28 research outputs found

    High power density AC to DC conversion with reduced input current harmonics

    Get PDF
    PhD ThesisThis thesis investigates the bene ts and challenges arising from the use of minimal capacitance in AC to DC converters. The purpose of the research is to ultimately improve the power density and power factor of electrical systems connected to the grid. This is carried out in the con- text of a low cost brushless DC drive system operating from an o ine power supply. The work begins with a review of existing applications where it is prac- tical to use a limited amount of DC link capacitance. The vast majority of these have a load which is insensitive to supply power variations at twice the line frequency. Low performance motor drives are found to be the most prevalent, with the inertia of the rotor mitigating the e ect of torque ripple. Further research is carried out on active power factor cor- rection techniques suitable for this application, leading to the conclusion that no appropriate systems exist. A power supply is developed to enable a 24V, 200W brushless motor drive to operate from the mains. The system runs successfully using only 1µF of DC link capacitance, which causes the motor supply volt- age to have 100% ripple. It is noted that whilst this drastically reduces the low frequency input current harmonics, those occurring at the load switching frequency are greatly increased. To combat this, a novel active power factor correction system is proposed using a notch lter to detect the input current error. The common problem of voltage feedback ripple is avoided by eliminating the voltage control loop altogether. The main limitations are identi ed as a high sensitivity to load step changes and variations in line frequency. Despite this, a high power factor is maintained in all operating conditions, as well as compliance with the relevant harmonic standards.Dyson Technology Ltd and Newcastle Univer- sit

    Increasing the capacity of distributed generation in electricity networks by intelligent generator control

    Get PDF
    The rise of environmental awareness as well as the unstable global fossil fuel market has brought about government initiatives to increase electricity generation from renewable energy sources. These resources tend to be geographically and electrically remote from load centres. Consequently many Distributed Generators (DGs) are expected to be connected to the existing Distribution Networks (DNs), which have high impedance and low X/R ratios. Intermittence and unpredictability of the various types of renewable energy sources can be of time scales of days (hydro) down to seconds (wind, wave). As the time scale becomes smaller, the output of the DG becomes more difficult to accommodate in the DN. With the DGs operating in constant power factor mode, intermittence of the output of the generator combined with the high impedance and low X/R ratios of the DN will cause voltage variations above the statutory limits for quality of supply. This is traditionally mitigated by accepting increased operation of automated network control or network reinforcement. However, due to the distributed nature of RES, automating or reinforcing the DN can be expensive and difficult solutions to implement. The Thesis proposed was that new methods of controlling DG voltage could enable the connection of increased capacities of plant to existing DNs without the need for network management or reinforcement. The work reported here discusses the implications of the increasing capacity of DG in rural distribution networks on steady-state voltage profiles. Two methods of voltage compensation are proposed. The first is a deterministic system that uses a set of rules to intelligently switch between voltage and power factor control modes. This new control algorithm is shown to be able to respond well to slow voltage variations due to load or generation changes. The second method is a fuzzy inference system that adjusts the setpoint of the power factor controller in response to the local voltage. This system can be set to respond to any steady-state voltage variations that will be experienced. Further, control of real power is developed as a supplementary means for voltage regulation in weak rural networks. The algorithms developed in the study are shown to operate with any synchronous or asynchronous generation wherein real and reactive power can be separately controlled. Extensive simulations of typical and real rural systems using synchronous generators (small hydro) and doubly-fed induction generators (wind turbines) have verified that the proposed approaches improve the voltage profile of the distribution network. This demonstrated that the original Thesis was true and that the techniques proposed allow wider operation of greater capacities of DG within the statutory voltage limits

    Investigación sobre la flexibilidad de la demanda en redes eléctricas inteligentes: control directo de cargas

    Get PDF
    In recent decades, the European Union has made decisive efforts to maintain its global leadership in renewable energies to meet climate change targets resulting from international agreements. There is a deliberate intention to reduce the usage of non-renewable energy sources and promote the exploitation of renewable generation at all levels as shown by energy production data within the Eurozone. The electricity sector illustrates a successful implementation of these energy policies: The electricity coming from combustible fuels was at historical lows in 2018, accounting for 83.6 % of the electricity generated from this source in 2008. By contrast, the pool of renewables reached almost 170 % of the 2008 production. Against this background, power systems worldwide are undergoing deep-seated changes due to the increasing penetration of these variable renewable energy sources and distributed energy resources that are intermittent and stochastic in nature. Under these conditions, achieving a continuous balance between generation and consumption becomes a challenge and may jeopardize the system stability, which points out the need of making the power system flexible enough as a response measure to this trend. This Ph.D. thesis researches one of the principal mechanisms providing flexibility to the power system: The demand-side management, seen from both the demand response and the energy efficiency perspectives. Power quality issues as a non-negligible part of energy efficiency are also addressed. To do so, several strategies have been deployed at a double level. In the residential sector, a direct load control strategy for smart appliances has been developed under a real-time pricing demand response scheme. This strategy seeks to minimize the daily cost of energy in presence of diverse energy resources and appliances. Furthermore, a spread spectrum technique has also been applied to mitigate the highfrequency distortion derived from the usage of LED technology lighting systems instead of traditional ones when energy efficiency needs to be improved. In the industrial sector, a load scheduling strategy to control the AC-AC power electronic converter in charge of supporting the electric-boosted glass melting furnaces has been developed. The benefit is two-fold: While it contributes to demand flexibility by shaving the peaks found under conventional control schemes, the power quality issues related to the emission of subharmonics are also kept to a minimum. Concerning the technologies, this Ph.D. thesis provides smart solutions, platforms, and devices to carry out these strategies: From the application of the internet of things paradigm to the development of the required electronics and the implementation of international standards within the energy industry.En las últimas décadas, la Unión Europea ha realizado esfuerzos decisivos para mantener su liderazgo mundial en energías renovables con el fin de cumplir los objetivos de cambio climático resultantes de los acuerdos internacionales. Muestra una intención deliberada de reducir el uso de fuentes de energía no renovable y promover la explotación de la generación renovable a todos los niveles, como demuestran los datos de producción de energía en la eurozona. El sector de la electricidad ilustra un caso de éxito de estas políticas energéticas: la electricidad procedente de combustibles fósiles estaba en mínimos históricos en 2018, representando el 83,6 % de la electricidad generada a partir de esta fuente en 2008; en cambio, el grupo de renovables alcanzó casi el 170 % de la producción de 2008. En este contexto, los sistemas eléctricos de todo el mundo están experimentando profundos cambios debido a la creciente penetración de estas fuentes de energía renovable y de recursos energéticos distribuidos que son de naturaleza variable, intermitente y estocástica. En estas condiciones, lograr un equilibrio continuo entre generación y consumo se convierte en un reto y puede poner en peligro la estabilidad del sistema, lo que señala la necesidad de flexibilizar el sistema eléctrico como medida de respuesta a esta tendencia. Esta tesis doctoral investiga uno de los principales mecanismos que proporcionan flexibilidad al sistema eléctrico: la gestión de la demanda vista tanto desde la perspectiva de la respuesta a la demanda como de la eficiencia energética. También se abordan los problemas de calidad de suministro entendidos como parte no despreciable de la eficiencia energética. Para ello, se han desplegado varias estrategias a un doble nivel. En el sector residencial, se ha desarrollado una estrategia basada en el control directo de cargas para los electrodomésticos inteligentes siguiendo un esquema de respuesta a la demanda con precios en tiempo real. Esta estrategia busca minimizar el coste diario de la energía en presencia de diversos recursos energéticos y electrodomésticos. Además, también se ha aplicado una técnica de espectro ensanchado para mitigar la distorsión de alta frecuencia derivada del uso de sistemas de iluminación con tecnología LED, empleados para la mejora de la eficiencia energética frente a las tecnologías convencionales. En el sector industrial, se ha desarrollado una estrategia de planificación de cargas para controlar el convertidor AC-AC de los hornos de fundición de vidrio con soporte eléctrico. El beneficio es doble: mientras que se contribuye a la flexibilidad de la demanda al eliminar los picos encontrados en los esquemas de control convencionales, también se reducen al mínimo los problemas de calidad de suministro relacionados con la emisión de subarmónicos. En cuanto a las tecnologías, esta tesis doctoral aporta soluciones, plataformas y dispositivos inteligentes para llevar a cabo estas estrategias: desde la aplicación del paradigma del internet de las cosas hasta el desarrollo de la electrónica necesaria y la implementación de estándares internacionales dentro de la industria energética

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    Matlab

    Get PDF
    This book is a collection of 19 excellent works presenting different applications of several MATLAB tools that can be used for educational, scientific and engineering purposes. Chapters include tips and tricks for programming and developing Graphical User Interfaces (GUIs), power system analysis, control systems design, system modelling and simulations, parallel processing, optimization, signal and image processing, finite different solutions, geosciences and portfolio insurance. Thus, readers from a range of professional fields will benefit from its content

    Power Flow Studies of HVDC Grids with DC Power Flow Controllers

    Get PDF
    High-Voltage Direct Current (HVDC) transmission, especially based on voltage source converters (VSCs), have attracted significant research interests due to renewable energy sources integration in power grids, notably offshore wind farms. Despite recent research contributions in the literature on HVDC systems, a number of challenges remain unsolved, such as lack of a comprehensive study regarding power-electronics-based devices in HVDC systems, suitable modelling approaches for sophisticated DC power flow controllers, power loss modeling of DC power flow controllers, powerful and practical DC power flow solvers, and the highly-meshed test structure of HVDC grids for power flow. To address these research gaps, in this thesis, a comprehensive literature review has been conducted on power electronics devices in HVDC systems in Chapter 2. These devices are divided into three categories in the review: 1) power converters; 2) DC/DC converters; and 3) DC power flow controllers (DCPFCs). As an emerging power electronics device being introduced less than a decade ago, DCPFCs are the main focus of this thesis. A novel unified Newton-Raphson (NR)-based DC power flow solver (DCPFS) is presented in Chapter 3 to solve the DC power flow problem in multi-terminal HVDC (MT-HVDC) grids by employing a novel DCPFC, the multi-port interline DC power flow controller (MIDCPFC). The proposed DCPFS modifies physical and control state variables of the whole system (MIDCPFC and the MT-HVDC grid) simultaneously to control power flow in HVDC lines, especially overloaded lines. The static model and the power injection model of the MIDCPFC are obtained and their equations are embedded within the designed DCPFS. The absence of the fictitious bus preserves the original conductance matrix of the system and its symmetry, and thus, the original system's Jacobin matrix only needs minor modifications in the developed unified NR-based DCPFS. Additionally, the proposed DCPFS is straightforward for implementation since the voltage of the intermediate capacitor of MIDCPFC is treated as an independent variable, as a result, there is no need to use external processes to control its value. The shunt conductance of HVDC lines is also considered. The comprehensive models have been proposed to model power losses of MIDCPFC and VSCs for the first time. Finally, a new modified 15-bus MT-HVDC grid is proposed and implemented for verification purposes. The obtained results verify the accuracy and efficacy of the proposed concepts, models, and formulations of this study. A novel sequential NR-based DCPFS is proposed in Chapter 4 to solve the DC power flow problem in MT-HVDC grids by employing MIDCPFC and decoupling the power flow equations of the MIDCPFC and the MT-HVDC grid. In the proposed sequential NR-based DCPFS, there is no trace of fictitious buses, the original conductance matrix of the system and its symmetry are preserved, and the shunt conductance of HVDC lines is considered for precise modeling. The structure of the proposed DCPFS is sequential, which decouples the MIDCPFC and grid related power flow equations. A prominent feature of the DCPFS is that it fully preserves the system's original Jacobin matrix and does not require any modification to that matrix, which reduces the computational burden. In addition, power losses of the MIDCPFC and VSCs are embedded in DC power flow equations. The proposed sequential NR-based DCPFS is straightforward to implement as the voltage of the MIDCPFC is treated as an independent variable, and consequently, no external process is needed to control it. Various scenarios are tested on a modified 15-bus MT-HVDC grid to verify the proposed sequential NR-based DCPFS. The accuracy and efficacy of the proposed approach is validated through these case studies

    Основи схемотехніки електронних систем

    Get PDF
    Basics of circuitry are stated, principles of operation are considered, it is given calculations of analog, digital and pulse devices of electronic systems, based on semiconductor devices, integrated operational amplifiers and integrated logic circuits of TTL, MOS, CMOS types, construction principles of systems of control by electronics devices based on microprocessors and microcontrollers. For students of institutions of higher education. It can be useful for specialists on electronic engineering, specializing in the area of development, fabrication and maintenance of electronic systems and devices

    Neuroimaging of human motor control in real world scenarios: from lab to urban environment

    Get PDF
    The main goal of this research programme was to explore the neurophysiological correlates of human motor control in real-world scenarios and define mechanism-specific markers that could eventually be employed as targets of novel neurorehabilitation practice. As a result of recent developments in mobile technologies it is now possible to observe subjects' behaviour and monitor neurophysiological activity whilst they perform natural activities freely. Investigations in real-world scenarios would shed new light on mechanisms of human motor control previously not observed in laboratory settings and how they could be exploited to improve rehabilitative interventions for the neurologically impaired. This research programme was focussed on identifying cortical mechanisms involved in both upper- (i.e. reaching) and lower-limb (i.e. locomotion) motor control. Complementary results were obtained by the simultaneous recordings of kinematic, electromyographic and electrocorticographic signals. To study motor control of the upper-limb, a lab­based setup was developed, and the reaching movement of healthy young individuals was observed in both stable and unstable (i.e. external perturbation) situations. Robot-mediated force-field adaptation has the potential to be employed in rehabilitation practice to promote new skills learning and motor recovery. The muscular (i.e. intermuscular couplings) and neural (i.e. spontaneous oscillations and cortico­muscular couplings) indicators of the undergoing adaptation process were all symbolic of adaptive strategies employed during early stages of adaptation. The medial frontal, premotor and supplementary motor regions appeared to be the principal cortical regions promoting adaptive control and force modulation. To study locomotion control, a mobile setup was developed and daily life human activities (i.e. walking while conversing, walking while texting with a smartphone) were investigated outside the lab. Walking in hazardous environments or when simultaneously performing a secondary task has been demonstrated to be challenging for the neurologically impaired. Healthy young adults showed a reduced motor performance when walking in multitasking conditions, during which whole-brain and task-specific neural correlates were observed. Interestingly, the activity of the left posterior parietal cortex was predictive of the level of gait stability across individuals, suggesting a crucial role of this area in gait control and determination of subject specific motor capabilities. In summary, this research programme provided evidence on different cortical mechanisms operative during two specific scenarios for "real­world" motor behaviour in and outside the laboratory-setting in healthy subjects. The results suggested that identification of neuro-muscular indicators of specific motor control mechanisms could be exploited in future "real-world" rehabilitative practice

    Social work with airports passengers

    Get PDF
    Social work at the airport is in to offer to passengers social services. The main methodological position is that people are under stress, which characterized by a particular set of characteristics in appearance and behavior. In such circumstances passenger attracts in his actions some attention. Only person whom he trusts can help him with the documents or psychologically

    Proceedings of the 7th International Conference EEDAL 2013 Energy Efficiency in Domestic Appliances and Lighting

    Get PDF
    This book contains the papers presented at the seventh international conference on Energy Efficiency in Domestic Appliances and Lighting. EEDAL'2013 was organised in Coimbra, Portugal in September 2013. This major international conference, which was previously been staged in Florence 1997, Naples 2000, Turin 2003, London 2006, B2e0r0l9in, Copenhagen 2011 has been very successful in attracting an international community of stakeholders dealing with residential appliances, equipment, metering liagnhdti ng (including manufacturers, retailers, consumers, governments, international organisations aangde ncies, academia and experts) to discuss the progress achieved in technologies, behavioural aspects and poliacineds , the strategies that need to be implemented to further progress this important work. Potential readers who may benefit from this book include researchers, engineers, policymakers, and all those who can influence the design, selection, application, and operation of electrical appliances and lighting.JRC.F.7-Renewables and Energy Efficienc
    corecore