225 research outputs found

    Derivation of forest inventory parameters from high-resolution satellite imagery for the Thunkel area, Northern Mongolia. A comparative study on various satellite sensors and data analysis techniques.

    Get PDF
    With the demise of the Soviet Union and the transition to a market economy starting in the 1990s, Mongolia has been experiencing dramatic changes resulting in social and economic disparities and an increasing strain on its natural resources. The situation is exacerbated by a changing climate, the erosion of forestry related administrative structures, and a lack of law enforcement activities. Mongolia’s forests have been afflicted with a dramatic increase in degradation due to human and natural impacts such as overexploitation and wildfire occurrences. In addition, forest management practices are far from being sustainable. In order to provide useful information on how to viably and effectively utilise the forest resources in the future, the gathering and analysis of forest related data is pivotal. Although a National Forest Inventory was conducted in 2016, very little reliable and scientifically substantiated information exists related to a regional or even local level. This lack of detailed information warranted a study performed in the Thunkel taiga area in 2017 in cooperation with the GIZ. In this context, we hypothesise that (i) tree species and composition can be identified utilising the aerial imagery, (ii) tree height can be extracted from the resulting canopy height model with accuracies commensurate with field survey measurements, and (iii) high-resolution satellite imagery is suitable for the extraction of tree species, the number of trees, and the upscaling of timber volume and basal area based on the spectral properties. The outcomes of this study illustrate quite clearly the potential of employing UAV imagery for tree height extraction (R2 of 0.9) as well as for species and crown diameter determination. However, in a few instances, the visual interpretation of the aerial photographs were determined to be superior to the computer-aided automatic extraction of forest attributes. In addition, imagery from various satellite sensors (e.g. Sentinel-2, RapidEye, WorldView-2) proved to be excellently suited for the delineation of burned areas and the assessment of tree vigour. Furthermore, recently developed sophisticated classifying approaches such as Support Vector Machines and Random Forest appear to be tailored for tree species discrimination (Overall Accuracy of 89%). Object-based classification approaches convey the impression to be highly suitable for very high-resolution imagery, however, at medium scale, pixel-based classifiers outperformed the former. It is also suggested that high radiometric resolution bears the potential to easily compensate for the lack of spatial detectability in the imagery. Quite surprising was the occurrence of dark taiga species in the riparian areas being beyond their natural habitat range. The presented results matrix and the interpretation key have been devised as a decision tool and/or a vademecum for practitioners. In consideration of future projects and to facilitate the improvement of the forest inventory database, the establishment of permanent sampling plots in the Mongolian taigas is strongly advised.2021-06-0

    Climate-Smart Forestry in Mountain Regions

    Get PDF
    This open access book offers a cross-sectoral reference for both managers and scientists interested in climate-smart forestry, focusing on mountain regions. It provides a comprehensive analysis on forest issues, facilitating the implementation of climate objectives. This book includes structured summaries of each chapter. Funded by the EU’s Horizon 2020 programme, CLIMO has brought together scientists and experts in continental and regional focus assessments through a cross-sectoral approach, facilitating the implementation of climate objectives. CLIMO has provided scientific analysis on issues including criteria and indicators, growth dynamics, management prescriptions, long-term perspectives, monitoring technologies, economic impacts, and governance tools

    Climate-Smart Forestry in Mountain Regions

    Get PDF
    This open access book offers a cross-sectoral reference for both managers and scientists interested in climate-smart forestry, focusing on mountain regions. It provides a comprehensive analysis on forest issues, facilitating the implementation of climate objectives. This book includes structured summaries of each chapter. Funded by the EU’s Horizon 2020 programme, CLIMO has brought together scientists and experts in continental and regional focus assessments through a cross-sectoral approach, facilitating the implementation of climate objectives. CLIMO has provided scientific analysis on issues including criteria and indicators, growth dynamics, management prescriptions, long-term perspectives, monitoring technologies, economic impacts, and governance tools

    Airborne Laser Scanning to support forest resource management under alpine, temperate and Mediterranean environments in Italy

    Get PDF
    Abstract This paper aims to provide general considerations, in the form of a scientific review, with reference to selected experiences of ALS applications under alpine, temperate and Mediterranean environments in Italy as case studies. In Italy, the use of ALS data have been mainly focused on the stratification of forest stands and the estimation of their timber volume and biomass at local scale. Potential for ALS data exploitation concerns their integration in forest inventories on large territories, their usage for silvicultural systems detection and their use for the estimation of fuel load in forest and pre-forest stands. Multitemporal ALS may even be suitable to support the assessment of current annual volume increment and the harvesting rates. Keywords: Airborne laser scanning, area-based approaches, individual tree crown approaches, forest management, timber volume estimation, multitemporal ALS surveys. Introduction Information about the state and changes to forest stands is important for environmental and timber assessment on various levels of forest ecosystem planning and management and for the global change science community [Corona and Marchetti, 2007]. Standing volume and above-ground tree biomass are key parameters in this respect. Actually, fine-scale studies have demonstrated the influence of structural characteristics on ecosystem functioning: characterization of forest attributes at fine scales is necessary to manage resources in a manner that replicates, as closely as possible, natural ecological conditions. To apply this knowledge at broad scales is problematical because information on broad-scale patterns of vertical canopy structure has been very difficult to be obtained. Passive remote sensing tools cannot help for detailed height, total biomass, or leaf biomass estimates beyond early stages of succession in forests with high leaf area or biomass [Means et al., 1999]. Over the last decades, survey methods and techniques for assessing such biophysical attributes have greatly advanced [Corona, 2010]. Among others, laser scanning techniques from space o

    Exploring Data Mining Techniques for Tree Species Classification Using Co-Registered LiDAR and Hyperspectral Data

    Full text link
    NASA Goddard’s LiDAR, Hyperspectral, and Thermal imager provides co-registered remote sensing data on experimental forests. Data mining methods were used to achieve a final tree species classification accuracy of 68% using a combined LiDAR and hyperspectral dataset, and show promise for addressing deforestation and carbon sequestration on a species-specific level

    UAV-Based forest health monitoring : a systematic review

    Get PDF
    CITATION: Ecke, S. et al. 2022. UAV-Based forest health monitoring : a systematic review. Remote Sensing, 14(13):3205, doi:10.3390/rs14133205.The original publication is available at https://www.mdpi.comIn recent years, technological advances have led to the increasing use of unmanned aerial vehicles (UAVs) for forestry applications. One emerging field for drone application is forest health monitoring (FHM). Common approaches for FHM involve small-scale resource-extensive fieldwork combined with traditional remote sensing platforms. However, the highly dynamic nature of forests requires timely and repetitive data acquisition, often at very high spatial resolution, where conventional remote sensing techniques reach the limits of feasibility. UAVs have shown that they can meet the demands of flexible operation and high spatial resolution. This is also reflected in a rapidly growing number of publications using drones to study forest health. Only a few reviews exist which do not cover the whole research history of UAV-based FHM. Since a comprehensive review is becoming critical to identify research gaps, trends, and drawbacks, we offer a systematic analysis of 99 papers covering the last ten years of research related to UAV-based monitoring of forests threatened by biotic and abiotic stressors. Advances in drone technology are being rapidly adopted and put into practice, further improving the economical use of UAVs. Despite the many advantages of UAVs, such as their flexibility, relatively low costs, and the possibility to fly below cloud cover, we also identified some shortcomings: (1) multitemporal and long-term monitoring of forests is clearly underrepresented; (2) the rare use of hyperspectral and LiDAR sensors must drastically increase; (3) complementary data from other RS sources are not sufficiently being exploited; (4) a lack of standardized workflows poses a problem to ensure data uniformity; (5) complex machine learning algorithms and workflows obscure interpretability and hinders widespread adoption; (6) the data pipeline from acquisition to final analysis often relies on commercial software at the expense of open-source tools.https://www.mdpi.com/2072-4292/14/13/3205Publisher's versio

    Remote Monitoring of Forest Insect Defoliation -A Review-

    Full text link

    Operationalization of Remote Sensing Solutions for Sustainable Forest Management

    Get PDF
    The great potential of remote sensing technologies for operational use in sustainable forest management is addressed in this book, which is the reprint of papers published in the Remote Sensing Special Issue “Operationalization of Remote Sensing Solutions for Sustainable Forest Management”. The studies come from three continents and cover multiple remote sensing systems (including terrestrial mobile laser scanning, unmanned aerial vehicles, airborne laser scanning, and satellite data acquisition) and a diversity of data processing algorithms, with a focus on machine learning approaches. The focus of the studies ranges from identification and characterization of individual trees to deriving national- or even continental-level forest attributes and maps. There are studies carefully describing exercises on the case study level, and there are also studies introducing new methodologies for transdisciplinary remote sensing applications. Even though most of the authors look forward to continuing their research, nearly all studies introduced are ready for operational use or have already been implemented in practical forestry

    Climate resilient and sustainable forest management : IBFRA conference 28-31 August 2023. Book of abstracts

    Get PDF
    The 20th IBFRA (The International Boreal Forest Research Association) conference held in Helsinki Finland 28-31 August 2023 brings together researchers, companies, policy makers and members of the civil society. The conference main theme is Climate resilient and sustainable forest management. The abstracts of the conference are in this publication
    • …
    corecore