40 research outputs found

    Comparison of beamformer implementations for MEG source localization

    Get PDF
    Beamformers are applied for estimating spatiotemporal characteristics of neuronal sources underlying measured MEG/EEG signals. Several MEG analysis toolboxes include an implementation of a linearly constrained minimum-variance (LCMV) beamformer. However, differences in implementations and in their results complicate the selection and application of beamformers and may hinder their wider adoption in research and clinical use. Additionally, combinations of different MEG sensor types (such as magnetometers and planar gradiometers) and application of preprocessing methods for interference suppression, such as signal space separation (SSS), can affect the results in different ways for different implementations. So far, a systematic evaluation of the different implementations has not been performed. Here, we compared the localization performance of the LCMV beamformer pipelines in four widely used open-source toolboxes (MNE-Python, FieldTrip, DAiSS (SPM12), and Brainstorm) using datasets both with and without SSS interference suppression. We analyzed MEG data that were i) simulated, ii) recorded from a static and moving phantom, and iii) recorded from a healthy volunteer receiving auditory, visual, and somatosensory stimulation. We also investigated the effects of SSS and the combination of the magnetometer and gradiometer signals. We quantified how localization error and point-spread volume vary with the signal-to-noise ratio (SNR) in all four toolboxes. When applied carefully to MEG data with a typical SNR (3-15 dB), all four toolboxes localized the sources reliably; however, they differed in their sensitivity to preprocessing parameters. As expected, localizations were highly unreliable at very low SNR, but we found high localization error also at very high SNRs for the first three toolboxes while Brainstorm showed greater robustness but with lower spatial resolution. We also found that the SNR improvement offered by SSS led to more accurate localization.Peer reviewe

    Signal Space Separation Beamformer

    Get PDF
    We have combined Signal Space Separation and beamformers (SSS beamformer). The SSS beamformer was tested by simulation in the presence of simulated brain noise. The SSS beamformer performs at least as well as the conventional beamformer, provided that the expansion order is sufficiently high. For beamformer outputs which depend on power or power difference normalized by the projected noise, the spatial resolution of the SSS beamformer is significantly better than that of the conventional beamformers if the sources are deeper, and about the same as that of the conventional beamformer when the sources are superficial. For beamformer outputs which depend on the ratio of powers, the spatial resolutions of the SSS and conventional beamfomers are the same. The sensor noise covariance matrix in the SSS basis is non-diagonal. The SSS beamformers with diagonalized noise covariance matrix exhibit better spatial resolution than that with non-diagonal noise covariance matrix. The SSS beamformers are computationally more efficient than the conventional beamformers

    Localising the auditory N1m with event-related beamformers:localisation accuracy following bilateral and unilateral stimulation

    Get PDF
    The auditory evoked N1m-P2m response complex presents a challenging case for MEG source-modelling, because symmetrical, phase-locked activity occurs in the hemispheres both contralateral and ipsilateral to stimulation. Beamformer methods, in particular, can be susceptible to localisation bias and spurious sources under these conditions. This study explored the accuracy and efficiency of event-related beamformer source models for auditory MEG data under typical experimental conditions: monaural and diotic stimulation; and whole-head beamformer analysis compared to a half-head analysis using only sensors from the hemisphere contralateral to stimulation. Event-related beamformer localisations were also compared with more traditional single-dipole models. At the group level, the event-related beamformer performed equally well as the single-dipole models in terms of accuracy for both the N1m and the P2m, and in terms of efficiency (number of successful source models) for the N1m. The results yielded by the half-head analysis did not differ significantly from those produced by the traditional whole-head analysis. Any localisation bias caused by the presence of correlated sources is minimal in the context of the inter-individual variability in source localisations. In conclusion, event-related beamformers provide a useful alternative to equivalent-current dipole models in localisation of auditory evoked responses

    Localization of cortico-peripheral coherence with electroencephalography.

    Get PDF
    Background The analysis of coherent networks from continuous recordings of neural activity with functional MRI or magnetoencephalography has provided important new insights into brain physiology and pathology. Here we assess whether valid localizations of coherent cortical networks can also be obtained from high-resolution electroencephalography (EEG) recordings. Methods EEG was recorded from healthy subjects and from patients with ischemic brain lesions during a tonic hand muscle contraction task and during continuous visual stimulation with an alternating checkerboard. These tasks induce oscillations in the primary hand motor area or in the primary visual cortex, respectively, which are coherent with extracerebral signals (hand muscle electromyogram or visual stimulation frequency). Cortical oscillations were reconstructed with different inverse solutions and the coherence between oscillations at each cortical voxel and the extracerebral signals was calculated. Moreover, simulations of coherent point sources were performed. Results Cortico-muscular coherence was correctly localized to the primary hand motor area and the steady-state visual evoked potentials to the primary visual cortex in all subjects and patients. Sophisticated head models tended to yield better localization accuracy than a single sphere model. A Minimum Variance Beamformer (MVBF) provided more accurate and focal localizations of simulated point sources than an L2 Minimum Norm (MN) inverse solution. In the real datasets, the MN maps had less localization error but were less focal than MVBF maps. Conclusions EEG can localize coherent cortical networks with sufficient accuracy

    Examining the Effects of One- and Three-Dimensional Spatial Filtering Analyses in Magnetoencephalography

    Get PDF
    Spatial filtering, or beamforming, is a commonly used data-driven analysis technique in the field of Magnetoencephalography (MEG). Although routinely referred to as a single technique, beamforming in fact encompasses several different methods, both with regard to defining the spatial filters used to reconstruct source-space time series and in terms of the analysis of these time series. This paper evaluates two alternative methods of spatial filter construction and application. It demonstrates how encoding different requirements into the design of these filters has an effect on the results obtained. The analyses presented demonstrate the potential value of implementations which examine the timeseries projections in multiple orientations at a single location by showing that beamforming can reconstruct predominantly radial sources in the case of a multiple-spheres forward model. The accuracy of source reconstruction appears to be more related to depth than source orientation. Furthermore, it is shown that using three 1-dimensional spatial filters can result in inaccurate source-space time series reconstruction. The paper concludes with brief recommendations regarding reporting beamforming methodologies in order to help remove ambiguity about the specifics of the techniques which have been used

    Influence of the head model on EEG and MEG source connectivity analysis

    Get PDF
    The results of brain connectivity analysis using reconstructed source time courses derived from EEG and MEG data depend on a number of algorithmic choices. While previous studies have investigated the influence of the choice of source estimation method or connectivity measure, the effects of the head modeling errors or simplifications have not been studied sufficiently. In the present simulation study, we investigated the influence of particular properties of the head model on the reconstructed source time courses as well as on source connectivity analysis in EEG and MEG. Therefore, we constructed a realistic head model and applied the finite element method to solve the EEG and MEG forward problem. We considered the distinction between white and gray matter, the distinction between compact and spongy bone, the inclusion of a cerebrospinal fluid (CSF) compartment, and the reduction to a simple 3-layer model comprising only skin, skull, and brain. Source time courses were reconstructed using a beamforming approach and the source connectivity was estimated by the imaginary coherence (ICoh) and the generalized partial directed coherence (GPDC). Our results show that in both EEG and MEG, neglecting the white and gray matter distinction or the CSF causes considerable errors in reconstructed source time courses and connectivity analysis, while the distinction between spongy and compact bone is just of minor relevance, provided that an adequate skull conductivity value is used. Large inverse and connectivity errors are found in the same regions that show large topography errors in the forward solution. Moreover, we demonstrate that the very conservative ICoh is relatively safe from the crosstalk effects caused by imperfect head models, as opposed to the GPDC

    Magnetoencephalography

    Get PDF
    This is a practical book on MEG that covers a wide range of topics. The book begins with a series of reviews on the use of MEG for clinical applications, the study of cognitive functions in various diseases, and one chapter focusing specifically on studies of memory with MEG. There are sections with chapters that describe source localization issues, the use of beamformers and dipole source methods, as well as phase-based analyses, and a step-by-step guide to using dipoles for epilepsy spike analyses. The book ends with a section describing new innovations in MEG systems, namely an on-line real-time MEG data acquisition system, novel applications for MEG research, and a proposal for a helium re-circulation system. With such breadth of topics, there will be a chapter that is of interest to every MEG researcher or clinician

    Dynamic electrophysiological connectomics

    Get PDF
    The human brain can be divided into multiple areas, each responsible for different aspects of behaviour. For a century we have been developing techniques to non-invasively map these areas and their associated functions, a discipline now known as neuroimaging. In recent years the field has undergone a paradigm shift to investigate how the brain communicates with itself; it is widely regarded that healthy brain function relies upon efficient connectivity between different functional areas, and the neuroimaging field has been revolutionised by our ability to estimate this connectivity. Studies into communication between spatially separate locations in the brain have revealed a series of robust functional networks which govern mental processes. However these studies have been based on the temporal averaging of minutes or even hours of data to give us a generalised ’snapshot’ of connectivity. Increasing evidence shows us that these connections are dynamic in space, time and frequency and so the next generation of of neuroimaging methods, which capture this 5-dimensional connectivity will prove to be key tools in the investigation of brain networks and ultimately their breakdown in disease. In this thesis we introduce novel methods to capture non-stationarity using magnetoencephalography (MEG), an imaging modality which measures the changes in extracranial magnetic fields associated with neuronal current flow. MEG is a direct measurement of neural activity and has an excellent temporal resolution, which makes it attractive for non-invasively tracking dynamic functional connections. However there are many technical limitations which can confound assessment of functional connectivity which have to be addressed. In Chapters 2 and 3 we introduce the theory behind MEG; specifically how it is possible to measure the femtoTelsa changes in magnetic field generated by the brain and how to project these data to generate a 3-dimensional picture of current in the brain. Chapter 4 reviews some of popular methods of assessing functional connectivity and how to control for the influence of artefactual functional connections erroneously produced during source projection. Chapter 5 introduces a pipeline to assess functional connections across time, space and frequency and in Chapter 6 we apply this pipeline to show that resting state networks, measured using ’static’ metrics are in fact comprised of a series of rapidly forming and dissolving subnetwork connections. Finally, Chapter 7 introduces a pipeline to track dynamic network behaviour simultaneously across the entire brain volume and shows that networks can be characterised by their temporal signatures of connectivity

    Dynamic electrophysiological connectomics

    Get PDF
    The human brain can be divided into multiple areas, each responsible for different aspects of behaviour. For a century we have been developing techniques to non-invasively map these areas and their associated functions, a discipline now known as neuroimaging. In recent years the field has undergone a paradigm shift to investigate how the brain communicates with itself; it is widely regarded that healthy brain function relies upon efficient connectivity between different functional areas, and the neuroimaging field has been revolutionised by our ability to estimate this connectivity. Studies into communication between spatially separate locations in the brain have revealed a series of robust functional networks which govern mental processes. However these studies have been based on the temporal averaging of minutes or even hours of data to give us a generalised ’snapshot’ of connectivity. Increasing evidence shows us that these connections are dynamic in space, time and frequency and so the next generation of of neuroimaging methods, which capture this 5-dimensional connectivity will prove to be key tools in the investigation of brain networks and ultimately their breakdown in disease. In this thesis we introduce novel methods to capture non-stationarity using magnetoencephalography (MEG), an imaging modality which measures the changes in extracranial magnetic fields associated with neuronal current flow. MEG is a direct measurement of neural activity and has an excellent temporal resolution, which makes it attractive for non-invasively tracking dynamic functional connections. However there are many technical limitations which can confound assessment of functional connectivity which have to be addressed. In Chapters 2 and 3 we introduce the theory behind MEG; specifically how it is possible to measure the femtoTelsa changes in magnetic field generated by the brain and how to project these data to generate a 3-dimensional picture of current in the brain. Chapter 4 reviews some of popular methods of assessing functional connectivity and how to control for the influence of artefactual functional connections erroneously produced during source projection. Chapter 5 introduces a pipeline to assess functional connections across time, space and frequency and in Chapter 6 we apply this pipeline to show that resting state networks, measured using ’static’ metrics are in fact comprised of a series of rapidly forming and dissolving subnetwork connections. Finally, Chapter 7 introduces a pipeline to track dynamic network behaviour simultaneously across the entire brain volume and shows that networks can be characterised by their temporal signatures of connectivity

    Synchronization of medial temporal lobe and prefrontal rhythms in human decision-making

    Get PDF
    Optimal decision making requires that we integrate mnemonic information regarding previous decisions with value signals that entail likely rewards and punishments. The fact that memory and value signals appear to be coded by segregated brain regions, the hippocampus in the case of memory and sectors of prefrontal cortex in the case of value, raises the question as to how they are integrated during human decision making. Using magnetoencephalography to study healthy human participants, we show increased theta oscillations over frontal and temporal sensors during nonspatial decisions based on memories from previous trials. Using source reconstruction we found that the medial temporal lobe (MTL), in a location compatible with the anterior hippocampus, and the anterior cingulate cortex in the medial wall of the frontal lobe are the source of this increased theta power. Moreover, we observed a correlation between theta power in the MTL source and behavioral performance in decision making, supporting a role for MTL theta oscillations in decision-making performance. These MTL theta oscillations were synchronized with several prefrontal sources, including lateral superior frontal gyrus, dorsal anterior cingulate gyrus, and medial frontopolar cortex. There was no relationship between the strength of synchronization and the expected value of choices. Our results indicate a mnemonic guidance of human decision making, beyond anticipation of expected reward, is supported by hippocampal–prefrontal theta synchronization
    corecore