
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Identifying Malicious URLs: A
Descriptive Pipeline for Analysis and

Implementation

João Pedro Valente Fonseca

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Ricardo Santos Morla

Co-Supervisor: Carlos Novo

October 25, 2022

© João Fonseca, 2022

Abstract

People that use the internet are at constant risk. There are billions of malicious Uniform Resource
Locators (URLs) available online that can steal credentials and download malware into users’
computers. A point can be made that, although there are this many dangerous links, they have a
short life. There are a high number of detection tools that report these cases and take them down.
However, people are too trustworthy, and black hackers have become very creative in ways to
evade detection. Thus, a malicious link can cause much damage in just a few hours online.

Since humans are the weakest link in a system, new ways of protection must be implemented
regularly. This protection method must provide the user with an easy and intuitive mode of inter-
action. The less the complications it provides to the client, the better. For this reason, the goal of
this dissertation was the deployment of said tool online, alongside the construction of a pipeline
that can be used for other diagnosis tools and even other types of detection.

In this work, we describe the requirements that lead to results to keep the community safe from
Phishing and other malicious webpages attacks. The process adopts a classification method, with
its own scale, besides categorizing the type of attack to clear any doubts in the user. Other results
are presented for the same reason, like the IoCs (Indicators of Compromise). The client can then
use these characteristics to report the URL to the responsible authorities if he wants.

In conclusion, this dissertation tackles the problem of malicious website detection while pro-
viding a descriptive analysis of the process. The objective is that, in the future, developers can use
these guidelines to develop or evolve their tools.

i

ii

Resumo

Os fieis utilizadores da internet estão em constante risco. Existem milhares de milhões de Uni-
form Resource Locators (URLs) maliciosos disponíveis online que podem roubar credenciais e
fazer download de malware para os computadores dos utilizadores. Pode-ser afirmar que, apesar
de existirem um número grande de links perigosos, estes têm um vida curta. Estão disponíveis
numerosas ferramentas de deteção para reportar estes casos e eliminá-los. No entanto, as pes-
soas são demasiado confiáveis e os black hackers tornaram-se muito criativos de forma a evitar a
deteção.Assim, uma ligação maliciosa pode causar muitos danos em apenas algumas horas online.

Uma vez que os seres humanos são o elo mais fraco de um sistema, novas formas de proteção
devem ser implementadas regularmente. Este método de proteção deve proporcionar ao utilizador
um modo de interação fácil e intuitivo. Quanto menos as complicações proporcionar ao cliente,
melhor. Por esta razão, o objetivo desta dissertação foi a implementação da referida ferramenta
online, a par da construção de um processo que pode ser utilizado para outras ferramentas de
diagnóstico e até outros tipos de deteção.

Neste trabalho, descrevemos os requisitos que levam a resultados para manter a comunidade
a salvo de ataques de phishing e outras páginas maliciosas. O processo adota um método de
classificação, com escala própria, além de categorizar o tipo de ataque para esclarecer quaisquer
dúvidas no utilizador. Outros resultados são apresentados pela mesma razão, como os IoCs (Indi-
cadores de Compromisso). O cliente pode então utilizar estas características para reportar o URL
às autoridades responsáveis, se assim o quiser.

Em suma, Em conclusão, esta dissertação aborda o problema da deteção maliciosa de sites,
ao mesmo tempo que fornece uma análise descritiva do processo. O objetivo é que, no futuro, os
desenvolvedores possam usar estas diretrizes para desenvolver ou evoluir as suas ferramentas.

iii

iv

Acknowledgments

Gostaria de começar por agradecer aos meus orientadores, Professor Ricardo Morla e Carlos Novo
pelo apoio ao longo deste trabalho. Sei que não foi fácil, mas se este trabalho foi completado foi
devido às reuniões que tivemos ao longo do ano e ao feedback que me permitiu progredir.

Estou eternamente grato ao esforço que os meus pais fizeram ao longo destes anos de curso.
Reconheço perfeitamente que é um privilégio ser estudante do ensino superior e, principalmente,
de uma faculdade como a FEUP. Por isso, não há palavras pelo que eles fizeram por mim. À minha
irmã, que já passou exatamente pelo que estou a experienciar, queria deixar um carinho especial.
Foi o meu maior apoio durante estes anos.

Aos meus amigos tenho que deixar um agradecimento pelos momentos vividos. Há momentos
que passei nesta casa que não seriam capazes de ser vividos noutro sítio. Ao longo destes anos,
a minha vida tem sido dividida entre o percurso académico e a minha vida de basquetebolista
profissional, por isso, não posso passar a oportunidade de agradecer por último a toda a gente que
fez parte destas caminhadas.

João Fonseca

v

vi

“Ars Longa
Vita Brevis”

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 2
1.3 Objectives . 3
1.4 Structure . 3

2 Literature Review 5
2.1 Background . 5

2.1.1 Social Engineering . 5
2.1.2 Phishing . 7

2.2 Blacklisting . 8
2.3 Machine Learning . 8

2.3.1 Web Scrapping and Crawling for Data 9
2.3.2 Machine Learning Detection Techniques 9
2.3.3 Passive Detection Methods . 10
2.3.4 Active Detection Methods . 12

2.4 Rule-based Detection . 13
2.5 Honeypots . 14
2.6 Discussion . 16

3 Requirements and Pipeline Development 17
3.1 Requirements for URL analysis . 17
3.2 Pipeline Overview . 19
3.3 Detection of Private Information . 19
3.4 URL Reputation Score . 23
3.5 Retrieve IoCs information . 24

3.5.1 URL shorteners . 24
3.6 Dynamic Analysis . 25

3.6.1 Low-interaction Honeyclients . 25
3.6.2 Sandbox Environment . 25
3.6.3 Network traffic Analysis . 26

3.7 Discussion . 26

4 Pratical Validation 29
4.1 Website Design and Implementation . 29
4.2 Pipeline Execution . 29

4.2.1 Detection of Private Information . 30
4.2.2 URL Reputation Score . 31

ix

x CONTENTS

4.2.3 Retrieve IoCs information . 32
4.2.4 Dynamic Analysis . 33
4.2.5 Thug Execution . 33
4.2.6 Cuckoo Sandbox . 35
4.2.7 Zeek Network Traffic Analyzer . 36

4.3 Result Interpretation . 37
4.3.1 Case 1: Phishing URL . 38
4.3.2 Case 2: Drive-by Download URL . 40

4.4 Reporting to the user . 41
4.5 Discussion . 42

5 Discussion and Conclusion 45
5.1 Difficulties encountered . 45
5.2 Conclusions . 46
5.3 Future work . 46

References 47

List of Figures

1.1 Online industries most targeted by phishing attacks as of 1st quarter 2022 2

2.1 Mitnick’s Original Social Engineering Attack cycle [1] 6
2.2 AOHell’s Phihsing Configuration Screen [2] . 7
2.3 Phish-IRIS System Flowchart [3] . 13
2.4 PythonHoneyMonkey Work Flow [4] . 15
2.5 Steps in automatic YARA rules generation [5] 15

3.1 Flow chart of the analysis pipeline . 20
3.2 Dynamic Analysis Swimlane . 21

4.1 A screenshot of the analysis webpage . 30
4.2 Output of Hakrawler with the input URL of https://www.jicreative.net/ 30
4.3 Analysis report from VirusTotal . 31
4.4 YALIH execution summary . 32
4.5 List of user agents Thug emulates . 34
4.6 Cuckoo Sandbox GUI . 36
4.7 Cuckoo Sandbox analysis report . 37
4.8 Images captured by Thug . 38
4.9 JSON analysis file . 39
4.10 Signatures of the Cuckoo analysis. 40
4.12 First packet with missing service type . 42
4.13 First packet with missing service type . 43
4.14 Packets that describe the Download of the compressed file 43
4.15 Signatures of the Executable . 43

xi

xii LIST OF FIGURES

List of Tables

2.1 Lexical and Host-based features [6] . 11

3.1 The two main objectives of this thesis and their respective requirements 18

4.1 IoCs classification . 32

xiii

xiv LIST OF TABLES

Abbreviations and Symbols

ANOVA Analysis of Variance
FEUP Faculty of Engineering at University of Porto
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IoC Indicator of Compromise
MISP Malware Information Sharing Platform
ML Machine Learning
OCR Optical Character Recognition
ROC Receiver Operating Characteristic
SVM Support Vector Machine
TF-IDF Term Frequency-Inverse Document Frequency
TLD Top Level Domain
URL Uniform Resource Locator
VM Virtual Machine
XGBoost Extreme Gradient Boosting
YALIH Yet Another Low Interaction Honeyclient
IDS Intrusion Detection System

xv

Chapter 1

Introduction

1.1 Motivation

The Internet has been a fast-growing network that connects all. We are connected not only with

each other but also with our daily activities. Our preferred businesses are now at the distance of a

click, which has facilitated our everyday life, but not without some dangers attached.

Technology keeps evolving to keep people safe and correct systems’ vulnerabilities, but the

most significant risk to systems is people. Staff members are commonly the weakest link of a

system, which is why Blackhat hackers often take advantage of that to acquire unauthorized access

to sensitive information.

Hackers often use a method called Social Engineering to manipulate people into disclosing

confidential information, like Financial credentials, Login credentials, among others. They prey

on trust, stress, and greed to reach their objective, knowingly or unknowingly, to the target. In an

era where Social Media is used to keep people connected with each other, hackers use it to their

advantage, which is why the most pressing cyber attack today is Phishing.

Phishing is a type of Social Engineering attack that can be used for one to a large database

of targets. It has been around since the beggining of the Internet and, in 2019, 32% of all data

breaches involved phishing [7]. It can be used to affect the most various number of industries.

According to the report on Statista [8], the Financial industry was the most targeted in the first

quarter of 2022 (Figure 1.1).

There are various types of phishing attacks (Spear Phishing, Smishing, Vishing), but whatever

the type or medium used, the one thing that most of them have in common is the use of a URL

(Uniform Resource Locator) that usually leads the victim to a malicious webpage imitating a

Legitimate Business page, for example, to steal login credentials (a good example is the various

PayPal phishing scams [9]).

URLs are not only a potent weapon in Phishing. Spam e-mails and Drive-by-download
attacks are other examples. So, with the growing safety concern, while browsing the Internet, the

use of tools, browser plugins, and websites for malicious URL detection has become of the utmost

importance.

1

2 Introduction

Figure 1.1: Online industries most targeted by phishing attacks as of 1st quarter 2022

1.2 Context

There is a race between cybercriminals and cybersecurity specialists. Only this one does not seem

to have an end, and there is a constant change of who is winning. Blackhat hackers’ intentions

behind attacks can or cannot be clear. However, accessing sensitive information or compromising

systems is a common goal. Brute-forcing or finding and exploiting vulnerabilities may achieve the

objectives last mentioned. Nevertheless, it can take a very long time to find success, which in a

race is not the ideal scenario.

Phishing, spam and drive-by downloads can fix this time problem. These are typically exe-

cuted on a large scale and are very low time-consuming. Everything that is required is a list of

e-mails, phone numbers, or another communication technology, and a simple fake website. In this

case, there is no specific target in mind, but if there is, utilizing the same principle with a more

direct approach will suffice.

Nowadays, malign web pages are abundant, and every day more and more appear. On the op-

posite side, spam filters and malware detection methods are simultaneously evolving. Users trust

their web browser’s defenser mechanisms when they are surfing the net to keep them protected, but

zero-day attacks are imminent. So, having a trustworthy website where to input a suspicious URL

when in doubt is a way of complementing an analysis. It classifies the URL while also providing

1.3 Objectives 3

an Incident Report, this is, analyzing and reporting a suspicious URL without having to constantly

share all the links the user accesses, unlike in browsers.

1.3 Objectives

This dissertation aims to design a website where users can input a URL and receive a report on

details that are of interest to the general population. To achieve this, the main topics explored in

this work are as described:

• The design of a website where the users can insert a URL for analysis and get a report that

is informative and complete.

• The retrieving of the IoCs, Indicators of Compromise.

• The analysis of the URL using tools that are suitable for the purpose

• The presentation of a pipeline model used for the entire analysis process, since the submis-

sion of the URL to the report construction

1.4 Structure

The structure of the document is divided as follows:

• Chapter 2- Literature Review: An introduction to some essential concepts related to the

scope of the thesis, as well as a summary of recent studies done on the subject of malicious

URL detection.

• Chapter 3- Requirements and Pipeline Development: Discussion of the requirements and

pipeline flow proposed, as well as an overview of the hole process with the chosen tools.

• Chapter 4- Pratical Validation: Website design that validates the pipeline design, and dis-

cussion on the execution and results obtained and reported.

• Chapter 5- Conclusion and Future Work: Conclusions of the work done and how it can be

further improved.

4 Introduction

Chapter 2

Literature Review

This chapter aims to explain the dangers of Malicious Websites. We start by describing the type of

attacks and obfuscation techniques, the origins, and a bit of a walk through the evolution of Phish-

ing in section 2.1. Then, an overview of the type of detection methods used by previous authors

and the main limitations of the proposed frameworks. This overview starts with the more simple

method in section 2.2, Blacklisting, a rule-based detection in section 2.4 and the presentation of

some honeypot techniques in section 2.5. However, the main focus is in section 2.3 on the Machine

Learning approaches, since this is a more commonly used and popular method nowadays.

2.1 Background

2.1.1 Social Engineering

The increase of scams all over the internet is concerning. The "Nigerian Prince" e-mail scam is

the most known worldwide. It has been a target on many comedy shows over the years since it

is one of the longest-running internet fraud examples. However, this is one of a thousand other

examples (Paypal Phishing Scams [9], Google Docs Phishing Scam [10], Amazon Scams [11]).

These attacks are specific types of Social Engineering attacks.

Social Engineering is the craft of using manipulation to get people to divulge private informa-

tion. These can lead attackers to get access to the protected systems, money from the user, and

other confidential information. These attacks can be classified into two categories [12]: Human

or Computer based. But it can also be categorized into the following three categories: Technical,

Social and Physical based.

All this categorization falls into two main classes: Indirect and Direct (Bidirectional or Unidi-

rectional) communication. To better understand this, it is needed to break down Social Engineering

attacks into components:

• Social Engineer: The individual or the group of individuals performing the attack

• Target: The person or organization the attacker is trying to take advantage

5

6 Literature Review

• Compliance Principles: The principle the Social Engineer is going to explore in order to

perform the attack (authority, scarcity, friendship,...)

• Techniques: It is the main component. It is what classifies the type of attack and determines

how the Social Engineer executes it (Phishing, Pretexting, Quid Pro Quo,...)

• Medium: It’s the method used to interact between the Social Engineer and the Target (e-

mail, face to face, telephone, SMS, webpage,...)

• Goal: The end goal of this all operation (financial gain, unauthorized access, service dis-

ruption)

Using one of this era’s most superb hackers, Kevin Mitnick in [1], this work presents the Social

Engineering attack cycle used when performing attacks. Figure 2.1 is taken from the said article

and presents the different stages of this process.

Figure 2.1: Mitnick’s Original Social Engineering Attack cycle [1]

In this project, the focus is on Malicious URLs, which, considering the previous components

presented, can be used together with e-mail as a medium for Phishing attacks. The following

section discusses the background and early attacks performed that affect our daily lives to this day.

2.1 Background 7

2.1.2 Phishing

So, what exactly is Phishing? Phishing is the combination of Social Engineering and technical

methods to convice the user to reveal their personal data [13]. Phishing is a big problem nowa-

days because, no matter how many plugins browsers have for protection, and tools available for

detection, if people are not educated about this subject, there will always be a risk attached to web

browsing.

The history of Phishing can be traced back to the mid-1990s. In those years, the online service

provider AOL (America Online), one of the early pioneers of the internet, offered dial-up and

instant messaging services. This caught the eye of hackers like Koceilah Rekouche, who developed

an automated password and credit card stealing software [2]. Performing this attack was simplified

to a simple check of a box on the GUI, as presented in Figure 2.2, that it quickly spread, and the

word Phishing was coined for this type of attack.

Figure 2.2: AOHell’s Phihsing Configuration Screen [2]

Although, in this era there are others attacks who are becoming very concerning, like Creden-

tial Stuffing [14], Phishing is still the most common. However, there are various types of Phishing,

like Spear Phishing, Whaling, Clone Phishing, Smishing, and Vishing [15]. Still, all of the types

can be inserted into four categories:

• Spoofing E-mail: It’s an attack where the hacker sends an e-mail using some other e-mail

address, impersonating the legitimate person of organization.

• Fake Social Network Accounts: The attacker creates a fake social media account (very

common on sites like Facebook, Instagram, LinkedIn) to send malicious URLs or to interact

with users in order to have them disclose confidential information.

8 Literature Review

• Hacking: Hackers perform a vulnerability scan on systems to uncover their weaknesses and

perform attacks (Brute Force, for example). This is where Phishing can be very useful. An

employee can disclose a password to the hacker giving access to the network.

• Trojan Horse: It’s an executable program that grants control over the device to the hacker.

In conclusion, Phishing constantly threatens Internet users and their businesses. An example

is the Ethereum blockchain, which has recently become a target of scams referred on [16]. The

popularity has led to an increase in Detection methods. Blacklists, Machine Learning, Virtual

Machines execution, Rule-based techniques and Honeypots are just some of the ways authors

referred in the next sections use to Detect Malicious Websites.

2.2 Blacklisting

If a malicious URL is detected, it should be reported. That is where Blacklists are useful. This

database’s infrastructures provide a form to inform users which sites have malicious intent. Black-

lists are specially used by web browsers and antivirus due to low expenditure of computing re-

sources, which makes the web browsing delay almost unnoticeable. The effectiveness of these

software depends on their size, scope, update speed and frequency, and accuracy [17]. Some ex-

amples of known Blacklists are PhishTank [18], Google Safe Browsing [19] and OpenPhish [20].

In [21], the author proposes an automatic Phishing Detection and Incident Response Frame-

work based on Blacklisting. The Incident Response part of the article consists on using Databases

to cross check the e-mail and the URL, and warn the victim. In the Phishing Detection framework,

a honeypot (method discussed on section 2.5) is added in order to prevent any incidents.

When determining the intent of a website, it is crucial to maintain a false negative (a false neg-

ative is classifying a website as benign when it is malicious), which is why the use of Blacklisting

can be overlooked. This method has some disadvantages, like being easily evaded by zero-day

attacks. Moreover, with the creation rate of these sites, it is difficult for the lists to be kept up to

date. So, new techniques need to be implemented to combat this growing concern.

2.3 Machine Learning

The percentage of malicious websites using Secure Sockets Layer protocol has increased up to

83% in 2021 [22]. This is very worrying, considering that in the old days, users considered

themselves safe just by looking at the SSL sign. However, nowadays, there is no connection

to that, except that the website is most probably malicious if this sign is not there. Looking at

the most recent years, in 2020, the Covid-19 pandemic striked and the day-to-day life of people

was transformed. Businesses had to change how they operated, leading to a massive transition

to online marketing. However, this attracted the attention of cybercriminals, leading to increased

cybercrimes. According to the Phishing and Malware report by Vade in the first quarter of 2022

[23], their tool detected 32.9 million malware emails (including malicious URLs and executables).

2.3 Machine Learning 9

This represented a 201% increase over February, and with the increase of zero-day attacks, a

technique that can learn and constantly be updated was needed. So, the interest in ML models

became essential for cybersecurity specialists.

ML is growing in many areas, and cybersecurity is no stranger to this trend. This section covers

feature extraction and selection, different types of attributes, dataset construction, data preparation

and cleaning, different model training and validation techniques, among other topics.

2.3.1 Web Scrapping and Crawling for Data

Web Scrapping and Web Crawling are two different concepts for data collection. Both can be used

for feature extraction, important part of the data analysis process, and are commonly performed

using the programming language Python. But, what are exactly the differences?

• Web Crawling: A web crawler is a bot used by many search engines, such as Google,

due to it’s ability to rapidly retrieve big amonts of information on a topic (namely, retrieve

webistes). In [24], the author proposes a web crawler that uses only two python libraries:

urllib.request and BeautifulSoup4.

• Web Scrapping: It’s a program for extracting the data from websites. Often combined with

a web crawler in order to retrieve URLs from the web, it mainly focus on structuring infor-

mation (database or spreadsheet construction). In [25], scrapy, a web scrapping technique,

is introduced. The framework is as follows:

1. The web crawler draws the desired links from the web;

2. Then the data is extracted to get the source links;

3. Finally, the data is organized and stored into a csv file.

Data collection is the first step in any ML process. Without data, there is no process to train

the model and give it the required information. This previously mentioned phase is crucial, but in

most cases, data is already provided. There are a large number of datasets available online that

can be used. Therefore, some of the articles cited in this work exclude that part, starting with Data

Preparation as the first component. The ML life sequence is presented here:

1. Data Preparation

2. Build the Model

3. Deploy the Model

2.3.2 Machine Learning Detection Techniques

We are not discarding the techniques mentioned in section 2.3.1. They can be helpful, like in [26],

where the tool Prophiler classifies pages collected by a web crawler. This paper aims to reduce

the number of web pages that need to be dynamically analyzed to identify malicious web pages,

10 Literature Review

so naturally, the web crawler is very important here. Nevertheless, to simplify, we are focusing on

the top 3 components of an ML life cycle in the following presentation of some of the architectures

for malicious URL detection.

Classifying a link using ML algorithms can sometimes be associated with a binary outcome,

either malicious or not. However, with the growing interest in technology, people want to know

what a URL can do and what type of attack they can suffer. An example is [27], where the authors,

besides the binary classification, distinguish between Phishing, spam, and malware.

More and more people nowadays use a smartphone. And since mobile webpages tend to

be different content-wise from desktop browser pages, a specific ML method for detecting this

malicious behavior was built in [28]. This determination was based on the static (passive) as well

as dynamic features(active).

There are such a significant number of these types of approaches, that for the rest of this section

there will be a separation into two types:

• Active Detection: URL classification based on the content of the pages (content and visual

based features)

• Passive Detection: URL classification based on the attributes such as WHOIS records, IP

address, and location, without visiting the page (Lexical and host based features)

2.3.3 Passive Detection Methods

The most common techniques to ensure victims are redirected a Phishing page without them being

aware of it are[29] :

• URL hiding (URL shortening)

• Homograph spoofing

• Typosquatting

• Soundsquatting

• Combosquatting

So, to combat this, passive detection techniques were introduced. They have a lot of advan-

tages, like not visiting the web pages. The features are extracted from the URL, domain name, and

DNS server, among others. These attributes are retrieved without putting the machine at risk, since

there is no need to visit the webpage. Another advantage is not relying on the downloading and

analysis of the page content is a lightweight operation, and, with being independent from being

tied to a particular application setting, these approaches are resistant to content cloaking, a very

used technique by attackers to evade detection.

The authors of [30], take advantage of this features and create a dataset using lexical and

host-name features (Table 2.1). In [6] it is the same approach combined with online algorithms to

rapidly adapt to the evolving distribution features that characterize malicious URLs over time.

2.3 Machine Learning 11

Lexical Host-based

Hostname WHOIS info
Primary domain IP prefix
Path tokens AS number
Last path token Greographic
TLD (Top level domain) Connection speed
Lexical misc. Host misc.

Table 2.1: Lexical and Host-based features [6]

In [31] the writers make a simple binary classification pipeline. First is the extraction of eight

lexical and host-based features from PhishTank. Then, the training and testing of the dataset using

Random Forest. When ready, it is the input of a URL and labeling of the same. Finally, a per-

formance analysis using the Receiver Operating Characteristic (ROC) curve, sensitivity, accuracy

and a Confusion Matrix.

Classifying URLs can be more than just binary. The MRS (Microsoft Reputation Service) can

categorize the URL. For example, the category for https://sigarra.up.pt/feup/pt/web_page.inicial

is Education. Based on this, Mohammed Nazim Feroz and Susan Mengel in [32] a hybrid ap-

proach using clustering and classification to provide a detection method using ranking. The URL

is categorized and ranked when inputted, meaning it is attributed a benign and phishing percent-

age, and a category. These percentages then attribute one of three possible results, Benign (green),

Moderate (yellow), or Severe (red). Another categorization model is proposed in [33]. There are

three categories: Spam, Phishing and Malware URLs. In the process of data collection, lexical

features are extracted for each category and pre-processed. After, there is the training phase and

then the prediction. Deep learning models like convolutional neural are the choice for the binary

prediction (benign or malign) and for the multi-labeling classifier, an SVM.

PhishStorm [34] is an ML mechanism that uses distributed real-time computation to infer

intra-URL relatedness. For this purpose, it focuses on the use of lexical features. PhishScore [35]

is the continuation of the work of PsishStorm, by adding new features.

CatchPhish [36] proposes a technique that uses hostname, full URL, and phishing words from

the suspicious URL for the classification. A Term Frequency-Inverse Document Frequency (TF-

IDF) algorithm was used to calculate the score of each term.

More recent events, like the covid-19 pandemic, have brought to light new problems. The

appearance of a considerable number of malign websites related to this subject is increasing on

a week-to-week basis. The simple addition or repetition of a letter or bitsquatting in the domain

threatens users. A simple typosquatting, and people could be entering sensitive data into an at-

tacker’s hands. To avoid that, in [37] domain name detection is performed using a small number

of lexical features retrieved from the URLs and applied to online and batch learning models. Six

ML algorithms were involved: Decision Tree, Random Forest, Gradient Boosting, Extreme Gra-

dient Boosting (XGBoost), a Support Vector Machine (SVM), and a Multilayer Perceptron. The

conclusion taken is that the XGBoost algorithm outperformed the other models.

12 Literature Review

With the introduction of the text limitation on social media platforms to prevent malicious

websites from being shared, the use of short URLs for this purpose has increased. There are var-

ious shortening services available. However, Bitly and TinyURL are the most famous. Bitly [38]

does not provide a CAPTCHA to test human identity at the time of shortening. For protection

against spam, it claims to use a blacklisting method. In [39] the writers use a combination of con-

tent (the content of the tweet), context, and social features to detect a tweet containing a malicious

URL.

2.3.4 Active Detection Methods

With the growing popularity of URL shortening services, passive methods have been stuggling to

keep up. To counter this, active detection methods are explored in the articles we will present in

this section. Active techniques take advantage of Content-based features, like characteristics of

the JavaScript and HTML code, obfuscation IoCs, and visual elements of the page. For exam-

ple, in [40], a collection of 41 attributes are extracted. These are of four categories: web-based

network traffic, URL keywords, web host information, and web content. An ANOVA (Analysis

of Variance) test and XGBoost algorithm reduce the number of features to the most essential. 17

is the new number of features. Finally, the dataset is used to learn the XGBoost classifier. This

example is for drive-by download links only. In [41], the author is not only capable of detecting

the drive-by download attack but also the attack class: Plugin memory violation, Plugin unsafe

API, and Browser memory violation.

In 2007, Yue Zhang, Jason Hong, and Lorrie Cranor developed CANTINA, a novel content-

based approach for detecting phishing websites [42]. The software work flow is as follows:

• Given a web page, calculates the TF-IDF score of each of the terms on the page

• Generates a lexical signature by taking the five terms with the highest TF-IDF weights

• Feed this to a search engine, in this case Google

• If the domain name of the current web page matches the domain name of the N top search

results, it is considered a legitimate web site. If not, it is considered a phishing site.

Using images for content-based phishing analysis can be very effective. A tool called Gold-

Phish [43] is an example. To better explain the design approach can be broken down into three

major steps: First, capture the image of the current website in the user’s browser. Second, us-

ing Optical Character Recognition (OCR) techniques, the tool converts the image into computer-

readable text. Third, similiar to CANTINA, input the converted text into a search engine to retrieve

results. The same process is used in [44], the only difference being, instead of capturing the entire

page, they focus on the website logo only.

The last visual based tool we are going to talk about here is Phish-IRIS [3]. This technique

uses compact visual descriptors, such as CSD (Color Space Descriptor), DCD (Dominant Colour

Descriptor), and HTD (Homogeneous Texture Histogram). These models are then applied on a

2.4 Rule-based Detection 13

single screenshot of the whole page, just as the two visual techniques mentioned in [43] and [44],

and also on a more multi-level representation that divides the input screenshot into equal sized

2x2, 3x3 and 4x4 grid cells, for feature extraction. The attributes are used for training the SVM

and Random Forest prediction models. The whole system Flowchart is shown in Figure 2.3.

Figure 2.3: Phish-IRIS System Flowchart [3]

Finally, in [45] the authors purpose an intelligent phishing detection architecture using a new

approach that manipulates features of images, frames and text of phishing websites.

2.4 Rule-based Detection

This section discusses the possibility of rules, mostly YARA rules, used as a way to detect ma-

licious webpages. The work developed in [46] is on an automated, low-interaction malicious

webpage detector WebMon. Although this tool is ML and YARA-based, we focus on the last part.

14 Literature Review

Malware can be encrypted with EK (exploit toolkits) in the code for the website, composing a

drive-by-download attack. That is the area where YARA rules are more effective. WebMon con-

sists of a queue server, Docker, with multiple containers and a database. However this rule-based

approach only detects drive-by download pages.

In [47], the approach detects any type of malign links. Rules have two outcomes, either the

rule is satisfied or not, 0 or 1. Consequently, the compliance with the rules is transformed into

features to be later applied to ML models. A few examples are the following features:

• Feature 1: if the URL contains the IP address is 1, if not 0.

• Feature 2: if website uses https protocol for data transfer is 1, if not 0.

• Feature 3, 4 and 5: if a selected blacklists keywords appear on the domain, path or query

part of the link is 1, if not 0.

2.5 Honeypots

The last studied approach is the use of Honeypots. Honeypots function like a decoy alongside

traditional detection systems, like firewalls and IDSs. This way, attacks can be deflected into the

honeypot, where the system can be exploited. Honeypots can be categorized in two types [48]:

• Active: Also called Honeyclients, these interact with the webpages to detect malicious in-

tent.

• Passive: Passively waits for the attack to detect them.

For this thesis, we are going to be focusing our attention on the Active honeypots, the Hon-

eyclients.The reason behind this choice is that, since this is a detection tool, there is no use for

passive Honeypots. We are trying to actively detect, so there is a need for software that will go

online in search of malware. Which can classified as two types themselves:

• High-interaction Honeypots: These use real systems with real applications that can be

infected and grant full access to the hacker. The indicated try to take advantage of this fact

to make the hacker launch further network attacks.

• Low-interaction Honeypots: These use emulated parts of systems, such as network stacks

or browsers. As expected, they can’t be exploited to give full access to the hacker.

One of the first of this type was PhoneyC [49]. This tool simulated a browser to obtain the

content of a webpage. It then ran it through an antivirus to check for alerts. Besides this, the code

was parsed by language to be analyzed by the respective script engine for alerts. The final step

was obtaining the links from the HTML page to be again inputted to PhoneyC for analysis.

In [50], a combination of a web crawler with a Low-interaction Honeyclient was used to iden-

tify malicious web programs from a list of websites. PythonHoneyMonkey [4], another example,

2.5 Honeypots 15

uses a JavaScript tool called Spider Monkey to detect obfuscated code sent to the browsers via

web servers. This application also presents different Operating Systems to simulate for detection

(Figure 2.4).

Figure 2.4: PythonHoneyMonkey Work Flow [4]

Thug [51] and YALIH [5] are two tools we will take advantage of further in our work. YALIH,

uses a more signature based approach, employing ClamAv antivirus and YARA-rules for detection

(Figure 2.5). As for Thug, the focus is to mimick the behavior of a web browser in order to detect

malicious content. Further in this document, a deeper explanation of this tool will be given.

Figure 2.5: Steps in automatic YARA rules generation [5]

For this thesis, we are focusing on Low-interaction Honeyclients. The reason for this choice

is because they present a more effective process of analysis when integrated with the rest of the

methods.

16 Literature Review

2.6 Discussion

This chapter aims to paint a picture of how advanced this area is. The last article we are going

to discuss here is the proof. In [52] the authors developed a tool that automates human behavior

for detecting phishing websites. The tool actually imitates human behavior, like feeding a website

with a login sector with fake credentials to learn if it is legitimate or not.

Thus, with many options, what is the best approach to take? Further in the document, a list

of requirements is available, determining the goals for our choice. However, since the goal is to

build a website where students can enter a domain and trust the results, ML did not seem like

an excellent strategy. Has referred to before, this is a tool for analysis on a big scale when the

requirements demand a faster process and not much focus on just one input at a time. Therefore,

combining other software mentioned in this chapter at the cost of a slower executing time seemed

to be the preferred option.

Chapter 3

Requirements and Pipeline
Development

This chapter serves as the presentation of the initial steps in order to design the analysis pipeline.

In section 3.1, we gather the requirements that need to be satisfied by the process, this is, what the

target population wants to acquire from the use of this tool. Afterward, we dive into the pipeline

description, where we go into detail on the goal for each phase and the tools to achieve it. The

phases are as follows:

• In section 3.2 an overview of the pipeline is exhibited;

• In section 3.3 the detection of private information;

• In section 3.4 a early analysis of the reputation score of the URL is done;

• In section 3.5 some IoCs are presented and the process of their retrieval is explained;

• Finnaly, in section 3.6 a dynamic analysis is performed on the URL with different stages.

3.1 Requirements for URL analysis

Every project has objectives that we aim to achieve. These have already been disclosed in section

1.3 and are very discrete and straightforward. Objectives act more as a guideline, as a project

can be successful with not all of these accomplished. However, another parameter of a project is

the requirements. They differ from the previously mentioned as these are a necessary conditions,

something that must be accomplished in order for the success of the dissertation.

In previous chapters, we have mentioned that this dissertation contains two main focuses: the

development of a tool that can be publicly available for URL analysis and a pipeline description of

this analysis. Therefore, we can divide the requirements into two main groups: Tool development

requirements and analysis pipeline requirements.

First, we will address the tool development requirements. These are characteristics that are

necessary when we are developing the website. The first two can be considered the most critical:

17

18 Requirements and Pipeline Development

Tool Development Requirements Analysis Pipeline Requirements

Report the URL classification Determine the end results
Report the URL categorization Present the steps of the process
Check for private information on the URL Present type of tools to use in each phase
If private information is detected, warn the user of this presence Filter the results to the necessary
Report the effective URL Construct a database with the results
Connect the results database with the website
Construct a pleasant graphical interface

Table 3.1: The two main objectives of this thesis and their respective requirements

report to the user if the URL is benign or malicious, and if the latter is true, what type of attack

the user can be the target. A FEUP student does this thesis. Therefore, it is natural that most

people using this website will also be engineering students. So, it is required that the tool report

the nature of the link and the categorization for the population of users to make a decision with

the most information possible. This raises another necessity, the need to report the presence of

private information. As referred, the target population is mainly constructed of engineers or future

engineers. And, as such, these people are more aware of the effects of having their private infor-

mation available online. So, before advancing with the analysis, we need to have the tool flag the

presence of this type of information to the user. Proceeding with this train of thought, the effective

URL is another necessity of this report. All this information needs a storage place, a database. A

database with the information gathered from the pipeline execution needs to be connected to the

website. This way, any time an inputted URL has already an entrance on the dataset, there is no

need for the user to wait long for the results. The website can retrieve them and present the report.

In short, a pleasing graphical interface for the website is the final requirement for this first part.

Because poorly constructed webpages do not inspire a sense of confidence in the user.

The second part is the analysis pipeline requirements. Here, the requirements aim to outline

the principles on which any analysis process can base itself to obtain this type of results. First,

we need to determine the end results we aim to obtain at the finish of the analysis. These are the

end goals that every step of the process will be devoted to achieving, which remarks the second

requirement of this part, the presentation of each step. These are the levels that every tool can base

themselves on to analyze a link and gather essential information each step of the way. Therefore,

we need to introduce the type of tools to use in every step and some options from which people can

choose. At the end of the analysis, we need to filter the results we gather to only the essential ones.

Every tool we choose will present more results than necessary. Therefore, we must interpret and

filter them to the strictly necessary for this analysis. This can increase the pipeline execution speed

and simplify the process for other people with less knowledge in this area. To finish, a database

that stores these results is required. This will link the pipeline of analysis we follow and the tool

we use to interact with the user.

The summary of the requirements of this work is presented on Table 3.1.

3.2 Pipeline Overview 19

The following section describes the overview of the pipeline described by the requirements

above.

3.2 Pipeline Overview

In section 3.1, we present the basis for this work’s construction: the user’s requirements, and, from

these remarks, we can construct the pipeline for the malicious URL analysis that the website is

going to present.

Following the this Pipeline Overview, we will make a presentation on each phase and what

are their goals. In this thesis, we aim to present the approach we took and the overall view of the

process for other developers that may need to design a new detection method. For that reason,

different tools are mentioned in the sections that can accomplish each of these goals.

The requirements already obtained and the description of each of the steps of the process will

be presented on the following sections individually. Therefore, a pipeline overview is required to

understand how they interact. A workflow diagram is shown in Figure 3.1 to understand better.

The flow starts with a URL submission. The first action is to check if other users have already

submitted the link. If true, the report is constructed from the data encountered. If not, the process

advances to check the URL for private information. In the case there is this type of data, the user

is notified and decides to continue with the process or to end it. Next, we import the reputation

score and store it. Before gathering the IoCs, if needed, we retrieve the effective URL. The results

of the previous action are stored. Finally, we perform a Dynamic Analysis. The classification of

the URL (a malicious rate of 0 to 10) and, if malicious, the categorization (Phishing or a type of

drive-by download attack is specified) are stored.

Figure 3.2 is a simple Swimlane explaining the Dynamic Analysis process of the pipeline. We

go into a more detailed explanation on Section 4.2.

3.3 Detection of Private Information

When dealing with users, exceptional attention to their personal information needs to be a focal

point. Therefore, when a user inputs a URL, if it contains any personal information, like an e-mail

address, phone number, name of the person, IP address, among others, we must abort the process

until permission by the user is granted. Thus, it is only natural that the first phase of the process is

the checking of any type of the previous mentioned data.

Firstly, we take advantage of an open-source software called Hakrawler, designed by a Pen-

tester named Luke Stephens (@hakluke) [53], for subdomain enumeration which uncovers all the

hidden URLs asociated with the main one. This procedure is a way of checking all the related

links to the original one. If any contains any type of private information or indications of it, the

user is warned.

Afterwards, usually, if a URL contains personal information about the user, it is visible. Nev-

ertheless, there are cases where this data comes hiding behind some type of coding. Several

20 Requirements and Pipeline Development

Figure 3.1: Flow chart of the analysis pipeline

approaches can be taken here, like the use of CyberChef [54] for decoding. Therefore, to simplify

things, the straightforward JavaScript code for decoding listed bellow was used.

let decoded = Response.Write(Server.URLDecode(urlString));

console.log(decoded);

3.3 Detection of Private Information 21

Figure 3.2: Dynamic Analysis Swimlane

22 Requirements and Pipeline Development

For parsing the information presented on the URL the same language option as before was

selected. The code is listed as follows:

//function getVal(){

// const inputUrl = document.querySelector('input').value;

// console.log(inputUrl)

//}

var readline = require('readline');

var resp = "";

var leitor = readline.createInterface({

input: process.stdin,

output: process.stdout

});

function parseURLParams(url) {

var queryStart = url.indexOf("?") + 1,

queryEnd = url.indexOf("#") + 1 || url.length + 1,

query = url.slice(queryStart, queryEnd - 1),

pairs = query.replace(/\+/g, " ").split("&"),

parms = {}, i, n, v, nv;

if (query === url || query === "") return;

for (i = 0; i < pairs.length; i++) {

nv = pairs[i].split("=", 2);

n = decodeURIComponent(nv[0]);

v = decodeURIComponent(nv[1]);

if (!parms.hasOwnProperty(n)) parms[n] = [];

parms[n].push(nv.length === 2 ? v : null);

}

return parms;

}

leitor.question("Which is the URL to analyze for private information?\n",

function(answer){

var resp = answer;

urlParams = parseURLParams(resp);

console.log(urlParams);

3.4 URL Reputation Score 23

leitor.close()

});

//var urlString = "www.mints.com?name=something";

// urlParams = parseURLParams(urlString);

//

// console.log(urlParams)

A common practice by hackers is to cipher the user’s private information. AES 256, triple

DES, RSA and other encryption techniques can be deployed, making the information inaccessible

to us analyzing the link. Therefore, the user is warned of this possibility when the user clicks on

the button to analyze the URL.

Another malicious practice that has become more and more common in present days is the

use of a specific URL for a specific user that does not contain any private information. A modern

example is the messages people receive on social media with a shortened URL from an infected

user (sometimes, these are people we know). These vary from target to target, and if the hacker

receives a request in a particular domain, it transmits information about a specific user (like that the

user frequently checks the incoming e-mails, that it opens these links, making him vulnerable, the

browser, the time it was opened, among others). In conclusion, although it does not transmit any

private information to us, the attacker can start sending more e-mails to this address in particular

(Spear Phishing). Therefore the user is warned of this possibility and cautioned to proceed at his

own risk.

3.4 URL Reputation Score

This section is the first actually to classify the URL. Here, we take advantage of how fast and

lightweighted that Blacklisting approach is. Several databases and tools are available online to

obtain this score. To name a few: PhishTank [18], URLVOID [55], OpenPhish [20], SURBL [56],

Malware Domain List [57], Should I Click [58], VirusTotal [59], among others.

As mentioned in section 2.2, blacklisting tools have a significant disadvantage in detecting

malicious links. However, this step’s primary focus is not on obtaining an undeniably correct

result, but on presenting the users with a preliminary result, something they can base on, but not

with too much certainty. One of the problems with the mechanisms described in future sections to

obtain a more reliable result is the time it takes to execute them. Therefore, with this intermediary

step, we provide the user with an outcome that has a false positive rate of 0% (meaning if it

determines the URL malicious, it is 100% correct) while adding no delay to the execution time.

The type of result can variate on the tool used. For example, VirusTotal provides a numeric

outcome. If the designer decides to use a blacklist like OpenPhish, the outcome is binary (Open-

Phish is a database of phishing links, the input is either matched on this tool or not). Therefore, it

falls to the person developing the analysis process to decide which one to use.

24 Requirements and Pipeline Development

Here, the question of how different the tool described is from VirusTotal emerges. Well.

VirusTotal has difficulty detecting zero-day attacks due to its reliance on blacklists and anti-virus

engines, has for our tool, since we are classifying based on methods of blacklists combined with

characteristics of the behavior, among other execution parameters, it does not share this down-

side. Another aspect of this tool is that it is developed for day-to-day use. Because of that, we

provide a complete report that also includes the categorization of the URL, letting the users know

what would happen if the link was clicked.These are two of the main differences between these

softwares.

3.5 Retrieve IoCs information

In this phase, the goal is to retrieve the IoCs that characterize the URL. Indicators of Compromise

are data that can identify potentially malicious activity on a system. This data characterizes the

malware and its behavior. In the case of URLs, the IP, geographical, and domain name data

identify each one. Therefore, in order to build a report on a malicious website, this information

is required. These IoCs can be critical to detection tools. Taking down a malicious website does

not remove the hypothesis that another website with the same characteristics can be online in the

future or even right now. An example of this is browser plugins. Typically, if an IP address is

flagged as malicious, if the user tries to access a website with this data, the browser will warn him.

Now that we established that retrieving this data can be important in every tool of this genre,

we face another problem: how to retrieve this data about the URL? To complete this job, there are

some open-spource tools available, such as socialinvestigator [60] and some online websites [61].

Another example, is Maltego [62]. Maltego can be a very powerful tool in gathering information.

3.5.1 URL shorteners

In the previous section, the majority of the examples require the domain name or the IP address

to retrieve the IoCs, which can be an issue if the URL is shortened. As already established,

these shorteners are a common strategy attackers use to mislead users into following a link they

otherwise would not. The most known URL shortening services are Bitly and TinyURL. Thus,

before gathering data about the link, we need to expand it, if the case, of course.

A simple website that recovers the original, effective URL should suffice in this intermediary

step.

In conclusion, this step does not analyze the link’s nature but the characteristics. It is an

information gathering phase, just like Section 3.3, differentiating on the type of results. Here IoCs

are the result. These IoCs can be used to build a report (or, in this case, use the one provided by

this tool) and report it to the competent authorities. Sites like Google Safe Browsing or even the

Malware Information Sharing Platform (MISP, an open source software solution for collecting,

storing, distributing and sharing cyber security indicators and threats about cyber security) can be

utilized to perform this task.

3.6 Dynamic Analysis 25

3.6 Dynamic Analysis

As explained earlier, the main objective of this thesis is to allow the users to have a way of sub-

mitting a URL and get an analysis report that is accurate and fulfills their requirements. We have

already described the early stages of the process. Accordingly, following the flow, this section

describes the last phase, the Multi-labeling classification pipeline using dynamic analysis.

Although it may seem confusing to have a pipeline inside another pipeline, the requirements

demand this type of analysis in the last step. One of the essential requirements is not only the input

link being classified as malign or not but also categorized. The categorization process demands

more investigation because this labeling distinguishes phishing attacks from drive-by download

attacks, but inside this last category, there are other categories of payloads (Trojan Horses, ran-

somware, rootkits...). Therefore, to obtain such categorization, we did not find one in our investi-

gation but a collection of tools that, if put together, can accomplish it.

3.6.1 Low-interaction Honeyclients

Section 2.5 describes low-interaction honeyclients as one of the most robust tools for URL anal-

ysis. These can simulate a web browser, permitting the link to perform as intended while logging

all possible information. A few reliable options are available from our investigation on the subject.

Therefore, in the selection process we consider three major objectives that the Honeyclient needed

to focus on:

1. Luring the attackers with a bait. For example, adding fake listen ports.

2. Identifying the attackers from their actions. For example, if the web client is trying to acces

the fake ports, it will be tagged as malign behavior.

3. Gathering information about the attacker from the logs of their action.

The studied tool that best fulfilled these requirements was Thug. Other tools were considered

for this part, like YALIH or HoneyMonkey. Nevertheless, the decision to use Thug, based on

our main goal (classifying and categorizing a URL), was made after an analysis of the options

available. The previously mentioned software provided more goal-oriented results based on the

URL’s behavior. Besides, there was no need to allocate hardware to run this tool. For that reason,

this Honeyclient was the starting point for this multi-labeling analysis.

3.6.2 Sandbox Environment

In the previous section, the topic was the first tool of the classification pipeline, which, in our case,

is Thug. The honeyclient, as mentioned, can collect essential data, which can now be used in the

categorization. Therefore, in this step, the sandbox environment uses the payload files to classify

the type of executables, if existing, of course.

26 Requirements and Pipeline Development

Sandboxing uses an isolated environment to test malicious content without affecting any ap-

plication or system on our device. Multiple times, software developers use these environments to

test new packages and applications because it is a safe and effective technique to validate their

implementation. For these reasons, for classifying an executable file is the prime approach.

The first approach we tried was FlareVM [63]. FlareVM is an open-source windows-based

security distribution VM that contains multiple tools pre-installed for malware analysis. We could

perform static and dynamic analyses on the payloads with this VM. However, there were two main

reasons for not using this mechanism on our pipeline:

1. There were too many tools, most of them were not useful. Therefore, unnecessary installa-

tion occurred.

2. The analysis process was not automated. The use of this tool meant another pipeline embed-

ded into this process. This would significantly increase the execution time and complicate

the process unnecessarily with other open-source software that can perform the same anal-

ysis.

For that reason, from the investigation, Cuckoo Sandbox was the choice. Cuckoo can analyze

any file in a matter of minutes in a safe manner. Its output can provide the classification of the

type of payload, with the extra of being able to analyze URLs as well (which can be used for

double-checking the URL). The other reason for this choice was that it outputs a PCAP file. This

is the entry for the last tool of the process.

3.6.3 Network traffic Analysis

Network traffic can be very incriminating for a URL, especially a Phishing one, because of remote

manipulation. Consequently, an analysis of the PCAP file can provide further or at least confirm

information.

When talking about network traffic analysis, one name comes to mind, Wireshark. Wireshark

is probably the most famous tool for this type of forensics. However, we decided to go a different

way and use Zeek, an open-source software framework for this exact purpose. The reasons for this

choice are simple, it was just more accessible and a cleaner way of performing the task because,

important logs are already separated into different files.

3.7 Discussion

In any Project’s workflow, the first step is gathering the requirements to accomplish this. Then the

search for options to fulfill these is executed and the pros and cons of each are evaluated. Only

after this is the pipeline developed. These were the bullet points covered in this chapter.

In this last section, we look at the overview of the entire analysis process to explain how all

the phases interact with each other to get to the objective presented in the paragraph above.

3.7 Discussion 27

Afterward, the execution of all of these tools is represented in the next chapter, along with its

validation and the results.

28 Requirements and Pipeline Development

Chapter 4

Pratical Validation

The previous chapter outlined the proposed architecture for fulfilling the requirements for the URL

analysis. Here, we discuss the validation of this architecture, starting with the website’s design in

section 4.1. In section 4.2 we detail the execution of the process described before, step by step.

Section 4.3 interprets the results produced and stored in a database. Finally, we use the data to

build a report for the website user, discussed in section 4.4.

4.1 Website Design and Implementation

Chapter 3 focused on the work behind the scenes. When a consumer uses a product, most do not

care how the system operates, only that it gets results. Thus, the same principle is applied here.

A method for the users to submit a URL to us for analysis was essential. Consequently, a website

was the decision from the beggining to provide this interaction between the two parts.

The website implementation works as a validation of the pipeline. After it was constructed,

this was the technique required to apply it, validating the legitimacy of the results. For that reason,

the website needed to check some requirements as well. It needed to be a simplistic site, and most

important, effective.

Considering every demand stated above, the website presented in Figure 4.1 was the choice.

It is a simple page that allows users to register and log in to perform the analysis. After, a text

box where URLs can be submitted for analysis, and in the footer, some information about the

developers.

A report is built for the user when the analysis process is complete. The process of gathering

this information is the focus of the following sections. Although, after the results are compiled,

the website is again the technique we use to present the report to the user.

4.2 Pipeline Execution

Chapter 3 presents an overview of the architecture for URL analysis we propose. In this section,

we detail the execution, presenting the results of every step of the process.

29

30 Pratical Validation

Figure 4.1: A screenshot of the analysis webpage

4.2.1 Detection of Private Information

As explained in Section 3.3, uncovering the user’s personal data aborts the process. Therefore,

although simple, the execution of this step can halt everything. So, the first tool is Hakrawler,

and its execution is very straightforward. We just need to run the command "echo <input URL>

| docker run –rm -i hakluke/hakrawler" and it uncovers all the hidden URLs. This is done in an

attempt to discover some result linked to the initially submitted website that contains some type of

personal information. For example, when we run with the https://www.jicreative.net/,

Figure 4.2 shows a small amount of the output. As we can see, the results show some personal

information.

Figure 4.2: Output of Hakrawler with the input URL of https://www.jicreative.net/

The execution of the decoding block is also very straightforward. If the URL we input is

4.2 Pipeline Execution 31

encoded, it returns the decoded correspondent, if not, it simply returns the same one. Following

this, we submit the URL to the parsing script to check for personal information. The execution is

simple. For example, if the input equals something like www.mints.com/?name=something,

the code parses the domain name from the path and the query and outputs the information found.

In this case, the output would be: name: [’something’] .

In conclusion, if no private information is found (which, considering our experience is the

most common case), the execution carries on to the next section: Checking URL reputation.

4.2.2 URL Reputation Score

In section 3.4, there is a list of options from which to choose. We select two, VirusTotal and

YALIH, each one with a different purpose.

First, we insert the URL in the VirusTotal website. VirusTotal inspects the item with over 70

antivirus and Blacklisting services. Using https://www--wellsfargo--com--cp49329d48d6c.

wsipv6.com/ has an example retrieved from the OpenPhish database, we submit it to VirusTotal,

and obtain the report shown in Figure 4.3.

Figure 4.3: Analysis report from VirusTotal

The Figure presents a toolbar with four main sections of the report. The community section is

where users can make comments. These signed users can also vote, which leads to the community

score. The links tab is where a list of outgoing links is presented. Details is a report on information

concerning the history of submissions, category of the link, HTTP response data, and HTML info.

Finally is the detection section, the one shown on the image, and the one we retrieve information

for the results of our pipeline. The antivirus and blacklists we can see here are the ones that make

the reputation score. This reputation score, in this case, is 14/88, which is the entry for the results

report on our pipeline.

32 Pratical Validation

Indicators of Compromise

IP data Geographical data Server info
Domain name Country Creation date
IP address State/Region Expiration date
ISP

Table 4.1: IoCs classification

The other tool used is YALIH, a low interaction honeyclient. This honeyclient uses static de-

tection techniques, such as a signature detection engine (ClamAV, an antivirus) in combination

with de-obfuscation of JavaScript code to improve the detection of attack signatures by the YARA

rules employed. Therefore, we input the same URL as above in YALIH using the following com-

mand as root: python honeypot.py –url https://www--wellsfargo--com--cp49329d48d6c.

wsipv6.com/. The results are summarized into two parts, the ClamAV Antivirus scan and the

YARA rules scan. Both scans for this link have returned with no indication of malign features or

infected files, as shown in Figure 4.4.

Figure 4.4: YALIH execution summary

4.2.3 Retrieve IoCs information

In this section, as the name suggests, the Indicators of Compromise result from the execution.

These are addressed on Table 4.1.

The first step in this phase is checking if the URL is shortened. A URL expander will obtain

the effective link if this is the case. However, the option we use in our pipeline is retrieving this

from the analysis we perform in the next phase, but another option can be using available online

tools, such as [64] and [65]. If it is not shortened, we can proceed with the execution.

4.2 Pipeline Execution 33

For the second part, packages like whois, traceroute, and dnsutils (contains the commands

dig, nslookup and host). Another tool, just to double check is the website located on [61]. Using

https://clck.ru/tAPtV we obtain this report:

• Effective URL: https://dilscordisgix.com/lt

• Domain name: DILSCORDISGIX.COM

• IP address: 172.67.161.146/104.21.65.99

• ISP: CLOUDFLARENET

• Country: NOT FOUND

• State/Region: NOT FOUND

• Creation date: 2022-08-20

• Expiration date: 2023-08-20

These can be warnings on the classification of the link. For example, looking at a domain that

has been up for some time (looking at the creation and expiration date), we conclude that this is

probably a benign URL, since malicious domains usually do not last very much.

4.2.4 Dynamic Analysis

This stage of the pipeline is the most important. The crucial requirement for this work is the

classification and categorization of the type of attack it performs if any. Therefore, a dynamic

analysis of the website is the case here. It is partitioned into three parts: the execution of cuckoo

sandbox, of Thug, a low interaction honeyclient, and finally, the running of Zeek, the network

traffic analysis software.

4.2.5 Thug Execution

First is the execution of Thug. Thug simulates a user agent to retrieve as much information from

the URL execution as possible. Primarily, we must select the user agent from the list shown in

Figure 4.5.

In most cases, the selection is between this three options: Windows 7 using Firefox (win7firefox3),

Windows 7 using Chrome 49.0 (win7chrome49), and Linux using Firefox 40.0 (linuxfirefox40).

If some error appears during the execution, other user agents are considered, especially the ones

simulating Android and iOS, because the URL can target only mobile devices.

The next step before the execution is to consider the flags to use. We have narrowed it down

to some specific to detecting the type of attack:

• File logging: -F

34 Pratical Validation

Figure 4.5: List of user agents Thug emulates

• Features logging: -W

• Screenshot capturing: -f

• Image processing analysis: -a

• Maximum pages to fetch: If the analysis is stuck on a loop, we use -t

• User agent selection: -u or –useragent=

• ElasticSearch logging: -G

• JSON logging: -Z

• Specify the address and port of the MongoDB instance: -D, format is host:port

These parameters were carefully selected between the many options thug can provide of re-

sults. The options are listed next:

• Payload Files

• Other content Files, like screenshots and page content code

• Visited URLs

4.2 Pipeline Execution 35

• MongoDB output

• ElasticSearch output

• HPFeeds

• Native Report Format

Thug can be considered a "wolf in sheep’s clothing". This system emulates an actual browser

with all its plugins to trigger the URL to act maliciously. The same can, and will be, executed on

a sandbox environment (Section 4.2.6), but some malwares detect this type of tools and does not

behave as they should, therefore, not being flagged. For that reason, a honeypot can trigger this

behavior and register in the form of outputs the actions.

Executing Thug is a simple command on the terminal. Running the command: thug <flags>

<url>, will run the analysis. Our focus in this step is on if any Payload Files exists, this is, if the

honeypot triggered any dropped files in the execution of the URL. Then, 2 outcomes can come of

this:

• First, there are no payload files in which the option of the site being a drive-by is eliminated.

Then we examine the rest of the outputs, like the screenshots and the HTML and application

files, to check for any irregularities and advance on to the next phase.

• Second, there are payload files. These files are passed on to Cuckoo for a better analysis.

4.2.6 Cuckoo Sandbox

As is visible from the diagram in section 3.2, from the analysis of Thug, the executables are

retrieved and passed on to cuckoo for analysis. Not only that, but cuckoo also has the feature to

submit a URL for analysis, which we also execute as a security measure.

Cuckoo Sandbox GUI can be seen in Figure 4.6. The dashboard tab is divided into four parts:

submission section, system info, insights on the tool, and recent analysis.

When we submit a URL or a file on cuckoo, the report gives us a score for if the link is

malicious or not. Other outputs cuckoo provides: the Static analysis, the dropped files, HTML

report, JSON report, PCAP file, the memory image and behavioral analysis. The main page of the

report can be seen on Figure 4.7.

After Thug, Cuckoo analyzes or an executable file downloaded by the link or the link it-

self.Either way, the classification it attributes in the execution is then registered in the Database

for the final report.

As mentioned before, Cuckoo has a very good reporting method, presenting every detail sepa-

rately in a very simple and clean interface. So, besides the classification it provides, we are giving

special attention to:

• The Signatures of the file or URL. It can present some very straightforward and important

characteristics.

36 Pratical Validation

Figure 4.6: Cuckoo Sandbox GUI

• The Behavioral Analysis tab.

• The Network Analysis tab. It contains the PCAP file to be uploaded to Zeek.

• The VM Memory Dump.

In this dynamic analysis phase, a decision on how to categorize a URL can be taken. However,

we will get into a more detailed explanation of this result interpretation in Section 4.3.

4.2.7 Zeek Network Traffic Analyzer

The last analyzer we use is the network traffic manager, Zeek, which in this case we use has an IDS

(Intrusion Detection System). The previous URL analysis downloaded a PCAP file containing all

the traffic from the link execution. Now, this PCAP is uploaded to Zeek for analysis using the

command zeek -r <path to the PCAP file>, where the flag -r is used to read the file.

Zeek is chosen because it can divide the PCAP file into multiple ones that contain specific logs

for each package, such as:

• conn.log: It contains

• dns.log: File for every DNS request;

• files.log: It is a list of files;

• http.log: It has every http transaction;

• pe.log

• ssl.log

• x509.log

4.3 Result Interpretation 37

Figure 4.7: Cuckoo Sandbox analysis report

These log files are an example. Zeek can format a pcap into different types of files depending

on the types of packets it encounters. For example, if there is a pe.log it means someone download

an executable, which is a strong indicator that this is a malicious link.

This component has more of a forensic side to it. We need to check each log looking for

IoCs, organize and compare the different files in order to make sense of what is happening. Here

we try to locate log files with packets that Zeek does not recognize the protocol, for example,

or has mentioned before, check for a pe.log that contains information about the download of an

executable. Then, we can, for instance, try to correlate the uid of these packets in order files to

understand it better using the command grep. After gathering some information, together with the

interpretation taken from the rest of the tools, a final decision on how to categorize the URL can

be made.

With this part over, the execution of the pipeline has ended and we must now have the results in

the database. The following section will present how the dynamic analysis results are interpreted

so we can get the results we pretend.

4.3 Result Interpretation

All of section 4.2 portray a picture of the execution of every tool. The first phases of the analysis

are straightforward to understand how we get the results stored in the database. However, the

dynamic analysis can be more complex and further explanation is needed. That is the aim of this

section, where some examples will be considered to better comprehend the interpretation of the

results.

First, the results of Thug. This results are stored in a folder of our choice, and divided like:

• Application: where the captured javascript files are stored.

• Image: here the images from the webpage is stored, like screenshots, logos, among others.

38 Pratical Validation

• Text: the HTML and css files are stored here.

• Unkown: It can contain important files that are not recognized by Thug, but still stored for

analysis.

The second step is the analysis utilizing Cuckoo Sandbox. Here a more straightforward in-

terpretation of the results is made since the tool uses a graphical interface for reporting (Figure

4.7).

The third and last step is the analysis of the PCAP files. Here is where a deeper explanation

will take place, for it introduces more manual labor on our part. For the interpretation, we will

take a look at 2 cases:

• Case 1: The interpretation of the analysis on a Phishing URL.

• Case 2: The interpretation of the analysis on a Drive-by Download URL.

4.3.1 Case 1: Phishing URL

We start by retrieving the URL (http://jardimdosavos.com/) from a popular Database

available online OpenPhish [20]. This URL is inputted in Thug and the results are divided into

three folders: analysis, image and text. The first conclusion is that the link is not a Drive-by

Download, since it did not trigger any executables download. Next, we examine the image folder

and are presented with Figure 4.8b and Figure 4.8a.

(a) Image in the svg+xml folder (b) Image in the png folder

Figure 4.8: Images captured by Thug

Looking at these images, we can suppose this can be some business website. After a search

on Google, we can see that the logo belongs to the Banco de Crédito del Perú. If we consider

the domain name (jardimdosavos), there seems to be something wrong. They do not match. So,

after another search, we encounter the legitimate website: https://www.viabcp.com/. This

4.3 Result Interpretation 39

is the first indication that we can be dealing with a possible Phishing URL that tries to steal users

information.

Next, we look into the file with the JSON analysis and discover some link redirections to

the legitimate website (Figure 4.9), which can be considered another IoC. Taking a look at the

HTML, javascript and CSS files can also raise some red flags (like some grammatical errors in the

HTML file). In this case, we find no indicator, especially since the CSS files are retrieved from the

legitimate URL to make the site the most graphically synonymous with the latter.

Figure 4.9: JSON analysis file

The next step is the Cuckoo Sandbox analysis. Here are the definitive details that classify the

URL as Malicious. The first is the score: 9.7 out of 10. So, now that the URL is classified, we

start looking for other indicators that can support our hypothesis of this being a Phishing URL.

Examining the signatures, we can see that cuckoo sinalyzes a suspended thread in a remote process

was resumed. It considers this an indicative of process injection (Figure 4.10). Figure 4.11a and

Figure 4.11b represent the comparation between the homepage of the legitimate and malicious

URL’s.As mentioned in Section 4.2.6 some other sections can be inspected more closely, but in

this case we are advancing to the PCAP file analysis for other indicators that can support the

previously referred hypothesis.

40 Pratical Validation

Figure 4.10: Signatures of the Cuckoo analysis.

After all these indicators, this final step can be considered just a precaution in this case. So,

after executing zeek to read the PCAP file, we will focus on the following log files: conn.log,

http.log and files.log. First, we examine the connections log. At first glance, no abnormality stands

out until we reach the end of the file and see two unrecognized services (Figures 4.12 and 4.13).

We can further explored using tools like Wireshark, but we will focus on the download of a file that

is present both on the http and files log files (Figure 4.14). A compressed file is downloaded using

the GET method from www.download.windowsupdate.com. Considering all the evidence

gathered before, we can safely categorize this URL as Phishing.

4.3.2 Case 2: Drive-by Download URL

Now basing ourselves on the URL: http://107.172.206.118/oi/gud.exe, retrieved from

[66] we follow the same steps as before.

We start the analysis by running Thug to check if it triggers any malicious behavior. So,

after the execution, the results are two folders: analysis and application. In this analysis, what

stands out is the PE file that is downloaded after retrieving the webpage. This file is stored in the

application folder. So, Thug does trigger the download of an executable that, in order case, would

be downloaded without the user’s permission. This is an indication of malicious behavior, so to

determine that, we submit the file to Cuckoo for analysis.

The results of the Cuckoo analysis are very incriminating. The classification of the file is 10.

By looking at the PE file’s signatures (Figure 4.15), we can see that this is malware and that the

URL can be categorized as a Drive-by Download type.

Another interesting part of the Cuckoo results is the dropped buffers. Here we can see the file

is running the following:

• network_smtp_dotNet - Communications smtp

• keylogger - Run a keylogger

• win_hook - Affect hook table

4.4 Reporting to the user 41

(a) Homepage of the legitimate URL

(b) Homepage of the malicious URL

Therefore, after all these conclusions, there is no need to execute the PCAP analysis to deter-

mine the categorization of the file. In conclusion, the URL is classified as malicious and catego-

rized as a Drive-by Download.

4.4 Reporting to the user

Executing the entire pipeline leads to a set of entries on the website’s database that need to be

explained to the user. So, the last part of the practical validation is the report we build for the user

to understand what is the intent of the URL.

The website presents the following information to the user;

• Private Information Detection

• Reputation Score of the URL

• Indicators of Compromise (IoC’s)

• Classification and Categorization of the URL

Now, we report this information, but in a certain way. The private information detection

variable in the database is a boolean. It can only be 0 or 1 (True or False). Therefore, the report

can present two phrases to the user: There was no private information detected during the analysis

or There was private information detected during the analysis.

42 Pratical Validation

Figure 4.12: First packet with missing service type

The reputation score of the link has two columns in the database: the reputation from YALIH

and VirusTotal. So, this part will have two results printed on the report. One boolean, the rep-

utation score from YALIH, which means the URL was detected as malicious or not. The other

is numerical and uses a scale of 0 to 89 (the number of antivirus and databases VirusTotal uses

for detection). For example, http://capensis.online/i.exe has a score of 11/89 and the

http://roblox.com.kz/users/190556601/profile a score of 14/89 (these links were

retrieved from URLhaus [66] and OpenPhish [20], respectively).

The third section of the report contains the ICOs presented in table 4.1.Thus, the report will

have this five text information and two dates printed. For example, looking at the database entries

for http://roblox.com.kz/users/190556601/profile, we have the following infor-

mation reported to the user:

• Domain Name: roblox.com.kz

• IP address: 172.67.217.8

• ISP: CloudFlare

• Country: Kazakhstan Republic

• State/Region: Riyadh

• Creation Date: 2022-08-16

• Expiration Date: NULL

Finally, the last and most essential information about this analysis is the URL’s classification

and categorization. As mentioned in this last section 4.3, the classification is a numerical attribute

with a scale from 0 to 10. As for the categorization, it is a text attribute of the database and can

have three possible outcomes: Benign, Phishing URL or Drive-By Download URL.

4.5 Discussion

This chapter focused on the more practical mode of the dissertation. Here, we explained how the

end goal of having a site directed to a more technical knowledge community is achieved.

The pipeline execution description is presented, with the role of each tool explained. Here, we

give more importance to the dynamic analysis part, because it is the more complex step.

To clarify how the classification and categorization of the URL are done, there is a result in-

terpretation section in this chapter. To culminate the work, the report is built from the information

stored in the database along the execution of the pipeline.

4.5 Discussion 43

Figure 4.13: First packet with missing service type

Figure 4.14: Packets that describe the Download of the compressed file

Figure 4.15: Signatures of the Executable

44 Pratical Validation

Chapter 5

Discussion and Conclusion

Having presented a guideline for malicious URL analysis, our proposed method for analysis, and

the execution and results, we now draw conclusions regarding the work performed (Section 5.2),

some difficulties(Section 5.1), and points that can be explored past this point (Section 5.3).

5.1 Difficulties encountered

This thesis’s fundamental goals can be divided into three main parts: The overall pipeline, the

classification and categorization process, and the website implementation. Consequently, some

difficulties were encountered in each respective area.

The overall pipeline was a difficult decision to make. There are plenty of approaches for

different types of goals in the phishing and malware area of studies. The goal was to design a

concept others could adopt in future works. Therefore, it was necessary that the process division

was based on principles and not on tools or results. It took some time to find the perfect number of

steps and what could be applied in each, but the final result was achieved, as we can see in chapter

3.

The second difficulty was how to design the website and implement it together with the rest

of the work. The website design was a secondary goal, and some designs and techniques to make

it available only were considered but, in the end, discarded. A simple graphical interface was the

choice.

Lastly, the big problem and, consequently, the most critical part of this thesis was the clas-

sification and categorization process. Many tools were considered for this process, and many

backs and forth situations of the chosen. The first choice was cuckoo, but it only classified the

URL alone. Therefore, we changed the tool to FlareVM, then Maltego, and finally, we returned to

cuckoo and paired it with some other packages to categorize. Other problems were the installation.

Some tools had problems with the python version, and others were not connecting to the honeypot

device (Thug). Thus, the desired results were obtained in the end, and all the requirements were

satisfied.

45

46 Discussion and Conclusion

5.2 Conclusions

The main goal of this dissertation was developing a website where students can submit a URL for

malicious intent analysis and receive a detailed report they can trust.

We first present the requirements for the process. We then describe the phases for accomplish-

ing these. A lot of particular ways of examining web pages were investigated. This brought a sense

of how the URL work, the attacker side operations, and the defender side tasks for uncovering this.

The execution of the process is then exhibited, how each tool works, and the result they pro-

vide. The last step was mainly explained due to its complexity and the variety of results it can

output. Here a sense of our analysis tools operate was collected.

Finally, the results are gathered and examined. Then, after trimming, they are inputted into

the website’s database. For the last stage, the front-end developer part was combined with the

knowledge of the URL analysis, and the data was retrieved from the database, the report was built,

and delivered to the user.

5.3 Future work

Since some of the objectives of this thesis were not fully accomplished, the top priority for future

tasks would be the see this fulfilled.

One thing that task that can be performed in the future is limiting the website access to students

of FEUP only. As mentioned, the goal of this tool was to be available to the faculty staff only so

that they could have a reliable method of detecting a malicious link at any time. However, there

was no implementation on how to prevent other users from joining.

One other modification that could be performed in the future is the automation of the entire

process. This work was solely focused on describing a process for retrieving and analyzing links.

However, now that this goal has been accomplished, the automatization of the entire process could

be done to decrease the response time of the website. Pipeline automation has limitations since a

lot of the project involves human interaction with the dynamic analysis results. Therefore, using

some rule-based system can be helpful in this option.

References

[1] Francois Mouton, Mercia M Malan, Louise Leenen, and Hein S Venter. Social engineering
attack framework. In 2014 Information Security for South Africa, pages 1–9. IEEE, 2014.

[2] Koceilah Rekouche. Early phishing. CoRR, abs/1106.4692, 2011. URL: http://arxiv.
org/abs/1106.4692, arXiv:1106.4692.

[3] Fırat Dalgıç, Ahmet Bozkir, and Murat Aydos. Phish-iris: A new approach for vision based
brand prediction of phishing web pages via compact visual descriptors. 10 2018. doi:
10.1109/ISMSIT.2018.8567299.

[4] Rohit Shukla and Maninder Singh. Pythonhoneymonkey: Detecting malicious web urls on
client side honeypot systems. In Proceedings of 3rd International Conference on Reliability,
Infocom Technologies and Optimization, pages 1–5. IEEE, 2014.

[5] Masood Mansoori, Ian Welch, and Qiang Fu. Yalih, yet another low interaction honeyclient.
In Proceedings of the Twelfth Australasian Information Security Conference-Volume 149,
pages 7–15, 2014.

[6] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Identifying suspi-
cious urls: An application of large-scale online learning. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, page 681–688, New York, NY,
USA, 2009. Association for Computing Machinery. URL: https://doi.org/10.1145/
1553374.1553462, doi:10.1145/1553374.1553462.

[7] What is phishing?, Aug 2022. URL: https://nordvpn.com/pt/blog/
what-is-phishing/.

[8] Published by Statista Research Department and Jul 7. Phishing: Most targeted indus-
tries 2022, Jul 2022. URL: https://www.statista.com/statistics/266161/
websites-most-affected-by-phishing/.

[9] Paypal phishing email scam: How to spot it, Aug 2022. URL: https://nordvpn.com/
pt/blog/beware-of-this-paypal-phishing-scam/.

[10] Google docs phishing scam: What you need to know,
Aug 2022. URL: https://nordvpn.com/pt/blog/
what-you-need-to-know-about-the-new-google-docs-scam/.

[11] The worst amazon scams and how to avoid them, Aug 2022. URL: https://nordvpn.
com/pt/blog/amazon-scams/.

47

http://arxiv.org/abs/1106.4692
http://arxiv.org/abs/1106.4692
http://arxiv.org/abs/1106.4692
http://dx.doi.org/10.1109/ISMSIT.2018.8567299
http://dx.doi.org/10.1109/ISMSIT.2018.8567299
https://doi.org/10.1145/1553374.1553462
https://doi.org/10.1145/1553374.1553462
http://dx.doi.org/10.1145/1553374.1553462
https://nordvpn.com/pt/blog/what-is-phishing/
https://nordvpn.com/pt/blog/what-is-phishing/
https://www.statista.com/statistics/266161/websites-most-affected-by-phishing/
https://www.statista.com/statistics/266161/websites-most-affected-by-phishing/
https://nordvpn.com/pt/blog/beware-of-this-paypal-phishing-scam/
https://nordvpn.com/pt/blog/beware-of-this-paypal-phishing-scam/
https://nordvpn.com/pt/blog/what-you-need-to-know-about-the-new-google-docs-scam/
https://nordvpn.com/pt/blog/what-you-need-to-know-about-the-new-google-docs-scam/
https://nordvpn.com/pt/blog/amazon-scams/
https://nordvpn.com/pt/blog/amazon-scams/

48 REFERENCES

[12] Fatima Salahdine and Naima Kaabouch. Social engineering attacks: A survey. Fu-
ture Internet, 11(4), 2019. URL: https://www.mdpi.com/1999-5903/11/4/89,
doi:10.3390/fi11040089.

[13] Surbhi Gupta, Abhishek Singhal, and Akanksha Kapoor. A literature survey on social engi-
neering attacks: Phishing attack. In 2016 International Conference on Computing, Commu-
nication and Automation (ICCCA), pages 537–540, 2016. doi:10.1109/CCAA.2016.
7813778.

[14] Steven Rees-Pullman. Is credential stuffing the new phishing? Computer Fraud
Security, 2020(7):16–19, 2020. URL: https://www.sciencedirect.com/
science/article/pii/S1361372320300762, doi:https://doi.org/10.
1016/S1361-3723(20)30076-2.

[15] What is phishing?, Aug 2022. URL: https://nordvpn.com/blog/
what-is-phishing/.

[16] Weili Chen, Xiongfeng Guo, Zhiguang Chen, Zibin Zheng, and Yutong Lu. Phishing scam
detection on ethereum: Towards financial security for blockchain ecosystem. In Christian
Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artifi-
cial Intelligence, IJCAI-20, pages 4506–4512. International Joint Conferences on Artificial
Intelligence Organization, 7 2020. Special Track on AI in FinTech.

[17] Simon Bell and Peter Komisarczuk. An analysis of phishing blacklists: Google safe brows-
ing, openphish, and phishtank. In Proceedings of the Australasian Computer Science Week
Multiconference, ACSW ’20, New York, NY, USA, 2020. Association for Computing Ma-
chinery. URL: https://doi.org/10.1145/3373017.3373020, doi:10.1145/
3373017.3373020.

[18] Join the fight against phishing. URL: https://www.phishtank.com/.

[19] URL: https://safebrowsing.google.com/.

[20] Phishing intelligence. URL: https://openphish.com/.

[21] Martin Husák and Jakub Cegan. Phigaro: Automatic phishing detection and incident re-
sponse framework. In 2014 Ninth International Conference on Availability, Reliability and
Security, pages 295–302, 2014. doi:10.1109/ARES.2014.46.

[22] Manuel Sánchez-Paniagua, Eduardo Fidalgo, Enrique Alegre, and Rocío Alaiz-Rodríguez.
Phishing websites detection using a novel multipurpose dataset and web technologies
features. Expert Systems with Applications, 207:118010, 2022. URL: https://
www.sciencedirect.com/science/article/pii/S0957417422012301, doi:
https://doi.org/10.1016/j.eswa.2022.118010.

[23] Q1 2022 phishing and malware report: Malware skyrockets, microsoft is the
most impersonated brand. URL: https://www.vadesecure.com/en/blog/
q1-2022-phishing-and-malware-report.

[24] SANYA GOEL, MUDIT BANSAL, ATUL KUMAR SRIVASTAVA, and NEHA ARORA.
Web crawling-based search engine using python. In 2019 3rd International conference on
Electronics, Communication and Aerospace Technology (ICECA), pages 436–438, 2019.
doi:10.1109/ICECA.2019.8821866.

https://www.mdpi.com/1999-5903/11/4/89
http://dx.doi.org/10.3390/fi11040089
http://dx.doi.org/10.1109/CCAA.2016.7813778
http://dx.doi.org/10.1109/CCAA.2016.7813778
https://www.sciencedirect.com/science/article/pii/S1361372320300762
https://www.sciencedirect.com/science/article/pii/S1361372320300762
http://dx.doi.org/https://doi.org/10.1016/S1361-3723(20)30076-2
http://dx.doi.org/https://doi.org/10.1016/S1361-3723(20)30076-2
https://nordvpn.com/blog/what-is-phishing/
https://nordvpn.com/blog/what-is-phishing/
https://doi.org/10.1145/3373017.3373020
http://dx.doi.org/10.1145/3373017.3373020
http://dx.doi.org/10.1145/3373017.3373020
https://www.phishtank.com/
https://safebrowsing.google.com/
https://openphish.com/
http://dx.doi.org/10.1109/ARES.2014.46
https://www.sciencedirect.com/science/article/pii/S0957417422012301
https://www.sciencedirect.com/science/article/pii/S0957417422012301
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2022.118010
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2022.118010
https://www.vadesecure.com/en/blog/q1-2022-phishing-and-malware-report
https://www.vadesecure.com/en/blog/q1-2022-phishing-and-malware-report
http://dx.doi.org/10.1109/ICECA.2019.8821866

REFERENCES 49

[25] David Mathew Thomas and Sandeep Mathur. Data analysis by web scraping using python.
In 2019 3rd International conference on Electronics, Communication and Aerospace Tech-
nology (ICECA), pages 450–454, 2019. doi:10.1109/ICECA.2019.8822022.

[26] Davide Canali, Marco Cova, Giovanni Vigna, and Christopher Kruegel. Prophiler: A fast
filter for the large-scale detection of malicious web pages. In Proceedings of the 20th In-
ternational Conference on World Wide Web, WWW ’11, page 197–206, New York, NY,
USA, 2011. Association for Computing Machinery. URL: https://doi.org/10.1145/
1963405.1963436, doi:10.1145/1963405.1963436.

[27] Hyunsang Choi, Bin B. Zhu, and Heejo Lee. Detecting malicious web links and identify-
ing their attack types. In Proceedings of the 2nd USENIX Conference on Web Application
Development, WebApps’11, page 11, USA, 2011. USENIX Association.

[28] Chaitrali Amrutkar, Young Seuk Kim, and Patrick Traynor. Detecting mobile malicious
webpages in real time. IEEE Transactions on Mobile Computing, 16(8):2184–2197, 2017.
doi:10.1109/TMC.2016.2575828.

[29] Orestis Christou, Nikolaos Pitropakis, Pavlos Papadopoulos, Sean McKeown, and William J.
Buchanan. Phishing URL detection through top-level domain analysis: A descriptive ap-
proach. CoRR, abs/2005.06599, 2020. URL: https://arxiv.org/abs/2005.06599,
arXiv:2005.06599.

[30] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Learning to detect
malicious urls. ACM Trans. Intell. Syst. Technol., 2(3), may 2011. URL: https://doi.
org/10.1145/1961189.1961202, doi:10.1145/1961189.1961202.

[31] Shraddha Parekh, Dhwanil Parikh, Srushti Kotak, and Smita Sankhe. A new method for
detection of phishing websites: Url detection. In 2018 Second International Conference on
Inventive Communication and Computational Technologies (ICICCT), pages 949–952, 2018.
doi:10.1109/ICICCT.2018.8473085.

[32] Mohammed Nazim Feroz and Susan Mengel. Phishing url detection using url ranking. In
2015 IEEE International Congress on Big Data, pages 635–638, 2015. doi:10.1109/
BigDataCongress.2015.97.

[33] ShymalaGowri Selvaganapathy, Mathappan Nivaashini, and HemaPriya Natarajan. Deep
belief network based detection and categorization of malicious urls. Information Se-
curity Journal: A Global Perspective, 27(3):145–161, 2018. URL: https://doi.
org/10.1080/19393555.2018.1456577, arXiv:https://doi.org/10.1080/
19393555.2018.1456577, doi:10.1080/19393555.2018.1456577.

[34] Samuel Marchal, Jérôme François, Radu State, and Thomas Engel. Phishstorm: Detecting
phishing with streaming analytics. IEEE Transactions on Network and Service Management,
11(4):458–471, 2014. doi:10.1109/TNSM.2014.2377295.

[35] Samuel Marchal, Jérôme François, Radu State, and Thomas Engel. Phishscore: Hacking
phishers’ minds. In 10th International Conference on Network and Service Management
(CNSM) and Workshop, pages 46–54, 2014. doi:10.1109/CNSM.2014.7014140.

[36] Routhu Srinivasa Rao, Tatti Vaishnavi, and Alwyn Roshan Pais. Catchphish: detection of
phishing websites by inspecting urls. Journal of Ambient Intelligence and Humanized Com-
puting, 11(2):813–825, 2020.

http://dx.doi.org/10.1109/ICECA.2019.8822022
https://doi.org/10.1145/1963405.1963436
https://doi.org/10.1145/1963405.1963436
http://dx.doi.org/10.1145/1963405.1963436
http://dx.doi.org/10.1109/TMC.2016.2575828
https://arxiv.org/abs/2005.06599
http://arxiv.org/abs/2005.06599
https://doi.org/10.1145/1961189.1961202
https://doi.org/10.1145/1961189.1961202
http://dx.doi.org/10.1145/1961189.1961202
http://dx.doi.org/10.1109/ICICCT.2018.8473085
http://dx.doi.org/10.1109/BigDataCongress.2015.97
http://dx.doi.org/10.1109/BigDataCongress.2015.97
https://doi.org/10.1080/19393555.2018.1456577
https://doi.org/10.1080/19393555.2018.1456577
http://arxiv.org/abs/https://doi.org/10.1080/19393555.2018.1456577
http://arxiv.org/abs/https://doi.org/10.1080/19393555.2018.1456577
http://dx.doi.org/10.1080/19393555.2018.1456577
http://dx.doi.org/10.1109/TNSM.2014.2377295
http://dx.doi.org/10.1109/CNSM.2014.7014140

50 REFERENCES

[37] Paul K. Mvula, Paula Branco, Guy-Vincent Jourdan, and Herna L. Viktor. Covid-19
malicious domain names classification. Expert Systems with Applications, 204:117553,
2022. URL: https://www.sciencedirect.com/science/article/pii/
S0957417422008715, doi:https://doi.org/10.1016/j.eswa.2022.117553.

[38] Neha Gupta, Anupama Aggarwal, and Ponnurangam Kumaraguru. bit. ly/malicious: Deep
dive into short url based e-crime detection. In 2014 APWG Symposium on Electronic Crime
Research (eCrime), pages 14–24. IEEE, 2014.

[39] Raj Kumar Nepali and Yong Wang. You look suspicious!!: Leveraging visible attributes to
classify malicious short urls on twitter. In 2016 49th Hawaii International Conference on
System Sciences (HICSS), pages 2648–2655. IEEE, 2016.

[40] Yu-Chen Chen, Yi-Wei Ma, and Jiann-Liang Chen. Intelligent malicious url detection with
feature analysis. In 2020 IEEE Symposium on Computers and Communications (ISCC),
pages 1–5, 2020. doi:10.1109/ISCC50000.2020.9219637.

[41] Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and analysis of drive-by-
download attacks and malicious javascript code. In Proceedings of the 19th International
Conference on World Wide Web, WWW ’10, page 281–290, New York, NY, USA, 2010.
Association for Computing Machinery. URL: https://doi.org/10.1145/1772690.
1772720, doi:10.1145/1772690.1772720.

[42] Yue Zhang, Jason I. Hong, and Lorrie F. Cranor. Cantina: A content-based approach
to detecting phishing web sites. In Proceedings of the 16th International Conference on
World Wide Web, WWW ’07, page 639–648, New York, NY, USA, 2007. Association
for Computing Machinery. URL: https://doi.org/10.1145/1242572.1242659,
doi:10.1145/1242572.1242659.

[43] Matthew Dunlop, Stephen Groat, and David Shelly. Goldphish: Using images for content-
based phishing analysis. In 2010 Fifth International Conference on Internet Monitoring and
Protection, pages 123–128, 2010. doi:10.1109/ICIMP.2010.24.

[44] Kang Leng Chiew, Ee Hung Chang, San Nah Sze, and Wei King Tiong. Utilisation of
website logo for phishing detection. Computers Security, 54:16–26, 2015. Secure Informa-
tion Reuse and Integration Availability, Reliability and Security 2014. URL: https://
www.sciencedirect.com/science/article/pii/S0167404815001145, doi:
https://doi.org/10.1016/j.cose.2015.07.006.

[45] Moruf A Adebowale, Khin T Lwin, Erika Sanchez, and M Alamgir Hossain. Intelligent
web-phishing detection and protection scheme using integrated features of images, frames
and text. Expert Systems with Applications, 115:300–313, 2019.

[46] Sungjin Kim, Jinkook Kim, Seokwoo Nam, and Dohoon Kim. Webmon: Ml- and yara-based
malicious webpage detection. Computer Networks, 137:119–131, 2018. URL: https://
www.sciencedirect.com/science/article/pii/S1389128618301142, doi:
https://doi.org/10.1016/j.comnet.2018.03.006.

[47] Mahmood Moghimi and Ali Yazdian Varjani. New rule-based phishing detection method.
Expert systems with applications, 53:231–242, 2016.

[48] Mahmoud T Qassrawi and Hongli Zhang. Detecting malicious web servers with honey-
clients. Journal of Networks, 6(1):145, 2011.

https://www.sciencedirect.com/science/article/pii/S0957417422008715
https://www.sciencedirect.com/science/article/pii/S0957417422008715
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2022.117553
http://dx.doi.org/10.1109/ISCC50000.2020.9219637
https://doi.org/10.1145/1772690.1772720
https://doi.org/10.1145/1772690.1772720
http://dx.doi.org/10.1145/1772690.1772720
https://doi.org/10.1145/1242572.1242659
http://dx.doi.org/10.1145/1242572.1242659
http://dx.doi.org/10.1109/ICIMP.2010.24
https://www.sciencedirect.com/science/article/pii/S0167404815001145
https://www.sciencedirect.com/science/article/pii/S0167404815001145
http://dx.doi.org/https://doi.org/10.1016/j.cose.2015.07.006
http://dx.doi.org/https://doi.org/10.1016/j.cose.2015.07.006
https://www.sciencedirect.com/science/article/pii/S1389128618301142
https://www.sciencedirect.com/science/article/pii/S1389128618301142
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2018.03.006
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2018.03.006

REFERENCES 51

[49] Jose Nazario. Phoneyc: A virtual client honeypot. LEET, 9:911–919, 2009.

[50] M. Veena, S. Upasana, S. Prathima, and Sudha Senthilkumar. A Detection of Malware Em-
bedded into Web Pages Using Client Honeypot. 09 2020. doi:10.5772/intechopen.
89646.

[51] Nurul Fariza Zulkurnain, Azli Fitri Rebitanim, and Noreha Abdul Malik. Analysis of thug:
A low-interaction client honeypot to identify malicious websites and malwares. In 2018 7th
International Conference on Computer and Communication Engineering (ICCCE), pages
135–140. IEEE, 2018.

[52] Routhu Srinivasa Rao and Alwyn R Pais. Detecting phishing websites using automation
of human behavior. In Proceedings of the 3rd ACM workshop on cyber-physical system
security, pages 33–42, 2017.

[53] Luke Stephens (@hakluke). Introducing hakrawler: A fast web crawler
for hackers, Jan 2020. URL: https://hakluke.medium.com/
introducing-hakrawler-a-fast-web-crawler-for-hackers-ff799955f134.

[54] URL: https://gchq.github.io/CyberChef/.

[55] Check if a website is malicious/scam or safe/legit: Urlvoid. URL: https://www.
urlvoid.com/.

[56] Surbl. URL: http://www.surbl.org/.

[57] URL: https://www.malwaredomainlist.com/mdl.php.

[58] Should i click or not? URL: https://www.shouldiclick.org/.

[59] URL: https://www.virustotal.com/gui/home/url.

[60] HappyFunCorp. Happyfuncorp/socialinvestigator: Collection of utilities to see
what’s happening in your network. URL: https://github.com/HappyFunCorp/
socialinvestigator.

[61] InfoByIP.com. Informações pelo endereço ip. URL: https://pt.infobyip.com/.

[62] Homepage. URL: https://www.maltego.com/.

[63] Mandiant. Mandiant/flare-vm. URL: https://github.com/mandiant/flare-vm.

[64] Get long url from hundreds of url shortening services. URL: http://checkshorturl.
com/expand.php.

[65] Expand shortened urls - expandurl. URL: https://www.expandurl.net/expand.

[66] URLhaus. https://urlhaus.abuse.ch/browse/. Accessed: 2022-10-10.

http://dx.doi.org/10.5772/intechopen.89646
http://dx.doi.org/10.5772/intechopen.89646
https://hakluke.medium.com/introducing-hakrawler-a-fast-web-crawler-for-hackers-ff799955f134
https://hakluke.medium.com/introducing-hakrawler-a-fast-web-crawler-for-hackers-ff799955f134
https://gchq.github.io/CyberChef/
https://www.urlvoid.com/
https://www.urlvoid.com/
http://www.surbl.org/
https://www.malwaredomainlist.com/mdl.php
https://www.shouldiclick.org/
https://www.virustotal.com/gui/home/url
https://github.com/HappyFunCorp/socialinvestigator
https://github.com/HappyFunCorp/socialinvestigator
https://pt.infobyip.com/
https://www.maltego.com/
https://github.com/mandiant/flare-vm
http://checkshorturl.com/expand.php
http://checkshorturl.com/expand.php
https://www.expandurl.net/expand
https://urlhaus.abuse.ch/browse/

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Context
	1.3 Objectives
	1.4 Structure

	2 Literature Review
	2.1 Background
	2.1.1 Social Engineering
	2.1.2 Phishing

	2.2 Blacklisting
	2.3 Machine Learning
	2.3.1 Web Scrapping and Crawling for Data
	2.3.2 Machine Learning Detection Techniques
	2.3.3 Passive Detection Methods
	2.3.4 Active Detection Methods

	2.4 Rule-based Detection
	2.5 Honeypots
	2.6 Discussion

	3 Requirements and Pipeline Development
	3.1 Requirements for URL analysis
	3.2 Pipeline Overview
	3.3 Detection of Private Information
	3.4 URL Reputation Score
	3.5 Retrieve IoCs information
	3.5.1 URL shorteners

	3.6 Dynamic Analysis
	3.6.1 Low-interaction Honeyclients
	3.6.2 Sandbox Environment
	3.6.3 Network traffic Analysis

	3.7 Discussion

	4 Pratical Validation
	4.1 Website Design and Implementation
	4.2 Pipeline Execution
	4.2.1 Detection of Private Information
	4.2.2 URL Reputation Score
	4.2.3 Retrieve IoCs information
	4.2.4 Dynamic Analysis
	4.2.5 Thug Execution
	4.2.6 Cuckoo Sandbox
	4.2.7 Zeek Network Traffic Analyzer

	4.3 Result Interpretation
	4.3.1 Case 1: Phishing URL
	4.3.2 Case 2: Drive-by Download URL

	4.4 Reporting to the user
	4.5 Discussion

	5 Discussion and Conclusion
	5.1 Difficulties encountered
	5.2 Conclusions
	5.3 Future work

	References

