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Abstract
Welding is a well-known process in manufacturing industries due to its importance. Several process parameters should be 
tuned in order to perform a high-quality welding. Usually, the problem is described as an optimization one and the challenge 
is to reconcile conflicting objectives. This paper deals with a multi-objective welding process namely the submerged arc 
welding process, involving five objectives. The weighted sum approach is used to handle it. An accelerated cuckoo optimiza-
tion algorithm is implemented for this process model and applied to a practical instance of it. On this practical example, the 
superiority of the proposed optimization technique has been demonstrated in terms of better solutions and fewer required 
generations of the cuckoos relative to the basic COA and four other optimization algorithms.

Keywords  Welding process · Process parameters · Accelerated cuckoo optimization algorithm (ACCOA)

1  Introduction

Manufacturing processes are the baselines for any industrial 
firm to design and make a product. There is a wide range 
of processes involved such as turning, grinding, milling, 
ultrasonic machining, abrasive jet machining, and water jet 
machining, depending on the target product of the manu-
facturer. Manufacturers strive to optimize these processes 
individually or overall as the manufacturing circumstance 
may dictate. Consequently, in the literature, most of the pro-
cesses are formulated as optimization problems. These often 
improve the process performances by providing the best 

values for the process parameters. Unfortunately, these prob-
lems are often intractable meaning that classical approaches 
are not effective.

In the last decade, it has been observed that soft com-
puting methods (computational intelligence) are power-
ful enough to solve this kind of problems. In [1], a genetic 
algorithm has been applied to optimize the fiber-reinforced 
composite injection molding process. The heat-treatment 
process of an alloy of titanium has been optimized in [2] 
by using the Taguchi method, while the turning of the same 
alloy has been optimized in [3] by integrating the gray rela-
tional analysis with the Taguchi method. The production 
time of the multi-pass milling process has been optimized by 
using the artificial bee colony (ABC) approach, the particle 
swarm optimization (PSO), and simulated annealing (SA) 
in [4], whereas the cuckoo optimization algorithm (COA) 
appears in [5]. The unit production cost of the multi-pass 
turning process has been minimized by using the teach-
ing–learning-based optimization algorithm (TLBO) [6] and 
the COA [7]. The machining parameters of other traditional 
and non-traditional processes have been investigated in [8, 
9]. In engineering optimization, the objectives may vary 
and conflict at the same time, in which case, the problem 
becomes multi-objective. It can be converted into a single 
objective by combining the objectives or solving by a Pareto 
approach.
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Some authors focused on the optimization of the impor-
tant manufacturing process of welding [10–16]. The aim of 
the current work is to deal with the multi-objective optimiza-
tion problem of the submerged arc welding process (SAW) 
[11, 16]. Our approach is to convert it into a single objective 
using the weighted sum method. This allows handling the 
different objectives by resorting to weights assigned to each 
objective function [17]. In [11], a regression model has been 
established by experimental means and the optimization 
problem has been solved using the teaching–learning-based 
optimization algorithm, whereas in [16], the Jaya algorithm 
has been improved for this purpose. An accelerated cuckoo 
optimization algorithm (ACCOA) is implemented for solv-
ing the problem in the current work.

The remainder of the paper is organized as follows: 
Section 2 defines the multi-objective problem of the SAW 
process expressed by the weighted sum method. Section 3 
describes the steps of the implemented ACCOA. A discus-
sion of the obtained results is given in Sect. 4. Finally, the 
conclusion summarizes the paper and outlines some further 
likely developments.

2 � Multi‑objective model representation 
of the submerged arc welding

The submerged arc welding process is defined by an arc 
maintained between a continuously fed bare wire electrode 
and the workpiece and a blanket of powdered flux which 
generates a protective gas shield. It is an economical method 
of metal joining [18].

The multi-objective optimization problem of the sub-
merged arc welding of Cr–Mo–V steel investigated here is 
based on the empirical formulation developed by Rao and 
Kalyankar [11, 16]. The problem involves two minimization 
objectives: bead width (BW) in mm and weld reinforcement 
(R) in mm, and three maximization objectives: weld pen-
etration (P) in mm, tensile strength (TS) in MPa, and weld 
hardness (H) in Rc. The control parameters of the considered 
SAW process are the welding current (I) in Amp, voltage (V) 
in volts, welding speed (S) in cm/min, and wire feed (F) in 
cm/min. It should be noted that the weld reinforcement must 
be greater than zero.

The regression models of the objectives are given as 
follows:

Bead width (BW)

(1)

Minimize BW = 475.425 − 0.9814I − 15.0015V + 2.4805S

− 0.351F + 0.001179I2 + 0.25575V2

− 0.109781S2 + 0.000773F2 + �BW

where εBW is the error term which takes value 0.656092.
Weld reinforcement (R)

where εR is the error term which takes value 0.60023.
Weld penetration (P)

where εP is the error term equal to 0.623273.
Tensile strength (TS)

where εTS is the error term equal to 2.170478.
Weld hardness (H)

where εH is the error term equal to 0.078337.
The upper and lower bounds of each parameter are 

given as follows:

In the literature, two scenarios are considered for the 
above objectives, i.e., with and without error terms.

The result of combining objectives using the weighted 
sum method can be written as follows:

where BW*, R*, P*, TS*, and H* are the optimal values of the 
objectives when the problem is solved as a single-objective 
problem. Here, the values of the weights used in [16] are 
maintained, i.e., wi= 0.2 for i = 1,…,5.

(2)

Minimize R = 931.851 − 2.45118I − 30.4892V − 2.44028S

+ 0.111489F+0.0778514IV + 0.00841464IS

− 0.0171696VS + �R

(3)

Maximize P = −668.516 + 0.094333I + 43.0883V

+ 0.47667S + 0.064944F − 0.000092I2

− 0.7175V2 − 0.018515S2 − 0.000134F2 + �P

(4)

Maximize TS = −1148.73 − 0.1934I + 20.1667V + 9.5S

+ 9.774F + 0.001467I2 − 0.0834V2

− 0.4037S2 − 0.01885F2 + �TS

(5)

Maximize H = 772.444 − 1.45667I − 30V − 0.04167S + 0.00556F

+ 0.0018I2 + 0.5V2 + �H

(6)350 (Ampere) ≤ I ≤ 450 (Ampere)

(7)28 (Volt) ≤ V ≤ 32 (Volt)

(8)4 (cm/min) ≤ S ≤ 20 (cm/min)

(9)190 (cm/min) ≤ F ≤ 310 (cm/min)

(10)
Minimize Z = w1

(
BW

BW∗

)
+ w2

(
R

R∗

)
− w3

(
P

P∗

)

− w4

(
TS

TS∗

)
− w5

(
H

H∗

)
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3 � Accelerated cuckoo optimization 
algorithm

The cuckoo optimization algorithm (COA) has been intro-
duced by Rajabioun in [19]. It is a soft computing method 
inspired by the special lifestyle of the cuckoo. This bird 
has the trait of laying its eggs in other birds’ nests of dif-
ferent species. The patterns of invaded birds eggshells are 
mimicked to evade recognition which may result in the 
destruction of the eggs. However, this is not always suc-
cessful and some dissimilar eggs are indeed destroyed. It 
is also the case that, some cuckoo chicks will starve after 
hatching, as they eat more than the chicks of the invaded 
species. The algorithm is based on an egg laying radius 
(ELR) and the migration of mature cuckoos. Its effective-
ness has been proved and it has been implemented for 
solving various engineering optimization problems, such 
as the PID controller [19, 20], pattern recognition [21], 
replacement of obsolete components [22, 23], data min-
ing and clustering [24, 25], combined heat and economic 
power dispatch [26], and machining parameters [5, 7, 9, 
27]. The procedure which determines ELR and that which 
sets the run parameters form crucial steps of COA. They 
may be the aspects of the algorithm which contribute to 
the loss of the best solution when dealing with combined 
objective functions.

In the current work, the ELR is replaced by a binary 
procedure to improve COA when solving the problem with 
the combined objective function of the SAW process. This 
led to the so-called accelerated cuckoo optimization algo-
rithm (ACCOA). It is implemented as follows:

3.1 � ACCOA: the accelerated cuckoo optimization 
algorithm

Begin ACCOA

Step 1: Generate a random number of solutions which 
represents a set of candidate habitats.

 where N is the number of total habitats.
Step 2: Dedicate some eggs to each cuckoo.
Step 3: Binary egg laying.
Some of the dedicated eggs hatch and those remain-
ing are detected and destroyed by the invaded birds. A 
binary value is randomly generated for each egg.

(11)

Habitat1 = [I,V , S,F]

Habitat2 = [I,V , S,F]

⋮

HabitatN = [I,V , S,F]

Equation (12) is used for the intensification of the algo-
rithm.
Step 4: Limit the total number of surviving cuckoos.
Step 5: Evaluate fitness.
Step 6: Find the best habitat.
Step 7: Migrate the cuckoo to the best habitat.
Step 8: If the number of cuckoo iterations is reached, 
stop; otherwise, go to Step 2.

End ACCOA
It should be noted that the number of habitats is constant 

at each iteration, and the best habitat is introduced in the 
next iteration. Figure 1 shows the flowchart.

4 � Results and discussion

ACCOA has been coded in MATLAB 2015 and run on a 
personal computer with a processor G620 (2.60 GHz, Sandy 
Bridge, 4 GB Memory, Windows 7, 32 bits). The algorithm 
has been applied to the five objectives as single-objective 
problems [see Eq. (1)–(5)]. It has then been applied to the 
problem involving the combination of all five objective func-
tions in a single objective [see Eq. (10)].

Table 1 summarizes the optimal results obtained by the 
teaching–learning-based algorithm (TLBO) [11], Jaya algo-
rithm (Jaya) [16], quasi-oppositional-based Jaya algorithm 
(Q-O Jaya) [16], the plant propagation algorithm (PPA) 
[28–30], the simple cuckoo optimization algorithm (COA) 
[19], and the accelerated cuckoo optimization algorithm 
(ACCOA) for the single regression models without the error 
terms, where the bold type represents the best value. The 
number of habitats fixed for the COA and the ACCOA is 20 
in order to compare the different performances. As reported 
in [11, 16], the population size was fixed to 20 for Jaya and 
Q-O Jaya in order to be able to compare the required num-
ber of generations to reach the optimal solutions. The opti-
mal BW is similar for ACCOA, COA, Jaya algorithm and 
Q-O Jaya, i.e., 17.062. However, the ACCOA required the 
smallest number of iterations (eight iterations). PPA pro-
vided better results (17.0748) than TLBO (17.110). For the 
R objective, ACCOA decreased its value to 1.3312E − 05 
and required only six iterations, compared to COA (0.0011 
with 14 iterations), Jaya algorithm (0.00355 with 15 itera-
tions), PPA (9.3467E − 04 with 23 iterations), and Q-O Jaya 
(0.0027 with 12 iterations). For the P objective, ACCOA 

(12)Egg =

⎧
⎪⎨⎪⎩

0 if the egg is not recognized

else

1
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(equal to 13.1402) has also outperformed the other algo-
rithms: COA (13.1402), TLBO (11.16), Jaya algorithm 
(11.50), PPA (13.0652), and Q-O Jaya (11.50). The val-
ues provided by Jaya and Q-O Jaya for the TS objective 
are better than those of COA and ACCOA. However, the 
value achieved by ACCOA is better than that of COA and 
required fewer generations. The H objective value is simi-
lar for ACCOA, ACO, Jaya algorithm, PPA, and Q-O Jaya 
(36.66). PPA required only one generation. It seems that this 
objective has reached the maximum possible value.

Table 2 summarizes the optimal results obtained for the 
combined objective. It clearly shows that the objective value 
provided by ACCOA (− 0.1065) is better than those of COA 
(− 0.0108), PPA (− 0.0469), TLBO (19.00), Jaya algorithm 
(0.5644), and Q-O Jaya (0.1933). Moreover, ACCOA required 
fewer iterations (six iterations) than the rest of algorithms. PPA 
came second, overall.

The optimal results for the combined objective, consid-
ering the error terms, are reported in Table 3. Here again, 
ACCOA outperforms the other methods. The optimal value 
of ACCOA is (− 0.3215), whereas that of COA is (− 0.2907), 
PPA (− 0.0720), and those of the Jaya algorithm and the Q-O 
Jaya are similar (− 0.0064). Furthermore, ACCOA required 
fewer generations (three iterations) compared to COA (15 
iterations), PPA (78 iterations), Jaya algorithm (11 iterations), 
and Q-O Jaya (seven iterations).

It should be noted that the required CPU times in the 
combined objective are as follows: without errors (ACOA: 
17.25 s; ACCOA: 3.55 s) and with errors (ACOA: 17.67 s; 
ACCOA: 1.89 s). Figures 2, 3, 4, 5, 6, and 7 summarize the 
performance of each algorithm for the combined objective. 
The optimal value by TLBO in the case without errors has not 
been illustrated.      

5 � Conclusions

The goal of this paper was to evaluate the efficiency and 
robustness of a number of relatively new heuristics on a well-
known multi-objective problem that arises in manufacturing. 
One of these algorithms, namely ACCOA which we intro-
duce here for the first time, is a modification (acceleration) 
of the well-known cuckoo optimization algorithm. The test 
problem is the multi-objective optimization model of the sub-
merged arc welding process expressed with the weighed sum 
method. In the literature, the problem has five objectives: the 
bead width, the weld reinforcement, the weld penetration, the 
tensile strength, and the weld hardness. ACCOA implements 
a binary decision to avoid the disadvantage due to the egg lay-
ing radius of the original cuckoo optimization algorithm. The 
results reveal the effectiveness of the current approach in terms 
of better results (robustness) and lower numbers of required 
iterations (efficiency) for reaching the optimum results. The 
disadvantage of the current work is related to the decision on 
the number of eggs. Further work on this issue is underway. 
Moreover, work on an application to a welding process involv-
ing more than five objectives and four decision variables will 
be reported in the future. On the other hand, availability of 
adequate equipment will experimentally investigate the results.

Limitation of surviving 
cuckoos

End

Number of 
iterations 
reached? 

Generate a random set 
of habitats

Dedicate the eggs

Binary egg laying

Start 

Evaluate the fitness

Find the best habitat

No 

Display the optimal results

Migrate the cuckoos

Yes 

Fig. 1   Flowchart of the accelerated cuckoo optimization algorithm
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Table 1   Optimal results for 
a single-objective problem 
(without error terms)

Objective Method I (Ampere) V
(Volt)

S
(cm/min)

F
(cm/min)

Optimum result Required no. 
of iterations

BW* ACCOA 416.357 29.337 20.000 226.852 17.062 8
COA 416.200 29.328 20.000 227.037 17.062 20
PPA 415.5685 29.1592 20 229.3993 17.0748 179
TLBO [11] 412.000 29.000 20.000 228.000 17.110 –
Jaya [16] 416.200 29.327 20.000 227.043 17.062 25
Q-O Jaya [16] 416.500 29.342 20.000 226.940 17.062 17

R* ACCOA 426.0490 31.9591 9.3009 191.0474 1.3312E − 05 6
COA 450.0000 32.0000 4.0000 202.6015 0.0011 14
PPA 450 32 5.7628 190 9.3467E − 04 23
TLBO [11] 378.0000 31.0000 18.0000 214.0000 0.0086 –
Jaya [16] 375.8213 30.9250 7.1382 233.7626 0.00355 15
Q-O Jaya [16] 350.0000 30.8981 4.9221 236.2409 0.0027 12

P* ACCOA 449.9999 30.0266 12.8725 242.3283 13.1402 7
COA 450.0000 30.0303 12.9001 242.7443 13.1401 19
PPA 450.0000 29.8164 12.1109 226.7450 13.0652 15
TLBO [11] 444.0000 29.0000 5.0000 241.0000 11.16 –
Jaya [16] 450.0000 30.1887 4.0000 277.1496 11.50 24
Q-O Jaya [16] 368.4300 30.3395 11.9418 241.3833 11.50 15

TS* ACCOA 450.0000 32.0000 11.7662 259.2621 944.0975 5
COA 450.0000 32.0000 11.7946 259.3121 944.0971 18
PPA 450.0000 32.0000 4.0000 259.1989 881.7714 95
TLBO [11] 448.0000 32.0000 11.0000 253.0000 940.90 –
Jaya [16] 450.0000 32.0000 11.7660 259.2569 944.12 20
Q-O Jaya [16] 450.0000 32.0000 11.7660 259.2569 944.12 9

H* ACCOA 350.0000 28.0000 4.0000 310.0000 36.66 2
COA 350.0000 28.0000 4.0000 310.0000 36.66 3
PPA 350.0000 28.0000 4.0000 310.0000 36.66 1
TLBO [11] 350.0000 28.0000 4.0000 307.0000 36.65 –
Jaya [16] 350.0000 28.0000 4.0000 310.0000 36.66 3
Q-O Jaya [16] 350.0000 28.0000 4.0000 310.0000 36.66 2

Table 2   Optimal results for combined objective (without error terms)

Method I
(Ampere)

V
(Volt)

S
(cm/min)

F
(cm/min)

BW R P TS H Min Z Required no. 
of iterations

ACCOA 382.5168 32.0000 19.6968 214.9693 20.9075 7.5969E − 06 8.1865 812.3678 30.9921 − 0.1065 6
COA 404.5336 28.0591 17.6312 206.8119 21.8616 0.0010 9.0596 770.4275 30.0361 − 0.0108 15
PPA 450.0000 32.0000 5.7625 190.0000 26.2462 6.9561E − 04 9.0434 784.4098 34.2587 − 0.0469 78
TLBO [11] 445.0000 32.0000 7.0000 193.0000 27.05 0.826 9.32 846.6 33.45 19.00 –
Jaya [16] 423.1719 29.8221 4.0000 267.0907 20.89 0.0152 11.19 856.75 29.69 0.5644 13
Q-O Jaya [16] 382.41 29.416 20.0000 190.0000 19.47 0.0062 10.36 717.99 29.02 0.1933 18
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Table 3   Optimal results for combined objective (with error terms)

Method I
(Ampere)

V
(Volt)

S
(cm/min)

F
(cm/min)

BW R P TS H Min Z Required no. 
of iterations

ACCOA 449.6237 30.6568 4.0000 251.0311 22.4001 0.0011 12.0065 900.1521 32.9043 − 0.3215 3
COA 450.0000 30.7105 4.0000 248.9756 22.3942 7.1693E − 04 11.9645 900.6669 32.9908 − 0.2907 15
PPA 450.0000 32.0000 5.0089 190.0000 25.9241 3.9623E − 04 9.4577 789.8573 34.3685 − 0.0720 138
Jaya [16] 350.0000 28.0000 4.0000 190.0000 26.865 5.636 6.9176 672.855 36.077 − 0.0064 11
Q-O Jaya [16] 350.0000 28.0000 4.0000 190.0000 26.865 5.636 6.9176 672.855 36.077 − 0.0064 7

Fig. 2   Optimal value of z for 
combined objective (without 
error terms)
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Fig. 4   Required CPU time (s) 
for combined objective (without 
error terms)
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Fig. 5   Optimal value of z for 
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