1,734 research outputs found

    Ontology-driven conceptual modeling: A'systematic literature mapping and review

    Get PDF
    All rights reserved. Ontology-driven conceptual modeling (ODCM) is still a relatively new research domain in the field of information systems and there is still much discussion on how the research in ODCM should be performed and what the focus of this research should be. Therefore, this article aims to critically survey the existing literature in order to assess the kind of research that has been performed over the years, analyze the nature of the research contributions and establish its current state of the art by positioning, evaluating and interpreting relevant research to date that is related to ODCM. To understand and identify any gaps and research opportunities, our literature study is composed of both a systematic mapping study and a systematic review study. The mapping study aims at structuring and classifying the area that is being investigated in order to give a general overview of the research that has been performed in the field. A review study on the other hand is a more thorough and rigorous inquiry and provides recommendations based on the strength of the found evidence. Our results indicate that there are several research gaps that should be addressed and we further composed several research opportunities that are possible areas for future research

    Intelligent tutoring systems for systems engineering methodologies

    Get PDF
    The general goal is to provide the technology required to build systems that can provide intelligent tutoring in IDEF (Integrated Computer Aided Manufacturing Definition Method) modeling. The following subject areas are covered: intelligent tutoring systems for systems analysis methodologies; IDEF tutor architecture and components; developing cognitive skills for IDEF modeling; experimental software; and PC based prototype

    The Mechanics of Embodiment: A Dialogue on Embodiment and Computational Modeling

    Get PDF
    Embodied theories are increasingly challenging traditional views of cognition by arguing that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences, and processed at this sensorimotor level, rather than being represented and processed abstractly in an amodal conceptual system. Given the established empirical foundation, and the relatively underspecified theories to date, many researchers are extremely interested in embodied cognition but are clamouring for more mechanistic implementations. What is needed at this stage is a push toward explicit computational models that implement sensory-motor grounding as intrinsic to cognitive processes. In this article, six authors from varying backgrounds and approaches address issues concerning the construction of embodied computational models, and illustrate what they view as the critical current and next steps toward mechanistic theories of embodiment. The first part has the form of a dialogue between two fictional characters: Ernest, the �experimenter�, and Mary, the �computational modeller�. The dialogue consists of an interactive sequence of questions, requests for clarification, challenges, and (tentative) answers, and touches the most important aspects of grounded theories that should inform computational modeling and, conversely, the impact that computational modeling could have on embodied theories. The second part of the article discusses the most important open challenges for embodied computational modelling

    Why Simpler Computer Simulation Models Can Be Epistemically Better for Informing Decisions

    Get PDF
    For computer simulation models to usefully inform climate risk management, uncertainties in model projections must be explored and characterized. Because doing so requires running the model many ti..

    Quality of process modeling using BPMN: a model-driven approach

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia InformáticaContext: The BPMN 2.0 specification contains the rules regarding the correct usage of the language’s constructs. Practitioners have also proposed best-practices for producing better BPMN models. However, those rules are expressed in natural language, yielding sometimes ambiguous interpretation, and therefore, flaws in produced BPMN models. Objective: Ensuring the correctness of BPMN models is critical for the automation of processes. Hence, errors in the BPMN models specification should be detected and corrected at design time, since faults detected at latter stages of processes’ development can be more costly and hard to correct. So, we need to assess the quality of BPMN models in a rigorous and systematic way. Method: We follow a model-driven approach for formalization and empirical validation of BPMN well-formedness rules and BPMN measures for enhancing the quality of BPMN models. Results: The rule mining of BPMN specification, as well as recently published BPMN works, allowed the gathering of more than a hundred of BPMN well-formedness and best-practices rules. Furthermore, we derived a set of BPMN measures aiming to provide information to process modelers regarding the correctness of BPMN models. Both BPMN rules, as well as BPMN measures were empirically validated through samples of BPMN models. Limitations: This work does not cover control-flow formal properties in BPMN models, since they were extensively discussed in other process modeling research works. Conclusion: We intend to contribute for improving BPMN modeling tools, through the formalization of well-formedness rules and BPMN measures to be incorporated in those tools, in order to enhance the quality of process modeling outcomes

    Effective modeling for integrated water resource management: a guide to contextual practices by phases and steps and future opportunities

    Get PDF
    The effectiveness of Integrated Water Resource Management (IWRM) modeling hinges on the quality of practices employed through the process, starting from early problem definition all the way through to using the model in a way that serves its intended purpose. The adoption and implementation of effective modeling practices need to be guided by a practical understanding of the variety of decisions that modelers make, and the information considered in making these choices. There is still limited documented knowledge on the modeling workflow, and the role of contextual factors in determining this workflow and which practices to employ. This paper attempts to contribute to this knowledge gap by providing systematic guidance of the modeling practices through the phases (Planning, Development, Application, and Perpetuation) and steps that comprise the modeling process, positing questions that should be addressed. Practice-focused guidance helps explain the detailed process of conducting IWRM modeling, including the role of contextual factors in shaping practices. We draw on findings from literature and the authors’ collective experience to articulate what and how contextual factors play out in employing those practices. In order to accelerate our learning about how to improve IWRM modeling, the paper concludes with five key areas for future practice-related research: knowledge sharing, overcoming data limitations, informed stakeholder involvement, social equity and uncertainty management. © 2019 Elsevier Lt

    X-Machines for Agent-Based Modeling

    Get PDF
    This book discusses various aspects of agent-based modeling and simulation using FLAME (Flexible Large-scale Agent-Based Modeling Environment) which is a popular agent-based modeling environment that enables automatic parallelization of models. Along with a focus on the software engineering principles in building agent-based models, the book comprehensively discusses how models can be written for various domains including biology, economics and social networks. The book also includes examples to guide readers on how to write their own models
    • …
    corecore