
Intelligent Tutoring Systems for
Systems Engineering Methodologies

,--4

I
--4

,.-.. 0
'.,,) "'4
C C_
"_-'D

Richard J. Meyer
Joel Toland

Louis Decker

Knowledge Based Systems Laboratory

Texas A&M University

_J

_1
L3

>_ 'I;_L L-)c

I--= '_

,J ..,-J '_

u _ c"
L _ 0

C

._ i17

,-_ ,Q

_, 'L (

I _

I "JF

i '_ _.

0

q

January, 1991

Cooperative Agreement NCC 9-16
Research Activity No. IM. 16

NASA Johnson Space Center
Information Systems Directorate
Information Technology Division

© ©

Research Institute for Computing and Information Systems
University of Houston - Clear Lak8

T.E.C.H.N.I.C.A.L R.E.P.O.R.T

https://ntrs.nasa.gov/search.jsp?R=19910015477 2020-03-19T18:19:00+00:00Z

InteWgent Tutoring Systems for
Systems Engineering Methodologies

Richard J. Meyer
Joel Toland
Louis Decker

Knowledge Based Systems Laboratory
Texas A&M University

January, 1991

Cooperative Agreement NCC 9-16
Research Activity No. IM.16

NASA Johnson Space Center
Information Systems Directorate
Information Technology Division

© ©
! --J J

Research Institute for Computing and Information Systems

University of Houston - C/ear Lake

T.E.C.H.N.I.C.A.L R.E.P.O.R.T

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. Richard J. Meyer, Joel Toland and Louis

Decker of the Knowledge Based Systems Laboratory, Industrial Engineering

Department, Texas A&M University. Dr. Peter C. Bishop, Director of the Space
Business Research Center, UHCL, served as RICIS research coordinator.

Funding has been provided by the NASA Information Systems Directorate,

NASA/JSC through Cooperative Agreement NCC 9-16 between NASA Johnson Space

Center and the University of Houston-Clear Lake. The NASA technical monitor for this

activity was Robert T. Savely, of the Software Technology Branch, Information

Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

Intelligent Tutoring
Systems Engineering

Systems for
Methodologies

Technical Report

January 1991

Prepared by:

Dr. Richard J. Mayer

Mr. Joel Toland

Mr. Louis Decker

Knowledge Based Systems Laboratory

Industrial Engineering Department

Texas A&M University

Table of Contents

Introduction 1

Research Goals 3

Organization of this Report 5

Conclusions 7

Background and Current Research Issues 8

State of the An in ITS 9

Modeling the Student 10

Potential Application of Student Models for IDEF ITSs 11

Diagnostic Techniques for Student Models 11

The IDEF ITS Student Model 14

Student Model Example 15

Curriculum and Content 18

System Supervisor 19

Interpretation of Test Results 19

Dynamic Curriculum Manipulation and Varying Instructional Strategy 20

Intelligent Tutoring Systems for Systems Analysis

Methodologies 23

Problems With ITS Applied to IDEF Systems Engineering Methods . . . 23

Goals 23

Problems with Computer Aided Modeling 24

Rules for IDEF0 24

Understanding the IDEF0 User: Trainee to Expert 25

What Makes A Good IDEF0 Modeler? 25
/

The Trainee l_evel 26
,,I,

The Novice r_odeler Level 27

The Expert Modeler Level 28

Understanding the IDEF1 User 29

Knowledge Based Systems Laboratory, TAMU i

Pedagogical Levels 30

Concept Dependency Graphs (CDGs) 33

Background and Motivation 33

Sources of Information for Building Concept Dependency Graphs . . 34

Integration Across Concept Dependency Graphs 36

Conclusions 36

IDEF Tutor Architecture and Components 37

Reusable Components 39

IDEF Tutor Architecture 39

User Interface Module 41

Student Model Module 41

Concept Dependency Graph (CDG) 41

Tutor Module 43

Test Module 43

Browser/Review Module 44

Lesson Modules 44

System Librarian 46

Model Builder Environment (MBE) 49

Minor Subsystems 49

Conclusion 49

Developing Cognitive Skills for IDEF Modeling 51

Approach 1: Constrained Discovery Process Approach 52

Approach 2: Case Study Analysis Approach 53

Approach 3: ComparisonAgainst Model Library 54

Conclusions 55

Experimental Software 57

Overview of the Experimental Software 58

A Demonstration: An IDEF0 Model of Making Coffee 60

Analysis 64

Knowledge Based Systems Laboratory, TAMU ii

Context Sensitive Help 65

Source of the Text 65

Evaluation 66

IDEF Tutor: PC Based Prototype 68

Background 68

Current Status 68

Looking Ahead 69

Conclusions 71

Conclusions and Results 71

Future Directions/Work 71

Knowledge Based Systems Laboratory, TAMU iii

1

Introduction

In recent years, demand for use of the IDEF methods has outpaced the supply of

both experienced modelers and experienced instructors. A primary use of IDEF

models is as a consensus forming communication device among domain experts and

between domain experts and system developers. Hence, without consistency not only

in practice but also in training and instruction, the benefits of the method cannot be

reliably achieved. The objective of this project was to investigate the potential for

application of Intelligem Tutoring System (ITS) technology to alleviate these

problems. Intelligent tutoring systems (ITS) have received increased research atten-

tion in many domains due to the decreasing cost of computer resources. Decreasing

hardware costs have enabled economical delivery platforms with sufficient power

to integrate artificial intelligence capabilities into ITSs.

Application of the ITS techniques to IDEF training requires application of this

technology to a new domain, that of model formulation and model design. Our

conclusion after this initial study is that the application of ITS to IDEF tutoring can

fulf'ffl the need for consistency in training and overcome the current lack of ex-

perienced instructors. However, because of the unstructured nature of the model

design process it will be extremely difficult to completely duplicate the capabilities

of an expert modeler/instructor. On the other hand, an intelligent IDEF tutor should

be capable of teaching a student to model at an initial level of competence. To be

successful, an IDEF ITS must develop in the student those minimal analytic, design,

and language proficiency cognitive skills required by IDEF modeling.

An intelligent IDEF tutor system could offer several advantages over workbook style

(or even classroom style) approaches to education and training in these methods,

including:

• personalized interactive style presentation of the information,

• availability of ad hoc query and explanation

• intelligent diagnosis of missed concepts,

• dynamic adaptation of the instructional strategy for effective communication

with the student,

• hypertext review capabilities, and

Knowledge Based Systems Laboratory, TAMU 1

• intelligent evaluation of student's ability.

The goal of this project was to investigate the application of computer assisted

instruction (CAD and inteUigent tutoring systems to the development of skills and

expertise in the IDEF modeling methods. As part of this investigation we:

• identified the cognitive skills required for IDEF0 and IDEF1 modeling,

• identified the concepts and skills that must be mastered to obtain proficiency

in the IDEF0 and IDEF1 methods,

• identified four levels of instruction needed for teaching IDEF based on the

recommendations of experienced IDEF instructors,

• conducted a literature review to determine the state of the art in CA/and ITS

and corresponding applicable ideas and techniques,

• developed multi-level conceptual dependency (hierarchy) diagrams for

IDEF0 and IDEF1 based on the identified IDEF concepts and skills,

• explored integrated expert diagnosis requirements/capabilities for testing

students' mastery of a specific concept area,

• explored integrated expert diagnosis requirements/capabilities for the

evaluation of a student's general mastery of the material,

• developed an architectural concept for an inteUigent IDEF tutoring system

that we believe would be applicable to the training of a wide variety of system

engineering or analysis methods,

• developed experimental software (on both the PC and the Symbolics Lisp

Machine) to test and illustrate/clarify architectural issues and teaching

strategies developed.

As additional sources of expertise in the application and training of IDEF methods

we consulted Dr. Thomas CuUinane, Mr. Stu Coleman and Major Paul Condit, whose

years of experience and knowledge of student modelers have been invaluable in the

development of the concepts presented in this report. Further, a paper presented at

the May 1990 IDEF User's Group Meeting by CuUinane, McCollum, Duran, and

Thomhill provided a synopsis of their training experiences which proved to be very

helpful. In their paper, they brought together their observations of the typical
characteristics of the IDEF0 student as the student progresses toward becoming an

expert modeler.

Four levels of instruction were identified by the research team as promising applica-

tion areas for an intelligent IDEF tutor. The levels range from a management

overview level through readership (model review skills), authorship (model crea-

tion), on to an advanced applications level. The management overview level provides

a manager with the general picture of the method, but does not provide enough

information for the manager to read, create, or review models.

Knowledge Based Systems Laboratory, TAMU 2

A conceptualdependencynetwork or Concept Dependency Graph (CDG) was

developed to represent the prerequisite relations between concepts and skills that
must be mastered in the various levels of instruction in IDEF modeling. This structure

provides an initial surface representation of an important part of the IDEF training

experts' knowledge. We also demonstrated that the developed representation is

usable directly as a knowledge base for the dynamic guidance of an IDEF ITS

interacting with a student.

We also explored an intelligent diagnostic capability for testing purposes and an

intelligent evaluation capability for student modeling. This primarily involved

exploring the types of knowledge that should be represented and the types of

potential goals for this domain.

Experimental software was developed in order to evaluate issues regarding teaching

the modeling practice. Most courses and tutorials tend to focus on teaching the

syntactic constructs of a language along with the related semantics. This focus is too

limited for modeling however. Methods are designed to keep the syntax and

semantics easy to understand. Thus, reading models is usually pretty easy. Modeling

proficiency, on the other hand, is usually achieved through experience. The ex-

perimental software looks at issues associated with training the modeler in the

modeling practice so that a reasonable level of proficiency can be achieved without

the modeling experience.

1.1 Research Goals

The general goal of this research is to provide the technology required to build

systems that can provide intelligent tutoring in IDEF modeling. This type of

capability can extend existing computer support for IDEF modeling beyond model

production into training of modeling techniques. Specifically, the research focuses

on automated techniques for providing basic proficiency in the syntax and form of

the IDEF methods and the strategies involved in the practice of the method.

As mentioned above, teaching the modeling practice is a more difficult problem than

teaching syntax. Modeling using the IDEF methods (as well as others) requires the

modeler to think in a specific manner. The modeler needs to keep in mind issues like

the perspective of the model. It is easy to create countless pages of syntactically

correct garbage if one forgets what the model is supposed to show.

Modeling is also difficult because of the general lack of information. Most people

have enough trouble describing what they do without even considering trying to

describe what their deparlment does. They also usually cannot see the "big picture"

of how they fit within the organization. Data modeling is similar. People often

believe data is kept when it is not and vice versa. The modeler must be able to extract

all of the knowledge a person has and then analyze it relative to other data.

Knowledge Based Systems Laboratory, TAMU 3
t

Our analysis of this training domain has led us to conclude that development of the

following general cognitive skills in the student is required to produce proficiency

in the practice of any of the current IDEF methods (with the exception of IDEF4):

• observation,

• classification,

• abstraction,

• decomposition, and

• language skills.

Observation involves recognizing pertinent elements from documents, interviews,

and other source material items. For example, in IDEFh analysis and observation

skills include the ability to distinguish names that refer to objects (physical or

conceptual) in the domain from the names that refer to information that is managed

about those objects.

Classification involves determination of IDEF concept categories for the dis-

criminated observations. In IDEF0, once activities have been identified, each activity

needs to be either classified as part of another identified activity or a new activity

must be created which encompasses the lower-level activity (abstraction is described

below). While classification is closely coupled with observation it generally proves

to be a more difficult skill to master since it entails some of the key model design

decision making elements.

Abstraction involves developing an appropriate structure to hold a group of classified

elements while decomposition involves selecting the elements from a single struc-

ture. Following the IDEF0 example above, it may be the case that an identified

activity needs to be grouped with others to form a higher level activity (abstraction)

or the activity may need to be broken down into subactivities (decomposition),

Language skills can be broken into performance and competence [Chomsky 65].

Competence is an indication of a person's knowledge of a language (e.g. the IDEF

lexicon and grammar). Performance is an indication of a person's ability to com-

municate using the language (construct models that achieve their application goals).

For example, a person may know the words and rules for forming sentences but be

unable to communicate a coherent thought. In IDEF modeling, the person may know

what activities are supposed to represent but not be able to identify activities of an

enterprise. It is important to remember that models are primarily a form of com-

munication. They express concepts which would be more difficult to understand in

a linear (textual) format.

Knowledge Based Systems Laboratory, TAMU 4

Foranysystemto provide effective instruction in these areas, several subgoals must

be met including:

1. The system must convey the content of the course in a way that the student can

readily understand. This will require the system to be adaptable to the ability and

learning preferences of the user. The system will, therefore, need to support various

instructional strategies and be adaptable to the student.

2. The system must be capable of motivating the student. This will depend heavily

on how the system interacts with the student. Motivational type interaction often can

be achieved by providing a variety of positive and negative responses and humorous

responses as a form of feedback. Good teachers challenge their students to learn.

Thus, a motivational mechanism must be included. A straight forward way to do this

would be to provide a "why facility" for each concept. Students frequently want to

know why a concept is important enough for them to invest their time to learn it. By

showing the student the significance of a concept relative to the whole picture, the
desired motivation should be achieved.

3. The system must be capable of recognizing a student's conceptually weak areas,

decide what specific concept(s) the student lacks and reteach those concepts. Instead

of the system reteaching a lesson using the same instructional strategy to reteach the

problem concepts, the system may reteach the lesson using a different instructional

strategy.

4. The system should respond differently if the student receives tutoring every day

as opposed to once a week. This will be primarily reflected in the review module

and in the tutor/student interaction. By using this "temporal trigger" idea, the system

will be useful not only in an intense week-long training program but also in an

extended month-long training program. The temporal trigger mechanism could be
used in combination with other feedback and/or heuristics to alter the system's

response to the student.

5. The system should be capable of answering non-predetermined questions, In the

IDEF case this must be limited to a particular model for which the tutor system has

a preloaded knowledge base of the domain focus of the model.

Approaches to solving these subgoals will be described in detail later in this report.

1.2 Organization of this Report

The report is organized into the following sections and the results of each section
are summarized:

Knowledge Based Systems Laboratory, TAMU 5

Chapter 2 m Background and Current Research Issues

Although background information and a brief look at the state of the art in ITS is

presented, this chapter concentrates primarily on the issues related to the student

model. The student model is the primary component of an ITS that separates it from

a CA/system. Other major issues discussed in this section include the interpretation

of test results, dynamic curriculum manipulation, and varying of the instructional

strategy.

Chapter 3 m Intelligent Tutoring Systems for Systems Engineering

Methodologies

This chapter focuses on ITS issues directly related to systems engineering

methodologies. The student's learning goals and known diagnosed problem areas

provide a context in which to customize the training. Pedagogical levels are defined

and Concept Dependency Graphs (CDGs) are explored. The CDG is a key com-

ponent used by the IDEF tutor to represent domain structure. Finally, a way is

presented to actually reuse lessons represented by the CDG from course to course.

We believe this will be a key factor is the reduction of ITS development costs.

Chapter 4 m IDEF Tutor Architecture and Components

The eleven components of the IDEF ITS architecture are described - from the user

interface and student model modules to the lesson files and model builder environ-

ment. Descriptions are conceptual in nature with implementation details reserved for

later chapters.

Chapter 5 -- Developing Cognitive Skills for IDEF Modeling

To get around the problem of tutoring an unstructured domain, special effort is

required to develop the cognitive skills for IDEF modeling. This section focuses on

two approaches to that problem. The purpose of a library of models is also discussed

along with some further comments.

Chapter 6 m Experimental Software

Experimental software was developed on the Symbolics Lisp Machine to experiment

with various ways to allow the student to develop the cognitive skills discussed

previously. This section describes that software, the results, and our evaluation of
the effort.

Chapter 7 -- PC Based Prototype

Building upon the research efforts of this project, a PC-based prototype is being

developed to test out the architecture, test the effectiveness of the cognitive skills

approach, and provide a mechanism for further experimentation. The prototype is

Knowledge Based Systems Laboratory, TAMU 6

1.2.1

being developed as part of the requirements toward a M.S. in Industrial Engineering

by Joel Toland at Texas A&M University.

Conclusions

This section summarizes our conclusions and results. It also addresses future

directions and potential work areas for further research and development. For

example, the use of the Delphi technique for knowledge acquisition of the model
libraries is discussed.

Knowledge Based Systems Laboratory, TAMU 7

2

Background and Current Research Issues

Computers have been used in education since the early 1960s. Claims of their role

in improving education have been heard for almost 30 years. Until recently, CAI

systems were hampered by hardware limitations and a behavior theory approach

which "poorly matched the cognitive goals of education" [Mandl& Lesgold 88].

Early tutorial programs were noted for their rigid structure, their prespecified lesson

content, and their inability to adapt to the user's needs.

Training students in the IDEF methods is complex at best without taking into account

their backgrounds. Unfortunately, students are not blank sheets of paper waiting to

be the "right" way. Most students will have modeling backgrounds using one

particular method. It is common for people to latch on to one method and try to use

it for whatever they need. When that student is introduced to the new method, the

student will compare it to the previously learned method. Subtle differences in

terminology and syntax may cause serious misconceptions on the part of the student.

Due to this problem and others an IDEF tutor cannot follow a rigid plan like early

CAI systems. The system must adapt to the student and watch for tendencies on the

part of the student to make misassumptions based on previous knowledge. The

system must also be able to skip areas the student already understands from training

in other methods and backtrack to correct earlier misconceptions.

As early as the mid-60's, Uhr developed systems to generate problems in arithmetic

[Uhr 69]. If the needs of the user matched what the program had to offer, the program

was successful, otherwise it was not. Traditionally, computer-based leaming systems

have ranged from systems in which the system maintains control (e.g. Plato) to

systems in which the student maintains control (e.g. Logo) [Soloway & VanLehn

87]. The first type of system restricts the student's ability to explore the concepts

while the latter allows the student to explore at will but lacks structure. Both the

computer dominant and student dominant programs are too extreme to be suitable

for teaching. Intelligent tutoring systems (ITSs) represent a mixture of the two
extremes in which the tutor and the student share control of when, how, and what is

being taught [Soloway & VanLehn 87]. The result more closely models the interac-

tion between a human teacher and student than either of the aforementioned

extremes.

Knowledge Based Systems Laboratory, TAMU 8

2.1 State of the Art in ITS

The development of ITS systems has been constrained to domains which are highly

structured. Such domains axe logical choices for ITS development because their

natural organizational structure maps well into "rules" for the system to operate

under. The more sophisticated systems use a combination of an embedded expert

system, simulation, and natural language interface.

The majority of intelligent tutor systems have been developed for teaching skills in

structured domains such as:

• mathematics (addition, subtraction, geometry, algebra),

• programming languages (LISP, Pascal, design issues),

• electronic troubleshooting [Brown, Burton, & DeKleer 82],

• medical diagnosis [Clancey 81], and

• chemistry [Lee 88]

In these domains, an ITS generally includes an internal representation of the domain

that it manipulates to solve new problems. This capability allows the ITS to verify

the correctness of a student's answer to a nonpredetermined problem. In a domain

such as programming languages, the syntax and to some extent the semantics axe

known to the ITS. Although such systems can locate syntax errors much like a

compiler would, they really cannot verify the semantic usage of the language. The

best such systems currently do is to watch for specific kinds of errors and make

suggestions.

The merging of simulation and expert systems techniques has demonstrated tremen-

dous potential. A drawback of expert systems is their inability to make decisions

based on time. In a business situation, for example, a dollar today does not necessarily

have the same value as it did yesterday. Simulation, on the other hand, is very good

at modeling situations where time is constantly changing but cannot interpret the

results it produces. A combination of the two techniques is a system that can simulate

the future and make longer term decisions instead of decisions based only on the

current knowledge base. This capability should prove valuable to intelligent tutoring

systems.

In conclusion, the state of the art in intelligent tutoring systems is fax from sufficient

to address training students in modeling skills. Current systems do not have the

flexibility, modularity, sophisticated knowledge bases, and student models neces-

saxy to cover such difficult issues as knowledge acquisition. It should be noted that

human instructors have trouble teaching good modeling practice. Trying to create

an ITS which does it well will be just that much more difficult.

Knowledge Based Systems Laboratory, TAMU 9

2.2 Modeling the Student

Defining the "Intelligent" part of ITSs is as difficult as defining "artificial intel-

ligence" -- there is no commonly accepted deirmition. VanLehn notes that many

ITSs "infer a model of the student's current understanding of the subject matter and

use this individualized model to adapt the instruction to the student's needs"

[VanLehn 86]. We will use this statement to characterize ITSs.

The student model is one of the major differences between a CAI system and an ITS.

The ITS attempts to maintain a representation of what it perceives to be the student's

current level of knowledge/understanding. This representation is updated as more

information is gathered about the student and used to dynamically make decisions

conceming interaction with the student. CA/does not typically maintain a model of

the student. Information is typically saved in a file to reflect the student's progress

but only general type information is maintained that affects the interaction with the

student. With this capability, an ITS, for example, can be attuned to the way the

student tried to solve a problem while a CAI system is generally only concerned with

the fmal answer. An ITS might try to match the student against internal models of

different student types, so it can tailor its interaction with the student in an appropriate

manner. A CA/system generally treats all students the same.

As mentioned earlier, students learning an IDEF method will probably have some

experience with different methods. It will be important that the tutor system be able

to watch for certain tendencies on the part of the student. For instance, if the student

had been a data modeler for some time and then wished to learn IDEFI to do

information modeling, the system would watch for tendencies on the part of the

student to try to do database design instead of just modeling what information is kept

by the enterprise.

There is some confusion in the field regarding the meaning of "student model". At

times it is used to refer to a trace of the student's responses, while at other times it

refers to the "incorrect" answers and the trace. In this research it has a completely

different meaning. The student model is a model of the student's behavior under

various levels of misunderstanding.

Closely related to the student model is the diagnostic component of the ITS. The

diagnostic component must infer the student model based on the feedback from the

student and interaction with the student [VanLehn 86]. Such inferences are difficuh

to draw when teaching method practice since there is really never one "correct" way.

Each modeler develops his or her own techniques which fit with the way the

individual thinks. It may take many steps into building a model before the system

can reaUy say that a mistake has been made. At such a point, the system would have

to backtrack to f'md where the student started to go astray. A model of the student's

behavior will necessarily be quite complex.

Knowledge Based Systems Laboratory, TAMU 10

2.2.1

2.2.2

Potential Application of Student Models for IDEF ITSs

A student model can be used to improve the performance of an ITS in several ways

[VanLehn 86]:

• advancement -- the student model represents the level of mastery for

concepts; this is useful in situations where the student must manipulate one

or more skills or concepts at one time,

• problem generation-- ITSs that generate problems consult the student model

to match the problem level with the student's current capabilities,

• adapting explanations n an ITS should not use concepts in explanations that

the student has not mastered yet; by consulting the student model, the ITS

can verify that its explanations are appropriate for the student's current

capabilities.

Since teaching IDEF modeling is so complex, each of these strategies would need

to be taken advantage of. Such dynamic systems would require a strong underlying

architecture if they are to be successful. The primary functionality for advancing the

student through the concept hierarchy, generating problems, and adapting explana-

tions will need to be built into the base system so that lessons can be generated in a

reasonable amount of time. This functionality will require state of the art knowledge

based systems along with advances in cognitive modeling. Later in this report we

will identify the key components of such an architecture.

Diagnostic Techniques for Student Models

Since the diagnostic component must infer the student model based on the feedback

from the student and interaction with the student, the diagnostic component of an

ITS should be tightly integrated with the student model. Much of the information in

the student model will be inferred data from the diagnostic component. VanLehn

has noted that nine diagnostic techniques have appeared in the ITS literature

[VanI.ehn 86]:

• model training [Anderson, Boyle, & Yost 85],

• path finding,

• condition induction [Langley & Ohlsson 84],

• plan recognition,

• issue tracing,

• expert systems,

• decision trees,

• generate and test, and

Knowledge Based Systems Laboratory. TAMU 11

2.2.2.1

2.2.2.2

• interactive diagnosis.

Our development team concluded that only a few of the aforementioned diagnostic

techniques are directly applicable to an intelligent IDEF tutor. The selected techni-

ques will now be examined.

Plan Recognition

Plan recognition is the identification of causality rationale or precedence rationale

for the history of a set of actions/responses taken by the student. Plan recognition

serves as "a front end to model tracing" when used for diagnosis and "requires that

the knowledge in the student model be procedural and hierarchical" with most of the

"physical, observable states in the student's problem solving" accessible [VanLehn

86]. VanLehn also noted that plan recognition is similar to parsing a string with a

context-free grammar. Genesereth also explored ways of discovering a student's

problem solving "plan" and how that plan could be used to generate appropriate

remedial instruction [Genesereth 82].

Although it will be difficult to implement, recognition of a student's plan for specific

IDEF modeling situations may be possible. Plan recognition is critical in teaching

modeling practice since the system cannot let the student get so far down the wrong

road that backtracking becomes difficult. The system would not necessarily have to

understand each individual situation, but instead would watch for tell-tale signs of

a misguided plan. An analogy can be made to grammar checking programs. A

grammar checker can often find problem areas because it is looking for specific

situations for which it has an applicable heuristic or rule. It can find many errors

even though it does not "understand" the semantics of the sentence. By constraining

the student to modeling specific known situations, the task may be simplified

although it is still difficult.

Expert Systems

Using an expert system as the "domain expert" in an ITS system initially seemed

like a logical approach to ITS researchers. Some success has been achieved in

domains characterized by rigid rule structures. The approach is very difficult to apply

in general. The purpose of this section is to relate ideas which have been spawned

from research into expert system application to ITSs. It is unlikely that there will be

an expert system capable of modeling in any particular method, but the ideas are still

worth while.

A tutorial session at/LAAI-87 [Soloway & VanLehn 87] dealt with the question of

using an already developed expert system (MYCIN) as part of an ITS. The strategy

was to compare the student doctor's responses with MYCIN's responses. MYCIN

was designed to solve problems and therefore its expertise was compiled into the

system. It was discovered that, for teaching, a "decompiled" knowledge base was

needed to represent the knowledge explicitly. Compiled knowledge is knowledge

Knowledge Based Systems Laboratory, TAMU 12

which has become so specialized to a specific use as to have lost tran_arency and

generality [Wenger 87]. Decompiling the knowledge base, in this case, is defined as

explicitly separating the diagnostic strategies from the disease knowledge. Based on

this information, a good approach for an IDEF tutor seems to be separation of the

diagnostic heuristics from the domain representation.

NEOMYCIN was the second expert system examined since it contained a decom-

piled rule base. NEOMYCIN separated out diagnostic strategies and disease

knowledge. The conclusion was that it is very difficult to mm an expert system into

a tutoring system because of two reasons:

" the rule base for problem solving is inadequate for teaching

" need to explicitly represent what needs to be taught

Although an expert system does not currently exist for IDEF, an expert system might

still be used in the IDEF tutor. A small expert system could be used to make

intelligent decisions concerning when to change instructional strategies.

Lee, from the Chinese University of Hong Kong, has proposed an expert system

construction methodology for developing intelligent courseware [Lee 88]. His

approach uses an expert system shell to provide a flexible environment for CAI

development. Such a system only requires the development of the knowledge base

for the particular subject domain. Lee's system is written in Prolog and consists of

a knowledge editor, a tutoring module, user interface, and a question-answering

module. The advantages of the system include its ability to answer non-predeter-

mined questions with non-predetermined answers and to provide problem-solving

and explanation-giving capabilities. Such a system is appropriate for a domain

characterized by a rigid rule structure like chemistry or math. It falls short, however,

when applied to areas like IDEF function and information modeling which are not

constrained by physical or mathematical laws. Lee provides no discussion or

evidence to indicate the effectiveness of the system with students.

Lee's ideas can be used to build a system for course preparation. The Concept

Dependency Graphs for the various methods are going to have similarities which

could be identified by an expert system. The expert system may be able to point out

areas which are not covered in a course which are generally covered in courses for

other methods. The expert system may also be able to critique the flow through the

concept hierarchy, such as pointing out places where a term may not have been

covered previous to its use in an explanation. There are surely other parts of the

course preparation which could be aided by an expert system.

2.2.2.3 Decision Trees

In 1978, Brown and Burton proposed the "Buggy model" in which errors by the

students were seen as symptoms of a "bug" [Brown & Burton 78]. Bugs were

Knowledge Based Systems Laboratory, TAMU 13

2.2.3

considered to be discrete modifications to the correct skills which duplicate the

behavior of the students [Sleeman & Brown 82]. Genesereth, Brown, and Burton

focused on how the student went about solving a problem so that the misconception

could be corrected. This approach is possible but difficult to implement for IDEF in

a rigorous fashion. If a significant amount of expert level heuristics may be obtained,

a variation of this approach could prove useful. For an IDEF tutor, this approach will

depend heavily on the existence of a Concept Dependency Graph or CDG (see

Section 3.6) for guidance. An attempt to pinpoint misconceptions may be made by

utilizing the CDG's dependency relationships to decompose the suspected missed

concept. Testing can then proceed recursively using the subconcepts to isolate the

misconception. Correctly identifying misconceptions is very difficult but, ff success-

ful, would pave the way for any attempt to repair the problem.

In conclusion, plan recognition and decision trees can be used to facilitate the student

model diagnostic capabilities of the ITS. Expert system strategies could be used to

aid in creating and diagnosing the CDG and possibly to diagnose the student model.

The IDEF ITS Student Model

Maintaining information about each student is essential for the system to "know"

the student's learning goals, modeling experience, and progress on previous lessons.

Just as a human instructor builds an implicit mental picture of a student's ability and

knowledge, a computer based tutor should build a model of the student This will
take the form of a student model maintained in a database. Figure 2.1 illustrates the

types of information that an IDEF ITS student model should maintain.

First Name: John

Last Name: Smith

Learning Goals: reader, author, reviewer, advanced applications

Occupation: manager

Background: IDEF0, DFD

Progress:

[111 ((3/5,4/4,7/8)(60%,100%,87.5%) (82%)),

finished 2/12/90 09:30

[121 ((6/10, 9/9) (60%,100%) (79%)),

finished 2/12/90 10:38

Skipped: 1,2,3,4,5,6,7,8,9,10;

Figure 2.1 Example student model file

Knowledge Based Systems Laboratory, TAMU 14

The student model file maintains information to identify the student by name,

leaming goals, occupation, and background. It must also maintain information on

the student's progress. If the tutor knows that the student has a specific type of

modeling background, then analogies and examples which build upon the student's

previous knowledge can be used to facilitate the learning process.

In Figure 2.1, a hypothetical student's progress is recorded. For the first concept

(denoted by "11" in this case), the student scored 3/5 (60%), 4/4 (100%), and 7/8

(87.5%) on the subtests, finishing at 09:30 on February 12, 1990. Overall, the student

scored 82% on that test sequence. Similar progress is recorded for the second concept

(denoted by "12").

Acquisition of the initial model information is accomplished by questioning the user

directly. Alternatively, a supervisor of the tutor system could setup each student's

model based on knowledge of the student's abilities, background, and learning goals.

Other information, such as the student's progress, is gathered as the student interacts

with the tutor. Additionally, the information from the user models could provide

feedback about the system]student interaction as well as data for research purposes.

2.2.4 Student Model Example

The Intelligent Maintenance Training System (IMTS) is an example of one system

that attempts to maintain information about the student and adapt based on the

acquired information. A student model is "maintained to aid in problem selection

and other student-specific decisions about instruction"[Towne & Munro 87]. Three
kinds of data are used:

1. moderately detailed representation of the student's conceptual model of

the equipment being taught,

2. simple global measures of student competence and learning preference

(preauthored for each student by instructor), and a

3. detailed breakdown of tests performed for the current problem.

The first type of information in the IMTS student model depends on a normative

approach to representing student knowledge and skills. This approach relies on a

normative model of an expert's understanding of the domain. In this case, the domain

is equipment to be maintained. The model is in the form of a tree in which each node

represents specific knowledge about some aspect of the equipment.

The second type of information in the IMTS student model consists of global

measures of competence and learning preferences. These measures are setup

beforehand for each student and actual performance on practice problems is sup-

posed to overcome any instructor bias to establish the appropriate values.

Knowledge Based Systems Laboratory, TAMU 15

2.2.4.1

According to Towne and Mumo, "a model for an individual student consists

primarily of an updated set of mastery levels for the knowledge/skill elements in the

structure" whose "values are changed to reflect troubleshooting problem perfor-

mance as the student progresses through the problem curriculum" [Towne & Munro

871.

The student model of the IDEF ITS will keep the same types of information as the

IMTS. Since, the IDEF tutor deals with a more complex subject, the models will

consequently need to be more sophisticated. It is important to recognize that the

IDEF tutor builds upon the experiences of experts in the industry.

Acquisition and Understanding of Student Models

Human instructors know and/or assume information about their students when they

prepare to teach a course. An instructor preparing to teach a course, for example,

knows the required prerequisites for the course. In college, the student's major is

usually known. In high school, the student's "track" and grade level is either known

or assumed. Tracking refers to the student's overall curriculum orientation such as

a college preparatory track or a vocational track. The instructor, therefore, indirectly

knows or assumes the background and learning goals of the students.

Student's learning goals may vary considerably. A student may be required to take

a course that the student considers useless. Another student may see the same course

as preparation for a more advanced course. To another student, the course may be

an advanced course. Human tutors are able to dynamically adapt to the learning goals

to enhance the leaming process. For example, a professor can teach a course many

different ways using the same textbook. The professor might teach the undergraduate

version of a course with an applied focus while teaching the same course to a graduate

class with a theoretical focus. Current systems generally do not adapt to the learning

goals of the student. For an ITS system to be effective, it should be capable of

adapting its curriculum to the learning goals of the student. The system will have to

operate on the assumption that the student wants to learn but at varying levels of
detail.

Throughout a course, the instructor creates a model of each student in several ways.

The results of examinations and quizzes are one measurable way. Verbal feedback

is another way. The model created by the instructor is used to determine the student's

grade and to aid the instructor in understanding what areas are still weak. All in all,

it is the indicator of what the instructor feels the student knows. For an ITS system

to "understand" and evaluate what the student knows, the same type of knowledge

must be captured.

How will a student model be acquired and used by an ITS system? Actually, the

initial information acquisition should not be difficult. It could be entered through

menus by either the student or a system supervisor. The student's learning goals and

background information will, by necessity, be selected from a series of general

Knowledge Based Systems Laboratory, TAMU 16

options. The learning goals,for example,shouldmatch the pedagogicallevels
available.Additional informationshouldbecollectedto enhancethe tutor/student
interaction.Themodelwill beupdatedasthestudentis testedto reflectthestudent's
level of understanding.

What information is essential to a student model? First, a means of uniquely

identifying the student is needed. Second, the student's learning goals are needed.

Such goals should be general instead of specifically concerning the domain. For

example, does the student want beginning, intermediate, or advanced concepts?

Next, information about the student's background should be used, though how this

information should be used still requires considerable discussion. The student's

background will aid the system in traversing through the CDG.

Finally, feedback from the system should be used by the student model. This should

extend far beyond results of testing to include suspected problem areas and infor-
mation about how the student learns. As students use the tutor, a database will be

created to keep such information as average time to complete each lesson, number

of times each lesson is presented, and the effectiveness of the various instructional

strategies for each lesson. The more the student uses the system, the more data the

system will have to use as a basis for modifying its behavior to increase its efficiency

as a tutoring system. After enough students use a tutor system, patterns may emerge

as to which instructional strategies are more effective for each lesson. Effective use

of such feedback has the potential to help create a self optimizing tutoring system.

It may also be used to pinpoint poorly designed lessons.

Interpreting and utilizing the student model will be difficult. A number of questions

arise as a result such as:

• If the student does not appear to understand a concept, shouM the student

be allowed to continue if the student wishes to override the system and

continue on to the next concept? For instance, ff the student wanted an

introduction to modeling practice but will not necessarily be doing any

modeling, less than passing scores may be sufficient in those lessons.

• How shouM this information be used if the student performs poorly on more

advanced topics? Lessons should be kept as independent as possible, but ff

there is a strong dependency between concepts, then the student must

understand all. related concepts to move on. In the example above, if the

student pays little attention to modeling practice, then the student will be

limited in advancement in areas which require those abilites.

• Should the final evaluation of the student note the trends and possible

weakness in specific concepts? In other words, when the student finishes

should there be more than just a grade? The student should be characterized

as best as possible without drawing rash assumptions about the student's

abilities. Some people may be better than others at syntactic understanding,

Knowledge Based Systems Laboratory, TAMU 17

but may not be as good at modeling. It is important for the system to note
these abilities.

Flexibility is important for any system. When the system is initialized for use and

set up for specific students, the system's human supe_isor should provide informa-

tion to tailor the behavior of the system for those students. For example, should the

system evaluate the student's knowledge and automatically place that student at an

appropriate place in the course? Does the student have any experience or knowledge

that may be exploited when teaching a new subject through analogous examples7

2.3 Curriculum and Content

Systems developed thus far have failed to adequately represent the structure

of the curriculum being taught, concentrating instead on trying to represent

all the knowledge to be taught. [Lesgold 87]

The IDEF ITS seeks to address this problem. Past systems are somewhat similar to

teachers who are experts in their field but do not know how to motivate and teach

their students. Through the CDG and other strategies the IDEF ITS provides structure
for the curriculum.

More learning theory needs to be built into ITS systems. Gagne made several points

that are relevant. The irtrst was that learning is more than simply the sum of its parts.

Specifically the lowest-level subgoals in a goal hierarchy do not, as a group, contain

all the knowledge implied by the highest level goal. The combining of the subgoals

results in new knowledge. Gagne calls this new knowledge the "glue" that ties

together pieces of knowledge [Gagne 62]. Unfortunately, this "glue" is often difficult

to identify and is the difference between why one teacher is effective at explaining

concepts while another is not. For an intelligent IDEF tutor system, the pieces of

knowledge will be represented by a concept hierarchy. The "glue" which ties these

concepts together will be in two forms:

• carefully selected case studies from expert modelers to gain as much hands

on modeling experience as possible, and

• development of the cognitive skills necessary for IDEF modeling.

Developing an ITS system based on traditional models of teaching may actually be

restrictive in several ways. The manner in which students are taught in schools is

determined more by management constraints of the school and classroom than

instructional theory constraints. For instance, students in the traditional classroom

setting are tested and graded as a group, whereas most likely only a single student

will use an ITS at a time. Thus ITS systems may or may not be forced to live under

the same set of constraints as traditional models. Testing, for example, may be

dynamic in nature. During testing, the system can attempt to explore suspected

problem areas in a very dynamic, individualized way that is generally not possible

Knowledge Based Systems Laboratory, TAMU 18

in a large classroom setting. The system can also provide feedback to the student

and or teacher immediately. Even the way a subject is taught may be different.

Computer simulations can dynamically make large things small, small things large,

slow things faster, and fast things slower. A student may interact with such simula-

tions in a completely different way than is possible in a traditional classroom setting.

Care must be taken not to fall into the trap of designing the IDEF tutor system based

on an unnecessarily restrictive model of teaching.

One of the primary explorations for the experimental software was to determine what

type of interaction is successful in a computer to student relationship. It may be that

practice can take a larger portion of the responsibility for instruction since the student

is receiving constant attention from the instructor. In a large classroom, practice is

of limited value since the instructor cannot provide immediate feedback to the

student. Simulations of interview sessions as well as model construction will be

important to the development of the modeler.

2.4 System Supervisor

The role of the system supervisor (the person who sets up the system) of the ITS is

important. An initial student model is needed so that the ITS can identify each

student. A system supervisor can not only customize the system but also verify that

the student models axe initialized correctly. Conversely, for single user systems, the

student would serve a dual role as the student and system supervisor.

The student model accesses parameters which are given values at set up time to

customize the behavior of the system. Typical parameters are those that affect how

the system interacts with the student. An example would be the expected stu-

dent/tutor interaction if the student scores poorly on a test but does not want to

attempt to learn the concept a second time. Another example would be setting

thresholds for test scores above which the student must perform on each of the

subsection tests and/or on the average of the subsection tests.

2.5 Interpretation of Test Results

The ability of the system to dynamically alter the curriculum necessitates the need

for appropriately varying interpretation of test results. For example, advanced levels

may require different threshold values to be appropriately established by the super-

visor. Although four levels of student expertise have been identified for IDEF0 and

IDEFI modeling, the number of levels may vary from course to course. For the author

level, higher threshold values could be set since the student must be able to create

models not just read them. In other words, the students could be required to score

90% on testing of the basic concepts while requiring 80% on the most advanced

concepts. Again, the idea is to make the system as flexible as possible. At this point,

Knowledge Based Systems Laboratory, TAMU 19

the issue is not how threshold values should be set, but rather the fact that such

functionality should be incorporated into the system.

A "for your information only" type level may or may not require any testing. The

system could be set up so that at a certain level, it does not test the student. This

behavior would be set by the system supervisor. Such a lack of testing would allow

a student to acquire knowledge "for their information only". Material covered in this

manner is generally not tested when taught by human instructors. This level should

be equivalent in content to a seminar, an introductory overview, or a briefing. The

student model will therefore only reflect the fact that the student has completed (in

part or whole) the level. This could be especially useful, for example, to brief a

manager. The management overview level embodies this concept.

At this point, thresholds for test interpretation need to be addressed. Although human

instructors are able to assign grades (e.g., A,B,C,D, and F), requiring a computer to

accurately interpret human test results with such granularity would be very ambitious

ff even possible. A pass/fail grading system based on threshold values is a more

reasonable alternative. Threshold values may be set by the system supervisor for

each test and subtest. Altematively, default values may be used. Two thresholds may

be set: a subtest minimum threshold and a test threshold. The test threshold is equal

to the sum of the subtests weighted appropriately. This two level threshold system

is designed to catch specific areas where the student does not understand a concept

and test the student's ability to comprehend the concepts when they are integrated.

The threshold values would be used by the student model module to decide whether

to test a student further to isolate a potential problem or to allow the student to

proceed to the next lesson.

2.6 Dynamic Curriculum Manipulation and Varying Instructional

Strategy

Although an ITS cannot dynamically generate an entire course curriculum, it can do

something very useful given the dependency relationships between the concepts. By

knowing the student's learning goals, the system can vary the depth of knowledge

to match. If a student wants introductory seminar level knowledge, a considerable

amount of detail should be suppressed. Conversely, for the most advanced level of

instruction, no detail would be suppressed. If the ITS system knows about the

student's background, it can alter the types of examples. If it can test the student and

diagnose the student's problem areas and evaluate the student's current level of

knowledge, however, then it should alter the curriculum in a more sophisticated way.

For example, assume that a student uses an intelligent IDEFI system. If the student

has been working with IDEF0 for a year, the student should already know concepts

such as the roles of the modeling group members and how IDEF kits are put together.

There is no reason to reteach the information to that particular student unless the

Knowledge Based Systems Laboratory, TAMU 20

student shows some knowledge gap in that area. Testing the student to discover a

starting point could reveal problem areas. Students often believe that they understand

a concept, but when tested, find that more instruction is necessary.This dynamic

curriculum adjustment provides a dynamic way for the system to meet the student's

learning needs in an "intelligent" fashion.

The "auto-placement" of a student in the course proceeds in one of several ways.

The tutor may test from the goal concept backwards toward the fundamental concepts

or vice versa. Intuitively, testing from the fundamental concepts toward the goal

concepts seems more practical. Questions that must be answered include:

• how many questions should the student be asked to estimate the student's

current level of knowledge?

• how should the questions be choosen?

• could the questions for the auto-placement be auto-generated based on the

knowledge in the CDG that relates the testing and lessons?

• based on the testing results how should the student then be placed7

The CDG guides the ITS system in several ways. For instruction, the CDG is used

to determine which concept to teach next. It is systematically traversed from a base

level to the final concept. For testing, given an intermediate target concept in the

CDG, the CDG is traversed backward testing the subconcepts that must be learned

to understand the target concept. If necessary, testing continues recursively level by

level until a specific subconcept the student does not understand is isolated or the

system is unable to isolate the problem area.

Manipulation of the CDG alone does not change the instructional strategy used to

teach the lesson. At the lowest level, the lessons must, by necessity, be hardcoded

to some degree. By providing multiple copies of the same lesson each based on a

different instructional strategy, multiple instructional strategies are supported. Al-

though this requires more work to develop the lessons for the system, this strategy

avoids the problem of locking the student into one learning model, and consequently

increases the flexibility of the system.

A case can also be made fox systems that allow the student to choose what lessons

to learn. That mode of usage should also be provided a facilitate browsing and manual

use of the system.

Hopefully, by this point the important concepts of ITSs have been addressed as well

as the relationships between those concepts and the current research. It should be

clear that previous ITS and CAI efforts have not raised the level of sophistication of

the technology enough to build an ITS for IDEF. In the remaining sections we will

focus more strongly on goals for ITSs for systems engineering methodologies,

Knowledge Based Systems Laboratory, TAMU 21

describe the IDEF ITS architecture, describe the experimental software and PC

prototype and then draw conclusions on the research effort.

Knowledge Based Systems Laboratory, TAMU 22

3

Intelligent Tutoring Systems for Systems

Analysis Methodologies

3.1

3.1.1

Problems With ITS Applied to IDEF Systems Engineering Methods

Goals

The obvious question that arises when discussing the development of a system, such

as an ITS for IDEF, is "why is it so hard?" It was mentioned earlier that the domains

chosen for ITS systems are generally very structured. Domains such as mathematics,

programming languages, and chemistry have very rigid rules associated with them.

Teaching a systems design methodology is considerably more difficult due to the

qualitative nature of the methodology. Merely creating a slide show to present the

material will be no more informative, though possibly more effective, than handing

someone a manual with the instructions to read it and figure it out. Several

requirements for an effective ITS system have been identified based on previously

constructed systems, research, and the experience base of the development team. An

intelligent IDEF tutoring system should be capable of:

• acquisition and maintenance of the student's learning goals and relevant

background

• assessment of the student's present knowledge

• determination of how the student's present knowledge maps into the material

to be taught

• adjusting the strategy for interacting with the student

• motivating the student

• testing the student and interpreting the results

• demonstrating correct vs incorrect models by examples.

The present strategy for achieving these goals involves modeling the student,

diagnosing the problem areas, relating curriculum and content, and developing the

required cognitive skills. Applicable cognitive skills include observation, classifica-

tion, abstraction, decomposition, and language skills.

Knowledge Based Systems Laboratory, TAMU 23

3.1.2 Problems with Computer Aided Modeling

Teaching a student to model in an IDEF method involves not only teaching the syntax

and semantics of the method, but also hands on experience and learning from

mistakes. The question "why is it so hard.*" takes on _i new level of meaning when

one tries to evaluate a student's model. It is difficult to automate the evaluation of a

model because it is difficult to evaluate creativity and insight.

Expen modelers/'mstructors stress the importance of hands on modeling experience

to learn, yet this problem poses the largest stumbling block for an IDEF tutor.

Although there are tools available for aiding the model development process for

IDEF, these tools cannot evaluate the quality of a model. Their only function is to

facilitate model entry, development, and output much like a computer aided design

tool facilitates the drafting process.

Strategies are needed which will provide each student with feedback concerning

individual modeling efforts without going beyond the limits of today's hardware and

expert systems technology. One such strategy, which will be discussed again later,

is to provide each student with previously developed models which the students can

use for comparison. The students can then identify the good and bad points of their

models.

3.2 Rules for IDEF0

Although IDEF0 modeling may be considered as much an art as a science, the

methodology has rules that must be followed. IDEF0 rules include [Mayer 90]:

• detail exposition control at each level (3-6 box rule),

• bounded context (no omissions or additional out-of-scope detail),

• diagram interface connectivity (node numbers, box numbers, c-numbers, and

detail references,

• data structure connectivity (ICOM codes and use of parentheses),

• uniqueness of labels and titles (no multiple names),

• syntax rules for graphics (boxes and arrows),

• data arrow branch constraint (labels for constraining data flow on branches),

• input vs. control separation (rule for determining role of data),

• data arrow label requirements (minimum labeling rules),

• minimum control of function (all functions require at least one control), and

• purpose and viewpoint (all models have a purpose and viewpoint statement).

Knowledge Based Systems Laboratory, TAMU 24

Listing someof the rules for IDEF0 highlights the problem at hand m the difficulty

of automating the task of verifying a student's models and evaluating their worth.

Although checking most of the listed IDEF0 rules can be automated, syntax checking

alone is not worth much without the ability to verify the semantics. This point will

significantly affect the approach we use to teach IDEF modeling.

3.3 Understanding the IDEF0 User: Trainee to Expert

This section is grounded on the work done by Cullinane et al. [Cullinane, McCollum,

Duran, and Thomhill 89]. Their work is the most recent compilation of expert

modelers/instructors describing the typical IDEF0 student in terms of specific

tendencies and abilities at various levels of proficiency. It is also important to note

that Cullinane, McCoUum, Duran, and ThornhiU do not represent the interests of a

single group or organization; they are from different organizations and different parts

of the country. Their paper draws from their observations made over many years

IDEF0 instruction. We have found these observations useful during development of

the architectural components related to student modeling and testing.

3.3.1 What Makes A Good IDEF0 Modeler?

Good modelers are generally characterized by good interpersonal skills, communica-

tion skills, and an ability to abstract. Effective written and oral communication skill

are essential. An IDEF analyst must often communicate with a wide variety of people

to collect information and be able to express the relevant information in written form

(summary briefings) and in a model. The ability to abstract is very important for

IDEF modeling. Often a modeler must sift through a tremendous amount of data and
then be able to abstract the relevant information to create a useful model.

Cullinane et al. also recommend that "The class should be taught by an experienced

IDEF modeler and not just a trained teacher." The class should be "...full of hands-on

case study work -- in the METHOD, not just one or more of the automated tools

that support the method."[CuUinane et al. 89] We agree with Cullinane's observation

that an IDEF class should be taught by an experienced IDEF modeler and not just a

trained instructor. One of the attributes that the experienced IDEF modeler brings to

the classroom is a motivational attitude. The particular attitude that appears most

relevant to IDEF practice is a belief in the effectiveness of team efforts in solving

complex problems. An IDEF modeler who does not subscribe to such a belief will

generally be ineffective. This is one aspect of the ITS research that we have

discovered no mechanism to duplicate. In fact, the current focus of ITS technology

is primarily on isolated individual instruction. An area for future research would be

development of techniques for simultaneous interactive ITS sessions. It is difficult

to effectively simulate a team effort for solving a complex problem with a single
individual.

Cullinane et all. identify three levels of modeling proficiency:

Knowledge Based Systems Laboratory, TAMU 25

3.3.2

• trainee,

• novice modeler, and

• expert modeler.

The Trainee Level

A trainee level modeler knows the discipline component of the method, the language

or syntax of the method, and will understand the basic principles of the method.

These principles include the mechanics of the author/reader cycle, top-down decom-

position and its application, and the interactive nature of modeling.

Obstacles to obtaining the trainee level include the following difficulties which are

generally correctable by experience: [Cullinane et al. 89]

• difficulty in seeing multiple potential decompositions other than the first one

produced,

• tendency to make diagrams overly-complex or overly-simple,

• inappropriate clustering of arrows,

• tendency to decompose by type,

• tendency to show implementation details in a functional model,

• tendency to corrupt the model with their own bias in terms of knowledge and

viewpoint,

• tendency to indiscriminately put everything in the model disregarding its

relationship to the objectives, scope, and viewpoint,

• tendency to use a depth first development technique instead of a breadth first

top-down approach,

• failure to realize the global impact of a change on the model,

• tendency to include inappropriate details about the decompositions instead

of focusing on the interactions among the boxes on the diagram.

Delivering instruction from an IDEF ITS that addresses these issues requires

considerable "analysis" capabilities. That is, the tool must actually be able to interpret

an IDEF model created by the student for a particular situation. Unrestricted

interpretation of this requirement would lead to the conclusion that a CYC class

common sense knowledge base and an extremely sophisticated natural language

processing capability be present. Based upon discussion with Major Paul Condit, we

believe that many of these issues could be effectively addressed by having a library

of expert-developed diagrams available with various combinations of the pathologi-

cal problems identified above. The student could be presented with these diagrams

Knowledge Based Systems Laboratory, TAMU 26

3.3.3

and asked to rate the similarity of his model to the reference models. Based on the

ranking, the ITS could provide feedback pertaining to "possible" pathologies.

In our experimental software, we designed an interface to aid the trainee in getting

to the point of actually creating a model. Some of the problems we have noticed

occur before the student has the opportunity to make the mistakes described by

Cull.inane et al. for the trainee level. For example, we have noticed that students tend

to have difficulty abstracting the activities and concepts from the source material

needed to create the activity and concepts lists. Although they seem to understand

concepts and activities, once they are handed a stack of typical source material items,

they seem to have trouble initiating the modeling process.

Our experimental software addressed the collection of possible activities and con-

cepts from source material by having the student browse through source material in

an environment where the possible concepts and activities are mouse sensitive. The

student collects a list of possible activities and a list of possible concepts from the

source material. These lists are used later in the model building process as justifica-

tion for activities and concepts in the model. This approach smoothes the transition

from theory to practice and allows the student to walk through the process with

guidance when needed.

The Novice Modeler Level

Learning to model requires hands on experience. "Modelers learn best (and most

efficiently) when under the guidance of an expert" and the "first project should be

of medium to significant size (possibly lasting several weeks)"[Cullinane et al. 89].

Guidance and feedback from an expert modeler is very important. We have also

observed that at least one moderate size modeling project is required to advance from

the trainee level to the novice level.

After the In'st project, for example, the novice IDEF0 modeler should, in general,

have the following capabilities:

• perfect syntax usage,

• perfect execution of the author/reader cycle,

• ability to abstract IDEF0 activities from process descriptions,

• starting to recognize inappropriate implementation information represented

in a functional model,

• ability to identify relation forming concepts,

• starting to anticipate the global implications of a change to a model,

• ability to generate good glossary and text,

• ability to negotiate group concensus based around an evolving IDEF0 model.

Knowledge Based Systems Laboratory, TAMU 27

Novicemodelersoftenstill face the following difficulties which are correctable by

experience:

• establishing the scope or boundary of a model (e.g. knowing what to include

or exclude in the model),

• determining when to stop decomposing,

• determination of which model or models to build.

We have also noted that novice modelers

• can hold to either an AS-IS or TO-BE perspective consistently.

In our experimental software, we concentrated on ways of developing the cognitive

skills needed for IDEF modeling. This included language, observation, and decom-

position skills. Development of these skills is critical to solving the typical problems

experienced by novice modelers. Primarily, the experimental software takes the

approach that practice makes perfect. By providing students with an environment in

which they can build a model from start to finish and then compare with an expert's

model, the students are given the opportunity to gain experience without the hard

knocks. Issues such as viewpoint can be taught more effectively by allowing the

students to make mistakes before flagging their error.

One of the more difficult areas to train the student in is the author/reader cycle. It is

not so difficult to explain the cycle and its importance, but it is difficult to enhance

a person's diligence in keeping the cycle going while showing consideration for

others. On the other hand, proper use of the author/reader cycle is critical to

successful modeling efforts. Hopefully, the new modeler will already have strong

interpersonal skills. If the modeler does not have strong interpersonal skills, other

training courses may be required before the student will be able to model effectively.

3.3.4 The Expert Modeler Level

Expert modelers in IDEF0 are generally characterized by the following qualities:

• ability to clearly state the objectives of the modeling effort,

• ability to select the appropriate types of models to build in order to meet the

objectives,

• correct selection of the model's scope,

• correct selection of the model's viewpoint,

• ability to construct a model which meets the objectives,

Knowledge Based Systems Laboratory, TAMU 28

• ability to develop appropriate standards/guidelines to meet the project objec-

tives,

• ability to determine inclusion/exclusion of items based on objectives,

• ability to determine how generic a model should be to meet objectives,

• ability to build models that communicate clearly,

• ability to anticipate the global impact of changes,

• ability to recognize multiple occurrences of the same functions and develop

an appropriate representation,

• discernment between organizational partitioning and functional partitioning,

• discernment between decomposition by type and functional decomposition,

• ability to merge models,

• discernment between implementation partitioning and functional partition-

ing,

• knows when to use FEOs to illustrate a point as opposed to developing a

complete scenario,

• recognition of problems and the appropriate corrective action.

Many of these qualities, such as the ability to clearly state the model objectives,

require skills which are outside the scope of the IDEF ITS. In the case of stating

objectives, the modeler must have the verbal and writing skills necessary to clearly

communicate ideas to others. An ITS would only be able to stress the importance of

clear objectives.

3.4 Understanding the IDEFI User

Several general observations can be made about problems that IDEFI students

display based on our experience as instructors and modelers. These include:

• the inability to distinguish objects and their properties from the information

actually managed about the objects,

• the tendency to perform model refinement without data to justify refine-

ments,

• the tendency to labor over a single modeling decision rather than making an

educated guess and letting the method sort it out,

• the tendency to confuse class and member notions,

• the tendency to not add glossary or descriptions, and

• the tendency to erroneously perform key class migration.

Knowledge Based Systems Laboratory, TAMU 29

The ITS should be able to address these problems through lessons which describe

the problems and practice modeling sessions which reinforce the lessons. The

practice sessions will need to address modeling problems which cause students to

confuse objects with information kept about the objects. For instance, after present-

ing source material about a payrofl system which does not keep track of the seniority

of employees, the ITS could ask the student to add a constraint that employees will

receive a $I00 bonus on their tenth anniversary with the company. Many students

may not look to the source material to see whether the information system keeps

track of seniority and just write down a constraint like:

"For all employees, if it is the employee's tenth anniversary, add a $100

bonus to their paycheck."

or, if they know the Information Systems Constraint Language (ISyCL) [Decker and

Mayer 90]:

for_all emp of Employee
if ten..year_anniversary?(emp)

add_bonus_t o._paycheck(emp, 100[dollars]);

It may be quite simple for them to write the natural language constraint without

considering ff the information is there to determine if it is the employee's tenth

anniversary. The ISyCL constraint may cause them to think a bit more about whether

the information is there or not. Either way, the correct answer would be that the

system cannot automatically add the bonus since there is no evidence in the source

material that the employee's starting date is available.

Information modeling is more difficult to do correctly than activity modeling. It is

easier to picture activities in one's mind along with the flows between them.

Information modeling is more complex in that it requires modeling of abstract objects

like data records and the relationships between them. Each entity class must be able

to be uniquely identified by a key class and these key classes migrate between entity

classes due to relationships. The migration of the key classes shows important

information and aids in checking the validity of relationships, but the migration is

often done incorrectly.

3.5 Pedagogical Levels

Human IDEF instructors are able to adapt the level of their lessons to range from

introductory one hour seminars to intense semester long courses. The human

instructor must do this to meet the various learning needs of the students. Typical

leaming needs range from merely a broad introduction of a topic to a very detailed

study. A successful ITS should possess the capability to adapt to the learning needs
of its students.

Knowledge Based Systems Laboratory, TAMU 30

The key to the ITS adapting to the student is two-fold. First, each pedagogical level

is represented by a different conceptual dependency graph (CDG). Since each CDG

represents a course, more work is necessary up front to develop a separate course

for each pedagogical level. In Section 3.6, CDGs will be discussed along with the

ways in which lessons may be reused to facilitate this course development. The

second way the ITS adapts to the student is by varying the instructional strategy used

for the individual lesson within the CDG structure.

Pedagogical levels should, by necessity, vary from one ITS to another. The IDEF

ITS architecture (described in Chapter 4) allows courses to be planned with any

number of pedagogical levels. The following pedagogical levels have been identified

during our research based on the suggestions of expert modelers/instructors and the

cognitive skills identified for IDEF modeling.

I. Management Overview Level

This level should be equivalent to introductory seminar type knowledge.

Managers and other people who do not necessarily need to model but

do need to know general information about the techniques and concepts
should fred this level sufficient. Please see Figure 3.1.

None of the cognitive skills identified for IDEF modeling are developed

at this level. This level utilizes only CAI in contrast to the other levels

which employ intelligent tutoring techniques. Finally, no testing is done

at this level and "slide-show" type presentations are acceptable.

2. Reader Level

This level is targeted at delivery of skills necessary to provide a student

with IDEF modeling capabilities similar to those characterized by

CuUinane et al. as trainee level performance. It should provide good

exposure to the method, the language or syntax of the method, an

understanding of the basic principles of the method including the

mechanics of the author/reader cycle, top-down decomposition and its

application, and the interactive nature of modeling.

Observation skills and competence type language skills are developed

at this level. These cognitive skills represent the lowest level of under-

standing of our target cognitive skills.

3. Author Level

This level is targeted at delivery of skills necessary to provide a student

with IDEF modeling capabilities similar to those characterized by

Cullinane et al. as novice modeler performance. Completion of this level

should require perfect syntax usage and execution of the author/reader

Knowledge Based Systems Laboratory, TAMU 31

OVERVIEW

SLIDESHOW OF

EXPERT

BASIC IDEFO

CONCEPTS

UNDERSTANDING

IDEF0 DIAGRAMS

READING IDEF0

DIAGRAMS

BACKGROUND

ROLES OF THE

MODELING GROUP

MEMBERS

IDEF KIT CYCLE

FORMS AND

PROCEDURES

DATA COLLECTING

FOR IDEF

MODELING

AUTHOR'S GUIDE

TO CREATING

IDEF0 DIAGRAMS

IDEFO

Figure 3.1 Management Overview Level for IDEFO

Knowledge Based Systems Laboratory, TAMU 3 2

cycle, proper use of the subject area terminology, ability to create a good

AS-IS model, recognition of decomposition by type, recognition of

inappropriate implementation represented in a functional model, ability

to see common functions, ability to implement mechanism call when the

lead consultant points out an application, anticipation of the global

implications of a change to a model, and good generation of glossary

and text.

All of the remaining cognitive skills identified for IDEF modeling are

developed at this level: classification, abstraction, decomposition, and

performance language skills. These represent the highest level of under-

standing of our target cognitive skiUs.

3. Advanced Applications Level

This level is targeted at delivery of skills necessary to provide a student

with IDEF modeling capabilities similar to those characterized by

Cullinane et al. as expert modeler performance. It should be similar to

the author level but provide more exposure to advanced modeling

situations.

The cognitive skills of primary interest at this level are advanced

development of abstraction, decomposition, and performance language
skills.

As will be discussed in Chapter 6, the experimental software does not address any

of these levels directly. Instead the experimental software concentrates on strategies

for development of the cognitive skills necessary to meet these pedagogical levels.

3.6

3.6.1

Concept Dependency Graphs (CDGs)

Background and Motivation

Current CA/authoring systems provide a language and usually an environment to

facilitate development. Each CAI system developed is generally stand alone in

nature. An inherent problem with this approach is that it has a totally "hard coded"

nature. We are recommending an ITS architecture that allows for delaying the

decision of the sequence of lesson presentation.

By delaying the decision of which hard coded elements of the lesson are used, several

benefits should be gained. First, by creating a map of available lessons and what

other lessons must be taught beforehand, more knowledge is explicitly available for

the tutoring system to make decisions. Secondly, by explicitly creating lessons using

different instructional strategies and maintaining that information, the tutoring

system again has more knowledge to exploit. Thirdly, by allowing the tutoring

Knowledge Based Systems Laboratory, TAMU 33

3.6.2

system to maintain control, the tutoring system can exploit the new knowledge in a

more dynamic, flexible manner.

A tutoring system must have some representation of the domain knowledge it will

be manipulating. By representing an abstraction of the domain knowledge in the

form of a network, to be called a Concept Dependency Graph (or CDG), depend-

encies may be determined in an automated fashion. Such conceptual dependencies

are useful for several reasons:

1) a CDG constrains the system to teaching only those lessons for which the

student has learned the appropriate background concepts,

2) if a student's understanding of a concept is deficient, the system should

systematically administer subtests for each of the concepts that the current

concept depends on to pinpoint "knowledge gaps", and

3) by maintaining a short explanation of a concept's importance, a"why" facility

may be implemented. By linking together the explanations from each concept in

the path from the current concept to the goal concept, a fairly complete explana-

tion of a concept's importance may be automatically generated relative to the

goal concept.

The elements of the IDEF ITS architecture which facilitate representation of domain

knowledge are discussed in Chapter 4.

Sources of Information for Building Concept Dependency Graphs

In order to test out the notion of concept dependencies described above, we set out

to develop IDEF0 and IDEFI Concept Dependency Graphs (CDGs) manually. The

IDEFI CDG was developed by identifying each concept from the available infor-

mation and then establishing dependency relationships if possible between the

concepts. This task was quite time consuming but provided a worst case baseline for

the amount of work involved for the development of a CDG and the difficulty in

establishing the dependency relationships. Essentially, a global approach was taken

for the identification and classification of the concepts. For the IDEF0 CDG, the

provided structure of the IDEF0 manual was used to provide the initial dependency

relationships. A local approach was taken in which various major concept areas

were identified and their subconcepts were identified. Unlike the IDEFI CDG, only

dependency relationships were established among the subconcepts for each major

concept instead of globally establishing dependency relationships among all of the

possible subconcepts. Both types of CDGs are useful although the top down

approach used for IDEF0 is characterized by a substantially faster development time.

The primary sources of information for isolating the conceptual dependencies in

IDEF0 and IDEFI were the U.S.A.F. manuals. The manuals define the

methodologies and provide the essential information needed to develop the CDGs.

Knowledge Based Systems Laboratory, TAMU 34

2

3

CONCEPT #3 IN CONCEPT

HIERARCHY 1 BEING USED

BY CONCEPT #6 IN CONCEPT
HIERARCHY 2

CONCEPT HIERARCHY 1

CONCEPT HIERARCHY 2

:;i i:i:i:iiiiiiiiiii!iii !ii:i/6....

4

5

Figure 3.2 Integration across CDGs

Knowledge Based Systems Laboratory, TAMU 35

3.6.3

Additional information was obtained from experienced users to supplement the
manuals.

In general, CDGs will be developed by one of two ways. A top down approach may

be used ff a course already exists and is therefore already organized. A bottom up

approach must be used for developing a course from scratch. All concepts must be

identified and dependency relationships established. Levels may then be formed.

Integration Across Concept Dependency G raphs

The architecture for the entire IDEF ITS has been designed for flexibility. This

structure enables the IDEF tutor to integrate lessons from other courses where each

course is represented by a CDG. The reusable components allow not only the lessons

to be integrated but also the fries needed for other types of knowledge based

information. Please refer to Figure 3.2.

A course developed for IDEFI, for example, should not need to duplicate information

that it has in common with a course for IDEF0. The benefit of this becomes more

clear, in a general sense, ff one imagines twenty interrelated courses already

developed. The author of a new course has a foundation to build on in terms of

background examples, explanations, and testing. This feature becomes especially

useful when a user is putting together a briefing. New lessons may also be developed

and added to the existing base at any time. The next chapter describes this integration
in much more detail.

3.7 Conclusions

The focus of this chapter has been in several areas ranging from the problems with

ITS applied to IDEF systems engineering methodologies to understanding typical

IDEF0 and IDEFI users to the notion of conceptual dependency graphs (CDGs). The

most important concepts to abstract from this chapter are the ideas concerning

pedagogical levels and the use of CDGs to represent pedagogical levels. It is also

important to note the reliance upon the experience of expert modelers to provide

indicators for the evaluation and classification of a student in a particular pedagogical

level. The pedagogical levels identified for IDEF modeling are not "set in stone."

Different courses will require the identification of appropriate pedagogical levels

and the corresponding CDGs. The understanding of the CDG concept is crucial to

the understanding of the IDEF ITS.

Knowledge Based Systems Laboratory, TAMU 36

4

IDEF Tutor Architecture and Components

A four module architecture was proposed as a general purpose ITS architecture for

structured domains at AAAI '87. It was suggested that there are four main modules

of an ITS [Soloway & VanLchn 87]:

• Environmental Module m handles user interface responsibilities,

• Expert Module -- provides an expert system for the task domain,

• Student Modeling Module m responsible for the model of the student's

knowledge and has expert system capabilities for diagnosis and troubleshoot-

ing, and

• Tutor Module D decides what instruction will be given to the student.

While such an architecture appears appropriate for an ITS addressing structured

domains, for an inteUigent IDEF tutor, that architecture wiU need to be modified. No

known expert system for IDEF modeling exists due to the unstructured nature of the

domain. Furthermore, the construction of a good expert system for IDEF modeling

does not appear to be currently feasible. There are, however, several ways that the

tutoring of the IDEF methods may be automated and "intelligent."

First, instead of trying to capture the IDEF domain knowledge explicitly and creating

an internal model, an IDEF tutoring system would need to focus on a set of

constrained situations for which internal models could be built. The internal models

would capture the "art" that is inherent in IDEF modeling that can only come from

expert modelers. By necessity, the internal models would be constrained to situations

in which such captured expertise could be exploited in instructional and testing

situations with the student.

Second, the curriculum itself may be dynamically manipulated to adapt to the needs

of the student. Based on the tutor system's evaluation of the student's knowledge,

an intelligent IDEF tutor would avoid teaching concepts which the student already

understands. A major weakness in CAI systems is the "one curriculum fits all"

approach in which all students see the same information in the same order.

Third, an IDEF tutor should support the capability to vary the instructional strategy.

Even in structured domains where it is easier to represent the curriculum knowledge,

Knowledge Based Systems Laboratory, TAMU 37

it would be difficult to generate lessons dynamically from scratch. This problem is
even more difficult for unstructured domains. An IDEF tutor can, however, make

decisions conceming when to present a lesson that uses a specific instructional

strategy. To accomplish this, the student modeling module must be proficient in its

evaluation of the student's current level of knowledge and understanding.

Although it is not feasible for an IDEF tutor to generate lessons dynamically (much

less to generate lessons using various instractional strategies), it should be able

determine which instructional strategies to use based on its evaluation of the

student' s re sponses.

Fourth, an IDEF tutor should support the dynamic integration of multiple domains.

Dynamic integration of multiple domains --

allows an ITS to decide at run time not only which lessons to use from the

current course, but also which, if any, lessons from other courses to use to

effectively communicate the concepts to the student.

The IDEF family of methods includes IDEF0, IDEF1, IDEFIx, IDEF2, IDEF3,

IDEF4, IDEF5, and IDEF6. Also, other methods such as ER, data flow diagrams,

and structure charts are often used in conjunction with the IDEF methods. To build

tutor systems from scratch for each of the above methods would not only be more

expensive but would fail to provide a mechanism for one tutor to exploit the effort

expended for any of the other tutoring systems. An architecture is needed that will

permit, for example, a tutor for IDEF0 to use any lesson available to any of the other

IDEF methods. An architecture that permits "reusable" lessons will allow IDEF

tutors to take advantage of the common components of the various methods.

A major drive behind the proposed changes to the traditional architecture is the

difference in assumptions between tutoring support for instructional domains (sys-

tems analysis and design) and more traditional task oriented domains. The AAAI

'87 architecture is apparently designed to handle a single domain at a time. The

proposed intelligent IDEF tutor architecture handles multiple domains and the

dynamic integration of multiple domains. This is extremely important since the

IDEFs form a family of methods. Several key commonalities between the methods

must be identified including:

• common information,

• common procedures, and

• common concepts and applications.

Knowledge Based Systems Laboratory, TAMU 38

4.1 Reusable Components

Building ITS/ICAI systems can be very expensive. The cost of custom built tutoring

systems costs is high not only due to development but also due to maintenance.

Authoring systems are currently available to facilitate development of CA/level

software, but the systems developed are essentially "hard coded" lessons that offer

tittle or nothing in the way of dynamic curriculum manipulation or varying instruc-

tional strategies. A flexible system which delays the "hard coded" parts of lessons

until the last possible moment is a major step in the right direction. Development of

tutors for the IDEF family is a good example of how reusable lessons and multiple

domain integration would cut both development time and costs. If separate tutors

were developed for each of the IDEF methods, just imagine how difficult it would

be to change a common set of lessons used by each tutor or to add new lessons after

the systems had been deployed. If reusable lessons and a system to manage the lesson

relationships are used, all that is required is to send a single copy of each new lesson

and an update file for the system librarian (described in Section 4.2.8).

4.2 IDEFTutor Architecture

In this section, the components of the IDEF tutor architecture are described in detail.

Several components have been added to the more traditional ITS architecture to

increase the flexibility of the ITS needed for an IDEF tutor. Also, several of the

traditional ITS architecture components have been split into multiple components.

Emphasis has been placed on generic construction, reusability, and flexibility. Please

see Figure 4.1.

The IDEF tutor architecture introduces several new components which distinguish

it from other systems:

• Concept Dependency Graph (CDG). The Concept Dependency Graph

provides a means of representing the curriculum knowledge for lesson

presentation and testing. With it, our ideas of dynamic curriculum manipula-

tion and varying instructional strategy become realistic.

• System Librarian. Closely tied to the CDG is the system librarian which is

needed to manage the complexity of the integration of multiple courses.

• Model Builder Environment (MBE). The model builder environment

provides a means of developing the cognitive skills of the student needed for

IDEF modeling.

The components of the IDEF tutor architecture will now be described in detail.

Knowledge Based Systems Laboratory, TAMU 39

Student

User Interface Manager

Student Test
Profile '0 Module

Module

"Typical" Student
Student Profiles

Models Database

Tutor Module

_ Lesson Flies

Model

Builder
Env.

(MBE)

Browse/

Review
Module

Concept

Ubradan

System
Dependency

Graphs (CDG)
Integration
Database

Figure 4.1 IDEF Tutor Architecture

Knowledge Based Systems Laboratory, TAMU 40

4.2.1 User Inlerface Module

The user interface module determines the look and feel of the tutor environment. It

acts as the interface between the tutor module and the student. This module, like

most other modules, is an independent and reusable component designed to facilitate

maintainability of the ITS and portability to other systems. The primary goal of this

module is to provide the necessary functionality for the presentation of the lessons

and the development of the target cognitive skills.

Various human factors issues must be addressed in the design of this module. For

example, what is an effective interface for the development of cognitive skills? In

what ways should the tutor/student interaction occur?

4.2.2 SludenlModel Module

Maintaining information about each student is essential for the system to utilize

information such as the student's learning goals, modeling experience, and progress

on previous lessons. Just as a human instructor builds an implicit mental picture of

a student's ability and knowledge, a computer-based tutor must build a model (or

models) of the student.

Acquisition of initial information about the student can be accomplished by ques-

tioning the student directly. The initial information consists of the student's hack-

ground in modeling, occupation, and leaming goals. Other information could also

be gathered to help customize the tutor's interaction with the student. Ahematively,

a supervisor of the tutor system could setup the information for each student. With

this information, an initial model of the student is formed. The student modeling

module will continually use and update the model of the student based on the
interaction with the student.

The student modeling module also keeps "typical" models of students for classifica-

tion purposes. These models are needed to compare the current student's model

against for classification of the student. It is important for the student modeling

module to have "good" as well as "bad" generic models with which to compare the

student against. This enables the identification of acceptable as well as unacceptable

learning patterns.

Additionally, the student models will provide data for research purposes and im-

provement of future systems. It is important to identify poorly designed, ineffective

lessons to improve future systems. By the same token, it is important to identify

learning bottlenecks for students.

4.2.3 Concept Dependency Graph (CDG)

The Concept Dependency Graph (CDG) provides an overall multi-level framework

of the curriculum. It is how the curriculum knowledge is represented for manipula-

Knowledge Based Systems Laboratory, TAMU 41

tion by the tutor. The CDG explicitly establishes dependency relationships between

lessons. This dependency information is exploited for curriculum guidance and

lesson delivery as well as for testing. All of the components of the tutor architecture,

except for the CDG and the lesson files, are constructed in a generic fashion. All of

the information that distinguishes courses is maintained in the CDG and the lesson

files for the individual lessons. Developing a new course would consist of developing

the CDG and its related files and then updating the system librarian.

The key to referencing across CDGs depends on each CDG essentially being stand

alone in nature. No CDG should directly reference how it is mapped into other CDGs.

An approach that permitted CDGs to directly reference other CDGs would create

inflexible, "hard coded" dependencies. Every time a new course was created and

released, other courses would potentially require updating to reflect any new

mappings. By using a system librarian to maintain and inform the tutor module of

interlesson mappings, the system can be integrated across courses in a very flexible

yet generic manner.

CDGs have been developed for IDEF0 and IDEFI. The IDEF0 CDG consists of

Levels I (management overview level) and II (reader level) and was developed using

a top-down approach. The IDEFI CDG consists of Level III (author level). They

were constructed to gain an understanding of the complexity involved in isolating

the concepts in IDEF0 and IDEFI and for establishing commonality between the two

for later use. Isolation of the common concepts is important to conduct any ex-

perimentation with integration of CDGs.

In the Level 11I IDEFI CDG, an attempt was made to remove redundancy. If concept

"A" already preceded concept "B" indirectly in the graph, then a direct path from

concept "A" to concept "B" would be considered redundant and eliminated. This

simplified the CDG routing considerably. In a computer based implementation,

however, all dependencies would need to be maintained to facilitate usage of

concepts in one CDG by another CDG.

Although the CDGs should eventually reside inside databases, they are currently on

paper in the form of large diagrams. This format provides a means for grasping the

overall picture of IDEF1 and IDEF0 when broken down into its individual concepts

during the development process.

Flexibility is maintained since the concept dependency database maintains the course

description at a conceptual level. By rearranging links in the database, the entire

Concept Dependency Graph - and therefore the course itself- may be reorganized.

Reorganizing the CDG should be invisible to the other modules (e.g. the tutor

module, the test editor, the review module, and the browser) due to their inde-

pendence from the database implementation.

Knowledge Based Systems Laboratory, TAMU 42

4.2.4 Tutor Module

4.2.5

The tutor module is responsible for actually instructing the student. This involves

interaction with the system librarian for access to the Concept Dependency Graph

for curriculum guidance, the lesson files for content, the system librarian for system

integration, the student model module for evaluation and pedagogical recommenda-

tions for the student, the review module, and minor subsystems.

The tutor module must:

• request the next lesson from the system librarian,

• conduct the next lesson session,

• request testing and evaluation of student's understanding of a specific

concept area from the test module, and

• request evaluation of student's progress from the student model module,

The tutor system uses two levels of diagnostic evaluations. First is the diagnostic

evaluation of a student's understanding of a specific concept area. The test module,

which is described in Section 4.2.5, performs the diagnostic evaluation of the

student's understanding of a particular area. At a higher level, the student model

must reflect the student's overall understanding of the IDEF method. Conclusions

about overall understanding will depend on the diagnostic evaluations of specific

concept areas, but should not simply be a summary of the evaluations. Pedagogical

strategy decisions should be based on this higher level evaluation.

Test Module

The test module is responsible for conducting all testing before and after a lesson.

Although traditional types of CA/testing procedures should be supported, the test

module for an intelligent IDEF tutor will, by necessity, have higher demands. The

test module must be able to intelligently diagnose problems or potential problems

that the student has or develops. This entails testing the development of the identified

cognitive ._kills for IDEF modeling.

The IDEF tutor should concentrate on capturing the "art" of IDEF modeling. The

approach taken for testing should remain consistent with that focus. The test module

must, therefore, support the same type of internal models for specific situations that

are used by the tutor module.

A student could be asked, for example, to select possible activities from source

material. The test module compares the choices made by the student with the internal

model. The student's incorrect choices can be used to help identify misconceptions.

If the suspected problem area can be decomposed, the test module should attempt to

isolate the suspected problem to the freest level of granularity by repeating the test

Knowledge Based Systems Laboratory, TAMU 43

4.2.6

4.2.7

process with a new intemal model and set of questions. Once the problem areas are

identified, the test module notifies the tutor module of the need for further tutoring.

Another example of utilizing an internal model for comparison with the student's

work involves the confusion between objects and the information maintained about

objects. A typical warning signal of this problem is the tendency to pluralize entity

class names. If the student exhibits this tendency, a match would be made against

the internal model revealing a problem area.

Repairing the suspected problems should be conducted in a manner similar to the

way that they were found. Expert modelers/instructors often devise their own set of
heuristics to isolate and correct mistakes. It is not unusual for modelers to form their

own collection of test cases based on experience.

Browser/Review Module

A user may wish to browse a set of concepts without engaging the tutoring process.

A hypertext style browsing capability of specific topics should be available starting

from an index or table of contents. Ahematively, a CDG could be browsed. Please

see Figure 4.2.

Review is a key component in leaming. The student will generally review before a

lesson or test. The student selects the topics to be reviewed and is provided with a

hypertext style review of those particular topics. The student may review until ready

to begin the lesson or test.

Lesson Modules

Each lesson module should essentially carry all of the information necessary to teach

the procedural and textual aspect of a lesson. Each concept in the CDG should have

an associated lesson. Two approaches have been suggested for implementation of

the lesson module. One approach uses the tutor module as an interpreter with the

lesson modules as input. A second approach uses the lesson modules as stand alone

executable code that communicate with the tutor through messages in files.

Currently, the first approach seems more flexible and efficient. It also avoids the

problems of transferring control from module to module. The disadvantage is that

the lessons must be written so that the tutor module can interpret them. Currently,

the interpretive approach if favored since it allows the tutor module to maintain
control. This facilitates communication with other modules.

Two levels of instructional strategy decisions must be managed by the tutor system.

The higher level is concerned with strategies for deciding when to use different

instructional strategies. The lower level is concerned with handling responses from

the student that vary as different instructional strategies are used. The lesson files

should be concerned with the lower level of decision making. The higher level must

Knowledge Based Systems Laboratory, TAMU 44

BROWSER

C

(,,

HELP

UP

DOWN

EXIT

CONCEPT:

Vi

Figure 4.2 Graphical Browser

monitor and evaluate the student's progress to rate the effectiveness of a particular

instructional strategy for the specific lesson and the specific student.

The lesson modules provide an ideal place to embed specific instructional strategies.

Although the ITS system will determine which instructional strategies to use, the

lessons still must be written by a human instructor at the lower level incorporating

the different instructional strategies. The key to the system being able to utilize

different instructional strategies is the existence of multiple copies of the same

lesson, each constructed using a different instructional strategy. The lesson used

depends upon which instructional strategy has been selected. Having lessons based

on multiple instructional strategies provides highly desirable flexibility. When a

student does not understand a lesson taught one way, instead of replaying the same

lesson, the system would have the ability to run the same lesson again using a

different instructional strategy. Since certain instructional strategies are more ap-

propriate for specific learning situations, the ITS will rely on the higher level

instructional stragegy decisions to select an appropriate strategy.

4.2.7.1 Lesson File Example

After describing the purpose and usage of a concept, it is important to reinforce the

concept through practice. In our experimental software, we experimented with a

Know�edge Based Systems Laboratory, TAMU 45

4.2.8

scenario in which the student is given source material and asked to select possible

activities and concepts from the text. As the student reads the text and moves the

mouse over the text, words and phrases are highlighted. The highlighted items are

possible activities or concepts.

In classes at Texas A&M, students learning IDEF often feel "overwhelmed" when

given a large stack of source material with instructions to create the activity and

concept lists. The scenario used in the experimental software allows a variety of

different source material items to be used such as interviews and reports. This

approach is designed to guide the student through the information gathering phase

during the student's initial exposure to the method, thus enhancing the student's

confidence in the procedure. It was determined that it would be better for the student

to be allowed to pick any word or phrase instead of just the ones the system had

predetermined. Although we initially found it helpful to provide mouse sensitive

guidance when selecting possible activities and concepts, the student needs more

freedom to make mistakes. It is best to let the student discover a mistake due to failure

in latter stages of the modeling process.

System Librarian

To manage the additional complexity of multiple domains, a component of the

architecture should be dedicated to that purpose. This component must remain

independent of the lessons themselves and merely manage the relationships between

the lessons. The tutor module must be able to query this component for the existence

of relationships and intermethod references and then use this information to guide

the dynamic curriculum manipulation. This management component is called the

system librarian.

The key to referencing across CDGs depends on each CDG essentially being stand

alone in nature. No CDG should reference any other CDG. If CDGs referenced one

another, all of the other courses would potentially need to be updated to reflect any

new mappings every time a new course was released. Please see Figure 4.3.

By using the system librarian to maintain and inform the tutor module of interlesson

mappings, courses may be developed that use lessons developed for other courses

in a flexible and generic manner. The system librarian maintains a database of

available lessons and how they may be mapped across Concept Dependency Graphs.

Updating the system librarian should update the entire system concerning mappings

across courses. The tutor module should query the system librarian for any possible

mappings. If a mapping existed but the lesson was not available, the tutor should

proceed as ff it did not exist. If the mapping existed and was loaded, the tutor should

integrate the information making the entire process invisible to the user.

Knowledge Based Systems Laboratory, TAMU 46

Tutor Module

I
System

Librarian

Concept
Dependency

Graphs
(CDG)

J

System

Integration
Database

J

Figure 43 System Librarian

Know/edge Based Systems Laboratory, TAMU 47

Cell Modeling

Basic IDEF0

Concepts

Understanding
IDEF0 Diagrams

Reading IDEF0

Diagrams

The IDEF0 technique and basic concepts
are based upon a cell modeling technique

know as the structured analysis and design

technique (SADT).

The basic IDEF0 concepts provide a

conceptual framework for the
understanding of IDEF0 diagrams.

Understanding IDEF0 diagrams consists
of model definition, the IDEF0 symbols,

and the Importance of timing and sequence.

This provides a background for reading
IDEF0 diagrams.

Reading IDEF0 diagrams involves how to

approach a model and understanding the
semantics of boxes and arrows. Reading

diagrams is an essential skill needed

before one may proceed to authoring.

Authors Guide to

Creating IDEF0

Diagrams

IDEF0

Authoring diagrams is the last of the basic
skills required to actually be capable of

IDEF0 modeling. It involves the basic

steps, model creation requirements,
drawing diagrams, graphic layout, wdting
text, model quality checklist, and data
collection.

Figure 4.4 Example "Why" facility explanation

Knowledge Based Systems Laboratory, TAMU 48

4.2.9 Model Builder Environment (MBE)

The difficulty of automating the evaluation of a model as a whole requires much

research. The problem of model evaluation also complicates the diagnosis of a

student's ability to model. An intelligent IDEF tutor system clearly requires a

mechanism to automate model evaluation and diagnosis of the student's current

modeling level. The Model Builder Environment (MBE) addresses these issues, and

is discussed in Chapter 5.

The use of external modules or tools already in existence should greatly reduce

development time and costs. For the IDEF tutor system, the Model Builder Environ-

ment (MBE) is considered an example of an extemal module. By keeping all such

model building environments as external modules, the tutor architecture is kept as

generic as possible without loss of functionality or extendability.

4.2.10 Minor Subsystems

Human instructors are often asked questions such as "why is this concept important?"

Given a CDG, an IDEF ITS can answer that question by tracing the network from

the current concept node to the goal concept node. Given that each concept node had

a short descriptive text string, the ITS system could form a paragraph describing

specifically how the current concept relates to the target concept and the intermediate

concepts. The primary advantage of a dynamic "why" facility is in its flexibility.

Hard coded complete "why" explanations would be inconsistent if the CDG was

reorganized. Please see Figure 4.4.

The "why" facility uses the highest pedagogical levels available for simplicity. By

tracing a path from the current module to the top level as quickly as possible and

then proceeding at that level to the goal concept, simplicity in the explanations is

maintained. The same "why" facility concept could be applied to lower pedagogical

levels but the explanations become very long and the point of using the facility tends

to become lost in the volume of explanation generated. For example, an explanation

consisting of explanations from 100 concepts would discourage most people from

using the facility.

4.3 Conclusion

The IDEF tutor architecture was developed based upon the representation scheme

selected to represent a course and its associated lessons. This representation scheme

is called a conceptual dependency graph (CDG). A major advantage of this repre-

sentation is the ability to provide dynamic integration of multiple courses or domains.

In other words, courses may be easily modified and even built upon the foundation

provided by previously constructed courses. Lessons may be easily reused along

with their associated testing instructions. A second major advantage is the ease with

which courses may be dynamically customized based on the student's response.

Knowledge Based Systems Laboratory, TAMU 49

Varying the instructional stragegy is actually only an extension of the ability to

dynamically customize a course.

The three key components which distinguish the IDEF tutor architecture from other

systems are the CDG, the system librarian, and the MBE. The CDG, as just

mentioned, provides a means of representing the curriculum at a high conceptual

level. The system librarian is necessary to manage the complexity of accessing

multiple CDGs, the relationships within each CDG, and the relationships between

CDGs. Finally, the MBE provides a special environment for developing the cogni-

tive skills typicaUy necessary to be successful at IDEF modeling.

Knowledge Based Systems Laboratory, TAMU 50

5

Developing Cognitive Skills for IDEF

Modeling

The overall goal of the IDEF Tutor is to teach modeling. Several difficult questions

arise when trying to automate such a task. For example, how can a model created by

a student be verified and evaluated within a particular context? If experts create

different models for the same scenario, how can the quality of each model be

determined? The problem is similar to that encountered with natural language

understanding. Like the semantics of natural language, the semantics of modeling

are difficult to manipulate and evaluate. Given the overall goal of teaching modeling,

however, is there another way to achieve the same goal? Could the isolation of the

skills used to teach modeling and their development provide a "backdoor" approach

to our overall goal? Our research suggests that it could. In particular, the target skills

are cognitive skills, and their development could enable an easy transition to our

overall goal of teaching modeling.

Knowledge

Comprehension

Applications

Analysis

Synthesis

Evaluation

Figure 5.1 Bloom's Taxonomy [Bloom 56]

Bloom's taxonomy (Figure 5.1) identifies six categories of leaming from a cognition

perspective which range from simplest at the top to the most complex levels at the

bottom. Of the five cognitive skills identified as necessary for IDEF modeling,

abstraction, decomposition, and performance type language skills are considered the

most complex. Please see Figure 5.2. Our experience with the experimental software

has convinced us that observation, classification, and the competence type language
skills can be taught through a combination of CAI level lessons and interaction with

Knowledge Based Systems Laboratory, TAMU 51

Observation

Classification

Abstraction

Decomposition

Language

Figure $.2 Cognitive Skills for IDEF Modeling

the Model Builder Environment (MBE). Abstraction, decomposition, and perfor-

mance type language skills, however, require ITS capabilities. The Model Builder

Environment Module is specifically designed to develop such cognitive skills.

Our research suggests three approaches to enhance the development of these cogni-

tive skills. The first approach is referred to as the constrained discovery process

approach. It attempts to allow the student to build a model under constrained

conditions. This approach is the most difficult to develop due to the difficulty of

verifying the student's work, and because a choice must be made between analysis

of what the student models and how the student models. Due to this difficulty,

specific limitations and design concepts for this approach require further research

and experimentation.

The second approach attempts to develop higher order cognitive skills such as

analysis, synthesis, and evaluation. This is done using a comparative case study

analysis approach using the MBE. The basic approach taken in the MBE is rooted

in the lessons we learned with our experimental software in which we experimented

with ways to develop the cognitive skills needed by the student. In the experimental

software, for example, initial observation skills were developed by providing source

material with mouse sensitive activities and concepts.

The third approach is reserved for more experienced students. Referred to as the

model library approach, it allows a student to actually create a model and then try to

verify its correctness by comparison against models in a library.

The following sections explore the three approaches in more detail along with some

conclusions.

5.1 Approach 1: Constrained Discovery Process Approach

To apply the constrained discovery process approach, several key decisions had to

be made early in the design process. Due to the difficulty in verifying the student's

models a choice had to be made between analysis of what the student models and

Knowledge Based Systems Laboratory, TAMU 52

howthestudentmodels.Theconstrained discovery approach is based on the decision

to analyze how the student models although some attention must be given to what

the student models.

By constraining the way the student builds a model, the combinatorial explosion of

valid and invalid model variations is avoided. Instead of trying to evaluate the model

after it is completed, a diagnoser component of the model builder environment

captures the mental states the student proceeds through to create a model. The

student's problem solving plan for each stage is then compared against intemal

models representing different valid and invalid ways the student is allowed to model

the scenario at that stage. Incorrect and alternative modeling plans are represented

in the internal models for a possible match of problem plans. The modeling scenarios

must be carefully selected to minimize the possible permutations of model altema-

rives. A "critic" that advises in a context sensitive manner provides advice and hints

on the student's current choices.

By only allowing the student to proceed down certain modeling plans and by dividing

the plans into stages, matching the student's work against previously developed plans

is practical. By anticipating as many alternatives as possible and explaining their

potential problems, the system eventually allows the student to proceed through only

a few carefully developed modeling plans. Each plan is composed of stages with

associated subplans. Although this may seem overly restrictive at first, more time is

spent by the student interacting with the tutor comparing alternatives and ways to

achieve the same goal. The "discovery process" in this context is therefore actually

more of a "constrained discovery process" in which the student may make new

discoveries, but only within a limited range. The key is to select a range of

altematives which is most beneficial for the students.

5.2 Approach 2: Case Study Analysis Approach

The case study analysis approach never allows the student to actually create a model.

Instead a significant amount of time is devoted to analyzing well constructed and

poorly constructed models. This approach utiliTes carefully prepared case studies,

similar to the VErst approach, but instead of creating models the student analyzes

models. The student examines the altemative models and compares the various

alternatives. In gener a , this approach is used before the student is allowed to create

models.

The student must learn to distinguish poorly constructed models from well con-

structed models. By presenting models for a side by side comparison, the student

can more readily note differences and relate the models to the context of the situtation

being modeled. Please see Figure 5.3. Case 1, for example, may be more appropriate

in a certain context than Case 2. The student could be asked to analyze and evaluate

the models given various contexts. While subtle differences can be highlighted using

Knowledge Based Systems Laboratory, TAMU 53

CASE 1

Need feeCoffee

iJ

Coff_) A1 Wrote

! ,r

i :

CASE 2

Need f,mCoffN

C¢,ff_._._ MeJntldn

b

|

.-lb Set Up the I

Oefl,N, A2 I

SOURCE

MATERIAL

ANALYZE

HELP

EXIT

Figure 5.3 Case Study Analysis Approach

this technique, completely different approaches to the same scenario can be shown
as well.

A student may be asked to mouse click on areas of a model and then justify the choice

from available explanations. A point evaluation of the student's analysis is made and

compared against internal models, a problem list is then generated from which a

remedial agenda is created. Finally, the student is given feedback and remedial

instruction.

Similarly, a more advanced student may be asked to evaluate two models. The

student must decide if the models actually represent the situation being modeled and

if so which model is better. Both models could be good, both could be incorrect, or

one could be more accurate than the other. These activities are designed to facilitate

analysis and evaluation type learning.

5.3 Approach 3: Comparison Against Model Library

While the constrained discovery process approach focuses on how the student solves

the problem and the case study analysis approach focuses on analysis of models, the

model library approach allows the student to create models. The main idea of the

Knowledge Based Systems Laboratory, TAMU 54

modd library approach involves the comparison of a model developed by the student

against a library of similar models and diagrams. By shifting some of the comparison

and matching tasks to the student, the problem of model comparison is reduced. The

development of model library is a key component for such an approach to work.

Incidently, the use of a model library could be made available to advanced modelers

for reference in work situations.

Using a library of models involves asking the student to choose the model from a

set that most closely matches the one constructed by the student. The model library

should contain good models as well as poor models. The poor models should exhibit

problems common to new modelers as well as poor modeling techniques. The

student's selection provides information to the tutoring system which may be

difficult to obtain otherwise.

This approach forces the students to analyze and reanalyze their work during

comparisons with other potential solution strategies. It was mentioned earlier that a

key to effective learning is the implicit knowledge the student gains while learning

the explicit knowledge. This implicit knowledge is what actually ties all of the other

knowledge together for the student. Gagne calls this new implicit knowledge the

"glue" that ties together pieces of knowledge [Gagne 62]. It is important for a student

to recognize poorly constructed examples as well as well constructed examples. The

goal of this comparative approach is the development of the implicit knowledge by

the student. If the student only gains the explicit knowledge, the student is merely

memorizing the material and will be no closer to learning how to model than before.

5.4 Conclusions

Three approachs have been identified as appropriate for the development of the target

cognitive skills for IDEF modeling. The constrained discovery process approach

allows the student to build a model although under highly constrained conditions.

The case study analysis approach engages the student in the analysis of carefully

prepared case studies forcing the student to examine and compare well constructed

and poorly constructed alternatives. Finally, the comparision against model library

approach relaxes many of the previous constraints allowing the student to create and

comparatively analyze a model against models from a model library. Of the three

approaches, the model library approach is expected to cause the most difficulty when

automating the validation of the student's work. A combination of these approaches

should be used for development of the target cognitve skills for IDEF modeling. All

three approaches can be used in the same course ff necessary to meet the student's

goals.

In the experimental software, we experimented with the construction of IDEF0

models. The constrained discovery approach represents a more constrained variation

of that experimentation in which our focus is actually on what steps the student

proceeds through to accomplish a goal. The comparison against models in a model

Knowledge Based Systems Laboratory, TAMU 55

library approach represents the basic approach developed in the experimental

software and then extended with the addition of an analysis component.

The development of the target cognitive skills depends heavily on the Model Builder

Environment (MBE). The MBE consists of a menu driven environment for building

models and a knowledge based system (KBS) for evaluation of the current plan

against intemal plans. The MBE must be menu driven to constrain the possible

mental states that are allowed and facilitate their capture. The MBE can also access

the conceptual dependency graph so that it can determine dynamically which rules,

constraints, internal models, and internal plans are appropriate for the student's

current level of knowledge. It is important for the MBE to adjust its actions

dynamically based on the student's progress through the course. This is analogous

to a human teacher that not only knows what the student should know based on their

progress, but also what the student should not know based on what has not been

covered. It would be inappropriate to use a concept in a explanation, for example, if

the student has not yet been exposed to that concept.

Knowledge Based Systems Laboratory, TAMU 56

6

Experimental Software

As part of the exploration into intelligent tutoring systems (ITSs) for the IDEF

methods, experimental software has been developed for IDEF0. The purpose of the

experimental software is to bring to light issues regarding user interface design and

ITS strategies for system engineering methodology training that are difficult to

ascertain without hands-on use. The experimental software is not meant to be a

finished product, or even a prototype, only a vehicle for evaluating and displaying

concepts of importance.

The experimental software concentrates on issues regarding teaching the method

processes. In other words, how one goes about building a model. Consequently, the

experimental software does not concern itself with issues important in teaching basic

syntax and semantics, but instead demonstrates a "practice field" for novice
modelers.

The experimental software has been developed on Symbolics LISP Machines. The

Symbolics machines provide a powerful environment for experimentation. Besides

LISP, LISP Machines provide interface development and debugging tools that are

at least on par with, and usually superior to, tools found on other platforms.

Little knowledge of the Symbolics is required to run the experimental system. More

than enough background is contained in Appendix D of the "IDSE User's Manual -

Version 1" [Wells 88]. To load the IDEF Tutor demo, enter Load System Tutor after

logging in. Once loaded, the experimental system is selected by typing SELECT 3.

There are two parts to the experimental software. The first part displays issues

regarding ITSs for IDEF0. The second part is the on-line reference for IDEF0. The
on-line reference was derived from the standard reference (the "Yellow Book") for

IDEF0. The on-line version has many advantages over the paper version. These

advantages will be described in this report. The on-line reference should prove useful

to anyone requiring knowledge of IDEF0.

Knowledge Based Systems Laboratory 57

6.1 Overview of the Experimental Software

The basis for the experimental software is described in the "ICAI for Systems

Analysis Methodologies Technical Report" [KBSL-90-601].

In an actual system, when the student first starts the system he or she would be

prompted for identification. If this were the first time the individual had used the

system, he or she would be prompted for background information. This information

would be used to configure the system for the particular student. Since students may

have diverse backgrounds, the system would use background information to cus-

tomize examples and to determine the pace. The experimental software does not take

advantage of background information, thus there is no login procedure.

In order to instruct the student in the modeling processes of the methods, a system

could use a combination of "slide-show" and "interactive" sessions. Slide-show

sessions allow the student to watch a model constructed correctly. Interactive

sessions allow the student to follow the same steps in creating a new model. The

experimental system has only the interactive session, since the slide-show session

would just be an automated version of the interactive session.

The scenario for the interactive session is based on making coffee. This example was

chosen due to its clarity and familiarity to many users. Actual ITS scenarios would

probably be based on activities which are more relevant to the backgrounds of the

students.

The experimental system is built on top of an enhanced version of the prototype

IDEF0 tool developed under the Integrated Information Systems Evolution Environ-

ment (IISEE) Project for the Air Force Human Resources Laboratory. Thus, the

system provides integration between instruction and modeling. For a description of

the original "Model Builder" prototype, see [Wells 88].

The Model Builder included modes for diagram editing, concept editing, and activity

tree editing. These modes are also available under the current system.

The first point in any modeling process is the collection of source material. The

experimental system takes care of this for the student; providing the source material
from which the student is either shown how or asked to select source data items. In

this case, possible activities and concepts are identified from the source material.

This information gathering phase is the first mode of the experimental system.

The system has two scopes: activity and concept. The scope controls the operation

of the system. For instance, in the information gathering mode, if the activity scope

is selected, selected source data items are considered to be possible activities.

When selecting source data items, the display shows the source material on the left

hand side and the selected source data items on the fight side. A message pane at the

Knowledge Based Systems Laboratory 58

bottom right provides feedback to the student and the command pane at the bottom

left allows the student to enter commands. A typical information gathering screen is

shown in Figure 6.1.

Once the source data items are collected and identified as activities or concepts, it is

time to construct the model. There are two available modes for model creation:

graphical and textual. The graphical view is simply the normal graphical presentation

of IDEF0 models. Different commands are available depending on which scope is

selected.

In textual-activity mode, the possible activities and an activity tree are displayed.

The activity tree allows a broader view of the model, but no information is displayed

other than the activity names and numbers. The activity tree allows hierarchical

viewing of the model where lower levels can either be displayed or hidden.

In textual-concept mode, the possible concepts and concepts used in the model are

displayed. The subparts and subtypes of each concept are also shown.

Graphical-activity and graphical-concept modes are similar other than which source

data items are displayed. Under activity scope, possible activities are shown, whereas

under concept scope, possible concepts are shown.

glve|! Ilttielil l|ln: TIIIIII:|OIllCI[-IIIII[IIIIL;C|FF[(,L|iP.II|II/_II,

Peoslkle |¢tl,ltv List

I .. I

Jt
Figure 6.1 Information-Gathering Mode

ORIGINAL PAGE IS
OF POOR QUALITY

Knowledge Based Systems Laboratory 59

6.1.1 A Demonstration: An IDEF0 Model of Making Coffee

The following describes the process of using the interactive portion of the IDEF

Tutor. If you have not done so already, load the IDEF Tutor by entering "Load

System Tutor" from the LISP Listener. Once the system is loaded, type SELECT 3.
You should now be in the IDEF Tutor.

To begin, start an interactive session by using the command:

Start Interactive Session {New or Old } <session-name>

This notation has the following meaning. The command name "Start Interactive

Session" can optionally be followed either by "New" and the name of a standard

session or by "Old" and the name of a session which is in progress. If the space bar

is pressed instead of typing "New" or "Old", the system will assume the last choice

made, or ff the system is fresh it will assume "New".

In this case, choose "New" and then type "Coffee" or select it from the menu

generated by clicking fight. The Tutor system will now enter interactive mode.

The display should look like Figure 6.1. There are many panes on the display. At

the top of the screen next to the title pane is the Mode Selection Pane. There are

many modes of operation associated with model creation.

The ftrst mode is the "Information-Gathering" mode. In this mode, source material

is used to identify possible source data items. These source data items may be

possible activities or possible concepts.

The "scope" identifies what the student is looking for or working with. There are

two scopes, "activity" and "concept". The combination of mode and scope give six

different modes. In this presentation we will refer to these modes by names such as

activity-info-gathering mode, which is the "Information-Gathering" mode with

"activity" scope.

Activity-info-gathering mode is the initial mode of operation. Consequently, the first

task is to identify possible activities from the source material. The system-supplied

source material for making coffee is in a file called "TUTOR:SOURCE-

MATERIAL;COFFEE.LISP". The system automatically presents the first source

material item associated with a given session (e.g. coffee). In this case there is only

one source material item, thus it is displayed upon entrance to the interactive session.

To identify possible activities, read through the text looking for verb phrases which

sound like reasonable activity names. The suggested method of browsing the source

material is to sweep the mouse cursor across the line as you read. Only certain nouns

and verb phrases are mouse sensitive. Verb phrases which are not mouse sensitive

cannot be selected as possible activities. In an actual system, there would be a more

Knowledge Based Systems Laboratory 60

sophisticated manner of handling the source material. Such a system would allow

the student to identify the activities and concepts without limiting the choices. Later

analysis phases would show why choices were either good or bad.

To add an item to the Possible Activity List, click left on the highlighted item. Note

that this creates a source data item which may or may not actually be used in the

model. Adding activities and concepts to the model happens later in the process.

Also note that the system will not allow you to choose the same noun or verb phrase

twice, but synonyms and slightly differently speUed variants will be accepted.

Once you have made both passes through the source material, the possible activities

and concepts should have been identified. Now it is time to take the possible activities

and determine the actual activity hierarchy. To do this, you need to switch to

textual-activity mode by clicking on "Textual" at the top of the screen. The screen

should look like Figure 6.2.

The modeling process can either be done top-down or bottom-up. In this example,

we will work top-down. The first activity to be identified is the "A0" activity. The

"A0" activity describes the activity being modeled, in this case, making coffee.

Once you have determined which possible activity is the "A0" activity, you can

create the activity by clicking left on the possible activity and then supplying the

"=_¢: Inr_otla, n-gat_r|_ lutma! |la_,'o,q
S¢#D=: 4¢tlvltr goncapt

Aitlvlt_ ,rll

E-| lavlraaaln|

II
Figure 6.2 Textual-Activity Mode

ORIGINAL PAGE IS

OF POOR QUALITY

Knowledge Based Systems Laboratory 61

name to be used in the model and the activity number (A0). Note that the name used

in the model does not have to be the verb phrase which names the source data item.

The new activity is said to be justified by the source data item. The same source data

item cannot be used to justify multiple activities or concepts.

The rest of the activity hierarchy is defined in a similar manner. It may be helpful to

fill out at least the "A0" decomposition before adding relationships (sometimes

called "flows") to the model. Relationships in IDEF0 def'me the flow of a concept

between activities. Concepts can either be used as inputs, controls, outputs, or

mechanisms of activities. Inputs to activities are usually consumed or transformed

by the activity, controls determine whether the activity takes place, mechanisms

facilitate the activity (but are not consumed or transformed), and outputs are the

products of the activity. All activities must have at least one control and one output.

There are two different approaches to adding relationships to a model. The first is

to look at each activity and determine that activity's inputs, controls, outputs, and

mechanisms. Since the flows being created are only one-sided, we call these "stubs".

Once each of the activities is defined, then the stubs of each of the activities are

joined to form the relationships between activities. This approach is called "cell

modeling".

The second approach is to look at modeling like telling a story. Relationships are

created which tell part of the story, like, "The product is manufactured and then

sold." Which could be modeled as the "Manufacture Product" activity has an output

labeled "product" which is a control on the "Sell Product" activity.

To add the relationships, the first step is to switch to textual-concept mode and define

the concepts. Concepts can be identified from the "Possible Concept List" very

quickly if the name of the concept is to be the same as the possible concept. If it is,

the concept can be created by just clicking left on the possible concept. If a different

name is desired, then the "Create Concept" command can be entered from the

keyboard followed by the possible concept (select with the mouse) and the name of

the concept.

Once the concepts have been defined, switch to diagram mode, still under the

"concept" context. The first approach to adding relationships we will describe is the

"cell modeling" approach. As such, we will look at the commands used to add stubs

to activities. There are Four types of stubs: inputs, outputs, controls, and mechanisms.

Every activity must have at least one control and one output.

There are two ways to create a stub. The first way is to point at the activity with the

mouse, hold the SHIFT key down, and click middle. This will bring up a menu which

prompts for the necessary information. First, the type of the stub must be identified

by clicking on the appropriate choice. The default selection is "input".

Knowledge Based Systems Laboratory 62

Next, the concept involved is identified. Normally, clicking left on this field, and

then clicking right would bring up a menu of possible choices. Unfortunately, under

Release 7.2 of Genera, there is a bug which will cause an error if you try to use this

procedure. Under Release 7.2, the only way to enter the concept is to type it (use

hyphens in place of spaces). Under Release 8.0 you can use the right click selection

facility.

Finally, the concept can be tunneled. This means that the concept either appears or

disappears from the model without being traced through the hierarchy. For instance,

an engineer whom is identified as a mechanism in an activity may be tunneled from

the environment since there is no need to see that he or she is a mechanism in the

higher level activities. The display of tunneling is rather messy under the current

system.

The other method of creating stubs is to use the "Create Stub" command. You will

be prompted for the type of the stub, the concept (which can be selected with the

mouse from the concept list), and whether to tunnel the concept.

The system will automatically join stubs when appropriate. For instance, if "Prepared

Coffee Machine" is the output of one activity and a mechanism on a sibling, the

air,,

!

Figure 6.3 Diagram Mode OF POOR (_UALrTY

Knowledge Based Systems Laboratory 63

6.1.2

system will connect the stubs, thus showing the flow from the first to second

activities. Consequently, the diagram is valid when all activities have an output and
a control and all stubs are either tunneled or connected. Figure 6.3 shows a screen

with the completed coffee model shown in diagram mode.

The second method for creating relationships is closer to the "story telling" approach.

With this approach, complete relationships are created instead of stubs. To create

the relationships you use the "Create Relationship" command. The command will

prompt you for the type of relationship (the effect on the destination activity), the

source activity, the destination activity, the concept, and the tunneling information.

Note that relationships can be created which span many levels in the model. This

method does not allow any stubs to be left unconnected.

This completes the general process of creating an IDEF0 model. There are many

other commands available for editing the model. These commands are described in

[Wells, 881.

Analysis

Now that you have worked through an example scenario, let's look back and see

how effective the strategies used in the experimental software turned out to be. To

analyze the software, we will refer to the cognitive skills which were identified earlier

as being important to IDEF modeling. These skills are: observation, classification,

synthesis, decomposition, and language skills.

The software stresses observation and classification skills during the information

gathering phase. It is at this point where the modeler must identify the concepts and

activities from the source material. The current method the student follows to identify

activities and concepts leaves little room for thought. Only possible concepts and

activities are mouse sensitive, and little thought is required to differentiate between

a noun (concept) from a verb phrase (activity). A true ITS would need to give more
freedom to the student.

A true ITS would also need to allow the student to make a wrong choice and then

let the student discover later down the road why the choice was wrong. How far

down the road is dependent on the issue at hand. The experimental software stops

the student immediately upon making a wrong choice. This does not give the student

time to necessarily realize why it was a mistake.

Decomposition and synthesis skills axe addressed when the student is creating the

activity hierarchy and identifying subpart and subtype relationships for concepts.

Synthesis skills are also addressed during the diagram building phase.

Finally, language ,_kills are important when creating the model, By comparing the

student's model with an expert's model, issues could be identified which cause the

Knowledge Based Systems Laboratory 64

expert's model to communicate the information more clearly than the student's
model.

6.2

6.2.1

Context Sensitive Help

No inteUigent tutoring system would be complete without context sensitive help.

Context sensitive help refers to an on-line service which provides help for specifi-

cally requested concepts. In other words, the user of the system does not have to

search through pages of documentation for instruction or help on a selected topic.

For instance with the IDEF0 tutor the student may wish to see more about "ICOM

Codes". It should not be necessary to search through the entire on-line documentation

for references to ICOM codes, the system should perform this search for the student.

The experimental software shows one approach to providing this service.

Source of the Text

The def'mitive source for the description of IDEF0 is the Air Force "Yellow Book". 1

This source contains a complete description of the methodology plus the approved

def'mitions for all relevant terminology. Furthermore, this document was used as the

source for developing the Concept Dependency Network 2 for IDEF0 training. For

these reasons the "Yellow Book" was used as the on-line help document. The text

of this document was inserted verbatim, (with the exception of some of the figures)

from chapter one through chapter six, page 39. 3 In order to make the document more

useful as an on-line IDEF0 User's Manual most of the sections in each of the chapters

were broken down into smaller subsections. Each of these subsections (and sub

subsections) contain only one or two main topics.

To use the on-line User's Manual the student would select a topic about which he/she

requires additional information. The tutor will accept this request and present a list

of all section titles that reference the requested topic (see Figure 6.4). For instance,

the topic "arrows" will present the user with a list of the titles of all subsections in
the user's manual that reference IDEF0 arrows. Selection of one of the titles will

The IDEFo Yellow Book refers to the "Integrated Computer-Aided Manufacturing (ICAM) Function Modeling
Manual (IDEFo)", UM 1102311100, written by SofTech, Inc. for M:L/AFWAL Wright-Patterson AFB, OH,
45433 in 1981.

A production quality IDEFo Tutor, as apposed to the experimental software would have to provide a complete
implementation of this concept dependency network.

The insertion of the text stopped at this point because if was felt that the remainder of the document was not
necessary for the experimental software.

Knowledge Based Systems Laboratory 65

Ar_-ow Lmyout

sutomsted IDEF 0 mOdelir_ tool w_ll swtornaticslly Lrffqxce mLny o!
the rule_ 9_ver_ bolow.

1. Bundle irrowt with the s,me aource ar_ the

emme _eltlnatlon unleeg the arrow II of 0uch tn_

porllr_e thsl mskir_ It part of • pipeline would

deer ease clsrlty.

rather thin

2, On iny one elde of • box. there ohould never be

rhoFe thin four 0rrows. If therG are rnoro, bun-.

@re some, 18be[wt|h • 0ult|ble Ibstrl¢¢ Iobol,

sr_ fen _t brlJnchlid I0 thei¢ destln&tlon0.

_. Control feedb_ckm tre ¢lest4_ wh4m _wn a0 *up
_ over."

Ir_Dvt ¢eedb4¢kl ere cllorlr t_n _ ilI

))He_p (topic [dtfg)uIt "_-ro_']) " • "

Figure 6.4 Help Screen

6.2.2

provide the user with documentation from the User's Manual that addresses arrows

in greater detail.

Evaluation

A direct use of the "IDEF0 Yellow Book" as the IDEF0 Tutorial help manual

provides the student with an interpretation of IDEF0 exactly as the creators of the

methodology established and described it. Furthermore, since the prototype tutor

runs on the Symbolics, the official IDEF0 User's Manual is usable in the Symbolics

"Document Examiner" for anyone who simply wishes to browse the manual'*

(familiarity with the Symbolic's Document Examiner is required).

Despite these advantages, the use of the "IDEF0 Yellow Book" would not be the

best approach for a production release of an intelligent IDEF0 tutor. An intelligent

tutoring system should recognize the specific question about which the student is

requesting additional information and provides appropriate answer without any

additional reirmement by the student. For example, in the "Yellow Book" there are

4 This can be done by loading the file IDEF0.sab and then selecting the Document Examiner.

ORIG!NAL P_C_ iS
OF POOR QUALITY

Knowledge Based Systems Laboratory 66

several correct answers to the question "What does the term arrow mean"7 The

answer depends upon the context in which the question is asked. Furthermore, even

the answers to very specific questions by the student can only be found by browsing

and synthesizing large sections of the manual. A production ITS for IDEF0 would

require substantial refinement and editing of the contents of the User's Manual to

address the needs of the user of an intelligent IDEF0 tutoring system. Thus, an IDEF

User's Manual in a production version of an IDEF0 tutor would be based on the

"IDEF0 Yellow Book" but the text would very likely be unrecognizable by the

author's of the original manual.

Knowledge Based Systems Laboratory 67

7

IDEF Tutor: PC Based Prototype

7.1 Background

While the experimental software was developed in conjunction with the research

effort to experiment with cognitive skills for IDEF modeling, the personal computer

(PC) based prototype is being developed after the major thrust of the research. The

lessons teamed in the experimental software have been incorporated into the PC

prototype. While the original research entailed developing a general architecture

suitable for intelligent IDEF tutoring, the PC prototype is providing a means for

further experimentation and testing.

The PC prototype is being done as part of a master's thesis and is not expected to be

completed until after January 1991. It is written using Zortech C++ version 2.0. The

target platform is an 80386 based personal computer with VGA graphics, a mouse

and two or more megabytes of expanded memory.

7.2 Current Status

The tutor architecture relies on a conceptual dependency graph (CDG) to provide a

hierarchical course representation. The system must be able to provide good CAI

before any intelligence decision making and evaluation may be done. Since it is

possible to represent only a limited portion of the IDEF domain with constraints,

that portion is one of the focus areas for intelligent decision making for the IDEF

tutor. The second focus for intelligent decision making concerns when and what to

teach. The third focus area is concerned with teaching the cognitive skills previously

identified for IDEF modeling. Most of the instruction will not be truly intelligent as
in structured domains "such as mathematics.

Graphical User Interface (GUI). The basic tutoring environment is complete. The

environment is built on top of Metagraphics's MetaWindow GUI and Ithaca Street

Software's Menuet software. The tutor environment consists of controned entry and

identification of user, support for adding courses, support for adding students to the

system, windowing and icon support. ScroUable lists, user defined icons, and

bitmapped graphics support are common features of the GUI.

Knowledge Based Systems Laboratory, TAMU 68

Conceptual Dependency Graph and Course Interpreter. The CDG support functions

are complete also. A course may now be defined as dependency relationships among

lessons. A simple course description language captures the dependency relationships

and is read by the course interpreter. In the absence of any intelligent intervention,

the tutor automatically builds an agenda of lessons that will represent the course.

Lesson Interpreter. Completion of the CDG and course interpreter paved the way

for the lesson interpreter. The course interpreter reads a course file and organizes the

lessons. The lesson interpreter is then called to read the tutor language code to
conduct each lesson.

Tutor Language. The tutoring language is simple but effective. Currently variables

and functions are not supported although they will be added when time permits.

Support is provided for a multi-pane windowing look and feel, icons, and primitive

branching support.

Student Model. Enough of the system is now built to begin the student modeling

module. Progress is expected to be slow due to the difficulty of building this module

and the implications for a poor design.

Model Builder Environment (MBE). Based on the lessons gained from the ex-

perimental software, components of the model builder environment are being

developed. The MBE is specifically being designed to develop the cognitive skills

needed for IDEF modeling. These skills are very difficult to develop using the lessons
alone.

Test Module. With the capability to develop a course with lessons, testing is rapidly

becoming a need. Development of this module will proceed in parallel with that of
the student model and MBE.

7.3 Looking Ahead

The goal of the prototype development is to create a functional tutor system in which

the architecture and ideas developed may be tested. Currently, the goal is to have a

reasonably functional prototype for testing by January 1991. Two environments are

being considered as potential test sites:

• Dr. Mayer's class in which the IDEF methods are taught, and

• a class or group in the Texas A&M education department.

Knowledge Based Systems Laboratory, TAMU 69

The testing should answer many questions including the following:

• can such an architecture effectively support multiple courses?

• can a cognitive skills approach be taken for unstructured environments?

• is intelligent instructional strategy selection by the tutor effective in helping
the student learn the material?

• how difficult is it for an instructor to use the system to design courses?

• will instructors actually build on top of the lessons from other courses.'?

• will lessons from other courses integrate well?

Knowledge Based Systems Laboratory, TAMU 70

8

Conclusions

8.1 Conclusions and Results

The ideas presented for the development of an ITS system unify many of the ideas

that have been explored since the early development of CAIACAIKrS. The key ideas

that separate this system are the following:

• identification of specific cognitive sldlls for IDEF modeling,

• dynamic dependence upon a concept hierarchy for curriculum guidance,

• multiple curriculum depth levels (pedagogical levels),

• integration across concept hierarchies,

• dynamic support of multiple instructional strategies,

• utilization of information concerning the student's background, initial

knowledge, and progress to affect curriculum guidance.

An innovative combination of the above components has been described that should

provide an ITS system flexible enough for tutoring IDEF modeling and much more.

With the above system, students should no longer be forced to trudge through

concepts which they have already mastered just to get to the new concepts. This has

financial implications when those students are professionals with limited time for

tutoring or brief'rag sessions. Students should be able to review across domains. No

longer should one system be for teaching one domain, another system for another

domain, etc. Integration across concept hierarchies should bring many benefits to

students and instructors alike.

8.2 Future Directions/Work

Knowledge Acquisition. A knowledge acquisition scheme must be developed to

build the model library previously discussed. The difficulty lies in trying to build a

library of models in which each model may be done many ways. Different experts

may actually produce substantially different models. A method is needed to gain a

Knowledge Based Systems Laboratory,TAMU 71

consensusonwhich models are good, poor, and incorrect. A variation of the Delphi

technique is being explored.

Tool Support. Perhaps the most obvious enhancement would be to develop a tool set

to aid in the creation and modification of the lessons used by the IDEF Tutor system.

Such tools would facilitate the development of a lesson including manipulation of

bit mapped graphics, animation primitives, and simulation capabilities.

Group Learning. Using networked systems, group learning is possible. A variation

of the Delphi technique has potential to facilitate that process. The students could

actually participate in the model building process as a group using the Delphi

technique. The goal would be for the students to come to a consensus conceming

the way to build the model each defending their own view when necessary.

Knowledge Based Systems Laboratory,TAMU 72

References

Anderson, J.R.; Boyle, C.; and Yost, G. (1985). "The geometry tutor." Proceed-

ings of Ninth International Joint Conference on Artificial Intelligence, pp. 1-

7. Morgan Kaufmann, Los Altos.

Bloom, B.S., (Editor) (1956). Taxonomy of Educational Objectives: Handbook I:

The Cognitive Domain. David McKay Co, New York

Brown, J.S., & Burton, R.R. (1978). ???

Brown, J.S.; Burton, R.R.; and DeKleer, J. (1982). "Pedagogical, natural lan-

guage and knowledge engineering techniques in SOPHIE 1,11, and Ill." In

Sleeman, D.H.; and Brown, J.S. (Editors) Intelligent Tutoring Systems.

Academic Press, London.

Brown, J.S., & VanLehn, K. (1980). "Repair Theory: A generative theory of bugs

in procedural skills." Cognitive Science, 4, 379-426.

Chomsky, N., (1965). Aspects of the Theory of Syntax. MIT Press; Carnbridge,

Mass.

Clancey, W.J. (I 981). "Tutoring rules for guiding a case method dialogue." Inter-

national Journal of Man-Machine Studies, vol. 1 I, pp, 25-49, (Reprinted in

Sleeman, D.H.; and Brown, J.S. (Editors) Intelligent Tutoring Systems.

Academic Press, London.).

Gagne, R.M. (1962). "The Acquisition of Knowledge." Psychological Review,

69, 355-365.

Genesereth, M.R. (1982). "The role of plans in intelligent teaching systems." In

Sleeman, D.H.; and Brown, J.S. (Editors) Intelligent Tutoring Systems.

Academic Press, London.

Langley, P.; and Ohlsson, S. (1984). "Automated cognitive modeling." Proceed-

ings of American Association of Artificial Intelligence, pp. 193-197, Morgan

Kaufman, Los Altos.

Lee, M.C. (Winter 1988) "An Expert System Construction Approach to CAI

Development," Journal of Research on Computing in Education.

Lesgold, Alan. (1988) "Toward a Theory of Curriculum for Use in Designing In-

teUigent Instructional Systems." Learning Issues for Intelligent Tutoring Sys-

tems. pp. 114-137, Springer-Verlag, New York.

Knowledge Based Systems Laboratory, TAMU 73

Mayer, R. J. (Editor)(1990). IDEFO Function Modeling: A Reconstruction of the

Original Air Force Wright Aeronautical Laboratory Techical Report AFWAL-

TR-81-4023 (The IDEFO Yellow Book). Knowledge Based Systems, Inc., Col-

lege Station, Texas.

Sleeman, D.H.; and Brown, J.S., (Editors)(1982) Intelligent Tutoring Systems.

Academic Press, London.

Soloway, Elliot and VanLehn, Kurt. (1987) Proceeding ofAAA1-87: AI and

Education.

Towne, D.M., and Munro, Allen. (1987) "The Intelligent Maintenance Training

System." Intelligent Tutoring Systems: Lessons Learned (edited by Psotka,

Massey & Mutter) pp 479-530.

Uhr. L. (1969). "Teaching machine programs that generate problems as a function

of interaction with students." Proceedings of the 24th National ACM Con-

ference, pp 125-134. Association for Computing Machinery, New York.

VanLehn, Kurt, (1986) "Student Modeling," Foundations of Intelligent Tutoring

Systems (edited by Poison & Richardson), pp. 55-78, Lawrence Erlbaum.

Knowledge Based Systems Laboratory, TAMU 74

APPENDIX A

IDEF0 CONCEPTS REFERENCE

The following represents the concepts isolated for IDEF0. These concepts were used to

develop the Concept Dependency Graph (CDG) for IDEF0. The concepts listed in this

reference were extracted from a reconstructed version of the original Air Force Technical

Report AFWAL-TR-4023 [IDEF090]. Each concept has been assigned a number for

identification in the CDG. Each numbered concept is re_n-esented by a node in the CIX3.

The identifier enclosed in brackets refers to the location on the originally developed

"wall chart" version of the CIX3:

100 Overview Slideshow of Expert [4A]

101 Definition of"IDEF' [3A]

102 Definition of"information model" [3A]

103 Definition of "enterprise" [3A]

104 Definition of "function model" & "dynamics model" [3A]

105 Relationship between architecture and method [3A]

106 Definition of a "modeling team" [3A]

107 Definition of a"project manager" [3A]

108 Definition of "sources" [3A]

109 Definition of "viewpoint" [3A]

• Determines what can be "seen" within the context and from what "slant"

• States the author's position as an observer of or participant in the system for

the benefit of the audience

t

Knowledge Based Systems Laboratory, TAMU 75

110Definition of"context setting"[3A]

• Establishedthesubjectof themodelaspart of a larger whole

• Creates a boundary with the environment by describing external interfaces

200 Background [3B]

• IDEF (ICAM definition)

• IDEF methods 0DEFojDEFhIDEF2)

201 Purpose of IDEF0 [2A]

202 IDEF models - architectures [2A]

203 Method 0DEF), Means (architecture), and End (improving mfg prod) [2A]

204 IDEF0's relationship to SADT [2A]

205 Cell Modeling [2A]

206 Six Basic IDEF0 Concepts [2A]

* Cell modeling graphic representation

• Conciseness

• Communication

• Rigor and precision

• Methodology

• Organization

300 Basic IDEF0 Concepts [2B]

Purpose of IDEF0

IDEF models - architectures

method 0DEF), means (architecture), and end (improving mfg pnxtuctivity)

Q

IDEF0's relationship to SADT

Cell Modeling

Six Basic IDEF0 Concepts

Knowledge Based Systems Laboratory, TAMU 7 6

400Roles of the Modeling Group Members [4C]

Project manager

Modeler

Sources

• Experts

• Review committee

401 Model Def'mition[1D]

• Decomposition

• Decompositior_ Rules

• FEO's

Representation of a system; may describe what a system is, what it does, and

what things it works on

• Composed of: diagrams + FEO + text + glossary (all are cross-referenced)

• Series of diagrams with supportive documentation that break a complex

subject into its component parts

• A node index or table of contents must be provided

• Final model represents the agreement of the author and reviewers on a

representation of the system being modeled from a given viewpoint and for

a given purpose

• Model orientation (includes context, viewpoint, and purpose

40I-1 Decomposition [1C]

401-1 Decomposition Rules [1C]

• Model decomposed into 3-6 submodules; background reason

• Relationships between modules captured by arrows

• Every submodule contains only those elements within the scope of its parent

module

401-3 FEO [1C]

• "For Exposition Only"

Knowledge Based Systems Laboratory, TAMU 7 7

• May contain more than six boxes, partial arrow su'uctures, or anything needed

by the author to illustrate a point

• Node numbers contain "F" (e.g. A2F)

402 IDEF0 Symbols [1D]

• Diagrams

• Boxes

• Arrows

• Box/Arrow Relationship

402-1 Diagrams [1C]

• Composed Of boxes and arrow

• Composed of 3-6 boxes

• A one-box diagram is provided as the "context" or parent of an entire model

• By convention, the diagram has the node number"A-0" (A minus zero)

• Main path of a diagram

• Diagram interpretation

402-2 Boxes [1C]

• Represent functions

• Numbered in its lower right comer

• Bottom reserved to indicate a mechanism; Le. the person _ device which
carries out the function

• Represent collections of related functions, not just monolithic actions

• May perform various parts of its function under different circumstances,
using different combinations of its input and controls and producing different
outputs

402-21 Functions [1B]

• Represented by boxes

• Include activities, actions, processes, or operations

• Described by an active very phrase written inside the box

• Anything that can be named with an active verb phrase

Knowledge Based Systems Laboratory, TAMU 7 8

• Examples: tighten, attach, measure, assemble, transcribe, evaluate, classify,

construct, solve, adapt

• Not expressed as nouns

• Transform data (from left to right)

402-22 Mechanisms [1B]

• Arrows generally point upward; toward the bottom of the box

• Shows how that.function is acxxanplished

• Diagrams drawn without mechanism show what functions a system must

perform

• Downward pointing mechanism arrow Ccall") indicates a "system" that

completely performs the function of the box

• May be the output of other boxes

402-3 Arrows [1C]

• Represent objects or information needed by or produced by the function

• Labeled with a noun phrase written beside the arrow

• Act as constraints that define the boxes, not sequences or flows of functions

• Roles: input (left), control (top), output

• Easy to show feedback, iteration, continuous processes, and overlapping

• Types: internal, boundary

402-31 Internal Arrow [IB]

• Both ends connected to boxes shown on the diagram

402-32 Boundary Arrow [IB]

• One end unconnected, implying production by or use by a function outside

the scope of the diagram

• Unconnected at one end _present data that is supplied or consumed outside

the scope of the diagram; the source or destination of these boundary arrows

can only be found by examining the parent diagram

402-4 Box/Arrow Relationship [1C]

• Arrows are conswaints that define the boxes, not sequences or flows or

functions
I

Knowledge Based Systems Laboratory, TAMU 7 9

L

• Side of box which arrows enters or leaves represents the arrow's role

402-41 Arrow Connections Between Boxes [1B]

40242 Mechanism Arrows [1B]

403 Additional IDEF0 Symbols [1D]

• Reference Expressions

• Continuing Arrows Across Diagram Boundaries

• Coding Boundary Arrows

• Tunnelling

• Decomposition Example

403-1 Tunnelling [2C]

• Tunnelled arrows/nd/cate that the data conveyed by these arrows was not

relevant to a particular level of detail

• Tunnelling an arrow where it connects to a box indicates that the data

conveyed is not necessary at the next level of decomposition

• Tunnelling an arrow at the unconnectedend indicates that the data conveyed

is not relevant to Or supplied by the parent diagram

• Parenthesizing the unconnected ends says "this arrow does not appear in the

parent diagram. It has no ICOM code."

• Parenthesizing the end where the arrow connects to the box says "this arrow

does not appear in detail diagrams. Its ICOM code is not tracked from here

on and may never be explicitly referenced"

• Note: it is poss_le for an arrow to have a parenthisized arrowhead, disappear

for one or more levels of detail, and then be reintroduced at some specific

level of detailwith a parenthesized end

403-11 ICOM C,¢_s [1C]

• Notation used to specify the matching connections

• Letter 'T' (input), "C" (control), "O" (output), or "M" (mechanism) written

near the unconnected end of each boundary arrow on the detail diagram to

identify the arrow's role in the parent box

• Letter followed by a number giving the position at which the arrow is shown

entering or leaving the parent box, numbering left to right, top to bottom

L

Knowledge Based Systems Laboratory, TAMU 8 0

t

Must be written at the unconnected ends of all boundary arrows except for

the very topmost diagram in a model and on tunneled arrows

403-2 Reference Expressions [2C]

• Node Numbers

• Model Names (and Node Numbers)

403-21 Node Names [2C']

• Used toindicatethe positionof any diagram or box in thehierarchy

• Begin with the letter "A" to identify them as "activity" or function diagrams

• By convention, the diagram has the node number "A-0" (A minus zero)

• FEO node numbers contain "F" (e.g. A2F)

• Used toindicatethe decomposition of a box in a diagram

• If a box has been decomposed, the node number of the diagram which

represents the decomposition is written outside the box under the right hand
corner

403-22 Model Names [2C]

• Each model must have a name for identification (e.g. TOPIC)

• Diagrams in the model are referred to by adding a slash and the node number

to the name (e.g. TOPIC/A3)

403-3 Continuing Arrows Across Diagram Boundaries [2C]

403-4 C..oding Boundary Arrows [2C]

403-5 Decomposition Example [2C]

404 T'nne/Sequence [2D]

• Not explicit in IDEF0 diagrams

500 Understanding IDEF0 Diagrams [2D]

• Model Definition

1

Knowledge Based Systems Laboratory, TAMU 8 I

. IDEF0Symbols

s Additional IDEF0 Symbols

• TunelSe, quenc_

501 IDEF Teamwork Discipline [3El

. Authors

. Reviewers

• Commentcrs

• Re,ad_

• Viewpoint/Purpose

501-I Authors [3D]

501-2 Reviewers [3D]

501-3 Commcntcrs [3D]

501-4 Readers [3D]

501-5 Viewpoint/Purpose [3D]

502 IDEF Kit Cycle [3E]

• Personnel Roles

• Guidelinesfor Authors and Commcntors

. Author/Reader Cycle

502-I PersonnelRoles [3D]

. Authors

• Commentcr

502-2 GuidelinesforAuthors and Commcntcrs [3D]

• Commcntcr Guidelines

• Author/Commcntcr Interchanges

• Meeting Rules

502-21 Commcntcr Guidelines[3]3]
t

Knowledge Based Systems Laboratory, TAMU 8 2

502-22MeetingRules [3D]

• Until comments and reactions are on paper, commenters and authors are

discouraged from conversing

• When a meeting is required:

• each meeting should be limited in length

• each session must start with a specific agenda of topics to be

considered and must stick to these topics

• each session should terminated when the participants agree

that the level of productivity has dropped and individual

efforts would be more rewarding

• Each session must end with an agreed list of action items

which may include the scheduling of follow-up sessions with

specified agendas

• In each session, a "scribe" should be designated to take

minutes and note actions, decisions, and topics

• Serious unresolved differences should be handled profession-

ally, my documenting both sides of the picture

• Result of the meeting should be written resolution of the issues or a list of

issues to be settled by appropriate managerial decision

502-23 Author/Commenter Interchanges [3D]

502-3 Author/Reader Cycle [3D]

• model author _ Idtl _ expert reviewer

• expert reviewer-- kit2 _ model author

• model author -- kit3 -- expert reviewer

• Idtl = original author's model

• kit2 = kitl with reviewer's comments

• Idt3 = kit2 with author's response

503 IDEF Kits [4E]

• Technical Document

• Cover Sheet

• Preparing a Standard Kit
t

Knowledge Based Systems Laboratory, TAMU 8 3

• IDEF Kit Types

503-I Cover Sheet fora StandardKit [4D]

503-2 Preparinga Standard Kit [4D]

504-I Working Information[4D]

504-2 Number Field[4D]

504-4 TitleField [4D]

504-4 Message Field[4D]

504 Standard Diagram Form [5E]

• Working Information

• Message Field

* Tide Field

• Number Field

505 MaintainingFiles[6E]

• Standard Kit File

• Summary Kit File

• Working File

506 IDEF Model Walk-13tmugh Procedure [6E]

• Scan theDiagram

• Look attheParent

• Connect ParentBox and theDetailedDiagram

• Examine InternalArrow Pattern

• Read SupportiveDocumentation

• Set theStares of theDiagram

600 IDEF Kit Cycle, Forms, and Procedures [$E]

• IDEF Teamwork Discipline

• IDEF Kit Cycle
I

Knowledge Based Systems Laboratory, TAMU 8 4

• IDEF Kits

• Standard Diagram Form

• MaintainingFiles

• IDEF Model Walk-Through Procedure

601 Approaching a Model [1F]

602 MiscellaneousforReading IDEF0 Diagrams [IF]

• Node Index

• Page-PairFormat

• Read Top Down

603 Diagram Reading Steps [IF]

Scan the boxes of the diagram to gain an impression of what is being

described.

• Refer back to the parent diagram and note the arrow connections to the

diagram. Try toidentifya "most important"input,control,and an output.

• Consider the arrows of the currentdiagram. Try to determine ffthereisa

main path linking the "most important" input or controland the "most

important"output

• Mentally walk through the diagram, from upper lefttolower fight,using the

main pathas a guide.Note how otherarrows interactwith each box.

• Determine ffthereare secondary paths.Check the storybeing toldby the

diagram by consideringhow familiarsituationsare handled.

• Check to see if a related "FEO" diagram exists.

• F'mally, read the text and glossary if providecL

603-1 Only thatwhich isexplicitlystatedisnecessarilyimplied [2FJ

603-2 ConstraintDiagram [2F]

603-3 ConstraintsOmit How and When [2FJ

603-4 MultipleInputs,Control,and Outputs [2F]

• multipleinputs,controls,and outputsare allowed foreach box

Knowledge Based Systems Laboratory, TAMU 8 5

• in general: cannot assume fllat any output can be produced without all entries

present or that any output requires all entries for its production

• in general: some form of further detailing will specify the exact relationship

of inputs and control to outputs

604 Semantics of Boxes and Arrows [2F]

• Only that which is explicitly stated is necessarily implied

• Consu'aint Diagrams

• Conswaints Omit How and When

• Multiple Inputs, Controls, and Outputs

604-1 Node Index [IF]

• Structure of functions and subfunctions formatted in an index format

• Similar to the format of a table of contents and the format of an "indentured

parts list" (i.e. bill of materials) used in manufacturing and engineering

• See"node index order"

604-2 Node Index Order [IF]

• All detail drawings relating to one box on a diagram arc presented before the
details of the next box

• Used so that related diagrams will be grouped together in the same order used
in the table of contents

604-3 Page-Pair Format [IF]

• Each diagram and the entire text associated with it appear on a pair of facing

pages

604-4 Read Top Down [1F]

700 Reading IDEF0 Diagrams [2G]

• Approaching a Model

• Diagram Reading Steps

• Semantics of Boxes and Arrows

• Miscellaneous Notes for Reading IDEF0 Diagrams

• Reading is done top-down

Knowledge Based Systems Laboratory, TAMU 8 6

• If specific details about a model are needed, the node index is used to descend

through the levels to the required detail

• Published model is bound in "page-pair" format and "node index" order

701 Interview Process [4F]

• Fact Finding

• Problem Identification

• Solution Discussion

• IDEF Author/Commenter Talk Session

702 Interview Kit [4F]

• Cover Page (kit cover)

• Interview and Reaxzd Follow-up

• Activity and Data List

• Interview Agenda

• Interview Notes and Rough Diagrams

703 Introduction to Data Collection for IDEF Modeling [4F]

704 Interview Guidelines [5G]

• Interview Preparation

• Interview Initialization

• Conducting the Interview

• Termination

• F'malization

800 Data Collecting for IDEF Modeling [$G]

• Introduction to Data Collecting for IDEF Modeling

• Interview Process

Interview Kit

Interview Guidelines

801 Basic Steps forAuthoring IDEF0 Diagrams [21]

Knowledge Based Systems Laboratory, TAMU 8 7

t

• Selecting A Context, Viewpoint and Purpose

• Creating the Context Diagram

• Creating the Top Most Diagram

• Creating Subsequent Diagrams

• Oeating Supporting Material

• Selecting a Box to Decompose

• Author Activities

• Bound the subject matter more precisely than the rifle of the function box

suggests. This is done with a list of data (objects or information) acted on or

processed by the function

• Study the bounded set of subject matter and form possible subfunctions of
the total function

• Look for natural patterns of connections of those subfunctions

• Split and combine subfuncfions to make other boxes

• Draw a final version of the diagram with careful attention to layout and clarity

801-1 Creating Subsequent Diagrams [2I]

801-2 Creating the Context Diagram [2H]

801-3 Selecting a Context, Viewpoint and Purpose [2H]

801-4 Author Activities [2H]

• Data Gathering Phase

• Structuring Phase

• Presentation Phase

• Interaction Phase

801-41 Data Gathering Phase [2G]

801-,42StructuringPhase [2G]

801-43 PresentationPhase [2G]

801-44 Interaction Phase [2G]

Knowledge Based Systems Laboratory, TAMU 8 8

801-5 Selecting a Box to Decompose [2H]

801-6 Creating the Top Most Diagram [2H]

801-7Creatlng Supporting Material [2I]

802 Model Creation Requirements [3I]

• Its purpose and viewpoint must match the stated purpose and viewpoint of
the overall model

• Its boundary arrows must correspond to those of its parent diagram

• Its content must be exactly everything in its parent box

803 Drawing An IDEF0 Diagram [31]

• C-enerating Function Boxes

• Oeating Interface Arrows

• Level of Effort

Note: most subjective and creative activity of the modeling process

Create a relevant, but not yet structured list of data. List items within the

context of the parent box that first comes to mind. Group items to show
dmila.,ities.

Name functions that act on the listed data and draw boxes around the names

Sketch appropriate arrows. As each box is drawn, leave arrow stubs to make

the box more meaningful. Make complete connections as it becomes obvious
what the diagram is saying.

Draft a layout that presents the clearest box and arrow arrangement. Bundle
arrows together if the structure is too detailed. Leave only the essential
elements, and modify diagram as necessary.

Create text, glossary, and FEO diagrams, if necessary, to highlight aspects
which are important. Propose changes, if needed, in the parent diagram.

803-1 Generating Function Boxes [3G]

• Make function box names verb phrases

• In most cases, layout boxes diagonally from upper left to lower right. While
any layout which makes clear the author's intent is acceptable, vertical or
horizontal formats tend to crowd arrows and hinder good structured analysis
style.

Knowledge Based Systems Laboratory, TA.MU 8 9

• Boxes placed in the upper left"dominate" boxes placed lower and to the fight

through the control arrows that link them. This standard style makes it easier

for readers to understand your meaning.

• Number each box in its lower fight comer. Assign the box numbers from left

to fight and from top to bottom. The leading digits of the box's complete

node number are the same as this diagram's node number.

• On working or draft copies, write the author C-number below the lower fight

ccx'ner of any box that is decomposed.

• No diagram may contain more than six boxes.

803-2 Creating Interface Arrows [3G]

• Think control and constraint, not flow

• Avoid cluttering diagrams with too much information and too many arrows

• Leave out questionable arrows

803-3 Level of Effort [3G]

• Reworking of diagrams will always be a necessary part of the proc.ss

• Use a review cycle to make progress on paper

804 Graphic Layout [31-]

• Constraints on the Diagram

• Arrow Placement

• Arrow Layout

804-1 Constraints on the Diagram [31]

804-2 Arrow Placement [31]

804-3 Arrow Layout [3I-I]

805 Re&awing An IDEF0 Diagram [3I-I]

• Modifying Boxes

• Bundling Arrows

• Proposing Modifications to the Context

• ICOM Syntax for Connecting Diagrams

Knowledge Based Systems Laboratory, TAMU 9 0

t

• Global Construction Syntax

• Model Construction Syntax

807-21 Local Construction Syntax [4(3]

807-22 Global Construction Syntax [4(3]

807-23 Model Construction Syntax [4(3]

807-3 Measures and Types of Cohesion [4H]

• Logical

• Temporal

•

• Communicational

• Sequential

• Functional

807-4 Metrics Based on Coupling and Cohesion [4HI

• Relation to Other Systems Engineering Properties

• Measures and Types of Coupling

807-41 Measures and Types of Coupling [4G]

• Viewpoint of the Description

• Nmure of Connections (normal, control, pathological

• StructureoftheConnection(environmental,record,abstrac0

807-41-IViewpointof theDescription[4(3]

807-41-2StructureofConnections[4G]

807-41-3NatureofDescription[4(3]

807-42 Relation to other Systems Engineering Properties [4(3]

807-5 Assessing Coupling/Cohesion in IDEF [41-I]

807-6 Relationship between Coupling/Cohesion [4I]

t

Knowledge Based Systems Laboratory, TAMU 91

805-1 Modifying Boxes [3G]

805-2 Bundling Arrows [3G]

805-3 Proposing Modifications to the Context [343]

805-4 ICOM Syntax for Connecting Diagrams [3G]

806 Writing Text [31]

• References and Notes

• Writing the A-0 Text

806-1 References and Notes [31]

806-2 Writing the A-0 Text [31]

807 Model Quality Checklist [41]

• Syntax

• Semantics

• Relationship Between Coupling/Cohesion

• Metrics Based on Coupling and Cohesion

• Measures and Types of Cohesion

• Assessing Coupling/Cohesion in IDEF

807-1 Semantics [41]

• Completeness

• Conciseness

• Consistency

• Correcmess

• Complexity/Understandability

807-2 Syntax [4HI

• Local Construction Syntax

Knowledge Based Systems Laboratory, TAMU 9 2

900 Author's Guide To Creating IDEF0 Diagrams [3J]

• Model Creation Requirements (3)

• Basic Steps for Authoring IDEF0 Diagrams (5)

• Drawings an IDEF0 Diagram

• Re&awing an IDEF0 Diagram

• Graphic Layout

• Writing Text

• Model Quality Checklist

1000 IDEFo [3J]

Knowledge Based Systems Laboratory, TAMU 9 3

APPENDIX B

IDEFo CONCEPT DEPENDENCY GRAPH

The following diagrams represent the Com_pt Dependency Graph (CI_) developed

for IDEF(_ The first figure provides a view of the top level major nodes. All figures after

the first figure show the composition of one of the major nodes in the IDEF0 CDG or

the composition of a subnode within one of the major nodes.

The CDG was developed using material from a reconstructed version of the original Air

Force Technical Report AFWAL-TR-4023 [IDEF090].

Each figure is read left to fight. Nodes on the left must preceed nodes on the fight.

Knowledge Based Systems Laboratory, TAMU 9 4

Basic IDEF0

Concepts

(300)

Overview
Slidcshow of

Expert

(100)

Background

(2O0)

Understanding
IDEF0

Diagrams

(5OO)

Reading
IDEF0

Diagrams

(7OO)

Author's Guide

to Creating
IDEF0

Diagrams

IDEF0

(lO00)

Roles of

Modeling

Group Members

IDEF Kit

Cycle, Forms,
and Prcccdm_s

(4O0) (600)

Data

Collection

forIDEF

Modcling

(800)

Figure B.I IDEF0 CDG Top Level Overview

Knowledge Based Systems Laboratory, TAMU 9 5

Definition of IDEF (101

Definition of InformationModel

Definition of Functional Model

Definition of enterprise

Relationship between

architecture/method (105)

Def'mition of modeling team (106y

Back-

(200)

Definition of project manager

Def'mition of sources

Definition of viewpoint

Definition of context setting

Figure B._ IDEF0 Ci_ Background Node 200
t

Knowledge Based Systems Laboratory, TAMU 9 6

Purpose of IDEF0 (201),,,,,_

IDEF model/architextum

Explain mcthod/mcans/¢nd"_ __
(203)

Basic IDEF0
relationshi_"--'--'-__ Concepts (300)IDEF0/SADT

CeU Modeling (205)f_

6 Basic IDEF Concep_ .f

(206)

Figure B.3 tDEF0 CDG Basic IDEF0 Concepts 300

Knowledge Based Systems Laboratory, TAMU 9 7

IDEF0,
IDEFI
model

definition

(302-11)

Modeler users
reviewer

Modeler __eommentts (302)

defined

(302-1) _ Modeler
response to

expert
reviewer

(3O3)

Author, Kits,
Librarian,

Readers (301)

Modeling

general

concepts
(302-12)

Expert reviewer

checks for clarity_

(304)

Expert reviewer

objectives (305)

Expert reviewer

comments (306)

Roles
of the

Model.

Group
Members

(4O0)

basicprocedure
(307)

Project

define (308)
Sources define

(3O9)

Reviewers Review
define Committee

(310-1) define (310)

Figure B.4 IDEF0 CDG Modeling Group Roles 400

K

Knowledge Based Systems Laboratory, TAMU 9 8

Decomposition(401-1)

De,composition Rules (401-2)_/

Functions FEOs (401-3y

(402-21)x',x.

Mechanisms _ Diagrams
(402-22) _ _ (402-1)

InternalArrows _ Boxes\

<4o2-3) " 4o2-2) \
Boundary

Arrows_ 402-3() /7
(402-32)

Arrow Connection RnY/Armw /
between Arrows_ -_ .'" "-"7 Relauonship

Arrows TunneLling

i._^ (402_, 2)_ (403-1)_
L.UM _OOCS \

(403-11) Reference \

Node Names_ Expressions\ \
(403-21)_ (403-2) _\

Model Names / Continuing Arrows

across Diag Boundarie3; _//_(403-22) (403-

Coding of boardary arrows / /

(403-4)/
Decompositionexample/

(403-5)

Model

definition

(401)

IDEF'0

symbols
(4O2)

Additional

IDEF0

symbols

(403)

Tune and

Sequence

(404)

Under°

standing
IDEF0

(5OO)

Figure B.5 IDEF0 CDG Understanding Diagrams 500

Knowledge Based Systems Laboratory, TAMU 9 9

N

Autho_ / _ IDEF
\/ Commen_// Teamwork

Reviewe% Readers// (501)

Viewpoint/_ Personnel IDEF kit cycle

Purpose (502)

Commenter
,,".,"A.a:.,,.o_ Author/C, ommentel///

IDEF
M_g,,/Author/Rea_r Cycle /

L.L_eS kits
Auth:_: Cyclicalactivides/ (503)\

Commenter formodel review

interchanges //_

Cover S hee(// Standarddiagram form

Preparing a Standard Kif/ (504)
IDEF Kit Types /,

Working

Maintainin

files (505)
Message A

Standard Kit File//

Summary Kit File/

Working File" IDEF model

walk throuScan the Diagram procedure
(506)

Look m the Parenf////

Examine Internal Arrow Pattern// Activity cycle

Read Supportive Docs" / forandIDEFproceduresforms

Set the Statusof the Diagram (507)

IDEF

Kit

Cycle

Forms

and

Proc.

(6OO)

Figure B.6 IDEF0 CDG Kit Cycle, Forms, Procs 600

Knowledge Based Systems Laboratory, TAMU 1 0 0

Al_l_g
a model

No& Indcx_

Node Index Ordcr_ Misc Notes
\\

for Reading

Page-Pair Formar_ IDEFO

Read Top-Down" Diagrams

Only that which is

explicitely stated is

necessarily implied

Semantics of

Constraint Diagrams--_ Boxes and
// Arrows

Constraint Omit. how and when_ /

Multiple inputs, controls, and_

outputs

Reading
IDEF0

Diagrams

Diagram

Reading Steps

Figure B.7 IDEFO CDG Reading Diagrams 700

I

Knowledge Based Systems Laboratory, TAMU 1 0 1

Interview
Process

Interview Preparation

Interview Initialization N_

Conducting the Intervicw_

o, ;2,22;oT/
Interview

Data

Collection

for

IDEF0

Modeling

Introduction to Data

Collecting for IDEF

Modeling

Figure B.8 IDEF0 CDG Data Collection 800

Knowledge Based Systems Laboratory, TAMU 1 0 2

Modifying boxes\

Bundling arrows-_

Proposing modifications--ff
to the contexV _

ICOM syntax for/

connecting diagrams

Constraints on

Re&awing an

IDEF0 Diagram

Model Creation \
Requirements \

the diagram "_

Arrow placemen_ Graphic Layou_
Arrow layoutf

Diagram

Writing

Semantics

Generating Function Drawing
Boxes

Oeating Interface.---"_J

Arrows
Level of Efforf

References and Note_

Writing the_
A-0 Text

Model Quality Checklist (807)

Definition of Model i

Basic Steps for
Authoring IDEF0

Diagrams (801)

Author's
Guide for

Orating
IDEFO

Diagrams

Maintaining

Model Status Levels

Model

Rule: Only one viewpoint

Main path of a dia

AcceptanceReview

Figure B.9 IDEF0 CDG Author's Guide 900

Knowledge Based Systems Laboratory, TAMU
103

Creating

subsequentdiagrams

Creating the

context diagram

Selecting a

context,

viewpoint, &

Data gathering phase'-,,,.,, purpose

Structuring phase__ Author_

Presentation phas_ activitiesInteraction phase"

Selecting a box to.

decompose

Basic

Steps

for

Author.

IDEFO

Diagrams

Creating

top-most diagram

Creating

supporting
material

Figure B.IO IDEF0 CI_ Basic Authoring Steps 801

I

Knowledge Based Systems Laboratory, TAMU I 0 4

Semantics

Local construction synt_ _

Global construction syn_

Model construction syntax _ Syntax_

Viewpoint

of, M " s. x easure and

clescription \ types of

Structure of \ cohesion

conncctions_ Meas t_p_sand" -x.

•, ,-/ co,_,qin,,\ Metrics based on.
_aturc ol/ .-r b\ .. _

• coupnng ana
dcscripuons / . .

Relation to other/ coneslon

system engr

pro_rties

Creating

top-most diagram

Model

Quality
Checklist

Orcating

supporting

material

Figure B.11 IDEFO CDG Model Quality Checklist 807

t

Knowledge Based Systems Laboratory, TAMU 1 0 5

