33,825 research outputs found

    Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions

    Get PDF
    Computer-aided diagnosis offers a promising solution to reduce variation in colonoscopy performance. Pooled miss rates for polyps are as high as 22%, and associated interval colorectal cancers after colonoscopy are of concern. Optical biopsy, whereby in-vivo classification of polyps based on enhanced imaging replaces histopathology, has not been incorporated into routine practice because it is limited by interobserver variability and generally only meets accepted standards in expert settings. Real-time decision-support software has been developed to detect and characterise polyps, and also to offer feedback on the technical quality of inspection. Some of the current algorithms, particularly with recent advances in artificial intelligence techniques, match human expert performance for optical biopsy. In this Review, we summarise the evidence for clinical applications of computer-aided diagnosis and artificial intelligence in colonoscopy

    Role of artificial intelligence in the diagnosis of oesophageal neoplasia: 2020 an endoscopic odyssey

    Get PDF
    The past decade has seen significant advances in endoscopic imaging and optical enhancements to aid early diagnosis. There is still a treatment gap due to the underdiagnosis of lesions of the oesophagus. Computer aided diagnosis may play an important role in the coming years in providing an adjunct to endoscopists in the early detection and diagnosis of early oesophageal cancers, therefore curative endoscopic therapy can be offered. Research in this area of artificial intelligence is expanding and the future looks promising. In this review article we will review current advances in artificial intelligence in the oesophagus and future directions for development

    A Review of the Management of Eye Diseases Using Artificial Intelligence, Machine Learning, and Deep Learning in Conjunction with Recent Research on Eye Health Problems: Eye Microbiome

    Get PDF
    In the field of computer science, Artificial Intelligence can be considered one of the branches that study the development of algorithms that mimic certain aspects of human intelligence. Over the past few years, there has been a rapid advancement in the technology of computer-aided diagnosis (CAD). This in turn has led to an increase in the use of deep learning methods in a variety of applications. For us to be able to understand how AI can be used in order to recognize eye diseases, it is crucial that we have a deep understanding of how AI works in its core concepts. This paper aims to describe the most recent and applicable uses of artificial intelligence in the various fields of ophthalmology disease

    Towards Tumor Stage Classification and Treatment quality

    Get PDF
    Exact Stage tumor classification and treatment quality is a necessary feature of computer aided tumor diagnosis system for breast and lung cancer. This could achieve after accurate tumor identification because if the system is unable to detect accurate tumor then it is impossible to find exact stage of tumor and vice versa. For accurate identification a CAD is demonstrated in (Waqas Haider 2011). In this article the exact tumor stage classification and treatment quality phase is demonstrated. The proposed phase requires an accurate detected tumor area, the biological tumor stage information and treatment plan according to the stage of tumor and Neural Network based decision making ability. The proposed phase for achieving treatment quality make use of neural network utility of artificial intelligence and data mining , for automatic decision making upon detected area of tumor and stored information at CAD e.g tumor stage biological information and treatment plan. The demonstration shows that it helps in efficiency of computer aided tumor diagnosis system as it comprises on accurate early stage tumor detection, exact stage classification and automated treatment plan generation. So far with the help of image processing applications and artificial neural networks different CAD system are proposed which detect and classify lung and breast cancer, but still required a lot of improvements for exact tumor stage classification and treatment quality. The term treatment quality is highly dependent on accuracy and efficiency of CAD. Keywords: Computer Aided Tumor Diagnosis, Tumor stage classification, Neural network, Data minin

    The role of artificial intelligence in prospective real-time histological prediction of colorectal lesions during colonoscopy: a systematic review and meta-analysis

    Get PDF
    Artificial intelligence (AI) presents a novel platform for improving disease diagnosis. However, the clinical utility of AI remains limited to discovery studies, with poor translation to clinical practice. Current data suggests that 26% of diminutive pre-malignant lesions and 3.5% of colorectal cancers are missed during colonoscopies. The primary aim of this study was to explore the role of artificial intelligence in real-time histological prediction of colorectal lesions during colonoscopy. A systematic search using MeSH headings relating to “AI”, “machine learning”, “computer-aided”, “colonoscopy”, and “colon/rectum/colorectal” identified 2290 studies. Thirteen studies reporting real-time analysis were included. A total of 2958 patients with 5908 colorectal lesions were included. A meta-analysis of six studies reporting sensitivities (95% CI) demonstrated that endoscopist diagnosis was superior to a computer-assisted detection platform, although no statistical significance was reached (p = 0.43). AI applications have shown encouraging results in differentiating neoplastic and non-neoplastic lesions using narrow-band imaging, white light imaging, and blue light imaging. Other modalities include autofluorescence imaging and elastic scattering microscopy. The current literature demonstrates that despite the promise of new endoscopic AI models, they remain inferior to expert endoscopist diagnosis. There is a need to focus developments on real-time histological predictions prior to clinical translation to demonstrate improved diagnostic capabilities and time efficiency

    Breast Cancer Detection by Means of Artificial Neural Networks

    Get PDF
    Breast cancer is a fatal disease causing high mortality in women. Constant efforts are being made for creating more efficient techniques for early and accurate diagnosis. Classical methods require oncologists to examine the breast lesions for detection and classification of various stages of cancer. Such manual attempts are time consuming and inefficient in many cases. Hence, there is a need for efficient methods that diagnoses the cancerous cells without human involvement with high accuracies. In this research, image processing techniques were used to develop imaging biomarkers through mammography analysis and based on artificial intelligence technology aiming to detect breast cancer in early stages to support diagnosis and prioritization of high-risk patients. For automatic classification of breast cancer on mammograms, a generalized regression artificial neural network was trained and tested to separate malignant and benign tumors reaching an accuracy of 95.83%. With the biomarker and trained neural net, a computer-aided diagnosis system is being designed. The results obtained show that generalized regression artificial neural network is a promising and robust system for breast cancer detection. The Laboratorio de Innovacion y Desarrollo Tecnologico en Inteligencia Artificial is seeking collaboration with research groups interested in validating the technology being developed
    • …
    corecore