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 Privacy preserving data mining has become the focus of attention of 

government statistical agencies and database security research community 

who are concerned with preventing privacy disclosure during data mining. 

Repositories of large datasets include sensitive rules that need to be 

concealed from unauthorized access. Hence, association rule hiding emerged 

as one of the powerful techniques for hiding sensitive knowledge that exists 

in data before it is published. In this paper, we present a constraint-based 

optimization approach for hiding a set of sensitive association rules, using a 

well-structured integer linear program formulation. The proposed approach 

reduces the database sanitization problem to an instance of the integer linear 

programming problem. The solution of the integer linear program determines 

the transactions that need to be sanitized in order to conceal the sensitive 

rules while minimizing the impact of sanitization on the non-sensitive rules. 

We also present a heuristic sanitization algorithm that performs hiding by 

reducing the support or the confidence of the sensitive rules. The results of 

the experimental evaluation of the proposed approach on real-life datasets 

indicate the promising performance of the approach in terms of side effects 

on the original database. 
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1. INTRODUCTION 

Data mining aims to explore and analyze the huge volumes of data and data mining systems are 

categorized depending upon the types of knowledge they discover. However, the knowledge discovered 

through various data mining algorithms may contain sensitive information about an individual or business. 

Disclosure of such sensitive information may cause a threat to security. Henceforth, comprehensive 

sanitization of the database is essential when data is shared with a third party. 

Privacy preserving data mining (PPDM) [1, 2] has evolved as an interesting problem in database 

security applications due to the diverse conflicting requirements of data sharing, proprietary data disclosure, 

privacy concern and knowledge discovery. The objective of PPDM is to develop data sanitation algorithms 

which modify the data such that even after applying mining algorithms the sensitive knowledge remains 

intact. Verykios et al. [3] analysed the state-of-the-art, presented classification hierarchy and clustering of 

different privacy preserving data mining techniques. Bertino et al. [4] presented an approach for evaluating 

different attributes of a privacy preserving algorithm. Knowledge hiding, a subfield of PPDM, can be 

achieved by a process known as data sanitization [5]. The process of knowledge hiding modifies the sensitive 

data before delivering it to the third party [6] in order to ensure data privacy. In this paper, we focus on the 

knowledge hiding process in the context of association rule mining (ARM). The sensitive rule hiding 

https://creativecommons.org/licenses/by-sa/4.0/
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problem is common in collaborative ARM applications where only a part of the information found in the data 

must be revealed by the organization, strategic knowledge inferred by the sensitive rules must be concealed. 

Hence, sensitive patterns should no longer be extracted from the database at the same time database utility be 

well maintained. The technique that we propose is formulated based on the mathematical optimization 

problem called integer linear programming (ILP). The objective of the proposed ILP formulation is to 

minimize the total weight of sensitive transactions while achieving zero hiding failure. The solution obtained 

from the ILP determines the transactions that need to be sanitized in order to hide the sensitive rules. 

The paper is organized as follows: Section 2 presents a brief overview of previous works on 

sensitive association rule hiding. Section 3 provides a formalization of the problem and the proposed 

methodology is described in section 4. Section 5 discusses performance results of the proposed methodology. 

The final section of this paper presents concluding remarks and future extensions.  

 

 

2. RELATED WORK 

Data sanitization approaches are categorized into heuristic, border, exact and evolutionary 

algorithms. The heuristic approach uses blocking or distortion technique to determine suitable sensitive items 

and transactions for modification. Two fundamental heuristic approaches were presented in [7] to prevent 

sensitive rules from disclosure. The first method hides the frequent itemsets from which sensitive rules are 

derived thereby preventing sensitive rules from being generated. The second method reduces the relevance of 

sensitive rules by bringing its confidence below the given minimum threshold. Oliveira et al. [8, 9] 

implemented an index schema and the transaction retrieval engine to speed up the process of sanitization. 

Aggregate, Hybrid and Disaggregate algorithms presented in [10] perform better than the SWA algorithm [9] 

in terms of data utility but suffers from computational complexity. Item grouping algorithm (IGA) presented 

in [8] is improved in [11] to decrease the number of modifications. Hong et al. in [12] proposed a 

greedy SIF-IDF algorithm that uses TF-IDF measure from information retrieval to compute the 

correspondence between sensitive itemsets and transactions. Cheng et al. [13] proposed an algorithm that 

reduces data distortion degree by modifying the least number of transactions in order to conceal a sensitive 

rule.  Le et al. [14] proposed a distortion-based approach that modifies the minimum number of transactions 

during the hiding process. Pang et al. [15] devised a sensitive association rule hiding algorithm on outsourced 

data uploaded from multiple data owners in a twin cloud architecture using homomorphic cryptosystem. 

Shaoxin et al. [16] proposed a database reconstruction-based technique for hiding frequent itemsets achieves 

a high degree of privacy and reasonable data utility of the synthetic database. The main drawback of the 

heuristic approach is that in the majority of cases, it fails to deliver an optimal solution to the sanitization 

problem. 

The border approach focuses on reducing side effects on non-sensitive itemsets during the process 

of database sanitization. The sanitization process utilizes border theory [17] to reduce the impact of the 

sanitization process on low support non-sensitive itemsets. The border approach presented by Sun and Yu 

[18] uses the positive border to keep track of the impact of transaction sanitization. Telikani et al. [19] 

devised the DCR algorithm using the combination of heuristic and border-based approaches in order to 

minimize the impact on non-sensitive rules while hiding sensitive rules. Greedy algorithm presented in [20] 

uses border theory to provide an optimal solution for hiding sensitive frequent itemsets.  

The exact approach formulated the sanitization problem as a constraint satisfaction problem (CSP). 

Menon et al. [21] utilized ILP to formulate a CSP that determines the least number of transaction 

sanitizations in order to conceal sensitive itemsets. Divanis and Verykios in [22] defined a CSP to select 

candidate itemsets for modifications. The sanitization algorithm determines frequent itemsets that belong to 

positive and negative borders. The first phase of the sanitization process terminates when all sensitive 

itemsets are concealed with zero side effects. Otherwise, the second phase is executed until the feasible 

solution to the CSP is found. CSP based approaches efficiently maintain data accuracy but require high 

computation time. Evolutionary algorithms encode the sanitization problem into a population of binary 

solutions. Cuckoo Optimization method proposed in [23] conceals sensitive association rules, while it 

minimizes the number of cycles and access. GA-based algorithms proposed in [24] and PSO-based 

algorithms devised in [25] are deletion-based approaches, compute righteousness of chromosome to 

determine side-effects of sanitization by defining fitness function. Each solution consists of a transaction set 

which is used for the chromosome encoding. Wu et al. [26] presented an algorithm ACS2DT based on ant 

colony system to reduce side effects. Genetic algorithm approach proposed in [27] formulates an objective 

function that computes the side effect on non-sensitive rules. ABC4ARH rule hiding algorithm presented in 

[28] selects sensitive transactions by using an improved discrete binary artificial bee colony algorithm. 

Genetic algorithm-based approaches provide strategies only for identifying transactions to be removed from 

or to be added into the database.  

https://www.hindawi.com/journals/aaa/2014/589562/#preliminaries
https://www.researchgate.net/profile/Akbar_Telikani?_sg%5B0%5D=ct5voG3ve_OgpyvhyBJr-TDHdRDERxww2urdXTAxd4bhVwG43ZBNjzQiEhEGBx3lhR7CMkM.tkxNi-6n9cFTu6YYetpBCN5SAa9FFkU8UTB-hMBPlw2W0xL3jk4wCWpBL6pLz4b5RvWMzWwbyUOiaj_NdCZH0w&_sg%5B1%5D=VipAkrY4iG2D_2qBvYsaWViwTjNEFB4k8I1xY_7esDt0SCfJ83yedkWcSYaPeLlUkFG3JbA.4VJV1cb2cPTAlgQb3NkHOxb2t7tyRgqEc9AKF0G5p9Jzq2zIrF-n0iWryTu0Ciarl8jhYFSE0xDDXHCdKGpagw
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3. PROBLEM  STATEMENT 

Let 𝐼 = {𝛾1, 𝛾2, … , 𝛾𝑚} be the finite set of m items.  An itemset is a nonempty subset Ik where 𝐼𝑘 ⊆ 𝐼 

and k-Itemset is an itemset containing k items. Let 𝐷 = {𝑇1, 𝑇2, . . . , 𝑇𝑛} with ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛: 𝑇𝑖 ⊆ 𝐼 be a tuple 

of transactions over I. This tuple is called the transaction of the database D. A transaction T iϵD supports an 

itemset α iff α ⊆Ti. The support count of α is the number of transactions containing α, denoted as |α|. The 

itemset α is frequent if its support is greater than or equal to the given minimum support threshold. 

An association rule is defined as an implication expression 𝛼 → 𝛽 where 𝛼, 𝛽 ⊆ 𝐼 and 𝛼 ∩ 𝛽 = 𝛷. A 

rule α→ β is said to hold a support σ in the database, where σ is the fraction of transactions that covers both α 

and β. A rule α→β is said to have confidence δ in the set of transactions where δ measures how frequently 

itemset β appears in the transactions that covers itemset α. The support σ and confidence δ are 

mathematically formulated by (1) and (2).  

 

(α β)  (1) 

 

(α β)  (2) 

 

Let σmin and δmin be the user specified minimum support threshold and the minimum confidence 

threshold.  A rule is strong if it satisfies both support and confidence thresholds. The ARM algorithm finds 

all strong association rules. To determine the strong rules, the rule mining algorithm first finds all the 

itemsets in D that are frequently enough to be considered important i.e. support ≥  𝜎𝑚𝑖𝑛 (frequent itemsets) 

and subsequently derives rules that are strong enough to be considered interesting. Sensitive rules are strong 

association rules that the data owner wants to hide. The association rule hiding problem aims to restrict theses 

sensitive rules from being disclosed. 

The sensitive association rule hiding problem addressed in this paper is stated as follows: Given a 

transactional database D, minimum support threshold σmin, minimum confidence threshold δmin, a set of 

strong rules R mined from D and a set of sensitive rules S⊆R to be hidden, modify the original D into a 

transformed database D′ to hide sensitive rules S from being disclosed, while minimally influencing non-

sensitive rules in the set R-S. In this paper, we propose an approach to reduce the support or confidence of 

the sensitive rules below the user specified minimum threshold by sanitizing selected transactions of D such 

that no sensitive rule is discovered from D′. The proposed approach conceals sensitive association rules while 

maintaining data utility.  

 

 

4. PROPOSED SOLUTION 

This section presents the proposed ILP based strategy for hiding sensitive rules. A sensitive rule 

𝛼 → 𝛽 can be is hidden using one of the following methods: 

Method 1: removing an item jϵα or β from the selected transactions until support (𝛼 → 𝛽) <  𝜎𝑚𝑖𝑛.  

Method 2: adding all items jϵα to the selected transactions until confidence (𝛼 → 𝛽) < 𝛿𝑚𝑖𝑛. 

Method 3: removing an item jϵα from the selected transactions until support (𝛼 → 𝛽) < 𝜎𝑚𝑖𝑛or confidence 

(𝛼 → 𝛽) < 𝛿𝑚𝑖𝑛. 

The insertion or deletion of any item may lead to side effects including, ghost rules and lost rules:  

i) Ghost rules are new non-sensitive rules discovered from the transformed database D′ but not present in the 

input database D; and ii) Lost rules are non-sensitive rules which are discovered from the input database D 

but lost in the transformed database D′ during hiding process. The solution to the hiding process is 

split down into three phases: Pre-processing, ILP formulation and hiding process. 

 

4.1.  Pre-processing 

To find the solution to the hiding problem, we employ the item deletion strategy of method 3, as it 

has more utility in hiding sensitive association rules. One of the key issues that need to be resolved for the 

sanitization is identifying suitable transactions in the database for modifications. If an item that belongs to the 

consequent itemset of a sensitive rule is removed from the selected supporting transaction, it reduces both the 

support of the inducing itemset and the confidence of the sensitive rule, but the support of the antecedent part 

remains unaffected. In contrast, if an item of antecedent itemset of sensitive rule from a supporting 

transaction is removed, it reduces union support of antecedent and generating itemset. This technique 

decreases the confidence slowly as compared to the former techniques. To optimize and speed up the hiding 

process, a pre-processing phase is implemented to find database D1 with all sensitive transactions that 

completely supports one or more sensitive rules. The pre-processing phase also finds non-sensitive rules that 
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contain no items of any sensitive rules and deletes from the set of non-sensitive rules S′ because database 

sanitization has no impact on such non-sensitive rules.  

 

4.2.  ILP formulation 

The solution to the rule hiding problem is modelled with the ILP shown in (3), (4) and (5).  

 

 
(3) 

 

 
(4) 

 

 (5) 

 

Each variable vi, coefficient ci corresponds to a transaction Ti in the pre-processed database D1 and 

each constraint corresponds to a sensitive association rule Sj in S. A constraint contains a variable if the 

corresponding sensitive rule is supported by the transaction Ti.  

The linear system has a variable for each sensitive transaction and |S| constraints. The objective 

function of the ILP shown in (3) aims to minimize database side effects while achieving zero hiding failure. 

In order to conceal the sensitive rule Sj the conditional constraints given in (4) ensure that at least nmin 

transactions that support sensitive rule Sj are selected for sanitization. In (5) represents the selection or 

rejection of a transaction Ti and enforces each variable vi be zero or one. The solution generated by the linear 

program indicates the set of transactions that need to be selected for sanitization. The coefficient assigned to 

each sensitive transaction can have a significant effect on the collection of transactions identified for each 

modification and hence on the quality of transformed database D′. In order to compute the minimum number 

of transactions nmin, the following properties are used. 

Property 1: Let Ts be the transaction set supporting the sensitive rule α→β. To reduce the confidence 

of the sensitive rule below δmin, the least number of transactions to be sanitized in Ts is n1=⌈|α→β|-|α|*δmin⌉ 
+1. Proof: If an item of the consequent itemset of a sensitive rule Sj is deleted from a sensitive transaction Ts, 

then support of Sj decreases by 1. Assume n1 is the least number of transactions that are forced to be sanitized 

in Ts to decrease the rule’s confidence below δmin, then we have (|α→β|-n1)/|α|<δmin. Therefore n1>|α→β|-

|α|*δmin. Since n1 is is the least integer, we can derive n1=⌈|α→ β|-|α|*δmin⌉+1. 

Property 2: Let Ts be the transaction set supporting the sensitive rule α→ β. To reduce the support 

below σmin, the least number of transactions to be sanitized in Ts is n2=⌈|α→β|-σmin*|D|⌉+1. Proof: If an item 

from consequent itemset of a sensitive rule Sj is deleted from a sensitive transaction Ts, then support of Sj 

decreases by 1. Assume that n2 is the least number of transactions from Ts that requires sanitization to reduce 

the support of Sj below σmin, then we have (|α→β|- n2)/|D|<σmin. Therefore n2>|α→β|-|D|*σmin. Since n2 is the 

least integer, we can derive n2=⌈|α→β|-σmin*|D|⌉+1.  

From properties 1 and 2, it can be deduced that the least number of transactions that require 

sanitization is nmin=min(n1, n2) to suppress the sensitive rule α→β. Since decreasing the support of some 

sensitive rule A→B may have an impact on the support of antecedent itemset of the sensitive rule α→β, n1 

cannot be calculated in advance. Therefore nmin=n2=⌈|α→β|-σmin*|D|⌉+1. 

The coefficient for each transaction that is included in the constraint matrix is computed using the 

coefficient computing algorithm shown in Figure 1. The constraint matrix is created by considering 

transactions that support one or more sensitive rules. The objective function is devised such that the binary 

variables that indicate the selection or rejection of a transaction are multiplied by the pre-calculated 

coefficients that reflect its vulnerability of being affected by the sanitization. We assign the weight for each 

item present in the consequent itemset the sensitive rules based on its presence in the number of antecedent 

and consequent itemset of the sensitive rules.  

Furthermore, a small constant μ is added to the denominator to prevent the possibility of division by 

zero. The impact of deleting the maximum weight item on non-sensitive transactions is used as the 

coefficient of a sensitive transaction. The value of the transaction coefficient indicates the risk of over 

concealing non-sensitive rules on selecting the transaction for sanitization. A sensitive transaction containing 

less non-sensitive rules with large support yields a low coefficient.  On the other hand, a transaction that 

contains more non-sensitive rules with support closer to σmin is less likely to get selected for sanitization. The 

impact, ek of deleting the item ′k′ on a non-sensitive rule S′j is calculated using (6). 
 

 
(6) 
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where |S′j|1 , |S′j| are support of non-sensitive rule S′j in D1 and D respectively. Deleting an item from the two 

different transactions Ti and Tj with the same number of non-sensitive rules does not ensure that they are 

vulnerable to introducing side effects to the same degree. 

 

4.3.  Hiding process 

The sanitization algorithm ILPARH shown in Figure 2 hides each sensitive rule α→β by deleting an 

item from consequent itemset β until its support is below σmin or its confidence is below δmin. The number of 

item deletions required for a sensitive rule α→β is given by the equation nmin=n2.The algorithm computes 

weight wj for each item j, where jϵTi as described in Coefficient Computing Algorithm and an item with the 

maximum weight is selected as victim item for deletion. If two or more items have the same maximum 

weight, then an item contained in the fewest antecedent of sensitive rules is selected. If a tie arises another 

time, then an item with highest support is selected for deletion. If two or more items have the same maximum 

support, then the sanitization algorithm picks the victim item randomly. The sensitive rules containing the 

victim item is also removed from Si. The support of affected frequent itemsets, sensitive rules, and 

confidence of the affected sensitive rules are updated. This procedure is repeated until Si is left empty. 
 

 

 
 

Figure 1. Coefficient computing algorithm 
 
 

 
 

Figure 2. ILPARH algorithm 
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5. PERFORMANCE  EVALUATION AND RESULTS DISCUSSION 

This section presents the results of experimental evaluations carried out on different real-world 

datasets. We evaluated our proposed algorithm and compared the results with the results of the DCR 

algorithm [19]. A set of experiments are conducted to measure the performance of the algorithms in terms of 

side-effects and execution time. The ILPARH and DCR algorithms were implemented in R and were 

executed in an Intel Pentium 4 using the Windows 10 Operating System at 2.50 GHz with 4 GB of RAM. 

 

5.1.  Datasets 

We examined the proposed algorithm using three different transaction datasets that are publicly 

accessible through the FIMI repository: mushroom, chess and BMS-1. These datasets exhibit different 

characteristics with regard to the maximum size of an itemset, number of transactions and average transaction 

size. The configurations of the overall datasets depicted in Table 1 where |I|, |D| and AvgSize respectively 

indicate the maximum size of an itemset, the number of transactions and the average size of transactions. The 

parameters σmin and δmin were set to confirm that ARM algorithm results in adequate number of strong 

associations rules. 

 

5.2.  Experimental results 

In order to demonstrate the efficiency of the proposed algorithm, several experiments were 

conducted on real-life datasets. At first, using the association rule mining algorithm, frequent itemsets are 

generated with the threshold parameter σmin. Then, association rules are discovered with the threshold 

parameter δmin. The Table 2 depicts the number of association rules that are generated for datasets Chess, 

Mushroom and BMS-1. Some these rules are selected as sensitive association rules S. 

 

 

Table 1. Characteristics of datasets 
Dataset   

 
AvgSize 

Chess 75 3,196 37.0 

Mushroom 119 8,124 23.0 
BMS-1 497 59,601 2.42 

 

Table 2. Values set for ARM algorithm threshold parameters 
Dataset Name   𝜎𝑚𝑖𝑛   𝛿𝑚𝑖𝑛   # Association Rules 

Chess 0.95 0.98 303 

Mushroom 0.40 0.70 3828 

BMS-1  0.001 0.70 2224 
 

 

 

The major performance criterion of the sanitization algorithm is the side effects it incurs on the data. 

We measure the side effects by summing up the number of lost rules and the number of ghost rules 

introduced. Figure 3 depicts the relationship between number of lost rules and number of sensitive rules. 

Figure 4 depicts the relationship between number of new rules generated and number of sensitive rules. The 

results show that the proposed method generates fewer side effects in comparison with the DCR algorithm. 

The reason is that the ILPARH algorithm utilizes ILP to determine the candidate transactions for 

modifications and thereby lead to a higher quality data. Figure 5 shows the relationship running time of the 

algorithm and number sensitive rules. As illustrated in Figure 5 there is an increase in the running time when 

compared to the DCR algorithm. The reason is that our algorithm requires additional computation to 

calculate the coefficients of each sensitive transaction in the ILP formulation. 
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Figure 3. Side-effects in terms of number of lost rules for different number of sensitive rules 
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Figure 4. Side-effects in terms of number of ghost rules for different number of sensitive rules 
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Figure 5. Runtime under different number of sensitive rules 

 

 

6. CONCLUSION 

In this paper, we presented a privacy-preserving algorithm ILPARH to protect sensitive association 

rules. The degree of the side effects on non-sensitive rules is used as coefficients of sensitive transactions in 

the ILP formulation. We exploit the characteristics of objective function to utilize the partial results of the 

CSP and deriving the solution for hiding sensitive rules. The results of experiments show that our approach 

minimizes the number of concealed non-sensitive rules and also discovery of ghost rules. In our future work, 

we intend to employ the evolutionary based framework to identify the candidate transactions for 

modifications during the sanitation process. Also, the evolutionary approach in conjunction with our victim 

item determining technique can be adopted to reduce side effects with the improved algorithmic efficiency. 
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