et 55 % de gains respectivement. En outre, on obtient un gain important en Ă©nergie. Ce travail aborde des dĂ©fis pour l’industrie des tĂ©lĂ©coms et en tant que tel, un prototype de l’optimiseur a Ă©tĂ© implĂ©mentĂ© en se basant sur un trafic HetNets Ă©mulĂ©

    Leveraging intelligence from network CDR data for interference aware energy consumption minimization

    Get PDF
    Cell densification is being perceived as the panacea for the imminent capacity crunch. However, high aggregated energy consumption and increased inter-cell interference (ICI) caused by densification, remain the two long-standing problems. We propose a novel network orchestration solution for simultaneously minimizing energy consumption and ICI in ultra-dense 5G networks. The proposed solution builds on a big data analysis of over 10 million CDRs from a real network that shows there exists strong spatio-temporal predictability in real network traffic patterns. Leveraging this we develop a novel scheme to pro-actively schedule radio resources and small cell sleep cycles yielding substantial energy savings and reduced ICI, without compromising the users QoS. This scheme is derived by formulating a joint Energy Consumption and ICI minimization problem and solving it through a combination of linear binary integer programming, and progressive analysis based heuristic algorithm. Evaluations using: 1) a HetNet deployment designed for Milan city where big data analytics are used on real CDRs data from the Telecom Italia network to model traffic patterns, 2) NS-3 based Monte-Carlo simulations with synthetic Poisson traffic show that, compared to full frequency reuse and always on approach, in best case, proposed scheme can reduce energy consumption in HetNets to 1/8th while providing same or better Qo

    DR9.3 Final report of the JRRM and ASM activities

    Get PDF
    Deliverable del projecte europeu NEWCOM++This deliverable provides the final report with the summary of the activities carried out in NEWCOM++ WPR9, with a particular focus on those obtained during the last year. They address on the one hand RRM and JRRM strategies in heterogeneous scenarios and, on the other hand, spectrum management and opportunistic spectrum access to achieve an efficient spectrum usage. Main outcomes of the workpackage as well as integration indicators are also summarised.Postprint (published version

    Subcarrier and Power Allocation in WiMAX

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is one of the latest technologies for providing Broadband Wireless Access (BWA) in a metropolitan area. The use of orthogonal frequency division multiplexing (OFDM) transmissions has been proposed in WiMAX to mitigate the complications which are associated with frequency selective channels. In addition, the multiple access is achieved by using orthogonal frequency division multiple access (OFDMA) scheme which has several advantages such as flexible resource allocation, relatively simple transceivers, and high spectrum efficient. In OFDMA the controllable resources are the subcarriers and the allocated power per subband. Moreover, adaptive subcarrier and power allocation techniques have been selected to exploit the natural multiuser diversity. This leads to an improvement of the performance by assigning the proper subcarriers to the user according to their channel quality and the power is allocated based on water-filling algorithm. One simple method is to allocate subcarriers and powers equally likely between all users. It is well known that this method reduces the spectral efficiency of the system, hence, it is not preferred unless in some applications. In order to handle the spectral efficiency problem, in this thesis we discuss three novel resources allocation algorithms for the downlink of a multiuser OFDM system and analyze the algorithm performances based on capacity and fairness measurement. Our intensive simulations validate the algorithm performances.fi=OpinnÀytetyö kokotekstinÀ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LÀrdomsprov tillgÀngligt som fulltext i PDF-format

    D4.3 Final Report on Network-Level Solutions

    Full text link
    Research activities in METIS reported in this document focus on proposing solutions to the network-level challenges of future wireless communication networks. Thereby, a large variety of scenarios is considered and a set of technical concepts is proposed to serve the needs envisioned for the 2020 and beyond. This document provides the final findings on several network-level aspects and groups of solutions that are considered essential for designing future 5G solutions. Specifically, it elaborates on: -Interference management and resource allocation schemes -Mobility management and robustness enhancements -Context aware approaches -D2D and V2X mechanisms -Technology components focused on clustering -Dynamic reconfiguration enablers These novel network-level technology concepts are evaluated against requirements defined by METIS for future 5G systems. Moreover, functional enablers which can support the solutions mentioned aboveare proposed. We find that the network level solutions and technology components developed during the course of METIS complement the lower layer technology components and thereby effectively contribute to meeting 5G requirements and targets.Aydin, O.; Valentin, S.; Ren, Z.; Botsov, M.; Lakshmana, TR.; Sui, Y.; Sun, W.... (2015). D4.3 Final Report on Network-Level Solutions. http://hdl.handle.net/10251/7675

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiïŹed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ïŹeld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Performances of LTE networks

    Get PDF
    PoussĂ© par la demande croissante de services Ă  haut dĂ©bit sans fil, Long Term Evolution (LTE) a Ă©mergĂ© comme une solution prometteuse pour les communications mobiles. Dans plusieurs pays Ă  travers le monde, la mise en oeuvre de LTE est en train de se dĂ©velopper. LTE offre une architecture tout-IP qui fournit des dĂ©bits Ă©levĂ©s et permet une prise en charge efficace des applications de type multimĂ©dia. LTE est spĂ©cifiĂ© par le 3GPP ; cette technologie fournit une architecture capable de mettre en place des mĂ©canismes pour traiter des classes de trafic hĂ©tĂ©rogĂšnes comme la voix, la vidĂ©o, les transferts de fichier, les courriers Ă©lectroniques, etc. Ces classes de flux hĂ©tĂ©rogĂšnes peuvent ĂȘtre gĂ©rĂ©es en fonction de la qualitĂ© de service requise mais aussi de la qualitĂ© des canaux et des conditions environnementales qui peuvent varier considĂ©rablement sur une courte Ă©chelle de temps. Les standards du 3GPP ne spĂ©cifient pas l’algorithmique de l’allocation des ressources du rĂ©seau d’accĂšs, dont l’importance est grande pour garantir performance et qualitĂ© de service (QoS). Dans cette thĂšse, nous nous focalisons plus spĂ©cifiquement sur la QoS de LTE sur la voie descendante. Nous nous concentrons alors sur la gestion des ressources et l’ordonnancement sur l’interface radio des rĂ©seaux d’accĂšs. Dans une premiĂšre partie, nous nous sommes intĂ©ressĂ©s Ă  des contextes de macro-cellules. Le premier mĂ©canisme proposĂ© pour l’allocation des ressources combine une mĂ©thode de jetons virtuels et des ordonnanceurs opportunistes. Les performances obtenues sont trĂšs bonnes mais n’assurent pas une trĂšs bonne Ă©quitĂ©. Notre seconde proposition repose sur la thĂ©orie des jeux, et plus spĂ©cifiquement sur la valeur de Shapley, pour atteindre un haut niveau d’équitĂ© entre les diffĂ©rentes classes de services au dĂ©triment de la qualitĂ© de service. Cela nous a poussĂ©, dans un troisiĂšme mĂ©canisme, Ă  combiner les deux schĂ©mas. La deuxiĂšme partie de la thĂšse est consacrĂ©e aux femto-cellules (ou femtocells) qui offrent des complĂ©ments de couverture apprĂ©ciables. La difficultĂ© consiste alors Ă  Ă©tudier et Ă  minimiser les interfĂ©rences. Notre premier mĂ©canisme d’attĂ©nuation des interfĂ©rences est fondĂ© sur le contrĂŽle de la puissance de transmission. Il fonctionne en utilisant la thĂ©orie des jeux non coopĂ©ratifs. On effectue une nĂ©gociation constante entre le dĂ©bit et les interfĂ©rences pour trouver un niveau optimal de puissance d’émission. Le second mĂ©canisme est centralisĂ© et utilise une approche de division de la bande passante afin d’obliger les femtocells Ă  ne pas utiliser les mĂȘmes sous-bandes Ă©vitant ainsi les interfĂ©rences. Le partage de bande passante et l’allocation sont effectuĂ©s en utilisant sur la thĂ©orie des jeux (valeur de Shapley) et en tenant compte du type d’application. Ce schĂ©ma rĂ©duit les interfĂ©rences considĂ©rablement. Tous les mĂ©canismes proposĂ©s ont Ă©tĂ© testĂ©s et Ă©valuĂ©s dans un environnement de simulation en utilisant l’outil LTE-Sim au dĂ©veloppement duquel nous avons contribuĂ©. ABSTRACT : Driven by the growing demand for high-speed broadband wireless services, Long term Evolution (LTE) technology has emerged as a competitive alternative to mobile communications solution. In several countries around the world, the implementation of LTE has started. LTE offers an IP-based framework that provides high data rates for multimedia applications. Moreover, based on the 3GPP specifications, the technology provides a set of built in mechanisms to support heterogeneous classes of traffic including data, voice and video, etc. Supporting heterogeneous classes of services means that the traffic is highly diverse and has distinct QoS parameters, channel and environmental conditions may vary dramatically on a short time scale. The 3GPP specifications leave unstandardized the resource management and scheduling mechanisms which are crucial components to guarantee the QoS performance for the services. In this thesis, we evaluate the performance and QoS in LTE technology. Moreover, our research addresses the resource management and scheduling issues on the wireless interface. In fact, after surveying, classifying and comparing different scheduling mechanisms, we propose three QoS mechanisms for resource allocation in macrocell scenarios focused on real time services and two mechanisms for interference mitigation in femtocell scenarios taking into account the QoS of real time services. Our first proposed mechanism for resource allocation in macrocell scenarios combines the well known virtual token (or token buckets) method with opportunistic schedulers, our second scheme utilizes game theory, specifically the Shapley value in order to achieve a higher fairness level among classes of services and our third mechanism combines the first and the second proposed schemes. Our first mechanism for interference mitigation in femtocell scenarios is power control based and works by using non cooperative games. It performs a constant bargain between throughput and SINR to find out the optimal transmit power level. The second mechanism is centralised, it uses a bandwidth division approach in order to not use the same subbands to avoid interference. The bandwidth division and assignation is performed based on game theory (Shapley value) taking into account the application bitrate . This scheme reduces interference considerably and shows an improvement compared to other bandwidth division schemes. All proposed mechanism are performed in a LTE simulation environment. several constraints such as throughput, Packet Loss Ratio, delay, fairness index, SINR are used to evaluate the efficiency of our scheme

    Performances des RĂ©seaux LTE

    Get PDF
    PoussĂ© par la demande croissante de services Ă  haut dĂ©bit sans fil, Long Term Evolution (LTE) a Ă©mergĂ© comme une solution prometteuse pour les communications mobiles. Dans plusieurs pays Ă  travers le monde, la mise en oeuvre de LTE est en train de se dĂ©velopper. LTE offre une architecture tout-IP qui fournit des dĂ©bits Ă©levĂ©s et permet une prise en charge efficace des applications de type multimĂ©dia. LTE est spĂ©cifiĂ© par le 3GPP ; cette technologie fournit une architecture capable de mettre en place des mĂ©canismes pour traiter des classes de trafic hĂ©tĂ©rogĂšnes comme la voix, la vidĂ©o, les transferts de fichier, les courriers Ă©lectroniques, etc. Ces classes de flux hĂ©tĂ©rogĂšnes peuvent ĂȘtre gĂ©rĂ©es en fonction de la qualitĂ© de service requise mais aussi de la qualitĂ© des canaux et des conditions environnementales qui peuvent varier considĂ©rablement sur une courte Ă©chelle de temps. Les standards du 3GPP ne spĂ©cifient pas l algorithmique de l allocation des ressources du rĂ©seau d accĂšs, dont l importance est grande pour garantir performance et qualitĂ© de service (QoS). Dans cette thĂšse, nous nous focalisons plus spĂ©cifiquement sur la QoS de LTE sur la voie descendante. Nous nous concentrons alors sur la gestion des ressources et l ordonnancement sur l interface radio des rĂ©seaux d accĂšs. Dans une premiĂšre partie, nous nous sommes intĂ©ressĂ©s Ă  des contextes de macro-cellules. Le premier mĂ©canisme proposĂ© pour l allocation des ressources combine une mĂ©thode de jetons virtuels et des ordonnanceurs opportunistes. Les performances obtenues sont trĂšs bonnes mais n assurent pas une trĂšs bonne Ă©quitĂ©. Notre seconde proposition repose sur la thĂ©orie des jeux, et plus spĂ©cifiquement sur la valeur de Shapley, pour atteindre un haut niveau d Ă©quitĂ© entre les diffĂ©rentes classes de services au dĂ©triment de la qualitĂ© de service. Cela nous a poussĂ©, dans un troisiĂšme mĂ©canisme, Ă  combiner les deux schĂ©mas. La deuxiĂšme partie de la thĂšse est consacrĂ©e aux femto-cellules (ou femtocells) qui offrent des complĂ©ments de couverture apprĂ©ciables. La difficultĂ© consiste alors Ă  Ă©tudier et Ă  minimiser les interfĂ©rences. Notre premier mĂ©canisme d attĂ©nuation des interfĂ©rences est fondĂ© sur le contrĂŽle de la puissance de transmission. Il fonctionne en utilisant la thĂ©orie des jeux non coopĂ©ratifs. On effectue une nĂ©gociation constante entre le dĂ©bit et les interfĂ©rences pour trouver un niveau optimal de puissance d Ă©mission. Le second mĂ©canisme est centralisĂ© et utilise une approche de division de la bande passante afin d obliger les femtocells Ă  ne pas utiliser les mĂȘmes sous-bandes Ă©vitant ainsi les interfĂ©rences. Le partage de bande passante et l allocation sont effectuĂ©s en utilisant sur la thĂ©orie des jeux (valeur de Shapley) et en tenant compte du type d application. Ce schĂ©ma rĂ©duit les interfĂ©rences considĂ©rablement. Tous les mĂ©canismes proposĂ©s ont Ă©tĂ© testĂ©s et Ă©valuĂ©s dans un environnement de simulation en utilisant l outil LTE-Sim au dĂ©veloppement duquel nous avons contribuĂ©.Driven by the growing demand for high-speed broadband wireless services, Long term Evolution (LTE) technology has emerged as a competitive alternative to mobile communications solution. In several countries around the world, the implementation of LTE has started. LTE offers an IP-based framework that provides high data rates for multimedia applications. Moreover, based on the 3GPP specifications, the technology provides a set of built in mechanisms to support heterogeneous classes of traffic including data, voice and video, etc. Supporting heterogeneous classes of services means that the traffic is highly diverse and has distinct QoS parameters, channel and environmental conditions may vary dramatically on a short time scale. The 3GPP specifications leave unstandardized the resource management and scheduling mechanisms which are crucial components to guarantee the QoS performance for the services. In this thesis, we evaluate the performance and QoS in LTE technology. Moreover, our research addresses the resource management and scheduling issues on the wireless interface. In fact, after surveying, classifying and comparing different scheduling mechanisms, we propose three QoS mechanisms for resource allocation in macrocell scenarios focused on real time services and two mechanisms for interference mitigation in femtocell scenarios taking into account the QoS of real time services. Our first proposed mechanism for resource allocation in macrocell scenarios combines the well known virtual token (or token buckets) method with opportunistic schedulers, our second scheme utilizes game theory, specifically the Shapley value in order to achieve a higher fairness level among classes of services and our third mechanism combines the first and the second proposed schemes. Our first mechanism for interference mitigation in femtocell scenarios is power control based and works by using non cooperative games. It performs a constant bargain between throughput and SINR to find out the optimal transmit power level. The second mechanism is centralised, it uses a bandwidth division approach in order to not use the same subbands to avoid interference. The bandwidth division and assignation is performed based on game theory (Shapley value) taking into account the application bitrate . This scheme reduces interference considerably and shows an improvement compared to other bandwidth division schemes. All proposed mechanism are performed in a LTE simulation environment. several constraints such as throughput, Packet Loss Ratio, delay, fairness index, SINR are used to evaluate the efficiency of our schemesTOULOUSE-INP (315552154) / SudocSudocFranceF
    • 

    corecore