183 research outputs found

    Association rule hiding using integer linear programming

    Get PDF
    Privacy preserving data mining has become the focus of attention of government statistical agencies and database security research community who are concerned with preventing privacy disclosure during data mining. Repositories of large datasets include sensitive rules that need to be concealed from unauthorized access. Hence, association rule hiding emerged as one of the powerful techniques for hiding sensitive knowledge that exists in data before it is published. In this paper, we present a constraint-based optimization approach for hiding a set of sensitive association rules, using a well-structured integer linear program formulation. The proposed approach reduces the database sanitization problem to an instance of the integer linear programming problem. The solution of the integer linear program determines the transactions that need to be sanitized in order to conceal the sensitive rules while minimizing the impact of sanitization on the non-sensitive rules. We also present a heuristic sanitization algorithm that performs hiding by reducing the support or the confidence of the sensitive rules. The results of the experimental evaluation of the proposed approach on real-life datasets indicate the promising performance of the approach in terms of side effects on the original database

    DISTORTION-BASED HEURISTIC METHOD FOR SENSITIVE ASSOCIATION RULE HIDING

    Get PDF
    In the past few years, privacy issues in data mining have received considerable attention in the data mining literature. However, the problem of data security cannot simply be solved by restricting data collection or against unauthorized access, it should be dealt with by providing solutions that  not only protect sensitive information, but also not affect to the accuracy of the results in data mining and not violate the sensitive knowledge related with individual privacy or competitive advantage in businesses. Sensitive association rule hiding is an important issue in privacy preserving data mining. The aim of association rule hiding is to minimize the side effects on the sanitized database, which means to reduce the number of missing non-sensitive rules and the number of generated ghost rules. Current methods for hiding sensitive rules cause side effects and data loss. In this paper, we introduce a new distortion-based method to hide sensitive rules. This method proposes the determination of critical transactions based on the number of non-sensitive maximal frequent itemsets that contain at least one item to the consequent of the sensitive rule, they can be directly affected by the modified transactions. Using this set, the number of non-sensitive itemsets that need to be considered is reduced dramatically. We compute the smallest number of transactions for modification in advance to minimize the damage to the database. Comparative experimental results on real datasets showed that the proposed method can achieve better results than other methods with fewer side effects and data loss

    CẢI THIỆN THUẬT GIẢI CUCKOO TRONG VẤN ĐỀ ẨN LUẬT KẾT HỢP

    Get PDF
    Nowadays, the problem of data security in the process of data mining receives more attention. The question is how to balance between exploiting legal data and avoiding revealing sensitive information. There have been many approaches, and one remarkable approach is privacy preservation in association rule mining to hide sensitive rules. Recently, a meta-heuristic algorithm is relatively effective for this purpose, which is cuckoo optimization algorithm (COA4ARH). In this paper, an improved version of COA4ARH is presented for calculating the minimum number of sensitive items which should be removed to hide sensitive rules, as well as limit the loss of non-sensitive rules. The experimental results gained from three real datasets showed that the proposed method has better results compared to the original algorithm in several cases.Hiện nay, vấn đề bảo mật dữ liệu ngày càng được quan tâm hơn trong quá trình khai thác dữ liệu. Làm sao để vừa có thể khai thác hợp pháp mà vừa tránh lộ ra các thông tin nhạy cảm. Có rất nhiều hướng tiếp cận nhưng nổi trội trong số đó là khai thác luật kết hợp đảm bảo sự riêng tư nhằm ẩn các luật nhạy cảm. Gần đây, có một thuật toán meta heuristic khá hiệu quả để đạt mục đích này, đó là thuật toán tối ưu hóa Cuckoo (COA4ARH). Trong bài báo này, một đề xuất cải tiến của COA4ARH được đưa ra để tính toán số lượng tối thiểu các item nhạy cảm cần được xóa để ẩn luật, từ đó hạn chế việc mất các luật không nhạy cảm. Các kết quả thực nghiệm tiến hành trên ba tập dữ liệu thực cho thấy trong một số trường hợp thì cải tiến đề xuất có kết quả khá tốt so với thuật toán ban đầu

    SURVEY : CRYPTOGRAPHY OPTIMIZATION ALGORITHMS

    Get PDF
    With the advent of e-commerce, it has become extremely essential to tackle the sensitive issues of affording data security, especially in the ever-blooming open network environment of the modern era. The encrypting technologies of the time-honored cryptography are generally employed to shelter data safety extensively. The term ‘cryptography’ refers to the process of safeguarding the secret data against access by unscrupulous persons in scenarios where it is humanly impossible to furnish physical protection. It deals with the methods which convert the data between intelligible and unintelligible forms by encryption/decryption functions with the management of key(s). Nowadays cryptographic key management issues that arise due to the distributed nature of IT resources, as well the distributed nature of their control. Recently these issues are solved by optimization algorithms utilized in the cryptographic algorithms. The purpose of this paper is to give a survey of optimal cryptographic keys that can be developed with the help of optimization algorithms, and to address their merits to the real-worldscenarios.AbstractWith the advent of e-commerce, it has become extremely essential to tackle the sensitive issues of affording data security, especially in the ever-blooming open network environment of the modern era. The encrypting technologies of the time-honored cryptography are generally employed to shelter data safety extensively. The term ‘cryptography’ refers to the process of safeguarding the secret data against access by unscrupulous persons in scenarios where it is humanly impossible to furnish physical protection. It deals with the methods which convert the data between intelligible and unintelligible forms by encryption/decryption functions with the management of key(s). Nowadays cryptographic key management issues that arise due to the distributed nature of IT resources, as well the distributed nature of their control. Recently these issues are solved by optimization algorithms utilized in the cryptographic algorithms. The purpose of this paper is to give a survey of optimal cryptographic keys that can be developed with the help of optimization algorithms, and to address their merits to the real-worldscenarios. Keywords:Cryptography; Encryption; Decryption; Key Management; Optimization algorithm

    DYNAMIC THRESHOLDING GA-BASED ECG FEATURE SELECTION IN CARDIOVASCULAR DISEASE DIAGNOSIS

    Get PDF
    Electrocardiogram (ECG) data are usually used to diagnose cardiovascular disease (CVD) with the help of a revolutionary algorithm. Feature selection is a crucial step in the development of accurate and reliable diagnostic models for CVDs. This research introduces the dynamic threshold genetic algorithm (DTGA) algorithm, a type of genetic algorithm that is used for optimization problems and discusses its use in the context of feature selection. This research reveals the success of DTGA in selecting relevant ECG features that ultimately enhance accuracy and efficiency in the diagnosis of CVD. This work also proves the benefits of employing DTGA in clinical practice, including a reduction in the amount of time spent diagnosing patients and an increase in the precision with which individuals who are at risk of CVD can be identified

    Accelerated cuckoo optimization algorithm for the multi-objective welding process

    Get PDF
    Welding is a well-known process in manufacturing industries due to its importance. Several process parameters should be tuned in order to perform a high-quality welding. Usually, the problem is described as an optimization one and the challenge is to reconcile conflicting objectives. This paper deals with a multi-objective welding process namely the submerged arc welding process, involving five objectives. The weighted sum approach is used to handle it. An accelerated cuckoo optimization algorithm is implemented for this process model and applied to a practical instance of it. On this practical example, the superiority of the proposed optimization technique has been demonstrated in terms of better solutions and fewer required generations of the cuckoos relative to the basic COA and four other optimization algorithms

    인공지능 보안

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 자연과학대학 협동과정 생물정보학전공, 2021. 2. 윤성로.With the development of machine learning (ML), expectations for artificial intelligence (AI) technologies have increased daily. In particular, deep neural networks have demonstrated outstanding performance in many fields. However, if a deep-learning (DL) model causes mispredictions or misclassifications, it can cause difficulty, owing to malicious external influences. This dissertation discusses DL security and privacy issues and proposes methodologies for security and privacy attacks. First, we reviewed security attacks and defenses from two aspects. Evasion attacks use adversarial examples to disrupt the classification process, and poisoning attacks compromise training by compromising the training data. Next, we reviewed attacks on privacy that can exploit exposed training data and defenses, including differential privacy and encryption. For adversarial DL, we study the problem of finding adversarial examples against ML-based portable document format (PDF) malware classifiers. We believe that our problem is more challenging than those against ML models for image processing, owing to the highly complex data structure of PDFs, compared with traditional image datasets, and the requirement that the infected PDF should exhibit malicious behavior without being detected. We propose an attack using generative adversarial networks that effectively generates evasive PDFs using a variational autoencoder robust against adversarial examples. For privacy in DL, we study the problem of avoiding sensitive data being misused and propose a privacy-preserving framework for deep neural networks. Our methods are based on generative models that preserve the privacy of sensitive data while maintaining a high prediction performance. Finally, we study the security aspect in biological domains to detect maliciousness in deoxyribonucleic acid sequences and watermarks to protect intellectual properties. In summary, the proposed DL models for security and privacy embrace a diversity of research by attempting actual attacks and defenses in various fields.인공지능 모델을 사용하기 위해서는 개인별 데이터 수집이 필수적이다. 반면 개인의 민감한 데이터가 유출되는 경우에는 프라이버시 침해의 소지가 있다. 인공지능 모델을 사용하는데 수집된 데이터가 외부에 유출되지 않도록 하거나, 익명화, 부호화 등의 보안 기법을 인공지능 모델에 적용하는 분야를 Private AI로 분류할 수 있다. 또한 인공지능 모델이 노출될 경우 지적 소유권이 무력화될 수 있는 문제점과, 악의적인 학습 데이터를 이용하여 인공지능 시스템을 오작동할 수 있고 이러한 인공지능 모델 자체에 대한 위협은 Secure AI로 분류할 수 있다. 본 논문에서는 학습 데이터에 대한 공격을 기반으로 신경망의 결손 사례를 보여준다. 기존의 AEs 연구들은 이미지를 기반으로 많은 연구가 진행되었다. 보다 복잡한 heterogenous한 PDF 데이터로 연구를 확장하여 generative 기반의 모델을 제안하여 공격 샘플을 생성하였다. 다음으로 이상 패턴을 보이는 샘플을 검출할 수 있는 DNA steganalysis 방어 모델을 제안한다. 마지막으로 개인 정보 보호를 위해 generative 모델 기반의 익명화 기법들을 제안한다. 요약하면 본 논문은 인공지능 모델을 활용한 공격 및 방어 알고리즘과 신경망을 활용하는데 발생되는 프라이버시 이슈를 해결할 수 있는 기계학습 알고리즘에 기반한 일련의 방법론을 제안한다.Abstract i List of Figures vi List of Tables xiii 1 Introduction 1 2 Background 6 2.1 Deep Learning: a brief overview . . . . . . . . . . . . . . . . . . . 6 2.2 Security Attacks on Deep Learning Models . . . . . . . . . . . . . 10 2.2.1 Evasion Attacks . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Poisoning Attack . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Defense Techniques Against Deep Learning Models . . . . . . . . . 26 2.3.1 Defense Techniques against Evasion Attacks . . . . . . . . 27 2.3.2 Defense against Poisoning Attacks . . . . . . . . . . . . . . 36 2.4 Privacy issues on Deep Learning Models . . . . . . . . . . . . . . . 38 2.4.1 Attacks on Privacy . . . . . . . . . . . . . . . . . . . . . . 39 2.4.2 Defenses Against Attacks on Privacy . . . . . . . . . . . . 40 3 Attacks on Deep Learning Models 47 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.2 Portable Document Format (PDF) . . . . . . . . . . . . . . 55 3.1.3 PDF Malware Classifiers . . . . . . . . . . . . . . . . . . . 57 3.1.4 Evasion Attacks . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 60 3.2.2 Feature Selection Process . . . . . . . . . . . . . . . . . . 61 3.2.3 Seed Selection for Mutation . . . . . . . . . . . . . . . . . 62 3.2.4 Evading Model . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.5 Model architecture . . . . . . . . . . . . . . . . . . . . . . 67 3.2.6 PDF Repacking and Verification . . . . . . . . . . . . . . . 67 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.1 Datasets and Model Training . . . . . . . . . . . . . . . . . 68 3.3.2 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.3 CVEs for Various Types of PDF Malware . . . . . . . . . . 72 3.3.4 Malicious Signature . . . . . . . . . . . . . . . . . . . . . 72 3.3.5 AntiVirus Engines (VirusTotal) . . . . . . . . . . . . . . . 76 3.3.6 Feature Mutation Result for Contagio . . . . . . . . . . . . 76 3.3.7 Feature Mutation Result for CVEs . . . . . . . . . . . . . . 78 3.3.8 Malicious Signature Verification . . . . . . . . . . . . . . . 78 3.3.9 Evasion Speed . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.10 AntiVirus Engines (VirusTotal) Result . . . . . . . . . . . . 82 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 Defense on Deep Learning Models 88 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.1.1 Message-Hiding Regions . . . . . . . . . . . . . . . . . . . 91 4.1.2 DNA Steganography . . . . . . . . . . . . . . . . . . . . . 92 4.1.3 Example of Message Hiding . . . . . . . . . . . . . . . . . 94 4.1.4 DNA Steganalysis . . . . . . . . . . . . . . . . . . . . . . 95 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.2.2 Proposed Model Architecture . . . . . . . . . . . . . . . . 103 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.5 Message Hiding Procedure . . . . . . . . . . . . . . . . . . 108 4.3.6 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . 109 4.3.7 Performance Comparison . . . . . . . . . . . . . . . . . . . 109 4.3.8 Analyzing Malicious Code in DNA Sequences . . . . . . . 112 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5 Privacy: Generative Models for Anonymizing Private Data 115 5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.2 Anonymization using GANs . . . . . . . . . . . . . . . . . 119 5.1.3 Security Principle of Anonymized GANs . . . . . . . . . . 123 5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.2 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.4 Evaluation Process . . . . . . . . . . . . . . . . . . . . . . 126 5.2.5 Comparison to Differential Privacy . . . . . . . . . . . . . 128 5.2.6 Performance Comparison . . . . . . . . . . . . . . . . . . . 128 5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6 Privacy: Privacy-preserving Inference for Deep Learning Models 132 6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.1.3 Deep Private Generation Framework . . . . . . . . . . . . . 137 6.1.4 Security Principle . . . . . . . . . . . . . . . . . . . . . . . 141 6.1.5 Threat to the Classifier . . . . . . . . . . . . . . . . . . . . 143 6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2.2 Experimental Process . . . . . . . . . . . . . . . . . . . . . 146 6.2.3 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.5 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . 149 6.2.6 Performance Comparison . . . . . . . . . . . . . . . . . . . 150 6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7 Conclusion 153 7.0.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.0.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 155 Bibliography 157 Abstract in Korean 195Docto

    Hiding Access-pattern is Not Enough! Veil: A Storage and Communication Efficient Volume-Hiding Algorithm

    Full text link
    This paper addresses volume leakage (i.e., leakage of the number of records in the answer set) when processing keyword queries in encrypted key-value (KV) datasets. Volume leakage, coupled with prior knowledge about data distribution and/or previously executed queries, can reveal both ciphertexts and current user queries. We develop a solution to prevent volume leakage, entitled Veil, that partitions the dataset by randomly mapping keys to a set of equi-sized buckets. Veil provides a tunable mechanism for data owners to explore a trade-off between storage and communication overheads. To make buckets indistinguishable to the adversary, Veil uses a novel padding strategy that allow buckets to overlap, reducing the need to add fake records. Both theoretical and experimental results show Veil to significantly outperform existing state-of-the-art
    corecore