

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Security and Privacy

in Deep Learning

인공지능보안

2021년 2월

서울대학교대학원

자연과학대학협동과정생물정보학

배호

to my family

Abstract

With the development of machine learning (ML), expectations for artificial intel-

ligence (AI) technologies have increased daily. In particular, deep neural networks

have demonstrated outstanding performance in many fields. However, if a deep-

learning (DL) model causes mispredictions or misclassifications, it can cause dif-

ficulty, owing to malicious external influences. This dissertation discusses DL secu-

rity and privacy issues and proposes methodologies for security and privacy attacks.

First, we reviewed security attacks and defenses from two aspects. Evasion attacks

use adversarial examples to disrupt the classification process, and poisoning attacks

compromise training by compromising the training data. Next, we reviewed attacks

on privacy that can exploit exposed training data and defenses, including differential

privacy and encryption.

For adversarial DL, we study the problem of finding adversarial examples against

ML-based portable document-format (PDF) malware classifiers. We believe that our

problem is more challenging than those against ML models for image processing,

owing to the highly complex data structure of PDFs, compared with traditional image

datasets, and the requirement that the infected PDF should exhibit malicious behavior

without being detected. We propose an attack using generative adversarial networks

that effectively generates evasive PDFs using a variational autoencoder robust against

adversarial examples.

For privacy in DL, we study the problem of avoiding sensitive data being misused

and propose a privacy-preserving framework for deep neural networks. Our meth-

ods are based on generative models that preserve the privacy of sensitive data while

maintaining a high prediction performance. Finally, we study the security aspect in

biological domains to detect maliciousness in deoxyribonucleic acid sequences and

watermarks to protect intellectual properties.

In summary, the proposed DL models for security and privacy embrace a diversity

of research by attempting actual attacks and defenses in various fields.

keywords: deep learning, private AI, secure AI, adversarial example, DNA privacy,

DNA steganalysis

student number: 2016-37982

ii

Contents

Abstract i

List of Figures vi

List of Tables xiii

1 Introduction 1

2 Background 6

2.1 Deep Learning: a brief overview 6

2.2 Security Attacks on Deep Learning Models 10

2.2.1 Evasion Attacks . 12

2.2.2 Poisoning Attack . 20

2.3 Defense Techniques Against Deep Learning Models 26

2.3.1 Defense Techniques against Evasion Attacks 27

2.3.2 Defense against Poisoning Attacks 36

2.4 Privacy issues on Deep Learning Models 38

2.4.1 Attacks on Privacy . 39

2.4.2 Defenses Against Attacks on Privacy 40

3 Attacks on Deep Learning Models 47

3.1 Background . 53

3.1.1 Threat Model . 53

3.1.2 Portable Document Format (PDF) 55

ii

3.1.3 PDF Malware Classifiers 57

3.1.4 Evasion Attacks . 58

3.2 Methods . 60

3.2.1 Feature Extraction . 60

3.2.2 Feature Selection Process 61

3.2.3 Seed Selection for Mutation 62

3.2.4 Evading Model . 63

3.2.5 Model architecture . 67

3.2.6 PDF Repacking and Verification 67

3.3 Results . 68

3.3.1 Datasets and Model Training 68

3.3.2 Target Classifiers . 71

3.3.3 CVEs for Various Types of PDF Malware 72

3.3.4 Malicious Signature . 72

3.3.5 AntiVirus Engines (VirusTotal) 76

3.3.6 Feature Mutation Result for Contagio 76

3.3.7 Feature Mutation Result for CVEs 78

3.3.8 Malicious Signature Verification 78

3.3.9 Evasion Speed . 80

3.3.10 AntiVirus Engines (VirusTotal) Result 82

3.4 Discussion . 84

4 Defense on Deep Learning Models 88

4.1 Background . 90

4.1.1 Message-Hiding Regions 91

4.1.2 DNA Steganography . 92

4.1.3 Example of Message Hiding 94

4.1.4 DNA Steganalysis . 95

4.2 Methods . 96

4.2.1 Notations . 98

4.2.2 Proposed Model Architecture 103

iii

4.3 Results . 105

4.3.1 Experiment Setup . 105

4.3.2 Environment . 106

4.3.3 Dataset . 107

4.3.4 Model Training . 107

4.3.5 Message Hiding Procedure 108

4.3.6 Evaluation Procedure . 109

4.3.7 Performance Comparison 109

4.3.8 Analyzing Malicious Code in DNA Sequences 112

4.4 Discussion . 113

5 Privacy: Generative Models for Anonymizing Private Data 115

5.1 Methods . 119

5.1.1 Notations . 119

5.1.2 Anonymization using GANs 119

5.1.3 Security Principle of Anonymized GANs 123

5.2 Results . 125

5.2.1 Datasets . 125

5.2.2 Target Classifiers . 126

5.2.3 Model Training . 126

5.2.4 Evaluation Process . 126

5.2.5 Comparison to Differential Privacy 128

5.2.6 Performance Comparison 128

5.3 Discussion . 130

6 Privacy: Privacy-preserving Inference for Deep Learning Models 132

6.1 Methods . 135

6.1.1 Motivation . 135

6.1.2 Scenario . 137

6.1.3 Deep Private Generation Framework 137

6.1.4 Security Principle . 141

iv

6.1.5 Threat to the Classifier . 143

6.2 Results . 143

6.2.1 Datasets . 143

6.2.2 Experimental Process . 146

6.2.3 Target Classifiers . 147

6.2.4 Model Training . 147

6.2.5 Model Evaluation . 149

6.2.6 Performance Comparison 150

6.3 Discussion . 151

7 Conclusion 153

7.0.1 Limitations . 154

7.0.2 Future Work . 155

Bibliography 157

Abstract in Korean 195

v

List of Figures

2.1 General DNN training process. 7

2.2 Different DNN model structures. 8

2.3 Adversarial example generated by the fast gradient sign method [97].

Left: the original image. Middle: adversarial perturbations. Right: the

adversarial image containing the adversarial perturbation. 11

2.4 Overview of the white-box (left) and black-box (right) attacks. . . . 13

2.5 Overview of a practical black-box attack [205]: the attacker (1) col-

lects a training set S0 for an initial substitute model and (2) selects

an appropriate architecture F . Using the oracle model Õ, the attacker

labels the training set St and (4) trains the substitute model Ft. Then,

using Jacobian-based adversarial attack algorithms, the attacker aug-

ments the dataset and repeat steps (3) through (5) for epochs t. . . . 16

2.6 (Left) A boundary attack: the attack performs rejection sampling by

moving along the boundary between adversarial and original images.

(Center) In each step, the attack determines a new random direc-

tion by (#1) sampling a Gaussian distribution and projecting it on

an equidistant sphere, and by (#2) making a small move towards the

original image. (Right) Both two-step sizes are dynamically adjusted

to the boundary [47]. 19

2.7 The functionality of poisoning a sample. (a) The decision boundary

after training with normal data, (b) The decision boundary after in-

jecting a poisoning sample. 23

vi

2.8 An adversarial polytope, and its outer convex bound [274]. 29

2.9 Illustration of layerwise adversarial training. Latent adversarial ex-

ample is found in the convex region C1(x) and propagated through

the latter layers in a forward pass which is represented with the blue

lines. The red line show the gradients during a backward pass. In the

procedure, the first layer which corresponds to the former layer of

convex region C1(x) does not receive gradients [32]. 36

2.10 Privacy attack scenarios from the perspectives of the (a) service provider,

(b) information silo, and (c) user. 38

2.11 Overview of the differential privacy in a DL framework. 43

3.1 PDF structure (a), Tree representation of PDF file (b) 54

3.2 Flowchart of PDF-GAN framework 60

3.3 Feature abstraction [Dictionary (Key:Value)] 62

3.4 Feature selection by pooling . 63

3.5 Model architecture. 66

3.6 The number of features mutated to generate AEs for all 500 files

selected from Contagio (top) and 14 CVE files (bottom) 75

3.7 Cuckoo signature result (left), Arbitrary code execution result of CVE-

2011-2462 (right) . 79

3.8 Time required to evade PDF malware classifiers for 500 selected mal-

ware files from Contagio . 80

3.9 Evasion rate of AntiVirus engines by generating variants of AEs in

Table 3.6 LaTeX Error: Can be used only in preambleSee the La-

TeX manual or LaTeX Companion for explanation.Your command

was ignored.Type I <command> <return> to replace it with another

command,or <return> to continue without it.3.6 83

4.1 Splicing signals in a DNA sequence: Dimer GG represents non-canonical

sites. Dimers GT and AG represent canonical donor and acceptor slice

sites, respectively. 91

vii

4.2 DNA steganography scheme. Depending on the task, a scheme can

use either complementary pairs or use overlapping codons to deter

unauthorized dissemination. 93

4.3 A steganalysis has training and detection phases. In the training phase,

the model learns the distribution of unmodified genome sequences

that distinguishes between introns and exons. In the detection, the

prediction scores of unmodified genome sequences are modified genome

sequences are compared. The final score of the neural network will

differ over the range of ε in the presence of hidden messages. . . . 97

4.4 Overview of the model architecture. Our model encodes DNA se-

quence by one-hot encoding, and the output of the encoded four-

dimensional dense vector is connected to the autoencoder to learn

inherent representations of DNA sequences. The autoencoder con-

sists of LSTM encoder se and decoder sd. The learned sequence fea-

ture hRNN is then connected to the CNN to learn local region and

patterns. The learned features h are then connected to the final layer

to output a classification score. 98

4.5 Comparison of learning algorithms (best viewed in color). The dot-

ted red line indicates that the threshold line for each modification

rate and the blue line indicates the prediction score difference. The

blue line above the threshold is the indication of hidden messages

in DNA sequences. (a) represent the results of the experiments con-

ducted by embedding the hidden message in the intron region, (b)

represent the results of the experiments conducted by embedding the

hidden message in the intron region, and (c) represent the results of

the experiments conducted by embedding the hidden message in both

intron/exon regions. 108

viii

4.6 Exploit procedure. Inserting malicious code into DNA sequences in-

volves four stages. a) write malicious code and convert it to hex, (b)

remove any unnecessary strings, c) convert hex to binary, d) encode

binary to DNA sequences. 111

5.1 A trusted zone and an untrusted zones; Patient’s medical data are

transferred to the online medical service that, in turn, provides diag-

nostic results to the user. If a user gives consent for data sharing, her

or his data may be propagated to third parties (e.g., Google, Dropbox,

and Amazon). 118

5.2 Architecture of the model presented in this study. The dotted line

represents gradients that are fed into the encoder. 120

5.3 Model training. The encoder accepts x and r as input and that are

fed into the neural network. The discriminator takes an original input

and output of the encoder to output probabilities from the last fully

connected layer. The target classifier takes an input x̂ and outputs the

prediction score. 122

5.4 Anonymization performance using breast cancer, chronic kidney, heart

disease, and prostate cancer datasets: A fixed test dataset was selected

from the UCI machine learning repository. Correlation coefficient,

accuracy, and AUPR were measured by changing 0.1 of the privacy

parameter for the fixed test data, δ. 127

5.5 Comparison of the target discriminator parameter λd. Accuracy is

measured by changing 0.1 of the λd for the fixed privacy parameter δ. 129

ix

6.1 Current approaches vs. proposed approach. Let X denote the input

and V denote the set of all features of input X that can be manip-

ulated to generate synthetic data X̂ . Let V̂ be a subset of V whose

elements are private features. V − V̂ indicates the non-private fea-

tures. Let MI denote the mutual information, y be the prediction

score given by X , and ŷ be the prediction score given by X̂ . The

upward arrow represents maximization, downward arrow represents

minimization, and ’-’ represents neither. Given user data x, current

approaches extract features by maximizing non-private features and

minimizing private features to preserve a user’s privacy at the client-

side. Privately extracted features are sent to the cloud-side to retrieve

the corresponding results. Current approaches do not consider the

prediction results while extracting their features. However, when our

approach extracts features, it minimizes both non-private and private

features while maximizing their prediction results. 133

6.2 High-level view of DPGF. The dotted line represents the setup phase

for the privatized inference, and the solid line represents the infer-

ence. The diagram intuitively illustrates the model described in Sec-

tion 6.1.3 LaTeX Error: Can be used only in preambleSee the LaTeX

manual or LaTeX Companion for explanation.Your command was

ignored.Type I <command> <return> to replace it with another com-

mand,or <return> to continue without it.6.1.3. 136

6.3 Architecture of DPGF. The model training involves a randomization

and a labeling phase. The randomization function F accepts x as in-

put and outputs x̄. The generator takes x̄ as input and outputs x̂ from

the last fully connected layer. The classifier takes x̂ and x and outputs

the prediction score. The dotted line represents a gradient that is fed

into the generator. 138

x

6.4 Decision boundary of the class1 and class2 samples. Both (a) and (b)

denote the position of the test sample after the randomization process.

(a) denotes the current approach to the randomization process and (b)

denotes our approach to the randomization process. 144

6.5 Learned representation of heart-disease samples. The representation

is based on a pre-trained target classifier that is based on a plain feed-

forward neural network. Ten testing samples are randomly selected

from the validation set and denoted by gray circles (class1) and tri-

angles (class2). The testing samples are synthesized via the inference

of our DPGF and represented by yellow circles (class1) and triangles

(class2) (best viewed in color). 145

6.6 Learned representation of Indian liver-cancer samples. The represen-

tation is based on a pre-trained target classifier that is based on a

plain feed-forward neural network. Ten testing samples are randomly

selected from the validation set and denoted by gray circles (class1)

and triangles (class2). The testing samples are synthesized via the in-

ference of our DPGF and represented by yellow circles (class1) and

triangles (class2) (best viewed in color). 145

6.7 Learned representation of breast-cancer samples. The representation

is based on a pre-trained target classifier, which is based on the support-

vector-machine model. Ten testing samples are randomly selected

from the validation set and denoted by gray circles (class1) and tri-

angles (class2). The testing samples are synthesized via the inference

of our DPGF and represented by yellow circles (class1) and triangles

(class2) (best viewed in color). 146

xi

6.8 Learned representation of prostate-cancer samples. The representa-

tion is based on a pre-trained target classifier that is based on a support-

vector-machine model. Ten testing samples are randomly selected

from the validation set and denoted by gray circles (class1) and tri-

angles (class2). The testing samples are synthesized via the inference

of our DPGF and denoted by yellow circles (class1) and triangles

(class2) (best viewed in color). 146

6.9 Anonymization performance with respect to four datasets (breast can-

cer, prostate cancer, heart disease, and liver cancer) shows the (a) cor-

relation coefficient (lower is better), (b) prediction accuracy (higher

is better), and (c) AUPRC (higher is better). 148

xii

List of Tables

2.1 Types of attack on secure AI and defenses against them. 12

2.2 Attack methods against Secure AI 12

2.3 Defense methods for private AI . 40

3.1 Mutation seed selection process 63

3.2 Detection Accuracy of PDF-GAN compared to target classifiers . . 69

3.3 Details of CVEs used in the experiment 70

3.4 Malicious signatures . 73

3.5 Feature mutation result for Contagio dataset and CVEs 74

3.6 Number of malware files detected (out of 500) by AntiVirus engines

and adversarial examples (AEs) by a transfer-based attack 81

3.7 Different type of ML attacks . 85

4.1 Existing DNA steganography schemes. 92

4.2 Detection performance of the proposed model for variable DNA se-

quence lengths. If hidden messages are detected, they are marked as

X. 106

4.3 Training and running time of the proposed method based on five su-

pervised learning algorithms. 112

5.1 Performance results of the model upon adding variance to the layer. 125

xiii

Chapter 1

Introduction

The development of deep learning (DL) algorithms has transformed the solution of

data-driven problems in a number of real-life applications, including the use of large

amounts of patient data for health prediction [236], autonomous security audits from

system logs [52], and unmanned car driving using visual object detection [216]. How-

ever, the vulnerabilities of DL systems security and privacy issues have been the sub-

ject of a burgeoning literature. If DL training is compromised, then it can be vitiated,

or produce unintended behavior. Such attacks can produce devastating results. For

example, an autonomous driving system can be compromised by jamming its sen-

sors [285] or simply by putting stickers on its camera lens [162]. Bio-metric authen-

tication systems [57] can be fooled by adding noise or to the image of a face [234] or

simply pointing in a pair of glasses.

For attacks, we divided into evasion attack (inference phase) and poisoning attack

(training phase). In previous studies of evasion attack, attacks have typically been

categorized as white-box or black-box attacks. Early forms of attack were mostly

white-box attacks, which require prior knowledge of a DL model’s parameters and

structure, and these attacks usually attempt to subvert the learning process or to pro-

1

duce incorrect classification by injecting adversarial samples. This type of attack in-

cludes gradient-based techniques [41, 97]. Black-box attacks aim to produce incor-

rect classifications information about the underlying model. Most of recent attacks

are black-box attacks which exploit confidence in the classification of the targeted

model. Poisoning attacks can also be defined as white or black-box attacks. However,

because these has been little research on poisoning attack, thus, we have categorized

them as a) performance degradation attacks, b) targeted poisoning attacks, and c)

backdoor attacks.

The methods proposed to defend against these attacks include gradient mask-

ing [51, 80, 250], increasing robustness [97, 177, 294], the detection of attacks [120,

183, 185], and other certified defenses [71, 136, 274]. Defenses techniques can be

categorized into two groups against evasion and poisoning. Defenses against evasion

attacks can be further categorized into empirical approaches, which empirically de-

fend against known attacks, and certified approaches, which can be proven to defend

against evasion attacks.

Current DL systems can also expose privacy data involved. It has been demon-

strated that it is possible to recover some of the data used while training a DL model [89],

or determine whether a particular data record was involved in model training [242].

A privacy breach can occur in other situations when using DL in practice. There are

possible attacks in training with data owned by multiple parties, as in deploying an

application via a third-party cloud system. To counter these threats, various attempts

have been made to apply conventional security techniques, such as homomorphic

encryption, secure multiparty computation, or differential privacy, to DL systems.

In this dissertation, we reviewed recent studies on model security and data pri-

vacy, as contribution to build in secure and private artificial intelligence (SPAI). Ad-

dressing the need for robust artificial intelligence (AI) systems, we collect fragmented

2

findings and techniques, and try to provide insights relevant to future research. We

reviewed recent research on security and privacy issues associated with DL into four

categories: Attacks on DL models, Defense of DL models, privacy attacks on AI sys-

tems, and defense against privacy attacks. Details are in chapter 2, which are based

on the following research:

• Ho Bae, Jaehee Jang, Dahuin Jung, Hyemi Jang, Heonseok Ha, Hyungyu Lee,

Sungroh Yoon, "Security and Privacy Issues in Deep Learning”, in IEEE Trans-

actions on Pattern Analysis and Machine Intelligence

Among recent studies on security and privacy issues in DL, we proposed methods

in the following domains.

1. Attacks on DL models : In this dissertation (Chapter 3), we describe two ma-

jor types of attack on DL relating to different phases: evasion and poisoning

attacks. Evasion attacks involve the inference phase whereas poisoning attacks

involve the training phase. In addition, we proposes an evasion attack to find

adversarial examples against ML based PDF malware classifiers. The problem

is more challenging than those against ML models for image processing be-

cause highly complex data structure of PDF in comparison to additional image

datasets and of an additional constraint that the evaded PDF should exhibit ma-

licious behavior. To resolve this problem, we proposed a variant of generative

adversarial networks that generate evasive variant PDF malware. The contents

of this chapter are based on the following research:

• Ho Bae, Younhang Lee, Yohan Kim, Whang Uiwon, Sungroh Yoon, and

Yunheung Peak, "Learn2Evade: Learning-based Generative Model for

Evading PDF Malware Classifiers", in IEEE Transactions on Dependable

and Secure Computing (under revision)

3

2. Defense on DL models : In this dissertation (Chapter 4), we describe defense

techniques which are categorized into two large groups: evasion and poisoning.

Defense techniques against evasion attacks can be categorized, which involve

empirical approaches gradient masking, robustness, and detection and certified

approaches. Among them, we propose detection based defense methods to de-

tect suspicious message in DNA sequences. For the prevention of cover channel

in DNA sequences, we developed a sequence-learning based malicious DNA

sequence analysis using deep neural networks. The contents of this chapter are

based on the following researches:

• Ho Bae, Byunghan Lee, Sunyoung Kwon, and Sungroh Yoon, "DNA Ste-

ganalysis using Deep Recurrent Neural Networks," in Proceedings of Pa-

cific Symposium on Biocomputing (PSB), vol.24, pp. 88-99, Hawaii, USA,

January 2019

• Ho Bae, Seonwoo Min, Hyun-Soo Choi, Sungroh Yoon, "DNA Privacy:

Analyzing Malicious DNA Sequences using Deep Neural Networks", in

IEEE Transactions on Computational Biology and Bioinformatics

3. Privacy issues on AI systems : In this dissertation (Chapter 5-6), we elabo-

rate on the potential privacy threats to DL from the perspectives of service

providers, information silos and users. For theses attacks, we explain recent

defenses based on cryptography, such as homomorphic encryption, and secure

multiparty computation, and differential privacy. In addition, we proposed a

methods to preserve sensitive data, while maintaining high prediction perfor-

mance for DL models. The contents of this chapter are based on the following

researches:

• Ho Bae, Dahuin Jung, Hyun-Soo Choi, and Sungroh Yoon, "AnomiGAN:

4

Generative adversarial networks for anonymizing private medical data,"

in Proceedings of Pacific Symposium on Biocomputing (PSB), vol. 25, pp.

563-574, Hawaii, USA, January 2020

• Ho Bae, Heonseok Ha, Siwon Kim, Sungroh Yoon, "Deep Privacy Pre-

serving Inference for Online Medical Diagnosis", in IEEE Journal of

Biomedical and Health Informatics (under revision)

5

Chapter 2

Background

In this section, we detail the components and the training algorithm of a deep nueral

networks (DNNs) and recent widely used DNNs architectures. We then, suggest the

concept of secure AI, i.e., an AI system with security guarantees, to encourage stud-

ies on the security of AI systems. We introduce and taxonomize the groups of studies

regarding the attacks on DL models and defense against those attacks, shown in Ta-

ble 2.1.

2.1 Deep Learning: a brief overview

DNNs consist of layers of artificial neurons, or node in Fig 2.1, which compute the

transformation of input and the weights followed by an activation function:

y = σ(
n∑
i=1

wixi). (2.1)

where x, y are input and output, σ is an activation function, and w is the weight. For

activation functions we generally use nonlinear functions, including sigmoid (1
1+e−x),

tanh (e
x−e−x

ex−e−x) and ReLU (max(0, x)). The combinations of linear and nonlinear

6

Input Layer Hidden Layer Output Layer

Input 𝑥

∑ 𝜎

∑ 𝜎

∑ 𝜎

Weight Parameter

Feedforward

Backpropagation

Node

Loss
Parameter

Optimization

SGD
(Stochastic Gradient Descent)

𝒘 𝜎 𝒘 ⋅ 𝒙

Prediction

𝑙𝑦

Objective
function J

𝛻𝑤𝐽𝛻ℎ𝐽

Figure 2.1: General DNN training process.

functions enables DNNs to uncover the patterns in data.

DNNs learn new capabilities through the training phase from the existing data,

and the learned capabilities are applied to unseen data at the inference phase. The

training process of DNNs are generally done by stochastic gradient descent (SGD),

as described in Fig. 2.1. SGD is an iterative gradient-based optimization method. In

SGD, weights are updated in a way that minimizes error by using the gradients:

w ← w − η∇wJ(w) (2.2)

where a loss function J(w) is used for the weight parameter w and the learning rate

η. If the model converges to a desired prediction accuracy or loss, the model training

is done and ready for the inference stage.

Different DNN model architectures are described in Fig. 2.2

• Feed-forward neural network (FNN). An FNN is the most basic structure

of the DNNs. It contains multiple fully-connected layers, where the nodes

between the layers are fully connected. Despite the simple structures, FNNs

7

Cat 89%

Dog 10%

Frog 0.6%

Bird 0.4%

Input
Convolution Layer Pooling Layer Fully Connected

Output

Feature Extraction
Convolution Pooling

Classification

Fig. 2 (a)

(a) (a) CNN structure

(b) (b) RNN structure

G
Generator Network

D
Discriminator Network

Training Dataset

Noise

Real Images

Fake Images

Fake

Real

(c) (c) GAN structure

Figure 2.2: Different DNN model structures.

shows good performance in finding patterns from datasets such as MNIST [155].

• Convolutional neural network (CNN). A general architecture for CNNs is

described in Fig. 2.2(a). A CNN consists of one or more convolutional, nonlin-

ear, and pooling layers, which use convolutional operations to compute layer-

wise results. This operation allows the network to learn about spatial informa-

tion. To correlated the spatial information, feature map, local weighted sums

are used to obtain at each convolution layer by computing weight vectors which

is known as filters. These filters are applied across the datasets to improve train-

ing efficiency by reducing number of parameters to learn. Nonlinear layers in-

crease the nonlinear properties of feature maps. Pooling layers uses sampling

of non-overlapping regions in feature map which aggregates local features to

identify complex features. Hence, CNNs show CNNs show outstanding perfor-

mance, especially for vision applications [108, 122, 149].

• Recurrent neural network (RNN). A recurrent neural network (RNN) is com-

monly exploited for sequential data. As illustrated in Fig. 2.2(b), an RNN up-

8

dates the current hidden unit and calculates the output by utilizing both the

current input and past hidden unit. The past hidden units are called state vec-

tors, and current input is computed by considering previous inputs using these

state vectors. Well-known problems of RNNs, such as the gradient vanishing

problem, and some variants, such as long short-term memory (LSTM) [115]

and gated recurrent units [67] have been proposed to solve such problems. In

addition, RNNs are capable of handing a variable-length input sequences to

other sequence with fixed length of sequences, and this capabilities of RNNs

are one key success factor in bioinformatics and in natural language process-

ing.

• Generative adversarial network (GAN).

GANs [96] are designed to generate data samples by introducing a new con-

cept of adversarial learning between a generator and a discriminator. A GAN

framework [96] consists of a discriminator D and a generator G. G generates

fake data, while D determines whether the generated data are real, as depicted

in Fig. 2.2(c). Unlike conventional generative models, GANs do not assume an

explicit distribution of data. Instead, they implicitly learn a function that trans-

forms a prior distribution in a latent space into a data space and generates realis-

tic instances. The discriminator distinguishes the generated instances from real

instances and uses the results to optimize both the generator and the discrim-

inator. The optimization of the objective function is equivalent to finding the

Nash equilibrium of a min-max game between the generator and the discrimi-

nator. Theoretically, minimizing the objective function of GANs are equivalent

to minimizing the Jensen-Shannon divergence between a real distribution and

the distribution of the generated instances. By alternately optimizing the gen-

9

erator and the discriminator, the generator eventually creates data having the

same distribution as the real data.

Although the optimality of GANs are theoretically guaranteed, the instability

of GAN learning is one of the fatal limitations. To resolve this issue, several

studies focused on learning GANs more stably by employing regularization

techniques such as weight clipping [25] and gradient penalty [101, 184]. Based

on the astonishing results achieved in synthetic image generation [135, 187],

the application of GANs has been extended into various domains. For example,

GANs have recently been employed in steganography [31], steganalysis [131]

and the generation of malware samples [121]. MalGAN, for example, gener-

ates malware samples that can evade a black-box detector with binary features

using GANs. The model consists of two parts: a generator and a substitute de-

tector. The generator creates features classified as benign by introducing noise

into the original malicious files, and the discriminator learns the classification

using the results given by the malware detector. The malware detector classifies

the features created by the generator and uses the results as labels for the sub-

stitute detector. Usually, generators and discriminators are NNs with various

structures depending on the application. GANs are actively studied in various

fields, such as image or speech synthesis and domain adaptation.

2.2 Security Attacks on Deep Learning Models

As shown in Table 2.2, we describe the evasion attack and the poisoning attack. The

attack which attempts to destroy the model during training is called a poisoning at-

tack. For example, the adversarial example that used in this attack is referred to an

adversarial training example as shown in Fig. 2.3. In an evasion attack, adversarial

10

Lesser Panda: 99.99%

Puffer: 99.85%

Pole Cat: 86.54%

Electric Ray: 79.54%

+ .02

+ .02

=

=

sign

Figure 2.3: Adversarial example generated by the fast gradient sign method [97].
Left: the original image. Middle: adversarial perturbations. Right: the adversarial im-
age containing the adversarial perturbation.

(test) examples are used in the inference phase and lead the model to misclassify the

input. Both type of attacks potentially be defined as white or black-box attacks. How-

ever, because these has been little research on poisoning attack, thus, we have catego-

rized them as performance a) degradation attacks, b) targeted poisoning attacks, and

c) backdoor attacks.

As well as being clarified by the attacked phase of the workflow, attacks differ by

the amount of information available to the attacker. If the attacker has full informa-

tion, including the model structure and the values of all parameters, success is likely;

but this situation is unrealistic as shown in Fig. 2.4 (left). If the adversary has lim-

ited information about the model (no ground-truth labels or limited authority), then

attacks are difficult and alternative methods are needed, such as a substitute model or

data (see Fig. 2.4 (right)).

11

Table 2.1: Types of attack on secure AI and defenses against them.

Attack
Evasion

White-box Section 2.2.1
Black-box Section 2.2.1

Poisoning
Performance degradation attack Section 2.2.2
Targeted poisoning attack Section 2.2.2
Backdoor attack Section 2.2.2

Defense Empirical approaches
Gradient masking Section 2.3.1
Robustness Section 2.3.1
Detection Section 2.3.1

Certified approaches Section 2.3.1

Table 2.2: Attack methods against Secure AI

White-box Black-box Training phase Inference phase
Adversarial Attack Types ↓ (Fig. 2.4a) (Fig. 2.4b)

Evasion X X X
Poisoning X X

There are two lines of work on the attack: targeted and nontargeted. An attack

is targeted if the objective is to alter the classifier’s output to a specific target label;

In a nontargeted attack, simply aims to cause incorrect labeling, i.e., a specific label

that makes no value. Generally, nontargeted attacks are more successful than targeted

attacks.

2.2.1 Evasion Attacks

White-box Attacks

The first study of evasion attacks [260] used limited memory Broyden Fletcher Gold-

farb Shanno (L-BFGS) algorithm to generate an adversarial examples. Szegedy et

al., [260] proposed a targeted attack method called a box L-BFGS adversary, which

involves solving the simple box-constrained optimization problem

minimize ‖n‖2

s.t. f(x+ n) = l̃,

(2.3)

12

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ∶ 𝑤
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 ∶ ∇𝑓

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 ∶ 𝑥

input

𝑚𝑜𝑑𝑒𝑙
𝑖𝑛𝑓𝑜

output

?

input

output

attacker

white-box

attack

attacker

black-box

attack

Figure 2.4: Overview of the white-box (left) and black-box (right) attacks.

where f is a classifier; x ∈ RIh×Jw×Kc
is the unperturbed image (Ih × Jw × Kc

represents the height and width of the image and its number of channels), and l̃ ∈

{1, · · · , kc} is the target label; and n represents the minimum amount of noise needed

to disassociate the image from its true label. The box L-BFGS adversary searches for

the minimum perturbation needed for a successful attack. This form of attack has

a high misclassification rate and a high computational cost because the adversarial

examples must be generated by solving Equation 2.3.

Carlini’s and Wagner’s attack (CW attack) [56] is based on the box L-BFGS

attack [260], but it used a modified version of Equation 2.3:

minimize D (x̃, x) + c · g (x̃) , (2.4)

where x̃ is the adversarial example; D is a distance metric that includes Lp, L0, L2,

and L∞; g(x̃) is an objective function, in which f(x̃) = l̃ if and only if g(x̃) ≤ 0;

and c > 0 is a obviously constant. The use of the Adam [144] optimizer enhances

the effectiveness of this attack by quickly finding adversarial examples. The authors

used the method of the change in variables or projection into box constraints as a

relaxation process after each step of the optimization.

13

Papernot et al., [202] introduced a targeted attack method that optimizes under the

L0 distance. Jacobian-based saliency map attack (JSMA) constructs a saliency map

based on a gradient derived from a feedforward propagation, and then modifies the

input features that maximize the saliency map in a way that increases the probability

to be classified with the target label l̃.

In general, a DL model is described as nonlinear and overfitting, but the fast gra-

dient sign method (FGSM) [97] is based on the assertion that the main vulnerability

of an neural network to an adversarial perturbation its linear nature. FGSM linearizes

the cost function around its initial value, and finds the maximum value of that lin-

earized function following closed-form equation:

x̃ = x+ ξ · sign(∇xJ(w, x, l̃)) (2.5)

where w is the parameter of the model. The parameter ξ determines the strength

of the adversarial perturbation applied to the image is, and J is a loss function for

training. Although this method can generate adversarial examples cheaply, it has a

low success-rate.

Various compromises have been made to overcome the shortcomings of the two

systems that have just discussed. One of them is the iterative FGSM [151] which

calls the FGSM multiple times taking a small step after each update, followed by

per-pixel clipping of the image. It can be shown the result of each step will be in the

L∞ ε-neighborhood of the original image. The update rule is:

x̃0 = x, x̃N+1 = Clipx,ξ
{
x̃N + ξ · sign(∇xJ(w, x̃N , l̃)))

}
, (2.6)

where x̃N is the intermediate result at the Nth iteration. This method processes new

generations more quickly, and has a higher success rate.

14

Noise added to input data naturally promotes misclassification. Universal ad-

versarial perturbations [190] are image-agnostic perturbation vectors that have a

high probability of natural images to be misclassified. Let a perturbation vector n ∈

RIh×Jw×Kc
that perturbs the samples in the dataset. If X represents the dataset that

containing samples, then

f (x+ n) 6= f (x) , for most x ∼ X . (2.7)

The noise n should satisfy ‖n‖p ≤ ξ, and

P
x∼X

(f (x+ n) 6= f (x)) ≥ 1− δ, (2.8)

where f is the classifier. ξ restricts the value of the perturbation, and δ is the fooling

rate.

The backward pass differential approximation (BPDA) [27] is an attack that is

claimed to overcome gradients masking defense methods by performing a backward

pass with the identity function to approximating the true gradients of samples.

Along with the development of adversarial defense methods, more advanced at-

tack methods have been proposed. Brendel et al., [48] developed Brendel and Bethge

attack (B&B attack) in which the generation of adversarial examples starts from in-

correctly classified regions. This method uses the combination of a gradient-based at-

tack and boundary attack [47] which is a black-box attack. The method estimates the

local boundary between adversarial and clean examples using gradients and moves

adversarial examples close to clean examples along that boundary. Since this method

finds optimal adversarial examples by optimization, it can be applied to different ad-

versarial criteria and any norm bound (L0, L1, L2, and L∞).

Adversarial examples are typically designed to perturb an existing data point

15

Substitute Training

Dataset Collection

1

Substitute DNN

Architecture Selection

2

Substitute Dataset

Labeling

3
𝑆0

𝐹

Substitute DNN 𝐹
Training

4

𝑆𝑡

Oracle DNN 𝑂

෨𝑂(𝑆𝑡)

Jacobian-based

Dataset Augmentation

5

𝐹𝑡

𝑡 ← 𝑡 + 1

𝑆𝑡+1 = 𝑥 + 𝑣𝑡+1 ∙ 𝑠𝑖𝑔𝑛 𝐽𝐹 ෨𝑂 𝑥 ∶ 𝑥 ∈ 𝑆𝑡 ⋃ 𝑆𝑡

𝑆𝑡

Figure 2.5: Overview of a practical black-box attack [205]: the attacker (1) collects a
training set S0 for an initial substitute model and (2) selects an appropriate architec-
ture F . Using the oracle model Õ, the attacker labels the training set St and (4) trains
the substitute model Ft. Then, using Jacobian-based adversarial attack algorithms,
the attacker augments the dataset and repeat steps (3) through (5) for epochs t.

within a small matrix norm at the pixel level, i.e., they are norm-bounded. Most

defenses make use of such behavior to propose the new method. To defeat these de-

fenses, various methods have been proposed by which semantically altering attributes

of the input image instead of taking a norm-bounded pixel-level approach.

Natural GAN [296] generates adversarial examples which appear natural to hu-

mans. Zhao et al., used the latent space z of the GAN structure to search for the

required perturbation. A matching inverter MI is used to search for which satisfies

z∗,

z∗ = argmin
z̃

‖z̃ −MI(x)‖ s.t. f(G(z̃)) 6= f(x), (2.9)

where G is a generator. Similarly, Song et al.,[251] constructed Unrestricted adver-

sarial examples using an ACGAN [197]. Furthermore, they added norm-bounded

noise to the generated images to boost its attack ability.

Xiao et al., [278] introduced the novel spatially transformed attack. They used

the pixel value of each pixel and 2D coordinates to estimate a per-pixel flow field to

generate adversarial examples. Pixels are moved to adjacent pixels’ locations along

the flow field to produce perceptually realistic adversarial examples. They used the

16

L-BFGS solver to optimize the following loss function:

Lflow(f) =
∀pixels∑
p

∑
q∈N(p)

√
||∆u(p) −∆u(q)||22 + ||∆v(p) −∆v(q)||22,

(2.10)

where N(p) contains the indices of the pixels adjacent to p; ∆u(·) and ∆v(·) are

changes in the 2D coordinate of (·). The method results in natural-looking adversarial

examples than previous norm-bounded adversarial attacks

Laidlaw et al., [152] used a parameterized function f to generate adversarial ex-

amples by mapping each pixel to a new pixel of adversarial examples. This method

of functional adversarial attacks was applied to the color space of images to produce

perceptually different but realistic adversarial examples. For instance, the method

might lighten all the red pixels of an image simultaneously. To ensure that adversarial

examples are indistinguishable from the original examples, the method minimizes an

adversarial loss function from [56], and a smoothness constraint loss function similar

to [278].

Black-box Attack

In practice, it is difficult to access models or the data sets used for training the model.

Industrial training models are kept secret, and models in mobile devices are not ac-

cessible to attackers. The scenario for a black-box attack is therefore closer to reality:

an attacker has no information about the model or the dataset; but the input format

and the labels output by a target model running on a mobile device may be available.

A target model may be hosted by Amazon or Google.

In a black-box attack, the gradients of the target model are inaccessible to the

attackers, who must therefore devise a substitute model. Attacks made by means of

17

the substitute models are called transfer attacks. It has been shown [97, 260] that

neural networks can attack another model without knowing the number of layers or

the number of hidden nodes, as long as its task is known. These authors attribute this

to the linear nature of an neural network, whereas previous studies attribute trans-

ferability to the nonlinearity of an neural network. Activation functions such as the

sigmoid and ReLU are well known to produce nonlinearity. The sigmoid is tricky to

use in learning, but ReLU is widely used; however, it does not produce nonlinear-

ity, as sigmoid does. Thus, a replica of the target model can learn a similar decision

boundary on the same task.

The architecture of a substitute model, which may be a CNN, an RNN, or MLP

approximated from a knowledge of the input format which might be images or se-

quences. The model can be trained by collecting similar from public sources, but this

is very expensive.

Papernot et al., [205] addressed this issue by introducing practical black-box at-

tacks (Fig. 2.5), in which an initial synthetic dataset is augmented by a Jacobian-based

method. This synthetic dataset can be crafted from a subset that has not been used to

train to the target model, and labeled by inputting it to the target model. The trained

substitute model can then be used to create input data by blowing queries to a service

such as Google or Amazon, then the number of queries must be severely limited, or

detection becomes likely. To resolve this problem, Papernot et al., [201] introduced

reservoir sampling, which reduces the amount of data needed to train the substitute

model.

As well as being expensive, transfer attacks that use a substitute model can be

blocked by the defense [261]. More recently, several attacks [47, 64, 103, 124, 125,

258] have been proposed which only rely on the outputs of the model together with a

small number of queries and other limited information.

18

!"#$%&'()*$)$+(
#)",)$(-&$."-/

+,$-$("0&$."-/

#)/1#&+2&)3/&"0-+,$)3.

'(1*)&4$./(#$+(&5

'(
1*

)&4
$.

/(
#$

+(
&6

!"#$$%&%'()!*++'!,"-

!"#$$%&%'()%.!*++'!,"-)/#(0'+$#+%#"1

!"#$$%&%'()!*++'!,"-

76

75

8$(-0/&8)/1
769&,"(:+.&+,)3+-+("0&#)/1

759&#)/1&)+;",:#&+,$-$("0&$."-/

<=1/,1","./)/,#
>:?*#)$(-&#)/1@#$A/&+2&76

#13/,/&",+*(:
+,$-$("0&$."-/
B/C*$:$#)"()D

>:?*#)$(-&#)/1@#$A/&+2&75

#13/,/&",+*(:
+,$-$("0&$."-/
B/C*$:$#)"()D

Figure 2.6: (Left) A boundary attack: the attack performs rejection sampling by mov-
ing along the boundary between adversarial and original images. (Center) In each
step, the attack determines a new random direction by (#1) sampling a Gaussian dis-
tribution and projecting it on an equidistant sphere, and by (#2) making a small move
towards the original image. (Right) Both two-step sizes are dynamically adjusted to
the boundary [47].

Chen et al., [64] introduced a method of approximating the gradient of a target

model which only requires its output score of the target network. The authors sug-

gested zeroth-order optimization to estimate the gradient of the target model. The

method randomly picks one pixel to change and compute the adversarial perturba-

tion using zeroth-order optimization with the loss function of [56], then the process

is repeated until enough pixels are perturbed. This method is successfully applied

to a target network without the gradient but requires as many queries as the num-

ber of pixels. However, attack-space dimension reduction, hierarchical attacks, and

importance sampling can be used to reduce the number of queries.

Su et al., [258] also uses the score of the network, but it only changes one pixel in

the target image, which is called one pixel attack. A differential evolution algorithm

is used to select the pixel to perturb. These attacks achieve a good success rate. More

recently, Guo et al., [103] introduced the simple black-box attack, which is query-

efficient. They used a method which picks random noise and either adds or subtracts

19

them from an image, then one of addition and subtraction of random noise may in-

crease the target score of the attack. The algorithm repeats this procedure until an

attack is successful.

Compared to the methods outlined above, some more practical attacks rely on

predicted labels, since the output scores of the model are usually inaccessible. Bound-

ary attack [47], which assumes the worst scenario for the attackers. For boundary

attack, the procedure consists of three steps (Fig. 2.6): a) an initial sample in the

adversarial region is selected; b) a random walk from the example moves toward

the decision boundary between adversarial and non-adversarial region by reducing

the distance to a target example, and c) the walk stages in the adversarial region by

means of rejection sampling. Then, b) and c) steps are repeated until the adversarial

sample is sufficiently close to the original image. Ilyas et al., [124] introduced a simi-

lar technique of the model which requires the query-limited, partial-information, and

label-only settings. Natural evolutionary strategies (NES) [273] generates adversar-

ial examples in a query-limited setting. An instance of the target class is selected as

an initial sample and repeatedly projected on to the L∞-boxes so as to maximize the

probability of the adversarial target class.

2.2.2 Poisoning Attack

Poisoning attack inserts a malicious example into the training set so as to interfere

with learning or facilitate an attack at test time by changing decision boundary of

a model as shown in Fig. 2.7. There is a large number of poisoning attack methods

applicable to ML techniques such as SVM or least absolute shrinkage and selection

operator (LASSO), and these methods can be described mathematically. neural net-

works are more difficult to poison because of their complexity. The relatively small

number of attack methods can be categorized into three types, depending on the at-

20

tacker’s goal: performance degradation attacks to compromise the learning process,

targeted poisoning attacks to provoke target sample misclassification through feature

collision with base sample, and backdoor attacks to create a backdoor to be exploited

when the system is deployed.

Performance degradation attacks aim to subvert the training process by injecting

spurious samples generated from a bi-level optimization problem. Munoz et al., [191]

describe two performance degradation attacks scenarios, which are perfect-knowledge

(PK) and limited-knowledge (LK) attacks. The PK scenario is unrealistic setting, and

only useful for a worst-case evaluation. In an LK scenario, the attacker typically pos-

sesses information θ = (D̂,X ,M, ŵ), where X is the feature representation, M

is the learning algorithm, D̂ is the surrogate data, and ŵ is the learned parameter

from D̂, where the hat symbol indicates that the information is partial. The bi-level

optimization for creating poisoning samples is like below

Dc∗ ∈ arg max
D′c∈φ(Dc)

A(D′c, θ) = J(D̂val, ŵ)

s.t. ŵ ∈ arg min
w′∈W

J(D̂tr ∪ D′c, w′),
(2.11)

where the D̂ is divided into training data D̂tr and validation data D̂val. The objec-

tive function A(D′c, θ) evaluates the impact of the adversarial examples on the clean

examples. This function can be considered to be a loss function, where J(D̂val) mea-

sures the performance of the surrogate model with D̂val. The influence of the poison-

ing sample Dc is propagated using ŵ and then the poisoning sample is optimized.

The primary objective of the optimization is to find a poisoning sample that causes

performance degradation of the target model. The poison is generic if the target label

of the poison sample is arbitrary, not specific. If a specific target is required, Equation

21

2.11 can be replaced by

A(D′c, θ) = −J(D̂′val, ŵ), (2.12)

where D̂′val is the manipulated validation set, which is similar to D̂val but with mis-

classified labels which produce a desired output. Munoz et al., [191] proposed the

back-gradient method to solve Equations 2.11 or 2.12 and generate poisoning exam-

ples instead of gradient-based optimization, which requires a convex objective func-

tion and a Hessian-vector product. These are not exhibited by complicated learning

algorithms such as neural networks. However, Yang et al., [287] were able to apply

gradient-based method to DNNs, using a GAN-like generative method. Using an au-

toencoder to compute the gradients reduced computation times by a factor of over

200.

The attacks described above are easily detected by outlier detection. However,

Munoz et al., [192] recently proposed a GAN-based attack designed to avoid detec-

tion. Their pGAN model [192] has a generator, a discriminator and a target classifier.

A min-max game between the generator and discriminator generates spurious but re-

alistic images with poisoning ability. A hyperparameter that adjust the realism and

poisoning ability of the spurious images affects a trade-off between effectiveness and

detectability. When the influence of the realistic image generation process is more

higher, the attack success rate is low. Conversely, when the influence of poisoning

ability is higher, the generator tends to produce outliers; thus attacks are more de-

tectable.

Targeted poisoning attacks introduced by Koh et al., [147] cause target test sam-

ple which is selected from the test set to be misclassified at inference time. The com-

plexity of neural networks makes it difficult to identify any source for classification

and explain classification in terms of the training data. Because of the expense of

22

(a) (b)

Figure 2.7: The functionality of poisoning a sample. (a) The decision boundary af-
ter training with normal data, (b) The decision boundary after injecting a poisoning
sample.

retraining a model after modifying or removing a training sample, they formulate the

influence of up-weighting or modifying a training sample at training time in terms

of changes to parameters and the loss functions. The attack is optimized with the

amount of change in the test loss caused by the change in the training sample.

Even if only a small number of attacks are placed in the training data, the attack

may be unsuccessful if the training data is impeded by domain experts. Shafahi et

al., [233] introduced the clean-label attack to circumvent this problem. The feature

conflict method is used to ensure that the labels introduced in the attack are appropri-

ate for the images to which they are attached. The attacker selects target image t and

a base image b from the test set and expects the target image to be misclassified to the

label of the base image. The attack p is initialized with the base image and created

using the equation below.

p = arg min
x

||f(x)− f(t)||22 + β||x− b||22. (2.13)

An attack is generated by optimizing a sample similar to the base image in the image

space and close to t in the feature space mapped by function f . The attack surrounds

23

the target feature f(t), changes the decision boundary, so that makes the target image

is classified in the base class. For example, if b is a picture of a dog and t is a picture

of a bird, the attack changes the decision boundary by adding a perturbed version of

b to the training data. As a result, t is erroneously put into the class of b, and t can be

used to deceive the classifier.

Shafahi et al., [233] analyzed attacks in two retraining situations: end-to-end

learning which fine-tunes the entire model, and transfer learning which fine-tunes

the final layer. They used one-shot kill attack that generates a poisoning attack from

a base and a target image through feature collision method. One-shot kill attack was

successfully applied to transfer learning by making significant changes to the deci-

sion boundary, but it was not applied to end-to-end learning, which also retrain the

lower layers that extract fundamental features. Shafahi et al., [233] succeeded in an

attack on end-to-end learning using watermarking method in which a target image is

projected onto a base image by adjusting its opacity and using several target and base

images.

Because all neural networks do not have the same feature mapping function, the

feature collision using a model cannot be used to an unknown neural network. Zhu et

al., [298] proposed the feature collision attack (FC attack) using an ensemble model

and a convex polytope attack (CP attack). FC attack uses same mechanism of [233],

but the number of models for feature collision increases. The FC attack is unsuc-

cessful because the constraints on the attack increase and the attack just approaches

the target in feature space without changing the predicted result of the target image.

CP attack using convex property transforms the target into or near polytope and is

well-transferred. The attacker has difficulty to poison the unknown target model if

the target model learns new feature mapping functions by end-to-end training. Thus,

they also proposed a multilayer convex polytope attack that generates poisoning at-

24

tacks using feature collision of every activation layer.

Backdoor attacks which aim to install a backdoor to be used at classification time

were introduced by Gu et al., [100], who inserted patches into an image to cause

false classifications, such as replacing a stop sign with a speed limit. Trojaning at-

tacks [170] rely on the fact that neural network developers often download pre-trained

weights from ImageNet for training or outsource it all together to suppliers of ma-

chine learning as a service (MLaaS). In the worst case, an attacker can changes the

user’s model parameters and training data directly, but he/she cannot access the vali-

dation set of user and cannot use the training data to make attacks. Trojaning attacks

insert a trigger, in the form of a patch or watermark into an image, which puts it into

a target class. Trojaning attacks involve four steps: 1) trigger and the target class are

selected; 2) the attacker selects the node in the target layer with the highest connec-

tivity with the preceding layer from trained model, and the trigger is updated from

the gradient derived from the difference the activation result of the selected node and

the targeted value of the node (the target value is set by attacker to increase the re-

latedness of trigger and the selected node of target layer); 3) using the mean image

of a public dataset, the training data is reverse-engineered so that it will be classified

as the target class; 4) the target model is trained using the reverse-engineered image

dataset and reverse-engineered dataset of images containing the trigger. When the

retrained model using the process is deployed, the image with trigger misclassified

to target label. Trojaning attacks have been successfully applied to face recognition,

speech recognition, auto-driving and age recognition applications.

Chen et al., [65] introduced two strategies to obtain access to a face recogni-

tion system, under three constraints: 1) no knowledge of the model, 2) access to a

25

limited amount of training data, and 3) poisoning data not visually detectable. In

the input-instance-key strategy, a key image is prepared and associated with a tar-

get label. To model camera effects, noise is added to the key image. The second,

pattern-key-strategy, has three variants. The first strategy, blended injection, com-

bines a spurious image or a random pattern with the key image, but this usually looks

unrealistic. The second strategy, accessory injection, applies an accessory such as

glasses or sunglasses on to the key image. This is easy to use at the inference stage.

The third method, blended accessory injection, combines the first and the second

strategies. Unlike previous studies in which poisoning data accounted for 20% of

the training data, [65] only added five poisoned images to 600,000 training images in

input-instance-key strategy, and approximately 50 for the pattern-key strategy. In both

cases a backdoor was successfully created. Some recent attacks on image classifica-

tion make no visible changes to images. Li et al., [164] proposed an invisible back-

door attack method that is similar to a trojaning attack with scattered trigger which

is distributed across the image, making it invisible. Turner et al., [263] proposed a

clean-label backdoor attack based on GAN and adversarial examples bounded by the

Lp-norm ,and this methods cause the target model to misclassify poisoning samples

at training time. These two types of attack create a backdoor by learning the target.

2.3 Defense Techniques Against Deep Learning Models

Defense techniques against both poisoning and evasion attacks have been prepared:

the latter can be further categorized into empirical defenses against known evasion

attacks and certified defenses, which are provably effective.

26

2.3.1 Defense Techniques against Evasion Attacks

Various methods have been proposed to defend evasion attacks (adversarial attacks).

For example, Kurakin et al., [150] suggested that adversarial training can be em-

ployed when security against adversarial examples is a concern, which increases ro-

bustness against evasion attacks. Including adversarial training, defense techniques

can be broadly divided into three categories: gradient masking, robustness, and de-

tection.

Gradient Masking Gradient masking obfuscates the gradients used in attacks [27].

There are three approaches: shattered gradients, stochastic gradients, and vanish-

ing/exploding gradients.

neural networks generally behave in a largely linear manner [26]. With high di-

mensional data, such as images, this linearity will have a large effect on classifica-

tion, making the model vulnerable to adversarial attacks. The shattered gradients ap-

proach involves making the model nondifferentiable or numerically unstable, so that

accurate gradients cannot be obtained. One version of the shattered gradient defense

involves thermometer encoding [51]. The method applies nondifferentiable and non-

linear transformations to the input by replacing one-hot encoding with thermometer

encoding. A thermometer τ(j) ∈ RK , can be expressed as follows:

τ(j)l =


1, if l ≥ j

0, otherwise

. (2.14)

Then a thermometer discretization function f for a pixel i ∈ {i, · · · , n} can be de-

fined as:

ftherm(x)i
= τ(b(xi)) = C(fonehot(xi)), (2.15)

27

where R is a cumulative sum, C(c)l =
∑l
j=0 cl, and b is a quantization function.

Other defense techniques based on gradient shattering are a Local Intrinsic Dimen-

sionality (LID) [175] metric or input transformations [102] such as image cropping,

rescaling [98], bit-depth reduction [284], JPEG compression [144], and total variance

minimization [220].

The stochastic gradients obfuscate gradients in the inference phase by dropping

random neurons at each layer. The network stochastically prunes a subset of the ac-

tivations in each layer during the forward pass. Stochastic activation pruning [80] is

a variant of this method in which dropout follows the probability from a weighted,

rather than uniform, distribution. The surviving activations are scaled up to normalize

the dynamic range of the inputs to the subsequent layer. The probability of sampling

the jth activation in the ith layer is given by

pij = |(hi)j |∑ai

k=1 |(hi)k|
, (2.16)

where hi ∈ Rai
and (hi)j is the value of the jth activation in the ith layer. Xie et

al., [279] also uses a randomization technique which inserts a layer in front of the

input to the neural network, which rescales and zero-pads the input.

The vanishing/exploding gradients render the model unusable by deep compu-

tation, which restores adversarially perturbed images to clean images. These images

are used by the unmodified classifier. PixelDefend [250] is a defense algorithm which

uses PixelCNN [198] to approximate the training distribution. PixelCNN is a gen-

erative model designed to produce images that track likelihood over all pixels by

factorizing it into a product of conditional distributions:

PCNN(x) =
∏
i

PCNN(xi|x1:(i−1)). (2.17)

28

Input 𝑥 and

Allowable perturbations
Deep network

Final layer ෞ𝑧𝑘 and

Adversarial polytope
Convex outer bound

Figure 2.8: An adversarial polytope, and its outer convex bound [274].

Defense-GAN [224] is similar, but uses GAN instead of PixelCNN. The trained gen-

erator project images on to the manifold of GAN, then these projected images are fed

into the classifier.

Gradient-based defense algorithms based on the gradient of the initial version

are vulnerable to gradient-based attacks. Athalye et al., [27] used projected gradi-

ent descent to set a perturbation υ, combined with the l2 Lagrangian relaxation ap-

proach [55]. Gradient masking techniques, which exploit obfuscated gradients, are

vulnerable to strong gradient-based attacks [55, 151, 177]. Alternatively, an attacker

may simply use a different attack [27, 56] to bypass such a defense, or the way cir-

cumvented by any adversary who uses the true adversarial examples [109, 265].

Robustness Gradient obfuscation could be useless in a white-box setting and in-

creasing robustness may be a better approach. One way of increasing robustness is

to make the model produce similar output from clean and adversarial examples, by

penalizing the difference between them or regularizing the model to reduce the attack

surface.

Most studies of robustness involve adversarial training [97], which can be viewed

as minimizing the worst error caused by perturbed data of an adversary. It can also be

seen as learning an adversarial game with a model that requests labels for the input

data. Other techniques include the distillation training [203] method which provides

29

robustness to saliency map attack [202], and [69] introduced a layerwise regulariza-

tion method to control the global Lipshitz constant of a network. However, none of

these methods produce fully robust models and could be bypassed by a multi-step

attack such as projected gradient descent (PGD).

Most of the optimization problem in ML are solved using first-order methods and

variants of stochastic gradient descent, and thus an universal attack can be designed

using first-order information. Madry et al., [177] suggested that local maxima for

the worst error can be found by PGD, on the basis that a trained network which is

robust against PGD adversaries will also be robust against a wide range of attacks

that assume first-order optimization.

Adversarial training was originally used to train a small model with the MNIST

dataset [97]. Kurakin et al., [150] extended that work to ImageNet [79] using a deeper

model with a batch normalization step. The relative weights of adversarial examples

are independently controlled in each batch with the following loss function:

Loss = 1
(m− k) + λk

(
∑

CLEAN
J(xi|li) + λ

∑
ADV

J(x̃i|li)), (2.18)

where J(x|l) is the loss on a single example x with true class l;m is the total number

of training examples in the batch; k is the number of adversarial examples in the

batch, and λ is the weight applied to adversarial examples.

Defense techniques that change the target function by introducing some regulariz-

ers or modify the architecture of the model help increase the robustness of the model

against adversarial attacks. Kannan et al., [134] introduced adversarial logit pairing

(ALP), which produces regularization by reducing the distance between the logits of

clean examples and those of adversarial examples. The loss function of training then

30

becomes:

J(M, w) + λ
1
m

m∑
i=1

L
(
f(x(i);w), f(x̃(i);w)

)
, (2.19)

where J(M, w) is the cost of training a minibatch M and w is the model parameter,

and L is a distance function. Results showed that a simple regularizer can improve the

robustness of a model which is trained adversarially. Double backpropagation [217],

which is a regularizer that penalizes the magnitudes of the input gradients, reduces

the sensitivity of the divergence between the predictions and uniform uncertainty pro-

duced by evasive attacks. Miyato et al., [188] introduced a regularizer, which reduces

the Kullback-Leibler divergence between clean and adversarial examples, so that the

distributions of the resulting outputs are more similar. Xie et al., [280] denoise fea-

ture maps by adding blocks such as non-local mean blocks to a network to reduce

adversarial perturbations from the inputs. A more recent regularizer [213] makes a

model behave linearly in the vicinity of input data, which reduces the effect of gradi-

ent obfuscation and improves robustness to adversarial examples.

There are several variants of adversarial training, such as the augmentation of

training data or introduction of loss functions. Tramer et al., [261] proposed en-

semble adversarial training to defend against black-box attacks by using adversarial

examples generated by other networks. Decoupling adversarial example generation

from the trained model increases the diversity of the training data. Tradeoff-inspired

adversarial defense via surrogate-loss minimization (TRADES) [294] identified a

trade-off between adversarial robustness and accuracy. Expected errors in adversar-

ial examples are decomposed into the sum of the expected errors in clean examples

and a boundary error which corresponds to how likely the input features are close

to perturbation-extension of the decision boundary. Both these errors are expressed

by a surrogate loss function such as cross-entropy or 0-1 loss functions, to yield the

31

following minimization:

min
f

E{φ(f(x)l) + max
x′∈B(x,ξ)

φ(f(x)f(x′)l/λ)}, (2.20)

where φ is the surrogate loss function that represents expected errors, and B(x, ξ)

represents a neighborhood of x : {x′ ∈ X : ||x′ − x|| ≤ ξ}, which is the expected

error and the boundary error weighted by λ. This method showed state-of-the-art

performance under both black-box and white-box attacks. It is known [230] that ad-

versarial robustness requires more data. So, Carmon et al., [58] used unlabeled data

to improve robustness. This data is pseudo-labeled by the classifier, and then used in

adversarial training. More recently, Zhang et al., [293] proposed a feature scattering-

based adversarial training approach which utilizes the optimal transport distance be-

tween input data in a batch to generate adversarial examples for training without label

leaking [151].

Detection Instead of, or as well as, resisting attacks, it is valuable to be able to de-

tect attacks at an inference time, so that input can be rejected. Most detection methods

require no change to the classifier, so they are easy to implement, and can be com-

bined with other defenses.

Metzen et al., [185] detect adversarial examples using a binary detector network,

which is trained to classify inputs into clean and perturbed examples. In a similar

scheme, Meng et al., [183] separated a detector network and a reformer network

which is used to reconstruct clean input. These networks identify adversarial exam-

ples from the reconstruction error, which is the Jensen-Shannon divergence of the

original and reconstructed inputs:

JSD(P ||Q) = 1
2DKL(P ||M) + 1

2DKL(Q||M), (2.21)

32

where P is the output resulting from the original inputs, Q is the output of the recon-

structed input, and the mean M = 1
2(P +Q).

Feature squeezing [284] reduces the search space available to attackers by squeez-

ing the inputs and then compare the prediction results obtained from the squeezed ex-

amples with those of clean examples. If these are substantially different, then the orig-

inal input is likely to be adversarial. Squeezing was achieved by color depth reduction

and spatial smoothing, both local and non-local smoothing. This method detected ad-

versarial examples in various types of evasion attack with a low false-positive rate.

Grosse et al., [99] identified adversarial examples by applying statistical metrics

to the output of a classifier. They also introduced a method of integrated outlier de-

tection in which a classifier is trained to recognize adversarial examples as the new

class. This involves a small reduction in classification accuracy but a high detection

rate. Feinman et al., [87] also detected adversarial examples by examining statistical

metrics such as the density of feature space and Bayesian uncertainty estimates.

Pang et al., [200] minimized reverse cross-entropy as the loss function used in

training the model, in order to identify adversarial examples. The reverse cross-

entropy loss value of an input x over a label y is expressed as follows:

LRCE(x, l) = −Rᵀl log σ(x), (2.22)

Ry = P λi =


1

λ+1 , i = y

λ
(L−1)(λ+1) , i 6= y

, (2.23)

where σ(·) is the softmax output; Ry represents the reversed form of the label y;

and λ is the hyperparameter with λ = ∞ in the experiment. In a recent study, Hu

et al., [120] introduced the detection method with safety criteria: robustness against

33

random noise and susceptibility to adversarial noise, which is represented as robust-

ness against Gaussian noise and the minimum number of steps required to perturb the

input, respectively. They achieved unprecedented accuracy in a white-box setting.

Certified Approach The robustness of most defenses can only be established em-

pirically in the context of known types of attack. An empirically robust classifier

may be overcome by new and stronger attackers. However, some classifiers, gener-

ally DNN, can be proven robust if the classifier produces constant output for some

set of variations of the inputs which is generally written as lp ball.

DNNs have input and output layers with hidden layers in between. Reluplex [136]

varifies DNNs by searching linear combinations of hidden layers. This problem is

NP-complete, so the search space is reduced by a simplex algorithm. This algorithm

is based on an SMT (satisfiability modulo theories) solver that addresses a Boolean

SAT (satisfiability). Exploiting properties from the simplex, Reluplex allows inputs to

violate their feasible bounds for certification temporarily, showing a neural network

robustness verification.

Sinha et al., [245] introduced a method that is provably robust to perturbations,

distributed in a Wasserstein ball. They train a classifier with adversarial training us-

ing distributionally robust optimization. Hein et al., [112] showed formal guarantees

on the robustness of classifiers using a bound on the local Lipshitz constant in the

vicinity of the input. Their Cross-Lipshitz regularizer increases the range of attacks

which can provably be defeated, forcing would-be attackers to look more widely for

modes of attack.

Accurate bounds on worst-case loss improve robustness. Raghunathan et al., [214]

improved the accuracy of both lower and upper bounds on the worst-case loss, con-

centrating on the upper bound, on the basis that it is safer to minimize the upper bound

34

than minimizing the lower bound. They showed a certified approach against adver-

sarial examples on two-layer networks for the first time. Wong et al., [274] presented

a convex outer bound approach called an "adversarial polytope", which is the set of

all the final activation layers that are produced by applying a norm-bounded perturba-

tion to the inputs. They used this bound for linear relaxation of the ReLU activation

and optimized the worst-case loss over the region within the bound, as shown in

Fig. 2.8. However, this method can only be applied to small-sized networks. Wong et

al., [275] extended the scope of this method by introducing a provably robust training

procedure for general networks, formulated in terms of Fenchel conjugate functions,

non-linear random projections, and model cascade techniques.

Cohen et al., [71] addressed the issue of certified defenses from a different per-

spective, by proving that classifiers which are robust against Gaussian noise are also

robust against adversarial perturbations bounded by the l2 norm. They used random-

ized smoothing, which had already been introduced [158] to prove robustness. Cohen

et al., [71] proved that smoothing with Gaussian noise can induce certifiable robust-

ness against l2 norm bounded perturbations. Since the exact evaluation of the robust-

ness of the classifier is not possible, they showed that the method is robust against

attacks with high probability using Monte Carlo algorithms.

Recently, Balunovic et al., [32] combined adversarial training of a classifier with

provable defense methods. A verifier aims to prove the robustness of the classifier,

while an adversary tries to find inputs that cause errors inside convex bounds, estab-

lished as shown in Fig. 2.9. They utilized layerwise adversarial training and bridged

the gap between adversarial training based empirical defense methods and existing

provably certified defense methods. The method resulted in state-of-the-art robust

accuracy on the CIFAR-10 dataset under 2/255 L∞ and 8/255 L∞ perturbations.

35

C
o
n
v

C
o
n

v

F
C

ℂ0(𝒙) ℂ1(𝒙) ℂ2(𝒙) ℂ3(𝒙)

Figure 2.9: Illustration of layerwise adversarial training. Latent adversarial example
is found in the convex region C1(x) and propagated through the latter layers in a
forward pass which is represented with the blue lines. The red line show the gradients
during a backward pass. In the procedure, the first layer which corresponds to the
former layer of convex region C1(x) does not receive gradients [32].

2.3.2 Defense against Poisoning Attacks

Steinhardt et al., [256] attempt to fail attacks by removing outliers that are outside

the applicable set. They first aimed to find the centroids of classes. Then, the authors

removed any points that were distant from the corresponding centroid. To find these

points, they used two methods in a complementary way: a sphere defense, by remov-

ing the outer points of the spherical radius, and a slab defense that discarded points

that were too far away from the line in a complimentary way.

Koh et al., [147] used influence functions to track model predictions and identify

training data points have the most influence on a given prediction. Although their

theory does not extend to nonconvex and nondifferentiable models, they showed that

approximate influence functions can still be effective. These functions also allow a

defender to focus on data with a high influence score. This method appears to be a

better way of eliminating tainted examples than simply identifying the data points

with large training losses.

Paudice et al., [207] also suggested a defense mechanism to mitigate the effects

36

of poisoning attacks on the basis of outlier detection. An attacker would attempt to

have the greatest impact with a limited number of poisoning points. To mitigate this

effect, they divided the trustworthy dataset D into two classes, D+ and D−, and

trained a distance-based outlier detector for each class. Each detector calculates an

outlier score for each sample in the entire clean data set. There are many ways to

measure the outlier score, such as an SVM or local outlier factor (LOF). In this study,

the empirical cumulative distribution function (ECDF) of training instances is used to

determine a threshold for detecting outliers. After removing all the entities expected

to be contaminated, the remaining data can be used to retrain the learning algorithm.

Instead of following outliers, Paudice et al., [208] chose to relabel data points that

considered outliers by label-flipping attack, which is a poisoning attack that in which

an attacker changes the label of a small number of training points. They considered

the points farthest from the decision boundary to be malicious and reclassifies them.

The algorithm reassigns the label of each malicious examples using a k-NN. For each

sample of training data, the closest k-NN points are found first using the Euclidean

distance. If the number of data points with the most common label among k-NN is

is equal to or greater than a given threshold, the corresponding training sample is

renamed to the most common label in the k-NN.

Chen et al., [63] looked for poisoned data by monitoring activation in the latent

space of an neural network, rather than analyzing its input or output. Each example is

analyzed how far the activation deviates from the distribution of activation values of

a majority of one class. The dimension of the activation values before activation clus-

tering, the dimension is reduced to a 1D vector by independent component analysis.

Tran et al., [262] also defend against another variation backdoor attacks by looking

at activation values, which are analysed using spectral signatures. This method spots

poisoned data using the activation of a neural network, similar to [63]. First, singular

37

!""#$%&'

!"#$%&'(")*++*,-

(&')*$&+,'-)*.&'

/&0"'#1+(&')&'

!"#$%&'(")*++*,-

203-'4#"*-0+
(*1-

!"#"

!"#"!"#"!"#"

(&')*$&+56&'

!"# !$# !%#

Figure 2.10: Privacy attack scenarios from the perspectives of the (a) service provider,
(b) information silo, and (c) user.

value decomposition is applied to the covariance matrix. Then, all the training data is

compared with the first singular vector. Poisoned examples have a high outlier score,

and is erased before re-training the neural network.

The defense proposed by Liu et al., [167] is different from these defense described

above, which try to detect poisoned data and removing it. These authors modify the

neural network itself, using a technique called fine-pruning (combination of prun-

ing and fine-tuning). Pruning a neural network removes neurons, including backdoor

neurons [100]. However, because other attacks are made pruning-aware, this method

also suggested cleaning the neural network through fine-tuned after pruning using

trusted clean data. The resulting neural network is robust against multiple poisoning

attack. Wang et al., [268] presented a similar method to [167] but they prune filters

of a neural network that are compromised, so that trigger a backdoor attack.

2.4 Privacy issues on Deep Learning Models

Deep learning algorithms, which underpin most current AI systems, are data-driven,

which exposes them to privacy threats while collecting data or distributing pre-trained

models.f Many attempts have been made to build Private AI systems keeps data se-

38

cure. We will describe the ways in which privacy can be breached in current AI sys-

tems, review defenses based on homomorphic encryption (HE), secure multi-party

computation (SMC) and differential privacy (DP).

2.4.1 Attacks on Privacy

Service Providers

Service providers offer AI-based applications to the public. These applications are

based on pretrained DL models, and often use privacy sensitive data to improve the

model performance. A group of studies [266] has suggested that DL models not only

learn latent patterns from training data, but that the trained model is actually a repos-

itory of that data, and that data is effectively exposed by granting access to a pre-

trained model. In a membership inference attack [107, 241, 248], an attacking model

tries to determine whether given data used in training the target model. An inversion

attack goes one better and aims to obtain the attributes of the unknown data which

was used to train the target model. For example, Fredrikson et al. [89] reconstructed

an image of a face which was used to train a target classifier, using confidence scores

attached to classification.

Information Silos

An information silo is a data management system which is isolated from other simi-

lar systems. A deep learning system is usually more effective if it is trained on more

data. In an AI system, information in different silos may be used to train without

directly sharing the data between silos. Federated learning [43, 148, 181] facilitates

this processing by sharing gradients and model parameters; but this makes it vulnera-

ble to the membership and inversion attacks illustrated in Fig. 2.10. Hitaj et al. [114]

showed that a federated DL approach is essentially broken in terms of privacy, be-

39

Table 2.3: Defense methods for private AI

(Figure 2.10) Homomorphic Secure Multi-Party Differential
Victims Encryption Computation Privacy

Service Providers X
Information Silos X X X

Service Users X X

References [45, 50, 59, 68, 95, 113, 226] [22, 132, 166, 189, 218, 240] [17, 18, 61, 182, 282, 290]
[130, 204, 206, 211, 212]

Section 2.4.2 2.4.2 2.4.2

cause it is virtually impossible to protect the training data of honest participants from

an attack in which a GAN fools a victim to revealing sensitive data.

The User

Many applications of DL run on third-party servers, because they are too large and

complicated [108, 122] to run on devices such as mobile phones or smart speakers.

Users must therefore transfer sensitive data, such as voice recordings or images of

faces, to the server. At that point the user loses control of their data: they can neither

delete it nor determine how it is used. As the recent Facebook–Cambridge Analytica

data scandal [21], privacy policies may not be inadequate to prevent the exploitation

of users’ data.

2.4.2 Defenses Against Attacks on Privacy

Many attempts have been made to combine DL with established security techniques,

including homomorphic encryption (HE), secure multi-party computation (SMC) and

differential privacy (DP). Table 2.3 shows how these techniques match up with the

privacy threats listed in Section 2.4.1, and we now review their effectiveness.

Homomorphic Encryption on Deep Learning

HE is a cryptographic scheme that enables computations on encrypted data without

decryption. An encryption scheme is homomorphic for the operation ∗, if without

40

access to the secret key, the following holds:

Enc(x1) ∗ Enc(x2) = Enc(x1 ∗ x2), (2.24)

where Enc(·) is the encryption function. HE can protect users’ data in third-party

servers or gradients aggregated among information silos.

Gilad et al. [95] introduced the use of encrypted data in inference. Their Cryp-

toNets system uses the YASHE [44], leveled HE scheme, to provide privacy-preserving

inference on a pretrained CNN. CryptoNets demonstrated over 99% accuracy in a

classification task on the handwritten digits in the MNIST data-set [155]. However,

because nonlinear activations are approximated by square functions, the extensibil-

ity of CryptoNets to large complicated models is questionable. [108, 122]. However,

Hesamifard et al. [113] and Chabanne et al. [59] attempted to improve CryptoNets

by higher degree polynomial approximations of the activation functions. Chabanne et

al. []chabanne2017privacy used batch normalization to reduce the difference in accu-

racy between the original classifier and the classifier evaluated with encrypted data by

approximating the activation function during inference. This technique also permit-

ted a deeper model. Inference on the original version of CryptoNets took hundreds of

seconds, but its speed was subsequently improved [50, 68].

TFHE [66] is a recent HE technique which supports operations on binary data.

TAPAS [226] and FHE-DiNN [45] were a development of this scheme with binary

neural networks, which achieved improved speed and greater accuracy on the MNIST

dataset, with only a single hidden layer.

41

Secure Multi-party Computation on Deep Learning

To date, there are two major approaches to privacy in DL involving multiple parties:

1) protection of user-side privacy by secure multi-party computation, and 2) secure

sharing of gradients between information silos.

SMC methods are mainly based on secure two-party (2PC) techniques, which in-

volve a user who provides data and a server that runs a DL system which uses that

data. SecureML [189] was the first privacy-preserving method in which neural net-

works were computed using 2PC; it requires large amounts of communication. In

MiniONN [166] an neural network is replaced by an oblivious neural network which

is trained using a simplified HE scheme. Garbled circuits (GCs) were used to approx-

imate nonlinear activation functions. DeepSecure [218] performs encrypted inference

on an neural network using Yao’s GCs [288] and suggest some other practical com-

puting structures which are provably secure. Gazelle [132] performs linear operations

with HE and computes activation functions with GC. Its authors observe that HE is

most promising in matrix-vector multiplications, while GCs makes them more suited

to the approximation of nonlinear functions in DNN models. Although 2PC-based

algorithms have shorter inference time than HE-based methods, they require commu-

nication at every operation or layer. Hence they are impractical in practice because 1)

the user must be online while inference and 2) communication overhead increases as

more number of users are connected.

Methods to protect data privacy in federated learning of data silos are mainly

based on distributed DL algorithms [16, 78, 160]. Distributed selective SGD (DSSGD)

[240] uses collaborative DL protocols which allow different data holders to train joint

DL models without sharing their training data. Using coordinated learning models

and objectives, participants train their local neural networks and periodically ex-

change gradients and parameters. As gradients and parameters are only partially

42

𝑙 (label)𝑦

Objective
function 𝐽

Noise

Objective-level

Noise

Label-level

Noise

Gradient-level

𝛻𝑤𝐽 𝛻𝑤𝐽

Figure 2.11: Overview of the differential privacy in a DL framework.

showed, DSSGD resists to model inversion or membership attacks. However, be-

cause DSSGD uses a parameter server [163], Aono et al. [22] noted that it is possible

to reconstruct the data used in training from a small numbers of gradients. To pre-

serve privacy against an honest-but-curious parameter server, these authors apply HE

to the parameter and gradient exchange. Because the size of encrypted data is much

larger than the plaintext, this has a trade-off with communication costs. Hence, Ryffel

et al. [222] attempted to build a privacy-preserving federated learning framework that

combines MPC and DP functionality.

Differential Privacy in Deep Learning

Differential privacy (DP) is a state-of-the-art privacy preserving mechanism [81]

which reliably prevent an attacker from deducing private information from databases

or deep learning models. DP algorithms prevent an attacker from knowing the exis-

tence of a particular record by adding noise to query responses, as follows:

M(D) = f(D) + n, (2.25)

43

where M : D → R is a randomized mechanism that adds the noise n sampled from a

Laplace or Gaussian distribution [81] to the query response, D is the target database,

and f is the original deterministic query response.

M provides (ε, δ)-DP if all adjacent D and D′ satisfy the following [81]:

Pr[M(D) ∈ S] ≤ exp(ε)Pr[M(D′) ∈ S] + δ, (2.26)

where D and D′ are two adjacent databases and S ⊆ range(M) is a subset of R. ε

and δ are the privacy budget parameters that determine the level of privacy. Smaller

ε and δ mean that M(D) and M(D′) will be more similar.

Differentially private deep learning models can be divided into three groups:

gradient-level [17, 18, 182, 282, 290], objective-level [61, 211, 212] and label-level [130,

204, 206] approaches, depending on where the noise is added. Fig. 2.11 shows the

overview of these approaches. In a gradient-level approach, noise is inserted into the

gradients of the parameters during the training phase. In an objective-level approach,

noise is used to perturb the coefficients of the original objective function. In a label-

level approach, noise is inserted into the label in the knowledge transfer phase of a

teacher-student mechanism.

Abadi et al. [17] proposed a differential private SGD algorithm (DP-SGD) that

adds noise to the gradients when updating parameters. Abadi et al. [17] introduced

the moment accountant algorithm to track the cumulative privacy loss to estimate ε

and δ. McMahan et al. [182] introduced differentially private long short term memory

(LSTM) [116] which provides DP for a language model. Xie et al. [282] proposed

a differentially private GAN (DPGAN) to provide DP for a differentially private

generator. DPGAN injected noise into the gradients of the discriminator to obtain

a differentially private discriminator. The generator is trained with that discriminator,

44

and thus becomes differentially private based on post-processing theory [84]. Acs et

al. [18] introduced a differentially private generative model which consists of a mix-

ture of generative NNs, such as restricted Boltzmann machines (RBMs) [156] and

variational autoencoders (VAEs) [145]. These authors applied a differentially private

k-means algorithm for clustering the original datasets and used DP-SGD [17] to train

each neural network. Yu et al. [290] introduced improved DP-SGD by applying a

different sampling strategy and a concentrated DP (CDP) [53] (a variant of DP) to

provide higher level of privacy.

The objective-level approach introduced by [61] disturbs the original objective

function by adding noise to its coefficients, making the model trained on this func-

tion differentially private. Whereas privacy loss is accumulated as training progresses

in the gradient-level approach, the objective-level approach determines privacy loss

while building the objective function, independent of training iterations. Noise is in-

jected into the polynomial objective function by changing the coefficients. A non-

polynomial objective function must be approximated using techniques such as Tay-

lor or Chebyshev expansions. Chaudhuri et al. [61] proposed differentially private

logistic regression, in which the parameters are updated to minimize perturbed ob-

jective function. Phan et al. [211] and Phan et al. [212] applied this mechanism to

autoencoders [38] and convolutional deep belief networks [159], respectively.

The label-level approach injects noise into the knowledge transfer phase of the

teacher-student mechanism. Papernot et al. [204] introduced a semi-supervised knowl-

edge transfer technique called private aggregation of teacher ensembles (PATE), which

is a type of teacher-student mechanism whose purpose is to train a differentially pri-

vate classifier (the student) based on an ensemble of non-private classifiers (the teach-

ers), trained on disjoint datasets. The teacher ensemble outputs noisy labels by noisy

aggregation of each teacher’s prediction, and the student learns these labels. Because

45

the student model cannot access the training data directly and the labels that it re-

ceives are differential private, PATE provides DP. PATE utilizes a moment accoun-

tant to track the privacy budget spent through the learning process. Later, Papernot

et al. [206] extended PATE to operate at a large scale by introducing a new noisy

aggregation mechanism, and it outperforms the original PATE. Jordon et al. [130]

applied the PATE for training a discriminator to build a differentially private GAN

framework. The discriminator provides DP, and the generator trained with that dis-

criminator is also differentially private by post-processing theory [84].

46

Chapter 3

Attacks on Deep Learning Models

Machine learning (ML) has extensively adapted in a large number of application

areas including speech recognition and image processing. One important such area

is security, to which a variety of ML-based techniques have been applied in recent

years. Several studies have empirically evinced a great potential and effectiveness

of ML in solving certain security problems like malware detection [227, 291]. In

particular, the ML techniques for malware detection have been developed for years

diverging to many different security problem domains, such as clustering of malware

families [33, 129], detection of malicious downloads [74, 215], detection of account

misuse networks [85, 257], detection of commonly exploited file formats (e.g., Java

archives [229], documents [133, 153]) and detection of PDF malware [246, 247, 254,

255].

Not surprisingly, as ML becomes a dominant means for malware analysis, there

is a growing temptation to find adversarial examples (AEs) that can diminish its ef-

fectiveness. Many latest studies of AE attacks on ML [19, 97, 123, 150] have demon-

strated that a small perturbation to an input may forcibly change the prediction result

of both ML and, newly surfacing, deep learning (DL) models. The studies suggest

47

that the victim of AE attacks can be anyone from an entire spectrum of application

areas where ML is applicable. As a result, this gloomy fact poses a daunting chal-

lenge to developers of ML models for malware detection [121]. Thus, it is crucial to

build a robust malware detectors or classifiers that are resistant to AE attacks. One

solution adopted by many in practice is to harden their model by training it with all

possible AEs against it taken into account. For this, significant effort has been made

to identify AEs against existing ML-models for various malware detectors. In this

paper, we are interested in finding AEs that can be used to evade all the current (aca-

demic and commercial) ML-based PDF malware classifiers. Our interest originates

from the fact [179] that as malicious PDF files have been known to be the most dan-

gerous type of attack exploited by adversaries to date, ML-based techniques are being

actively studied and developed to mitigate them even most recently.

Since its introduction, PDF has risen in great popularity and become the de facto

standard for many different purposes of information sharing, such as text documents,

data files and presentation materials. PDF includes not only static content (e.g., texts

and styles) but also dynamic content (e.g., JavaScript code and action triggers). The

versatility of PDF files comes in their capability of displaying such rich content on

virtually all kinds of today’s computer systems and platforms. The popularity and

versatility have been capitalized on by adversaries in a way that the PDF format files

are used to craft diverse attacks on viewer applications, inflicting extensive damage

on countless victims. One key attribute of PDF exploited by adversaries is its high

connectivity to other objects which facilitates modification of a PDF file, ultimately

leading to an injection of a malicious load to the file. Another is the innate complex-

ity of its file format, which facilitates malicious contents being concealed from the

detectors. For example, JavaScript-based attacks deceive the detectors by injecting

Javascript code in multiple objects at different locations inside the file. Such PDF

48

malware is not only posing in the present but also likely to pose in the future, an

immense threat to cybersecurity. It was reported by SonicWall [14], a private net-

work security company, that more than 47,000 new attacks related to PDF files were

discovered last year, and 73,000 PDF-based attacks were discovered in March, 2019

alone.

To prepare for the flooding of future zero-day PDF malware, much research has

been done to improve the performance of PDF classifiers by employing ML tech-

niques. As the first work in this direction, PDFrate-v1 [246] tackled the challenge

with ML techniques by using metadata and contents of PDF documents. The ap-

proach characterized the documents’ attributes by hand-crafting 202 features to train

a random forest (RF) model for detection. PDFrate-v2 [247] further improved the per-

formance by taking advantage of an ensemble training technique. Hidost [254, 255]

attempted to extract the files into a structural map and used it as a feature set for

their train model. Support vector machines (SVMs) and RF are used as classification

models and both of them attain an impressive performance of detection.

As ML techniques for PDF classification become advanced and sophisticated,

so do AE attack techniques for evading them. In principle, the purpose of these

attack techniques is generating evasive PDF samples (i.e., AEs) against ML-based

classifiers by picking and manipulating structural features that the classifiers utilize

for detection. The early forms of AE attacks, which we collectively call mimicry

attacks [111, 154, 232], aim to induce misclassifications of the classifiers by cam-

ouflaging malicious PDF files as benign ones. Unfortunately, mimicry attacks rely

heavily on human expertise to understand a given malicious PDF file before finding

fake structural features that will be added to the original file for aligning it with a

known benign file. This implies that the success of their techniques would be strictly

limited by human effort as well as their knowledge of a complex structure of the PDF

49

file format.

Researchers endeavored to overcome the limitation by minimizing human in-

volvement. They proposed the evasion techniques that can automate the process of

generating evasive samples for AE attacks. EvadeML [283] introduced a stochastic

approach based on genetic programming (GP), which repeatedly performs feature

manipulations based on a random mutation algorithm until an evasive, yet malicious

PDF sample is successfully obtained as output. While the output sample maintains

the input’s original maliciousness, it, unlike the input, is guaranteed to be evasive as it

will induce a misclassification of PDF malware classifiers. EvadeML exhibited its ef-

fectiveness by producing evasive samples of all 500 PDF malware files selected from

Contagio malware archive [9]. A later work, EvadeHC [77], claimed to achieve the

same performance as EvadeML; that is, succeeding in generating evasive samples for

all 500 PDF malware files from Contagio. Moreover, they assumed a more restricted,

realistic attack scenario where the attacker will only be given a binary prediction

score from the PDF malware classifiers.

Despite the impressive success in their automated evasive sample generation, our

analysis has revealed that the existing evasion techniques consume an excessively

large amount of time to obtain each sample. Although EvadeHC has made some ef-

fort to speed up its generation time by applying a hill-climbing method to the random

mutation algorithm, their numbers still have much room for improvement. Accord-

ing to our observation, the main factor that increases the total time taken to generate

an evasive sample is the inherent difficulty of maintaining the original maliciousness

even after several trials of operations being carried out to manipulate structural fea-

tures, which often result a crash. To explain this, consider the PDF malware that is not

originally evasive when being given as input to the evasion techniques like EvadeML

or EvadeHC. In order to generate an evasive sample as output from the malicious

50

file, they must transform the original file structure by manipulating (i.e., inserting,

deleting and replacing) its structural features. Conceivably, it often occurs during the

transformation that the original file loses its maliciousness if a certain feature manip-

ulation happens to corrupt a file structure essential to maintain its maliciousness. A

fundamental ingredient in all of these are feature-space models of attacks.

To elaborate limitation of current attacks, let hereby S denote a set of all struc-

tural features of our target PDF file, which can be manipulated to generate our eva-

sive sample. We also define S′, a subset of S, whose elements are robust features

crucial to maintaining the target’s maliciousness, by which we mean that the mali-

ciousness might be corrupted by changing any of them. As briefly mentioned earlier,

the existing evasion algorithms ‘randomly’ select one feature after another from S

and ‘mutate’ the features until they obtain an evasive sample. Suppose that they se-

lect and mutate features from S′ by chance. Then as been defined, it is likely that the

maliciousness of our target file is lost by error. Upon recognizing the loss of mali-

ciousness, the existing algorithms undo the mutation on the feature to restore the lost

maliciousness and try to select another feature from S. We have observed in the ex-

isting techniques that they suffer from quite frequent trials and errors, each of which

causes a waste of time, consequently all in all inducing a significant increase in the

total time for sample generation.

A remedy for this problem would be to pinpoint the robust features and transform

the input PDF malware by manipulating features only from the non-robust features

in search for an evasive malware sample (i.e., S − S′). Sadly, none of the existing

techniques listed above attempt to have knowledge of S′ when they generate evasive

samples. Our observation on previous work motivated us to develop a new solution

where we drastically reduce the sample generation time by avoiding wasteful cycles

of trials and errors during our PDF transformation. In our solution, we first strive to

51

identify a set S′ of structural features that are relevant to malicious behaviors of most

PDF malware available today. Next, during the transformation phase, we continu-

ously refer to the set in order to ensure that our algorithm should select candidates

for mutation from the complementary set of S′.

Clearly, in order for our solution to work successfully, we must be able to deter-

mine the set S′ for the PDF format files. To achieve this, we employ the generative

adversarial networks (GANs), which, if appropriately trained, can learn to identify

intrinsic properties (including structural features) of benign and malicious PDFs. The

power of GANs that identifies the structural features belonging to S′ comes from

their innate characteristic, namely the adversarial interaction between their two com-

ponents, the generator and discriminator, by which S′ is formed. To avoid the time-

consuming repetition of trials and errors, the generator constructs evasive samples

by modifying features only in S − S′. Many existing GANs usually employ a single

discriminator, through which a modified sample very similar to the original can be

generated. To generate a modified sample structurally very similar to the original,

GANs select features in S − S′, thereby conserving the original’s malicious behav-

ior as a result. However, the generated sample must not only maintain the desired

maliciousness but also evade the targeted malware classifiers. To satisfy both the re-

quirements, we have introduced a GAN variant that employs a target PDF malware

classifier as the second discriminator to manipulate features only from S −S′ during

our evasive sample generation. To adjust the dependency level of these two coopera-

tive discriminators, we use an additional parameter that controls the balance between

them. Let alone its speed in finding evasive malware samples, our solution has an-

other advantage that it can operate even under a realistic black-box attack scenario, in

which the classification score revealed from the malware classifiers is in binary form

(i.e., benign or malicious) rather than a continuous classification score.

52

We have evaluated our solution against three PDF malware classifiers. First of all,

we have found that it can generate evasive samples (without any crash) for all 500

unique PDF malware files selected from the Contagio archive. Our proposed model

successfully evades the target PDF malware classifiers with the maximum number

of 12 manipulating operations by 13 times faster than the previous approaches. In

contrast, EvadeML required the maximum of 354 and 85 feature manipulating oper-

ations to complete the generation of evasive samples for PDFrate-v1 and Hidost ’13

respectively. To further demonstrate the effectiveness of our approach, we include in

our evasion seed all three types (e.g., JavaScript, ActionScript and File Embedding)

of PDF malware as known by CVE-2018-9958 [12], CVE-2013-2729 [8] and CVE-

2010-3654 [6]. The analysis reveals that our evasive samples are all generated without

any crash exhibiting the same malicious behaviors as the original malware with min-

imum modification. Last of all, unlike previous work, we evaluate the evasiveness of

our generated malware samples against AntiVirus engines from VirusTotal.

3.1 Background

3.1.1 Threat Model

Depending on the different levels of knowledge held by an attacker, attack scenarios

can be categorized into three different classes: white-box, gray-box and black-box.

The less information available to an attacker, the darker the attack scenario is con-

sidered. The types of information that can be provided to an attacker are threefold:

(1) the training dataset and its labels, (2) the feature set and the feature extraction

algorithm of the classifier with its extracted feature types and (3) the knowledge of

the classification function and its hyper-parameters.

In the black-box scenario, an attacker is provided with minimal knowledge of

53

Fi
gu

re
3.

1:
PD

F
st

ru
ct

ur
e

(a
),

Tr
ee

re
pr

es
en

ta
tio

n
of

PD
F

fil
e

(b
)

54

the classifiers (e.g., the feature representation). EvadeML constructs evasive samples

against Hidost ’13 and PDFrate-v1 under a black-box attack scenario. They assumed

that the classification score was revealed in a real number with many query attempts.

EvadeHC also operates under a similar scenario but the main difference is that the

classification score was given in the binary form.

Our approach, PDF-GAN, operates in the same black-box scenario as previous

studies with an assumption that many submissions of files are allowed. Also, the clas-

sifiers only reveal the classification score in a binary form (i.e., benign or malicious).

However, recently, many researchers managed to mitigate the evasion attack by limit-

ing the number of queries as the current black-box attack requires many submissions.

To this end, PDF-GAN was designed to also operate as a transfer-based attack [201].

For this, we trained a surrogate model that is a smaller network and evaluated the

success rate of evasion with much fewer query attempts to the target classifiers. The

details of the design and the experiments will be explained in the following sections.

3.1.2 Portable Document Format (PDF)

PDF Structure

A PDF file can be broken down into four parts: header, body, cross-reference table

and trailer. Figure 3.1 (a) shows the structure of a PDF. A header contains rather

simple information which includes the version number of the PDF specification (i.e.,

‘%PDF-1.3’). The body section contains objects and holds all data of the document.

There are eight different types of objects supported by a PDF (i.e., Boolean, integer

and real numbers, arrays, strings, dictionaries, names, streams and null). A name

object only contains unique values, whereas a dictionary object consists of a key and

value pair.

Objects are identified by their given numbers, and they are either indirect ob-

55

jects or the direct objects constituting dictionaries. Indirect objects appear within the

notation << >> and direct ones are denoted as follows:

6 0 obj << /Type/Action/S/JavaScript/JS 7 0 R >> endobj

7 0 obj << /Length 231/Filter/FlateDecode >>

stream · · · endstream endobj

For example, the object 6 with a keyword introduced by ‘/’ will make an indirect

jump to the object 7, which contains a sequence of direct objects with keywords and

their values. The length of the stream is 231, which requires a FlateDecode filter. A

cross-reference table stores the mapping information of random and direct access,

allowing a specific object to be found without having to search throughout the entire

file. Note that PDF readers start rendering the PDF from the bottom of the file, which

is the trailer. The trailer specifies the offset value for the PDF reader to find the cross-

reference table and helps the reader find a specific object more quickly (i.e., trailer

<< /Size 9 /Root 1 0 R >> startxref 9178 %EOF). In this case, the offset is 9178

bytes, ‘/Size’ indicates the number of entries in the cross-reference table and ‘/Root’

is the catalog dictionary for this file.

Types of PDF Malware

The three different types of PDF malware are briefly explained. (1) JavaScript-based

attacks exploit a vulnerability using JavaScript code that can be embedded in one

or several objects. Typical examples of such vulnerabilities are an API-based over-

flow and a Use-After-Free flaw. (2) ActionScript-based attacks capitalize on the fact

that PDF files can visualize Flash content. This is usually achieved by embedding

ShockWave Flash along with the ActionScript code such as memory corruption or

corrupted file code. (3) File-embedding attacks take advantage of the fact that Adobe

Reader can parse and read PDF files that are embedded with contents of different file

56

types, such as images (e.g., bmp or tiff) and fonts (e.g., ttf). When reading a PDF file,

embedded contents can lead to memory spraying to execute payloads with malicious

activities.

3.1.3 PDF Malware Classifiers

Hidost

Hidost is implemented using two different types of classification models: support

vector machine (SVM) [254] and random forest (RF) [255]. SVM is a supervised

learning model that outputs an optimal hyperplane for separating two different la-

bels. RF is a meta estimator, comprising several decision trees that are merged for

more accurate classification. As the first step, Hidost utilizes Poppler [13] a PDF

parser to dissect files into a structural multi-map in its structure extraction stage.

These structural paths of objects in a PDF are used as features during classification.

Since there are many semantically equivalent yet syntactically different structures, a

structural path consolidation (SPC), which is based on rules that are manually cre-

ated, is carried out. For feature selection, Hidost naively includes only paths that are

occurring in more than a certain number of files to form a feature set. Hidost is pro-

vided as open-source, and the model was trained using 10,000 random files with a

malicious-to-benign ratio of 1:1. The entire PDF dataset was composed of 407,037

benign and 32,567 malicious files. The results indicated that the Hidost model was

the top detection tool compared to AntiVirus engines (VirusTotal).

PDFrate-v2

The PDFrate classifier is implemented using an RF algorithm that applies an ensem-

ble learning model designed to improve the prediction accuracy [247]. It employs

metadata and the content of the PDF files as classification features, which include

57

the names of the authors of the files, the size of the file, the position and the number

of specific keywords. The feature set is defined manually by the authors and the total

number of features is 202. However, only 135 are publicly available in the Mimi-

cus implementation of PDFrate, which claims to achieve a close approximation. The

main difference between PDFrate-v1 and PDFrate-v2 lies in the ML model applied.

PDFrate-v2 adopts an ensemble method by applying mutual agreement among the

classifiers. It introduces the idea of ‘uncertain’ in the classifier votes, where rates

of 25% to 50% are considered to be benign uncertainty, whereas rates of 50% to

75% imply malicious uncertainty. The effectiveness was tested against some known

evasive attacks such as mimicry [154] and reverse mimicry [178], and impressive

performance was demonstrated.

Robust PDF Classifier with Conserved Features

3.1.4 Evasion Attacks

Automatically Evading Classifiers

EvadeML presents a generic approach for evading the Hidost ’13 and PDFrate-v1

classifiers through stochastic manipulations. It repeatedly mutates the original ma-

licious PDFs to create evasive variants. It is an automated procedure in which eva-

sive samples manufactured by random mutations are tested by the oracle to check

the presence of maliciousness. If no maliciousness is present, the variant will be re-

turned to the mutation stage. As for the reliable malware signature, only the network

behavior of the malware samples is considered. A total of 500 sample seeds were se-

lected from the Contagio PDF malware dataset and the proposed method successfully

reached 100% evasion, which took approximately six days.

However, PDF-GAN is based on learning the difference in the feature sets be-

58

tween benign and malicious samples and modifying a malicious PDF with minimum

effect on its original purpose, and hence achieving a 100% evasion success rate in

noticeably less time and with fewer modifications.

Evading Classifiers by Morphing in the Dark

In this study, the authors focused on more restricted and realistic attack scenarios

where the target classifiers will only reveal the final prediction regarding whether they

are benign or malicious. Hence, a scoring mechanism, EvadeHC, was proposed to

overcome the limited information. The intuition behind this is to measure the number

of steps to overturn the result of the detector and derive the real-value score from it.

The authors introduced the notion of malice-flipping distance, which is the number

of mutations required for a malicious PDF to lose its maliciousness as determined by

a tester. The reject-flipping distance is a comparable concept, which is the number of

morphing steps required for a malicious sample to be classified as benign. A simple

morphing technique is employed that performs the basic operations: insert, delete or

replace. Their design consists of three components: a binary output detector, a tester

to check the maliciousness of evasive samples, and a morpher that randomly mutates

the PDF files. The target classifiers were Hidost ’13 and PDFrate-v1 and its effects

were evaluated with the 500 selected malware samples from Contagio archive.

Our approach operates under the strong assumption that the classifiers and testers

only reveal their binary output results. Unlike this work, our PDF-GAN did not need a

scoring function to convert the results into a real-value score and successfully evaded

even more recent classifiers with the same seed samples.

59

Figure 3.2: Flowchart of PDF-GAN framework

3.2 Methods

3.2.1 Feature Extraction

PDFs are parsed into the tree representation as shown in Figure 3.1 (b). We have

utilized the PDFrw (i.e., PDF parser) provided by EvadeML [10] with few modifi-

cation to correctly parse all objects. It is important that the parser do not omit any

major objects (e.g., /Javascript and /OpenAction) as PDF-GAN would be unable to

fully interpret the structural difference between benign and malicious PDFs, which

in turn will lead to poor results in PDF-GAN’s performance. Thus to avoid leaving

out any potentially pivotal information, PDFrw has been modified to include all key

values of /Root while parsing PDFs into a tree representation (i.e., /Metadata, /Ope-

nAction, /Javascript, /AcroForm, /PageLayout, etc). Additionally, for higher speed

computation, we ignore any paths containing an object with /Parent or /Prev as they

are recursive.

From the tree representation, a feature set can be formed. Each path from the root

60

to a leaf node and its value is considered as a feature as listed in Figure 3.3 (left).

The feature abstraction is performed by converting features into a form of dictionaries

(i.e., keys and values). Finally, similar to the previous work [254, 255], any values in

a string type were converted to an integer value of 1 and a value given in the form of

an array of values was transformed into the median of values in an array as shown

in Figure 3.3 (right).

3.2.2 Feature Selection Process

The feature selection process plays a crucial role in determining the effectiveness of

the ML. Since it is impractical to use all features extracted from the entire dataset,

we must select a decent number of features that represent all features in a sufficient

manner, to be included in the feature set. In previous studies, Hidost simply narrowed

down the size of the feature set by only including features that occur in more than a

certain number of files. Such a number is typically set to 1% of the training set size

and the selection is performed “in hindsight” once for the entire dataset. However,

this method failed to evenly include features from both benign and malicious files

as malicious files tend to contain unique features. Hence, a huge portion of the fea-

ture set was occupied by features extracted from benign PDFs. Therefore, with the

intention of including features extracted from malicious files, a novel feature selec-

tion process was applied. In short, the entire feature set was created by deliberately

maneuvering the ratio between different pools of features to be used for training the

target classifiers and PDF-GAN.

We segregated the entire features into four pools: (1) features found only in be-

nign PDFs (2) features found more in benign PDFs than malicious ones. (3) features

found more in malicious PDFs than benign ones. (4) features found only in malicious

PDFs. Figure 3.4 shows the number of features from each pool. Any features that

61

Figure 3.3: Feature abstraction [Dictionary (Key:Value)]

were found in less than that of either benign or malicious files were excluded. The

main reason for applying the new feature selection process was to overcome the im-

balance of dataset problem commonly found in DL that the existing mechanism failed

to overcome as explained above. We gathered a set of 297 features with a balanced

number of features from each pool. This method resulted in an improved detection

performance as it will be illustrated in Section 3.3.2.

3.2.3 Seed Selection for Mutation

We have selected a total of 500 files after filtering out from Contagio malicious

files. Table 3.1 shows how those files were chosen. Selecting seed PDF files to be

fed into PDF-GAN was done with the dynamic analysis system (i.e., Cuckoo: the

leading open-source automated malware analysis system). First, a primitive set of

seeds was selected from the Conatgio data set, excluding files from the training set.

After analyzing 6,105 files, it appeared that only 1,503 files indicated some mali-

cious network activities. This result may have been caused by the inborn limitation

of dynamic analysis. All of these files were parsed through PDFrw and the feature

extraction process to validate their tree structure. A total of 1,485 files remained af-

ter this process. Upon close examination, we realized that many of the files shared

the exact same value for the set of 297 features. Therefore, after filtering out homo-

geneous files, 712 remained. Finally, it was important that these files be classified as

62

Figure 3.4: Feature selection by pooling

Description No. of seed

Contagio dataset (excl. training set) 6,105
Cuckoo result with network activities 1,503

PDFrw parsing 1,502
Feature extraction 1,485

Unique files 712
True positive of SVM & RF & Ensemble 709

Randomly selected samples 500

Table 3.1: Mutation seed selection process

malicious by our target classifiers. The remaining files were put through all three clas-

sifiers sequentially and 99.6% of them were corrected classified as malicious, which

demonstrates the high performance of our classifiers. Among 709 files, we randomly

selected 500 for the evasion process to evaluate against previous studies.

3.2.4 Evading Model

Our training involved two types of adversarial game : an adversarial game for mimi-

cation and an adversarial game for evasion. The model consists of four parts: a gen-

erator, a discriminator, a (pre-trained) surrogate classifier, and adversarial classifier.

The generator constructs a PDF close to the form of the input data and the discrimi-

nator then predicts a confidence score on whether the generated data are close to the

form of original input data. The surrogate classifier produces a prediction score of the

63

generated data and the outputs are used to train the classifier. The classifier adopts to

collateral learning by adversarial training, making the classifier robust against un-

known features. The generator is trained with the original PDF to learn and create

a variant version of the original PDF such that the prediction result of the generated

data is a reverse of the original PDF.

The architecture of this model is illustrated in Figure 6.3. The generator takes an

input x and gives an output x̂, both of which are given to the discriminator and the

classifiers. The discriminator outputs the probability that x = x̂ and the classifier

outputs a prediction score given input x̂. The learning objective of the generator is

to minimize the prediction score of the classifier and the learning objective of the

discriminator is to discriminate whether a generated PDF is the original x. The gen-

erator, G, aims to generate malicious PDF by learning data distribution close to the

distribution of benign PDF. For each malicious input x ∈ X , G seeks a possible

stochastic mapping to other representation, x̂ = G(x; θG) ∈ X̂ by conditional prob-

ability density function p(x̂|x), where θG denote the parameter for the generator. In

original GANs, generator receives noise z ∼ pz(z|Y), where Y is the class labels

space. However, in our model, G receives noise z, which is computed by x× r ∈ Rd

where r, d are the random string and the feature dimension, respectively. The dis-

criminator, D, aims to distinguish malicious features by learning distribution of S′,

and the generator’s input is required to retain the original form of maliciousness by

computing reconstruction loss between generator’s input and the output. The surro-

gate surrogate classifier, Cs, aims to train the classifier by predicting prediction score

given generator’s output. The classifier, C, aims to evade the target classifier by ad-

versarial training given generator’s output and its prediction score. Computed loss

from both two discriminators (discriminator and classifier) are then back-propagated

to the next step training step of the generator. For the white-box attack Cs can be

64

replaced by the actual target classifier.

To define the learning objective, let LG, LD, LCs , and LC denote the loss of the

generator, discriminator, surrogate classifier, and classifier respectively. The genera-

tor then has the following objective functions:

LG = d(x, 1
n

n∑
i=0

(G(x, θG)i)) + ((1− λd) · LD + λd · LC)

= d(x, x̂) + ((1− λd) · LD + λd · LC),

(3.1)

where d(x, x̂) is the Euclidean distance between the original and arithmetic mean

of generated data. In addition, λd is the weight parameter for the surrogate classifier

that can be used to control the dependency level of the generation to maximize the

diversity of the feature changes.

A discriminator has the sigmoid cross entropy loss of:

LD =− y · log(D(ψ(x̂) · ψ(x))

− (1− y) · log(1−D(1
n

n∑
i=0

(G(x, θG)i))).
(3.2)

where ψ is the binary Hamming distance between x̂ and x.

A classifier has an objective function of:

LC = −||C(f(x))− Cs(f(x̂))||2, (3.3)

where C(f) is a cost function of the surrogate classifier. In the case where input x is

classified as malicious by the surrogate classifier, x̂ needs to be classified as benign.

For this, we need to maximize the distance of the prediction score. Given the above

equations, the generator optimizes a convex of Eq.1 finding Nash equilibrium of a

min-max game between the G against both D and C.

65

!
!
!

"!

!"
#$
#%
&'
()
#'
&*

!
"#
$%
"&
"'
()
*%

+
,-
,(
!"
&.
$"
#/
&%
%0
12

!
"

!"
#$
%&

PD FPD FPD
F

$+
(#
#"
,"
-%

.%
-)
%(
"'
-/

01
22
34
56
78$
+(
##
",
"-
%

95
:7
9

;-
'-
%(
)*
%

Fi
gu

re
3.

5:
M

od
el

ar
ch

ite
ct

ur
e.

66

3.2.5 Model architecture

For GANs architecture, we optimized the architecture to accommodate the PDF mal-

ware domain by following a similar concept of visual representation learning. The

generator of the first layer consists of 64 filters with a length of 4; the second layer

consists of 32 filters with a length of 2; the third layer consists of 16 filters with a

length of 2. The fourth layer consists of 8 filters with a length of 2. Additional layers

are then added in reverse order as the number of input length n. Batch normaliza-

tion [127] is used at each layer and tanh [157] is used as the activation function at

each layer, except for the final layer where ReLU [193] is used for the activation

function. A sigmoid activation function is used to output the probabilities from the

logits. The discrimination and classifier of the first layer comprise n input feature size

of filters; second n ∗ 2; third n ∗ 4; fourth n ∗ 8; fifth n input feature size of filters.

Tanh is used at each layer as the activation, except for the final layer, where a sigmoid

activation function is used to output probabilities from the logits. For the pre-trained

surrogate classifier, we constructed one layer network. The kernel size of each layer

is 3 with stride 1 for all networks.

3.2.6 PDF Repacking and Verification

Once PDF-GAN successfully evaded the classifiers with the mutated feature set, we

must verify that the originally intended maliciousness was retained. For this ver-

ification, the mutated features must be applied to the original malicious PDF by

the repacker. The repacker has three operations: insert, replace and delete. insert

operation updates the dictionary according to the mutated feature set. A new key

and value is inserted into PDF and the new value was in the form of real numeric

value. For example, /Root/Pages/Rotate: None −→ 0 means that the new path of

/Root/Pages/Rotate with a value of 0 is inserted into the tree representation. replace

67

and delete operations are essentially operate in a similar manner. The former replaces

the existing value with the new value and the latter deletes the key and the value pair

(i.e., feature) from the dictionary hence deleting a path from the tree representation.

All three operations are carried out while retaining the tree representation structure

of PDF.

The most time-consuming aspect of finding evasive samples is repacking the mu-

tated features back into proper PDF files. In addition to GANs reconstruction power,

addition trick was considered to reduce the number of tries in repacking to reconstruct

the PDF files. As explained in Section 3.2.1, if the dictionary was in an array from,

the median value of elements was used instead. Therefore, in the repacking process,

the modified feature value, which is a form of real numeric value, was reshaped into

an original form (e.g., an array form). Consequently, it contributed in improving the

evasion speed compared to the state-of-the-art evasion techniques, which is described

in Section 3.3.9.

The reconstructed PDF file (i.e., repacked evasive sample) is tested in Cuckoo

sandbox to verify that the maliciousness is maintained. The detail of this verification

stage is explained in Section 3.3.4.

3.3 Results

3.3.1 Datasets and Model Training

We managed to gather PDF malware samples from VirusTotal. The dataset was col-

lected on December 20, 2017 and on March 14 and June 19, July 17, 2018 and it

consisted of 10,673 files in total. The Contagio dataset comprises a total of 9,109

benign files and 11,105 malicious files. In addition, CVE samples were collected

from Exploit-db [15] where proof-of-concept (PoC) codes and files are uploaded. Six

68

H
id

os
t1

3’
H

id
os

t1
6’

PD
Fr

at
e-

v2

Fe
at

ur
e

Se
le

ct
io

n
O

ri
gi

na
l

N
ew

O
ri

gi
na

l
N

ew
O

ri
gi

na
l

N
ew

A
cc

ur
ac

y
96

.4
6%

96
.8

9%
96

.4
5%

98
.0

7%
99

.3
7%

99
.6

9%
A

U
C

0.
98

86
0.

99
36

0.
98

80
0.

99
36

0.
99

32
0.

99
48

Ta
bl

e
3.

2:
D

et
ec

tio
n

A
cc

ur
ac

y
of

PD
F-

G
A

N
co

m
pa

re
d

to
ta

rg
et

cl
as

si
fie

rs

69

Ta
bl

e
3.

3:
D

et
ai

ls
of

C
V

E
s

us
ed

in
th

e
ex

pe
ri

m
en

t

C
V

E
-I

D
Ty

pe
of

PD
F

M
al

w
ar

e
Ty

pe
of

vu
ln

er
ab

ili
ty

Ve
rs

io
n

E
xp

lo
ite

d

C
V

E
-2

00
8-

29
92

[3
]

Ja
va

Sc
ri

pt
B

uf
fe

ro
ve

rfl
ow

A
do

be
A

cr
ob

at
&

R
ea

de
r

8.
1.

2
ca

lc
.e

xe
&

no
te

pa
d.

ex
e

&
m

es
sa

ge
-b

ox

C
V

E
-2

01
0-

01
88

[4
]

Fi
le

E
m

be
dd

in
g

(.t
iff

)
In

te
ge

ro
ve

rfl
ow

A
do

be
A

cr
ob

at
&

R
ea

de
r

9.
1

ca
lc

.e
xe

C
V

E
-2

01
0-

28
83

[5
]

A
ct

io
nS

cr
ip

t
B

uf
fe

ro
ve

rfl
ow

(C
oo

lT
yp

e.
dl

l)
A

do
be

A
cr

ob
at

&
R

ea
de

r
9.

3.
4

ca
lc

.e
xe

&
no

te
pa

d.
ex

e

C
V

E
-2

01
0-

36
54

[6
]

A
ct

io
nS

cr
ip

t
Fl

as
h

(M
em

or
y

co
rr

up
tio

n)
A

do
be

A
cr

ob
at

&
R

ea
de

r
9.

4
ca

lc
.e

xe

C
V

E
-2

01
1-

24
62

[7
]

Ja
va

Sc
ri

pt
Fl

as
h

(B
uf

fe
ro

ve
rfl

ow
)

A
do

be
A

cr
ob

at
&

R
ea

de
r

9.
4

ca
lc

.e
xe

&
m

es
sa

ge
-b

ox

C
V

E
-2

01
3-

27
29

[8
]

Fi
le

E
m

be
dd

in
g

(.b
m

p)
In

te
ge

ro
ve

rfl
ow

A
do

be
A

cr
ob

at
&

R
ea

de
r

10
.1

.4
m

es
sa

ge
-b

ox

C
V

E
-2

01
7-

13
05

6
[1

1]
Ja

va
Sc

ri
pt

Im
pr

op
er

va
lid

at
io

n
of

st
ri

ng
PD

F-
X

C
ha

ng
e

2.
5

ca
lc

.e
xe

C
V

E
-2

01
8-

99
58

[1
2]

Ja
va

Sc
ri

pt
U

se
-A

ft
er

-F
re

e
Fo

xi
tR

ea
de

r
9.

0.
1

ca
lc

.e
xe

70

specific samples were used in the experiment.

For training PDF-GAN, we used an optimizer of the multi-class logarithmic loss

function Adam [143] with a learning rate of 0.001, a beta rate of 0.5 and a mini-

batch size of 16. The discriminator achieved optimal loss after 1,000 steps, whereas

the generator required 1500 steps to generate original data similar to the sample.

Most of these parameters and network structures were experimentally determined to

achieve optimal performance. Randomly selected 5,000 benign and 5,000 malicious

files from Contagio dataset were used for training classifiers and PDf-GAN.

3.3.2 Target Classifiers

Our target classifiers were Hidost ’13 with a SVM model, Hidost ’16 with a RF

model both of which used Poppler as a parser and PDFrate-v2 with an ensemble

method that used a customized parser. The feature extraction and selection process

were reproduced according to an open-source code and each machine learning model

was applied using scikit-learn. Well-known detection performance parameters such

as accuracy, F1-score, and the area under the curve (AUC) were measured.

For Hidost, the test set comprised the Contagio dataset excluding the samples

used for the training (i.e., 6,105 files) and PDF malware samples from VirustTotal

(i.e., 10,673 files) that were not included in the training set also. For PDFrate-v2,

we applied the same methodology as explained by the authors and the classifier was

applied to the training set using 10-fold cross-validation. The results are presented

in Table 3.2 under Old. However, with the help of our unique feature selection process

we were able to achieve an even better detection performance as shown under the

heading New in Table 3.2. The performance was measured with all varying factors

including the training and test datasets fixed except for the feature selection process

and the performance showed noticeable improvement across all fields. Hence, we

71

can claim that, because our own classifiers performed better in terms of accuracy,

AUC and F1-score, it is reasonable to target the new classifiers instead of Hidost ’13,

Hidost ’16 and PDFrate-v2.

3.3.3 CVEs for Various Types of PDF Malware

Common vulnerabilities and exposures (CVEs) provide publicly known security vul-

nerabilities in a reference-style. To widen the scope of capability in terms of evasion

effectiveness, the CVEs described in Table 3.3 were included in the experiment in

generating evasive samples. The set comprises three types of PDF malware, namely,

JavaScript, ActionScript and File embedding. The types of vulnerability also varied

widely from a buffer overflow to memory corruption and Use-After-Free. In addition,

several different target applications were tested including Adobe Acrobat Reader and

Foxit Reader. Adobe versions required for the successful attack range from 8.1.2 to

10.1.4. We implemented the attack using a few different codes to be executed when

the PDF is parsed and viewed with the reader. It is important to note that these sam-

ples were not included in the training phase of the framework but only after PDF-

GAN was fully trained these samples were fed into a trained PDF-GAN model for

the purposes of generating evasive samples.

3.3.4 Malicious Signature

Maintaining the maliciousness of PDF files was an absolute necessity in confirming

the evasive sample and completing the evasion of the classifiers. Had they lost mali-

ciousness at any stage of the evasion process, the purpose of this study would have

been negated. To check if mutated malicious PDF files still acted with malevolence,

we leveraged Cuckoo sandbox. Cuckoo can analyze many different malicious files

and trace API calls and the general behavior of files transformed into comprehensi-

72

A
na

ly
si

sT
yp

e
D

es
cr

ip
tio

n
E

xa
m

pl
e

N
et

w
or

k

Pe
rf

or
m

s
so

m
e

H
T

T
P

re
qu

es
ts

[G
E

T
ht

tp
://

w
w

w
.d

ea
f-

vi
de

o.
de

/3
c5

5e
a9

32
0f

ca
df

ab
b7

9d
08

f9
1b

ef
51

0/
.a

1/
lo

ad
.p

hp
?e

=2
]

D
N

S
qu

er
ie

s
[w

w
w

.d
ea

f-
vi

de
o.

de
]

Tr
an

sp
or

tI
P

ad
dr

es
se

s
[U

D
P:

19
2.

16
8.

56
.1

28
:1

37
–>

19
2.

16
8.

56
.1

:1
37

]

(U
D

P,
T

C
P)

[T
C

P:
19

2.
16

8.
56

.1
28

:1
29

2
–>

18
5.

53
.1

78
.6

:8
0]

N
et

w
or

k
co

m
m

un
ic

at
io

ns
in

di
ca

tiv
e

of
a

po
te

nt
ia

lo
rs

cr
ip

tp
ay

lo
ad

do
w

nl
oa

d
[u

rl
:h

ttp
://

w
w

w
.d

ea
f-

vi
de

o.
de

/3
c5

5e
a9

32
0f

ca
df

ab
b7

9d
08

f9
1b

ef
51

0/
.a

1/
lo

ad
.p

hp
?e

=2
]

(A
PI

:U
R

L
D

ow
nl

oa
dT

oF
ile

W
)

[fi
le

pa
th

_r
:C

:\D
O

C
U

M
E

1\
cu

ck
oo

\L
O

C
A

L
S

1\
Te

m
p\

e.
ex

e]

B
eh

av
io

r
O

ne
or

m
or

e
no

n-
w

hi
te

lis
te

d
pr

oc
es

se
s

w
er

e
cr

ea
te

d
[C

:\D
O

C
U

M
E

1\
cu

ck
oo

\L
O

C
A

L
S

1\
Te

m
p\

e.
ex

e]

St
at

ic
T

he
PD

F
op

en
ac

tio
n

co
nt

ai
ns

Ja
va

Sc
ri

pt
co

de
[<
<

/S
/J

av
aS

cr
ip

t/
JS

th
is

.B
X

cf
T

Y
ew

Q
()
>
>

]

Ta
bl

e
3.

4:
M

al
ic

io
us

si
gn

at
ur

es

73

Fe
at

ur
es

C
on

ta
gi

o
da

ta
se

t
C

V
E

-I
D

s
SV

M
R

an
do

m
Fo

re
st

E
ns

em
bl

e
SV

M
R

an
do

m
Fo

re
st

E
ns

em
bl

e

O
pe

ra
tio

n
N

o.
of

O
pe

ra
tio

n
N

o.
of

O
pe

ra
tio

n
N

o.
of

O
pe

ra
tio

n
N

o.
of

O
pe

ra
tio

n
N

o.
of

O
pe

ra
tio

n
N

o.
of

fil
es

fil
es

fil
es

fil
es

fil
es

fil
es

/R
oo

t/T
yp

e
[’

In
se

rt
’,

’C
ha

ng
e’

]
50

0
[’

In
se

rt
’,

’C
ha

ng
e’

]
50

0
[’

In
se

rt
’,

’C
ha

ng
e’

]
50

0
[’

C
ha

ng
e’

]
14

[’
C

ha
ng

e’
]

14
[’

C
ha

ng
e’

]
14

/R
oo

t/P
ag

es
/T

yp
e

[’
C

ha
ng

e’
]

50
0

[’
C

ha
ng

e’
]

50
0

[’
C

ha
ng

e’
]

50
0

[’
C

ha
ng

e’
]

14
[’

C
ha

ng
e’

]
14

[’
C

ha
ng

e’
]

14

/R
oo

t/P
ag

es
/R

ot
at

e
[’

In
se

rt
’]

50
0

[’
In

se
rt

’]
50

0
[’

In
se

rt
’]

50
0

[’
In

se
rt

’]
14

[’
In

se
rt

’]
14

[’
In

se
rt

’]
14

/R
oo

t/P
ag

es
/K

id
s/

Ty
pe

[’
In

se
rt

’,
’C

ha
ng

e’
]

50
0

[’
In

se
rt

’,
’C

ha
ng

e’
]

50
0

[’
In

se
rt

’,
’C

ha
ng

e’
]

50
0

[’
C

ha
ng

e’
]

14
[’

C
ha

ng
e’

]
14

[’
C

ha
ng

e’
]

14

/R
oo

t/P
ag

es
/K

id
s/

R
es

ou
rc

es
/P

ro
cS

et
[’

In
se

rt
’,

’C
ha

ng
e’

]
39

6
[’

In
se

rt
’,

’C
ha

ng
e’

]
41

8
[’

In
se

rt
’,

’C
ha

ng
e’

]
44

2
[’

In
se

rt
’,

’C
ha

ng
e’

]
10

[’
In

se
rt

’,
’C

ha
ng

e’
]

13
[’

In
se

rt
’,

’C
ha

ng
e’

]
11

/R
oo

t/P
ag

es
/K

id
s/

M
ed

ia
B

ox
[’

In
se

rt
’,

’C
ha

ng
e’

]
26

9
[’

C
ha

ng
e’

]
26

8
[’

C
ha

ng
e’

]
26

8
[’

C
ha

ng
e’

]
2

[’
C

ha
ng

e’
]

5
[’

C
ha

ng
e’

]
3

/R
oo

t/P
ag

es
/K

id
s/

Tr
im

B
ox

[’
C

ha
ng

e’
]

23
4

[’
C

ha
ng

e’
]

23
4

[’
C

ha
ng

e’
]

23
4

-
-

-
-

-
-

/R
oo

t/P
ag

es
/K

id
s/

C
on

te
nt

s/
Fi

lte
r

[’
In

se
rt

’,
’C

ha
ng

e’
]

22
0

[’
In

se
rt

’,
’C

ha
ng

e’
]

20
4

[’
In

se
rt

’,
’C

ha
ng

e’
]

28
9

[’
In

se
rt

’,
’C

ha
ng

e’
]

5
[’

In
se

rt
’,

’C
ha

ng
e’

]
12

[’
In

se
rt

’,
’C

ha
ng

e’
]

6

/R
oo

t/P
ag

es
/M

ed
ia

B
ox

[’
C

ha
ng

e’
]

73
[’

C
ha

ng
e’

]
73

[’
C

ha
ng

e’
]

73
[’

C
ha

ng
e’

]
2

[’
C

ha
ng

e’
]

2
[’

C
ha

ng
e’

]
2

/R
oo

t/P
ag

es
/K

id
s/

C
ro

pB
ox

[’
C

ha
ng

e’
]

18
[’

C
ha

ng
e’

]
18

[’
C

ha
ng

e’
]

18
-

-
-

-
-

-

/R
oo

t/P
ag

es
/K

id
s/

B
le

ed
B

ox
[’

C
ha

ng
e’

]
18

[’
C

ha
ng

e’
]

18
[’

C
ha

ng
e’

]
18

-
-

-
-

-
-

/R
oo

t/P
ag

es
/K

id
s/

A
rt

B
ox

[’
C

ha
ng

e’
]

18
[’

C
ha

ng
e’

]
18

[’
C

ha
ng

e’
]

18
-

-
-

-
-

-

/R
oo

t/N
am

es
/J

av
aS

cr
ip

t/N
am

es
/J

S/
L

en
gt

h
[’

C
ha

ng
e’

]
17

[’
C

ha
ng

e’
]

17
[’

C
ha

ng
e’

]
17

-
-

-
-

-
-

/R
oo

t/A
cr

oF
or

m
/F

ie
ld

s/
K

id
s/

K
id

s/
R

ec
t

[’
C

ha
ng

e’
]

8
[’

C
ha

ng
e’

]
8

[’
C

ha
ng

e’
]

8
-

-
-

-
-

-

/R
oo

t/P
ag

es
/K

id
s/

C
on

te
nt

s/
L

en
gt

h
[’

C
ha

ng
e’

]
7

[’
C

ha
ng

e’
]

7
[’

C
ha

ng
e’

]
7

-
-

-
-

-
-

/R
oo

t/P
ag

es
/K

id
s/

A
nn

ot
s/

R
ec

t
[’

C
ha

ng
e’

]
4

[’
C

ha
ng

e’
]

4
[’

C
ha

ng
e’

]
4

[’
C

ha
ng

e’
]

2
[’

C
ha

ng
e’

]
2

[’
C

ha
ng

e’
]

2

/R
oo

t/O
pe

nA
ct

io
n/

A
nn

ot
s/

R
ec

t
[’

C
ha

ng
e’

]
3

[’
C

ha
ng

e’
]

3
[’

C
ha

ng
e’

]
3

-
-

-
-

-
-

/R
oo

t/P
ag

es
/K

id
s/

A
nn

ot
s/

Su
bj

/L
en

gt
h

[’
C

ha
ng

e’
]

1
[’

C
ha

ng
e’

]
1

[’
C

ha
ng

e’
]

1
-

-
-

-
-

-

Ta
bl

e
3.

5:
Fe

at
ur

e
m

ut
at

io
n

re
su

lt
fo

rC
on

ta
gi

o
da

ta
se

ta
nd

C
V

E
s

74

Figure 3.6: The number of features mutated to generate AEs for all 500 files selected
from Contagio (top) and 14 CVE files (bottom)

ble signatures. Owning to the innate limitations of a dynamic analysis, the behavioral

signatures varied even for the same file. Therefore, reliable malicious signatures were

needed to confirm that the modified PDFs still maintained their maliciousness. There

were three main types of analysis we paid special attention to network, behavior

and static. Table 3.4 shows the types of signatures and their examples. We compared

the analysis results between the original and modified versions. However, focusing

only on the network behavior of the files would limit our work to malware related

to network activities. Hence, unlike previous work, CVEs of all three types of PDF

malware described in Section 3.1.2 were included in the experiment. After the mod-

ifications were made using trained PDF-GAN, the modified file was put through a

tester stage. If it performed as originally designed as listed in Table 3.3, it was con-

sidered to be an evasive sample.

75

3.3.5 AntiVirus Engines (VirusTotal)

VirusTotal investigates submitted URLs or files with AntiVirus engines and reveals

the detection result from each engine. Although PDF-GAN already proved its im-

posing capability in generating adversarial examples by evading open-source PDF

malware classifiers, we further demonstrate its effectiveness by evading commercial

AntiVirus engines. Tested AntiVirus engine version was the most recent update (i.e.,

2020. April). The procedure for this attack consists of two stages: (1) Use generated

AEs from Contagio dataset to check if any of them can evade AntiVirus engines (i.e.,

a transfer-based attack). (2) Generate variants of successful AEs to further improve

the evasion rate for more AntiVirus engines. The result of stage 1 is illustrated in

Section 3.3.10 and it shows that many AEs appeared to be also effective on numer-

ous AntiVirus engines through a transfer-based attack (i.e., PDF-GAN is not trained

to evade any of AntiVirus engines). The variants of AEs were created by swapping

malicious contents from other malware samples among detected as malicious by en-

gines. This approach is rooted from the understanding that PDF-GAN successfully

discovered PDF structure that can evade some engines and by only changing the con-

tents, more AEs can be generated. The AntiVirus analysis result for 45 engines is

shown in Section 3.3.10

3.3.6 Feature Mutation Result for Contagio

The feature mutation results are shown in Table 3.5. All of 18 features that were

manipulated in at least one file were from the set S−S′ as the desired maliciousness

was maintained. There were four features listed at the top that needed to be altered in

all of 500 files to evade the classifiers. In addition, none of the features were removed

from the original files. We believe that this fact may have been crucial in retaining

the maliciousness and passing the Cuckoo test phase on the first attempt. If any of

76

the features from a set of features relevant to the malicious behavior (i.e., S′) were

modified, many malware files would have lost their original maliciousness.

As mentioned in Section 3.2.1, a value assigned as an integer value of 1 indicates

that it was initially in a string type Hence, if such a value is changed to any other

value, the original meaning will be diminished. There were five cases in which the

value was changed from 1 to 2:

{/Root/Type, /Root/Pages/Type, /Root/Pages/Kids/Type,

/Root/Pages/Kids/Contents/Filter,

/Root/Pages/Kids/Resources/ProcSet}

Another interesting observation is that to evade all classifiers, insert operation on

/Root/Pages/Rotate was required.

Our approach, PDF-GAN, unlike EvadeML and EvadeHC, grasps the differences

in the patterns of the features between benign and malicious files and opts only to

modify the minimum number of features from the files. The number of mutations

required for the files differed between learning algorithms, as shown in Figure 3.6

(top). Fewer than eight features were needed to be modified in more than 95% of the

files.

To confirm that PDF-GAN truly deduced the distinction in the patterns of the fea-

tures to incur the minimum number of feature manipulations, we partially modified

the file according to PDF-GAN. For example, for a file that required five features

to be modified, 31 partially modified variants were created. (i.e., 5 combination(C)

1 + 5C2 + 5C3 + 5C4+ 5C5 = 31). The result clearly showed that PDF-GAN pro-

vided the least number of modifications to complete finding evasive examples. For

the case of PDFrate-v2 (Ensemble), generating evasive examples for all 500 original

PDF malware at the point in which all features suggested by PDF-GAN were altered.

77

Therefore, we can conclude that the our approach suggested all the features that were

needed to be perturbed in order to evade the classifiers.

3.3.7 Feature Mutation Result for CVEs

Not surprisingly, the result of feature mutation for the CVE samples showed a signifi-

cant similarity compared to that of the Contagio samples. Table 3.5 illustrates that all

the modified features were among those in the results of the Contagio samples. The

top four features that affected the entire Contagio samples were also affected by all

14 CVE samples. Also, no feature was deleted from the original malware. On top of

this, the number of mutations requires to find evasive samples shows the same trend

as illustrated in Figure 3.6 (bottom). This result confirms that PDF-GAN was trained

to alter only those features that deceive the classifiers while preserving the intended

maliciousness.

3.3.8 Malicious Signature Verification

The result of preserving a malicious signature was confirmed by Cuckoo and by man-

ually running the CVE samples. An example of the results is shown in Figure 3.7. By

analyzing the Cuckoo results, we confirmed that all signatures listed in Table 3.4

remained intact for all 500 seed samples, which verified the successful attempt of

generating evasive samples. Moreover, all of the CVEs that contained all three types

of PDF malware also operated according to the initial intention of the malware. The

right side of Figure 3.7 shows that a calculator opened when the malicious PDF was

read by Adobe Reader. The attacker can customize the exploit to have any code exe-

cuted at will.

78

Fi
gu

re
3.

7:
C

uc
ko

o
si

gn
at

ur
e

re
su

lt
(l

ef
t)

,A
rb

itr
ar

y
co

de
ex

ec
ut

io
n

re
su

lt
of

C
V

E
-2

01
1-

24
62

(r
ig

ht
)

79

0 20 40 60 80 100 120 140

Hours

EvadeML
(PDFrate-v1)

EvadeML
(Hidost 13')

EvadeHC
(PDFrate-v1)

EvadeHC
(Hidost 13')

PDF-GAN
(SVM)

PDF-GAN
(RF)

PDF-GAN
(Ensemble)

Figure 3.8: Time required to evade PDF malware classifiers for 500 selected malware
files from Contagio

3.3.9 Evasion Speed

As our approach tackles the problem by training PDF-GAN with the feature set, it

was expected that the cost of execution in terms of evasion speed would be better than

that of the previous work by EvadeML. Figure 3.8 illustrates the total time taken to

identify an evasive variant for all 500 selected malware seeds. EvadeML employs a

stochastic search based on a fitness function meaning that many possible variants are

created to be tested on the oracle for their malicious signature. As the unit-cost of the

Cuckoo sandbox testing was much higher than any other stages of the evasion, a huge

portion of time spent by EvadeML was designated for oracle testing. However, our

approach managed to avoid such overhead by utilizing PDF-GAN only to modify the

non-relevant features of PDFs in maintaining malicious behavior. Thus, we needed to

perform only the verification stage once to confirm that all variants maintained their

malicious signature.

All stages of our evasion process are shown in Figure 3.8, including parsing of

files, feature extraction, feature selection, training PDF-GAN, inference and finally

80

AntiVirus
engines

No. of
original No. of AEs

(VirusTotal) files detected

AegisLab 472 54
Arcabit 445 135
Avira 500 48

BitDefender 495 3
Comodo 472 49
DrWeb 279 1

ESET-NOD32 471 109
Emsisoft 492 1
F-Prot 483 4

F-Secure 495 78
GData 498 3
K7GW 138 5

McAfee-GW-
Edition

498 1

MicroWorld-
eScan

497 1

Microsoft 457 13
Sangfor 304 1

SentinelOne 500 2
TotalDefense 344 42

ViRobot 496 429

Table 3.6: Number of malware files detected (out of 500) by AntiVirus engines and
adversarial examples (AEs) by a transfer-based attack

testing the possible evasive sample with the Cuckoo sandbox. As expected, the stages

that occupied the largest portion were the training and inference stages with PDF-

GAN. A total of 102 minutes was spent on the classifier with the SVM model (e.g.,

Hidost ’13), 127 minutes on the classifier with the RF model (e.g., Hidost ’16) and

180 minutes on the classifier with the ensemble model (e.g., PDFrate-v2). They cor-

respond to 55%, 61% and 69% respectively of the total time taken, respectively. The

more robust the detector, the longer it took for PDF-GAN to be trained and to infer

the modified version of PDFs.
In comparison to the total time taken for EvadeML to evade Hidost ’13, our ap-

81

proach achieved the 100% evasion rate within about 3 hours, which is more than 13

times faster in evading a SVM model. Moreover, even when PDF-GAN aimed to

evade a more advanced classifier with the ensemble model, it achieved the full eva-

sion 30 times faster than EvadML targeting PDFrate-v1, which is merely a RF model.

In addition, we compared the time required for full evasion against the EvadeHC al-

gorithm. The total evasion time against Hidost ’13 was measured according to the

author explaining that the average time taken to generate a single evasive sample was

5 minutes. In relation to PDFrate-v1, the relative time taken was measured for evading

all 500 seed samples. Surprisingly, a contrast to EvadeML, the time taken to generate

all evasive samples for Hidost was greater than that of PDFrate-v1 with the EvadeHC

algorithm. In comparison to our PDF-GAN model, it managed to achieve the full eva-

sion more than 13 times faster for a SVM model. It is important to note that while in

our experiment setup, only 16 virtual machines were implemented, EvadeHC utilized

216 virtual machines. This implies that PDF-GAN could achieve the full evasion in

a much shorter time if the same number of virtual machines were used for the testing

phase.

3.3.10 AntiVirus Engines (VirusTotal) Result

All 500 malware samples selected for previous experiments and AEs that PDF-GAN

generated to evade three classifiers were uploaded to VirusTotal for analysis from

AntiVirus engines. The result is summarized in Table 3.6 and it shows the number

of malware files detected and AEs for each engine. It is important to notice that AEs

discovered for each engine is from the AEs that PDF-GAN generated while evading

Hidost ’13, Hidost ’16 and PDFrate-v2. We observed that generated AEs were still

effective for the AntiVirus engines (i.e., a transfer-based attack) and a total of 19

engines appeared to be vulnerable to this transfer-based attack.

82

Fi
gu

re
3.

9:
E

va
si

on
ra

te
of

A
nt

iV
ir

us
en

gi
ne

s
by

ge
ne

ra
tin

g
va

ri
an

ts
of

A
E

s
in

Ta
bl

e
3.

6

83

Furthermore, we created the variants of those AEs by swapping malicious con-

tents from malware files and Figure 3.9 illustrates the successful evasion rate in 45

AntiVirus engines. Few engines were excluded as they did not support analysis for

PDF format malware. As all 500 selected malware samples contain unique malicious-

ness, we defined that finding 500 AEs which collectively contains those malicious-

ness represents 100% evasion rate. 100% evasion rate was achieved in 7 AntiVirus

engines and 60% for 45 engines in average. These results showed that if the exper-

iment did not rely on a transfer-based attack (i.e., if PDF-GAN is trained to evade

AntiVirus engines), even higher evasion rates can be achieved.

3.4 Discussion

While PDF-GAN is effective under the black-box assumption that reflects its effec-

tiveness, one can design a defensive mechanism for a more robust detection sys-

tem. Similar to any other evasive techniques, multiple submissions to the detec-

tor is required to acquire a classification score. Therefore, if the defender decided

to limit the number of submissions for a single peer, it would hinder the perfor-

mance of the evasive technique. Moreover, the defender can opt to retrain the de-

tector model with newly submitted files. Using newly submitted files, the detector

model can be retrained and can employ recent ML approaches for continual learn-

ing [146, 172, 221, 237] in which ML is used to continuously learn without loss of

acquired knowledge on previous tasks.

In a strong black-box scenario where the number of queries is limited, it is im-

perative that PDF-GAN still shows a promising performance with extremely small

number of queries to the classifier. With single layer surrogate model, we managed to

achieve 9.6% transfer rates. This is an improvement from other query limited black-

84

Ty
pe

of
A

dv
er

sa
ri

al
at

ta
ck

s
Fa

st
G

ra
di

en
tM

et
ho

d
(F

G
M

)
Pr

oj
ec

te
d

G
ra

di
en

tD
es

ce
nt

(P
G

D
)

B
as

ic
It

er
at

iv
e

M
et

ho
d

(B
IM

)
C

ar
lin

i&
W

ag
ne

r
(C

W
)

Is
cl

as
si

fie
re

va
de

d?
Y

es
Y

es
Y

es
N

o

Is
m

al
ic

io
us

si
gn

at
ur

e
m

ai
nt

ai
ne

d?
N

o
N

o
N

o
N

o

Is
PD

F
re

pa
ck

in
g

su
cc

es
sf

ul
?

N
o

N
o

N
o

Y
es

Is
A

nt
iV

ir
us

en
gi

ne
s

(V
ir

us
To

ta
l)

ev
ad

ed
?

N
o

N
o

N
o

N
o

A
vg

.N
o.

of
fe

at
ur

es
m

ut
at

ed
12

6
12

0
12

1
29

Ta
bl

e
3.

7:
D

iff
er

en
tt

yp
e

of
M

L
at

ta
ck

s

85

box attacks which showed 3.4% transfer rates [169]. If more queries are allowed to

the target classifier, PDF-GAN can immensely improve the transfer rate.

In a white-box scenario, other types of adversarial examples may become appli-

cable for generating evasive samples. This is, such as FGM or CW, for computing an

AE in the features space and map it back to obtain an evasive document. However,

most of the existing ML attacks were incapable of maintaining malicious signatures

while easily evading classifiers, as shown in Table 3.7. Patterns that can easily be

flipped by adversarial perturbations is known as non-robust features [126]. The afore-

mentioned AEs can easily compute adversarial perturbations to evade classifiers by

flipping non-robust features. However, none of these approaches use reconstruction

loss to preserve to maintain original PDF behavior, which often resulted in a crash.

Consequently, GANs reconstruction loss was necessary to conserve the original’s

PDF behavior.

The notion of robust and non-robust features are defined by [126]. Robust fea-

tures correspond to patterns that are predictive of the true label even when input is

adversarially perturbed. Conversely, non-robust features correspond to patterns that

are also predictive but can easily be flipped by adversarial perturbations. ML models

use both features to minimize the training loss; thus, flipping non-robust features will

have a huge impact on their prediction accuracy.

To mitigate AEs, Goodfellow et al., [97] introduced an algorithm, called adver-

sarial training, that is robust to AEs by retraining them. In the same sense, antivirus

vendors can prevent such adversarial attacks by collecting mutated examples and up-

dating their detectors. However, once the detectors have been updated, attackers can

also retrain PDF-GAN that exploit target detectors. It was observed that new AEs

remained undetected by the updated detectors. In our experiments, among 500 muta-

tion seed files, some evasive PDFs were successfully uploaded to Gmail server. We

86

believe that it is also possible to consider Gmail the target detector under the strong

black-box scenario.

In the process of denoting PDFs in a tree structure form and in the process of

extracting and selecting a feature set from the tree structure, we observed that there is

considerable loss of information concerning the PDFs. For example, the most recent

detectors select few features from a large group of features to be used in the training

phase. We believe that the performance of feature extraction on the PDFs is directly

associated with the generation of performance. Therefore, eliminating the handcraft

of such a process can increase the performance of the PDF detectors. A similar story

is also true for the evasion scenario. Once all information can be represented and

abstracted without the application of any handcraft for training GANs, a considerable

increase in the performance of evading malware classifiers can be observed.

DL has been applied to several forms of high-dimensional data to denote a low-

dimensional Euclidean space and recently DL has been expanded even to non-Euclidean

spaces such as graphs [49]. Word2Vec is a representative algorithm that generates

a low dimensional embedded vector that corresponds to a high-dimensional word

based on the mutual occurrence frequencies of words. Similarly, there are algorithms

for embedding a graph [194] that maps a graph region to a low-dimensional region

while preserving the adjacency and structure of the nodes. Graph2Vec is one of the

representative algorithms used for graph data-driven learning approaches. Embed-

ding algorithms such as Word2Vec and Graph2Vec may be suitable candidates for

denoting all features of the PDF without any handcraft.

87

Chapter 4

Defense on Deep Learning Models

Steganography is a group of algorithms that hide a message within another medium,

such as digital images and videos [39]. Unlike cryptography, where the contents of a

message are encrypted so that they cannot be easily understood, steganography takes

it one step further. It aims to conceal the fact that a hidden message exists in the media

and not to attract any attention. Since a message is hidden in plain media, observers

fail to acknowledge the messages and perceive it as some ordinary data. Steganogra-

phy has been widely applied for various purposes, including discreet communication

for confidential information; a digital watermarking genetically modified organisms

(GMOs) protected by patents [110]; and exploiting the concept of steganography con-

cept, a recent research showed malicious code insertion to compromise downstream

DNA analysis tools [195].

One of the key aspects of steganography is the medium used to hide a hidden

message. Conventional approaches have used various media. Recently, DNA is re-

ceiving a lot of researchers’ attention as the future medium of steganography for

three reasons. First, DNA allows significantly greater amounts of hidden messages to

be embedded than is widely used images [35]. For instance, a single gram of DNA

88

is equivalent to 1,021 DNA bases, that is, 108 terabytes. Thus, a few grams of DNA

are more than enough to embed messages as complex as a whole dictionary [94].

Next, it ensures that the messages embedded in the DNA are preserved [110]. Fi-

nally, with the advent of next-generation sequencing technologies, the acquisition of

DNA sequences have become more affordable, and easily obtainable [73].

While steganography aims to hide a message, steganalysis is a group of algo-

rithms that serves to detect and decrypt the hidden messages from covert media.

Based on statistical analysis, neural networks, or genetic algorithms [180], a num-

ber of steganalysis methods have been developed for common covert media such as

images and videos. Nevertheless, one of their biggest limitations is that each steganal-

ysis method is restricted to a specific steganography method and a covert media. In

other words, in order to detect some hidden messages from a certain medium, a prior

knowledge of the steganography algorithm that was mostly likely to have been used

to embed the hidden messages is required.

Since the use of microdot technique was first proposed [137], a variety of algo-

rithms have been proposed for the use of DNA sequences for steganography. How-

ever, the literature regarding DNA steganalysis is scarce. Conventional steganalysis

algorithms cannot be simply applied to DNA because of their specificity in terms of

both covert media and steganography algorithms. Most of the conventional steganaly-

sis are based on statistical analysis. However, these approaches are based on medium

specificity. For example, chi-square analysis uses X 2-test to determine the color fre-

quency distribution of an unchanged and modified images[272]; differences in image

histogram approach are designed for least significant bits (LSB) embedding using

histogram of images [76]. For this reason, simply applying conventional steganalysis

to DNA domains is limited, and any detectors based on the statistical analysis will

fail to detect hidden messages if the embedding algorithm encounters the frequency

89

of each amino acid. Statistical hypothesis testing is a common approach for steganal-

ysis, but it requires prior knowledge of steganography schemes.

In this paper, we explain why the conventional steganalysis methods are not suit-

able for DNA steganography and show simple learning-based classifiers are inca-

pable of detecting hidden messages. To overcome the limitations of existing meth-

ods, we propose a DNA steganalysis model is proposed as an extension of our pre-

vious work [29] that can detect hidden messages regardless of the hiding position.

This model uses unsupervised pre-training of a sequence-to-sequence autoencoder to

learn inherent representations of DNA sequences, and learn the internal structure of

unmodified genome sequences (i.e., intron and exon modeling using recurrent neural

networks (RNNs). The learned RNN layers are then connected to convolution neural

network (CNN) to discover locally correlated motifs through local connectivity and

parameter sharing using filters. From this, our model detects forcefully changed DNA

structures in an attempt to hide messages.

4.1 Background

In molecular biology, biological information flows from DNA to ribonucleic acid

(RNA) by means of transcription, and to proteins by translation [171]. DNA is com-

posed of four types of nucleotides A, C, G, and T. During the transcription, DNA

sequences are transcribed into messenger RNA, which has uracil (U) replacement of

T [140]. The three consecutive nucleotides known as the codon, are then translated

into one of the 20 types of amino acids according to the genetic code, except for the

three stop codons (TAA, TAG, and TGA). With four types of nucleotides, there are

43 = 64 possible combinations of codons for these 20 amino acids. The translation

of multiple codons into a single amino acid allows for degeneracy in the genetic code.

90

!

Intron Intron Intron Exon1 Exon2 Exon3 Intron Exon4
!!!!!!!!GT
Donor site

AG GG !!!!!!!!!!!AG
Acceptor site

GT AG
5’ !!!!!!!!!!!!!!!!!!!!!!!!!3’

 Canonical splicing
Non-canonical splicing

""""""""Gene

Intron

Figure 4.1: Splicing signals in a DNA sequence: Dimer GG represents non-canonical
sites. Dimers GT and AG represent canonical donor and acceptor slice sites, respec-
tively.

For example, the amino acid threonine, one of the 20 types of amino acids, can be

derived from ACU, ACC, ACA, and ACG. Thus, the third base of the codon does

not affect the translation to protein sequences. The synonymous codons show the po-

tential for DNA steganography by allowing some mutations of nucleotides to embed

information in the DNA sequences.

4.1.1 Message-Hiding Regions

Genomic sequences contain both exons (coding regions) and introns (non-coding

regions), as shown in Figure 4.1. These regions are used depending on the task of

message transport or watermarking. In the case of covert channels, various insertion

techniques are used to conceal messages into intron regions. These regions provide a

large space for hiding data but risk the potential loss of data if transcribed to RNA.

In the case of watermarking, the data must be resistant to degradation or trunca-

tion. In this regards, the hidden positions of the DNA sequence segment are depen-

dent on the DNA steganography schemes, with the key specified by the sender and

receiver. For this reason, most of DNA watermarking schemes use exon region to

watermark their signature. With this assumption, there are various DNA steganogra-

phy schemes based on substitution and complementary pairs replacing synonymous

codons because of the translation and transcription processes. These two properties of

91

Table 4.1: Existing DNA steganography schemes.

Coding Scheme
Hiding Message

Region
Modification

Rate

Substitution based
on primers of microdots [70]

Introns & Exon 20%

DNA cryptosystem
with one-time pads [161]

Introns & Exon ≤ 9%

Insert to artificial DNA strand [276] Introns & Exon 20%

Improved DNA cryptosystem
with one-time pads [94]

Introns & Exon -

Insertion based algorithm (Arita) [24] Exon ≤ 7%

Applied existing
encryption algorithms to DNA [110]

Introns & Exon ≤ 8%

Substitution
and insertion based algorithm [239]

Introns & Exon -

Malicious code Injection [195] Introns & Exon -

the internal structure in genomic sequences and DNA steganography, can be exploited

for watermarking of covert channels. The use of DNA sequences as steganography

or watermarking varies depending on the algorithm, as shown in Table 4.1.

4.1.2 DNA Steganography

Mediumm can be text, images, audio, or DNA sequences. After hidden messages are

embedded, an original file is referred to as a steged-medium. It is used as a com-

munication channel for hiding the existence of the message itself, thereby making it

difficult for a third party to find the message.

Hiding a message into a DNA sequence has become the topic of scientific inves-

tigation since it was first proposed by Chelland et al. [70]. The scheme for hiding

data in a DNA sequence was first proposed using a microdot technique [70]. Leir et

al. [161] proposed a robust encryption scheme using a primer as the key sequence. A

92

...
CG

CA
C

TC
CG

TC
G

CG
TC

G
AC

G
TT

TT
AC

G
G

AC
G

AG
AT

G
AT

A
...

D
N

A
se

qu
en

ce

01
00

10
00

 0
11

01
00

1

S
ec

re
t M

es
sa

ge
St

eg
an

og
ra

ph
y

A
lg

or
ith

m

Co
m

pl
em

en
ta

ry
 P

ai
r M

ap

A-T
 T

-A
 C

-G
 G

-C

K
ey

...C
G

CA
CT

CC
G

TC
G

CG
TC

G
AC

G
TT

TT
AC

G
G

AC
G

AG
AT

G
AT

A.
..

St
eg

o-
D

N
A

se
qu

en
ce

(e
.g

.,
“H

i)

O
ve

rla
pp

in
g

co
do

ns

TT
T

TT
C

TT
A

TT
GT

T

C
A

G

C A G

CT
T

CT
C

CT
A

CT
G

TT
T

TT
C

TT
A

TT
G

TT
T

TT
C

TT
A

TT
G

TC
T

TC
C

TC
A

TC
A

CC
T

CC
C

CC
A

CC
G

AC
T

AC
C

AC
A

AC
G

GC
T

GC
C

GC
A

GC
G

TA
T

TA
C

TA
A

TA
G

CA
T

CT
C

CA
A

CA
G

AA
T

AA
C

AA
A

AA
G

GA
T

GA
C

GA
A

GA
G

TG
T

TG
C

TG
A

TG
G

CG
T

CG
C

CG
A

CG
G

AG
T

AG
C

AG
A

AG
G

GG
T

GG
C

GG
A

GG
G

Fi
gu

re
4.

2:
D

N
A

st
eg

an
og

ra
ph

y
sc

he
m

e.
D

ep
en

di
ng

on
th

e
ta

sk
,a

sc
he

m
e

ca
n

us
e

ei
th

er
co

m
pl

em
en

ta
ry

pa
ir

s
or

us
e

ov
er

la
pp

in
g

co
do

ns
to

de
te

ru
na

ut
ho

ri
ze

d
di

ss
em

in
at

io
n.

93

public DNA sequence is used as a reference and the selected primer and encrypted

sequences are sent to the receiver. The primer is a short complementary DNA se-

quences that depends on each proposed scheme. As shown in Figure 4.2, Leir et

al. [161] uses pairs of (A → T, T → A, C → G, and G → C) whereas that Shiu

et al. [239] used pairs of (A → C, C → G, G → T , and T → A) for an encryption

scheme. These DNA steganography schemes are claimed to be secure if the primers

and the reference sequence are not known.

A recent study demonstrated the ability to exploit a biological analysis program

with synthesized DNA [195]. They first concluded that many of existing biological

analysis programs are vulnerable to those commonly used in security practice. Then,

they inserted a short shell script for the target biological analysis program with prior

knowledge of insecure C library function calls (strcpy) in the biological analysis pro-

gram. They claimed that their approach could be used to sample bleeding to inject

targeted DNA sequences that contain malicious code to subvert post-processing anal-

ysis, that is, FASTQ compression and variant calling.

4.1.3 Example of Message Hiding

The hidden positions of DNA sequence segments are limited compared to conven-

tional covert channels because the sequences are performed after translation and tran-

scription processes in exon regions. However, there are cases which DNA steganog-

raphy approaches such as GMOs, which are protected by patents, are inevitable.

To understand the main concepts of steganography, assume that ACACTCGCGCGAC

is a reference sequence, and that CATA is a message to hide, as shown in Figure 4.2.

The reference DNA sequences were then converted according to a coding scheme.

With DNA coding encryption scheme of [110], the reference DNA sequences are

replaced with 00 to adenine (A), 01 to cytosine (C), 10 to guanine (G), and 11 with

94

thymine (T). According to encoding scheme, the reference sequence is translated to

000100011101100110010001.

The encoded scheme is then split according to predefined key bits by the sender and

receiver. Let key has a length of 3, then the reference sequences are divided as

000, 100, 011, 101, 100, 110, 010, 001.

The key bits that are defined by the sender and receiver. Hidden messages of 01001100

are concealed at the first position, see below.

0000, 1100, 0011, 0101, 1100, 1110, 0010, 0001.

Finally, the sender sends the converted DNA sequence as

AATAATCCTATGAGAC (4.1)

Recipients can decrypt concealed messages using pre-defined keys.

4.1.4 DNA Steganalysis

Steganalysis operates in two main categories, which are detection and decryption.

The first method can be used to detect hidden messages against various steganogra-

phy algorithms. The second method is used to decipher hidden messages for a specific

known steganographic algorithm. The goal of the second method is to extract hid-

den messages by exploring a target algorithm. Both categories are equally important

from a different perspective. Detecting is useful as it reveals the presence of hidden

95

messages by intercepting communication between illegal organizations. In addition,

steganalysis can be applied in bioinformatics in regard to detection because detecting

hidden messages is somewhat equivalent to finding variants in DNA sequences.

Traditional data hiding approaches usually embed secret messages into the im-

ages and audio files [31, 91, 106, 117, 118, 142, 165, 210, 235, 269, 271, 277,

286, 289, 295, 299]. In contrast to traditional steganography algorithms, research

on the conventional steganalysis for the first method [76, 90, 270], and the second

method [88, 104, 105, 174, 209, 264]. The first category of conventional steganalysis

methods does not work with DNA steganography. This is because most of them are

designed for a targeted steganographic algorithm. For example, [40] is designed to

detect the LSB steganography by simply pairing analysis, and [62] approach is only

suitable for color and gray-scale images. However, the second category of the conven-

tional steganalysis methods can be extended to the DNA steganalysis, and [23, 36]

exploited the conventional steganalysis methods to solve substitution ciphers. How-

ever, for the first category of DNA steganalysis, statistical analysis is one of a few

techniques that can detect hidden messages by examining sequences that are over-

represented and under-represented.

4.2 Methods

Our proposed framework to detect hidden messages in DNA is a new method in the

field of steganalysis. As shown in Figure 4.3, the framework involves model training

and detection phases. For the first stage, the training model can be implemented using

various learning-based classifiers. In the following, the random oracle model [37] is

introduced to explain why current DNA steganography schemes are not perfectly

secure. The random oracle model [37] allows for the evaluate the encryption method

96

Tr
ai

ni
ng

D
N

A
D

ee
p

Le
ar

ni
ng

 M
od

el

..
.C

GC
AC

TC
CG

TC
G

CG
TC

GA
CG

TT
TT

AC
G

GA
CG

AG
AT

GA
TA

..
.

..
.C

GC
AC

TC
CG

TC
G

CG
TC

GA
CG

TT
TT

AC
G

GA
CG

AG
AT

GA
TA

..
.

..
.C

GC
AC

TG
GG

TC
G

CG
TG

GA
CG

TT
AT

AC
G

GA
CG

TG
AT

CA
TA

..
.

U
ns

ee
ne

d
D

N
A

St
eg

o-
D

N
A

C
la

ss
 S

co
re

s
1st

 s
ta

ge
: M

od
el

 T
ra

in
in

g
2nd

 s
ta

ge
: D

et
ec

tio
n

St
eg

o-
D

N
A

A
. S

te
ga

na
ly

si
s

B
. S

te
ga

no
gr

ap
hy

..
.C

GC
AC

TC
CG

TC
GC

GT
CG

AC
GT

TT
TA

CG
GA

CG
AG

AT
GA

TA
..

.

D
N

A
se

qu
en

ce
01

00
10

00
 0

11
01

00
1

Se
cr

et
 M

es
sa

ge

St
eg

an
og

ra
ph

y
A

lg
or

ith
m

R
an

do
m

 C
om

pl
em

en
ta

ry
 P

ai
r M

ap
A-

C
C-

G
A-

T
T-

A
C-

G
G-

C
G-

T
T-

A

Ke
y

..
.C

GC
AC

TC
CG

TC
GC

GT
CG

AC
GT

TT
TA

CG
GA

CG
AG

AT
GA

TA
..

.

St
eg

o-
D

N
A

se
qu

en
ce

(e
.g

.,
“H

i)

Fi
gu

re
4.

3:
A

st
eg

an
al

ys
is

ha
s

tr
ai

ni
ng

an
d

de
te

ct
io

n
ph

as
es

.
In

th
e

tr
ai

ni
ng

ph
as

e,
th

e
m

od
el

le
ar

ns
th

e
di

st
ri

bu
tio

n
of

un
m

od
ifi

ed
ge

no
m

e
se

qu
en

ce
s

th
at

di
st

in
gu

is
he

s
be

tw
ee

n
in

tr
on

s
an

d
ex

on
s.

In
th

e
de

te
ct

io
n,

th
e

pr
ed

ic
tio

n
sc

or
es

of
un

m
od

ifi
ed

ge
no

m
e

se
qu

en
ce

s
ar

e
m

od
ifi

ed
ge

no
m

e
se

qu
en

ce
s

ar
e

co
m

pa
re

d.
T

he
fin

al
sc

or
e

of
th

e
ne

ur
al

ne
tw

or
k

w
ill

di
ff

er
ov

er
th

e
ra

ng
e

of
ε

in
th

e
pr

es
en

ce
of

hi
dd

en
m

es
sa

ge
s.

97

A

T

G

C

A

C

T

A

One-hot
Encode

LSTM
Encoder Convolution Max-Pooling Fully

Conntected
LSTM

Decoder

1

Pretraining Classification

Figure 4.4: Overview of the model architecture. Our model encodes DNA sequence
by one-hot encoding, and the output of the encoded four-dimensional dense vector
is connected to the autoencoder to learn inherent representations of DNA sequences.
The autoencoder consists of LSTM encoder se and decoder sd. The learned sequence
feature hRNN is then connected to the CNN to learn local region and patterns. The
learned features h are then connected to the final layer to output a classification score.

E by querying oracle. The oracle outputs m̂ given inputm. Let a random oracle posit

the current steganography scheme E such that any adversary A breaks the random

oracle with only negligible probability. Based on this assumption, the steganography

scheme E can be bounded by the soundness design [54].

The random oracle uses an experiment to offer proof of security involving an

adversary A, and A’s indistinguishability of the two encryptions. The experiment

can be defined for any encryption scheme E over message space D and for adversary

A.

4.2.1 Notations

• D = {D1, · · · , Dn} is a set of DNA sequences of n species.

• D̂ = {D̂1, · · · , D̂n} is a set of DNA sequences of n species. Hidden messages are

embedded for some species D̂i.

98

• m ∈ {A,C,G,T}` is the input sequence where ` is the length of the input se-

quence.

• m̂ ∈ {A,C,G,T}` is the encrypted value of m where ` is the length of the en-

crypted sequence.

• E is an encryption function. E takes input m and returns the encrypted sequence

E(m)→ m̂.

• MDi is a trained model that takes target species Di as training input.

• y is an output score given by the trained model MDi(m)→ y given inputm, where

m ∈ Di.

• y is an averaged output score y.

• ŷ is a probability output given by the trained model MDi(m̂) → ŷ given input m̂,

where m̂ ∈ D̂i.

• A is a probabilistic polynomial-time adversary. The adversary is an attacker that

queries messages to the oracle model.

• ε is the standard deviation value of score y.

• σr is a rectified linear unit activation function.

With following notations, the experiment is defined as follows:

1. Random Oracle chooses the random steganography scheme E. Scheme E modi-

fies or extends the process of mapping a length n input sequence as an output to

a length n sequence of any sequence. The process of mapping a sequence can be

viewed as a table representing the output value m̂ corresponding to each possible

input m.

99

2. Adversary A chooses a pair of sequences m0,m1 ∈ Di.

3. The random oracle picks a bit b ∈ {0, 1} and sends encrypted message m̂ :=

E(mb) to the adversary.

4. The adversary outputs a bit b′.

5. The output of the experiment is defined as 1 if b′ = b, and 0 otherwise.A succeeds

in the experiment in the case of distinguishing mb.

With the experiment, the definition of perfect security for E takes the following

general form:

Definition 4.2.1. Scheme E is perfectly secure over message space D if for every

adversary A it satisfies

Pr[experiment] = 1
2 . (4.2)

A in the encryption scheme E cannot distinguish between m0 and m1. Thus, A

through E does not learn information about the existence of hidden messages.

Most systems do not have access to a random oracle in the real world. There-

fore, pseudo-random number function is generally applied as a substitute for random

function with soundness design. With assumptions, the oracle acts on behalf of a

fixed E, which corresponds to a transformation of a real system (implementation of

the encryption scheme).

If the probability of success of a random oracle attack is negligible, the imple-

mentation of the random oracle is soundness. Moreover, E is soundness secure if A

has a success probability of:

Pr[success] ≤ 1
2 + negligible. (4.3)

100

Using this notion of implementation, the previous experiment is broken using the

proposed method detecting hidden messages.

1. We constructs MDi (described Section 4.2.2) is constructed that it runs on random

oracle with the selected species Di ∈ D.

2. Adversary A computes the standard deviation value of pm.

3. A computes y using MDi(mi) given mi ∈ Di.

4. A computes ŷ using MDi(m̂) given the output m̂.

5. The m̂ is successfully detected if y − ŷ > ε.

This gives the probability of two independent y and ŷ from MDi .

Lemma 1. DNA steganography scheme is not secure if H(D) > H(D̂|D).

Proof. The mutual joint entropy H(D, D̂) = H(D) + H(D̂|D) is the union of

both entropies for distribution D and D̂. According to [92], the mutual information

of I(D; D̂) is represented I(D; D̂) = H(D) − H(D|D̂). It is symmetric in D and

D̂ such that I(D; D̂) = I(D̂; D), and always non-negative. The conditional entropy

between two distributions is 0 if and only if the distributions are equal. Thus, the

mutual information must be zero to define secure DNA steganography schemes:

I(C; (D, D̂)) = H(C)−H(C|(D, D̂)) = 0. (4.4)

where C is message hiding space and it follows that:

H(C) = H(C|(D, D̂)). (4.5)

101

Eq (4.4) means that the amount of entropy H(C) must not be decreased based

on the knowledge of D and D̂. It follows that the secure steganography scheme is

obtained if and only if:

∀i ∈ N,mi ∈ D, m̂i ∈ D̂ : mi = m̂i.

Given that the expression of m̂ is limited, it is difficult to satisfy the condition

because the current steganography schemes are mostly based on assumptions about

addition or substitution. Because C is independent of D, inserting hidden messages

into distribution D increases the amount of information over distribution D. It is con-

cluded that the schemes are not secure under condition H(C) > H(C|(D, D̂)). �

This means that one should not be surprised if a model exists that breaks the encryp-

tion scheme of a random oracle.

The proposed steganalysis framework can be implemented using various machine

learning-based classifiers, including support vector machines [259], adaptive boost-

ing [228], and random forests [46], or biological sequence analysis methods, includ-

ing error correction and sequence alignment [20]. We consider that the messages can

be hidden in both intron and exon regions using a random oracle; hence, the modeling

of the internal structure of unmodified genome sequences is essential for steganalysis.

Algorithm 1 presents the overall procedure of our model. Our model adopts an

unsupervised pre-training of a sequence-to-sequence autoencoder, which learns in-

herent representations of DNA sequences. The input layer is then connected to the

hidden layer, which is composed of RNN in order to model the internal structure of

DNA sequences. The outputs of the RNN layers are connected to the CNN layer,

which empowers its filters to discover local motifs regardless of their locations. The

outputs of the CNNs layers are fed into a fully connected output layer, which contains

102

one unit that calculating a score to determine whether a given sequence corresponds

to either an intron or exon region. By comparing the score of a given sequence to the

average score of its unmodified genome sequences as in Eq.(5), the proposed frame-

work distinguishes whether or not a given sequence has hidden messages. From this,

the model determines forcefully changed DNA structures in an attempt to hide mes-

sages.

4.2.2 Proposed Model Architecture

DNA sequences that labeled with introns and exons are used for our model, and these

sequences are converted into a binary vector by orthogonal encoding [30]. It employs

nc-bit one-hot encoding. For nc = 4, {A,C,T,G} is encoded by

〈[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]〉. (4.6)

The encoded sequence is a tuple of an nc four-dimensional (4D) dense vector, and

is connected to the first layer of an autoencoder to learn meaningful encoding for

DNA sequences. As shown in Figure 4.4 pre-training, the model adopts RNN with

an autoencoder structure that consists of an encoder and decoder for unsupervised

pre-training. The encoder RNN encodes x to the representation of sequence features

h, and the decoder RNN decodes h to the reconstructed x̂; thus minimizing the re-

construction errors.

L(x, x̂) = ‖x− x̂‖2 (4.7)

where x is a tuple of nc four-dimensional dense vector of the sequence.

The model obtains representations of inherent features from unsupervised learn-

ing of the autoencoder structure [253], and learned features are connected to the RNN

103

layer. The RNN layer obtains the tuple of

hRNN =< hRNN
1 , · · · ,hRNN

d > (4.8)

where hRNN is the representation of sequence features learned by features, which is

a representation of introns and exons in hidden layers, and d is the dimension of a

vector. Then hRNN is convoluted with a set of filters to detect motif detector across

the sequences.

As shown in Figure 4.4 classification, different filters will can the local region,

and these filters recognize the local pattern across the genome sequences. Each con-

voluted elements are activated with a rectified linear unit (RELU) function [193]. The

model exploits the dropout [252] to prevent overfitting at each convoluted steps. The

max-pooling will output the maximum of the sub-regions from the non-overlapping

partitioned pooling layers, which is given by

h = (4.9)

Pool(σr(Conv(Pool(σr(Conv(Pool(σr(Conv(hRNN))))))

The features h learned from the CNNs are connected to the fully connected output

layer to output a classification score.

For the fully connected output layers, we exploit the sigmoid function is exploited

as the activation score, which is given by

Pr(y = i|h) = 1/(1 + exp(−wT
i h))∑1

k=0 1/(1 + exp(−wT
k h))

(4.10)

where y is the label that indicates whether the given sequence region contains introns

(y = 1) or exons (y = 0). An optimizer was used of multi-class logarithmic loss

104

Algorithm 1 Pseudo-code of the model (Section 4.2.2)
1: Input: N encodes DNA sequences, m1, · · · ,mN . (Eq. 4.6)
2: Output: y . (coding/non-coding)
3: Define hRNN

4: Pre-train of encoder-decoder
5: repeat
6: minimize reconstruction error by ‖x− x̂‖2 . (Eq. 4.7)
7: update hRNN . (Eq. 4.8)
8: until number of epoch reaches nepoch
9: Define CNN architecture h

10: repeat
11: L(w) = − 1

N

∑N
n=1(yilog(pi) + (1− yi)log(1− pi))

12: update h . (Eq. 4.9)
13: until number of epoch reaches nepoch

function Adam [143]. The objective function L(w) that must be minimized is defined

as follows:

L(w) = − 1
N

N∑
n=1

(yilog(pi) + (1− yi)log(1− pi)) (4.11)

where N is the mini-batch size. A model MDi has a possible score of pi for one

species, where pi is the score of given non-perturbed sequences.

4.3 Results

4.3.1 Experiment Setup

Existing steganography hides messages in DNA using different hiding schemes with-

out considering the economy and efficiency of implementation [60]. To optimize the

cost and efficiency, [60] first proposed software-based steganography, and [239] pro-

posed a new steganography scheme. For message hiding, we exploit the implementa-

tion by [239] and [186] to embed hidden messages by selecting an arbitrary position

of a DNA sequence segment while considering the property of intron and exon re-

gions. Details are described in Section 4.3.5.

As listed in Table 4.1, the DNA modification rate vary depending on the algorithm

105

Table 4.2: Detection performance of the proposed model for variable DNA sequence
lengths. If hidden messages are detected, they are marked asX.

Hiding Sequence Modification rate (%)
region length 1 2 3 4 5 6 7 8 9 10

6000 X X X X X X X X
12000 X X X X X

Intron 18000 X X X X X X X X X X
24000 X
30000
60000

6000 X X
12000 X X X X X X X X X
18000 X X X X X X X X X X

Exon 24000 X X X
30000 X X X X
60000

6000 X X X X X X X X X X
12000 X X X X X X X X X X

Both 18000 X X X X X X X X X X
24000 X X X X X X X X X X
30000 X X X X X X X X X X
60000

up to 20%. However, we consider modification rates not exceeding 10% was consid-

ered. Biologically, the species boundary is approximately 3% [238]; thus, based on

the assumption of the steganography method used, the detection may be trivial if

the modification rate is significantly larger than 3%. Nevertheless, to show that these

methods outperform other techniques even for high modification rates, we show re-

sults with modification rates of up to 10%.

4.3.2 Environment

Experimentation was carried out on Ubuntu 14.04 [3.5GHz Intel i7-5930K and GTX

Titan X Maxwell(12GB)]. For the implementation, the Scikit-learn library package

was exploited (version 0.18), and Keras library package (version 2.0.6) for neural

networks, and bio-python (1.72) used for input representation.

106

4.3.3 Dataset

Human UCSC-hg38 was used which consists of 24 human chromosomes. The UCSC-

hg38 dataset has three classes (donor, acceptor, and non-site) and contains 24,279

genes with 1 to 173 (on average 9.44) exons per gene. Randomly, 63,454 of 229,225

unique exons were selected to remove duplicate exons caused by alternative splic-

ing [138]. In addition, two classes (introns, and exons) were generated according to

to [196] by taking the sequences from the center of each donor (left: exon, right:

intron), acceptor (left: intron, right: exon) and non-site to the intron.

4.3.4 Model Training

The proposed model exploits the RNN-CNN based approach. The first layer consists

of 4 input units with 30 hidden RNNs units for 50 epochs. The output has 4 units that

are connected to the stacked LSTM layers with forget gates and peephole connec-

tions. The LSTM layer takes 4 input units and uses 60 hidden layers for 100 epochs.

The output of the LSTM layers is connected to the CNN layers, which consist of

convolution and pooling layers.

The first layer of CNN layers consists of 172 filters with a length of 32; the second

layer consists of 128 filters with a length of 8; the third layer consists of 64 filters with

a length of 2. The max-pooling is used at each layer to reduce the spatial size. The

output units are fully connected output layer containing a two-class prediction. The

sigmoid function is used for the fully connected output layer to classify sequences of

coding and non-coding.

For the training model, we used optimizer of multi-class logarithmic loss function

Adam [143] was used with a learning rate of 0.01, an epoch of 100, and mini-batch

size of 100. The objective function L(w) that must be minimized is as described

in Eq (4.11). To prevent overfitting, a dropout at a rate of 0.06 was used. Most of

107

Proposed RF Adaboost SVM
(a)

(b)

(c)

Figure 4.5: Comparison of learning algorithms (best viewed in color). The dotted
red line indicates that the threshold line for each modification rate and the blue line
indicates the prediction score difference. The blue line above the threshold is the
indication of hidden messages in DNA sequences. (a) represent the results of the
experiments conducted by embedding the hidden message in the intron region, (b)
represent the results of the experiments conducted by embedding the hidden message
in the intron region, and (c) represent the results of the experiments conducted by
embedding the hidden message in both intron/exon regions.

these parameters and network structures were experimentally determined to achieve

prediction performance as in previous work.

4.3.5 Message Hiding Procedure

For the message hiding, the state of the art algorithm [186] was exploited, which uses

encryption to crypt a secret message and use a complementary rule to embed hid-

den messages. For example, assume that Hi is represented as 8-bit binary 01001000

01101001. With the encryption scheme, the 8-bit binary is ciphered with the ran-

domly chosen key and has a DNA form of CAGT ACAA GTAG using a pre-defined

108

mapping table. With randomly chosen complementary rule of AC, CT, TG, and GA,

the DNA sequence is transformed to TCAG CTCC AGCA.

4.3.6 Evaluation Procedure

Detection performance of our framework was evaluated with four different learning

algorithms by comparing scores between unmodified and modified sequences. For

the performance metric, we used the differences in the prediction accuracy was uti-

lized, where accuracy1 is a widely used measure. With the performance matrix, we

validated algorithms were validated across three different regions with a modification

rate 1 to 10%.

The dataset was divided for the five-fold cross-validation. The score of unmodi-

fied sequence was obtained from a random selection of the validation set. Next step,

a hidden messages was embedded to a randomly selected DNA sequence from the

validation set. The final prediction score obtained from the classifier was used for

the modified and unmodified sequences. Using the score distribution of the stego-

free and steged sequences, we evaluated the different scores for the range y ± ε was

evaluated.

4.3.7 Performance Comparison

The performance of our method was evaluated to to determine optimal DNA se-

quence length for a single inference. To determine optimal DNA sequence length, we

evaluated the performance of our method was evaluated to detect hidden messages

with a reference length of 6000, 12000, 18000, 24000, 30000, and 60000. Randomly

DNA sequences were selected according to the reference lengths and used the data
1Accuracy = (T P + T N)/(T P + T N + F P + F N), where T P , F P , F N , and T N represent

the numbers of true positives, false positives, false negatives, and true negatives, respectively.

109

generated according to the modification rate in Table 4.1 to obtain the prediction ac-

curacy for 10 modification cases. 1000 cases were repeated for each modification,

and Table 4.2 shows the detection performance of the proposed model with respect

to three dedicated regions. As shown in Table 4.2, our model detected with all modi-

fication rates with a sample length of 18000 across all three dedicated regions.

With a length of 18000 DNA sequences, the performance of our proposed method

was evaluated based on four supervised learning algorithms (proposed, random for-

est (RF), adaptive boosting (Adaboost), and support vector machine (SVM)) to detect

hidden messages. Selected were 500 random DNA sequences with a length of 18000

from the UCSC-hg38 dataset. Each sample was perturbed by the complementary

DNA sequences for modification rates from 1 to 10% by changing one percent of the

message. Figure 4.5 shows the mean of the accuracy differences between perturbed

and non-perturbed sequences across five-fold cross-validation. The dotted red line in-

dicates the threshold for each modification rate, and the blue line above the threshold

is the indication of hidden messages in DNA sequences. The model detected with

all modification rates, but other learning algorithms were incapable of full detection.

RF was not detected in all modifications in intron regions, 5-8, 10% in exons, and

all modifications except 10% in both regions. Adaptive boosting failed to detect with

modification rates 6-10% in exon region, and all in intron/both regions. SVM failed

to detect with all modification rates in intron and exon regions but detected in both

regions for all modification rates.

In addition to learning algorithms, the framework produced was evaluated based

on denoising methods by coral [223] and lighter [249]. To preserve the local base

structure, the same dataset was used and perturbed samples were used as random

noise. The same dataset was used to preserve the local base structure and perturbed

samples were used as random noise, but both denoising methods were incapable of

110

(a
) s

he
llc

od
e

py
th

on
 V

ei
l-O

rd
na

nc
e.

py
 -p

 re
v_

ht
tp

s
--i

p
19

2.
16

8.
63

.1
50

 --
po

rt
 4

43
 -e

 x
or

 -b

\x
00

 \x
0a

 --
pr

in
t-s

ta
ts

Pa
yl

oa
d

Ty
pe

: r
ev

_h
ttp

s
IP

 A
dd

re
ss

: 1
9.

16
8.

63
.1

50
Po

rt
: 4

43
En

co
de

r N
am

e:
 s

in
gl

e
by

te
 X

or
 E

nc
od

er
Sh

el
lc

od
e

le
ng

th
: 3

84
Xo

r K
ey

: 0
x1

1

(b
) e

xt
ra

ct
in

g
he

x
de

ci
m

al
s

se
d

‘1
,8

d’
 s

he
ll1

.tx
t >

>
sh

el
l2

.tx
t

se
d

‘s
/[\

”x
:]/

/g
’ s

he
ll2

.tx
t >

>
sh

el
l3

.tx
t

(c
) c

on
ve

rt
 h

ex
 to

 b
in

ar
y

xx
d

-b
 s

he
ll3

.tx
t >

>
sh

el
l4

.tx
t

(d
) e

nc
od

e
bi

na
ry

 to
 D

NA
 s

eq
ue

nc
es

xx
d

-b
 s

he
ll3

.tx
t >

>
sh

el
l4

.tx
t

Fi
gu

re
4.

6:
E

xp
lo

it
pr

oc
ed

ur
e.

In
se

rt
in

g
m

al
ic

io
us

co
de

in
to

D
N

A
se

qu
en

ce
s

in
vo

lv
es

fo
ur

st
ag

es
.a

)w
ri

te
m

al
ic

io
us

co
de

an
d

co
nv

er
ti

t
to

he
x,

(b
)r

em
ov

e
an

y
un

ne
ce

ss
ar

y
st

ri
ng

s,
c)

co
nv

er
th

ex
to

bi
na

ry
,d

)e
nc

od
e

bi
na

ry
to

D
N

A
se

qu
en

ce
s.

111

Table 4.3: Training and running time of the proposed method based on five supervised
learning algorithms.

Model Training Time (Hours) Running Time (Secs)

Proposed 46.5 1
SVM [259] 6.70 0.09
Adaptive boosting [228] 0.49 29.2
Random forest [46] 5.4 0.47

detecting hidden messages. We also experimented perturbed samples with BLAST [20]

tools to detect the presence of hidden messages; however, most of the time BLAST

failed to recognize sequence resulting unknown sequence with a modification rate of

1%.

Table 4.3 shows the training (100 epochs and five-fold cross-validation) and run-

ning time. The training time of our model was significantly slower that of other learn-

ing algorithms, but the inference time of out model showed a better performance than

Adaboost and reasonable performance compared to SVM and RF.

4.3.8 Analyzing Malicious Code in DNA Sequences

We have evaluated our model against exploits code embedded in the DNA sequences.

For the first step, we used Veil-Ordnance [2], which is designed to generate short

shellcode, to create a short shellcode that redirects to the specified IP address as

shown in Figure 4.6 (a). We then used sed program to remove unnecessary strings

from the code generated from Veil-Ordnance as shown in Figure 4.6 (b). For the next

step, we used xxd program to covert hex to binary as shown in Figure 4.6 (c). Now,

the binaries are encoded as two bits: A as 00, C as 01, G as 10, and T as 11. For

example, first line of Figure 4.6 (c)

11101011 00011000 01011110 00111110 00110001

112

is encoded as

TGGT ACCA CCTG ATTG ATAC

The encoded sequences are then uploaded in the public repository with modified

fqzcomp utility [1], which is designed to compress DNA sequences to FASTQ files.

The use of our model successfully detected the presence of the malicious code in the

DNA sequences. However, considering real-world scenarios, we believe that these

conditions may not be acceptable because the process requires uploading their DNA

sequences along with a modified program.

4.4 Discussion

A DNA sequence has been under the great spotlight as an alternative covert medium.

Although they raise additional difficulties in maintaining inherent complex charac-

teristics of DNA while embedding a message, they can provide greater advantages

as a covert medium; DNA sequences can accommodate larger amounts of messages

than widely used covert media such as digital images and ensure high preservability

of the messages as well. With the steady improvements of CRISPR technologies for

DNA editing [139] and sequencing technologies for obtaining DNA sequences.

A recent study demonstrated the ability to exploit a biological analysis program

with synthesized DNA [195]. They first noted that many of existing biological analy-

sis programs are vulnerable to commonly used in security practice. Most of existing

biological analysis programs have a higher frequency of insecure C library function

calls such as strcpy. They targeted the FASTQ compression utility, which is designed

to compress DNA sequences. They first copied fqzcomp from sourceforce.net and

inserted a vulnerability code, which causes a buffer overflow. The modified fqzcomp

file successfully uploaded to the public repository, and an attacker gains sensitive

113

information from anyone who runs FASTQ with the modified fqzcomp file. Raw

FASTQ files that come directly from the sequencer are rarely useful by themselves,

and downstream processing is usually performed after sequencing. Downstream pro-

cessing involves several steps to clean up short chunks of reading, alignment of reads

in relation to the reference, and finding variations in sequences. During these steps,

malicious code can be stored in a text-based format of SAM, BAM, and VCF. Attack-

ers who create an account in any of the public repositories of NGS or NIH can submit

sequencing files that contain malicious code exploiting vulnerabilities in sequencers.

To prevent such attacks, they suggested developing an approach that can verify and

detect malicious code before analyzed by a biological analysis program. To this end,

the framework produced here can be a candidate for detecting any malicious code

before uploading DNA sequences in the public repository.

One of the biggest limitations of current steganalysis algorithms is that they re-

quire prior knowledge of the covert medium and the steganography algorithm used

to embed the hidden messages. The most common approach in this regard is to

run steganalysis to well-known steganography algorithms such as WOW [117], S-

Uniward [128], and HUGO [210]. However, the model proposed can detect hidden

messages independent of DNA steganography algorithms.

In this paper, a RNN-CNN-based steganalysis algorithm was proposed that does

not require prior knowledge of employed steganography algorithm. The experimental

results showed that the model clear advantages over other learning approaches with

state-of-the-art detection performance. For future work, we plan to extend the work to

decrypt or eliminate hidden messages in addition to the current detection capabilities.

114

Chapter 5

Privacy: Generative Models for

Anonymizing Private Data

To restrain the use of medical data for illegal practices, the right to privacy has been

introduced and is being adaptively amended. The right to privacy of medical data

should be enforced because medical data contains static sensitive information of all

individuals including genetic information; therefore, a leak of such irreversible in-

formation could be very dangerous. For example, Homer et al. [119] and Zerhouni

et al. [292] proposed a statistical-based attacks to GWAS demonstrating the possibil-

ity of reviling the presence of an individual in a group. The genetic markers (short

DNA sequences) of an individual constitutes a very sensitive piece of information

regarding their identity. Patterns of genetic markers can easily be used to identify in-

dividuals and their relatives. If proper security of genetic information is not achieved,

there could be a risk of genetic discrimination such as denial of insurance or black-

mail (e.g., planting fake evidence at crime scenes) [267]. To protect the risk of illegal

access to genetic information, the Global Initiative on Asthma (GINA) was launched

in 1995 in the United States. Nonetheless, as GINA has not been implemented in

115

other countries, their citizens are still at risk of the issues related to the bias based on

leaked genetic information.

The advent of next-generation sequencing technology has led to the progress

of DNA sequencing at an unprecedented rate, thereby enabling significant scientific

achievements [231]. Using information gathered from the Human Genome Project,

international efforts have been made to identify the hereditary components of the

diseases, which will allow their earlier detection and more effective treatment strate-

gies [72]. Thus, data sharing among medical institutions is essential for the devel-

opment of novel treatments for rare genetic diseases and seamless progress in ge-

nomic research largely depends on the ability to share data among different institu-

tions [199]. Patient portals and telehealth programs have recently gained popularity

among patients allowing them to interact with their healthcare service using online

tools [75]. Although these online health services provide convenience by allowing

patients to order prescriptions remotely, they also require patients to transmit their

private data over the Internet. Most health services follow the guidelines of the Ac-

countability Act of 1996 (HIPPA1) to protect patient records, but these guidelines

may not be upheld when data are shared with a third party.

Development of deep learning (DL) algorithms has transformed the solution of

data-driven problems for various applications, including problems associated with

the use of large amounts of patient data for health prediction services [236]. Since

patient data are private, several studies have been conducted to resolve privacy is-

sues for DL based applications. The two main approaches involved are: 1) encryp-

tion and 2) statistics-based anonymization. Most encryption techniques based on DL

methods [113, 141, 226] exploits homomorphic properties that enables the computa-
1The HIPAA states that, by definition linked to an identifiable person, should not be disclosed or

made accessible to third parties, in particular, employers, insurance companies, educational institutions,
or government agencies, except as required by law or with the separate express consent of the person
concerned.

116

tion of encrypted data via simple operations such as summation and multiplication.

DL approaches based on homomorphic encryption allow the reliable sharing of pri-

vate data, while providing accurate results, but a single query can takes hundreds

of seconds to be processed [95]. In addition, the nature of homomorphic encryption

allows limited compatibility with artificial intelligence techniques such as neural net-

works [28]. Differential privacy (DP) [82] is a state-of-the-art method that guarantees

strong privacy for statistics-based approaches [86, 119, 225, 243, 297]. In addition,

DP has been widely used for deep learning and has recently been applied to medical

data. For example, DP generative adversarial networks (GANs) framework has been

applied to blood pressure data to protect patient privacy [34]. However, DP based ap-

proaches have a significant trade-off between privacy and performance of prediction

accuracy.

For this, we propose a method using GANs that preserves a level of privacy sim-

ilar to that provided by DP while achieving a better prediction performance. Our

framework is a generic method that exploits any target predictive classifier to pre-

serve the original prediction result. We explored here, whether a generative model

can be constructed to produce meaningful synthetic while also preserving the origi-

nal predictions and protecting private data.

We evaluated the proposed methods using target classifiers for four diseases

(breast cancer, chronic kidney disease, heart disease, and prostate cancer), and found

that its performance was similar to that of the original classifiers. Finally, we com-

pared our method to state-of-the-art privacy techniques and provide a mathematical

overview of the privacy parameters.

117

Tr
us

te
d

zo
ne

U
nt

ru
st

ed
 z

on
e

A
tta

ck
er

Pa
tie

nt
 re

co
rd

s

Ag
e:

45

Se
x:

Ma
le

 P
er

im
et

er
:1

51

Ag
e:

23

Se
x:

Fe
ma

le

 P
er

im
et

er
:1

34

Ag
e:

54

Se
x:

Ma
le

 P
er

im
et

er
:1

04

Th
ird

 p
ar

ty
(e

.g
.,

G
oo

gl
e,

 D
ro

pb
ox

)

M
al

ic
ou

s
co

de

O
nl

in
e

m
ed

ic
al

 s
er

vi
ce

s

M
ed

ic
al

 re
se

ar
ch

Fi
gu

re
5.

1:
A

tr
us

te
d

zo
ne

an
d

an
un

tr
us

te
d

zo
ne

s;
Pa

tie
nt

’s
m

ed
ic

al
da

ta
ar

e
tr

an
sf

er
re

d
to

th
e

on
lin

e
m

ed
ic

al
se

rv
ic

e
th

at
,

in
tu

rn
,

pr
ov

id
es

di
ag

no
st

ic
re

su
lts

to
th

e
us

er
.I

f
a

us
er

gi
ve

s
co

ns
en

tf
or

da
ta

sh
ar

in
g,

he
r

or
hi

s
da

ta
m

ay
be

pr
op

ag
at

ed
to

th
ir

d
pa

rt
ie

s
(e

.g
.,

G
oo

gl
e,

D
ro

pb
ox

,a
nd

A
m

az
on

).

118

5.1 Methods

Our method involves an encoder, a discriminator, and a target classifier that act as an

additional pre-trained discriminator. The encoder generates synthetic data with the

aim of mimicking the input data, and the target classifier gives a score to each data

item. The discriminator then outputs a confidence score of whether that piece of data

is synthetic or original. Starting with random noise, the encoder learns to generate

synthetic data such that the prediction result of a synthetic data from a target model is

identical to the original data. The optimization of the objective function is equivalent

to finding a Nash equilibrium of a min-max game between the generator and the two

cooperative relations of the discriminator and the target classifier.

5.1.1 Notations

We will use the following notations: x is the input data; r is the random matrix with

same length of the input x; x̂ is the anonymized output corresponding to x and r;

M is a trained model; y is the output score given by the trained model given in-

put x, M(x) → y; ŷ is an output score given by the trained model given input x̂,

M(x̂) → ŷ; A is a probabilistic polynomial-time adversary that queries input to an

oracle model; and δ is a privacy parameter that controls privacy levels.

5.1.2 Anonymization using GANs

The architecture of this model is illustrated in Figure 6.3. The encoder takes an input

x and outputs x̂, which is given to both the discriminator and the target classifier. The

discriminator outputs the probability LD that x = x̂. The target classifier outputs

scores for x and x̂ to minimize scores between them. The learning objective of the

encoder is to optimize the discriminator’s probability to 1/2 while maximizing the

119

Pr
op

os
ed

 m
et

ho
d

E
nc

od
er

 T
ar

ge
t

cl
as

si
fie

r

D
is

cr
im

in
at

or

Se
rv

ic
e

pr
ov

id
er

Fi
gu

re
5.

2:
A

rc
hi

te
ct

ur
e

of
th

e
m

od
el

pr
es

en
te

d
in

th
is

st
ud

y.
T

he
do

tte
d

lin
e

re
pr

es
en

ts
gr

ad
ie

nt
s

th
at

ar
e

fe
d

in
to

th
e

en
co

de
r.

120

prediction score of the target classifier LC .

The encoder accepts messages of length n as input and r is the n length of random

matrix. The input (r × x mod n) is then fed into a neural network. As illustrated in

Figure 5.3, the first layer of this encoder network consists of n input feature size of

filters; the second layer consists of 64 filters; The third layer consists of 32 filters; the

fourth layer consists of 16 filters; the fifth layer consists of 8 filters. Additional layers

are added in the reverse order of the number of filters. All layers are constructed

with kernel size of 3, strides of 1, and same padding. Batch normalization [127] is

used at each layer and tanh [157] is used as the activation function at each layer,

except for the final layer where ReLU [193] is used for the activation function. The

discriminator takes the output the encoder as an input to determine whether the output

is real or generated. A sigmoid activation function is used to output probabilities from

the logits.

The discriminator takes an output of the encoder as an input to determine whether

the output is real or generated. The first layer of this discriminator network consists

of n input feature size of filters; the second layer consists of 10 filters; the third layer

consists of 20 filters; the fourth layer consists of 30 filters; the fifth layer consists

of n input feature size of filters. The kernel size of each layer is 3 with stride 1.

Tanh [157] is used at each layer as the activation, except for the final layer where a

sigmoid activation function is used to output probabilities from the logits. The target

classifier is a fixed pre-trained model and exploited in the GANs training model. To

define the learning objective, let θE , θD, and θC denote parameters of the encoder,

discriminator, and target classifier. Let E(x; r, θE , δ) be the output on x, C(x̂; θC) be

the output on x̂, andD(x,E(θE , x, r, δ), θC ; θD) be the output on x and x̂. Let λe and

λd denote the weight parameters of the encoder, the discriminators to maximize the

prediction performance. Let LE , LD, LC denote the loss of encoder, discriminator,

121

I N P U T

64
 fi

lte
rs

64
 fi

lte
rs

Re
LU

D
is

cr
im

in
at

or

 T
ar

ge
t

cl
as

si
fie

r
O U T P U T

Fi
gu

re
5.

3:
M

od
el

tr
ai

ni
ng

.T
he

en
co

de
r

ac
ce

pt
s
x

an
d
r

as
in

pu
ta

nd
th

at
ar

e
fe

d
in

to
th

e
ne

ur
al

ne
tw

or
k.

T
he

di
sc

ri
m

in
at

or
ta

ke
s

an
or

ig
in

al
in

pu
ta

nd
ou

tp
ut

of
th

e
en

co
de

r
to

ou
tp

ut
pr

ob
ab

ili
tie

s
fr

om
th

e
la

st
fu

lly
co

nn
ec

te
d

la
ye

r.
T

he
ta

rg
et

cl
as

si
fie

r
ta

ke
s

an
in

pu
tx̂

an
d

ou
tp

ut
s

th
e

pr
ed

ic
tio

n
sc

or
e.

122

and target classifier. The encoder then has the following objective functions:

LE(x, r, δ; θE) = λe · d(x,E(x, r, δ; θE)) + λd · (LD + LC)

= λe · (d(x, x̂) + δ) + λd · (LD + LC)
(5.1)

where d(x, x̂) is the Euclidean distance between synthetic and original data and δ

controls the privacy level. δ is updated at each learning epochs. A discriminator has

the sigmoid cross entropy loss of:

LD(θD, θC , x, x̂; θE) =− y · log(D(θD, p))− (1− y) · log(1−D(θD, p)),

(5.2)

where y = 0 if p = x̂ and y = 1 if p = x, where p is the score of given input x and

x̂. A target classifier has a loss of:

LC(x, x̂; θC) = ||C(f(x))− C(f(x̂))||2, (5.3)

where C(f) is a cost function of a pre-defined classifier.

5.1.3 Security Principle of Anonymized GANs

In this section, we show that the AnomiGAN has a scheme that is indistinguish-

able from real data for an A. For each training steps of the encoder, a multiplicative

perturbation by random orthogonal matrices are computed for the inner product ma-

trix. Formally, we have constructed as input entries of the k × m medical record

x ∈ Xk×m, and random matrix r ∈ Rk×m is chosen from Gaussian distribution

with mean zero variance σ2
r . Now, assume that the A has a generated random matrix

r̂ according to a probability density function. Then the A need to estimate x given

x̂ ← M. A simple intuition of the indistinguishable scheme is that the A is allowed

123

to choose multiple data from the synthesized data. Then, theA has the estimation of:

x̂i = 1
kσ2

r

∑
t

εi,txt, (5.4)

where εi,j is the i, j-th entry of r̂T r such that εi,j =
∑
t

r̂t,irt,j∀i, j. From [Lemma

5.6] [168], it is proven that εi,j is approximately Gaussian, E[εi,j] = 0, V ar[εi,j] =

kσ4
r , ∀i, j, i 6= j. Thus, the expectation of E[x̂i] is E[x̂i] = E[1

kσ2
r

∑
t

εi,txt] = 0,

and the variance of x̂i is 1
k

∑
t

x2
t . The random matrix r is replaced for each iteration

epoch. The variances of each layer are stored during the learning process. Among the

stored variances, the randomly selected variance is added to the corresponding layer

in inference time to ensure that the encoder does not produce the same output from

the same input. Intuitively, AnomiGAN is a probabilistic model; thus M appears

completely random to an A who observes a medical record x̂.

Note that the discussion below is based on the assumption that r is given to the

A. However, in our scenario, r is owned by the data owner and anA has no access to

the r, which makes the process even more complex than in the below settings.

Theorem 1. If M is a probabilistic model and r is a random matrix from Gaussian

distribution, then M has a scheme that is indistinguishable from real data to an A.

Proof. The rationale for the proof is that if M is a probabilistic model and a

r is the random matrix of each entry that is independently chosen from a Gaussian

distribution with mean zero variance σ2
r ; then the resulting scheme is identical to

the random projection scheme [168]. Let A constructs a distinguisher for M. The

distinguisher is given an input r, and the goal is to determine whether r is a truly

random or r is generated by M. The distinguisher has two observations. If input r

is truly random, then the distinguisher has a success probability of 1
2 . If input r is

124

Table 5.1: Performance results of the model upon adding variance to the layer.

Layer 1 2 3 4 5 6 7 8 9 10

Breast Cancer
Correlation coefficient 0.783 0.793 0.799 0.795 0.829 0.802 0.810 0.780 0.788 0.803
Accuracy (%) 93.18 91.81 93.18 95.45 94.09 95.45 95.73 95.45 95.45 95.45
AUPR 0.991 0.985 0.997 0.995 0.925 0.965 0.981 0.987 0.995 0.991
Chronic Kidney Disease
Correlation coefficient 0.727 0.766 0.770 0.745 0.775 0.756 0.775 0.760 0.785 0.767
Accuracy (%) 92.00 90.00 92.00 90.00 92.00 94.00 94.00 90.00 90.00 92.00
AUPR (%) 0.828 0.883 0.822 0.871 0.856 0.898 0.880 0.881 0.915 0.913
Heart Disease
Correlation coefficient 0.856 0.835 0.865 0.845 0.841 0.858 0.854 0.856 0.827 0.851
Accuracy (%) 83.33 80.00 80.00 83.33 86.67 83.33 86.67 86.67 83.33 86.67
AUPR 0.836 0.922 0.853 0.918 0.963 0.927 0.922 0.955 0.924 0.906
Prostate Cancer
Correlation coefficient 0.379 0.482 0.423 0.419 0.427 0.4340 0.456 0.440 0.479 0.479
Accuracy (%) 69.99 69.99 69.99 69.99 69.99 69.99 69.99 69.99 69.99 69.99
AUPR (%) 0.859 0.804 0.816 0.768 0.797 0.802 0.780 0.810 0.778 0.755

generated by M, then the distinguisher has a success probability of

Pr[M of success] ≤ 1
2 + 1

kσ4
r

≤ 1
2 + 1

2lkσ4
r

(5.5)

where l is the layer number of the encoder. Thus, A has the success probability as

defined in Equation 6.10.

5.2 Results

5.2.1 Datasets

We simulated our approach using the Wisconsin breast cancer, chronic kidney dis-

ease, heart disease, and prostate cancer datasets from the UCI machine learning

repository [42, 219]. The Wisconsin breast cancer, chronic kidney disease, heart dis-

ease and prostate cancer datasets consist of 30, 24, 13, and 8 features, respectively.

We carried out five-fold cross-validation with the datasets that were randomly parti-

tioned to training and validation sets of 90% and 10%, respectively.

125

5.2.2 Target Classifiers

Many services are incorporate disease classifiers using machine learning techniques.

For our experiments, we selected breast cancer, chronic kidney disease, heart disease

and prostate cancer models from the kaggle competitions as the target classifiers. The

classifiers were used as a black-box access to our target classifier in our method. We

selected these classifiers for two reasons: a) both classifiers achieve high accuracy

in disease detection in their testing datasets, and b) these classifiers are open source

implementations, which allows them to be easily accessed as our target classifiers.

5.2.3 Model Training

For the training model, we used Adam [143] optimizer for multi-class loss function

with a learning rate of 0.001, a beta rate of 0.5, the epoch of 50000, and mini-batch

size of 10. The objective function LE was minimized as described in Eq (5.1). Most

of these parameters and the networks structure were experimentally determined to

achieved optimal performance. The discriminator achieves the optimal loss after 3000

epochs, whereas the encoder required 5000 epochs to generate synthesize data similar

to original sample.

5.2.4 Evaluation Process

We exploited DP, in particular, the Laplacian mechanism [83], to compare the anonymiza-

tion performance against the corresponding accuracy and area under the precision

recall (AUPR). For the evaluation metric, the accuracy and the AUPR were used to

measure performance between original samples and anonymized samples according

to the model’s parameter changes. The correlation coefficient was used to measure the

linear relationship between the original samples and anonymized samples by chang-

ing the privacy parameters. We generated the anonymized data according to privacy

126

B. Chronic kidney
 dissease

A. Breast cancer C. Heart disease D. Prostate cancer

Figure 5.4: Anonymization performance using breast cancer, chronic kidney, heart
disease, and prostate cancer datasets: A fixed test dataset was selected from the UCI
machine learning repository. Correlation coefficient, accuracy, and AUPR were mea-
sured by changing 0.1 of the privacy parameter for the fixed test data, δ.

parameter δ and λe by randomly selecting 1,000 cases, and obtained the average

prediction of accuracy, AUPR, and correlation coefficient against the corresponding

original data. In the next step, we fixed data and generated anonymized data to vali-

date the probabilistic behavior of our model. A variance of each encoder layers was

added to the corresponding encoder layers in the inference time. The process was re-

peated 1,000 times with the fixed test data. We measured the mean of the correlation

coefficient, AUPR, and the accuracy for each of the 10 encoder layers as shown in

Table 5.2. The results indicate that adding variance to each of layers influences the

correlation coefficient with limited effects on accuracy.

127

5.2.5 Comparison to Differential Privacy

DP achieves plausible privacy by adding Laplacian noise Lap(λ) = Lap(S/δ) to a

statistics [83]. The parameter λ = 0.1 has a minimal effect on privacy and the risk of

privacy increases as the parameter λ increases. The amount of noise presents a trade-

off between accuracy and privacy. Note that the standard DP of unbounded noise

version of Laplacian [244] was applied for the experiments. The experiments were

conducted by increasing the parameter λ by 0.1. Note that x-axis (0) in all Figure 5.4

represents the prediction scores of original data.

Figure 5.4.B shows an experiment for our proposed algorithm and DP algorithm

using a fixed chronic kidney disease tests. Both DP and our methodology showed

similar performance in the correlation coefficient, but our method showed a better

performance in terms of accuracy and AUPR. Figure 5.4.A, and 5.4.C show experi-

mental results for our proposed algorithm and the DP algorithm with respect to the

breast cancer and heart disease datasets. Both DP and our proposed method showed

similar performance in terms of the correlation coefficient, accuracy, and AUPR. In

the case of prostate cancer dataset (Figure 5.4.D), our approach shows a better per-

formance in terms of the correlation coefficient and accuracy.

5.2.6 Performance Comparison

We evaluated the performance of our proposed method based on four classifiers

(breast cancer, chronic kidney disease, heart disease, and prostate cancer) to measure

the prediction performance of the additional discriminator (target classifier). The ex-

periments were conducted by changing 0.1 of the λd with the fixed privacy parameter

of δ. Because the additional discriminator relies on the original classifier, the perfor-

mance of the prediction accuracy should increase as λd increases. As shown in Fig-

ure 5.5, the prediction accuracy was increased by a minimum of 2% to a maximum of

128

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Ta
rg

et
 d

isc
rim

in
at

or
 p

ar
am

et
er

 (
d)

858687888990 Accuracy

(a
)

Br
ea

st
 c

an
ce

r

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Ta
rg

et
 d

isc
rim

in
at

or
 p

ar
am

et
er

 (
d)

899091929394 Accuracy

(b
)

Ch
ro

ni
c

ki
dn

ey
 d

ise
as

e

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Ta
rg

et
 d

isc
rim

in
at

or
 P

riv
ac

y
pa

ra
m

et
er

 (
d)

838485868788 Accuracy

(c
)

He
ar

t d
ise

as
e

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Ta
rg

et
 d

isc
rim

in
at

or
 p

ar
am

et
er

 (
d)

767778798081 Accuracy

(d
)

Pr
os

ta
te

 c
an

ce
r

Fi
gu

re
5.

5:
C

om
pa

ri
so

n
of

th
e

ta
rg

et
di

sc
ri

m
in

at
or

pa
ra

m
et

er
λ
d
.A

cc
ur

ac
y

is
m

ea
su

re
d

by
ch

an
gi

ng
0.

1
of

th
e
λ
d

fo
r

th
e

fix
ed

pr
iv

ac
y

pa
ra

m
et

er
δ.

129

6% depending on the datasets. Note that the value of the correlation coefficient value

remained constant as the privacy parameter δ was fixed.

5.3 Discussion

Here, we have introduced a novel approach for anonymizing private data while pre-

serving the original prediction accuracy. We showed that under a certain level of

privacy parameters, our approach preserves privacy while maintaining a better per-

formance of accuracy and AUPR compared to the DP. Moreover, we provide a math-

ematical overview showing that our model is secure against an efficient adversary

demonstrate the estimated behavior of the model, and the performance of our model

compared to that of the state-of-the-art privacy preserving method. One of our pri-

mary motivations for this study was that many companies are providing new services

based on both traditional machine learning and deep neural networks, and we be-

lieve this will extend to online medical services. Potential risks regarding the security

of medical information (including genomic data) are higher compared to the current

risks to private information security, as demonstrated by Facebook’s recent privacy

scandal [21]. In addition, it is difficult to notice a privacy breach even when there are

privacy policies in place. For example, when a patient consents to the use of medi-

cal diagnostic techniques, the propagation of that information to a third party cannot

guarantee that the same privacy policies will be adhered to by them. Finally, machine

learning as a service (MLaaS) is mostly provided by Google, Microsoft, or Amazon

owing to hardware constraints, and it is even more challenging to maintain user data

privacy when using such services.

Exploiting traditional security in the deep learning requires encryption and de-

cryption phases, which make its use impractical in the real world due to a vast amount

130

of computation complexity. As a result, other privacy preserving techniques such as

DP will be exploited in deep learning. Towards this objective, we developed a new

approach of privacy-preserving method based on deep learning. Our method is not

limited to the medical data. Our framework can be extended in many various ways to

the concept of exploiting a target classifier as a discriminator. Unlike a statistics-based

approach, our method does not require a background population to achieve good pre-

diction results. AnomiGAN also provides the ability to share data while minimizing

privacy risks. We believe that online medical services using the deep neural networks

technology will soon be available in our daily lives, and it will no longer be possible

to overlook issues regarding the privacy of medical data. We believe that our method-

ology will encourage the anonymization of personal medical data. As part of future

studies, we plan to extend our model to genomic data. The continuous investigation

of privacy in medical data will benefit human health and enable the development of

various diagnostic tools for early disease detection.

131

Chapter 6

Privacy: Privacy-preserving

Inference for Deep Learning

Models

To develop treatment strategies for rare hereditary diseases and perform seamless

research on the genome, data sharing among medical institutions is crucial [199].

Applications, such as patient portals and telehealth, that enable patients to connect

to healthcare services online have gained immense acclaim. However, these types of

services require the patients to post their private and sensitive data on the Internet.

These health applications are forced to follow the guidelines of the Accountability

Act of 1996 (HIPAA1). However, it is likely that this will not be upheld when the

information is shared with third parties.

Several studies have focused on protecting patients’ information from privacy vi-
1The HIPAA states that information linked to an identifiable person should not be disclosed or

made accessible to third parties in particular, employers, insurance companies, educational institutions,
or government agencies except as required by law or with the separate express consent of the person
concerned.

132

C
lo

ud
-s

id
e

C
lie

nt
-s

id
e

Fe
at

ur
e

E
xt

ra
ct

or

U
se

r d
at

a

O
ut

pu
t

C
lo

ud
-s

id
e

Fe
at

ur
e

E
xt

ra
ct

or

C
lie

nt
-s

id
e

O
ur

 a
pp

ro
ac

h
C

ur
re

nt
 a

pp
or

ac
he

s

U
se

r d
at

a

Pr
iv

at
e

fe
at

ur
es

Pr
iv

at
e

fe
at

ur
es

O
ut

pu
t

Fi
gu

re
6.

1:
C

ur
re

nt
ap

pr
oa

ch
es

vs
.p

ro
po

se
d

ap
pr

oa
ch

.L
et
X

de
no

te
th

e
in

pu
ta

nd
V

de
no

te
th

e
se

to
fa

ll
fe

at
ur

es
of

in
pu

tX
th

at
ca

n
be

m
an

ip
ul

at
ed

to
ge

ne
ra

te
sy

nt
he

tic
da

ta
X̂

.L
et
V̂

be
a

su
bs

et
of
V

w
ho

se
el

em
en

ts
ar

e
pr

iv
at

e
fe

at
ur

es
.V
−
V̂

in
di

ca
te

s
th

e
no

n-
pr

iv
at

e
fe

at
ur

es
.L

et
M
I

de
no

te
th

e
m

ut
ua

li
nf

or
m

at
io

n,
y

be
th

e
pr

ed
ic

tio
n

sc
or

e
gi

ve
n

by
X

,a
nd
ŷ

be
th

e
pr

ed
ic

tio
n

sc
or

e
gi

ve
n

by
X̂

.T
he

up
w

ar
d

ar
ro

w
re

pr
es

en
ts

m
ax

im
iz

at
io

n,
do

w
nw

ar
d

ar
ro

w
re

pr
es

en
ts

m
in

im
iz

at
io

n,
an

d
’-

’
re

pr
es

en
ts

ne
ith

er
.G

iv
en

us
er

da
ta
x

,c
ur

re
nt

ap
pr

oa
ch

es
ex

tr
ac

tf
ea

tu
re

s
by

m
ax

im
iz

in
g

no
n-

pr
iv

at
e

fe
at

ur
es

an
d

m
in

im
iz

in
g

pr
iv

at
e

fe
at

ur
es

to
pr

es
er

ve
a

us
er

’s
pr

iv
ac

y
at

th
e

cl
ie

nt
-

si
de

.P
riv

at
el

y
ex

tr
ac

te
d

fe
at

ur
es

ar
e

se
nt

to
th

e
cl

ou
d-

si
de

to
re

tr
ie

ve
th

e
co

rr
es

po
nd

in
g

re
su

lts
.C

ur
re

nt
ap

pr
oa

ch
es

do
no

tc
on

si
de

r
th

e
pr

ed
ic

tio
n

re
su

lts
w

hi
le

ex
tr

ac
tin

g
th

ei
rf

ea
tu

re
s.

H
ow

ev
er

,w
he

n
ou

ra
pp

ro
ac

h
ex

tr
ac

ts
fe

at
ur

es
,i

tm
in

im
iz

es
bo

th
no

n-
pr

iv
at

e
an

d
pr

iv
at

e
fe

at
ur

es
w

hi
le

m
ax

im
iz

in
g

th
ei

rp
re

di
ct

io
n

re
su

lts
.

133

olations that can be caused by DL-based applications, which has successfully enabled

disease prediction using big data from various patients [236]. DP [82] is a state-of-

the-art method that guarantees high-level privacy for statistic-based approaches [86,

119, 225, 243, 297]. However, DP-based approaches exhibit a significant trade-off

between privacy and prediction accuracy.

We observed that a significant part of this trade-off is owing to the preference for

maintaining features while minimizing the mutual information between the original

data and private features. Specifically, let X denote the input and V denote the set

of all features of input X that can be manipulated to generate synthetic data X̂ . We

also define a set of all private elements V̂ , a subset of V , whose elements correspond

to private variables. As shown in Fig. 6.1 (current approaches), the desired synthetic

output X̂ , which is obtained via maximizing the mutual information between the

input and non-private features MI(X;V − V̂), is achieved while minimizing the

mutual information between the input and private features MI(X; V̂).

As shown in Fig. 6.1 (our approach), a remedy for this problem involves trans-

forming the input by manipulating all features through minimizing MI(X;V) and

the cross-entropy loss between the original label and the predicted label. To achieve

this, we modify GANs that can learn the intrinsic properties of private features and

generate synthetic data while minimizing MI(X; V̂). The power of GANs’ ability

to identify the structural features comes from an innate characteristic, namely the

adversarial interaction between their two components, the generator and the discrim-

inator. To avoid any attempt to maximize the mutual information between the private

features and the input when generating synthetic data, we propose a deep private gen-

eration framework (DPGF) that includes a randomization phase and a labeling phase.

In the randomization phase, we deploy a surrogate model to maintain the original

class information, as well as to prevent malicious users from hijacking the model

134

through reverse engineering. In the labeling phase, we replace the discriminator to

target classifiers to generate synthetic data depending purely on their original class

label. We have evaluated our solution with respect to the state-of-the-art privacy-

preserving techniques using four disease classifiers (breast cancer, liver cancer, heart

disease, and prostate cancer).

6.1 Methods

6.1.1 Motivation

Generative adversarial networks (GANs) [96] are designed to generate data samples

by introducing the concept of adversarial learning between a generator and a dis-

criminator. In contrast to conventional generative models, GANs do not assume an

explicit data distribution. Instead, they implicitly learn a function that transforms a

prior distribution from a latent space to a data space and generates realistic instances.

The discriminator distinguishes the generated instances from real instances and uses

the results to optimize both itself and the generator. Optimizing the objective function

is equivalent to determining the Nash equilibrium of a min-max game between the

generator and the discriminator.

Recently, many studies have focused on privacy-preserving GANs to prevent the

sharing of personal medical data for DL-based online medical-diagnostic services.

Privacy-preserving techniques are essential for hiding raw data from the services as

they may not be fully trustworthy. However, a current GAN’s objective function will,

by nature, generate a sample by maximizing MI(X;V); this includes both non-

private and private variables. Recent DP-based GAN models satisfy data privacy for

private variables; however, non-private features can also be vulnerable to attack when

combined with public data [93]. Thus, we propose a DPGF that includes an objective

135

Cl
ie

nt
Se

rv
er

R
eq

ue
st

 s
er

vi
ce

ba
ck-

pro
pa

ga
tio

n
ba

ck-
pro

pa
ga

tio
n

 Ge

ne
rat

or
Cla

ssi
fie

r

Tr
ai

ne
d

Ge
ne

ra
to

r

Ra
nd

om
iza

tio
n

M
od

ul
e

Ra
nd

om
iza

tio
n

M
od

ul
e

Ra
nd

om
iza

tio
n

Ne
ur

al
Ne

tw
or

ks

Bl
ac

k-
bo

x
(

)

Tr
ai

ne
d

ra
nd

om
iz

at
io

n
m

od
el

 (

)

R
an

do
m

iz
ed

 in
pu

t (

)

C
la

ss
ifi

er
O

ut
pu

t

Ra
nd

om
iza

tio
n

Ne
ur

al
Ne

tw
or

ks

Fi
gu

re
6.

2:
H

ig
h-

le
ve

lv
ie

w
of

D
PG

F.
T

he
do

tte
d

lin
e

re
pr

es
en

ts
th

e
se

tu
p

ph
as

e
fo

rt
he

pr
iv

at
iz

ed
in

fe
re

nc
e,

an
d

th
e

so
lid

lin
e

re
pr

es
en

ts
th

e
in

fe
re

nc
e.

T
he

di
ag

ra
m

in
tu

iti
ve

ly
ill

us
tr

at
es

th
e

m
od

el
de

sc
ri

be
d

in
Se

ct
io

n
6.

1.
3.

136

to minimize all MI(X;V) while maximizing the mutual information between the

original and synthetic class labels.

6.1.2 Scenario

Assume that user A wants to use an online diagnostic service, as shown in Fig. 6.2.

The user sends a service request to the server and receives a randomization module

MR from the DPGF. The module outputs randomized data x̄, given x. The user

sends x̄ to the server. Then, the trained generator from the generative model takes

x̄ and outputs x̂. The output x̂ is then submitted to the third party, and the results

are returned to the user. Note that degenerating an example by exploiting surrogate

classifiers is not possible as the user receives outputs based on x̂ and not x̄.

6.1.3 Deep Private Generation Framework

The objective of the framework is to generate synthetic data that preserves privacy

while preserving class information. Here, we use GANs for generating data and clas-

sifiers for auditing the generated data. The data-synthesis process comprises two

phases, and the class information is maintained throughout the phases.

In the first phase (Fig. 6.3, Randomization Phase), data are synthesized using the

randomization technique and audited by the surrogate classifier. In the second phase

(Fig. 6.3, Labeling Phase), the data are synthesized by a generative model and audited

by a target classifier. Both phases are used for the model training; however, only the

randomization phase is deployed on the client-side for the inference. The random-

ization phase alone, through the surrogate classifier, is insufficient to hold the class

information for the target classifier; thus, the second phase is required to maintain

the class information for the complex target classifier. The surrogate classifier can be

replaced with a target classifier, and the second phase can be removed; however, this

137

ba
ck

-p
ro

pa
ga

tio
n

ba
ck

-p
ro

pa
ga

tio
n

R
an

do
m

iz
at

io
n

ph
as

e

 G

en
er

at
or

C
la

ss
ifi

er

R
an

do
m

iz
at

io
n

N
eu

ra
l N

et
w

or
ks

La
be

lin
g

ph
as

e

Fi
gu

re
6.

3:
A

rc
hi

te
ct

ur
e

of
D

PG
F.

T
he

m
od

el
tr

ai
ni

ng
in

vo
lv

es
a

ra
nd

om
iz

at
io

n
an

d
a

la
be

lin
g

ph
as

e.
T

he
ra

nd
om

iz
at

io
n

fu
nc

tio
n

F
ac

ce
pt

s
x

as
in

pu
ta

nd
ou

tp
ut

s
x̄

.T
he

ge
ne

ra
to

r
ta

ke
s
x̄

as
in

pu
ta

nd
ou

tp
ut

s
x̂

fr
om

th
e

la
st

fu
lly

co
nn

ec
te

d
la

ye
r.

T
he

cl
as

si
fie

r
ta

ke
s
x̂

an
d
x

an
d

ou
tp

ut
s

th
e

pr
ed

ic
tio

n
sc

or
e.

T
he

do
tte

d
lin

e
re

pr
es

en
ts

a
gr

ad
ie

nt
th

at
is

fe
d

in
to

th
e

ge
ne

ra
to

r.

138

will negate the model’s protection from reverse engineering.

Given a training dataset (x, y) ∈ (X,Y), the randomization phase outputs the

(x̄, y), where x̄ denotes a randomized medical record and y denotes the original

class labels. We use the randomization function F, which explicitly forces x̄ to be

indistinguishable to an adversary. As the randomization can ruin the original class

information, we employ a surrogate classifier Cs to maintain it.

Specifically, F exhibits a structure similar to the one-time pad encryption scheme

that transforms input x into a pseudorandom output x̄. To avoid the case where the

prediction label x̄ is different from the label of x, we define our randomization phase

as follows:.

1. Transform x ∈ Rd into a bit string B(x) ∈ {0, 1}l, where d denotes the data

dimension, and l denotes the length of the bit string.

2. Select a seed k ∈ {0, 1}l.

3. With the input of seed k, the pseudorandom generator F outputs a random

string r = F(k).

4. With the input of a random string r and a transformed medical record B(x),

the function F outputs the synthetic x̄.

x̄ = F(r ⊕B(x)). (6.1)

5. The pre-trained Cs predicts the class label ys = Cs(x̄).

6. Repeat Steps 2-5 until Cs(x) == Cs(x̄).

Intuitively, M is a probabilistic model; and thus, F(r ⊕ B(x)) appears completely

random to an adversary. During these steps, MI(X;V) is minimized, following the

139

claims of perfect secrecy.

In the labeling phase, the generator G takes a randomized input x̄ and outputs x̂.

With respect to each input x̄ ∈ X̄ , the generative modelG seeks a possible stochastic

mapping to another representation, x̂ = G(x̄; θG) ∈ X̂ , via the conditional probabil-

ity density function p(x̂|x̄). We use a target classifier C such that the generator will

optimizes the objective function to their original class information. It is desirable for

the generative model to generate synthetic data X̂ from X̄ while capturing as much

information about Y as possible. We define a generative-model training loss that is

equivalent to minimizing the Kullback–Leibler (KL) divergence between the noise

and data distributions. The KL divergence can be minimized using the optimization

problem. Optimizing the objective function is equivalent to training a generator with

the aid of the target classifier. Specifically, let LG, LC , and LsC denote the losses of

the generator, target classifier, and surrogate classifier to define the learning objective.

The generator takes a randomized input x̄ and outputs synthetic data x̂ = G(x̄; θG),

where θG is the parameter of G. The target classifier C predicts the label ŷ = C(x̂);

the surrogate classifier Cs receives x and x̂ and outputs yc and ŷc, respectively.

The target classifier is trained with the following objective function:

LC = CE(yc, y) + CE(ŷc, y), (6.2)

where CE denotes the cross-entropy loss. Note that Lc is not needed if the target

classifier is pre-trained.

The surrogate classifier is trained with the following objective function:

LCs = CE(ys, y) (6.3)

The generator is trained to maximize the log-likelihood of generating a correctly

140

classified output with the following objective function:

LG = CE(ŷc, yc). (6.4)

The model architecture does not significantly differ from the existing GANs. How-

ever, the proposed modification fulfils our objectives via manipulating all features in

the randomization phase to minimize all feature variables MI(X;V) and exploiting

the target classifier to maximize their original prediction score.

6.1.4 Security Principle

The randomization phase of M (DPGF) follows Theorem 2; the GAN’s training

phase of M follows Theorem 3.

Definition 6.1.1. A scheme is perfectly secret if for every distribution over X , every

input x ∈ X , and every synthesized output c ∈ C,

Pr[X = x|C = c] = Pr[X = x]. (6.5)

Theorem 2. Randomization function F is perfectly secret.

Proof. Fix a distribution over X and fix an arbitrary x ∈ X and c ∈ C.

Pr[C = c|X = x] = Pr[X ⊕F(k) = c|X = x] (6.6)

= Pr[x⊕F(k) = c] = Pr[F(k) = x⊕ c] = 1
2l , (6.7)

where l denotes a bit string. This holds for all distributions as Definition 6.1.1; thus,

we obtain the following probability distribution over X for every two randomly se-

141

lected x0, x1 ∈ X and every c ∈ C:

Pr[C = c|X = x0] = 1
2l = Pr[C = c|X = x1]. (6.8)

This implies that F is perfectly secret.

Theorem 3. IfF(k) is a pseudorandom generator and F is a randomization function,

then M has a scheme that is indistinguishable to an adversary.

Proof. The rationale for the proof is that if M is a probabilistic and the F(k) is a

pseudorandom generator, then the resulting scheme is indistinguishable to an adver-

sary. We know that r has the same length as x, and the output length of x̂ is equal to

both r and x. Thus, the lengths of r, x, and x̂ with the operation of r ⊕ x are similar

to the one-time–pad encryption scheme in Eq. (6.1).

Now, let polynomial-time adversary A construct a distinguisher for F(k) such

that A exhibits the success probability described in Section ??. The distinguisher is

given an input x; the goal involves determining whether output x̂ is truly random or

is generated by M. The distinguisher has two possible outcomes. If input x̂ is truly

random, then the distinguisher has the following success probability:

Pr[F(k) of success] = 1
2 . (6.9)

If input x̂ is equal to c = M(F(k) ⊕ x), where k is uniformly random, then the

distinguisher has the following success probability:

Pr[M(F(k)⊕ x) of success] ≤ 1
2 + ε. (6.10)

Assuming that F(k) is a pseudorandom generator and M is probabilistic, then ε is

negligible.

142

6.1.5 Threat to the Classifier

An adversary that has access to the surrogate classifier may obtain partial information

by training another network to predict the input, assuming some access to public

labeled samples. The adversary can learn a function Cs : X → S with parameter θcs ,

where s is the value that corresponds to the classification score, and s ∈ S = R|Y |.

To prevent such an adversary, our pre-trained surrogate classifier adapts to collateral

learning by adversarial training, making the classifier robust against the nuisance

parameter, which remains unknown at the test time.

Assume that the adversary has a probability model P (X,Y, Z), where Z, an un-

known variable. The objective is to make the surrogate classifier robust to uncertainty

with the unknown value of Z by finding Cs(·; θcs) such that Cs(X; θcs) and Z are

independent. [173] theoretically proved that the model is statistically independent of

the unknown variables if Cs is a pivot with respect to Z. For this, Cs is optimized by

the adversarial training to find the min-max solution:

arg arg min
LCs

arg max
LA

E(LCs , LA), (6.11)

where the expected value of LCs is set to less than the negative log-likelihood of Y |X

and Z|Cs(X; θcs) for adversary loss LA.

6.2 Results

6.2.1 Datasets

We used the Wisconsin breast-cancer, liver-cancer, prostate-cancer, and heart-disease

datasets from the University of California – Irving (UCI) machine-learning reposi-

tory [42, 219], which consisted of 30, 10, 8, and 13 features, respectively.

143

Decision
boundary

Decision
boundary

(a) (b)

class1 samples class2 samplestest sample

Figure 6.4: Decision boundary of the class1 and class2 samples. Both (a) and (b)
denote the position of the test sample after the randomization process. (a) denotes the
current approach to the randomization process and (b) denotes our approach to the
randomization process.

The breast-cancer dataset consists of 569 patients with 30 features, including the

radius mean, texture mean, perimeter mean (mean size of the core tumor), area mean,

smoothness mean (mean of local variation in the radius lengths), compactness mean,

concavity mean (mean severity of the concave portions of the contour), concave-

points mean (mean of the number of concave portions of the contour), symmetry

mean, fractal-dimension mean (mean for coastline approximation, -1), radius_se (stan-

dard error for the mean of the distances from the center to points on the perimeter),

texture standard error, smoothness standard error, compactness standard error, con-

cavity standard error, concave-points standard error, symmetry standard error, fractal-

dimension standard error, radius_worst (lowest or highest mean value for the mean

of the distances from the center to points on the perimeter), texture_worst (lowest or

highest mean value for the standard deviation of gray-scale values), perimeter_worst,

smoothness_worst, compactness_worst, concavity_worst, concave-points_worst, sym-

metry_worst, and fractal-dimension worst.

144

Figure 6.5: Learned representation of
heart-disease samples. The representa-
tion is based on a pre-trained target
classifier that is based on a plain feed-
forward neural network. Ten testing
samples are randomly selected from the
validation set and denoted by gray cir-
cles (class1) and triangles (class2). The
testing samples are synthesized via the
inference of our DPGF and represented
by yellow circles (class1) and triangles
(class2) (best viewed in color).

Figure 6.6: Learned representation of
Indian liver-cancer samples. The repre-
sentation is based on a pre-trained tar-
get classifier that is based on a plain
feed-forward neural network. Ten test-
ing samples are randomly selected from
the validation set and denoted by gray
circles (class1) and triangles (class2).
The testing samples are synthesized via
the inference of our DPGF and repre-
sented by yellow circles (class1) and tri-
angles (class2) (best viewed in color).

The Indian liver-cancer dataset consists of 583 patients with 10 features, includ-

ing age, gender, total bilirubin, direct bilirubin, alkaline phosphatase, alanine amino-

transferase, aspartate aminotransferase, total proteins, albumin, and albumin-globulin

ratio. The prostate-cancer dataset consists of 100 patients with eight features, in-

cluding the radius, texture, perimeter, area, smoothness, compactness, symmetry, and

fractal dimension. The heart-disease dataset consists of 303 patients with 13 fea-

tures, including age, gender, chest-pain type, blood pressure, serum cholesterol, fast-

ing blood sugar, resting electrocardiographic results, maximum heart rate achieved,

exercise-induced angina, ST depression induced by exercise relative to rest, the slope

of the peak-exercise ST segment, number of major vessels, and reversible defect.

145

Figure 6.7: Learned representation of
breast-cancer samples. The representa-
tion is based on a pre-trained target clas-
sifier, which is based on the support-
vector-machine model. Ten testing sam-
ples are randomly selected from the val-
idation set and denoted by gray circles
(class1) and triangles (class2). The test-
ing samples are synthesized via the in-
ference of our DPGF and represented
by yellow circles (class1) and triangles
(class2) (best viewed in color).

Figure 6.8: Learned representation of
prostate-cancer samples. The represen-
tation is based on a pre-trained target
classifier that is based on a support-
vector-machine model. Ten testing sam-
ples are randomly selected from the val-
idation set and denoted by gray cir-
cles (class1) and triangles (class2). The
testing samples are synthesized via the
inference of our DPGF and denoted
by yellow circles (class1) and triangles
(class2) (best viewed in color).

6.2.2 Experimental Process

We compared our method to DP-GAN [281] via four DL-based target classifiers.

The four DL-based classifiers were selected from the Kaggle competitions for target

classifiers as they were open-source implementations that achieved high accuracy in

disease diagnosis for their testing datasets. For the evaluation metric, the correlation

coefficient was used to measure the linear relationship between the original samples

and the synthetic samples. The corresponding accuracy and area under the precision-

recall curve (AUPRC) were used to measure the classifiers’ diagnosis performance.

Each dataset was split into 90% training and 10% test sets. For each pre-trained

DL-based classifier to be trained, we randomly sampled 90% of the dataset for each

fold of a five-way random split of the training data. A generic target classifier for our

model (described in Section 6.2.4) was trained with reference to the correct pheno-

146

types on the server-side for a fair comparison to GAN-based methods, e.g., DP-GAN.

A superior performance is expected if the model uses a corresponding target classi-

fier, relative to which the method is evaluated. The remaining 10% of the dataset was

used to compute the average accuracy and standard deviation across a five-fold cross-

validation. Thus, the results from the cross-validation did not reflect the generative

model’s performance evaluation.

6.2.3 Target Classifiers

For the heart-disease and the Indian liver-cancer datasets, a plain feed-forward neural

network was used to output the probability for binary classification. It consisted of

four fully connected layers (Fcl) with 128, 64, 32, and 1 units in each layer with the

ReLU activation function; the exception is the final layer, with a sigmoid activation

function. We used a 0.25 dropout for each layer, and the Adam optimizer [143] with a

binary cross-entropy loss (learning rate: 0.01, epoch: 100, and mini-batch size: 32). A

linear support vector machine with a learning rate of 0.025 was used for breast-cancer

prediction. The quadratic discriminant analysis model was used for prostate-cancer

prediction.

6.2.4 Model Training

The generator was constructed with 10 layers with a kernel size of three, stride of one,

and padding of one. The first, second, third, fourth, and fifth layers comprised 128,

64, 32, 16, and 8 filters, respectively. An additional 5 layers were added in reverse

order to the number of filters. For the surrogate classifier, we constructed a one-layer

network with 32 filters, a kernel size of three, and stride of one. ReLU [193] was used

for the final layer of both networks. Tanh [157] was used as the activation function of

each layer with batch normalization [127].

147

B
re

at
 c

an
ce

r
Pr

os
ta

te
 c

an
ce

r
H

ea
rt

 d
is

ea
se

Li
ve

r c
an

ce
r

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Correlation Coefficient

(a
)

O
rig

in
al

D
P

-G
A

N
P

ro
po

se
d

B
re

at
 c

an
ce

r
Pr

os
ta

te
 c

an
ce

r
H

ea
rt

 d
is

ea
se

Li
ve

r c
an

ce
r

506070809010
0

Accuracy (%)

(b
)

O
rig

in
al

D
P

-G
A

N
P

ro
po

se
d

B
re

at
 c

an
ce

r
Pr

os
ta

te
 c

an
ce

r
H

ea
rt

 d
is

ea
se

Li
ve

r c
an

ce
r

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

AUPRC

(c
)

O
rig

in
al

D
P

-G
A

N
P

ro
po

se
d

Fi
gu

re
6.

9:
A

no
ny

m
iz

at
io

n
pe

rf
or

m
an

ce
w

ith
re

sp
ec

t
to

fo
ur

da
ta

se
ts

(b
re

as
t

ca
nc

er
,

pr
os

ta
te

ca
nc

er
,

he
ar

t
di

se
as

e,
an

d
liv

er
ca

nc
er

)
sh

ow
s

th
e

(a
)c

or
re

la
tio

n
co

ef
fic

ie
nt

(l
ow

er
is

be
tte

r)
,(

b)
pr

ed
ic

tio
n

ac
cu

ra
cy

(h
ig

he
ri

s
be

tte
r)

,a
nd

(c
)A

U
PR

C
(h

ig
he

ri
s

be
tte

r)
.

148

For the training, we used the Adam [143] optimizer for a multi-class loss function

with a learning rate of 0.003, a beta rate of 0.5, an epoch of 3000, and a mini-batch

size of two. The objective function LG was minimized as described in Eq. (6.3).

For a fair comparison, we constructed a target classifier for the case not exploiting

the original target classifiers, as described in Section 6.2.3. The first, second, third,

fourth, and fifth layers comprised n∗2, n∗4, n∗8, n∗16, and n input feature sizes for

the filters, respectively. Tanh [157] was used as the activation function for each layer,

except for the final layer, where a sigmoid activation function was used to output the

probabilities from the logits. For the surrogate classifier, we constructed a one-layer

network. The kernel size of each layer corresponded to three, with a stride of one for

all networks.

6.2.5 Model Evaluation

Fig. 6.4 shows the decision boundaries of the classifiers. The output produced from

the original GAN model does not guarantee that the generated samples will be placed

in the same region as the original samples. However, DPGF does guarantee this. To

confirm that the synthesized samples lie in the same region as the original sam-

ples, we visualized the latent space using a two-dimensional (2-D) space with t-

distributed stochastic neighbor embedding (t-SNE) [176]. The learned representa-

tions of the corresponding classifiers for each class-training sample, projected onto a

two-dimensional (2-D) space using t-SNE, are shown in Fig. 6.5, Fig. 6.6, Fig. 6.7,

and Fig. 6.8. The background colors denote the decision boundaries learned from the

training samples. Multiple regions may exist, based on the complexity of the data

points and classifiers. For visibility, we randomly selected five samples from each

class for the four datasets.

The result in Fig. 6.5 shows that the synthesized samples were placed in two

149

different regions according to the labels of the original samples. For example, three

samples from class1 and one sample from class2 (colored in gray) are located in the

light blue region, and their corresponding synthesized samples are placed in the same

region. The leftovers of both synthesized and test samples are located in the dark blue

region. Fig. 6.6 shows multiple regions. The test samples are located across three dif-

ferent regions: three, four, and three in the dark pink, pink, and light pink regions,

respectively. The result shows that the synthesized samples were placed in the same

region as the original samples. The results in Fig. 6.7 confirm that the synthesized

samples are placed in the same region as the test samples. For example, each of the

class1 and class2 samples (colored in gray) is placed in the blue region, and the cor-

responding samples of each class (colored in yellow) are placed in the same blue

region. The remaining samples are placed in the other region. In Fig. 6.8, we can ob-

serve that four test samples are located in the middle region, and their corresponding

synthesized samples are placed in the same region. Both the remaining test samples

and their synthesized samples are positioned in the same dark pink region. The above

results confirm that DPGF was trained to generate synthesized samples that preserve

their original class label.

6.2.6 Performance Comparison

DP-GAN is a state-of-the-art method that exploits the ε-DP mechanism, which achieves

plausible privacy by adding Laplacian noise to ensure that the difference between the

outputs of any two adjacent datasets (only differing by a single record) is bounded in

terms of ε [83]. For the DP-GAN in our experiment, we followed the experimental

setting described in Section 4.1 [281].

Fig. 6.9 (a) shows the correlation coefficient with respect to the four datasets.

Fig. 6.9 (b, c) respectively shows the accuracy and AUPRC with respect to their cor-

150

responding datasets. The results indicate that the proposed method delivered a better

performance in terms of accuracy and AUPRC while exhibiting less dependency on

the original data. These results were statistically significant at a p-value of 2.1×10−4

for the breast-cancer dataset, 4.1 × 10−4 for the prostate cancer dataset, 1.2 × 10−4

for the Indian liver cancer dataset, and 1.9× 10−4 for the heart-disease dataset.

6.3 Discussion

DPGF ensures that the data are more randomized, compared to existing GAN-based

DP methods, allowing it to provide the desired guarantees. DPGF uses a strategy

that is effectively maximally random to produce data that are completely random-

ized while still producing the correct output labels for a specific target classifier. The

data may seem significantly amenable to downstream analyses. However, in many

services, users prefer to obtain their diagnoses while avoiding further downstream

analyses.

We believe that a framework that can guarantee high-level privacy while pre-

serving the original diagnostic result is more beneficial and efficient than monitoring

whether providers possess a strong privacy policy. In this aspect, DPGF can easily be

used for MLaaS medical diagnostic platforms. Our framework comprises random-

ization and training phases. The randomization process protects the user’s privacy,

such as the user’s sensitive medical information, and the training phase maintains the

original class label such that it can be used by MLaaS medical diagnostic platforms.

To design the randomization process, we used a one-time-pad approach to formu-

late a perfectly secret scheme and proposed a variant GAN to maintain the class in-

formation. Using our framework, we achieved a reasonable prediction accuracy while

protecting any sensitive information contained in the original data. Thus, it would be

151

beneficial for DL-based online-diagnostic service providers to take advantage of our

framework if further data sharing needs to be restricted.

Upon a user’s consent of a downstream analysis, encryption-based methods can

be used in DL. For example, fully homomorphic encryption (FHE) cryptosystems

are deployed in DL models to preserve privacy. However, recent methods may not

yet be suitable for practical use because the prediction performance is not compatible

with deeper models; most FHE-based DL models do not include the final non-linear

activation functions. Many approaches replace the activation functions with square

functions. Alternatively, they train the unencrypted data with typical models and then

transfer the trained model’s weights to a different model. Considering these limita-

tions, DP-based DL models will continuously be studied, and we believe that our

approach will benefit future research in this field. As part of future studies, we plan

to extend our model to genomic data.

152

Chapter 7

Conclusion

As preliminary research, we reviewed security and privacy issues in DL and proposed

a set of methodologies based on ML algorithms that can overcome these issues.

Chapter 2 presents evasion attacks that use AE to disrupt the classification pro-

cess and poisoning attacks that could otherwise compromise training by compromis-

ing training data with tainted material. Defenses include removing malicious data,

making a classifier insensitive to such data, or masking the classifier’s internal design

and parameters to make attacks more difficult to formulate. With respect to AI, we

review recent security and data-privacy models under the notion of SPAI and examine

current challenges.

In Chapter 3, we address the development of DL models to find AEs against ML-

based PDF malware classifiers. Our problem is more challenging than those for ML

models for image processing because of the highly complex data structure of PDFs,

compared with traditional image datasets, and the requirement that the infected PDF

should exhibit malicious behavior without being detected. To resolve this problem,

we propose a variant GAN that generates an evasive-variant PDF malware (without

causing an application abort), which can be classified as benign by various existing

153

classifiers while maintaining the intended malicious behavior.

In Chapter 4, we describe how the development of DL models has facilitated

the use of DNA and steganography to create a covert channel and address the cur-

rent limitations of detection tools for DNA steganography. To address this limitation,

we propose a general sequence learning-based DNA steganalysis framework. This

approach learns the intrinsic distribution of coding and non-coding sequences and

detects hidden messages by exploiting distribution variations after hiding these mes-

sages. Our framework identifies the distribution variations by using a classification

score to predict whether a sequence is a coding or non-coding sequence.

In Chapters 5 and 6, we address privacy concerns for services that require privacy

data for the use of cloud-hosted DL models and propose methodologies that offer pri-

vacy preservation and good prediction performance involving deploying a diagnostic

tool. Our model guarantees user-data privacy while maintaining the original class

information and protecting the models from reverse engineering.

7.0.1 Limitations

Papernot et al. [203] introduced the adversarial training algorithm, which is resistant

to adversarial example techniques as a result of retraining on the adversarial exam-

ples. In the same sense, antivirus vendors can prevent such adversarial attacks by

collecting mutated examples and updating their detectors. However, after the detec-

tors have been updated, attackers can retrain their attack models to exploit the target

detectors. Apart from retraining, it was observed that new adversarial examples re-

mained undetected by the updated detectors [121].

However, most attack models were effective under the black-box assumption.

Multiple detector submissions are required to obtain a classification score. Therefore,

if the defender limits the number of submissions for a single peer, it would hinder the

154

performance of the evasive technique. Moreover, the defender can opt to retrain the

detector model using the newly submitted files to employ recent ML approaches for

continual learning [146, 172, 221, 237], in which ML is used to learn continuously

without loss of acquired knowledge of previous tasks.

Earlier studies on GAN-based DP methods effectively added noise to the data,

gradients, or objective functions to establish differential privacy guarantees. However,

from the perspective of DL researchers, the aforementioned bound types may not

provide practical insights on whether such privacy bounds are sufficiently strong. A

method is required to deploy a maximally random strategy to produce data that are

completely randomized while still producing the correct output labels for a specific

target classifier. However, the data may seem significantly amenable to downstream

analysis.

7.0.2 Future Work

From our observations, AEs are important key features for the robustness of neural

networks as a significant outlier for the success of misclassification. We believe that it

would be beneficial if interpretable AI approaches can be applied to such an attack or

defense method. Interpretable AI analyzes the underlying functions of the DL model

and determines how it makes predictions. With a deeper understanding of DL models,

it is feasible to design a model that is robust to unseen attacks by identifying blind

spots that should be considered and addressed.

In a recent work, [126], a new perspective of the phenomenon of adversarial ex-

amples introduced the concept of robust and non-robust features at each data point.

Robust features correspond to patterns that are predictive of the true classification

label, even when data are perturbed in an adversarial manner. Conversely, non-robust

features correspond to patterns that are also predictive but can be easily flipped by

155

adversarial perturbations. Conversely, non-robust features correspond to patterns that

are also predictive but can be easily flipped by adversarial perturbations. A feature,

F , can be categorized as a robust feature if it is correlated with the true label in the

expectation of E(x,y) ∼ D[y.f(x)] ≤ Fr, where D is a distribution and y is the

true label. Robust features can be selected with a trained linear classifier by querying

modified features. However, this approach requires a 2f search space, and categoriz-

ing features depends on the trained linear classifier. From previous works, we found

that non-robust features share common features by transferring one attack model to

others. Thus, blocking these non-robust features will harden the attack to generate

evasive samples.

Our hypothesis suggests that perturbations computed for one model often transfer

to the other. Because any model is likely to learn similar non-robust features, pertur-

bations that manipulate such features will apply to both. This perspective establishes

that adversarial vulnerability can be blocked if these features are identified. For this,

the goal of our future work is to identify non-robust features: those that can modify

the class decision boundary if changed. We can consider these as expert-identified

features. The extent to which minor variations in the set of identified non-robust fea-

tures matters is an open question. Human experts identify non-robust features that

are usually insufficient for creating the best selections. To capture non-robust features

from heterogeneous features, we believe that a variational autoencoder is a suitable

candidate, because each feature can be represented as latent space: z ∼ N(µ, σ).

These latent spaces allow us to differentiate features that apply to our task, such as

labels.

156

Bibliography

[1] fqzcomp. URL https://sourceforge.net/projects/fqzcomp/.

[2] Veil-ordnance. URL https://github.com/Veil-Framework

/Veil-Ordnance.

[3] Mitre. cve-2008-2992, 2008. URL https://cve.mitre.org/cgi-bin

/cvename.cgi?name=CVE-2008-2992.

[4] Mitre. cve-2010-0188, 2010. URL https://cve.mitre.org/cgi-bin

/cvename.cgi?name=CVE-2010-0188.

[5] Mitre. cve-2010-2883, 2010. URL https://cve.mitre.org/cgi-bin

/cvename.cgi?name=CVE-2010-2883.

[6] Mitre. cve-2010-3654, 2010. URL https://cve.mitre.org/cgi-bin

/cvename.cgi?name=CVE-2010-3654.

[7] Mitre. cve-2011-2462, 2011. URL https://cve.mitre.org/cgi-bin

/cvename.cgi?name=CVE-2011-2462.

[8] Mitre. cve-2013-2729, 2013. URL https://cve.mitre.org/cgi-bin

/cvename.cgi?name=CVE-2013-2729.

157

[9] Milia parkour "16,800 clean and 11,960 malicious

files for signature testing and research", 2013. URL

http://contagiodump.blogspot.com/2013/03/16800-clean

-and-11960-malicious-files.html.

[10] Weilin xu, pdf-malware-parser: A fork of pdfrw

aiming at parsing pdf malware, 2015. URL

https://github.com/mzweilin/PDF-Malware-Parser.

[11] Mitre. cve-2017-13056, 2017. URL https://cve.mitre.org/cgi-bin

/cvename.cgi?name=CVE-2017-13056.

[12] Mitre. cve-2018-9958, 2018. URL https://cve.mitre.org/cgi-bin

/cvename.cgi?name=CVE-2018-9958.

[13] Freedesktop.org. 2018. poppler., 2018. URL

https://poppler.freedesktop.org/.

[14] Sonicwall detects, reports dramatic rise in fraudulent pdf files in q1 2019,

2019. URL https://www.sonicwall.com/news/sonicwall

-detects-reports-dramatic-rise-in-fraudulent-pdf

-files-in-q1-2019/.

[15] Exploit-database, 2020. URL https://www.exploit-db.com/.

[16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,

et al. Tensorflow: a system for large-scale machine learning. In 12th USENIX

Symposium on Operating Systems Design and Implementation, 2016.

[17] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya

158

Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential pri-

vacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, 2016.

[18] Gergely Acs, Luca Melis, Claude Castelluccia, and Emiliano De Cristofaro.

Differentially private mixture of generative neural networks. IEEE Transac-

tions on Knowledge and Data Engineering, 2018.

[19] Scott Alfeld, Xiaojin Zhu, and Paul Barford. Data poisoning attacks against

autoregressive models. In AAAI Conference on Artificial Intelligence, 2016.

[20] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J

Lipman. Basic local alignment search tool. Journal of molecular biology, 215

(3):403–410, 1990.

[21] Cambridge Analytica. Facebook–cambridge analytica data scandal, 2018.

URL https://en.wikipedia.org/wiki/Facebook-Cambridge

_Analytica_data_scandal.

[22] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. Privacy-

preserving deep learning via additively homomorphic encryption. IEEE Trans-

actions on Information Forensics and Security, 13(5):1333–1345, 2018.

[23] Masanori Arita. Comma-free design for dna words. Communications of the

ACM, 47(5):99–100, 2004.

[24] Masanori Arita and Yoshiaki Ohashi. Secret signatures inside genomic dna.

Biotechnology progress, 20(5):1605–1607, 2004.

[25] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative

adversarial networks. In Proceedings of the 34th International Conference

159

on Machine Learning, volume 70 of Proceedings of Machine Learning Re-

search, pages 214–223, International Convention Centre, Sydney, Australia,

06–11 Aug 2017. PMLR.

[26] Anish Athalye and Ilya Sutskever. Synthesizing robust adversarial examples.

arXiv preprint arXiv:1707.07397, 2017.

[27] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients

give a false sense of security: Circumventing defenses to adversarial examples.

In International Conference on Machine Learning, 2018.

[28] Ho Bae, Jaehee Jang, Dahuin Jung, Hyemi Jang, Heonseok Ha, and Sun-

groh Yoon. Security and privacy issues in deep learning. arXiv preprint

arXiv:1807.11655, 2018.

[29] Ho Bae, Byunghan Lee, Sunyoung Kwon, and Sungroh Yoon. Dna steganaly-

sis using deep recurrent neural networks. (Accepted) Proceedings of the 24th

Pacific Symposium on Biocomputing, 2019.

[30] Pierre Baldi and Søren Brunak. Bioinformatics: the machine learning ap-

proach. 2001.

[31] Shumeet Baluja. Hiding images in plain sight: Deep steganography. In Ad-

vances in Neural Information Processing Systems, pages 2069–2079, 2017.

[32] Mislav Balunovic and Martin Vechev. Adversarial train-

ing and provable defenses: Bridging the gap. In Interna-

tional Conference on Learning Representations, 2020. URL

https://openreview.net/forum?id=SJxSDxrKDr.

[33] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher

160

Kruegel, and Engin Kirda. Scalable, behavior-based malware clustering. In

NDSS, volume 9, pages 8–11. Citeseer, 2009.

[34] Brett K Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, Ran Lee, San-

jeev P Bhavnani, James Brian Byrd, and Casey S Greene. Privacy-preserving

generative deep neural networks support clinical data sharing. Circulation:

Cardiovascular Quality and Outcomes, 12(7):e005122, 2019.

[35] Marc B Beck, Eric C Rouchka, and Roman V Yampolskiy. Finding data in

dna: computer forensic investigations of living organisms. In International

Conference on Digital Forensics and Cyber Crime, pages 204–219. Springer,

2012.

[36] Marc Bjoern Beck. A forensics software toolkit for dna steganalysis. 2015.

[37] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm

for designing efficient protocols. In Proceedings of the 1st ACM conference

on Computer and communications security, pages 62–73. ACM, 1993.

[38] Yoshua Bengio et al. Learning deep architectures for AI. Foundations and

Trends in Machine Learning, 2(1):1–127, 2009.

[39] Krista Bennett. Linguistic steganography: Survey, analysis, and robustness

concerns for hiding information in text. 2004.

[40] Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web mixes: A sys-

tem for anonymous and unobservable internet access. In Designing privacy

enhancing technologies, pages 115–129. Springer, 2001.

[41] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,

Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against ma-

161

chine learning at test time. In Joint European Conference on Machine Learn-

ing and Knowledge Discovery in Databases, 2013.

[42] Catherine Blake. Uci repository of machine learning databases. http://www.

ics. uci. edu/˜ mlearn/MLRepository. html, 1998.

[43] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konecny, Stefano Mazzoc-

chi, H Brendan McMahan, et al. Towards federated learning at scale: System

design. In Conference on Systems and Machine Learning, 2019.

[44] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved

security for a ring-based fully homomorphic encryption scheme. In IMA In-

ternational Conference on Cryptography and Coding, 2013.

[45] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast

homomorphic evaluation of deep discretized neural networks. In Annual In-

ternational Cryptology Conference, 2018.

[46] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[47] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adver-

sarial attacks: Reliable attacks against black-box machine learning models. In

International Conference on Learning Representations, 2018.

[48] Wieland Brendel, Jonas Rauber, Matthias Kümmerer, Ivan Ustyuzhaninov, and

Matthias Bethge. Accurate, reliable and fast robustness evaluation. In Ad-

vances in Neural Information Processing Systems, pages 12841–12851, 2019.

[49] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spec-

162

tral networks and locally connected networks on graphs. arXiv preprint

arXiv:1312.6203, 2013.

[50] Alon Brutzkus, Oren Elisha, and Ran Gilad-Bachrach. Low latency privacy

preserving inference. arXiv preprint arXiv:1812.10659, 2018.

[51] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermome-

ter encoding: One hot way to resist adversarial examples. In International

Conference on Learning Representations, 2018.

[52] Anna L Buczak and Erhan Guven. A survey of data mining and machine

learning methods for cyber security intrusion detection. IEEE Communica-

tions Surveys & Tutorials, 18(2):1153–1176, 2016.

[53] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifica-

tions, extensions, and lower bounds. In Theory of Cryptography Conference,

2016.

[54] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodol-

ogy, revisited. Journal of the ACM (JACM), 51(4):557–594, 2004.

[55] Nicholas Carlini and David Wagner. Adversarial examples are not easily de-

tected: Bypassing ten detection methods. In 10th ACM Workshop on Artificial

Intelligence and Security, 2017.

[56] Nicholas Carlini and David Wagner. Towards evaluating the robustness of

neural networks. In IEEE Symposium on Security and Privacy, 2017.

[57] Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted

attacks on speech-to-text. In 2018 IEEE Security and Privacy Workshops,

2018.

163

[58] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S

Liang. Unlabeled data improves adversarial robustness. In Advances in Neural

Information Processing Systems, pages 11190–11201, 2019.

[59] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel,

and Emmanuel Prouff. Privacy-preserving classification on deep neural net-

work. IACR Cryptology ePrint Archive, 2017.

[60] Chin-Chen Chang, Tzu-Chuen Lu, Ya-Fen Chang, and RCT Lee. Reversible

data hiding schemes for deoxyribonucleic acid (dna) medium. International

Journal of Innovative Computing, Information and Control, 3(5):1145–1160,

2007.

[61] Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic re-

gression. In Advances in Neural Information Processing Systems, 2009.

[62] David Chaum. The dining cryptographers problem: Unconditional sender and

recipient untraceability. Journal of cryptology, 1(1):65–75, 1988.

[63] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin

Edwards, Taesung Lee, Ian Molloy, and Biplav Srivastava. Detecting back-

door attacks on deep neural networks by activation clustering. arXiv preprint

arXiv:1811.03728, 2018.

[64] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo:

Zeroth order optimization based black-box attacks to deep neural networks

without training substitute models. In 10th ACM Workshop on Artificial Intel-

ligence and Security, 2017.

[65] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted

164

backdoor attacks on deep learning systems using data poisoning. arXiv

preprint arXiv:1712.05526, 2017.

[66] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene.

Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds.

In International Conference on the Theory and Application of Cryptology and

Information Security, 2016.

[67] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase rep-

resentations using rnn encoder-decoder for statistical machine translation. In

Empirical Methods in Natural Language Processing, 2014.

[68] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and

Li Fei-Fei. Faster cryptonets: Leveraging sparsity for real-world encrypted

inference. arXiv preprint arXiv:1811.09953, 2018.

[69] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nico-

las Usunier. Parseval networks: Improving robustness to adversarial examples.

In Proceedings of the 34th International Conference on Machine Learning-

Volume 70, pages 854–863. JMLR. org, 2017.

[70] Catherine Taylor Clelland, Viviana Risca, and Carter Bancroft. Hiding mes-

sages in dna microdots. Nature, 399(6736):533–534, 1999.

[71] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certified adversarial ro-

bustness via randomized smoothing. arXiv preprint arXiv:1902.02918, 2019.

[72] Francis S Collins and Monique K Mansoura. The human genome project:

revealing the shared inheritance of all humankind. Cancer: Interdisciplinary

International Journal of the American Cancer Society, 91(S1):221–225, 2001.

165

[73] Heather J Cordell and David G Clayton. Genetic association studies. The

Lancet, 366(9491):1121–1131, 2005.

[74] Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and anal-

ysis of drive-by-download attacks and malicious javascript code. In Proceed-

ings of the 19th international conference on World wide web, pages 281–290.

ACM, 2010.

[75] Bradley H Crotty and Warner V Slack. Designing online health services for

patients. Israel journal of health policy research, 5(1):22, 2016.

[76] George Danezis. Statistical disclosure attacks: Traffic confirmation in open

environments. In Proceedings of Security and Privacy in the Age of Uncer-

tainty,(SEC2003), pages 421–426.

[77] Hung Dang, Yue Huang, and Ee-Chien Chang. Evading classifiers by mor-

phing in the dark. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, pages 119–133. ACM, 2017.

[78] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark

Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale

distributed deep networks. In Advances in Neural Information Processing Sys-

tems, 2012.

[79] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-

ageNet: A large-scale hierarchical image database. In IEEE Conference on

Computer Vision and Pattern Recognition, 2009.

[80] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bern-

stein, Jean Kossaifi, Aran Khanna, and Anima Anandkumar. Stochastic acti-

166

vation pruning for robust adversarial defense. In International Conference on

Learning Representations, 2018.

[81] Cynthia Dwork. Differential privacy: A survey of results. In International

Conference on Theory and Applications of Models of Computation, 2008.

[82] Cynthia Dwork. Differential privacy. In Encyclopedia of Cryptography and

Security, pages 338–340. Springer, 2011.

[83] Cynthia Dwork and Rebecca Pottenger. Toward practicing privacy. Journal of

the American Medical Informatics Association, 20(1):102–108, 2013.

[84] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential

privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4):

211–407, 2014.

[85] Manuel Egele, Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna.

Compa: Detecting compromised accounts on social networks. In NDSS, 2013.

[86] Yaniv Erlich and Arvind Narayanan. Routes for breaching and protecting ge-

netic privacy. Nature Reviews Genetics, 15(6):409, 2014.

[87] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gard-

ner. Detecting adversarial samples from artifacts. arXiv preprint

arXiv:1703.00410, 2017.

[88] William S Forsyth and Reihaneh Safavi-Naini. Automated cryptanalysis of

substitution ciphers. Cryptologia, 17(4):407–418, 1993.

[89] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion at-

tacks that exploit confidence information and basic countermeasures. In ACM

SIGSAC Conference on Computer and Communications Security, 2015.

167

[90] Jessica Fridrich. Feature-based steganalysis for jpeg images and its implica-

tions for future design of steganographic schemes. In International Workshop

on Information Hiding, pages 67–81. Springer, 2004.

[91] Jessica Fridrich, Tomáš Pevnỳ, and Jan Kodovskỳ. Statistically undetectable

jpeg steganography: dead ends challenges, and opportunities. In Proceedings

of the 9th workshop on Multimedia & security, pages 3–14. ACM, 2007.

[92] Robert G Gallager. Information theory and reliable communication, volume 2.

Springer, 1968.

[93] Simson L Garfinkel, John M Abowd, and Christian Martindale. Understanding

database reconstruction attacks on public data. 2018.

[94] Ashish Gehani, Thomas LaBean, and John Reif. Dna-based cryptography.

pages 167–188, 2003.

[95] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael

Naehrig, and John Wernsing. Cryptonets: Applying neural networks to en-

crypted data with high throughput and accuracy. In International Conference

on Machine Learning, 2016.

[96] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-

sarial nets. In Advances in Neural Information Processing Systems, 2014.

[97] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[98] Abigail Graese, Andras Rozsa, and Terrance E Boult. Assessing threat of ad-

168

versarial examples on deep neural networks. In IEEE International Conference

on Machine Learning and Applications, 2016.

[99] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and

Patrick McDaniel. On the (statistical) detection of adversarial examples. arXiv

preprint arXiv:1702.06280, 2017.

[100] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets: Identifying

vulnerabilities in the machine learning model supply chain. arXiv preprint

arXiv:1708.06733, 2017.

[101] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron C Courville. Improved training of wasserstein gans. In Advances in

Neural Information Processing Systems, pages 5767–5777, 2017.

[102] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der

Maaten. Countering adversarial images using input transformations.

In International Conference on Learning Representations, 2018. URL

https://openreview.net/forum?id=SyJ7ClWCb.

[103] Chuan Guo, Jacob R Gardner, Yurong You, Andrew Gordon Wilson, and

Kilian Q Weinberger. Simple black-box adversarial attacks. arXiv preprint

arXiv:1905.07121, 2019.

[104] George W Hart. To decode short cryptograms. Communications of the ACM,

37(9):102–108, 1994.

[105] Sam Hasinoff. Solving substitution ciphers. Department of Computer Science,

University of Toronto, Tech. Rep, 2003.

169

[106] Jamie Hayes and George Danezis. Generating steganographic images via ad-

versarial training. In Advances in Neural Information Processing Systems,

pages 1954–1963, 2017.

[107] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro. Lo-

gan: Membership inference attacks against generative models. Privacy En-

hancing Technologies, 2019(1):133–152, 2019.

[108] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In IEEE Conference on Computer Vision and

Pattern Recognition, 2016.

[109] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. Ad-

versarial example defense: Ensembles of weak defenses are not strong. In

USENIX Workshop on Offensive Technologies, 2017.

[110] Dominik Heider and Angelika Barnekow. Dna-based watermarks using the

dna-crypt algorithm. BMC bioinformatics, 8(1):1, 2007.

[111] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg

Schwenk. Scriptless attacks: stealing the pie without touching the sill. In

Proceedings of the 2012 ACM conference on Computer and communications

security, pages 760–771. ACM, 2012.

[112] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the ro-

bustness of a classifier against adversarial manipulation. In Advances in Neu-

ral Information Processing Systems, pages 2266–2276, 2017.

[113] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. CryptoDL: Deep

neural networks over encrypted data. arXiv preprint arXiv:1711.05189, 2017.

170

[114] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models

under the GAN: Information leakage from collaborative deep learning. In In

ACM SIGSAC Conference on Computer and Communications Security, 2017.

[115] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

Computation, 9(8):1735–1780, 1997.

[116] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[117] Vojtěch Holub and Jessica Fridrich. Designing steganographic distortion us-

ing directional filters. In 2012 IEEE International workshop on information

forensics and security (WIFS), pages 234–239. IEEE, 2012.

[118] Vojtěch Holub, Jessica Fridrich, and Tomáš Denemark. Universal distortion

function for steganography in an arbitrary domain. EURASIP Journal on In-

formation Security, 2014(1):1, 2014.

[119] Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav

Tembe, Jill Muehling, John V Pearson, Dietrich A Stephan, Stanley F Nelson,

and David W Craig. Resolving individuals contributing trace amounts of dna

to highly complex mixtures using high-density snp genotyping microarrays.

PLoS Genet, 4(8):e1000167, 2008.

[120] Shengyuan Hu, Tao Yu, Chuan Guo, Wei-Lun Chao, and Kilian Q Weinberger.

A new defense against adversarial images: Turning a weakness into a strength.

In Advances in Neural Information Processing Systems, pages 1633–1644,

2019.

[121] Weiwei Hu and Ying Tan. Generating adversarial malware examples for black-

box attacks based on gan. arXiv preprint arXiv:1702.05983, 2017.

171

[122] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten.

Densely connected convolutional networks. In IEEE Conference on Computer

Vision and Pattern Recognition, 2017.

[123] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter

Abbeel. Adversarial attacks on neural network policies. arXiv preprint

arXiv:1702.02284, 2017.

[124] Andrew Ilyas, Logan Engstrom, Anish Athalye, Jessy Lin, Anish Athalye, Lo-

gan Engstrom, Andrew Ilyas, and Kevin Kwok. Black-box adversarial attacks

with limited queries and information. In 35th International Conference on

Machine Learning, 2018.

[125] Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions:

Black-box adversarial attacks with bandits and priors. In International Con-

ference on Learning Representations, number 2019, 2019.

[126] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon

Tran, and Aleksander Madry. Adversarial examples are not bugs, they are

features. In Advances in Neural Information Processing Systems, 2019.

[127] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

[128] Saiful Islam, Mangat R Modi, and Phalguni Gupta. Edge-based image

steganography. EURASIP Journal on Information Security, 2014(1):8, 2014.

[129] Jiyong Jang, David Brumley, and Shobha Venkataraman. Bitshred: feature

hashing malware for scalable triage and semantic analysis. In Proceedings of

172

the 18th ACM conference on Computer and communications security, pages

309–320. ACM, 2011.

[130] James Jordon, Jinsung Yoon, and Mihaela van der Schaar. Pate-gan: Generat-

ing synthetic data with differential privacy guarantees. 2018.

[131] Dahuin Jung, Ho Bae, Hyun-Soo Choi, and Sungroh Yoon. Pixelsteganalysis:

Pixel-wise hidden information removal with low visual degradation. arXiv

preprint arXiv:1902.10905, 2019.

[132] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. Gazelle:

A low latency framework for secure neural network inference. In 27th USENIX

Security Symposium, 2018.

[133] Georgios Kakavelakis and Joel Young. Auto-learning of smtp tcp transport-

layer features for spam and abusive message detection. In LISA, pages 18–18,

2011.

[134] Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit pair-

ing. arXiv preprint arXiv:1803.06373, 2018.

[135] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architec-

ture for generative adversarial networks. arXiv preprint arXiv:1812.04948,

2018.

[136] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.

Reluplex: An efficient SMT solver for verifying deep neural networks. In

International Conference on Computer Aided Verification, 2017.

[137] Stefan Katzenbeisser and Fabien Petitcolas. Information hiding techniques for

steganography and digital watermarking. 2000.

173

[138] Hadas Keren, Galit Lev-Maor, and Gil Ast. Alternative splicing and evolution:

diversification, exon definition and function. Nature Reviews Genetics, 11(5):

345–355, 2010.

[139] Hui Kwon Kim, Seonwoo Min, Myungjae Song, Soobin Jung, Jae Woo Choi,

Younggwang Kim, Sangeun Lee, Sungroh Yoon, and Hyongbum Henry Kim.

Deep learning improves prediction of crispr–cpf1 guide rna activity. Nature

biotechnology, 36(3):239, 2018.

[140] Jinkyu Kim, Seunghak Yu, Byonghyo Shim, Hanjoo Kim, Hyeyoung Min,

Eui-Young Chung, Rhiju Das, and Sungroh Yoon. A robust peak detection

method for rna structure inference by high-throughput contact mapping. Bioin-

formatics, 25(9):1137–1144, 2009.

[141] Jinkyu Kim, Heonseok Ha, Byung-Gon Chun, Sungroh Yoon, and Sang K

Cha. Collaborative analytics for data silos. pages 743–754, 2016.

[142] Younhee Kim, Zoran Duric, and Dana Richards. Modified matrix encoding

technique for minimal distortion steganography. In International Workshop

on Information Hiding, pages 314–327. Springer, 2006.

[143] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[144] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[145] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[146] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume

174

Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-

nieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neu-

ral networks. Proceedings of the national academy of sciences, 114(13):3521–

3526, 2017.

[147] Pang Wei Koh and Percy Liang. Understanding black-box predictions via

influence functions. In 34th International Conference on Machine Learning,

2017.

[148] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik.

Federated optimization: Distributed machine learning for on-device intelli-

gence. arXiv preprint arXiv:1610.02527, 2016.

[149] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in Neural Informa-

tion Processing Systems, 2012.

[150] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine

learning at scale. arXiv preprint arXiv:1611.01236, 2016.

[151] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples

in the physical world. In Artificial Intelligence Safety and Security, pages 99–

112. Chapman and Hall/CRC, 2018.

[152] Cassidy Laidlaw and Soheil Feizi. Functional adversarial attacks. In Advances

in Neural Information Processing Systems, pages 10408–10418, 2019.

[153] Pavel Laskov and Nedim Šrndić. Static detection of malicious javascript-

bearing pdf documents. In Proceedings of the 27th annual computer security

applications conference, pages 373–382. ACM, 2011.

175

[154] Pavel Laskov et al. Practical evasion of a learning-based classifier: A case

study. In IEEE Symposium on Security and Privacy, 2014.

[155] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit

database, 2010. URL http://yann.lecun.com/exdb/mnist.

[156] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436, 2015.

[157] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Effi-

cient backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer,

2012.

[158] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and

Suman Jana. Certified robustness to adversarial examples with differential pri-

vacy. In 2019 IEEE Symposium on Security and Privacy (SP), pages 656–672.

IEEE, 2019.

[159] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolu-

tional deep belief networks for scalable unsupervised learning of hierarchical

representations. In 26th Annual International Conference on Machine Learn-

ing, 2009.

[160] Seil Lee, Hanjoo Kim, Jaehong Park, Jaehee Jang, Chang-Sung Jeong, and

Sungroh Yoon. TensorLightning: A traffic-efficient distributed deep learning

on commodity spark clusters. IEEE Access, 2018.

[161] André Leier, Christoph Richter, Wolfgang Banzhaf, and Hilmar Rauhe. Cryp-

tography with dna binary strands. Biosystems, 57(1):13–22, 2000.

[162] Juncheng Li, Frank Schmidt, and Zico Kolter. Adversarial camera stickers:

176

A physical camera-based attack on deep learning systems. In International

Conference on Machine Learning, pages 3896–3904, 2019.

[163] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,

Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling

distributed machine learning with the parameter server. In Symposium on Op-

erating Systems Design and Implementation, 2014.

[164] Shaofeng Li, Benjamin Zi Hao Zhao, Jiahao Yu, Minhui Xue, Dali Kaafar, and

Haojin Zhu. Invisible backdoor attacks against deep neural networks. arXiv

preprint arXiv:1909.02742, 2019.

[165] Guangjie Liu, Zhan Zhang, and Yuewei Dai. Improved lsb-matching steganog-

raphy for preserving second-order statistics. Journal of Multimedia, 5(5):458,

2010.

[166] Jian Liu, Mika Juuti, Yao Lu, and N Asokan. Oblivious neural network pre-

dictions via MiniONN transformations. In ACM SIGSAC Conference on Com-

puter and Communications Security, 2017.

[167] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defend-

ing against backdooring attacks on deep neural networks. In International

Symposium on Research in Attacks, Intrusions, and Defenses, 2018.

[168] Kun Liu, Hillol Kargupta, and Jessica Ryan. Random projection-based mul-

tiplicative data perturbation for privacy preserving distributed data mining.

IEEE Transactions on knowledge and Data Engineering, 18(1):92–106, 2005.

[169] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into

transferable adversarial examples and black-box attacks. arXiv preprint

arXiv:1611.02770, 2016.

177

[170] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang

Wang, and Xiangyu Zhang. Trojaning attack on neural networks. In 25th

Annual Network and Distributed System Security Symposium, 2018.

[171] David J Lockhart and Elizabeth A Winzeler. Genomics, gene expression and

dna arrays. Nature, 405(6788):827–836, 2000.

[172] David Lopez-Paz et al. Gradient episodic memory for continual learning. In

Advances in Neural Information Processing Systems, pages 6467–6476, 2017.

[173] Gilles Louppe, Michael Kagan, and Kyle Cranmer. Learning to pivot with

adversarial networks. In Advances in neural information processing systems,

pages 981–990, 2017.

[174] Michael Lucks. A constraint satisfaction algorithm for the automated decryp-

tion of simple substitution ciphers. In Conference on the Theory and Applica-

tion of Cryptography, pages 132–144. Springer, 1988.

[175] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema,

Michael E Houle, Grant Schoenebeck, Dawn Song, and James Bailey. Char-

acterizing adversarial subspaces using local intrinsic dimensionality. arXiv

preprint arXiv:1801.02613, 2018.

[176] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.

Journal of Machine Learning Research, 9(Nov):2579–2605, 2008.

[177] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,

and Adrian Vladu. Towards deep learning models resistant to adversarial at-

tacks. arXiv preprint arXiv:1706.06083, 2017.

[178] Davide Maiorca, Igino Corona, and Giorgio Giacinto. Looking at the bag is

178

not enough to find the bomb: an evasion of structural methods for malicious

pdf files detection. In Proceedings of the 8th ACM SIGSAC symposium on

Information, computer and communications security, pages 119–130. ACM,

2013.

[179] DAVIDE MAIORCA, BATTISTA BIGGIO, and GIORGIO GIACINTO. To-

wards adversarial malware detection: Lessons learned from pdf-based attacks.

arXiv preprint arXiv:1811.00830, 2018.

[180] Indra Kanta Maitra. Digital steganalysis: Review on recent approaches. Jour-

nal of Global Research in Computer Science, 2(1), 2011.

[181] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. Communication-efficient learning of deep networks

from decentralized data. In 20th International Conference on Artificial Intel-

ligence and Statistics, 2017.

[182] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning

differentially private recurrent language models. In International Conference

on Learning Representations, 2018.

[183] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against ad-

versarial examples. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, pages 135–147, 2017.

[184] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training

methods for GANs do actually converge? In Proceedings of the 35th Inter-

national Conference on Machine Learning, volume 80 of Proceedings of Ma-

chine Learning Research, pages 3481–3490, Stockholmsmässan, Stockholm

Sweden, 10–15 Jul 2018. PMLR.

179

[185] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On

detecting adversarial perturbations. In International Conference on Learning

Representations, 2017.

[186] Ban Ahmed Mitras and AK Abo. Proposed steganography approach using

dna properties. International Journal of Information Technology and Business

Management, 14(1):96–102, 2013.

[187] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.

Spectral normalization for generative adversarial networks. In In-

ternational Conference on Learning Representations, 2018. URL

https://openreview.net/forum?id=B1QRgziT-.

[188] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Vir-

tual adversarial training: a regularization method for supervised and semi-

supervised learning. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 41(8):1979–1993, 2018.

[189] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable

privacy-preserving machine learning. In IEEE Symposium on Security and

Privacy, 2017.

[190] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal

Frossard. Universal adversarial perturbations. In IEEE Conference on Com-

puter Vision and Pattern Recognition, 2017.

[191] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice,

Vasin Wongrassamee, Emil C Lupu, and Fabio Roli. Towards poisoning of

deep learning algorithms with back-gradient optimization. In ACM Workshop

on Artificial Intelligence and Security, 2017.

180

[192] Luis Muñoz-González, Bjarne Pfitzner, Matteo Russo, Javier Carnerero-Cano,

and Emil C Lupu. Poisoning attacks with generative adversarial nets. arXiv

preprint arXiv:1906.07773, 2019.

[193] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In Proceedings of the 27th international conference on

machine learning (ICML-10), pages 807–814, 2010.

[194] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Li-

hui Chen, Yang Liu, and Shantanu Jaiswal. graph2vec: Learning distributed

representations of graphs. arXiv preprint arXiv:1707.05005, 2017.

[195] Peter Ney, Karl Koscher, Lee Organick, Luis Ceze, and Tadayoshi Kohno.

Computer security, privacy, and {DNA} sequencing: Compromising comput-

ers with synthesized {DNA}, privacy leaks, and more. In 26th {USENIX}

Security Symposium ({USENIX} Security 17), pages 765–779, 2017.

[196] Michiel O Noordewier, Geoffrey G Towell, and Jude W Shavlik. Training

knowledge-based neural networks to recognize genes in dna sequences. Ad-

vances in neural information processing systems, 3:530–536, 1991.

[197] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image

synthesis with auxiliary classifier gans. In Proceedings of the 34th Interna-

tional Conference on Machine Learning-Volume 70, pages 2642–2651. JMLR.

org, 2017.

[198] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recur-

rent neural networks. In 33rd International Conference on Machine Learning,

2016.

181

[199] Bristena Oprisanu and Emilliano De Cristofaro. Anonimme: Bringing

anonymity to the matchmaker exchange platform for rare disease gene dis-

covery. bioRxiv, page 262295, 2018.

[200] Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu. Towards robust detec-

tion of adversarial examples. In Advances in Neural Information Processing

Systems, pages 4579–4589, 2018.

[201] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in

machine learning: From phenomena to black-box attacks using adversarial

samples. arXiv preprint arXiv:1605.07277, 2016.

[202] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson,

Z. Berkay Celik, and Ananthram Swami. The limitations of deep learning in

adversarial settings. In IEEE European Symposium on Security and Privacy,

2016.

[203] Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Ananthram

Swami. Distillation as a defense to adversarial perturbations against deep neu-

ral networks. In IEEE Symposium on Security and Privacy, 2016.

[204] Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal

Talwar. Semi-supervised knowledge transfer for deep learning from private

training data. In International Conference on Learning Representations, 2017.

[205] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha,

Z. Berkay Celik, and Ananthram Swami. Practical black-box attacks against

machine learning. In Asia Conference on Computer and Communications Se-

curity, 2017.

182

[206] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal

Talwar, and Úlfar Erlingsson. Scalable private learning with PATE. In 6th

International Conference on Learning Representations, 2018.

[207] Andrea Paudice, Luis Muñoz-González, Andras Gyorgy, and Emil C Lupu.

Detection of adversarial training examples in poisoning attacks through

anomaly detection. arXiv preprint arXiv:1802.03041, 2018.

[208] Andrea Paudice, Luis Muñoz-González, and Emil C Lupu. Label sanitization

against label flipping poisoning attacks. In Joint European Conference on

Machine Learning and Knowledge Discovery in Databases, 2018.

[209] Shmuel Peleg and Azriel Rosenfeld. Breaking substitution ciphers using a

relaxation algorithm. Communications of the ACM, 22(11):598–605, 1979.

[210] Tomáš Pevnỳ, Tomáš Filler, and Patrick Bas. Using high-dimensional image

models to perform highly undetectable steganography. In International Work-

shop on Information Hiding, pages 161–177. Springer, 2010.

[211] NhatHai Phan, Yue Wang, Xintao Wu, and Dejing Dou. Differential privacy

preservation for deep auto-encoders: an application of human behavior predic-

tion. In AAAI Conference on Artificial Intelligence, 2016.

[212] NhatHai Phan, Xintao Wu, and Dejing Dou. Preserving differential privacy

in convolutional deep belief networks. Machine Learning, 106(9-10):1681–

1704, 2017.

[213] Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy

Dvijotham, Alhussein Fawzi, Soham De, Robert Stanforth, and Pushmeet

Kohli. Adversarial robustness through local linearization. In Advances in

Neural Information Processing Systems, pages 13824–13833, 2019.

183

[214] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses

against adversarial examples. In International Conference on Learning Rep-

resentations, 2018.

[215] Moheeb Abu Rajab, Lucas Ballard, Noé Lutz, Panayiotis Mavrommatis, and

Niels Provos. Camp: Content-agnostic malware protection. 2013.

[216] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: To-

wards real-time object detection with region proposal networks. In Advances

in Neural Information Processing Systems, 2015.

[217] Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial ro-

bustness and interpretability of deep neural networks by regularizing their in-

put gradients. In Thirty-second AAAI Conference on Artificial Intelligence,

2018.

[218] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. Deepsecure:

Scalable provably-secure deep learning. In 5th ACM/ESDA/IEEE Design Au-

tomation Conference, 2018.

[219] L Jerlin Rubini and P Eswaran. Generating comparative analysis of early stage

prediction of chronic kidney disease. International Journal of Modern Engi-

neering Research (IJMER), 5(7):49–55, 2015.

[220] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation

based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1-4):

259–268, 1992.

[221] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer,

James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.

Progressive neural networks. arXiv preprint arXiv:1606.04671, 2016.

184

[222] Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Mancuso,

Daniel Rueckert, and Jonathan Passerat-Palmbach. A generic framework for

privacy preserving deep learning. arXiv preprint arXiv:1811.04017, 2018.

[223] Leena Salmela. Correction of sequencing errors in a mixed set of reads. Bioin-

formatics, 26(10):1284–1290, 2010.

[224] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-GAN: Pro-

tecting classifiers against adversarial attacks using generative models. In In-

ternational Conference on Learning Representations, 2018.

[225] Sriram Sankararaman, Guillaume Obozinski, Michael I Jordan, and Eran

Halperin. Genomic privacy and limits of individual detection in a pool. Nature

genetics, 41(9):965, 2009.

[226] Amartya Sanyal, Matt J Kusner, Adrià Gascón, and Varun Kanade. TAPAS:

Tricks to accelerate (encrypted) prediction as a service. In International Con-

ference in Machine Learning, 2018.

[227] Joshua Saxe and Konstantin Berlin. Deep neural network based malware de-

tection using two dimensional binary program features. In 2015 10th Interna-

tional Conference on Malicious and Unwanted Software (MALWARE), pages

11–20. IEEE, 2015.

[228] Robert E Schapire, Yoav Freund, Peter Bartlett, Wee Sun Lee, et al. Boosting

the margin: A new explanation for the effectiveness of voting methods. The

annals of statistics, 26(5):1651–1686, 1998.

[229] Johannes Schlumberger, Christopher Kruegel, and Giovanni Vigna. Jarhead

analysis and detection of malicious java applets. In Proceedings of the 28th

185

Annual Computer Security Applications Conference, pages 249–257. ACM,

2012.

[230] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and

Aleksander Madry. Adversarially robust generalization requires more data. In

Advances in Neural Information Processing Systems, pages 5014–5026, 2018.

[231] Stephan C Schuster. Next-generation sequencing transforms today’s biology.

Nature methods, 5(1):16, 2007.

[232] Hovav Shacham et al. The geometry of innocent flesh on the bone: return-into-

libc without function calls (on the x86). In ACM conference on Computer and

communications security, pages 552–561. New York, 2007.

[233] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph

Studer, Tudor Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label

poisoning attacks on neural networks. In S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural In-

formation Processing Systems, 2018.

[234] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. Ac-

cessorize to a crime: Real and stealthy attacks on state-of-the-art face recog-

nition. In ACM SIGSAC Conference on Computer and Communications Secu-

rity, 2016.

[235] Haichao Shi, Jing Dong, Wei Wang, Yinlong Qian, and Xiaoyu Zhang. Ssgan:

Secure steganography based on generative adversarial networks. In Pacific

Rim Conference on Multimedia, pages 534–544. Springer, 2017.

[236] Benjamin Shickel, Patrick Tighe, Azra Bihorac, and Parisa Rashidi. Deep

EHR: A survey of recent advances on deep learning techniques for electronic

186

health record (EHR) analysis. Journal of Biomedical and Health Informatics,

2017.

[237] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning

with deep generative replay. In Advances in Neural Information Processing

Systems, pages 2990–2999, 2017.

[238] Seth L Shipman, Jeff Nivala, Jeffrey D Macklis, and George M Church.

Crispr–cas encoding of a digital movie into the genomes of a population of

living bacteria. Nature, 547(7663):345, 2017.

[239] HJ Shiu, Ka-Lok Ng, Jywe-Fei Fang, Richard CT Lee, and Chien-Hung

Huang. Data hiding methods based upon dna sequences. Information Sci-

ences, 180(11):2196–2208, 2010.

[240] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In 22nd

ACM SIGSAC Conference on Computer and Communications Security, 2015.

[241] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Mem-

bership inference attacks against machine learning models. In IEEE Sympo-

sium on Security and Privacy, 2017.

[242] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Mem-

bership inference attacks against machine learning models. In IEEE Sympo-

sium on Security and Privacy, 2017.

[243] Sean Simmons and Bonnie Berger. One size doesn’t fit all: measuring individ-

ual privacy in aggregate genomic data. 2015:41, 2015.

[244] Sean Simmons, Bonnie Berger, and Cenk Sahinalp. Protecting genomic data

privacy with probabilistic modeling. 24:403–414, 2019.

187

[245] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifiable distributional

robustness with principled adversarial training. stat, 1050:29, 2017.

[246] Charles Smutz and Angelos Stavrou. Malicious pdf detection using metadata

and structural features. In Proceedings of the 28th annual computer security

applications conference, pages 239–248. ACM, 2012.

[247] Charles Smutz and Angelos Stavrou. When a tree falls: Using diversity in

ensemble classifiers to identify evasion in malware detectors. In NDSS, 2016.

[248] Congzheng Song and Vitaly Shmatikov. The natural auditor: How to

tell if someone used your words to train their model. arXiv preprint

arXiv:1811.00513, 2018.

[249] Li Song, Liliana Florea, and Ben Langmead. Lighter: fast and memory-

efficient sequencing error correction without counting. Genome biology, 15

(11):509, 2014.

[250] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kush-

man. Pixeldefend: Leveraging generative models to understand and defend

against adversarial examples. In International Conference on Machine Learn-

ing, 2017.

[251] Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon. Constructing unre-

stricted adversarial examples with generative models. In Advances in Neural

Information Processing Systems, 2018.

[252] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. Dropout: a simple way to prevent neural networks from

overfitting. The Journal of Machine Learning Research, 15(1):1929–1958,

2014.

188

[253] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised

learning of video representations using lstms. In ICML, pages 843–852, 2015.

[254] Nedim Šrndic and Pavel Laskov. Detection of malicious pdf files based on

hierarchical document structure. In Proceedings of the 20th Annual Network

& Distributed System Security Symposium, pages 1–16. Citeseer, 2013.

[255] Nedim Šrndić and Pavel Laskov. Hidost: a static machine-learning-based de-

tector of malicious files. EURASIP Journal on Information Security, 2016(1):

22, 2016.

[256] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses

for data poisoning attacks. In Advances in Neural Information Processing

Systems, 2017.

[257] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. Shady paths:

Leveraging surfing crowds to detect malicious web pages. In Proceedings of

the 2013 ACM SIGSAC conference on Computer & communications security,

pages 133–144. ACM, 2013.

[258] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel at-

tack for fooling deep neural networks. IEEE Transactions on Evolutionary

Computation, 23(5):828–841, 2019.

[259] Johan AK Suykens and Joos Vandewalle. Least squares support vector ma-

chine classifiers. Neural processing letters, 9(3):293–300, 1999.

[260] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural net-

works. arXiv preprint arXiv:1312.6199, 2013.

189

[261] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan

Boneh, and Patrick McDaniel. Ensemble adversarial training: Attacks and

defenses. In International Conference on Learning Representations, 2019.

[262] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in back-

door attacks. In Advances in Neural Information Processing Systems, 2018.

[263] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. s. 2018.

[264] Mohammad Faisal Uddin and Amr M Youssef. An artificial life technique for

the cryptanalysis of simple substitution ciphers. In 2006 Canadian Conference

on Electrical and Computer Engineering, pages 1582–1585. IEEE, 2006.

[265] Jonathan Uesato, Brendan O’Donoghue, Pushmeet Kohli, and Aaron Oord.

Adversarial risk and the dangers of evaluating against weak attacks. In Inter-

national Conference on Machine Learning, 2018.

[266] Michael Veale, Reuben Binns, and Lilian Edwards. Algorithms that remember:

model inversion attacks and data protection law. Philosophical Transactions

of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376

(2133):20180083, 2018.

[267] Isabel Wagner and David Eckhoff. Technical privacy metrics: a systematic

survey. ACM Computing Surveys (CSUR), 51(3):57, 2018.

[268] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath,

Haitao Zheng, and Ben Y Zhao. Neural cleanse: Identifying and mitigating

backdoor attacks in neural networks. In 40th IEEE Symposium on Security

and Privacy.

[269] Chang Wang and Jiangqun Ni. An efficient jpeg steganographic scheme based

190

on the block entropy of dct coefficients. In 2012 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), pages 1785–1788.

IEEE, 2012.

[270] Qinglong Wang, Wenbo Guo, II Ororbia, G Alexander, Xinyu Xing, Lin Lin,

C Lee Giles, Xue Liu, Peng Liu, and Gang Xiong. Using non-invertible

data transformations to build adversary-resistant deep neural networks. arXiv

preprint arXiv:1610.01934, 2016.

[271] Andreas Westfeld. F5—a steganographic algorithm. In International work-

shop on information hiding, pages 289–302. Springer, 2001.

[272] Andreas Westfeld and Andreas Pfitzmann. Attacks on steganographic sys-

tems. In International workshop on information hiding, pages 61–76. Springer,

1999.

[273] Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. Natural

evolution strategies. In IEEE Congress on Evolutionary Computation, 2008.

[274] Eric Wong and Zico Kolter. Provable defenses against adversarial examples

via the convex outer adversarial polytope. In International Conference on

Machine Learning, 2018.

[275] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling

provable adversarial defenses. In Advances in Neural Information Processing

Systems, pages 8400–8409, 2018.

[276] Pak Chung Wong, Kwong-kwok Wong, and Harlan Foote. Organic data mem-

ory using the dna approach. Communications of the ACM, 46(1):95–98, 2003.

[277] Pin Wu, Yang Yang, and Xiaoqiang Li. Stegnet: Mega image steganography

191

capacity with deep convolutional network. arXiv preprint arXiv:1806.06357,

2018.

[278] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and

Dawn Song. Spatially transformed adversarial examples. arXiv preprint

arXiv:1801.02612, 2018.

[279] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Miti-

gating adversarial effects through randomization. In International Conference

on Learning Representations, 2018.

[280] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming

He. Feature denoising for improving adversarial robustness. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages

501–509, 2019.

[281] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou.

Differentially private generative adversarial network. arXiv preprint

arXiv:1802.06739, 2018.

[282] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou.

Differentially private generative adversarial network. arXiv preprint

arXiv:1802.06739, 2018.

[283] Weilin Xu, Yanjun Qi, and David Evans. Automatically evading classifiers. In

Network and Distributed Systems Symposium, 2016.

[284] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adver-

sarial examples in deep neural networks. arXiv preprint arXiv:1704.01155,

2017.

192

[285] Chen Yan, X Wenyuan, and Jianhao Liu. Can you trust autonomous vehicles:

Contactless attacks against sensors of self-driving vehicle. In DEF CON 24

Hacking Conference, 2016.

[286] Shu Yan, Fan Chen, and Hongjie He. Improved separable reversible data hid-

ing in encrypted image based on neighborhood prediction. In International

Conference on Cloud Computing and Security, pages 94–103. Springer, 2016.

[287] Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen. Generative poisoning attack

method against neural networks. arXiv preprint arXiv:1703.01340, 2017.

[288] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual

Symposium on Foundations of Computer Science, 1986.

[289] Chong Yu. Integrated steganography and steganalysis with generative adver-

sarial networks. 2018.

[290] Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and Stacey Truex. Differ-

entially private model publishing for deep learning. In Differentially Private

Model Publishing for Deep Learning, 2019.

[291] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. Droid-sec:

deep learning in android malware detection. In ACM SIGCOMM Computer

Communication Review, volume 44, pages 371–372. ACM, 2014.

[292] Elias A Zerhouni and Elizabeth G Nabel. Protecting aggregate genomic data.

Science, 322(5898):44–44, 2008.

[293] Haichao Zhang and Jianyu Wang. Defense against adversarial attacks using

feature scattering-based adversarial training. In Advances in Neural Informa-

tion Processing Systems, pages 1829–1839, 2019.

193

[294] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui,

and Michael I Jordan. Theoretically principled trade-off between robustness

and accuracy. arXiv preprint arXiv:1901.08573, 2019.

[295] Xinpeng Zhang, Jing Long, Zichi Wang, and Hang Cheng. Lossless and re-

versible data hiding in encrypted images with public-key cryptography. IEEE

Transactions on Circuits and Systems for Video Technology, 26(9):1622–1631,

2016.

[296] Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural adversarial

examples. In International Conference on Learning Representations, 2018.

[297] Xiaoyong Zhou, Bo Peng, Yong Fuga Li, Yangyi Chen, Haixu Tang, and Xi-

aoFeng Wang. To release or not to release: evaluating information leaks in

aggregate human-genome data. pages 607–627, 2011.

[298] Chen Zhu, W Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer,

and Tom Goldstein. Transferable clean-label poisoning attacks on deep neural

nets. In International Conference on Machine Learning, 2019.

[299] Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data

with deep networks. In Proceedings of the European Conference on Computer

Vision (ECCV), pages 657–672, 2018.

194

Abstract

인공지능 모델을 사용하기 위해서는 개인별 데이터 수집이 필수적이다. 반면

개인의민감한데이터가유출되는경우에는프라이버시침해의소지가있다.인공

지능모델을사용하는데수집된데이터가외부에유출되지않도록하거나,익명화,

부호화등의보안기법을인공지능모델에적용하는분야를 Private AI로분류할수

있다.또한인공지능모델이노출될경우지적소유권이무력화될수있는문제점

과,악의적인학습데이터를이용하여인공지능시스템을오작동할수있고이러한

인공지능모델자체에대한위협은 Secure AI로분류할수있다.

본논문에서는학습데이터에대한공격을기반으로신경망의결손사례를보

여준다. 기존의 AEs 연구들은 이미지를 기반으로 많은 연구가 진행되었다. 보다

복잡한 heterogenous한 PDF 데이터로 연구를 확장하여 generative 기반의 모델을

제안하여공격샘플을생성하였다.다음으로이상패턴을보이는샘플을검출할수

있는 DNA steganalysis방어모델을제안한다.마지막으로개인정보보호를위해

generative모델기반의익명화기법들을제안한다.

요약하면본논문은인공지능모델을활용한공격및방어알고리즘과신경망

을활용하는데발생되는프라이버시이슈를해결할수있는기계학습알고리즘에

기반한일련의방법론을제안한다.

keywords:기계학습,심층학습,신경망,인공지능보안,데이터익명화

student number: 2016-37982

	1 Introduction
	2 Background
	2.1 Deep Learning: a brief overview
	2.2 Security Attacks on Deep Learning Models
	2.2.1 Evasion Attacks .
	2.2.2 Poisoning Attack .

	2.3 Defense Techniques Against Deep Learning Models
	2.3.1 Defense Techniques against Evasion Attacks
	2.3.2 Defense against Poisoning Attacks

	2.4 Privacy issues on Deep Learning Models
	2.4.1 Attacks on Privacy .
	2.4.2 Defenses Against Attacks on Privacy

	3 Attacks on Deep Learning Models
	3.1 Background .
	3.1.1 Threat Model .
	3.1.2 Portable Document Format (PDF)
	3.1.3 PDF Malware Classifiers
	3.1.4 Evasion Attacks .

	3.2 Methods .
	3.2.1 Feature Extraction .
	3.2.2 Feature Selection Process
	3.2.3 Seed Selection for Mutation
	3.2.4 Evading Model .
	3.2.5 Model architecture .
	3.2.6 PDF Repacking and Verification

	3.3 Results .
	3.3.1 Datasets and Model Training
	3.3.2 Target Classifiers .
	3.3.3 CVEs for Various Types of PDF Malware
	3.3.4 Malicious Signature .
	3.3.5 AntiVirus Engines (VirusTotal)
	3.3.6 Feature Mutation Result for Contagio
	3.3.7 Feature Mutation Result for CVEs
	3.3.8 Malicious Signature Verification
	3.3.9 Evasion Speed .
	3.3.10 AntiVirus Engines (VirusTotal) Result

	3.4 Discussion .

	4 Defense on Deep Learning Models
	4.1 Background .
	4.1.1 Message-Hiding Regions
	4.1.2 DNA Steganography .
	4.1.3 Example of Message Hiding
	4.1.4 DNA Steganalysis .

	4.2 Methods .
	4.2.1 Notations .
	4.2.2 Proposed Model Architecture

	4.3 Results .
	4.3.1 Experiment Setup .
	4.3.2 Environment .
	4.3.3 Dataset .
	4.3.4 Model Training .
	4.3.5 Message Hiding Procedure
	4.3.6 Evaluation Procedure .
	4.3.7 Performance Comparison
	4.3.8 Analyzing Malicious Code in DNA Sequences

	4.4 Discussion .

	5 Privacy: Generative Models for Anonymizing Private Data
	5.1 Methods .
	5.1.1 Notations .
	5.1.2 Anonymization using GANs
	5.1.3 Security Principle of Anonymized GANs

	5.2 Results .
	5.2.1 Datasets .
	5.2.2 Target Classifiers .
	5.2.3 Model Training .
	5.2.4 Evaluation Process .
	5.2.5 Comparison to Differential Privacy
	5.2.6 Performance Comparison

	5.3 Discussion .

	6 Privacy: Privacy-preserving Inference for Deep Learning Models
	6.1 Methods .
	6.1.1 Motivation .
	6.1.2 Scenario .
	6.1.3 Deep Private Generation Framework
	6.1.4 Security Principle .
	6.1.5 Threat to the Classifier .

	6.2 Results .
	6.2.1 Datasets .
	6.2.2 Experimental Process .
	6.2.3 Target Classifiers .
	6.2.4 Model Training .
	6.2.5 Model Evaluation .
	6.2.6 Performance Comparison

	6.3 Discussion .

	7 Conclusion
	7.0.1 Limitations .
	7.0.2 Future Work .

	Bibliography
	Abstract in Korean

<startpage>19
1 Introduction 1
2 Background 6
 2.1 Deep Learning: a brief overview 6
 2.2 Security Attacks on Deep Learning Models 10
 2.2.1 Evasion Attacks . 12
 2.2.2 Poisoning Attack . 20
 2.3 Defense Techniques Against Deep Learning Models 26
 2.3.1 Defense Techniques against Evasion Attacks 27
 2.3.2 Defense against Poisoning Attacks 36
 2.4 Privacy issues on Deep Learning Models 38
 2.4.1 Attacks on Privacy . 39
 2.4.2 Defenses Against Attacks on Privacy 40
3 Attacks on Deep Learning Models 47
 3.1 Background . 53
 3.1.1 Threat Model . 53
 3.1.2 Portable Document Format (PDF) 55
 3.1.3 PDF Malware Classifiers 57
 3.1.4 Evasion Attacks . 58
 3.2 Methods . 60
 3.2.1 Feature Extraction . 60
 3.2.2 Feature Selection Process 61
 3.2.3 Seed Selection for Mutation 62
 3.2.4 Evading Model . 63
 3.2.5 Model architecture . 67
 3.2.6 PDF Repacking and Verification 67
 3.3 Results . 68
 3.3.1 Datasets and Model Training 68
 3.3.2 Target Classifiers . 71
 3.3.3 CVEs for Various Types of PDF Malware 72
 3.3.4 Malicious Signature . 72
 3.3.5 AntiVirus Engines (VirusTotal) 76
 3.3.6 Feature Mutation Result for Contagio 76
 3.3.7 Feature Mutation Result for CVEs 78
 3.3.8 Malicious Signature Verification 78
 3.3.9 Evasion Speed . 80
 3.3.10 AntiVirus Engines (VirusTotal) Result 82
 3.4 Discussion . 84
4 Defense on Deep Learning Models 88
 4.1 Background . 90
 4.1.1 Message-Hiding Regions 91
 4.1.2 DNA Steganography . 92
 4.1.3 Example of Message Hiding 94
 4.1.4 DNA Steganalysis . 95
 4.2 Methods . 96
 4.2.1 Notations . 98
 4.2.2 Proposed Model Architecture 103
 4.3 Results . 105
 4.3.1 Experiment Setup . 105
 4.3.2 Environment . 106
 4.3.3 Dataset . 107
 4.3.4 Model Training . 107
 4.3.5 Message Hiding Procedure 108
 4.3.6 Evaluation Procedure . 109
 4.3.7 Performance Comparison 109
 4.3.8 Analyzing Malicious Code in DNA Sequences 112
 4.4 Discussion . 113
5 Privacy: Generative Models for Anonymizing Private Data 115
 5.1 Methods . 119
 5.1.1 Notations . 119
 5.1.2 Anonymization using GANs 119
 5.1.3 Security Principle of Anonymized GANs 123
 5.2 Results . 125
 5.2.1 Datasets . 125
 5.2.2 Target Classifiers . 126
 5.2.3 Model Training . 126
 5.2.4 Evaluation Process . 126
 5.2.5 Comparison to Differential Privacy 128
 5.2.6 Performance Comparison 128
 5.3 Discussion . 130
6 Privacy: Privacy-preserving Inference for Deep Learning Models 132
 6.1 Methods . 135
 6.1.1 Motivation . 135
 6.1.2 Scenario . 137
 6.1.3 Deep Private Generation Framework 137
 6.1.4 Security Principle . 141
 6.1.5 Threat to the Classifier . 143
 6.2 Results . 143
 6.2.1 Datasets . 143
 6.2.2 Experimental Process . 146
 6.2.3 Target Classifiers . 147
 6.2.4 Model Training . 147
 6.2.5 Model Evaluation . 149
 6.2.6 Performance Comparison 150
 6.3 Discussion . 151
7 Conclusion 153
 7.0.1 Limitations . 154
 7.0.2 Future Work . 155
Bibliography 157
Abstract in Korean 195
</body>

