1,478 research outputs found

    A NEW METRIC-BASED LCA METHOD FOR ASSESSING THE SUSTAINABILITY PERFORMANCE OF METALLIC AUTOMOTIVE COMPONENTS

    Get PDF
    This thesis presents a new metric-based Life-cycle Assessment (LCA) method for assessing the sustainability performance of metallic automotive components. The unique feature of this research work include the development and use of a metrics-based product sustainability index (ProdSI) methodology by considering the total life-cycle approach and the triple bottom line (TBL) with the 6R methodology. It has been shown that the manufactured product’s sustainability performance can be comprehensively assessed using this new methodology. The major focus of this research is the integration of the 6R activities (Reduce, Reuse, Recycle, Recover, Redesign and Remanufacture). Four life-cycle stages of the product, with various end-of-life (EOL) product scenarios, are modeled and analyzed. These scenarios include: reuse, remanufacturing, and recycling the products at EOL. Furthermore, a new mathematical model is developed and presented to determine the optimum percentage mix for various product EOL strategic options. By using the 6R methodology, the overall product sustainability was significantly improved. This improvement was quantitatively assessed by computing the ProdSI score. Ultimately, this research shows that a closed-loop material flow can be achieved

    Decision support for assessing the feasibility of a product for remanufacture

    Get PDF
    Remanufacturing is the process of restoring old, damaged and failed products to a condition as good as new . Whilst the practice of remanufacture has been conducted for almost a century, the attention it receives within mainstream business is increasing due to potential benefits associated with economic savings and reduced environmental impact. There are several challenges in operating a successful remanufacturing business, one of which is how to assess the feasibility of remanufacturing. Remanufacturing does not lend itself towards every product due to factors related to the product, process, market and business capabilities, therefore careful assessment should be conducted before taking on a remanufacturing endeavour. This thesis reports the research undertaken to aid decision makers assessing the feasibility of a product for remanufacture. The aim has therefore been to determine the requirements of assessing remanufacturing feasibility, then to develop a tool to support this activity. Requirements of the decision making process were established through a detailed review of the literature supplemented with additional interviews from remanufacturing businesses, whilst research gaps for support tools were identified through a systematic review of existing tools presented within academia. Through these reviews it was determined that current methods do not provide enough support in determining the impact of uncertainties found within remanufacturing against key assessment criteria, such as economic cost. Focus upon the tool development was therefore directed at estimating remanufacturing cost of a product under uncertain conditions. The tool was designed, utilising techniques such as Monte Carlo analysis, fuzzy sets and case based reasoning. A prototype of the tool was then implemented within an object oriented structure and deployed as web service. Testing and validation were conducted by demonstrating the functionality of the tool against a set of specification requirements, through two contrasting remanufacturing case studies identified within industry. In summary this research has developed a tool to support the assessment of remanufacturing viability through cost estimation under uncertain conditions, identifying requirements through a detailed literature review and interviews with industry and providing validation through two detailed case studies. The tool is novel in its ability to calculate both cost and the risk associated with the uncertainties present within the remanufacturing domain

    The improvement of product sustainability by the development of 'whole life' design methodologies

    Get PDF
    Sustainability-related legislation has increased over the past 10 years, and this is now having a profound effect on industry which is required to reduce its impacts. Those designing and manufacturing electro-mechanical products must also consider the impacts of the goods they produce. Many of these impacts stem from decisions made early on in the design process, and consequently it is here that effort must be focused. One of the most significant lifecycle stages of any product is end of life, as it dictates how much of the material and embedded energy are recovered for reuse. Remanufacturing was found to be the only end of life option for electro-mechanical products that returned a product to a like-new quality, without first destroying the form of the component and loosing the embodied energy. Although remanufacture can require a high level of reprocessing, the process can be simplified if products are designed to facilitate this. Current design models in this area, however, offer inadequate assistance to designers, leading to confusion and a lack of real life application. Through the use of a case study, this study set out to explore whether the impacts of electro-mechanical products could be reduced, by considering products on a component level and designing them to operate over multiple lives, without increasing cost or reducing quality. This proved to be true in the case of a stairlift. Through life cycle assessment it was demonstrated that the whole life environmental impacts of a stairlift, representing a sample electro-mechanical product, could be significantly reduced by remanufacturing components at end of life. High impact components were targeted for remanufacture using the LCA data in combination with cost, sending the remainder of the product for recycling. Overall, environmental savings of 13% were witnessed. Incorporating sustainability in this fashion not only avoided any increase in cost to the manufacturer, but achieved a 34% reduction in overall production costs. It was concluded that if the product had been optimised with desirable characteristics for remanufacture and recycling when in design, then these savings would be even more significant. To guide designers with embedding desirable characteristics into products, the end of life optimisation (EOLO) model was developed. This provides a framework for selecting components early in the design process for either remanufacture or recycling. The model goes on to rate current performance and provided guidelines on how to improve the design going forward

    A Fuzzy Inference System Approach for Evaluating the Feasibility of Product Remanufacture

    Get PDF
    In the recent past, efforts have been made in enhancing sustainable manufacturing aimed at protecting the environment and saving natural resources. Among the efforts that have been explored include strategies to ensure responsible end-of-life product management so as reduce the impact on the environment and achieve effective use of resources. Towards this end, reduce, reuse and recycle product disposal strategies have found a lot of consideration in manufacturing. Of the product reuse strategies, remanufacturing has been widely applied owing to its unique feature of rendering the remanufactured product as good as new. For remanufacturers, this strategy leads to provision of quality products comparable to new their new counterparts at a reduced cost. Remanufacturing also leads to a sustainable environment through energy and material savings, as well as minimized solid wastes. Remanufacturing however, poses challenges related to collection of the returns or cores, manufacturing process planning, resource allocation, warranty estimation and redistribution. These challenges are due to product and process complexities, customer requirements, and uncertainties associated with product take back and the remanufactured products’ market-base. Key among these challenges is the remanufacturing process which is complicated, labor intensive with varying process times. In most cases the routing of these processes is stochastic in nature, based on the condition of the returned product. There is also the negative perception among consumers that remanufactured products are less superior to new ones, which calls for the need to allocate preferably longer warranty periods for the remanufactured product to induce confidence in the consumer while at the same time keeping the warranty costs low. The objectives of this study were informed by challenges faced by a local remanufacturing firm. They include: (1) a detailed study of the current remanufacturing process of the firm’s products; (2) identification of bottlenecks in the process to make recommendations for improvement; (3) develop a decision support system for assessing product remanufacture; (4) assess warranty allocation options for remanufactured product reuse. The study revealed that there are bottlenecks in the current remanufacturing process and suggested an improvement to enhance efficiency. This bottlenecks include overutilization of some of the process centers such as the diagnostic testing and the after-repair testing centers which lead to the product spending more time in the system than necessary. To improve the system performance the capacities of the bottleneck centers were increased which yielded significant reduction in the time the product spends in the system. The key contribution of this dissertation is the development of a decision support system based on a bi-level fuzzy linguistic computing approach. This model integrates qualitative and quantitative product attributes in determining the remanufacturability of a product. The fuzzy-based model established remanufacturability metric, herein referred to as an index, is applied to assess the feasibility of remanufacturing two products that were used as a case study. A number of warranty scenarios are considered to ascertain the impact of different warranty periods on the cost of warranty. The results show that the additional warranty cost for product reuse is a function of the period of first use and the residual life of the produc

    Decision makings in key remanufacturing activities to optimise remanufacturing outcomes : a review

    Get PDF
    The importance of remanufacturing has been increasing since stricter regulations on protecting the environment were enforced. Remanufacturing is considered as the main means of retaining value from used products and components in order to drive a circular economy. However, it is more complex than traditional manufacturing due to the uncertainties associated with the quality, quantities and return timing of used products and components. Over the past few years, various methods of optimising remanufacturing outcomes have been developed to make decisions such as identifying the best End-Of-Life (EOL) options, acquiring the right amounts of cores, deciding the most suitable disassembly level, applying suitable cleaning techniques, and considering product commonality across different product families. A decision being made at one remanufacturing activity will greatly affect the decisions at subsequent activities, which will affect remanufacturing outcomes, i.e. productivity, economic performance effectiveness, and the proportion of core that can be salvaged. Therefore, a holistic way of integrating different decisions over multiple remanufacturing activities is needed to improve remanufacturing outcomes, which is a major knowledge gap. This paper reviews current remanufacturing practice in order to highlight both the challenges and opportunities, and more importantly, offers useful insights on how such a knowledge gap can be bridged

    Circular Economy (CE) applied to Asset Management/Tech safety: study case on Oil & Gas Asset Decommissioning

    Get PDF
    The CE has been fast erupting in terms of its relevance. It has tried to be implemented to achieve sustainable development and most importantly, reap economic benefits since it is reflected as attractive for business but it has not been implemented to its full potential. Due to a lack of awareness and understanding of the impacts of CE, theoretical knowledge was gathered and it was necessary to do a literature review. A question-based survey was conducted as well; however, the survey findings were inconclusive as a result of insufficient participants. As a case study, a further study was discussed on oil and gas asset decommissioning and how it is impacted by the CE. Considering the numerous years an oil and gas project could be running, the field production eventually ends after which the assets or equipment on the platform will have to be removed. A lot of materials are obtained in this phase of the oil and gas projects. An amount of the platform structures and equipment offshore are transported to onshore where a good amount is recycled, and the rest is being disposed of in landfills as scrubs. These practices are not environmentally and economically friendly and therefore the Circular Economy comes in to save the day by various methods such as refurbishment, reusing, remanufacturing and repurposing rather than abandoning the equipment or just recycling. Another aspect of the thesis was mainly on developing a CE assessment tool. The CE assessment tool was built based on literature and theoretical knowledge gathered. It was focused on the decommissioning phase of the assets where the End of life(EoL) stage has been reached. Two study cases or examples were used to demonstrate the two functionalities of the CE assessment tool. Other functionalities of the tool were summarised as well. Finally, a product development process framework in terms of the CE applied to equipment/product in their EoL phase was developed.It was developed on basis of a generic product development process consisting of six phases and based on CE concepts and theoretical knowledge. The objective of the framework is to be able to have a structured plan for when products are to be looped into the CE when they reach their EoL phase to extend their life

    A big data based cost prediction method for remanufacturing end-of-life products

    Get PDF
    Remanufacturing is considered as an important industrial process to restore the performance and function of End-of-Life (EOL) products to a like-new state. In order to help enterprises effectively and precisely predict the cost of remanufacturing processes, a remanufacturing cost prediction model based on big data is developed. In this paper, a cost analysis framework is established by applying big data technologies to interpret the obtained data, identify the intricate relationship of obtained sensor data and its corresponding remanufacturing processes and associated costs. Then big data mining and particle swarm optimization Back Propagation (BP) neural network algorithm are utilized to implement the cost prediction. The application of presented model is verified by a case study, and the results demonstrates that the developed model can predict the cost of the remanufacturing accurately allowing early decision making for remanufacturability of the EOL products

    MODELING AND OPTIMIZATION TO EVALUATE SUSTAINABILITY PERFORMANCE OF CUSTOMIZABLE PRODUCT SERVICE SYSTEMS

    Get PDF
    The aim of this thesis is to present a new methodology to evaluate and optimize sustainability of customizable product-service systems while ensuring economic, environmental and societal constraints are also satisfied. Activities across the total product lifecycle are considered to develop a model that evaluates closed-loop flow, while being monitored through the growth, maturity and decline stages of the product to provide a comprehensive analysis. A novel method to evaluate the customer satisfaction is also presented. The research considers a modular product where customization can be achieved by selecting from alternatives while ensuring the compatibility between these alternatives. A manufacturer will be able to use the tool developed to optimize the business models developed by maximizing their profitability, satisfying regulatory and customer requirements, and evaluating the metrics that determine the sustainability of the product. The tool primarily uses a Microsoft Excel based platform for calculation and analysis while using ILOG OPL software for optimization. The sensitivity analysis provides examples of the variety of information that can be generated through the model according to the interests of the user. The results demonstrate the usefulness of the tool as a ‘sustainable product configurator’ which can be integrated with conventional product configurators after further refinement

    Remanufacturing as a potential means of attaining sustainable industrial development in Indonesia

    Get PDF
    Remanufacturing industries account for a considerable share of small medium enterprises (SMEs) in both developed and developing countries. There is an urgent need for a sustainable manufacturing strategy for remanufacturing SMEs in developing countries in order for them to gain global market competitiveness through minimizing environmental impact while maximizing the economic and social benefits of SME manufacturing activities. This research uses Indonesian remanufacturing SMEs as a case study for sustainable manufacturing in developing countries

    An Optimization Approach for the Coordinated Low-Carbon Design of Product Family and Remanufactured Products

    Full text link
    [EN] With increasingly stringent environmental regulations on emission standards, enterprises and investigators are looking for effective ways to decrease GHG emission from products. As an important method for reducing GHG emission of products, low-carbon product family design has attracted more and more attention. Existing research, related to low-carbon product family design, did not take into account remanufactured products. Nowadays, it is popular to launch remanufactured products for environmental benefit and meeting customer needs. On the one hand, the design of remanufactured products is influenced by product family design. On the other hand, the launch of remanufactured products may cannibalize the sale of new products. Thus, the design of remanufactured products should be considered together with the product family design for obtaining the maximum profit and reducing the GHG emission as soon as possible. The purpose of this paper is to present an optimization model to concurrently determine product family design, remanufactured products planning and remanufacturing parameters selection with consideration of the customer preference, the total profit of a company and the total GHG emission from production. A genetic algorithm is applied to solve the optimization problem. The proposed method can help decision-makers to simultaneously determine the design of a product family and remanufactured products with a better trade-off between profit and environmental impact. Finally, a case study is performed to demonstrate the effectiveness of the presented approach.This research was funded by National Natural Science Foundation of China (grant number 51575264 and 51805253); the Fundamental Research Funds for the Central Universities (grant number NP2017105); Jiangsu Planned Projects for Postdoctoral Research Funds (grant number 2018K017C); and the Qin Lan Project.Wang, Q.; Tang, D.; Li, S.; Yang, J.; Salido, MA.; Giret Boggino, AS.; Zhu, H. (2019). An Optimization Approach for the Coordinated Low-Carbon Design of Product Family and Remanufactured Products. Sustainability. 11(2):1-22. https://doi.org/10.3390/su11020460S122112Mascle, C., & Zhao, H. P. (2008). Integrating environmental consciousness in product/process development based on life-cycle thinking. International Journal of Production Economics, 112(1), 5-17. doi:10.1016/j.ijpe.2006.08.016Kengpol, A., & Boonkanit, P. (2011). The decision support framework for developing Ecodesign at conceptual phase based upon ISO/TR 14062. International Journal of Production Economics, 131(1), 4-14. doi:10.1016/j.ijpe.2010.10.006Ferrer, G., & Swaminathan, J. M. (2010). Managing new and differentiated remanufactured products. European Journal of Operational Research, 203(2), 370-379. doi:10.1016/j.ejor.2009.08.007Sutherland, J. W., Adler, D. P., Haapala, K. R., & Kumar, V. (2008). A comparison of manufacturing and remanufacturing energy intensities with application to diesel engine production. CIRP Annals, 57(1), 5-8. doi:10.1016/j.cirp.2008.03.004Song, J.-S., & Lee, K.-M. (2010). Development of a low-carbon product design system based on embedded GHG emissions. Resources, Conservation and Recycling, 54(9), 547-556. doi:10.1016/j.resconrec.2009.10.012Qi, Y., & Wu, X. (2011). Low-carbon Technologies Integrated Innovation Strategy Based on Modular Design. Energy Procedia, 5, 2509-2515. doi:10.1016/j.egypro.2011.03.431Su, J. C. P., Chu, C.-H., & Wang, Y.-T. (2012). A decision support system to estimate the carbon emission and cost of product designs. International Journal of Precision Engineering and Manufacturing, 13(7), 1037-1045. doi:10.1007/s12541-012-0135-yKuo, T. C., Chen, H. M., Liu, C. Y., Tu, J.-C., & Yeh, T.-C. (2014). Applying multi-objective planning in low-carbon product design. International Journal of Precision Engineering and Manufacturing, 15(2), 241-249. doi:10.1007/s12541-014-0331-zXu, Z.-Z., Wang, Y.-S., Teng, Z.-R., Zhong, C.-Q., & Teng, H.-F. (2015). Low-carbon product multi-objective optimization design for meeting requirements of enterprise, user and government. Journal of Cleaner Production, 103, 747-758. doi:10.1016/j.jclepro.2014.07.067He, B., Wang, J., Huang, S., & Wang, Y. (2015). Low-carbon product design for product life cycle. Journal of Engineering Design, 26(10-12), 321-339. doi:10.1080/09544828.2015.1053437Chiang, T.-A., & Che, Z. H. (2015). A decision-making methodology for low-carbon electronic product design. Decision Support Systems, 71, 1-13. doi:10.1016/j.dss.2015.01.004He, B., Tang, W., Wang, J., Huang, S., Deng, Z., & Wang, Y. (2015). Low-carbon conceptual design based on product life cycle assessment. The International Journal of Advanced Manufacturing Technology, 81(5-8), 863-874. doi:10.1007/s00170-015-7253-5(Roger) Jiao, J., Simpson, T. W., & Siddique, Z. (2007). Product family design and platform-based product development: a state-of-the-art review. Journal of Intelligent Manufacturing, 18(1), 5-29. doi:10.1007/s10845-007-0003-2Francalanza, E., Borg, J. C., & Constantinescu, C. L. (2012). A Case for Assisting ‘Product Family’ Manufacturing System Designers. Procedia CIRP, 3, 376-381. doi:10.1016/j.procir.2012.07.065Bryan, A., Wang, H., & Abell, J. (2013). Concurrent Design of Product Families and Reconfigurable Assembly Systems. Journal of Mechanical Design, 135(5). doi:10.1115/1.4023920Wang, Q., Tang, D., Yin, L., Salido, M. A., Giret, A., & Xu, Y. (2016). Bi-objective optimization for low-carbon product family design. Robotics and Computer-Integrated Manufacturing, 41, 53-65. doi:10.1016/j.rcim.2016.02.001Tang, D., Wang, Q., & Ullah, I. (2016). Optimisation of product configuration in consideration of customer satisfaction and low carbon. International Journal of Production Research, 55(12), 3349-3373. doi:10.1080/00207543.2016.1231430Kim, S., & Moon, S. K. (2017). Sustainable platform identification for product family design. Journal of Cleaner Production, 143, 567-581. doi:10.1016/j.jclepro.2016.12.073Xiao, W., Du, G., Zhang, Y., & Liu, X. (2018). Coordinated optimization of low-carbon product family and its manufacturing process design by a bilevel game-theoretic model. Journal of Cleaner Production, 184, 754-773. doi:10.1016/j.jclepro.2018.02.240Mangun, D., & Thurston, D. L. (2002). Incorporating component reuse, remanufacture, and recycle into product portfolio design. IEEE Transactions on Engineering Management, 49(4), 479-490. doi:10.1109/tem.2002.807292Debo, L. G., Toktay, L. B., & Wassenhove, L. N. V. (2009). Joint Life-Cycle Dynamics of New and Remanufactured Products. Production and Operations Management, 15(4), 498-513. doi:10.1111/j.1937-5956.2006.tb00159.xVorasayan, J., & Ryan, S. M. (2009). Optimal Price and Quantity of Refurbished Products. Production and Operations Management, 15(3), 369-383. doi:10.1111/j.1937-5956.2006.tb00251.xKwak, M., & Kim, H. M. (2011). Assessing product family design from an end-of-life perspective. Engineering Optimization, 43(3), 233-255. doi:10.1080/0305215x.2010.482990Kwak, M., & Kim, H. (2012). Market Positioning of Remanufactured Products With Optimal Planning for Part Upgrades. Journal of Mechanical Design, 135(1), 011007. doi:10.1115/1.4023000Debo, L. G., Toktay, L. B., & Van Wassenhove, L. N. (2005). Market Segmentation and Product Technology Selection for Remanufacturable Products. Management Science, 51(8), 1193-1205. doi:10.1287/mnsc.1050.0369Ferguson, M. E., & Toktay, L. B. (2009). The Effect of Competition on Recovery Strategies. Production and Operations Management, 15(3), 351-368. doi:10.1111/j.1937-5956.2006.tb00250.xJin, Y., Muriel, A., & Lu, Y. (2015). When to Offer Lower Quality or Remanufactured Versions of a Product. Decision Sciences, 47(4), 699-719. doi:10.1111/deci.12175Liu, B., Holmbom, M., Segerstedt, A., & Chen, W. (2014). Effects of carbon emission regulations on remanufacturing decisions with limited information of demand distribution. International Journal of Production Research, 53(2), 532-548. doi:10.1080/00207543.2014.957875Wang, Y., Chen, W., & Liu, B. (2017). Manufacturing/remanufacturing decisions for a capital-constrained manufacturer considering carbon emission cap and trade. Journal of Cleaner Production, 140, 1118-1128. doi:10.1016/j.jclepro.2016.10.058Yenipazarli, A. (2016). Managing new and remanufactured products to mitigate environmental damage under emissions regulation. European Journal of Operational Research, 249(1), 117-130. doi:10.1016/j.ejor.2015.08.020Perera, H. S. ., Nagarur, N., & Tabucanon, M. T. (1999). Component part standardization: A way to reduce the life-cycle costs of products. International Journal of Production Economics, 60-61, 109-116. doi:10.1016/s0925-5273(98)00179-0Jiao, J., & Zhang, Y. (2005). Product portfolio planning with customer-engineering interaction. IIE Transactions, 37(9), 801-814. doi:10.1080/07408170590917011Mukhopadhyay, S. K., & Ma, H. (2009). Joint procurement and production decisions in remanufacturing under quality and demand uncertainty. International Journal of Production Economics, 120(1), 5-17. doi:10.1016/j.ijpe.2008.07.032Wang, K., & Choi, S. H. (2014). A holonic approach to flexible flow shop scheduling under stochastic processing times. Computers & Operations Research, 43, 157-168. doi:10.1016/j.cor.2013.09.01
    • …
    corecore